
Pushing the Online Boolean Matrix-vector
Multiplication conjecture off-line and identifying its

easy cases?

Leszek Gasienieca, Jesper Janssonb, Christos Levcopoulosc, Andrzej Lingasc,∗,
Mia Perssond

aDepartment of Computer Science, University of Liverpool, Ashton Street, L69 38X, U.K.
bDepartment of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon,

Hong Kong.
cDepartment of Computer Science, Lund University, 22100 Lund, Sweden.

dDepartment of Computer Science and Media Technology, Malmö University, 20506
Malmö, Sweden.

Abstract

Henzinger et al. posed the so-called Online Boolean Matrix-vector Multipli-
cation (OMv) conjecture and showed that it implies tight hardness results for
several basic dynamic or partially dynamic problems [STOC’15]. We first show
that the OMv conjecture is implied by a simple off-line conjecture that we call
the MvP conjecture. We then show that if the definition of the OMv conjecture
is generalized to allow individual (i.e., it might be different for different matri-
ces) polynomial-time preprocessing of the input matrix, then we obtain another
conjecture (called the OMvP conjecture) that is in fact equivalent to our MvP
conjecture. On the other hand, we demonstrate that the OMv conjecture does
not hold in restricted cases where the rows of the matrix or the input vectors
are clustered, and develop new efficient randomized algorithms for such cases.
Finally, we present applications of our algorithms to answering graph queries.

Keywords: Boolean matrix, product of matrix and vector, dynamic graph
problems, online computation, time complexity

?A preliminary version of this article has appeared in Proceedings of the 13th International
Workshop on Frontiers in Algorithmics (FAW 2019), Lecture Notes in Computer Science,
Vol. 11458, pp. 156–169, Springer Nature Switzerland AG, 2019.

∗Corresponding author.
Email addresses: L.A.Gasieniec@liverpool.ac.uk (Leszek Gasieniec),

jesper.jansson@polyu.edu.hk (Jesper Jansson), Christos.Levcopoulos@cs.lth.se
(Christos Levcopoulos), Andrzej.Lingas@cs.lth.se (Andrzej Lingas), mia.persson@mau.se
(Mia Persson)

Preprint submitted to Journal of Computer and System Sciences December 2020

1. Introduction

Henzinger et al. considered the following Online Boolean Matrix-vector Mul-
tiplication (OMv) problem in [8]. Initially, an (n×n)-Boolean matrix M is given.
Then, for i = 1, ..., n, in the i-th round an n-dimensional Boolean column vector
vi is given and the task is to compute the product between M and vi before the
next round. The objective is to design a (possibly randomized) algorithm that
solves the OMv problem, i.e., that computes all the n products as quickly as
possible. In [8], Henzinger et al. provided efficient reductions of the OMv prob-
lem to several basic dynamic or partially dynamic problems including subgraph
connectivity, Pagh’s problem, d-failure connectivity, decremental single-source
shortest paths, and decremental transitive closure.

The OMv conjecture was also introduced in [8]. To express it (as well as
certain other conjectures below), we shall refer to an O(n3−ε) bound or an
O(n2−ε) bound, where ε is a positive constant, as substantially sub-cubic or
substantially sub-quadratic, respectively.

Conjecture 1. OMv conjecture (Henzinger et al.[8]) There is no randomized
algorithm that solves the OMv problem in substantially sub-cubic time with an
error probability of at most 1/3.

Their conjecture implies tight hardness results for the aforementioned dy-
namic or partially dynamic problems [8].

As shown in [8], the OMv conjecture also implies the following conjecture
called the Mv conjecture.

Conjecture 2. Mv conjecture (Henzinger et al.[8]) There is no randomized
algorithm that after a polynomial-time universal preprocessing of any (n × n)-
Boolean matrix M computes the Boolean product of M with an arbitrary Boolean
n-dimensional column vector in substantially sub-quadratic time with an error
probability of at most 1/3.

The fastest known algorithm for the OMv problem is due to Green Larsen
and Williams [7]. Their recent (non-combinatorial) randomized algorithm runs

in O(n3/2Ω(
√

logn)) time. Williams [11] has also shown that any (n×n)-Boolean
matrix can be preprocessed in O(n2+ε) time so the Boolean product of the
matrix with an arbitrary n-dimensional Boolean vector can be computed in
O(n2/ log2 n) time. This implies that the Mv problem corresponding to the Mv
conjecture admits an O(n2/ log2 n)-time solution. In another line of research,
Chakraborty et al. [4] have recently established tight cell probe bounds for
succinct Boolean matrix-vector multiplication.

We shall refer to a problem considered in a conjecture and consequently the
conjecture as off-line or on-line depending on whether the whole input to the
problem is given at the beginning or it is given in series of pieces, respectively.
According to this convention, the OMv conjecture is on-line while the Mv con-
jecture is off-line. Still an off-line problem can have some on-line flavor, e.g., in
the form of preprocessing.

2

OMvP AMv OMv Mv

MvP

Lemma 2

Lemma 4 Lemma 1 Ref. [8]

Lemma 3

Figure 1: The relationships between the conjectures.

1.1. Our contributions

In this paper, we introduce and study a number of related conjectures, whose
relationships to each other and to previous work are summarized in Figure 1.
Formulating the conjectures, we shall distinguish between a universal prepro-
cessing that can be applied to any Boolean square matrix and an individual
preprocessing that can be applied only to a given Boolean square matrix. In
other words, in the universal case there exists a uniform preprocessing algo-
rithm applicable to all Boolean square matrices while in the individual case for
each Boolean square matrix there exists a (not necessarily uniform) preprocess-
ing algorithm.

We first prove that the OMv conjecture is implied by the following simple
off-line conjecture that we call the MvP conjecture: For any constant ε > 0
and any polynomial p there is an (n × n) Boolean matrix M that cannot be
(individually) preprocessed in p(n) time such that the Boolean product of M
with an arbitrary n-dimensional column vector v can be computed in O(n2−ε)
time with an error probability of at most 1/3. To help us prove the implication,
we introduce a variant called the AMv conjecture that turns out to be equivalent
to the MvP conjecture. We also prove that if the OMv problem is relaxed by
allowing for an individual polynomial-time preprocessing of the matrix M then
the corresponding online conjecture (named OMvP) becomes equivalent to our
MvP conjecture.

There is a subtle but important difference between our MvP conjecture and
the Mv conjecture mentioned above: In our conjecture, the preprocessing is in-
dividual (not uniform) with respect to the matrices, while in the Mv conjecture,
one considers a universal (uniform) preprocessing. It follows that the difficulty
of proving/disproving the OMv conjecture lies between the two aforementioned
off-line conjectures; namely, OMv is not more difficult than MvP and not easier
than Mv.

We also observe that one of the techniques used above can be applied to
the Combinatorial Boolean Matrix Multiplication (CBMM) conjecture. This
conjecture states that there is no combinatorial (randomized) algorithm for the
Boolean product of two (n × n)-Boolean matrices that runs in substantially
subcubic time [2, 8]. We show that if the CBMM conjecture is modified to
allow for a polynomial-time universal preprocessing of one of the matrices, the
resulting conjecture will still be equivalent to the original CBMM conjecture.

Next, by adapting known algorithms for Boolean matrix product of matrices

3

with clustered data [3, 5, 6], we obtain a combinatorial randomized algorithm
for the product of an (n×n)-Boolean matrix M and an arbitrary n-dimensional
Boolean column vector v running in Õ(n + STM) time after an O(n2)-time
preprocessing of M, where STM stands for the cost of a minimum spanning
tree of the rows of M under the extended Hamming distance (never exceeding
the Hamming distance). We present also a deterministic algorithm for the Mv
problem running in Õ(n+ STM) time after an O(n3)-time preprocessing of M.
Consequently, we obtain a combinatorial randomized algorithm for the OMv
problem running in Õ(n(n + STM)) time. We also show that OMv admits
a combinatorial randomized algorithm running in Õ(nmax{ST (V), n1+o(1)))
time, where ST (V) stands for the cost of a minimum spanning tree of the column
vectors v1, ..., vn under the extended Hamming distance. The time analysis of
the latter algorithm relies in part on our analysis of an approximate nearest-
neighbor online heuristic for the aforementioned minimum spanning tree.

The overwhelming majority of the reductions of the OMv problem to other
dynamic or partially dynamic problems in [8] are unfortunately one-way reduc-
tions that do not yield applications of our algorithms for the OMv and Mv
problems. Following the applications of the Mv problem given in[2, 11], we
provide analogous applications of our algorithms to vertex subset queries (e.g.,
for a given graph, such a query asks if a given subset of vertices is independent)
and triangle membership queries.

1.2. Organization of the Paper

Section 2 introduces three new conjectures and shows implications and equiv-
alences between them and the OMv conjecture. Its final subsection discusses the
combinatorial Boolean matrix product. In Section 3, we develop new random-
ized algorithms for the OMv and Mv problems whose time complexity depends
on the minimum cost of a spanning tree of the rows of the matrix or the input
column vectors under the extended Hamming distance, and Section 4 presents
applications of our algorithms to answering graph queries. Section 5 concludes
with some final remarks.

2. Off-line conjectures

In this section, we introduce several new conjectures related to the OMv
conjecture and study relationships between them and the OMv conjecture (see
Figure 1).

By the auxiliary Boolean Matrix-vector multiplication problem (AMv) we
shall mean the problem of computing the product of a fixed (n × n)-Boolean
matrix M , that can be (individually) preprocessed in O(n3−ε) time for some
fixed ε > 0, with an arbitrary n-dimensional Boolean column vector v. We first
state the following conjecture corresponding to the AMv problem.

Conjecture 3. AMv conjecture There is no randomized algorithm that after
an individual preprocessing of an (n×n)-Boolean matrix M in substantially sub-
cubic time computes the Boolean product of M with an arbitrary n-dimensional

4

Boolean column vector v in substantially sub-quadratic time with an error prob-
ability of at most 1/3.

Note that the AMv conjecture is an offline conjecture.

2.1. Relationship between the AMv conjecture and the OMv conjecture

Our first result states that the AMv conjecture implies the OMv conjecture.

Lemma 1. Let ε be a positive constant and let M be an (n × n)-Boolean ma-
trix. If the OMv problem for M can be solved in O(n3−ε) time with an error
probability of at most 1/3 then the matrix M can be (individually) preprocessed
in O(n3−ε) time such that the Boolean product of M with an arbitrary input
n-dimensional Boolean column vector v can be computed in O(n2−ε) time with
an error probability of at most 1/3. Consequently, the AMv conjecture implies
the OMv conjecture.

Proof. Construct a sequence of n-dimensional Boolean vectors v1,....vn itera-
tively by picking as vi a vector that jointly with the preceding vectors maximizes
the total time of the assumed OMv solution for v1, ..., vi. Since the assumed OMv
solution for the whole sequence takes O(n3−ε) time, there must be i ∈ {1, ..., n}
such that the product of M with vi is computed in O(n2−ε) time after com-
puting the products of M with the preceding vectors in the sequence. The
computation of all the products clearly takes O(n3−ε) time and it has an error
probability of at most 1/3. By the definition of vi, if we compute instead of the
product of M with vi, the product of M with an arbitrary n-dimensional input
vector v, the computation will take only O(n2−ε) time after the products with
the preceding vectors have been computed. Again, the computation of all the
products, and hence in particular that of M with v, will have an error probabil-
ity of at most 1/3. Since the vectors v1...vi−1 are fixed, the computation of the
products of M with the preceding vectors can be regarded as an O(n3−ε)-time
preprocessing.

Unfortunately, we cannot show the reverse implication, i.e., that the OMv
conjecture implies the AMv one like it implies the Mv conjecture [8]. The reason
is that in the definition of the AMv problem, we do not require a universal
preprocessing that could work for any matrix M of size n× n; we only require
the existence of an individual preprocessing for a given M.

In the next lemma, we demonstrate that allowing for an arbitrary (individ-
ual) polynomial-time preprocessing instead of the substantially subcubic one
yields a new problem that is still equivalent to the AMv one. This lemma and
its proof idea of dividing the matrix and the vector into appropriate submatrices
and subvectors are similar to Lemma 2.3 in [8] and its proof.

Lemma 2. Let δ and ε be positive constants. If for any (n × n)-Boolean ma-
trix M there is an O(n3+δ)-time individual preprocessing such that the product
of M with an arbitrary n-dimensional Boolean column vector v can be computed
in O(n2−ε) time with an error probability of at most 1/3 then there is a positive

5

constant ε′ such that after an O(n3−ε′)-time individual preprocessing the prod-
uct of M with such a vector v can be computed in O(n2−ε′) time with an error
probability of at most 1/3.

Proof. Divide M into n2α quadratic submatrices Mi,j of size n1−α × n1−α,
where i, j ∈ {1, ..., nα}. Preprocess all the submatrices in O(n2α × (n1−α)3+δ)
time. Then, the product of M with the vector v can be computed in O(n2α ×
(n1−α)2−ε + n1+α) time. The last term in the expression represents the cost of
summing the results of the products of the submatrices with respective subvec-
tors of v of length n1−α. In order to obtain an exponent of the total prepro-
cessing time in the form 3 − ε′ and the exponent of computing the product in
the form 2− ε′, it is sufficient to solve the inequalities 2α+ (1− α)(3 + δ) < 3,
2α + (1 − α)(2 − ε) < 2 and 1 + α < 2 with respect to α. Any α in the open
interval (δ

1+δ , 1) satisfies these inequalities.
Following the proof of Lemma 2.3 in [8], we can keep the error probability

below 1/3 by repeating the computation of each of the products of a submatrix of
M with a respective vector O(log n) times, and picking the most frequent answer.
In order to tackle the additional logarithmic factor in the time complexity, we
can slightly decrease our ε′.

We shall call the problem and the conjecture resulting from the AMv problem
and the AMv conjecture by replacing an O(n3−ε) (individual) preprocessing
time with a polynomial (individual) preprocessing time, the Boolean Matrix-
vector multiplication with polynomial-time (individual) preprocessing problem
and the Boolean Matrix-vector multiplication with polynomial-time (individual)
preprocessing conjecture (MvP for short), respectively.

Conjecture 4. MvP conjecture There is no randomized algorithm that after
an individual polynomial-time preprocessing of an (n × n)-Boolean matrix M
computes the Boolean product of M with an arbitrary n-dimensional Boolean
column vector v in substantially sub-quadratic time with an error probability of
at most 1/3.

Since the MvP conjecture trivially implies the AMv conjecture, Lemmas 1
and 2 give us the following theorem.

Theorem 1. The AMv and MvP conjectures are equivalent and they imply the
OMv conjecture.

2.2. Relaxing the OMv problem

In this subsection, we consider generalized versions of the OMv problem and
the OMv conjecture that allow for individual polynomial-time preprocessing of
the matrix. We shall term them the OMvP problem and the OMvP conjecture,
respectively. Our goal is to establish how the OMvP conjecture is related to the
MvP and AMv conjectures.

The proof of the following lemma is analogous to that of Lemma 1.

6

Lemma 3. Let ε be a positive constant, and let M be an (n× n)-Boolean ma-
trix. If the OMvP problem for M and any positive natural number n, after a
polynomial-time (individual) preprocessing of M can be solved in O(n3−ε) time
with an error probability of at most 1/3 then the matrix M can be (individu-
ally) preprocessed in polynomial time such that the Boolean product of M with
an arbitrary input n-dimensional Boolean column vector v can be computed in
O(n2−ε) time with an error probability of at most 1/3. Consequently, the MvP
conjecture implies the OMvP conjecture.

Proof. First, individually preprocess M in polynomial time following the lemma
assumptions on OMvP. Then, construct a sequence of n-dimensional Boolean
vectors v1,....vn iteratively by picking as vi a vector that jointly with the preced-
ing vectors maximizes the total time of the assumed OMvP solution for v1, ..., vi.
Since the assumed OMvP solution for the whole sequence takes O(n3−ε) time,
there must be i ∈ {1, ..., n} such that the product of M with vi is computed
in O(n2−ε) time after computing the products of M with the preceding vectors
in the sequence. The computation of the latter products clearly takes O(n3−ε)
time and it has an error probability of at most 1/3. By the definition of vi, if
we compute instead of the product of M with vi, the product of M with an
arbitrary n-dimensional input vector v, the computation will take only O(n2−ε)
time after the products with the preceding vectors are computed. Again, the
computation of all the products, and hence in particular that of M with v, will
have an error probability of at most 1/3. Since the vectors v1...vi−1 are fixed,
the computation of the products of M with the preceding vectors jointly with
the initial individual preprocessing of M forms a polynomial-time individual
preprocessing of M .

Now we are ready to show that the OMvP conjecture implies the AMv
conjecture.

Lemma 4. Let ε be a positive constant, and let M be an (n × n)-Boolean
matrix. If the AMv problem for M can be solved in O(n2−ε) time with an error
probability of at most 1/3 after an O(n3−ε) individual preprocessing of M then
the OMvP problem for the matrix M and n Boolean column vectors can be
solved in O(n3−ε) time with an error probability of at most 1/3. Consequently,
the OMvP conjecture implies the AMv conjecture.

Proof. Before computing the product of M with the first vector, perform the
appropriate individual O(n3−ε) time preprocessing of M . After that the product
of M with each consecutive vector can be computed in O(n2−ε) time, so the
total time for n vectors becomes O(n3−ε). We can keep the error probability
below 1/3 for the whole sequence of input vectors similarly as in the proof of
Lemma 2.

According to Theorem 1, the AMv and MvP conjectures are equivalent. By
applying Lemmas 3 and 4, we immediately obtain the following extension of
Theorem 1. (See also the summary in Figure 1.)

Theorem 2. The MvP, AMv, and OMvP conjectures are equivalent.

7

2.3. Combinatorial Boolean matrix product

Henzinger et al. showed in Lemma 2.3 in [8] that the possibility of universal
bounded polynomial-time preprocessing in the OMv conjecture is not essential.
By using a similar technique, we can also obtain a result of similar flavor for
the Combinatorial Boolean Matrix Multiplication conjecture (CBMM). (For a
definition of “combinatorial” in this setting, see, e.g., [2, 8].) This well-known
conjecture can be expressed as follows.

Conjecture 5. CBMM conjecture There is no randomized combinatorial
algorithm that computes the Boolean product of two (n×n)-Boolean matrices A
and B in substantially subcubic time with an error probability of at most 1/3.

The proof of the following lemma is similar to that of Lemma 2.

Lemma 5. Let δ and ε be positive constants. If there is a combinatorial
O(n3+δ)-time universal preprocessing of any (n × n)-Boolean matrix A such
that the product of A with an arbitrary (n × n)-Boolean matrix B can be com-
binatorially computed in O(n3−ε) time with an error probability of at most 1/3
then there is an ε′ > 0 such that the product of A with such a matrix B can be
combinatorially computed in O(n3−ε′) time with an error probability of at most
1/3.

Proof. Following the proof of Lemma 2, divide A into n2α quadratic submatrices
Ai,j of size n1−α×n1−α, where i, j ∈ {1, ..., nα}. Preprocess all the submatrices
in O(n2α×(n1−α)3+δ) time. Next, similarly divide B into n2α quadratic subma-
trices Bi,j of size n1−α × n1−α, where i, j ∈ {1, ..., nα}. Then, the product of A
with the matrix B can be computed in O(n3α × (n1−α)3−ε + n2αn1−αnα) time.
The last term in the expression represents the cost of summing the results of the
n3α products of the submatrices. In order to obtain an exponent of the total
preprocessing time in the form 3−ε′ and the exponent of computing the product
in the form 3− ε′ it is sufficient to solve the inequalities 2α+ (1−α)(3 + δ) < 3,
3α + (1 − α)(3 − ε) < 3 and 1 + 2α < 3 with respect to α. Any α in the open
interval (δ

1+δ , 1) satisfies these inequalities.
We can keep the error probability below 1/3 analogously as in the proof of

Lemma 2.

We shall call the conjecture resulting from the CBMM conjecture by allowing
a combinatorial universal polynomial-time preprocessing of one of the input
matrices the CBMM with (polynomial-time) universal preprocessing conjecture,
or CBMMUP for short. By Lemma 5 and the equality AB = (BtAt)t in case
the second matrix is preprocessed, we obtain the following theorem.

Theorem 3. The CBMM and CBMMUP conjectures are equivalent.

3. Easy cases of matrices and vectors for the conjectures

In this section, we demonstrate that the OMv conjecture does not hold in
restricted cases where the rows of the matrix or the input vectors are clustered,
and develop some new efficient randomized algorithms for such cases.

8

0 0

1 1 1 1

0 1 1 0

1 1 0

1s:

0 1 0

0

z
1

u:

3
z z
2

0 0 1

1

Figure 2: An illustration of the extended Hamming distance between two strings s and u of
equal length. Here, EH(s, u) = 3 while H(s, u) = 6. The three differentiating blocks are
z1, z2, z3, with h(z1) = 1, h(z2) = 1, and h(z3) = −1.

Björklund et al. [3] proposed a method for multiplying two Boolean matri-
ces by using a close approximation of the minimum spanning tree of the rows
or columns of one of the matrices under the Hamming distance. Subsequently,
the method has been generalized to include the so-called extended Hamming
distance [6] and integer matrix multiplication [5]. In the first warming-up sub-
section, we present an explicit adaptation of the aforementioned generalizations
to the case of the product of an (n × n)-Boolean (or 0 − 1) matrix M and an
n-dimensional Boolean (or 0 − 1) column vector v in the context of the OMv
conjecture. Several results presented in the first subsection can be regarded as
implicit in [5, 6]. This is not the case in the second subsection handling the
online scenario where the input column vectors are clustered. Here, we have
to develop a novel online approach involving among other things an analysis of
an approximate nearest-neighbor online heuristic for minimum spanning tree of
the vectors under the extended Hamming distance. We shall use the following
concepts in both subsections below.

Definition 1. For two 0 − 1 strings s = s1s2....sm and u = u1u2...um, their
Hamming distance, i.e., the number of k ∈ {1, ...,m}, s.t., sk 6= uk, is denoted
by H(s, u). The extended Hamming distance, EH(s, u), between the strings is
defined by a recursive equation EH(s, u) = EH(sl+1...sm, ul+1...um) + (s1 + u1

mod 2), where l is the maximum number such that sj = s1 and uj = u1 for
j = 1, ..., l.

Note that the extended Hamming distance between two strings never exceeds
the Hamming one and it better reflects the real cost of turning one of the strings
into the other.

Definition 2. For two 0 − 1 strings s = s1s2....sm and u = u1u2...um, a
differentiating block for s and u is a maximal consecutive subsequence z of
1, 2, ...m, such that either for each i ∈ z, si = 1 and ui = 0 hold, or for each
i ∈ z, si = 0 and ui = 1 hold. In the first case, we denote h(z) = −1 and in the
second case, h(z) = 1.

See Figure 2 for an example.

9

3.1. Small spanning tree of the rows of the matrix (warming up)

For c ≥ 1 and a finite set S of points in a metric space, a c-approximate
minimum spanning tree for S is a spanning tree in the complete weighted graph
on S, with edge weights equal to the distances between the endpoints, whose
total weight is at most c times the minimum.

Fact 4. (Lemma 3 in [6]) For ε > 0, a (2 + ε)-approximate minimum spanning
tree for a set of n 0− 1 strings of length d under the extended Hamming metric
can be computed by a Monte Carlo algorithm in time O(dn1+1/(1+ε/2)).

By selecting ε = 2 log n, we obtain the following lemma.

Lemma 6. Let M be an (n × n)-Boolean matrix. An O(log n)-approximation
minimum spanning tree for the set of rows of M under the extended Hamming
distance can be constructed by a Monte Carlo algorithm in O(n2) time.

We shall also use the following data structure, easily obtained by computing
all prefix sums:

Fact 5. (e.g., see [5]) For a sequence of integers a1, a2,. . . ,an, one can construct

a data structure that supports a query asking for reporting the sum
∑j
k=i ak for

1 ≤ i ≤ j ≤ n in O(1) time. The construction takes O(n) time.

By using Lemma 6 and Fact 5, we obtain the following algorithm for comput-
ing the arithmetic product of the input Boolean matrix M and Boolean vector v
interpreted as 0− 1 ones. Observe that the aforementioned arithmetic product
immediately yields the corresponding Boolean one.

10

Algorithm 1

Input: An (n× n)-Boolean matrix M and an n-dimensional Boolean column
vector v.

Output: The arithmetic product c = (c1, ..., cn) of M and v interpreted as a
0− 1 matrix and a 0− 1 vector, respectively.

1. Find an O(log n)-approximate spanning tree T for the rows rowi(M),
i = 1, . . . , n, of M under the extended Hamming distance and a traversal
(i.e., a not necessarily simple path visiting all vertices) of T.

2. For each pair (rowi(M), rowl(M)), where the latter row follows the
former in the traversal, find a set S of the differentiating blocks for
rowi(M) and rowl(M) as well as the differences h(s) (1 or −1) be-
tween the common value of each entry in Ml,min s, . . . ,Ml,max s and the
common value of each entry in Mi,min s, . . . ,Mi,max s for each s ∈ S.

3. Initialize a data structure D for counting partial sums of the values of
coordinates on continuous fragments of the vector v.

4. Iterate the following steps:

(a) Compute cq where q is the index of the row from which the traversal
of T starts.

(b) While following the traversal of T , iterate the following steps:

i. Set i, l to the indices of the previously traversed row and the
currently traversed row, respectively.

ii. Set cl to ci.
iii. For each differentiating block s for rowi(M) and rowl(M),

compute
∑
k∈s vk using D and set cl to cl + h(s)

∑
k∈s vk.

5. Output the vector (c1, c2, ..., cn)

Definition 3. For an (n×n)-Boolean matrix A, let STA stand for the minimum
cost of a spanning tree of rowi(A), i ∈ {1, ..., n}, under the extended Hamming
distance.

Lemma 7. Algorithm 1 runs in Õ(n2 + STM) time with high probability. If
Steps 1, 2, 3 are treated as a preprocessing of the matrix M then it runs in
Õ(n+ STM) time with high probability after an O(n2)-time preprocessing.

Proof. The approximate minimum spanning tree T in Step 1 can be constructed
by a Monte Carlo algorithm in O(n2) time by Lemma 6. Its traversal can be
found in O(n) time. Since the length of the traversal is linear in n, Step 2
can be easily implemented in O(n2) time. Step 3 takes O(n) time by Fact 5.
Finally, based on Step 2, Step 4 (b)-iii takes Õ(1 + EH(rowi(M), rowl(M)))
time. Let U stand for the set of directed edges forming the traversal of the
spanning tree T. It follows that Step 4 (b) can be implemented in Õ(n +∑

(i,l)∈U EH(rowi(M), rowl(M))) time, i.e., in Õ(n + STM) time by Lemma

6. Consequently, Step 4 takes Õ(n+ STM) time.

11

By Lemma 7, we obtain:

Theorem 6. The Boolean product c of an (n × n)-Boolean matrix M and an
n-dimensional Boolean column vector v can be computed by a randomized algo-
rithm in Õ(n+STM) time with high probability after O(n2)-time preprocessing.

Proof. The correctness of Algorithm 1 follows from the observation that a dif-
ferentiating block s for rowi(M) and rowl(M) yields the difference h(s)

∑
k∈s vk

between cl and ci just on the fragment corresponding to Mi,min s, . . . ,Mi,max s

and Ml,min s, . . . ,Ml,max, respectively. Lemma 7 yields the upper bounds in
terms of STM .

We can compute the exact minimum spanning tree of the rows of the matrix
M under the extended Hamming distance by computing extended Hamming
distances between all pairs of rows of M in O(n3) time. Hence by replacing the
randomized approximate computation of the minimum spanning tree with the
deterministic exact one in Algorithm 1, we obtain the following theorem.

Theorem 7. The Boolean product c of an (n × n)-Boolean matrix M and an
n-dimensional Boolean column vector v can be computed deterministically in
Õ(n+ STM) time after O(n3)-time preprocessing.

Corollary 1. The OMv problem for an (n×n)-Boolean matrix can be solved by a
randomized algorithm in Õ(n(n+STM)) time with high probability while the Mv
problem can be solved by a randomized algorithm in Õ(n+STM) time with high
probability after O(n2)-time preprocessing or it can be solved deterministically
in Õ(n+ STM) time after O(n3)-time preprocessing.

3.2. Small spanning tree of the input vectors

In this subsection, we assume an online scenario where besides the Boolean
matrix there is given a sequence of n-dimensional Boolean vectors received one
at a time. In order to specify and analyze our algorithm, we need the following
concepts and facts on them.

Definition 4. For a metric space P and a point q ∈ P, a c-approximate nearest
neighbor of q in P is a point p ∈ P different from q such that for all p′ ∈ P, p′ 6=
q, dist(p, q) ≤ c×dist(p′, q). The ε-approximate nearest neighbor search problem
(ε-NNS) in P is to find for a query point q ∈ P a (1 + ε)-approximate nearest
neighbor of q in P.

Fact 8. (See the third row in Table 4.3.1.1 in [1]) For ε > 0, there is a Monte
Carlo algorithm for the dynamic (i.e., supporting point insertions and deletions)

ε-NNS in {0, 1}d under the Hamming metric which requires O(d`
1

1+2ε +o(1)) query

time and O(d`
1

1+2ε +o(1)) update time, where ` is the maximum number of stored
vectors in {0, 1}d.

Fact 9. [6] There is a simple, linear-time, transformation of any 0 − 1 string
w into the string t(w) such that for any two 0− 1 strings s and u, EH(s, u) =

dH(t(s),t(u))
2 e.

12

Note that the size of t(w) is linear in that of w by the linear-time complexity
of the transformation. By combining Facts 8 and 9, we obtain the following
corollary.

Corollary 2. There is a randomized Monte Carlo algorithm for a dynamic
O(log `)-NNS in {0, 1}d under the extended Hamming metric which requires
O(d`o(1)) query time and O(d`o(1)) update time.

Our online algorithm is as follows.

Algorithm 2

Input: Given a priori an (n × n)-Boolean matrix M and an online sequence
of n-dimensional Boolean vectors v1, v2, ..., v`, received one at a time.

Output: For i = 1, ..., `, the arithmetic product ci = (ci1, ..., c
i
n) = Mvi of

M and vi, treated as a 0-1 matrix and a 0-1 column vector, is output before
receiving vi+1.

1. For j = 2, . . . , n, initialize a data structure Dj that for any interval
u ⊆ {1, ..., n} reports

∑
k∈uM [j, k] using Fact 5.

2. Receive the first vector v1 and compute the arithmetic product c1 =
(c11, ..., c

1
n) ofM with v1 by the definition of matrix-vector multiplication.

3. For i = 2, . . . , `, receive the i-th vector vi = (vii , ..., v
i
n) and iterate the

following steps:

(a) Find an O(log `)-approximate nearest neighbor vm of vi in the set
{v1, ..., vi−1}.

(b) Determine the differentiating blocks s and the differences h(s) for
vm and vi.

(c) For j = 1, . . . , n iterate the following steps.

i. Set cij to cmj .
ii. For each differentiating block s of vm and vi iterate the follow-

ing steps.

A. Compute
∑
k∈sM [j, k] using Dj .

B. Set cij to cij + h(s)
∑
k∈sM [j, k].

(d) Output ci = (ci1, ..., c
i
n)

The following lemmas analyze the time complexity of Algorithm 2. The first
lemma is a direct consequence of Corollary 2.

Lemma 8. There is a randomized Monte Carlo algorithm for a dynamic O(log `)-
NNS in {0, 1}d under the extended Hamming metric such that:

• The insertions of the vectors v1 through v` in Algorithm 2 can be imple-
mented in O(n`1+o(1)) total time.

• The O(log `)-approximate nearest neighbors of vi, i = 2, ..., `, in {v1, ..., vi−1},
in Step 3 (a) of Algorithm 2 can be found with high probability in O(n`1+o(1))
total time.

13

Proof. By Corollary 2, the `−1 updates and `−2 O(log `)-approximate nearest
neighbor queries take O(n`1+o(1)) total time.

Lemma 9. Algorithm 2 can be implemented in time
Õ(n(`1+o(1) +

∑`
i=2 min{dist(vi, vj)|j < i})).

Proof. Step 1 can be implemented in O(n2) time by Fact 5 while Step 2 can
be trivially done in O(n2) time by the definition. Step 3 (a) takes t(i) time,
where t(i) is the time taken by finding an O(log `)-approximate neighbor of vi
in {v1, v2, ..., vi−1} and inserting vi in the dynamic data structure supporting
the O(log `)-approximate neighbor queries, with high probability. The differen-
tiating blocks s and the differences h(s) for vm and vi can be easily determined
in O(n) time in Step 3 (b). Since the number of the aforementioned blocks is
within a polylogarithmic factor of min{dist(vi, vj)|j < i}, the whole update of

cm to ci in Step 3 (c) takes Õ(n(1 + min{dist(vi, vj)|j < i})) time. Finally, it

follows from Lemma 8 that
∑`
i=2 t(i) = O(n`1+o(1)).

To pursue our time analysis of Algorithm 2, we need to show∑`
i=2 min{dist(vi, vj)|j < i} = Õ(ST (V)), where ST (V) is is the minimum cost

of the spanning tree of the vectors in V = {v1, v2, ..., v`} under the extended
Hamming distance. For this purpose, we shall analyze the following simple
heuristic for an online variant of the minimum spanning tree problem (MST).

Approximate Nearest-Neighbor Heuristic for MST

Input: an online sequence V of points (in particular, vectors) v1, v2,
received one at a time.

Output: a sequence of spanning trees Ti of the points v1 through vi constructed
before receiving vi+1 for all i > 1.

1. Set T1 to the singleton tree {v1};
2. for each received point vi, i > 1 do

(a) find an f(i)-approximate nearest neighbor u of vi in the set of
points received so far;

(b) let Ti be the spanning tree Ti−1 built for points received before vi
and expand it by {u, vi};

(c) output Ti.

Theorem 10. Assume that the function f is not decreasing and the input points
to the approximate nearest-neighbor heuristic for MST are drawn from a metric
space. The spanning tree constructed by the heuristic for the first t points has
cost not exceeding dlog2 tef(t) times the minimum.

Proof. Assume first that t is a power of two. Let V = {v1, ..., vt} be the sequence
of t points received, where vi is the i-th point received.

14

Consider a minimum cost perfect matching P of V (recall that V is even).
For each edge {vi, vj} in P, where i < j, the cost of connecting vj to the current
spanning tree Tj−1 of v1 through vj−1 does not exceed f(t)× dist(vi, vj). Thus,
for t/2 points vl in V, the accumulated cost of connecting them to the current
spanning tree Tl−1 does not exceed the total cost of P times f(t). Note that
the total cost of P is not greater than half the minimum cost TSP (V) of the
traveling salesperson tour of V. Simply, the tour can be decomposed into two
perfect matchings of V.

In order to estimate from above the cost of connecting the remaining t/2
points to the current spanning trees, we iterate our argument.

Thus, let V1 denote the remaining set of points and let P1 be their minimum-
cost perfect matching. We can again estimate the cost of connecting half of the
t/2 points in V1 to the current spanning trees by the cost of P1 times f(t). On
the other hand, we can estimate the cost of P1 by 1

2TSP (V1) ≤ 1
2TSP (V). We

handle analogously the remaining t/4 points and so on. After log2 t iterations,
we are left with the first point, and can estimate the total cost of connecting
all other points to the current spanning trees by log2 t×f(t)TSP (V)/2. On the
other hand, by the doubling MST heuristic, we know that TSP (V) is at most
twice the cost ST (V) of minimum-cost spanning tree of V. We conclude that the
cost of the spanning tree of V constructed by the approximate nearest-neighbor
heuristic does not exceed log2 t× f(t)ST (V).

If t is not a power of two, we have to consider minimum-cost maximum
cardinality matchings instead of minimum-cost perfect matchings. Let t′ =
2dlog2 te. Observe that the number of the remaining points after each iteration
when we start with a sequence S of t points will be not greater than that when
we start with a sequence S′ of t′ points, where S′ is an extension of the sequence
S. This completes the proof of the dlog2 tef(t)ST (V) upper bound.

In the special case when f() ≡ 1, our online heuristic for MST in a way
coincides with the greedy one for incremental minimum Steiner tree from [9],
which on weighted graphs satisfying the triangle inequality could fairly easily
be adapted to consider received vertices only. Hence, in this case a logarithmic
upper bound on approximation factor could be also deduced from Theorem 3.2
in [9]. By combining Lemma 9 with Theorem 10, we obtain our main result in
this section.

Theorem 11. Let M be an (n× n)-Boolean matrix. For an online sequence V
of n-dimensional Boolean vectors v1, v2, ..., v` received one at a time, the Boolean
products Mvi of M and vi can be computed before receiving vi+1 in total time
Õ(n(`1+o(1) + ST (V))) with high probability by a randomized algorithm, where
ST (V) is the minimum cost of the spanning tree of the vectors in V under the
extended Hamming distance.

Proof. The correctness of Algorithm 2 follows from the observation that a differ-
entiating block s for vm and vi yields the difference h(s)

∑
k∈sM [j, k] between

cmj and cuj just on the fragments vmmin s, . . . , v
m
i,max s and vimin s, . . . , v

i
max s, re-

spectively. By Theorem 10, we have
∑`
i=2 min{dist(vi, vj)|j < i} = Õ(ST (V)).

15

Now it it is sufficient to plug the latter estimation in the upper time bound of
Lemma 9 to complete the proof.

4. Applications to graph queries

Suppose that we are given a graph G = (V,E) on n vertices and a subset S
of V . In [11] Williams observed that the questions if S is a dominating set, an
independent set, or a vertex cover in G, can be easily answered by computing the
Boolean product of the adjacency matrix of G with appropriate Boolean vectors.
Hence, he could conclude (Corollary 3.1 in [11]) that these questions can be
answered in O(n2/(ε log n)2) time after an O(n2+ε) preprocessing of G by using
his method of multiplying an (n × n)-Boolean matrix with an n-dimensional
column vector in O(n2/(ε log n)2) time after an O(n2+ε)-time preprocessing of
the matrix. By plugging in our method of Boolean matrix-vector multiplication
(Theorem 6) instead, we obtain the following result.

Corollary 3. A graph G on n vertices can be preprocessed in O(n2) time such
that one can determine if a given subset of vertices in G is a dominating set,
an independent set, or a vertex cover of G in Õ(n+ STG) time with high prob-
ability, where STG is the minimum cost of a spanning tree of the rows of the
adjacency matrix of G under the extended Hamming distance. Using the same
preprocessing, one can determine if a query vertex belongs to a triangle in G in
Õ(n+ STG) time with high probability.

Proof. A subset S of vertices in G can be represented by an n-dimensional
Boolean column vector w with 1 on the j-th coordinate iff the j-th vertex
belongs to S. Then, as Williams observed in [11], S is independent in G iff the
vector u resulting from multiplying the adjacency matrix of G with w has zeros
on the coordinates corresponding to the vertices in S. Next, S is a dominating
set of G iff each vertex in V \ S has a neighbor in S, i.e., iff u has ones on
the coordinates corresponding to vertices in V \ S. Furthermore, S is a vertex
cover of G iff V \S is an independent set of G, i.e., iff the vector resulting from
multiplying the adjacency matrix of G with the complement of w has zeros
on the coordinates corresponding to the vertices in V \ S. Finally, Williams
also observed that the problem of determining if a query vertex v belongs to
a triangle in a given graph reduces to checking the set of neighbors of v for
independence (see Corollary 3.2 in [11]).

Hence, it is sufficient to plug in our solution to matrix-vector multiplication
given in Theorem 6 to obtain the corollary. The preprocessing of G consists only
of the construction of its adjacency matrix and a logarithmic approximation of
STG in O(n2) time. Note also that the extended Hamming distance between two
0-1 strings is equal to the extended Hamming distance between the complements
of these two strings. Thus, the upper bound in terms of STG is also valid in
case of vertex cover.

To obtain corresponding applications of the results from subsection 3.2, we
need to consider the online versions of the graph subset queries. Thus, we

16

are given a graph G on n vertices and an online sequence of subsets S1,...,S`
of vertices in G. The task is to preprocess G first and then to determine for
i = 1, ..., `, if Si is a dominating set, an independent set, or a vertex cover
of G, respectively, before Si+1 has been received. Analogously, we obtain the
following online version of Corollary 3 by plugging in Theorem 11 instead of
Theorem 6.

Corollary 4. A graph G on n vertices can be preprocessed in O(n2) time such
that for an online sequence S of subsets S1,...,S` of vertices in G, for i = 1, ..., `,
one can determine if Si is a dominating set, an independent set, or a vertex cover
of G before receiving Si+1 (in i < ` case) in Õ(n(`1+o(1) + STS)) total time
with high probability, where STS is the minimum cost of a spanning tree of the
characteristic vectors representing the subsets in S under the extended Hamming
distance. Using the same preprocessing, for an online sequence v1, ..., v` of query
vertices, for i = 1, ..., `, one can determine if vi belongs to a triangle in G
before receiving vi+1 (in case i < `) in Õ(n(`1+o(1) + ST`)) total time with high
probability, where ST` is the minimum cost of a spanning tree of the ` vectors
under the extended Hamming distance.

5. Final Remarks

Our results in Section 3 imply that to prove the OMv, AMv, and MvP
conjectures, it suffices to consider (n×n)-Boolean matrices where STM is almost
quadratic in n.

Interestingly enough, our approximate nearest-neighbor heuristic for MST
combined with the standard MST doubling and shortcutting techniques imme-
diately yields a corresponding online heuristic for TSP in metric spaces. By
Theorem 10, it provides TSP tours TSPs of length at most 2dlog2 sef(s) times
larger than the optimum, where s is the number of input vectors and f(s) is an
upper bound on the approximation factor in the approximate nearest neighbor
subroutine. The resulting TSP heuristic for i = 2, ... simply finds an f(i)-
nearest neighbor u of the new vector vi and replaces the edge between u and its
predecessor w by the path {w, vi}, {vi, u} in TSPi−1 in order to obtain TSPi.

Acknowledgments

Thanks go to the anonymous reviewers for their valuable comments. The
authors were supported in part by Swedish Research Council grant 621-2017-
03750. JJ was also supported by PolyU Fund 1-ZE8L.

References

[1] A. Andoni and P. Indyk. Nearest Neighbors in High-dimensional Spaces.
43rd chapter in Handbook of Discrete and Computational Geometry, J.E.
Goodman, J. O’Rourke and C.D. Toth (editors), 3rd edition, CRC Press,
Boca Raton, FL, 2017.

17

[2] N. Bansal and R. Williams. Regularity Lemmas and Combinatorial Algo-
rithms. Theory of Computing, Vol. 8, No. 1, pp. 69-94, 2012.

[3] A. Björklund and A. Lingas. Fast Boolean matrix multiplication for highly
clustered data. Proc. of WADS 2001, LNCS Vol. 2125, pp. 258-263.

[4] D. Chakraborty, L. Kamma, and K. Green Larsen. Tight cell probe bounds
for succinct Boolean matrix-vector multiplication. Proc. of STOC 2018, pp.
1297-1306.

[5] P. Floderus, J. Jansson, C. Levcopoulos, A. Lingas, D. Sledneu. 3D Rectan-
gulations and Geometric Matrix Multiplication. Algorithmica 80(1): 136-
154 (2018)

[6] L. Ga̧sieniec and A. Lingas. An Improved Bound on Boolean Matrix Multi-
plication for Highly Clustered Data. Proc. of WADS 2003, LNCS Vol. 2748,
pp. 329-339.

[7] K. Green Larsen, R.R. Williams. Faster Online Matrix-Vector Multiplica-
tion. Proc. of SODA 2017, pp. 2182-2189.

[8] M. Henzinger, S. Krinninger, D. Nanongkai and T. Saranurak. Unifying
and Strengthening Hardness for Dynamic Problems via the Online Matrix-
Vector Multiplication Conjecture Proc. of STOC 2015, pp.21-30.

[9] M. Imase and B.M. Waxman. Dynamic Steiner Tree Problem. SIAM J.
Discrete Math., 4(3), pp. 369-384, 1991.

[10] Vassilevska Williams, V. and Williams, R.: Subcubic Equivalences Between
Path, Matrix, and Triangle Problems, J. ACM, Vol. 65(5), September 2018,
pp.27:1-27:38 (preliminary version FOCS 2010).

[11] R. Williams. Matrix-vector multiplication in sub-quadratic time (some pre-
processing required). Proc. of SODA 2007, pp. 995-2001.

18

