
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021 1

General-Sum Multi-Agent Continuous Inverse
Optimal Control

Christian Neumeyer1,2, Frans A. Oliehoek3, and Dariu M. Gavrila1

Abstract—Modelling possible future outcomes of robot-human
interactions is of importance in the intelligent vehicle and mobile
robotics domains. Knowing the reward function that explains
the observed behaviour of a human agent is advantageous for
modelling the behaviour with Markov Decision Processes (MDPs).
However, learning the rewards that determine the observed
actions from data is complicated by interactions. We present
a novel inverse reinforcement learning (IRL) algorithm that can
infer the reward function in multi-agent interactive scenarios.
In particular, the agents may act boundedly rational (i.e., sub-
optimal), a characteristic that is typical for human decision
making. Additionally, every agent optimizes its own reward
function which makes it possible to address non-cooperative
setups. In contrast to other methods, the algorithm does not rely
on reinforcement learning during inference of the parameters of
the reward function. We demonstrate that our proposed method
accurately infers the ground truth reward function in two-agent
interactive experiments1.

Index Terms—Inverse Reinforcement Learning, Learning from
Demonstration, Reinforcement Learning

I. INTRODUCTION

PREDICTING the future behaviour of agents (e.g., humans,
robots) is essential when deploying autonomous robots

in environments shared with humans (indoors, outdoors, traf-
fic). The interactions between the agents make this problem
particularly challenging.

One significant area of research uses planning based methods
based on MDPs to describe (human) agents that interact with
their environment and other agents [1], [2], [3], [4], [5], [6],
[7] (see [8] for an overview with a focus on human motion
trajectory prediction). In particular, the agents maximize a

Manuscript received: October, 15, 2020; Revised January, 15, 2021; Accepted
January, 21, 2021.

This paper was recommended for publication by Editor Dana Kulic upon
evaluation of the Associate Editor and Reviewers’ comments. *This project has
received funding from the German Federal Ministry of Economics and Energy
under the @City project (grant ID: 19 A 17015 A). Additionally, this project
has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant
agreement No. 758824 —INFLUENCE).

1Christian Neumeyer and Dariu M. Gavrila are with the Intelligent
Vehicles Group, TU Delft, The Netherlands c.muench@tudelft.nl
d.m.gavrila@tudelft.nl

2Christian Neumeyer is with the Environment Perception Group, Mercedes-
Benz AG, Germany

3Frans A. Oliehoek is with the Interactive Intelligence Group, TU Delft,
The Netherlands f.a.oliehoek@tudelft.nl

Digital Object Identifier (DOI): see top of this page.
1github.com/neumeyerc/GSCIOC
c© 2021 IEEE. Personal use of this material is permitted. Permission from

IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

reward (avoid collision, be considerate) that may transfer to
many different settings. Given a reward function, a predictor
(policy) can be trained inside a simulator. We can create many
environmental configurations that the policy learns to handle
before being deployed in the real world. However, humans do
not act optimally when steering a car or walking across a street,
so we focus on the maximum-entropy framework [9]. A vital
issue is inferring the reward function from observation data.
These algorithms are often referred to as inverse reinforcement
learning (IRL) [9] or inverse optimal control (IOC) [10].

Previous work on multi-agent maximum-entropy inverse
reinforcement learning (MaxEntIRL) relies on reinforcement
learning (RL) or MCMC sampling [1], [2], [11] as an additional
component of the overall algorithm. RL/MCMC can be hard
to optimize for multi-agent setups. Therefore, we will focus
on approaches that estimate the reward function without
RL/MCMC sampling.

[10], [12] established an efficient single-agent MaxEntIRL
algorithm that infers a single agent’s reward function, assuming
that the agent acts according to the MaxEnt framework.

We present a multi-agent formulation of [10], [12] that can
infer the reward function of a diverse set of agents without
assuming a cooperative reward or instant communication. The
algorithm retains important properties of [10], [12] in that it
can deal with sub-optimal demonstrations (agents maximize
reward and entropy of policy) and does not rely on a complex
RL/MCMC algorithm during reward inference. The main idea
is to approximate the reward function with a second-order
Taylor expansion and to linearize the dynamics at the observed
demonstration data. This results in a formulation similar to
that of linear-quadratic games (see [13]) where we obtain an
analytical solution for the Nash equilibrium that the agents
prefer to play. This approximation simplifies the computations
drastically compared to other MA-IRL approaches as we do
not search for globally optimal Nash equilibria far away from
the observed data during the reward inference.

II. RELATED WORK

The literature on inverse reinforcement learning is extensive.
As such, we will focus on work that is most relevant to ours.

Multiple algorithms have been proposed for inverse reinforce-
ment learning in multi-agent settings [1], [2], [11], [14], [15],
[16], [17], [18], [19]. Both [14] and [15] extend the single-agent
IRL algorithm of [20] to the multi-agent setting. [14] assumes
that the problem can be described in terms of a centralized
controller and a weighted cooperative reward function. In
particular, there is no interaction between the agents. In contrast

https://github.com/neumeyerc/GSCIOC

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

to that, [15] considers the non-cooperative setting but assumes
that other agents’ policies are known in advance. [19] considers
MA-IRL for different equilibria types that the agents agree
on beforehand (e.g., Nash equilibrium). They derive convex
optimization algorithms to find these equilibira but assume that
all agents’ policies are known beforehand. Additionally, the
algorithms do not scale to continuous states and actions. [1], [2]
consider the interaction of a mobile robot with people walking
around in an indoor environment. The problem formulation
assumes a cooperative setup with a centralized controller. [16]
tackle the problem of a robot learning to help a human achieve a
task, i.e., a cooperative setup. The problem formulation assumes
that the human knows the underlying reward function while
the robot does not. This results in a game where the human
may perform educational demonstrations instead of expert
demonstrations to increase the information content about the
reward function. The problem formulation is therefore different
to that of standard MA-IRL. [18] applies the deep RL algorithm
introduced by [21] to modelling the trajectories of people indoor.
While the approach is decentralized, it relies on discrete states
and actions and (approximate) value iteration. [11] extends
the adversarial inverse reinforcement learning (AIRL) [22]
algorithm to the multi-agent setting. The algorithm alternates
between training a policy (generator) through RL and updating
the reward (discriminator) through binary logistic regression.

An essential aspect of any IRL method is the ambiguity of
the reward function. A set of demonstrations can correspond
to an infinite number of reward functions. MaxEntIRL [9]
tackles this by maximizing the entropy of the policy of
each agent. This also allows us to incorporate sub-optimal
demonstrations naturally. The most daunting task in MaxEntIRL
for high-dimensional continuous action and state spaces (i.e.,
no dynamic programming) is the derivation of the partition
function Z =

∫
p(τ) exp(r(τ)). [1], [2] approximate the

partition function using MCMC sampling. [11], [22] alternate
between RL and updating the reward function where the
partition function is approximated with policy rollouts. In
general, this corresponds to solving the full reinforcement
learning problem in an inner loop of the inverse reinforcement
learning algorithm [23].

[10], [12], [24] avoid the expensive and often-times hard to
optimize RL/ MCMC sampling step. [24] approximate the
distribution over trajectories with weighted sums of delta-
functions representing the observed data points, optimizing the
data likelihood by gradient ascent. A more advanced algorithm
— which we will use in this paper — is the use of the Laplace
approximation [25] (second-order Taylor expansion) around
the observed data points that models the curvature of the
reward function [10], [12]. The Laplace approximation has
been used in multi-agent settings before [4], [7]. Although, [4],
[7] consider multi-agent interactions in so-called Stackelberg
games for their prediction algorithms, they infer the rewards
from real-world data using the single-agent CIOC algorithm
[10]. Other agents are reduced to dynamic obstacles simplifying
the reward inference (i.e., non-reacting).

III. BACKGROUND

We are considering a N-agent stochastic game with shared
states xt, agent specific actions ukt (k ∈ (1, ..., N) - agent
index), agent specific rewards rk(xt, ut) and stochastic tran-
sitions p(xt|ut, xt−1) to the state xt given the actions ut =
[u1t, ..., ukt] and state xt−1. In general, both the transitions
and the reward function depend on the actions of all agents2.

Also, the rewards of the agents are discounted with a
discount factor γ. In the following, we give an overview of
the most important formulas for the single-agent case. These
will translate to the N-agent setting naturally.

Given a state xt−1 at time-step t − 1 and an action ut,
an agent will transition to the next state according to the
stochastic environment transitions p(xt|xt−1, ut).3 The agent
will also receive a reward r(xt, ut) depending on the action
ut and the state xt that the environment (including the agent)
transitions to. In this work, we assume that an agent does
not act fully rationally and may choose sub-optimal actions.
A natural description of this type of bounded rationality is
the maximum-entropy (MaxEnt) framework [9] which can be
used to describe the sub-optimal decisions of humans (e.g.,
[26]). In the MaxEnt framework, a trajectory is sampled from
a probability distribution given by

p(τ) ∼ Πtp(xt|xt−1, ut) exp(r(xt, ut)) (1)

with the trajectory τ corresponding to the sequence of actions
ut and states xt over multiple time-steps t. One can show that
a policy that leads to (1) can be simplified as follows [27].

πt(ut|xt−1) =
exp(Qt(xt−1, ut))∫

exp(Qt(xt−1, u′t)du
′
t)

(2)

The policy πt(ut|xt−1) of an agent, i.e., the conditional
probability density function that describes the most likely
actions ut that an agent takes given its current state xt−1
depends on the Q-function Qt(xt−1, ut). The Q-function may
be derived by performing dynamic programming, iterating over
the soft-Bellman equation until convergence.

Qt(xt−1, ut) =∫
p(xt|ut, xt−1)

(
r(xt, ut) + γVt+1(xt)

)
dxt (3)

The second term inside the first integral is the value function.

Vt+1(xt) = log

∫
exp(Qt+1(xt, ut+1))dut+1 (4)

The reason we refer to (3) as the soft-Bellman equation is the
soft-maximization operator log

∫
exp. In contrast, the standard

Bellman equation employs the ”hard” maximization operator
max. A connection can be established by scaling the reward
function and considering the limit of limα→0(1

αr) which will
recover the ”hard” maximization in the soft-Bellman equation
and a policy that satisfies the standard Bellman equation given
the unscaled reward function. Please refer to the tutorial on

2A fully cooperative reward is an example where one agent may receive a
reward for an action that another agent executes.

3We follow the notation by [10] in which the action is indexed with the
stage to which it takes us.

NEUMEYER et al.: GENERAL-SUM MULTI-AGENT CONTINUOUS INVERSE OPTIMAL CONTROL 3

maximum-entropy reinforcement learning and its connection
to probabilistic inference [27] for a thorough derivation of the
soft-Bellman equation and its connection to (1).

Solving the Bellman equation for high-dimensional continu-
ous state and action spaces is in general intractable. Though
for linear dynamics and quadratic reward functions the value
function, Q-function and policy can be derived analytically.
Following this insight, [10], [12] developed an algorithm that
uses the so-called Laplace approximation [25] that deals with
the difficulty of calculating the integrals in (3) and (4) by
approximating the reward function with a second-order Taylor
expansion and linearizing the dynamics.

xt ≈ Atxt−1 +Btut

r(xt, ut) ≈ rt +
1

2
uTt H̃tut + uTt g̃t +

1

2
xTt Ĥtxt + xTt ĝt

The Bellman equations are solved in a recursive manner starting
from the last time-step T and going back to the first time-step.
The resulting policy is a unimodal Gaussian distribution.

πt(ut|xt−1) ∼ exp
(

(µt − ut)TΣ−1t (µt − ut)
)

Given demonstration data, (xt, ut) ∈ τ (τ - trajectory) we are
interested in inferring the reward parameters θ of a reward
function Rθ(xt, ut). We can do so by maximizing the likelihood
of the data.

θ∗ = arg max
θ

∑
t

lnπθ,t(ut|xt−1)

The algorithm is referred to as continuous inverse optimal
control (CIOC). We will discuss the mathematics of the multi-
agent version in length in the following sections. The single-
agent version is explained in detail in [10].

IV. CONTRIBUTIONS

We will show how to extend CIOC to multi-agent settings.
We will refer to this algorithm as general-sum multi-agent
continuous inverse optimal control (GS-CIOC). Our method
• learns the reward functions of a diverse set of agents. It

neither considers the other agents as dynamic obstacles,
nor does it assume instant communication between agents.

• allows us to choose different reward functions for each
agent.

• accounts for variation in the decisions of an agent because
it belongs to the family of maximum-entropy algorithms.

In particular,
• we extend the continuous inverse optimal control (CIOC)

[10] algorithm to the general-sum N-agent setting.
• we verify the algorithm on simulations and show its

usefulness.

V. GENERAL-SUM MULTI-AGENT CONTINUOUS
INVERSE OPTIMAL CONTROL

We extend CIOC to the N-agent setting where each agent
may receive a different reward. A major difference to the
derivation of CIOC is that the environment transitions are not
deterministic anymore. We assume that the other agents are

part of the environment and act according to a stochastic policy.
A major advantage of CIOC and its extension is the relative
ease of inferring the reward parameters from demonstrations.
We can backpropagate the gradients directly through the policy,
eliminating the need to run a multi-agent reinforcement learning
algorithm every time we update the reward parameters.

We will present two algorithms that are interconnected.
The first is GS-CIOC (algorithm 1) that returns policies for
quadratic rewards and linear environment transitions. The other
is the reward inference algorithm 2 that uses GS-CIOC for
obtaining local policy approximations around observed real-
world data for any reward functions and transitions. Given the
policy approximations, the algorithm infers the parameters θ
of a reward function Rθ. While the approximations may lead
to biased results, we would like to point out that non-linear
reward functions and dynamics can be used with this algorithm.

N-Agent Soft-Bellman Equation

We illustrated how an agent might choose its actions in the
maximum-entropy framework. Next, we want to investigate
how we can deal with the presence of other agents. We assume
that the other agents are part of the environment, similar
to the multi-agent setting in interacting partially observable
Markov decision processes (POMDPs) as described by [28].
We show how we may describe the N-agent problem from
the perspective of one agent. Let ut = [u1t, ..., uNt] be the
actions of agent 1 through N. One issue is that the reward
function of agent 1 may depend on the actions of another
agent r1(xt, ut). Therefore, we introduce a state variable
x̃t = [xt, u−1t] that incorporates the actions of other agents
except agent 1 with u−1t = [u2t, ..., uNt]. The corresponding
stochastic environment transitions are p(x̃t|x̃t−1, u1t).

We assume the soft-Bellman equation for agent 1 (other
agents analogous) to be as follows

Q̃1t(x̃t−1, u1t) =∫
p(x̃t|x̃t−1, u1t)

(
r̃1(x̃t, u1t) + γṼ1(x̃t)

)
dx̃t (5)

Ṽ1t+1(x̃t) = log

∫
exp(Q̃1t+1(x̃t, u1t+1))du1t+1 (6)

With Q̃1t(x̃t−1, u1t) := Q1t(xt−1, u−1t−1, u1t) and
r̃(x̃t, u1t) := r(xt, u−1t, u1t). Reformulating the environment
transitions in terms of the policies of the other agents we get

p(x̃t|x̃t−1, u1t) (7)
:= p(xt, u−1t|xt−1, u−1t−1, u1t) (8)
= p(xt, u−1t|xt−1, u1t) (9)
= p(xt|xt−1, u1t, u−1t)p(u−1t|xt−1, u1t) (10)

= p(xt|xt−1, ut)ΠN
k=2p(ukt|xt−1, u−kt) (11)

= p(xt|xt−1, ut)ΠN
k=2p(ukt|xt−1) (12)

= p(xt|xt−1, ut)ΠN
k=2πk,t(ukt|xt−1) (13)

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

In particular, the u−1t−1 dependency disappears. The soft-
Bellman equation can now be reformulated as

Q1t(xt−1, u−1t−1, u1t) =∫
p(xt|xt−1, ut)ΠN

k=2πk,t(ukt|xt−1)(
r1(xt, ut) + γṼ1t+1(xt, u−1t)

)
du−1tdxt (14)

As we can see, the Q-function does not depend on u−1t−1.
Therefore, we can drop the dependency in both the Q and the
value function.

Q1t(xt−1, u1t) =

∫
p(xt|xt−1, ut)ΠN

k=2πk,t(ukt|xt−1)(
r1(xt, ut) + γV1t+1(xt)

)
du−1tdxt (15)

V1t+1(xt) = log

∫
exp(Q1t+1(xt, u1t+1))du1t+1 (16)

From here on we will assume the environment transitions
p(xt|xt−1, ut) to be deterministic. In other words, if we know
the current state and are given the actions of all agents, there is
no uncertainty left which state we transition to next. Though,
we never assume that the actions of the other agents are given.
Their policies are stochastic, and the actions are not revealed
before they are executed (see equation 15). Additionally, we
will only consider finite horizon problems, i.e., each agent will
collect rewards for a limited amount of time. Furthermore, we
set the discount factor to γ = 1.

Value Recursion Algorithm

Algorithm 1 GS-CIOC
Input: Reference trajectory τ∗ = (x∗0, u

∗
k1, ..., x

∗
T), k ∈

{1, ..., N} and reward functions r1, ..., rN
Taylor expansion (17) of r1, ..., rN along τ∗

Linearization of dynamics (23) along τ∗

Initialize value function matrices V̂(kl)T , v̂kT ← 0
for t← T to 1 do
{Update Gaussian policy:}
for k = 1, ..., N do
µkt ← Determine mean action (28)
M̃(kk)t ← Determine precision matrix (29)

end for
{Recompute value function, given updated policy:}
if t > 1 then
V̂(kl)t−1, v̂kt−1 ← Value recursion (31)

end if
end for
Return: Policies π1 , ..., πN (30)

The procedure that we obtain in this section is illustrated in
algorithm 1. We take a reference trajectory τ∗ - a sequence of
states x∗t and actions u∗kt - of each agent k ∈ (1, ..., N) and
approximate the reward function rk close to the reference
trajectory τ . This will allow us to derive a local policy
approximation πk — an approximation that works best if the

agent stays close to the reference trajectory — by working our
way from the end of the reference trajectory to the beginning
calculating the value function Vk(xt) for each time-step. In
other words, the formulas are recursive.

We sketch the derivation of algorithm 1 starting at the
final time-step (the horizon) of the reference trajectory τ . All
formulas will be presented from the perspective of agent 1.
Though, we can easily obtain the formulas for any agent k by
swapping the indices (1←→ k).

First, we introduce the approximations that are fundamentally
important to solve the soft-Bellman equation analytically. The
reward function is assumed to be a second-order polynomial in
the states and actions. If this is not the case, we approximate
the reward function with a Taylor expansion4.

r̄1(x̄T , ūT) ≈ r̄1T + x̄TT

(1

2
ĤT

)
x̄T

+ ūTT

(1

2
H̃T

)
ūT + ūTT g̃T + x̄TT ĝT (17)

x̄T = xT − x∗T , ūT = uT − u∗T (18)

r̄1(x̄T , ūT) := r1(x̄T + x∗T , ūT + u∗T) (19)

where x∗ and u∗ refer to the fixed reference trajectory. The
state x̄T = [x̄1T , ..., x̄NT] is split into the agent-specific sub-
states which are directly controlled by each agent. H and g
refer to the Hessians and gradients w.r.t the states and actions
of all agents.

ĝkT =
∂r̄1(0, 0)

∂x̄kT
, g̃kT =

∂r̄1(0, 0)

∂ūkT
(20)

Ĥ(kl)T =
∂2r̄1(0, 0)

∂x̄kT∂x̄lT
, H̃(kl)T =

∂2r̄1(0, 0)

∂ūkT∂ūlT
(21)

The derivatives are evaluated at the reference trajectory through-
out the paper. An additional approximation that is necessary
is the linearization of the dynamics.

x̄kT (x̄kT−1, ūkT) ≈ AkT x̄kT−1 +BkT ūkT (22)

AkT =
∂x̄kT (0, 0)

∂x̄kT−1
, BkT =

∂x̄kT (0, 0)

∂ūkT
(23)

Given the quadratic reward function and the linear dynamics,
the Q-function can be calculated as follows

Q̄1T (x̄T−1, ū1T) =

∫
p̄(x̄T |x̄T−1, ūT)

ΠN
k=2πk,t(ūkT |x̄T−1)r̄1(x̄T , ūT)dū−1T dx̄T (24)

with

p̄(x̄T |x̄T−1, ūT) :=

p(x̄T + x∗T |x̄T−1 + x∗T−1, ūT + u∗T) (25)

Q̄1T (x̄T−1, ū1T) := Q1T (x̄T−1 + x∗T−1, ū1T + u∗1T) (26)

4Here, we stay close to the single-agent LQR derivation in [10] where
actions and states separate in the reward function r(xt, ut) = g(xt) + f(ut).
This is also the structure that we assume in the experimental section.

NEUMEYER et al.: GENERAL-SUM MULTI-AGENT CONTINUOUS INVERSE OPTIMAL CONTROL 5

The definitions for the policy π̄ and the value function V̄ further
down will follow the same logic. Thanks to the approximations
introduced above, the integration is tractable except for the
policies of the other agents π2, ..., πN . We assume the policies
to be unimodal Gaussian distributions. We show that this
assumption is consistent further down. Given this assumption,
the Q-function is a second-order polynomial in the states and
actions

Q̄1T (x̄T−1, ū1T) =

− 1

2
(ū1T − µ1T)T M̃(11)T (ū1T − µ1T) + f(x̄T−1) (27)

where f is a second order polynomial in the state at T − 1.
The variables µ1T and M̃(11)T are defined as follows

g̃1T +BT1T ĝ1T +

N∑
k=1

BT1T Ĥ(1k)TAkT x̄kT−1

+

N∑
k=1

M̃(1k)TµkT = 0 (28)

M̃(kl)T = BTkT Ĥ(kl)TBlT + H̃(kl)T (29)

In particular, equation (28) is a system of linear equations in the
variables µkT (replace index 1 by k ∈ (1, ..., N) to obtain other
equations) which we can solve (solution omitted for brevity).
The solution corresponds to the mean action that each agent
chooses in a linear-quadratic game. A similar derivation exists
for the classical (non-maximum entropy) Bellman-equation,
given quadratic rewards and linear dynamics [13].

Given that π ∼ exp(Q) the resulting policy is

π̄1,T (ū1T |xT−1) ∼

exp
(
− 1

2
(ū1T − µ1T)T M̃(11)T (ū1T − µ1T)

)
(30)

with µ1T being the mean and M̃(11)T the precision matrix of
a multivariate normal distribution.

We can conclude that the policy of agent 1 is a Gaussian
policy. The same is true for the other agents since we apply
the same approximations, i.e., π2, ..., πN is a Gaussian policy
validating our assumption that this is the case further up.
In particular, we would like to emphasize that this follows
from the second-order Taylor expansion of the rewards and
the linearization of the dynamics and does not constitute an
additional approximation.

In the next step, we move the procedure above backwards in
time along the reference trajectory, calculating the Q-function
(15) the mean actions, the precision matrix for time-step T −1.
There is only one ingredient missing to evaluate equation (15),
namely, the value function at T , which we can derive via (16).

V̄1T (x̄T−1) = x̄TT−1

(1

2
V̂T−1

)
x̄T−1 + x̄TT−1v̂T−1 (31)

The value function is a second-order polynomial in the states.
Thus, the Q-function given by (15) can be derived analytically
for time-step T−1. Due to space constraints we do not provide
the exact make-up of the resulting value function matrices V̂ , v̂.

Algorithm 2 GS-CIOC Reward Inference
Input: τ from data, initial θ
repeat
π1,θ, ..., πN,θ ← GS-CIOC(τ , Rθ)
Gradient ascent step on objective (32)

until max iterations or convergence of θ
Return: Reward parameters θ

Though, we discussed all steps that are necessary for their
derivation.

The procedure repeats itself until the beginning of the
reference trajectory for T, T − 1, ..., 1.

VI. RECOVERING REWARD PARAMETERS

Until now, we have discussed how to construct a local policy
given a set of reference trajectories τ and a reward function
(see algorithm 1). Next, we will infer the parameters θ of a
reward function Rθ given expert demonstrations. Specifically,
given observation data we can infer the reward parameters by
maximizing the log-likelihood of the observed data

θ∗ =

arg max
θ

1

|τ |
∑

τ,(u,x)∈τ

ln pθ(x0:T−1, u1:T)

= arg max
θ

1

|τ |
∑

τ,(u,x)∈τ

∑
k,t

lnπk,t,θ(ukt|xt−1) (32)

θ refers to the reward parameters and |τ | to the number of
trajectories τ in the data set. π1,θ, ..., πN,θ ← GS-CIOC(τ ,
Rθ) correspond to the policies of agent 1 through N and are
calculated with GS-CIOC. Indeed, it is possible to perform
backpropagation through the entire GS-CIOC algorithm. The
procedure is illustrated in algorithm 2. We optimize the
objective (32) using gradient ascent. Overall, the approach
is similar to the single-agent reward inference of CIOC.

Depending on the reward function, reward parameter initial-
ization and the training data the algorithm may get numerically
unstable if the precision matrix in (30) is not positive definite
temporarily. It is possible to prevent this using the augmented
Lagrangian method as outlined in [10].

Relationship to Linear Quadratic Game

We can scale the reward function with a ”temperature”
parameter r → 1

αr. For α→ 0 the entropy of the policies will
collapse, and the soft-Bellman equations will converge to the
standard Bellman equations [27]. In particular, the N-agent
game solution in the previous section will resemble that of the
deterministic LQ-game as described by [13]. Therefore, it is
reasonable to ask whether GS-CIOC can recover the ground-
truth reward of an LQ-game demonstration.

Scaled ground-truth reward maximizes log-likelihood
First, we observe that (28) is independent of α (g, H , M
scale linearly with 1

α) at time-step T. The same is true for all
time-steps. Hence, µkt is independent of α and will correspond
to the LQ-game Nash equilibrium solution (α→ 0) given the
ground-truth reward. Therefore, transforming the ground-truth

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

reward r → 1
αr + c;α ∈ R+, c ∈ R will maximize the log-

likelihood in (32) as the GS-CIOC mean actions are identical
to the LQ-game demonstrations.5

VII. EXPERIMENTS

We show in this section that GS-CIOC infers useful reward
parameters. Additionally, we show that GS-CIOC has a clear
advantage over its single-agent counterpart CIOC. Indeed,
previous work [4], [7] uses of CIOC to infer reward parameters
to describe the interaction of vehicles (other agent assumed as
dynamic obstacle during reward inference). We demonstrate
why this can be a sensible approach and point out the
limitations, i.e., where GS-CIOC is at a significant advantage.
We used JAX [30] for the implementation of GS-CIOC.

Evaluation Setup

The purpose of GS-CIOC is to infer reward parameters that
explain observed multi-agent behaviour. Ideally, we know the
reward parameters beforehand to judge the performance of
the algorithm better. Therefore, we will define several setups
where we know the underlying reward function. A ground-truth
reward function is not enough, since GS-CIOC needs actual
data to reason about likely reward parameters. We create the
data with a multi-agent RL algorithm as described in algorithm
3. The algorithm derives the policies of the agents, and the
data corresponds to roll-outs from these policies. GS-CIOC
succeeds if it infers reward parameters given the data that are
close to the ground-truth.

A difficulty arises when the number of reward parameters
increases. Alternative parameter values may explain the data
equally well. It is often not obvious why an alternative
configuration may be reasonable even though it seems to deviate
significantly from the ground-truth. Therefore, we also look
at the policies that result from the inferred parameters. Again,
algorithm 3 is applied to the reward that GS-CIOC deems most
likely. We can evaluate the log-likelihood on some test data
(from ground-truth policy roll-outs) to see if GS-CIOC inferred
a reasonable parameter configuration.

Lk =
1

T

∑
t

log πk,t(ukt|xt−1) (33)

Crossing Scenario

It is not uncommon to use single-agent IRL algorithms
in multi-agent scenarios in the intelligent vehicles domain
[4], [7]. This approach can be feasible as we can see in the
following experiment. We assume that two agents move on a
one-dimensional line. The overall configuration imitates the
intersection of two roads. One agent moves from the left to the
right towards its goal position and the other agent moves from
the bottom to the top towards its goal position. Both need to
pass the intersection point where they may collide. We use

5This does not mean that GS-CIOC will recover the ground-truth reward
from a single demonstration. The number of reward parameters is likely to lead
to an ill-defined problem (a general property of IRL algorithms). Additionally,
there may be transformations of the reward function that will lead to the same
policy (reward shaping, as discussed in [29]).

Algorithm 3 Alternating Soft-Value Iteration
Initialize policy matrices π1, π2 as (discrete) uniform
distributions
Initialize value matrices V1, V2 as all zeros arrays
ε is chosen so that policy updates below converge
repeat

for k ← {1, 2} do
for M do

Execute soft-Bellman equation (15) to update value
matrices

end for
{Averaging of new and previous policy}
πk,new = exp(Qk)/

∑
u exp(Qk)

πk ← επk,new + (1− ε)πk, ε ∈ (0, 1]
end for

until convergence of π1, π2
Return: Policy matrices π1 and π2

the following ordinary differential equation to describe their
movement

d

dt
[s, v] = [v, a] (34)

Where s is the position, v is the velocity and a is the
acceleration. The acceleration corresponds to the action of the
agent u and the position and velocity correspond to the state
x. Each agent receives rewards that determine the preferred
movement speed, acceleration/ deceleration, goal position and
interaction.
• Quadratic acceleration reward that punishes acceleration
• Quadratic reward that punishes velocities other than zero
• Quadratic reward that rewards being close to a goal

position
• Gaussian reward that punishes the agents for being close

to each other (at intersection point) - ik
The reward function for each agent is the linear combination
of the rewards described above.

We create a training and testing dataset (11 time-steps for
each roll-out) and infer the parameter ik that the interaction
reward (Gaussian) is scaled with. The remaining parameters
are fixed to the ground-truth. We are only interested in the
ability of GS-CIOC and CIOC to reason about interactions.
In particular, CIOC infers hard to interpret reward parameter
configurations if no parameter is fixed (see the results of the
next experiment in table II).

We find that the interaction reward of our setup is critical,
i.e., it cannot be ignored to model the observed behaviours. The
table below lists the results of CIOC and GS-CIOC for the case
where we fix all reward parameters except the interaction reward
parameter during reward inference. CIOC is surprisingly close
to the performance of GS-CIOC. In particular, both methods
provide a clear benefit to the baseline where no interaction
reward is present (all other parameters correspond to the ground
truth).
ik are the reward parameters that GS-CIOC and CIOC try

to infer from demonstration data. Lk is the log-likelihood
as defined in (33). GT corresponds to the ground-truth, i.e.,
algorithms close to values listed as GT perform best. GT int =

NEUMEYER et al.: GENERAL-SUM MULTI-AGENT CONTINUOUS INVERSE OPTIMAL CONTROL 7

TABLE I

GT GS-CIOC CIOC GT int=0
Reward- i1 -8. -7.1 -6.1 0.

Parameters i2 -8. -7.3 -6.3 0.
Log- L1 -1.581 -1.586 -1.616 -1.926

Likelihood L2 -1.595 -1.595 -1.611 -1.934

0 is an additional baseline where the interaction is set to zero.
This baseline demonstrates the significance of the interaction
reward in the experiments.

The reader may wonder why GS-CIOC did not derive the
exact ground-truth interaction reward parameter. For one, the
value iteration algorithm discretizes states and actions, whereas
GS-CIOC reasons in terms of continuous states and actions.
This can result in a biased estimate. Additionally, GS-CIOC
relies on a second-order approximation of the reward function,
which introduces a systematic bias for non-quadratic rewards
(same for CIOC). We discuss this further in the following
experiment.

Attraction Scenario

While it is nice to show that GS-CIOC has an edge on CIOC
the improvement appears minor. The following experiments
provide an intuition when the benefits are certain to show up.
We consider two agents that live on a one-dimensional line. In
contrast to the previous experiment, both agents move on the
same line (no intersection of two different lines). The dynamics
model is the same as in (34). The rewards are as follows.
Non-interaction rewards
• Quadratic acceleration reward that punishes acceleration -
ak (the reward parameter this reward is scaled with)

• Quadratic reward punishing velocities 6= zero - vk
Interaction rewards
• Quadratic (or Gaussian) reward that rewards agent 2 for

being close to agent 1 - i1
• Quadratic reward that rewards agent 1 if agent 2 is close

to a certain goal position. Agent 2 does not receive the
reward. - i2

Agent 2 is attracted to agent 1 and moves to the position of
agent 1. Agent 1 on the other hand gets rewarded if agent 2
is at a certain position. Therefore, agent 1 will move to that
position, and agent 2 follows along. In other words, agent 1
guides agent 2.

We create training and testing data from the ground-truth
reward function (4 time-steps for each roll-out) and infer the
reward parameters using GS-CIOC and CIOC. The result can
be seen in table II. Given these results it is clear that CIOC is
not able to reason about the interaction between the agents. It
cannot learn all interaction rewards (CIOC does not produce
any gradient for the i2 parameter during optimization). The
intuition is rather simple. CIOC works well in scenarios where
other agents can be treated as dynamic obstacles (agent 2 does
not change its behaviour no matter what agent 1 does). The
assumption was sufficient for the first experiment in this section.
Here it is simply wrong. GS-CIOC on the other hand can reason
about this type of behaviour and infers reward parameters that

are close to the ground-truth. In particular, when choosing all
quadratic rewards the parameters are remarkably close. This is
to be expected as the second-order Taylor approximation of
the reward function is exact. Again, differences remain and are
probably due to the discretization of states and actions for the
value iteration. Though, choosing a Gaussian interaction reward
will result in a biased reward parameter estimate, which we have
observed in the crossing experiment as well. Nevertheless, the
rewards and log-likelihood indicate that the inferred parameters
are useful. The following experiment will illustrate this further.

TABLE II

Quadratic a1 v1 a2 v2 i1 i2 L1 + L2
GT 10. 10. 10. 10. -10. 25. -3.15

GS-CIOC 10.3 9.7 10.2 10.3 -9.8 23.9 -3.15
CIOC 9.3 3.4 7.6 18.0 -2.5 0. -3.65

Gaussian
GT 10. 10. 10. 10. -10. 25. -3.36

GS-CIOC 10.0 11.4 8.4 13.0 -8.0 34.3 -3.37
CIOC 7.9 5.4 8.3 15.0 -3.7 0. -3.68

Repulsion Scenario

We explore another scenario that is identical to the attraction
scenario above (with Gaussian interaction reward) except that
the attractive interaction reward is changed into a repulsive one
(change sign). One agent pushes the other agent to a desired
goal position.

As we can see in figure 1, CIOC struggles with properly
modelling the interaction. Agent 2 is supposed to move down
to push agent 1 towards a certain goal position. Instead, agent
2 remains standing still when using the reward parameters
inferred by CIOC (figure 1 (c)). GS-CIOC on the other hand
infers reward parameters that imply a behaviour close to the
ground-truth (figure 1 (a)). There are two lessons to take away
from the experiments. Single-agent IRL algorithms can be
useful in multi-agent scenarios, and it is a good idea to apply
such an algorithm and see if it produces reasonable results.
But generally speaking, agents will manipulate each other to
achieve their goals, resulting in a breakdown of single-agent
algorithms such as CIOC. GS-CIOC can fill the gap.

Runtime

Executing algorithm 1 is the computationally most expensive
step. Given 500 data points that we evaluate in parallel: On
an Intel i7-7820X using one core it takes around 160 ms and
40 ms on a Nvidia TITAN Xp for the attraction and repulsion
experiments. Though, we do not consider our implementation
fully optimized. Overall, we expect a similar scaling behaviour
for time, state and action dimension as CIOC, which has been
applied to real-world use-cases before [4], [7], [10], [12]. Other
than CIOC, the complexity will also increase with the faculty of
the number of agents, i.e., in step with the number of potential
agent-agent interactions. This may be addressed by pruning
the number of interaction partners by e.g., considering nearest
neighbours only.

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2021

(a) (b) (c) (d)

Fig. 1. Repulsion scenario: (a) Agent 2 moves down to push agent 1 towards the position at -1.5 (b). The curves illustrate the mean path that agent 2 (a) and
agent 1 (b) take, whereas the shaded areas correspond to one standard deviation around these paths. Grey corresponds to roll-outs from the ground-truth reward
parameters and blue to those inferred by GS-CIOC. (c) and (d) represent the same analysis for CIOC. While GS-CIOC infers parameters that result in a policy
close to the ground-truth, CIOC cannot reason about the behaviour of agent 2 (stands still).

VIII. CONCLUSIONS
We presented a novel algorithm for inferring the reward

function in stochastic games with boundedly rational agents
efficiently. While the single-agent CIOC algorithm can be
useful in some interactive scenarios with limited interaction,
we have demonstrated the superiority of multi-agent GS-CIOC
for multiple experimental setups where the algorithm recovered
a reward function close to the ground-truth.

In future work, we want to investigate alternatives to the
Laplace approximation to improve the performance for non-
quadratic rewards and probe the performance of GS-CIOC on
multi-agent interaction scenarios similar to [4], [7].

REFERENCES

[1] H. Kretzschmar, M. Spies, C. Sprunk, and W. Burgard, “Socially
Compliant Mobile Robot Navigation via Inverse Reinforcement Learning,”
The International Journal of Robotics Research, 2016.

[2] M. Pfeiffer, U. Schwesinger, H. Sommer, E. Galceran, and R. Siegwart,
“Predicting actions to act predictably: Cooperative partial motion plan-
ning with maximum entropy models,” in IEEE International Conf. on
Intelligent Robots and Systems, 2016, pp. 2096–2101.

[3] W. C. Ma, D. A. Huang, N. Lee, and K. M. Kitani, “Forecasting
interactive dynamics of pedestrians with fictitious play,” in Proc. - 30th
IEEE Conf. on Computer Vision and Pattern Recognition, 2017, pp.
4636–4644.

[4] D. Sadigh, N. Landolfi, S. S. Sastry, S. A. Seshia, and A. D. Dragan,
“Planning for cars that coordinate with people: leveraging effects on
human actions for planning and active information gathering over human
internal state,” Autonomous Robots, vol. 42, no. 7, pp. 1405–1426, 2018.

[5] A. Rudenko, L. Palmieri, and K. O. Arras, “Joint long-term prediction
of human motion using a planning-based social force approach,” in 2018
IEEE Int. Conf. on Robotics and Automation, 2018, pp. 1–7.

[6] C. Muench and D. M. Gavrila, “Composable q-functions for pedestrian
car interactions,” in IEEE Intelligent Vehicles Symposium, 2019, pp.
905–912.

[7] W. Schwarting, A. Pierson, J. Alonso-Mora, S. Karaman, and D. Rus, “So-
cial behavior for autonomous vehicles,” Proc. of the National Academy
of Sciences of the United States of America, vol. 116, no. 50, pp. 2492–
24 978, 2019.

[8] A. Rudenko, L. Palmieri, M. Herman, K. M. Kitani, D. M. Gavrila, and
K. O. Arras, “Human motion trajectory prediction: A survey,” The Int.
Journal of Robotics Research, vol. 39, no. 8, pp. 895–935, 2020.

[9] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum Entropy
Inverse Reinforcement Learning,” in Conf. on Artificial Intelligence,
2008.

[10] S. Levine and V. Koltun, “Continuous Inverse Optimal Control with
Locally Optimal Examples,” in Proc. of the 29th International Conf. on
Machine Learning, 2012.

[11] L. Yu, J. Song, and S. Ermon, “Multi-agent adversarial inverse rein-
forcement learning,” in Proc. of the 36th International Conf. on Machine
Learning, vol. 97, 2019, pp. 7194–7201.

[12] A. D. Dragan and S. S. Srinivasa, “Formalizing assistive teleoperation,”
Robotics: Science and Systems, vol. 8, pp. 73–80, 2013.

[13] T. Basar and G. J. Olsder, “Dynamic Noncooperative Game Theory, 2nd
Edition.” SIAM, 1999, vol. 23.

[14] S. Natarajan, G. Kunapuli, K. Judah, P. Tadepalli, K. Kersting, and
J. Shavlik, “Multi-agent inverse reinforcement learning,” in IEEE Ninth
International Conf. on Machine Learning and Applications, 2010, pp.
395–400.

[15] T. S. Reddy, V. Gopikrishna, G. Zaruba, and M. Huber, “Inverse
reinforcement learning for decentralized non-cooperative multiagent
systems,” in IEEE International Conf. on Systems, Man, and Cybernetics,
2012, pp. 1930–1935.

[16] D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan, “Cooperative
inverse reinforcement learning,” in Advances in Neural Information
Processing Systems, vol. 29, 2016, pp. 3909–3917.

[17] X. Wang and D. Klabjan, “Competitive multi-agent inverse reinforcement
learning with sub-optimal demonstrations,” in Proc. of the 35th Int. Conf.
on Machine Learning, vol. 80, 2018, pp. 5143–5151.

[18] M. Fahad, Z. Chen, and Y. Guo, “Learning how pedestrians navigate: A
deep inverse reinforcement learning approach,” in IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems, 2018, pp. 819–826.

[19] X. Lin, S. C. Adams, and P. A. Beling, “Multi-agent inverse reinforcement
learning for certain general-sum stochastic games,” Journal of Artificial
Intelligence Research, vol. 66, pp. 473–502, 2019.

[20] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement
learning.” in Int. Conf. on Machine Learning, vol. 1, 2000, p. 2.

[21] M. Wulfmeier, D. Rao, D. Z. Wang, P. Ondruska, and I. Posner,
“Large-scale cost function learning for path planning using deep inverse
reinforcement learning,” The International Journal of Robotics Research,
vol. 36, no. 10, pp. 1073–1087, 2017.

[22] J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adverserial
inverse reinforcement learning,” in International Conf. on Learning
Representations, 2018.

[23] C. Finn, S. Levine, and P. Abbeel, “Guided Cost Learning: Deep
Inverse Optimal Control via Policy Optimization,” in Proc. of The 33rd
International Conf. on Machine Learning, 2016.

[24] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard, “Feature-based
prediction of trajectories for socially compliant navigation,” Robotics:
Science and Systems, vol. 8, pp. 193–200, 2013.

[25] P. S. Laplace, “Memoir on the Probability of the Causes of Events,”
Statistical Science, vol. 1, no. 3, pp. 364–378, 1986.

[26] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity
Forecasting,” in European Conf. on Computer Vision, 2012, pp. 1–14.

[27] S. Levine, “Reinforcement Learning and Control as Probabilistic Infer-
ence: Tutorial and Review,” arXiv: 1805.00909, 2018.

[28] P. J. Gmytrasiewicz and P. Doshi, “A framework for sequential planning in
multi-agent settings,” Journal of Artificial Intelligence Research, vol. 24,
pp. 49–79, 2005.

[29] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in Int. Conf.
on Machine Learning, vol. 99, 1999, pp. 278–287.

[30] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclau-
rin, and S. Wanderman-Milne, “JAX: composable transformations of
Python+NumPy programs,” 2018.

	INTRODUCTION© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
	RELATED WORK
	BACKGROUND
	CONTRIBUTIONS
	GENERAL-SUM MULTI-AGENT CONTINUOUS INVERSE OPTIMAL CONTROL
	Recovering Reward Parameters
	EXPERIMENTS
	CONCLUSIONS
	References

