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ABSTRACT  

 

Using “Omics” to Discover Predictive Biomarkers in Women at High Risk of 

Spontaneous Preterm Birth 

Angharad Care 

 

Spontaneous preterm birth (sPTB) is a complex pregnancy syndrome that remains 

poorly understood and is associated with significant perinatal morbidity and 

mortality worldwide. Current research suggests that there are multiple disordered 

physiological processes that trigger a final common pathway of early labour, rather 

than a single specific cause. It is this heterogeneity that has hindered the discovery of 

a single predictive biomarker and existing screening methods for sPTB prediction are 

insufficient to detect all women at risk. Consequently, our inability to identify 

women at risk inhibits efforts of prevention, which cannot be achieved without better 

understanding of causation or a more robust way of accurately discriminating those 

at high risk. 

 

The development in “omics” technology has led to exciting breakthroughs in other 

areas of medicine and offers new avenues of investigation for sPTB prediction. The 

primary aim of the thesis was to establish a way of combining different types of 

‘omics’ analysis from the same individual in a pilot study to identify candidate 

biomarker predictors or pathways.  

 

Three different “omic” methodologies; genomics, transcriptomics and metabolomics, 

were used to analyse blood taken from asymptomatic women high-risk for sPTB at 

16 and 20 weeks of pregnancy. Lastly, I investigated if there are distinct differences 

in biomarkers between PPROM and sPTB subgroups of spontaneous preterm birth.  

On an individual omics level only transcriptomics showed an association with sPTB. 

Gene set enrichment in this population demonstrates that the selenoamino acid 

pathway differentiates asymptomatic high-risk women. Hierarchical clustering in a 

non-linear distance matrix differentiated all but one of the sPTB and PPROM cases. 

More studies are required to validate the findings from our analysis. 

 

Data from each omics discipline was combined together in a single data matrix and 

machine learning analyses applied. The area under the curve (AUC) of receiver 

operating characteristic (ROC) values for Linear discriminant analysis (0.90), 

Genetic expression programming (0.70), K-Means (1.00), Linear support vector 

machine (0.96), Support vector machine with a Gaussian Kernel (0.96), Probabilistic 

neural network (1.00) and Random Forest (0.96) demonstrate that most machine 

learning methods perform well on our dataset. Sample sizes needed to reach 

excellent (AUC = 0.9) vs. moderate (AUC = 0.7) prediction performance were found 

to be within realistic ranges.  

 

This study provides a conceptual analytical framework for the prediction of sPTB. 

For a larger cohort prediction power is excellent, making individualized preterm 

prediction a realistic possibility.  
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Chapter 1: Introduction



 
 

1.1 Epidemiology of Preterm Birth 

Definition 

Preterm birth (PTB) is usually defined as delivery at any gestation before 37 

completed weeks of pregnancy (<37+0 weeks, <259 days) (Spong et al. 2013). The 

lower limit of preterm birth and upper limit of late spontaneous miscarriage are 

blurred as the limit of viability varies with differences in healthcare settings. The 

World Health Organisation recommends using 28 weeks completed gestation as a cut 

off for viability, whereas neonates reaching 23 completed weeks have been 

successfully resuscitated in the UK. If the baby is born before compatibility with life, 

spontaneous delivery is termed “miscarriage”. Despite the difference in semantics, 

both late spontaneous miscarriage and early spontaneous birth are considered to 

share the same pathophysiological triggers.  

Incidence 

Worldwide, an estimated 15 million babies are born before 37 completed weeks 

of pregnancy (Howson et al. 2012). Across 184 countries, the rate of PTB ranges 

from 5% to 18% and in nearly all countries reporting reliable data, the rates of 

prematurity are increasing (Blencowe et al. 2013, Chawanpaiboon et al. 2019).  

Being born preterm results in insufficient time in utero for complete organ 

maturation and three quarters of all perinatal mortality and over half of long-term 

morbidity is attributable to PTB (Goldenberg et al. 2008). Many survivors face a 

lifetime of disability, including cognitive impairment, motor disability, poor 

respiratory health, behavioural disturbance and visual and hearing deficiency. The 

severity of these risks is inversely proportional to the gestational age at birth. (Figure 

1.1).  
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Complications of prematurity are the leading cause of death among children 

under five years of age and were responsible for nearly one million deaths 

worldwide in 2013 (Blencowe et al. 2013). The emotional and economic 

implications of PTB remain a burden to healthcare systems and societies. Parents 

of neurologically disabled children report social exclusion from parents with 

normal children, anxiety, relationship breakdown, reduced quality of life and 

ending careers to become carers (McCormick. 1985).  One UK study (Mangham 

et al. 2009) estimated the total cost to the public sector for the care of children 

born prematurely up to 18 years old to be £2.95 billion annually. 

 

 

 

Figure 1.1 Percentage of infant deaths and number of live births per week of gestation in England 
and Wales. Data from Office of National Statistics. Pregnancy and ethnic factors influencing births 
and infant mortality: 2013-2015 



 
 

Classification  

As neonatal morbidity and mortality are inversely proportional to the gestational 

age of birth, preterm birth is often sub classified into: 

• Late preterm (34+0 to 36+6 weeks) 

• Moderate preterm (32+0 to <34+0 weeks)  

• Very preterm (28+0 to <32+0weeks)  

• Extremely preterm (<28+0 weeks) 

This type of classification groups neonates by gestation specific morbidity and 

mortality risks, helping us to discuss prognosis in general terms.  However, a 

classification based on gestation tells us little about the phenotype or cause of these 

births. Preterm birth is the only pathology defined by a specific time point rather than 

a common collection of signs and symptoms.  There are multiple causes and 

pathologies under this umbrella term, therefore preterm birth can also be classified 

based on phenotype:  

1. Medically indicated or “iatrogenic” preterm birth (30%)  

2. Spontaneous preterm labour with intact membranes (sPTL-IM) (45%) 

3. Premature prelabour rupture of the membranes (PPROM) (25%)  

followed by either i) medically indicated delivery or ii) spontaneous labour  

Medically indicated, iatrogenic or elective preterm births aim to prevent 

severe maternal or fetal morbidity and mortality from conditions such as pre-

eclampsia, intrauterine growth restriction, fetal distress, placental abruption or 

maternal medical disease. The remaining 70% are due to a spontaneous onset of 

labour with regular uterine contractions and progressive dilatation of the cervix or 

secondary to spontaneous rupture of the membranes that is not immediately followed 
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by regular uterine contractions and labour (Goldenberg et al. 2008). Pregnancies 

affected by PPROM frequently labour spontaneously, but it is difficult to predict at 

what gestation in the future labour will occur; from hours to months later. If there are 

concerns regarding infection or fetal wellbeing, labour may be induced before it can 

begin spontaneously. In studies of preventative treatment sPTL-IM and PPROM 

have frequently been lumped together as “spontaneous preterm birth”. Spontaneous 

PTB (sPTB) is currently viewed as a “syndrome” rather than a disease entity 

encompassing multiple disease mechanisms into a final common pathway of delivery 

(Villar et al. 2012). 

Clinically, PPROM is generally defined as the onset of amniotic fluid (AF) 

leakage from the vagina prior to the onset of labour at less than 37 weeks of 

gestation. However, there is no universally accepted classification of PPROM for use 

in the research studies. Difficulty arises trying to ascertain a timepoint at which 

labour commences that is measurable and objective, particularly as women can 

report irregular symptoms of labour prior to membrane rupture. Therefore, a 

challenge arises in appropriately classifying women with PPROM from those 

classified as spontaneous preterm labour (sPTL). Delivery of the baby is an objective 

event and better recorded than the onset of labour. Some studies assign an arbitrary 

time from rupture of membranes to birth beyond which a spontaneous preterm birth 

would be classified as PPROM and not sPTL-IM. Definitions from several published 

studies of PPROM are shown in Table 1.1. There is a range of inclusion criteria and 

time specifications depending on what is being studied. Only one study listed here 

(Hadley et al. 2017) has included criteria for indicated or sPTB classification. 

Additionally, the diagnosis of ruptured membranes can in itself be challenging for 

clinicians. Additional bedside testing for the presence of AF in the posterior fornix of 
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the vagina can assist in making the diagnosis if the clinical history is unclear, but like 

all clinical tests can be subject to false positives and negatives. 

Table 1.1 Inclusion criteria for PPROM cases in research studies published in 2017/8 

  

Author Year Sterile 

Speculum 

Clinical 

Test 

Min. 

time 

ROM 

to 

Labour 

Onset 

Min. Time 

ROM to 

Delivery 

Other  

Sak et al.  2017 ✓  ✓  NS NS  

Zhang et al  2017 NS NS NS NS  

Sung et al 2017 ✓  ✓  48 

hours 

NS  

Dundar et al 2017 ✓  ✓  NS NS  

Vanderbroucke 

et al 

2017 ✓  ✓  NS 72 hours  

Hadley et al 2017 ✓  ✓  NS >2 hours Did not meet 

criteria for 

indicated PTB 

or PTL (6 

contractions an 

hour or equal 

to 4cm dilated) 

Toprak et al 2017 ✓  ✓  NS NS  

Musilova et al 2017 ✓  ✓  NS NS  

Roberts et al 2017 NS NS NS NS Diagnosis 

made by 

attending 

medical 

practitioner 

Shree et al 2017 NS NS NS >12 hours  

Hromadnikova 

et al 

2017 ✓  ✓  2 hours NS  

Radochova et 

al 

2017 ✓  ✓  NS NS  

Patel et al 2017 ✓  ✓  NS NS  

Pharande et al 2017 NS NS NS >24 hours Clinical 

diagnosis 

Wang et al 2018 ✓  ✓  NS NS pH strip, AF 

crystallization 

and sICAM-1 

positive 
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Risk Factors  

The triggers of spontaneous labour, both at term and preterm, are still poorly 

understood – and a precise mechanism is not established in most cases. Therefore, 

factors associated with preterm birth have been sought to try and identify the most at-

risk populations. Women with a previous preterm birth have a recurrence risk of 15% 

to 50% depending on the number, gestational age and characteristics of previous 

deliveries (Goldenberg et al. 2008). The risk of a recurrent preterm birth is inversely 

related to the gestational age at the first delivery (Kazamier et al. 2014). Most risk 

factors cannot be altered between pregnancies such as genetic influences or uterine 

abnormalities. Even modifiable risk factors such as social status and body mass index 

(BMI) are difficult to change. Identifying at-risk women for spontaneous preterm 

birth in their first pregnancy is particularly challenging. Table 1.2 lists some of the 

common risk factors associated with spontaneous preterm birth. 
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Table 1.2 Risk factors for spontaneous preterm birth 

Risk Factors for Spontaneous Preterm Birth 

Medical/Obstetric 

History 

Previous Preterm Birth 

 Anatomical abnormalities of the uterus 

 Conceiving through In Vitro Fertilisation (IVF) 

 Thrombophilia 

Chronic medical conditions such as diabetes and high blood pressure 

 Excisional cervical surgery (e.g. knife cone biopsy, 

LLETZ) 

Other cervical damage – in previous delivery, recurrent second trimester surgical 

terminations 

 Family history of spontaneous PTB (maternal side only) 

  

Maternal Extremely Low (<19) Body Mass Index (BMI) 

 Short Inter Pregnancy Interval (<6 months) 

 Higher social deprivation 

 Smoking 

 Increasing age 

 Domestic Violence 

  

Fetal Congenital Abnormality 

 Chromosomal Abnormality 

  

Current Pregnancy  Short cervical length for gestational age 

 Positive fetal fibronectin between 22 and 34 weeks 

 Certain congenital abnormalities of the fetus 

 Vaginal bleeding in pregnancy 

Infections – urinary tract, sexually transmitted, bacterial vaginosis, periodontal 

disease 

Overdistension of the uterus – multiple pregnancy, polyhydramnios, macrosomia 

 Recurrent Antepartum haemorrhage 

 Pre-eclampsia, uteroplacental insufficiency 



 
 

Neonatal Outcomes following Preterm Birth 

Two UK cohort studies comparing outcomes of babies born between 22 and 

26 weeks in 1995 and 2006 show survival rates of extremely premature infants have 

been improving (40% to 53%) (Costeloe et al. 2012). Overall, more babies are now  

being admitted for care at earlier gestations, although healthy survivor numbers are 

increasing so are the total number of neonates with moderate or severe disability. 

The Epicure 2 study showed that in infants born before 26 weeks in 2006 

approximately 44% will survive to three years of age and of those 15% will have a 

severe disability. Neonatal clinical networks have now increased centralisation of 

care for babies born less than 26 weeks as survival is greatest in hospitals that can 

provide neonatal intensive care (Level 1 service) (Marlow et al. 2014). 

Short Term Morbidity 

Cells in the lung alveoli (Type 2 pneumocytes) begin to produce surfactant 

from 30 weeks of gestational age decreasing the surface tension within the alveoli. 

Babies born below this gestation are at highest risk of respiratory distress syndrome 

(RDS). Although rates of RDS have decreased over the last few decades due to the 

use of antenatal corticosteroids, increased use of surfactant and improvements in 

lung ventilation, some preterm neonates treated with oxygen and positive-pressure 

ventilation will ultimately develop bronchopulmonary dysplasia (BPD), a chronic 

lung injury.  

Preterm neonates are particularly susceptible to intraventricular haemorrhage 

(IVH) due to the high levels of vascularisation that is occurring during brain 

development before 34 weeks. Severe haemorrhage predisposes the child to 

impairment of cognitive, motor and visual functions. Periventricular leukomalacia 

(PVL) is a white matter brain injury that has long term sequelae including cerebral 
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palsy and a low IQ (Back et al. 2007). Even in the late preterm birth group between 

32-36 weeks there are increased levels of autism, attention deficit hyperactivity 

disorder (ADHD) and school difficulties when compared with children born at term 

(Guy et al. 2015). 

The pathogenesis leading to necrotising enterocolitis (NEC) remains 

unknown. It is a gastrointestinal disorder leading to ischemic injury and abnormal 

bacterial colonisation. In preterm infants NEC usually presents after the 

commencement of feeds and may appear after two to three weeks of life once 

preterm babies have survived the early neonatal period. The mortality for NEC can 

be as high as 50% and operative intervention is necessary in almost 20% to 40% of 

cases (Yee et al. 2015). 

Long Term Morbidity 

Studies examining long term outcomes for preterm babies show the same inverse 

relationship with gestational age for both morbidity and mortality. In the UK, 39% of 

deaths under the age of five years are directly caused by prematurity (WHO. 2015). 

A risk of ill health during childhood exponentially increases for very preterm and 

moderately pre-term (32 to 36 weeks) neonates when compared to term counterparts 

(Boyle et al. 2012). Long term adverse outcomes include delayed behavioural 

development at six years of age, decreased lung function at eight to nine years of age, 

increased hospitalisation, lower exercise capacity into early adulthood and increased 

risk of poor metabolic and cardiovascular health (Bartha et al. 2012, Lapillonne et al. 

2013., Roggero et al. 2013). 
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1.2 Causes of Spontaneous Preterm Labour 
 

The mechanisms that lead to human term labour, let alone preterm parturition are 

not yet fully understood. It is, therefore, unsurprising that effective strategies to 

prevent preterm birth remain inadequate on an individual level. Better identification 

of the cause may help focus use of the correct preventative interventions or lead to 

development of more effective treatments. Various pathological processes linked to 

preterm birth include inflammation triggered by infection, pathological uterine 

distension (multifetal pregnancy, polyhydramnios, uterine anomalies), cervical 

insufficiency and fetal and maternal stress.  

Inflammation and Infection 

The role of inflammation and infection in preterm birth has been recognised 

for many decades. Infection is frequently associated with preterm labour (PTL) in 

both humans and animal models. In pregnant mammals, systemic administration of a 

microbial load can induce PTL (McDuffie et al. 1992). In humans, 25%- 40% of 

sPTB have evidence of intrauterine infection, particularly in PPROM (Agarwal and 

Hirsch. 2012). However, in these cases it can be difficult to elucidate if intrauterine 

infection preceded ruptured membranes or occurred following the loss of the 

protective membrane barrier. Ascending infection from the genital tract causing 

inflammation of the lower uterine segment and triggering cervical shortening and 

labour has been proposed as one mechanism of PTL.  

The AF cavity is a sterile environment, therefore positive cultures of AF are 

considered pathological. The reported rates of positive culture of AF detected in 

women presenting in PTL with intact membranes is 13%, this is higher than rates of 

non-labouring preterm patients and term labourers (Goncalves et al. 2002). In women 

with PPROM this rises to 32% and again to 75% by the time these women 
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subsequently labour, demonstrating colonisation of microbes both before and during 

the latent period (Goncalves et al. 2002). A third mechanism of infection unrelated to 

the cervix is haematological spread through the placenta causing microbial invasion 

of the amniotic cavity (MIAC) (Goncalves et al. 2002). This route of infection is 

supported by the fact that extrauterine infection such as asymptomatic bacteriuria and 

pyelonephritis (Wing et al. 2014), periodontal infection (Parthiban and Mahendra. 

2015) and malaria (McDonald et al. 2015) are all associated with an increased risk of 

preterm birth.  

Changes in cervical ripening during labour have been associated with 

increased production of inflammatory cytokines such as interleukins-1, -6, -8, tumour 

necrosis factor (TNF) and prostaglandins (Chandiramani et al. 2012, MacIntyre et al. 

2012).  Influx of inflammatory cells into the cervix release matrix metalloproteins 

contributing to collagen breakdown and ultimately a softening or ripening of the 

cervix.  

Uterine Stretch  

Overdistension over the uterus as a PTB risk has been exemplified clinically 

by the decrease in the mean age of spontaneous delivery to 35 weeks in twins and 30 

weeks in quadruplets. Additionally, women diagnosed with polyhydramnios and 

unicornuate uterus are also at increased risk of spontaneous PTB. In vitro, induced 

mechanical stretch of uterine myometrium causes increases in gap junction proteins 

such as CX 26 and CX 43 (Xu et al. 2013), IL-8 and oxytocin receptor (OTR) 

expression leading to MAPK pathway activation (Kim et al. 2015), and upregulating 

COX-2 activity (Sooranna et al. 2004) ultimately terminating with local 

prostaglandin release causing increased contractility of the uterine muscle. 
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Additionally, stretch also upregulates calcium signalling in the myometrium leading 

to muscle contraction (Li et al. 2009). 

Maternal / Fetal Stress   

Stress can be difficult to quantify and disassociate from other risk factors 

such as smoking, poor nutrition and low socioeconomic status. Stress in the fetus is 

thought to arise secondary to abnormal placentation, may present with growth 

restriction and lead to maturation and activation of the fetal hypothalamic-pituitary-

adrenal (HPA) axis. How the HPA axis is exactly activated is not yet understood, but 

placental corticotrophin-releasing hormone (CRH) is currently thought to play an 

important role (Gravett et al. 2010). Moreover, maternal stress increases biological 

effectors, including cortisol and adrenaline which have been postulated to activate 

placental CRH gene expression (Sandman and Davis. 2012).  CRH is a neuropeptide 

of predominantly hypothalamic origin, it is also expressed in human placenta and 

membranes and released in increasing amounts over the course of pregnancy 

(Gravett et al. 2010). The exponential rise of CRH has been associated with the 

length of gestation (McLean and Smith. 1999). These findings have led some 

researchers to suggest that placental CRH may act as a "placental clock" and regulate 

the length of gestation (McLean and Smith. 1999).  Therefore, one current theory 

behind preterm labour is the premature senescence of the placenta leading to an 

earlier trigger for birth or PPROM. There is some suggestion this may be mediated 

by imbalances in reactive oxygen species (ROS) causing damage mediated by p38 

mitogen activated kinase (p38MAPK) pathways (Polettini et al. 2015). 

Cervical Function  

Gradual softening and effacement of the cervix occur in the weeks before 

labour. Cervical ripening involves a breakdown of collagen, changes in proteoglycan 
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concentration and increase in water content that occur in response to increased local 

prostaglandin release or partial antagonism to progesterone receptors (i.e. action of 

mifepristone) (Bennett. 2007). 

The role of the cervix in maintaining pregnancy remains undefined and is 

probably multifactorial, with two key roles i) prevention of ascending infection and 

ii) physical support to keep the pregnancy in utero.  

Maintenance of a healthy mucus plug and adequate length to the cervix may 

act to prevent ascending infection that triggers production of local inflammatory 

cytokines and prostaglandin release. 

The quality of strength of the cervix to support the pregnancy in situ against 

gravitational pressure is required to prevent premature cervical dilatation. 

Recognised cervical weakness also called ‘cervical insufficiency’, causes women to 

suffer recurrent mid trimester loss usually with a history of painless dilatation of the 

cervix. Funnelling is a feature associated with cervical weakness and can be seen on 

transvaginal ultrasound (TVUSS) as the membranes prolapsing through the 

endocervical canal of the cervix. Women who have excisional cervical surgery for 

cervical intraepithelial neoplasia (CIN) or cervical cancer also have an increased risk 

of spontaneous PTB. This contributes to the argument for the function of the cervix 

being related to its length. In the treatment of CIN the proportions of the 

volume/length excised at large loop excision vary substantially, and the latter has 

been shown to correlate with the pregnancy duration (Kyrgiou et al. 2015).   

Vaginal Microbiome  

Micro-organisms, particularly pathogenic microbes have long been 

hypothesised to play a role in the onset of early labour. The recent advances of 

sequencing approaches have allowed for broad unbiased surveys of bacterial 
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communities and the discoveries of new bacterial species and different taxa. In a 

seminal paper by Ravel et al. (2011) a study of women of reproductive age showed 

that individuals could be categorised by the dominant species of lactobacillus within 

their vaginal microbiome. Lactobacillus species typically dominated more than 90% 

of their entire community and were divided into “community state types” (CST). The 

most common species of lactobacilli were L.crispatus (CST I), L.gasseri (CST II),  

L.iners (CST III) and L.jensenii (CST V) (Ravel J et al. 2011). Some women were 

also found to have microbiomes with low levels of lactobacilli and increased 

diversity of other species such as Atopobium, Gardnerella, Prevotella and 

Megasphera (CST IV – diverse group). 

In pregnancy, the vaginal microbiome is characterised by a stable, low 

richness, low diversity community and is generally dominated by Lactobacillus 

species (Aagaard et al. 2012. McIntyre et al. 2015. Romero et al. 2014). L.species are 

thought to be protective against pathogenic organisms (Reid et al. 2011) and prevent 

inflammatory shifts in the vaginal environment. Preterm birth has been shown to 

correlate with a Lactobacillus-poor, high-diversity vaginal community (DiGiulio et 

al. 2015) with bacterial vaginosis (BV)-taxa such as Gardnerella and Ureaplasma 

implicated as causative agents. Empiric treatment of BV to try and prevent sPTB has 

failed to show benefit across multiple studies and is not currently recommended 

(Brocklehurst et al. 2013). 

As methods to look at individual types of lactobacillus has developed, more 

recently there is evidence to show that vaginal microbiota dominated specifically by 

L.iners are a risk factor for preterm birth (Petricevic et al. 2014, Kindinger et al. 

2017). This has only been consistently demonstrated in Caucasian populations. 

Studies including predominantly African American and Hispanic pregnancy 
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populations could not replicate the same findings, as these populations tend 

towards a normal vaginal microbiome that is lactobacillus-poor and more diverse 

(Fetweiss et al., 2014, Ravel et al., 2011). Stability of a diverse vaginal microbiome is 

associated with term delivery whilst a significant decrease of community richness 

and diversity particularly between the first and second trimesters is associated with 

preterm birth (Stout et al. 2017). When Caucasian and African American 

populations have been compared, very few taxa associated with preterm birth were 

found in both Caucasian and African American populations (Callahan et al. 2017). 

Only the predominance of L.crispatus may be protective and increased proportions 

of Prevotella species may confer risk for sPTB across populations (Callahan et al. 

2017).  

Interestingly, dominance of L.crispatus has also been shown in other studies 

to be protective against sPTB and reduce early onset neonatal sepsis (Verstraelen et 

al. 2009, Brown et al. 2018). Brown et al. (2018) took temporal samples through 

pregnancy of the vaginal microbiome in women experiencing PPROM. Only one-

third of women with PPROM demonstrated a dysbiotic vaginal microbiome 

associated with subsequent chorioamnionitis or funisitis, suggesting two-thirds of 

women with PPROM are likely to have a non-infective cause.  

This is a promising area of research in the understanding of sPTB. However, 

more research needs to be done to understand the differences seen in “normal” 

vaginal microbiome populations in pregnancy before this knowledge can be made 

clinically useful in the prevention of sPTB. Exploration is required of the interplay 

between the vaginal microbiome and genetics to elicit racial population differences 

and impact of different species strains on the vaginal and cervical epithelium.   
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Genomics 

Genetics is estimated to play a role in up to 40% of PTB (Clausson et al. 2000). 

In singletons, genetic susceptibility to PTB is based on the evidence of familial 

aggregation, identification of disease-susceptibility genes and racial disparity in PTB 

rate that may be related to differences in risk-predisposing allele frequencies. PTB 

rates are higher in sisters of women with a history of PTB compared to their sisters-

in-law (16% vs. 9%). Mothers who were born preterm are more likely to deliver 

preterm by almost 20% (Porter et al. 1997). This suggests that PTB is inherited in a 

matrilineal manner across generations and is unlikely to be affected by patterns of 

PTB in the father’s family (Boyd et al. 2009). Several studies have confirmed a two-

fold increase in risk of sPTB for black American women compared to white 

American women, even after controlling for socio-economic factors associated with 

PTB.  

The most commonly studied pathways for potential candidate genes are those 

involved in infection and inflammation. A recent pathway analysis of published 

studies of different polymorphisms in 274 genes suggested that there may be 

different gene pathways for women presenting with sPTB and PPROM (Capece et al. 

2014). An autoimmune or hormonal regulation axis may exist for sPTB, whilst 

pathways implicated in the etiology of PPROM include hematologic/coagulation 

function disorder, collagen metabolism, matrix degradation and local inflammation 

(Capece et al. 2014). This topic will be discussed in greater depth in the next chapter 

focussing on “omics” and sPTB.  
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1.3 Prediction of Spontaneous Preterm Birth 

Obstetric History 

There is particular difficulty identifying women at risk of sPTB in their first 

pregnancy. Amongst singletons a history of sPTB remains the most powerful 

predictor, whilst twin pregnancies are at 40% risk of delivering spontaneously before 

37 weeks.  A meta-analysis quantifying the risk of recurrence of sPTB based on 

different subtypes of subsequent pregnancy is summarised in Table 1.3. 

Women with a previous PTB at <37 weeks of gestation are at an increased 

risk for recurrent PTB compared with women who have a previous term birth (OR 

5.43, 95% CI 4.03-7.31). Risk of subsequent PTB is increasing with decreasing 

gestational age in the previous pregnancy (Kazemier et al. 2014). This data is taken 

from 13 relevant studies from 9104 identified publications, including n = 760, 937 

women. 

Table 1.3. Effect of past obstetric history upon absolute risk of PTB. Adapted from Kazemier 
et al. 2014.  

 

Ultrasound Measurement of Cervical Length  

Transvaginal ultrasound (TVUSS) measurements of cervical length (CL) are 

used for prediction of PTB in two broad populations; 1) women with symptoms of 

preterm labour and 2) asymptomatic populations. The asymptomatic populations can 

be further subdivided into high-risk (women with known risk factors for sPTB) and 

First Delivery Second Delivery Absolute Risk of PTL 

Term Singleton Preterm Singleton 4.0% (95% CI 3.9-4.0) 

Term Twin Preterm Singleton 1.3% (95% CI 0.7-2.0) 

Preterm Singleton  Preterm Singleton 20.2% (95% CI 19.9-

20.6) 

Preterm Twin <30 weeks Preterm Singleton 10.0% (95% CI 8.0-12.1) 

Term Singleton Preterm Twin 25.4% (95% CI 24.3-

26.5) 
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low-risk (no risk factors for sPTB). Transvaginal imaging shown in Figure 1.2 is 

more accurate than transabdominal USS measurement, with clearer images of the 

cervix obtained in this view.  

There is an increased likelihood of sPTB as the CL decreases. When using a 

short CL for risk prediction in an asymptomatic cohort, prediction is improved when 

screening a predefined high-risk population. For a 10% false-positive rate, the 

detection rate of spontaneous delivery before 32 weeks was 38% for maternal factors 

(obstetric history, smoking etc.), 55% for CL measurement alone and 69% for 

combined testing (To et al. 2006). A systematic review of TVUSS measurement 

during the second trimester found that, using ROC curves, the test performs best 

when a cut off of ≤20 mm at ≤24 weeks is used and PTB is defined as <35 weeks 

gestation.  

CL can also be plotted on a nomogram of cervical length in pregnancy as 

shown in Figure 1.3 (Salomon et al. 2009). This allows for temporal or serial plotting 

to ensure cervical length centiles are being maintained and there is no acute or rapid 

shortening. However, population centiles should be designed specifically for local 

populations as there is significant variation in the prevalence of women with a short 

cervix when screening low risk cohorts.  

In women who present with threatened preterm labour (PTL) using a CL cut-

off of ≤15 mm appears most accurate in predicting spontaneous delivery within 7 

days with a sensitivity and specificity of 74% (95% CI, 58%–85%) and 89% (95% 

CI, 85%–92%), respectively (Boots et al. 2014).  
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Figure 1.2. Transvaginal Ultrasound Image of Cervical Length measurement. Yellow crosses 
represent callipers placed at the internal and external cervical ostia. The dashed yellow line 
between these points represents the distance measured shown in mm at the bottom right 
of the image. 41 mm is considered to be a ‘long’ cervix and the true cervical measurement 
is likely to be longer as the cervical canal curves below the straight line measurement on 
the image. 

 

Figure 1.3. Reference ranges for cervical lengths across gestations. From Salomon LJ et al. 
2009. 



 
 

Cervico-vaginal biomarkers of preterm birth 

Biological fluids such as amniotic fluid (Menon et al. 2014, Baraldi et al. 

2016), blood (Saade et al. 2016) and saliva (Lachelin et al. 2009) are a rich source of 

biomarkers. Researchers have looked for hundreds of predictive markers, but early 

significant results are not often reproducible in validation studies. Measurement of 

two serum proteins, insulin-like growth factor – binding protein 4 (IBP4) and sex 

hormone binding globulin (SHBG), have shown to have some prediction of preterm 

birth (Saade et al. 2016). A private American company (Sera Prognostics®) currently 

offer measurement by mass spectrometry but this service is not currently used in the 

UK. More success has been obtained with biomarkers in cervico-vaginal fluid, with 

three biomarker bedside tests currently used in clinical practice in the UK for women 

symptomatic of preterm labour. 

Detection of fetal fibronectin (fFN), phosphorylated insulin-like growth 

factor binding protein-1 (IGFBP1) and placental alpha microglobulin 1 (PAMG-1) in 

cervicovaginal fluid are all used as predictive tests of spontaneous PTL (Care et al. 

2018). 

   Lockwood et al. (1991) were the first to report an association between fFN 

and PTB. fFN is a glycoprotein that has been described as a biological “glue” that 

binds chorion with maternal decidua in the extracellular matrix. After complete 

fusion of the chorion and decidua at 20 weeks, fFN levels are low (<50 ng/ml) in 

cervicovaginal secretions and are thought to be released through mechanical or 

inflammatory mediated damage to the membranes before birth (Lockwood et al. 

1991). Lockwood et al. (1991) used an enzyme linked immunosorbent assay 

(ELISA) test against the monoclonal antibody FDC-6 (originally discovered by 

Matsuura H and Hakomori. (1985)) to detect fFN, with increasing concentrations 
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associated with increased likelihood of PTB. Although fFN has been recognized as 

the best predictor for spontaneous PTB <32 weeks, even when compared to a short 

CL (<25 mm) in the asymptomatic population (Goldenberg et al. 1996), it has had 

limited impact as a screening tool. Unlike a short cervix, there are currently no 

preventative treatments tested in clinical trials that have known benefit once a high 

fetal fibronectin is detected. More recent systematic reviews have challenged its use 

in the asymptomatic high risk and low risk population at all. It has been suggested 

that fFN may only be a clinically useful test in symptomatic patients where the 

biggest difference can be seen between pre and posttest probabilities of PTL. 

However, in all clinical settings considered within this review, none resulted in a 

positive summary likelihood ratio (sLR) above 10 and a negative sLR of less 

than 0.1, indicating, at best, a moderate predictive performance regardless of 

reference outcomes considered, clinical conditions, or the type of population tested 

(Faron et al. 2018). 

 In symptomatic populations, the most advantageous feature of qualitative fFN 

is its high negative predictive value (NPV) (0.93, CI 95% 0.92 – 0.95) which helps 

prevent overtreatment with unnecessary antenatal corticosteroids, reduces anxiety 

and returns women to normal care pathways (Melchor et al. 2018). The positive 

predictive value (PPV) is low (19.7%) using a qualitative test (any result above >50 

ng/ml is considered a positive result), this can be increased to 37.0% or 46.2% using 

a quantitative test, and thresholds of 200 ng/ml or 500 ng/ml respectively (Abbott et 

al. 2013). 

 A systematic review demonstrated that the test is most accurate in predicting 

sPTB within 7-10 days among women with threatened PTB before advanced cervical 
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dilatation, with median likelihood ratios of 5.4 (95% CI 4.4-6.7) (De Franco et al. 

2013).  

The ability to predict sPTB using transvaginal USS and fetal fibronectin 

together is improved by concurrent usage (Gomez et al. 2005). In a symptomatic 

population, women with a CL of at least 30 mm or with a CL between 15 and 30 mm 

with a negative fibronectin result are at low risk (<5%) of spontaneous delivery 

within 7 days (Van Baaren et al. 2014).    

IGFBP1 is a 25kDa protein that is secreted by maternal decidual cells as a 

highly phosphorylated isoform, phIGFBP1 (Martina et al. 1997). Similar to FFN, 

detection of phIGFBP1 in the cervicovaginal fluid of the posterior fornix indicates a 

disruption of the choriodecidual interface. The phIGFBP1 test has a comparable 

NPV to the test in predicting spontaneous PTB within 7 days in symptomatic women 

(phIGFBP1 92% vs. fFN 97%) (Ting et al. 2007), and a more recently published 

meta-analysis suggests it is in fact better (NPV phIGFBP1 0.99 vs. fFN  0.93) 

(Melchor et al. 2018). The advantage of this test is that it can be used in women who 

have had recent sexual activity or bleeding, which is a contraindication to fFN use. 

Unfortunately, it has poor performance in the asymptomatic population. 

PAMG-1 is a glycoprotein discovered in 1976 that is produced by the 

decidua. It exists in high concentrations in amniotic fluid, but low concentrations in 

the cervicovaginal discharge (Petrunin et al. 1976). Originally, PAMG-1 was used to 

develop a bedside test for PPROM called Amnisure ROM® test. However, false 

positive findings in women with intact membranes led to the discovery that it also 

had predictive ability for PTL within 7 days. Based on this finding, the PartoSure® 

bedside test was later developed by the same company. Two potential theories have 

been established by Lee et al. (2009) for this additional ability to predict PTL. Firstly 
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imminent onset of PTL may result in the transudation of PAMG-1 through 

chorioamniotic pores in fetal membranes during uterine contractions and/or 

secondly, through the degradation of the extracellular matrix of fetal membranes due 

to the inflammatory process of labour and/or infection allowing PAMG-1 to 

permeate.  

Comparison of these tests has been complicated by changing prevalence of 

PTL between study populations affecting positive and negative predictive values 

despite stable sensitivities and specificities. A direct comparison of PAMG-1 and 

phIGFBP1 independently and in combination with the gold standard cervical length 

measurement in 383 patients across three hospitals demonstrated that PAMG-1 has a 

significantly higher PPV and specificity compared with phIGFBP1 for the prediction 

of sPTB at 7days (P<.01). Both tests had comparable sensitivity and negative 

predictive value (Nikolova et al. 2018).   

Risk Stratification – QUIPP app 

Predictions of imminent PTL in symptomatic and asymptomatic women is reliant 

on picking up end stage physiological processes to allow for appropriate 

management. It does not aid with prevention of preterm birth by identifying an at-

risk population early enough to benefit from preventative treatment strategies. The 

app does not recommend treatment types or thresholds, but alerts users to those most 

at risk. This makes for a difficult screening tool as no treatment is available in the 

identified populations unless a short cervix is identified. 

In view of the multiple pathophysiology of PTB, it is unrealistic to expect a 

single biomarker to be able to predict sPTB in early gestation. The ideal biomarker 

test or predictive model should try to incorporate the fewest numbers of biomarkers 

to be measured, be highly sensitive and specific, exist in a biological fluid that is 
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without risk to obtain, and be detectable early enough in pregnancy to allow for 

preventative measures to be taken.  

Currently the development of the “QUIPP” electronic application that can be 

used on mobile phones gives a risk prediction in either asymptomatic or symptomatic 

populations (Watson et al. 2020, Carter et al. 2020). A screenshot of the application 

is shown in Figure 1.4. This application requires input of obstetric history, current 

gestation, cervical length and fetal fibronectin to give a risk prediction score for PTL 

within 1, 2 and 4weeks and also, risk of delivery before 30, 34 and 37 weeks. This 

app has started to be used in preterm birth prevention clinics in the UK (Care et al. 

2019), but risk thresholds for treatment remain unclear. Unpublished data from the 

Liverpool Harris-Wellbeing Preterm Birth prevention clinic retrospectively applied 

the app data to the cohort of 119 women recruited to a biomarker study. Clinicians 

were blinded at the time of taking fetal fibronectin. Using a treatment threshold of a 

QUIPP risk of PTB < 34 weeks >10% (referred to as “QUIPP positive”) would more 

than double treatment rates from 20% (24/119 treated CL alone) to 42% (51/119 

women treated) and 43 of 51 QUIPP positive women were still pregnant at 34 weeks 

(false positive rate) (Goodfellow et al. 2019). Fifteen of the 119 women (13%) had 

PPROM or sPTB <34 weeks with 8/15 women (53%) identified using the QUiPP 

app. This 10% treatment threshold gave a positive likelihood ratio (LR) of 1.3 (95% 

CI 0.76-2.18), and negative LR of 0.8 (95% CI 0.45-1.40). Modification of the 

treatment threshold could not improve on this. Existing publication suggests that 

clinicians are comfortable with a risk threshold of 5% (Carter et al. 2020, Carter et al.  

2016), if this was used clinically as a treatment threshold for preterm birth 

preventative therapy then it would result in many more women being treated with an 

even higher false positive rate.  
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The QUiPP algorithm, as a concept, is a positive advance in the field of 

preterm birth prevention. However, in women with a previous preterm birth or 

PPROM the pre-test probability of a recurrent event is often too high to reassure the 

clinician or patient and use of this risk prediction score may result in over treatment 

without affecting preterm birth rates.  

 

 

  

Figure 1.1 a) Screenshot of QUIPP app which requires data on previous obstetric history, 
cervical length and fFN result b) Screenshot of resulting risk prediction scores. 
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1.4 Prevention of Spontaneous Preterm Birth in Singleton Pregnancies 

Although prediction is key, prevention remains the ultimate goal. Prevention can 

be classified into primary and secondary preventative strategies. The aim of primary 

prevention is to lower the incidence of PTB by improving physical and mental 

wellbeing and avoiding modifiable behavioural factors associated with PTB. For 

example, smoking cessation lowers the risk of sPTB by 16% (OR 84%, 95% CI 

72%-98%) (Vanderhoeven and Tolosa. 2010). 

Secondary preventions are interventions targeted to an at-risk population 

identified from the general population. A recently published Cochrane review 

summarised all evidence for interventions relevant to the prevention of PTB as 

reported in Cochrane systematic reviews (SRs) (Medley et al. 2018b). Four 

systematic reviews reported clear evidence of benefit from: 1) midwife‐led 

continuity models of care versus other models of care for all women; 2) screening for 

lower genital tract infections for pregnant women less than 37 weeks' gestation and 

without signs of labour, bleeding or infection; and 3) zinc supplementation for all 

pregnant women without systemic illness. The fourth showed that cervical cerclage 

showed clear benefit for women with singleton pregnancy and high risk of PTB only. 

At present there are only effective preventative treatments for women 

identified with a short cervix. As a result, screening clinics have been set up across 

the UK to perform transvaginal USS women at high risk of preterm labour (Sharp & 

Alfirevic. 2014, Care et al. 2018, NHS England 2019).   

Omega 3  

A recent Cochrane review showed omega 3 supplementation to be associated 

with a reduction in PTB <37 weeks (13.4% versus 11.9%; risk ratio (RR) 0.89, 95% 

CI 0.81 to 0.97; 26 RCTs, 10,304 participants; high‐quality evidence) and early 
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preterm birth <34 weeks (4.6% versus 2.7%; RR 0.58, 95% CI 0.44 to 0.77; 9 RCTs, 

5204 participants; high‐quality evidence). This evidence was consistent across 

participants with a range of baseline risks for preterm birth (Middleton et al. 2018). 

However, it probably increases the risk of post term pregnancies.  Prolonged 

gestation > 42 weeks was increased from 1.6% to 2.6% in women who received 

omega-3 long chain polyunsaturated fatty acids (LCPUFA) compared with no 

omega-3 (RR 1.61 95% CI 1.11 to 2.33; 5141 participants; 6 RCTs; moderate-quality 

evidence).  

Although the exact mechanism by which omega-3 reduces sPTB is not 

exactly certain, it is known to have anti-inflammatory properties. Regulatory 

signalling by omega-3 polyunsaturated fatty acids (n-3 PUFAs) has been reported 

via, among others, the selective FFAR4/GPR120 (free fatty acid receptor 4) protein 

leading to reduced activity of the NFKB (nuclear factor kappa B) complex and the 

inflammasome (Oh et al. 2010, Liu et al. 2014). It may therefore play a role in 

increasing the threshold to transition into the inflammatory labouring state.   

It remains unclear whether omega supplements to the general obstetric 

population may reduce sPTB rates without increasing the complications of post term 

pregnancies, particularly increased risk of stillbirth. 

 

Antibiotics 

Although the role of inflammation in sPTB pathophysiology is well 

documented, and antibiotics are recommended in some PTB guidelines (Medley et 

al. 2018a), there is no evidence to show that the use of antibiotics in the management 

of patients in threatened preterm labour reduces the incidence of preterm birth. The 

ORACLE II trial randomised women (n = 6295) in PTL with intact membranes to 
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one of three antibiotic groups or a placebo group taken four times a day. Although 

the antibiotics were associated with a lower risk of maternal infection, none of the 

regimes associated with a lower risk of sPTB (Kenyon et al. 2001). These findings 

were also echoed in a meta-analysis of fourteen trials (n = 7837 women) although 

predominantly consisting of ORACLE II data (Flenady et al. 2013).  

 The Cochrane systematic review of systematic reviews to highlight areas for 

further investigation and development found no effect for antibiotic prophylaxis in 

the second and third trimester (Medley et al. 2018b). However, antibiotics for women 

with asymptomatic bacteriuria shows a possible benefit in reduction of preterm birth 

(Medley et al. 2018b).   

Probiotics 

 With interest increasing in the effect of the vaginal microbiome on preterm 

labour physiology, probiotics are a topic of discussion for preterm birth preventions. 

Unfortunately, at present there is insufficient data to recommend probiotics due to 

small trial numbers (Othman et al. 2007). A Cochrane systematic review evaluated 

only three trials, and the effect of probiotics on vaginal infection was assessed in 

only two trials with 88 women. Although there was an 81% reduction in the risk of 

genital infection with the use of probiotics (RR 0.19; 95% CI 0.08 to 0.48), effects on 

preterm birth could not be supported as confidence intervals were very wide and 

included no effect. Effect on PTB <37 weeks (one trial; 238 women) had a relative 

risk of 3.95 (95% CI 0.36 to 42.91) (Othman et al. 2007). 

 With the advancement in the assessment of the vaginal microbiome, targeted 

probiotics for high risk women or women with dysbiotic vaginal microbiomes may 

be one area of investigation for the future. 



 
 

 

Prevention Therapies for Women with Short Cervix and/or History of sPTB 

 In singleton pregnancies, if asymptomatic women are identified to have a 

short cervix preventative therapy can be offered to reduce risk of sPTB. Vaginal 

progesterone (Fonseca et al. 2007, Hassan et al. 2011, Dodd et al. 2013) and, to a 

lesser extent, Arabin pessary (Goya et al. 2012) have demonstrated a reduction in 

risk of sPTB risk in an unselected obstetric population with a short cervix (<25 mm). 

However, doubts about the feasibility of adequate quality control have prevented 

universal screening programmes being introduced for an obstetric population. 

In women with a previous sPTB and a short cervix (<25 mm before 24 

weeks) a meta-analysis of five trials of cervical cerclage (n=504) has shown a 

reduction in risk of sPTB risk <37 weeks by 36% (Berghella et al. 2011) but no trial 

has shown benefit in an unselected population with short cervix (Rust et al., 2000. To 

et al. 2004). There is also supportive data for vaginal progesterone in this same 

population (Romero et al. 2018). A meta-analysis of five trials showed a risk 

reduction of PTB ≤ 34 weeks of gestation or fetal death compared to placebo 

(18.1% vs 27.5%; RR, 0.66 (95% CI, 0.52–0.83); P = 0.0005; five studies; 974 

women) (Romero et al., 2018) and based on indirect comparison meta-analysis is 

considered as effective as cerclage. Clinical trials to directly compare available 

treatments in a high-risk population with a short cervix are currently ongoing 

(Hezelgrave et al. 2016, Pacagnella et al. 2019).  

 IM progesterone or 17ɑ hydroxyprogesterone caproate (17-OHP) is a 

synthetic progesterone which has shown reduction of PTB < 35 weeks (RR 66%; 

95% CI 54%-81%) in a trial of 463 women with a history of sPTB. (Meis et al. 2003) 

It is currently given routinely to women with a history of sPTB in the United States.  
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In view of cervical length screening and multiple available treatments for 

high risk populations with a short cervix; PTB prevention clinics have been set up 

throughout the UK. A recent survey of clinics found that a combination of treatments 

are currently being used in practice, but no predictive tests are used to tailor 

treatments individually or decide between treatment combinations (Care et al. 2018). 



 
 

1.5 Rationale for Thesis 

Preterm birth prevention antenatal clinics are the current UK screening model 

which combines predictive factors of previous obstetric history of sPTB and short 

cervix on transvaginal ultrasound (Care et al. 2018). However, the majority of sPTB 

will occur in the low risk population and there is currently no good screening service 

for these women. The introduction of cervical length screening across the whole 

population has been considered, but there are still reservations as to the number of 

women with short cervix that will be detected and ultimately the number of preterm 

births prevented. This has to be weighed up against the cost and feasibility of training 

for ultra-sonographers across the UK. Even in a high-risk population there remains a 

proportion of women who have recurrent sPTB but do not present with a short cervix 

<25 mm prior to 24 weeks. In our study 9% of women with a short cervix between 

20-24 weeks will still deliver before 34 weeks despite screening (Care et al. 2014).  

There is a need for a screening test that is acceptable to the population and 

can be used in both the high and low risk populations. Lack of understanding of the 

natural history of the disease is hindering progress in this field as multiple 

pathophysiological pathways to the same endpoint of preterm labour are in existence. 

Novel high throughout technologies now mean that we are able to obtain huge 

amounts of information from a single woman. Millions of data points about genes, 

transcripts and metabolites can be combined with clinical data to establish activity at 

a cellular level.  

This thesis will address using these novel high throughput techniques in an 

exploratory pilot study to combine multiple layers of omics data from the same 

individual to identify candidate biomarker predictors or pathways. Figure 1.5 details 

the thesis structure. 
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Aims  

1. The primary aim of the thesis was to establish a method of combining three 

‘omics’ analysis used in this pilot study for the prediction of sPTB. This 

study’s results will require replication in a larger validation study as this will 

not be performed as part of this thesis.  

2. To use three different “omic” methodologies; genomics, transcriptomics and 

metabolomics, to analyse blood taken at 16+0 and 20+0 from women at high-

risk of sPTB based on a previous history of sPTB or PPROM between 16+0-

33+6. 

3. Lastly, I aim to establish if there are distinct differences in biomarkers 

between PPROM and sPTB subgroups of spontaneous preterm birth.  

Objectives  

1. To review published studies examining genomic, transcriptomic and 

metabolomics analysis of women with sPTB or PPROM to establish existing 

biomarkers and/or biomarkers requiring validation. 

2. Perform genome wide association study (GWAS) to investigate genetic 

factors that may correlate with spontaneous PTL in women who experience 

multiple spontaneous preterm birth and provide genomic data for combined 

omic analysis. 

3. Perform transcriptomic analysis on extracted RNA to investigate gene 

expression correlating with sPTB or PPROM.   

4. Perform nuclear magnetic resonance (NMR) analysis to establish correlation 

with known metabolites to be used as part of a combined ‘omic’ analysis.  

5. Use a bioinformatic pipeline to combine all three layers of omic analysis for 

sPTB prediction. 



 

43 
 

 

 

Figure 1.2. Thesis Structure 
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Chapter 2: Using “Omics” for spontaneous 

preterm birth prediction  
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2.1 Introduction 
 

Chapter 1 highlights that our ability to predict sPTB is poor and mechanisms 

of this syndrome remain poorly understood. Current screening methods for 

prediction are insufficient to detect all women at risk (Care et al. 2014). Women 

identified as at risk do not always receive a treatment that is effective in preventing 

sPTB. The sequelae of preterm birth can lead to significant mortality and morbidity 

(Costeloe et al. 2012). There is a clear need for improvements in prevention, which 

cannot be achieved without a better understanding of causation or a more robust way 

of accurately discriminating those at high risk.  

One promising area that has revolutionized personalised medicine is the use 

of “omics” in healthcare. At present they have contributed to medical advances on 

individual omic levels, such as exome and genome sequencing have improved 

diagnosis of rare disease (Worthey et al. 2011, Waggoner et al. 2018).  In this chapter 

I will review the literature and various approaches taken related to the use of “omics” 

in the context of sPTB and discuss the progress of combining omics platforms as 

well as the limitations of these methodologies.  

The suffix -omic, derived from the ancient Greek, refers to in-depth 

knowledge.  Currently, we have over 30 such disciplines with the -omics suffix 

(Figure 2.1) (Kumar, D. 2015). Omics aims to characterize and quantify biological 

molecules that combined provide the knowledge of the structure, function, and 

behavioral phenotype of an organism. The topic is too vast to consider all omics 

platforms and therefore my thesis will be focused around the discussion of genomics, 

transcriptomics and metabolomics in the prediction of sPTB; this reflects my study 

design discussed in the next chapter.
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2.2 Genomics 

Genomics is the science of understanding the genomes of any given organism 

or species. The genome refers to the complete genetic code of a unique individual 

and is comprised of two complimentary strands of deoxyribonucleic acid (DNA) 

(Watson and Crick. 1953). The backbone of these strands consist of a phosphate and 

a sugar molecule attached to one of four bases: adenine (A), guanine (G), cytosine 

(C) and thymine (T). Due to the specific chemical structure of each base; A always 

pairs with T and C pairs with G. The length of the human genome is approximately 3 

billion base pairs (Mattick. 2003). This DNA strand is tightly coiled and along its 

length surround proteins called histones which help define its structure and level of 

activity. A single histone cluster surrounded by DNA is called a nucleosome. Several 

nucleosomes together form chromatin and tightly coiled chromatin form larger 

structures called chromosomes. (Annunziato. 2008)  

In humans there are 46 chromosomes arranged into 23 pairs, with one of each 

pair inherited from each parent. Twenty-two pairs are called autosomes with one pair 

called sex chromosomes consisting of the X and Y chromosome which determine 

gender. A female will have two X chromosomes (46, XX) and a male with have an X 

and Y (46, XY).  

Interestingly the average human genome contains around 5-10 million genetic 

variants including 20,000 “coding” variants which are located within transcribed 

genes. A genetic variant refers to an alteration of the most common genetic 

sequences. Clearly not all these variants are clinically significant (Levy et al. 2007). 

Single nucleotide polymorphisms (SNPs) are the most common variation in the 

genome with an estimated 10 million SNPs occurring in the human population 

(International HapMap Consortium. 2003). A SNP is a single base pair substitution 
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at a particular location (locus) of the genome. Interestingly humans only differ from 

one another by 0.1% of their genetic make-up (Dolan and Christiaens. 2013) but this 

0.1% may determine a given individual’s disease susceptibility.   

There is a good body of evidence that supports the premise that genetic 

factors residing in the maternal genome contribute up to 40% of the variation in birth 

timing and preterm birth. Evidence supporting this claim comes from 

epidemiological studies, twin studies and segregation analysis of pedigrees (Clausson 

et al. 2000, Kristka et al. 2008, Boyd et al. 2009, Plunkett et al. 2009). See section 

2.1. Here I will explore the different techniques and study designs available to 

analyse the genome and its expression and review recent literature related to sPTB 

prediction in “omic” studies.  

Candidate Gene Studies 

Candidate gene studies have been at the very forefront of genetic association 

studies. They involve the selection of genes that are biologically plausible candidates 

for a condition such as sPTB. Therefore, require some prior knowledge about gene 

function and probable mechanisms of disease. Once genes are identified, assessment 

and selection of polymorphisms occur. The detection of genetic variants is usually 

assessed by selecting single nucleotide polymorphisms (SNPs) within that gene 

(Figure 2.2). The gene variant is then tested for its occurrence in a population with 

the disease or trait of interest (cases) and participants without the condition 

(controls).  If the case and control cohorts are adequate based on a sample size 

calculation it can show statistically different polymorphisms in relevant genes. 

Detection of these associations can then lead to evaluation of the effectiveness in 

prognosis, diagnosis and usefulness as a potential biomarker.  
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A key limitation to these studies is that they are biased to current theories or 

presumed knowledge and cannot identify novel genes. However, these studies are 

relatively quick and cheap to perform and do not require studies of large families 

with a combination of unaffected and affected members.  

 

Figure 2.2 Single Nucleotide Polymorphisms refer to one base pair change and may fall 
within coding regions of the gene (exons; blue SNP), non-coding regions of genes, or the 
intergenic regions (introns; red SNP). (Image from Strauss et al. 2018.) 

 

For sPTB candidate gene studies have shown that some polymorphisms in 

genes coding for components of the innate immune system (Table 2.1) are 

significantly associated with PTB, but most positive results have not been replicated 

or validated in a suitably large cohort. 
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Table 2.1. List of genes that have been studied for single nucleotide polymorphisms 
associated with the risk for preterm birth. (Adapted from Sheikh et al. 2016) The genes 
highlighted in bold have been identified in more than one. 

Systems Candidate Genes (nomenclature) Reference 

Endocrine 

system related 

genes 

Corticotropin receptor 1 (CRHR1) 

Follicle stimulating hormone 

receptor (FSHR) 

Glucocorticoid receptor (NR3C1) 

Insulin-like growth factor 2 (IGF2) 

Insulin-like growth factor receptor 

1 (IGF1R) 

Leucyl/cysteinyl aminopeptidase 

(LNPEP) 

Oxytocin (OXT) 

Oxytocin receptor (OXTR) 

……………………. 

Progesterone receptor (PGR) 

…………….... 

………………………… 

…………….. 

…………………………….. 

…………………. 

Prostaglandin E receptor (PTGR3) 

……….. 

Prostaglandin E synthase 2 

(PTGES2) 

Prostaglandin G/H synthase 1 

(PTGS1) 

Prostanoid DP receptor (PTGDR) 

Relaxin 2 gene (RLN2)   

Bream et al. 2013 

Plunkett et al. 2011. Chun et al. 2013 

…….. 

Bream et al. 2013 

Romero et al. 2010a, Romero et al. 

2010b  

Hataaja et al. 2011, Bream et al. 2013 

……… 

Kim et al. 2013 

Kim et al. 2013 

Bream et al. 2013, Kim et al. 2013, 

Kuessel et al. 2013. 

Ehn et al. 2007, Guoyang et al. 2008, 

Manuck et al. 2010, Oliveira et al. 

2011, Bream et al. 2013, Mann et al 

2013.  

Ryckman KK et al. 2010, Jeffcoat 

MK et al. 2014. 

Liu et al. 2012 

Bream et al. 2013 

Grisaru-Granovsky et al. 2010. 

Vogel et al. 2009. Rocha et al. 2013. 

Tissue 

remodelling 

and 

biogenesis 

related genes 

Collagen type I (COL1A2) 

…………………………….. 

………….. ………………………… 

Collagen type IV (COL4A2)              

Collagen type IV (COL4A3)             

Collagen type IV (COL4A4)              

Collagen type IV (COL4A5)                

Collagen type IV (COL4A6)           

Collagen type V (COL5A2) alpha-2             

Intercellular adhesion molecule-1 

(ICAM1)              

Matrix Metalloproteinase 1 (MMP-

1),                                    

Matrix Metalloproteinase 8 (MMP-

8),  

Matrix Metalloproteinase 9 (MMP-

9),  

Matrix Metalloproteinase 10 

(MMP-10), 

Manuck et al. 2011. Romero et al. 

2010. Romero et al. 2012. Ryckmann 

et al. 2010. Myking et al. 2011. 

Romero et al. 2010. Romero et al. 

2012. 

Romero et al. 2010. Romero et al. 

2012. 

Romero et al. 2010. Romero et al. 

2012.  

Romero et al. 2010. Romero et al. 

2012.  

Romero et al. 2010. Romero et al. 

2012.  

Myking et al. 2011. 

Kwon et al. 2009. 

....................................... 

Pereza et al. 2014 

Ryckmann et al. 2010. 

Pereza et al. 2014. Jones et al. 2012. 



 

51 
 

Matrix Metalloproteinase 16 

(MMP-16),  

Tenascin-R (TNR),                                    

TIMP metallopeptidase inhibitor 2 

(TIMP2) 

Romero et al. 2010. Romero et al. 

2012.  

Romero et al. 2010. Romero et al. 

2012.  

Romero et al. 2010. Romero et al. 

2012.  

Romero et al. 2010. Romero et al. 

2012.  

Vascular and 

angiogenesis 

related genes  

Alpha adducing (ADD1) 

Angiopoietin 1 (ANGPT1)  

Angiotensin converting enzyme .... 

(ACE) 

Angiotensin II receptor type 1 (AT1)  

Angiotensinogen (AGT) 
.......................................................... 

Beta-2 adrenergic receptor 

(ADBR2) 

Complement receptor 1 (CR1) 

Cyclin-dependent kinase 4 inhibitor 

(CDKN2) 

Endothelial nitric oxide synthase 

(NOS3) 

Endothelin 1 (EDN1) 

Factor V (F5) 

Inducible nitric oxide synthases 

(NOS2) 

Kinase insert domain receptor (KDR) 

Peroxisome proliferator- activated 

receptor gamma (PPARG) 

Plasminogen activator inhibitor-1 

(SERPINE) 

Renin (REN) 

Small conductance calcium activated 

potassium channel 3 (KCNN3) 

Thrombomodulin (THBD) 

Vascular endothelial growth factor 

(VEGFA) 

Gibson et al. 2007 

Andraweera et al. 2012 

Valdez-Velazquez et al. 2007, Uma 

et al. 2008. 

Valdez-Velazquez et al. 2007. 

Valdez-Velazquez et al. 2007, 

Gargano et al. 2009 

Gibson et al. 2007, Suh et al. 2013. 

McElroy et al. 2013 

Falah et al. 2013 

 

Gibson et al. 2007. Suh et al. 2013. 

Romero et al. 2010. Romero et al. 

2012.  

Yu et al. 2009. Gargano et al. 2009 

Gibson et al. 2007. Suh et al. 2013. 

Andraweera et al. 2012. 

Meirhaeghe et al. 2007. 

............................. 

Gibson et al. 2007, Chen et al. 2007. 

..............  

Valdez-Velazquez et al. 2007. 

Mann et al. 2013. Bream et al. 2013. 

Day et al. 2011.  

Gibson et al. 2007. Andraweera et al. 

2012. 

Andraweera et al. 2012. 

Metabolism 

related genes 

Apolipoprotein A-I (APOA1) 

Apolipoprotein C (APOC) 

Apolipoprotein E (APOE) 

ATP-binding cassette transporter 

(ABCA1) 

Cholesteryl ester transfer protein 

(CETP) 

Cytochrome P4501A1 (CYP1A1) 

Dehydrocholesterol reductase 

(DHCR24) 

FC alpha receptor (FCɑR) 

Glutathione S-transferase mu 1 

(GSTM1) 

Steffen et al. 2007 

Steffen et al. 2007 

Steffen et al. 2007 

Steffen et al. 2007 

 

Steffen et al. 2007 

Lewinska et al. 2013, 78, 81-85 

Steffen et al. 2007 

Sugita et al. 2012 

Suh et al. 2008, Lee et al. 2010, 

Mustafa et al. 2013, Luo et al. 2012 
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Glutathione S-transferase theta 1 

(GSST1)  

 

Glutathione S-transferase theta 2 

(GSST2)   

Glutathione S-transferase theta 

pseudogene (GSTTP1) 

Hepatic lipase (LIPC) 

Hydroxy methyl glutaryl CoA 

reductase (HMGCR) 

Lipoprotein lipase (LPL) 

Mannose binding lactin (MBL) 

Methionine synthase (MTR) 

Methionine synthase reductase 

(MTRR) 

Methylene tetrahydrofolate reductase 

(MTHFR) 

Methylenetetrahydrofolate 

dehydrogenase 1 (MTHFD1) 

Serine hydroxy methyltransferase 1 

(SHMT1) 

Serum paraoxonase/arylesterase 1 

(PON1) 

Vitamin D receptor (VDR) 

Suh et al. 2008, Tsai et al. 2008, 

Zhang et al. 2008. Luo et al. 2012. 

Zheng et al. 2013 

Zheng et al. 2013 

 

Zheng et al. 2013 

 

Steffen et al. 2007 

Steffen et al. 2007 

 

Falah et al. 2013 

Falah et al. 2013 

Gargano et al. 2009 

Gargano et al. 2009  

Gargano et al. 2009, Engel et al. 

2006.  

 

Christensen et al. 2014.  

 

 

Gargano et al. 2009 
  
Ryckman et al. 2010, Myking et al. 

2011, Harley et al. 2011 

Bream et al. 2013  

Innate 

immunity and 

inflammation 

related genes 

Colony-stimulating factor 2 (CSF2) 

Defensin alpha 5 (DEFA5) 

Fms-like tyrosine kinase 1 (FLT1) 

HLA class II histocompatibility 

antigen, DR alpha chain (HLA-DRA) 

HLA class II histocompatibility 

antigen, DRB1-9 beta chain 

Interferon ɣ (IFN-ɣ) 
Interferon ɣ receptor 2 
Interleukin 1 alpha (IL1α) 
 

Interleukin 1 beta (IL1β)      
                        
Interleukin 1 receptor 2 (IL1R2) 
Interleukin 1 receptor antagonist 
(IL1RN)  
Interleukin 1 receptor-associated 
kinase 1 (IRAK1) 
Interleukin 2 (IL2) 
Interleukin 2 (IL2) Interleukin 2 
receptor beta (IL2Rβ) 
Interleukin 4 (IL4) 
 
Interleukin 6 (IL6)   

Harmon et al. 2013  

Romero et al. 2010. Romero et al. 

2010b.  

Gomez et al. 2010 

Falah et al. 2013 

Falah et al. 2013 

Moura et al. 2009, Devi et al. 2014  

Harmon et al. 2013 

Ryckman et al. 2010. Sata et al. 

2009, Yilmaz et al. 2012. 

Jones et al. 2010, Hollegaard et al. 

2008, Yilmaz et al. 2012, Schmid et 

al. 2012  

 

Ryckman et al. 2010. 

Chaves et al. 2008, Kalinka et al. 

2009, Jones et al. 2012.  

Karody et al. 2013 
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Interleukin 6 receptor (IL6R)  
 
Interleukin 10 (IL10)  
Interleukin 12 (IL12)  
Interleukin 12 receptor (IL12Rβ)  
Interleukin 12 alpha (IL12α) 
Interleukin 13 (IL13) 
Interleukin 15 (IL15) 
Interleukin 23 receptor (IL23R) 
Killer cell immunoglobulin-like 
receptor three domain long 
cytoplasmic tail 2 (KIR3DL2) 
Lactotransferrin (LTF) 
Low-affinity receptor for 
immunoglobulin G (FcγRIIB) 
Major histocompatibility complex, 
class II (HL-DQA1) 
Nuclear factor-kappa B1 (NFkB1) 
Protein kinase C alpha (PRKCA) 
Selenoprotein S (SEPS1) 
Surfactant, pulmonary associated 
protein D (SFTPD) 
TIR domain receptor associated 
protein (TIRAP) 
Tumour necrosis factor alpha 

(TNF α) 

 

 

 

Tumour necrosis factor receptor 2 

(TNFR2) 

TNF receptor associated factor 2 

(TRAF2) 

Toll-like receptor 2 (TLR2) 

Toll-like receptor 4 (TLR4) 

Toll-like receptor 5 (TLR5) 

Toll-like receptor 9 (TLR9) 

Toll-like receptor 10 (TLR10) 

Transforming growth factor beta1 

(TGF-β1) 

Romero et al. 2010. Romero et al. 

2010b. 

Velez et al. 2009  

 

Ryckman et al. 2010, Heinzmann et 

al. 2009, Karjalainen et al. 2012 

Moura et al. 2009, Kalinka et al. 

2009, Velez et al. 2007  Velez et al 

2008a 

Romero et al. 2010. Romero et al. 

2010b. Ryckman et al. 2010. Velez et 

al. 2007  

Stonek et al. 2008.  

Heinzmann et al. 2009.  

Velez et al. 2009 

Karjalainen et al. 2012 

Heinzmann et al. 2009. Karjalainen et 

al. 2012 

Velez et al. 2009 

Falah et al. 2013 

Harmon et al. 2013 
 

 

Romero et al. 2010. Romero et al. 

2010b. 

Iwanaga et al. 2011  

 

Falah et al. 2013 
 

Karody et al. 2013  

Gomez et al. 2010 

Wang et al. 2013  

Karjalainen et al. 2012 

 

Karody et al. 2013 

 

Moura et al. 2009, Jones et al. 2010, 

Jones et al. 2012, Pu et al. 2007, 

Hollegaard et al. 2008, Liang et al. 

2010, Harper et al. 2011, Yilmaz et 

al. 2012, Drews-Plasecka et al. 2014., 

Jafarzadeh et al. 2013.  

 

Jones et al. 2012, Pu et al. 2007. 

 

Bream et al. 2013.  

Karody et al. 2013 
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Rey et al. 2008, Bitner et al. 2013, 

Karody et al. 2013 

Karody et al. 2013 

Karody et al. 2013 

Heinzmann et al. 2009 

Devi et al. 2014 

Miscellaneous 

genes  

Catechol-o-methyltransferase 

(COMT) 

Early growth response 1 (EGR1) 

FERM domain containing protein 7 

(FRMD7) 

Mitochondrial genome variants  

Transcription factor AP2A 

(TFAP2A) 

Specificity protein 3 (SP3) 

Thota et al. 2012  

Enquobahrie et al. 2009  

Myking et al. 2013 

 

Velez et al. 2008b  

Enquobahrie et al. 2009 

Enquobahrie et al. 2009 

 

Family Based Linkage Studies 

Families have been used in the design of genetic studies dating as far back to 

Mendel’s study to examine the concept of inheritance of traits in plants.  They use 

designs based on related individuals, which could be sibling pairs, parents and 

offspring, or more complex family trees. Historically, they have been well suited to 

investigate conditions that have genes of major effect. For linkage studies, this is a 

family-based approach to identifying susceptibility genes. Linkage refers to the 

tendency for alleles at certain chromosome positions (loci) that are close together to 

be also transmitted/inherited together. The further apart genes are from each other, 

the more likely they are to be split apart by a recombination event during meiosis. 

Using known genetic markers that define the inheritance of the same chromosomal 

region among different family members, the approximate location of the region of 

causation is identified.  Two studies of Finnish families identified three markers with 

the highest linkage on 15q26.3 with insulin-like growth factor 1 (IGF1R) using 

autosomal chromosomal markers (Haataja R et al. 2011). When the same families 

were used to identify X chromosomal markers, an additional two genes, androgen 
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receptor gene at Xq12 and interleukin-2 receptor gamma subunit (IL2RG) located on 

Xq13, were implicated with preterm birth (Karjalainen et al. 2012). 

Genome Wide Association Study (GWAS) 

Unlike candidate gene studies, GWAS aims to identify common genetic 

variation (>5% frequency) in hundreds of thousands of SNPs across the entire 

genome without bias of pre-existing knowledge. Complex or multifactorial diseases, 

such as sPTB, are thought to be polygenic, in contrast to highly penetrant single gene 

disorders. As GWAS is looking to identify common genetic variation with small 

effect sizes, GWAS requires a large study sample for the discovery of statistically 

significant contribution to a trait.  

Recently, a GWAS examining a large population of >40,000 women of 

European ancestry and a replication cohort of >8,000 women from a Nordic dataset 

have identified several maternal loci (EEFSEC, EBF1 and AGTR2) that may 

contribute to the length of gestation and preterm birth in Caucasian women (Zhang et 

al. 2017). EEFSEC encodes a protein involved in the production of selenoproteins, 

EBF1 encodes a protein implicated in B-cell development and AGTR2 encodes the 

type 2 angiotensin II receptor.  The study provided new lines of investigation away 

from the increasing evidence for inflammation and innate immunity. Until this study, 

other individual GWAS of sPTB had not replicated loci with genome wide 

significance (Monangi et al. 2015). The possible reasons for this include:  

• variation in definitions of preterm birth across studies (i.e. not strictly 

spontaneous preterm birth inclusion and variation in gestational age 

definitions),  

• insufficient study numbers to detect small-effect sizes across the entire allele 

frequency spectrum,  
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• sPTB is caused by rare variants which had not been tagged by conventional 

genome wide arrays.  

• Paternal genes not considered in this method of analysis or their contribution 

to fetal genetic effect and may play more significant role.  

Additionally, the complexity of the sPTB phenotype suggests that there may be a 

genetic predisposition to different phenotypes of sPTB. There may be a small genetic 

contribution to each pathophysiology or phenotype and a combination of genetic, 

transcriptomic and environmental interaction analysis is required to examine 

biological pathways tracing back to the key genes.  

Apart from just conducting a GWAS, researchers are now interested in 

identifying SNPs that may significantly interact with environmental influences such 

as pre-pregnancy body mass index (BMI). Hong et al. (2017) identified and 

replicated a significant interaction between maternal genotype rs11161721 in the 

COL24A1 gene and pre-pregnancy BMI category on overall PTB risk in an 

African American population (n=1733; 698 mothers of PTB, 1035 term birth) 

from the Boston Birth Cohort (BBC) and in independent GWAS data sets 

deposited in the database of Genotypes and Phenotypes (dbGaP), respectively 

(African American n=780, Caucasian n=683). Although three other SNPs were 

found to be significantly associated with different PTB outcomes in the BBC, the 

associations were not confirmed in either of the two independent data sets (Hong 

et al. 2017). 
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Mitochondrial Genetics 

Following the positive results from maternal GWAS data the risk of preterm 

birth may be associated with the maternal genome, a logical possibility is that this 

may occur through maternal transmission of the mitochondrial genome via 

mitochondrial DNA (mtDNA). The mtDNA is of interest in sPTB because oxidative 

stress is likely to play an important role in labour. (Velez et al., 2008b). Additionally, 

there is good evidence that mitochondria represent a major source of reactive oxygen 

species in aging tissues (Cadenas et al. 2000), and mitochondria have a protective 

role against inflammation. Inflammation itself may also have a role in the mediation 

of aging; a process called inflammaging, with both processes sharing many of the 

same pathways including oxidative stress and DNA damage (Salminen et al. 2012). 

In one study of preterm birth, Velez et al. (2008) used previously established mtDNA 

variants and intersected them with smoking, a known risk variable for PTB which 

increases oxidative stress. Marginal significance was shown for two of the mutations, 

A4917G and T4216C, however this has not been validated.(Velez et al. 2008b) 

Contrary to this, Alleman et al., (2012) examined the association between 

mitochondrial genotypes and preterm delivery using a meta-analysis to combine two 

large GWAS studies and tested for associated 135 mitochondrial genome SNPs 

(mtSNP). No single mtSNP reached genome wide significance and they did not 

support the theory that mitochondrial genetics contributes to maternal transmission 

of PTL and related outcomes. (Alleman et al. 2012) More recently, Crawford et al., 

(2018) discovered that infants with increasingly divergent mitochondrial and nuclear 

genome were more at risk of sPTB. This might go some way to explaining the higher 

rates of sPTB in the African American population when compared to a Caucasian 

American population even after controlling for deprivation.  This is an area of 
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interest that requires further study to elicit the role of mtDNA and the interaction 

with nuclear DNA leading to this phenomenon.  

A study of fetal membranes examining the mRNA expression of 

mitochondrial enzyme manganese superoxide dismutase (Mn SOD), that scavenges 

ROS and is upregulated in sites of inflammation, found upregulation in term labour 

and in preterm labour only in the presence of histological chorioamnionitis (Than et 

al. 2009). Therefore, there is inconclusive evidence regarding the involvement of 

mitochondrial genetics, but this remains a promising area for future work.   

Whole Exome Sequencing (WES)/Whole Genome Sequencing (WGS) 

GWAS, using microarray technology, has only very recently made better 

progress in PTB genetics. The lack of reproducible results is potentially explained by 

the possibility of sPTB being caused by rare rather than common variants. With high 

throughput technologies becoming increasingly affordable and accessible, it has 

become easier to perform whole exome and whole genome sequencing using next-

generation sequencing (NGS) strategies searching for new or rare variants. NGS is 

the catch all term to describe several different modern sequencing technologies 

capable of interrogating the entire genome or transcriptome, not depending on pre-

chosen targets like microarray. NGS is based on synthesis, i.e. the incorporation of 

nucleotides by a DNA polymerase while microarrays are based on hybridization to 

strands of complimentary mRNA probe stored in wells of a chip. Even for the newest 

genome-wide microarrays, it is virtually impossible to include probes against every 

single nucleotide position. 

Although the exome refers to less than 2% of the genome as a whole, it 

contains approximately 85% of known disease-causing variants. A whole exome 

sequencing (WES) of genomic DNA of neonates born to African-American mothers 



 

59 
 

whose pregnancies were complicated by PPROM (n=76) compared to normal term 

pregnancies (N=43) identified rare heterogenous nonsense and frameshift mutations 

only present in PPROM cases in several candidate genes (CARD6, DEFB1, FUT2, 

MBL2, NLRP10, NOD2) involved in dampening the innate immune response (Modi 

et al. 2017). These results suggest that PPROM may be caused by infrequent genetic 

variants that modulate fetal membrane strength leading to weakening of the 

membranes and ultimately ending in premature rupture. 

However, limitations of whole exome sequencing (WES) include missing 

structural variants. WES cannot detect important intragenic variation including areas 

of regulatory elements responsible for gene expression and it can miss some exons. 

The efficacy of the capture of exons depends on the percentage GC nucleotide 

composition of the targeted sequence (or GC capture bias). For exons with especially 

high GC content, exome sequencing can fail to produce enough coverage for 

accurate variant detection and calling. For these purposes whole genome sequencing 

(WGS) is better as it will also identify the less common mutations such as frame shift 

mutations (insertion/deletion of nucleotides that is not divisible by 3 and changes the 

reading frame order) and point mutations (single substitution / insertion / deletion of 

single nucleotide). Achieving only a low coverage may miss many variants, whilst 

cost increases for a deeper coverage makes it a prohibitively expensive technique for 

large cohorts.  
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2.3 Transcriptomics  

The transcriptome is the collection of all RNA (ribonucleic acid) molecules in 

a cell, tissue or organism. Transcription is the first step in gene expression in which 

information is taken from the gene for creating proteins or transcripts used to 

regulate gene function. RNA molecules mirror the sequence of the DNA bases to 

transcribe the code. This process is controlled separately for each gene in the genome 

(Figure 2.3). A single strand of the DNA helix is used as a template and RNA creates 

a copy of the same base information as the non-coding strand, except the base uracil 

(U) is used instead of thymine (T). The enzyme RNA polymerase is used to link 

nucleotides to create a chain of nucleotides. RNA is then processed by splicing with 

a 5' cap and poly-A tail put on either ends of the read and is subsequently called 

messenger RNA (mRNA). A stretch of three bases (codon) in the mRNA determines 

the position of an amino acid in a growing protein molecule (Figure 2.3).  

By analysing the mRNA it is possible to determine which genes are being transcribed 

in all available cells present in a sample at that specific time point. However, the 

measurement of mRNA levels provides an imperfect reflection of protein levels and 

activity. The concentration of a protein is controlled not only by the level of its 

mRNA, but also by the rate of mRNA translation into protein and protein 

degradation. Other protein modifications, such as phosphorylation, are also important 

determinants of activity. With these limitations in mind, measurement of global 

mRNA expression gives insight into the overall level of gene and protein expression 

(Sealfon and Chu. 2010). Similar to genomics there are two common methods to 

measure expression; hybridisation (microarray) or a seq-based approach. 
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https://courses.lumenlearning.com/wmopen-biology1/chapter/translation/
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Microarray  

Microarray technology was first introduced in 1995 by Patrick Brown and 

colleagues (Schena et al., 1995). RNA microarrays have been widely used to identify 

regulated genes, pathways, or gene networks in a variety of cells and tissues when 

two or more related biological conditions are compared.   

Figure 2.4 shows a schematic of microarray. cDNAs are amplified from 

individual clones in a library. Each cDNA fragment representing an individual gene 

of interest is immobilized on a glass slide that has been coated with nucleotide-

binding chemicals. These slide arrays can be printed as whole genome microarrays 

or with a focused selection of genes of interest (Sealfon and Chu. 2011). Because 

of their shorter turnaround time, ease of analysis and cost-effectiveness microarrays 

remain the most popular approach in transcriptomic profiling. Microarray also still 

yields higher throughput than RNA Seq which has significant advantages when 

working on projects with large numbers of samples. However, as microarray is 

based on these hybridization probes that are designed from prior sequence 

knowledge, they cannot detect structural variations or discover novel transcripts. 

This also limits their sensitivity as they cannot detect differences in very similar 

sequences such as different isoforms of the same molecule.  
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RNA Seq (RNA Sequencing) 

The development of novel high throughput DNA sequencing has also 

provided a new method for both mapping and quantifying transcriptomes. This 

method termed RNA sequencing improved on its forerunners of Sanger sequencing 

and tag-based methods. 

A population of RNA is converted into a library of complimentary DNA 

fragments with adaptors attached to one or both ends (Figure 2.5. Step a4). Each 

molecule is then sequenced in a high throughput manner to obtain short sequences 

from one end (single-end sequencing) to both ends (paired-end sequencing). The 

reads are typically 30-400 bp depending on the sequencing technology used. 

Following sequencing the resulting reads are aligned to a reference genome or 

reference transcripts or assembled de novo (Wang et al. 2009). One advantage that it 

offers over hybridisation methods is that it is not limited to detecting transcripts that 

correspond to existing genomic sequences. This is useful when the reference genome 

remains to be determined.  

Another advantage is that the background signal compared to microarray is 

very low because sequences can be unambiguously mapped to unique regions of the 

genome. RNA Seq. is also highly accurate in quantifying levels of expression 

(Nagalakshmi et al. 2008).  

RNA Seq. is the first sequencing-based method that allows the entire 

transcriptome to be surveyed in a very high throughput and quantitative manner. 

Unfortunately, it remains expensive for large numbers of samples or complex 

genomes. The sequence coverage, or the percentage of transcripts surveyed, has 

implications for cost. In general, the larger the genome, the more complex the 
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transcriptome, or to detect rare variants a greater sequencing depth is required for 

adequate coverage and the more expensive the process. 
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Figure 2.5 The data generation and analysis steps of a typical RNA-seq experiment. Image 
was obtained with permissions from “next generation transcriptome assembly” Jeffrey A. 
Martin, Zhong Wang. Nature Reviews Genetics. 2011 Sep 7;12(10):671-82. 
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Transcriptomics for spontaneous PTB 

A systematic review of transcriptomics as applied to preterm birth (Eidem et 

al. 2015) showed that even though there have been at least 134 genome-wide 

transcriptomic studies of pregnancy and PTB, spontaneous PTB was only 

investigated in 7% of all studies and 18% of preterm birth studies. The majority, 76% 

of studies focussed on medically indicated PTB and specifically, pre-eclampsia.  

Placental tissue was analysed in 61% of studies which has limited utility in a 

predictive setting as it is unavailable for testing without risk to the pregnancy (Eidem 

et al. 2015). Obtaining a placenta post-partum may give key information about the 

pathophysiology of preterm and term labour, however, there is a risk that the genes 

expressed once the placenta is no longer required for its biological function are likely 

to be different to those expressed in utero and may provide misleading biological 

information. Additionally, the other most frequent tissues to be studied include 

myometrium and fetal membranes, which are also usually only accessible at delivery. 

The advantage of studying these tissues are that they are directly involved with the 

pregnancy and labour, however, like the placenta, the gene expression at or following 

delivery may give useful knowledge about the process of labour but limited insight to 

predictive markers of labour.   

The evidence for treating PPROM as a separate clinical entity to sPTL is 

growing as differences in gene expression are identified between these conditions. 

The most well replicated genes in the phenotype of PPROM (i.e. at least 2 gene 

expression studies) are listed in Table 2.2 below adapted from Eidem et al. (2015). In 

the following section, some of the most recent transcriptomic studies using different 

tissue types are discussed. 
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Table 2.2 List of genes found in two or more gene expression studies  

Entrez Gene 

ID 

Gene Function Number of studies 

972 CD74 

molecule 

Regulates antigen presentation for 

immune response 

2 

6280 S100A9 Calcium binding protein; cell cycle 

progression and differentiation 

2 

3576 CXCL8 C-X-C motif chemokine ligand 8 

(IL8); mediator of inflammatory 

response  

2 

7805 LAPTM5 Transmembrane receptor 

associated with lysosomes 

2 

23574 PRG1 P53 responsive gene 1 2 

1117 CH13L2 Chitinase 3 like 2 protein is 

involved in cartilage biogenesis, 

various isoforms.  

2 

 

Myometrial transcriptomics 

The first study to examine RNA sequencing data (Chan et al. 2014) in human 

myometrium samples obtained at term caesarean section following labour (n=5) and 

non-labouring term caesarean sections (n=5) demonstrated that transcriptomics 

separated these groups on differentially expressed genes (DEGs). However, the 

numbers used in this study were very small. Reassuringly, the identified genes were 

broadly concordant to those differentially expressed genes identified in previous 

microarray experiments (Havelock et al. 2005; Bukowski et al. 2006; Mittal et al. 

2010). This study by Chan et al. (2014) added information on transcript abundance, 

microRNAs, splice variants, and transcript isoforms. A decrease in progesterone 

receptor transcripts concomitant with a decrease in FOXO1 mRNA was observed. 

FOXO1 regulates PGR signalling by altering PGR target genes during transcription 

in human endometrial stromal cells (Takano et al. 2007). Overall, the data shows that 

labour is associated with an inflammatory signal and genes or pathways related to 

immune response, chemotaxis, and cytokine signaling. Migale et al. (2016) used this 
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human sequencing data to compare orthologous genes to the expression of mouse 

genes from murine models. The three models used were a term gestational model, a 

sPTB model induced by injection of Escherichia coli LPS serotype O111:B4 (i.e. 

induced by inflammation) and a model that induced sPTB by the injection of RU486 

(induced by progesterone withdrawal). Interestingly, they found that the changes in 

human myometrial transcriptome at term most closely resembled transcriptome 

changes of the preterm mouse model induced by inflammation, which suggests a 

dominant role of inflammation in human labour irrespective of gestation.  

It must be taken into consideration that the human myometrial samples are 

taken at the point of artificial trauma to the uterus at CS and may be a transcriptomic 

reflection of an acute inflammatory reaction in the myometrium at the site of the 

incision.  However, in support of the theory that human labour is an inflammatory 

state, similar findings of inflammatory signatures are being detected in other studies 

of term and preterm placenta (Sharp et al. 2016) and in alternative tissue samples 

such as maternal decidua (Rinaldi et al. 2017).  

To identify the core genes and regulatory networks facilitating the transition 

of the myometrium from a quiescent to active labouring state Stanfield et al. (2019) 

performed an integrated analysis using two existing transcriptomic datasets (Mittal et 

al. 2010; Chan et al. 2014) and a dataset from RNA Seq analysis of myometrium 

from CS before and after the onset of labour (NCBI Gene Expression Omnibus; 

GSE80172). One hundred and twenty-six genes were significant across all databases 

and machine learning models exhibited high reproducibility between studies. This is 

demonstrating better classification and characterisation of myometrial activation 

during labour. Parturition-signalling networks were created using differential 



 

70 
 

expression data for non-labouring, early labour and active labour again, attesting to 

the importance of inflammation in the onset of labour. (Stanfield et al. 2019) 

Placental transcriptomics 

A major issue in the transcriptomic studies of sPTB in humans is the inability 

to collect healthy control placental tissue sampled at the same gestational age as 

placental tissue from actual preterm births. Therefore, gene expression differences 

identified after the standard comparison of sPTB and term placental tissue may 

reflect differences in both sPTB pathology and gestational age, and it is difficult to 

tease these two factors apart. To try and tackle this problem Eidem et al. (2016) 

matched gestational age of human placental sampling to a closely related species; 

macaque monkeys. They identified 29 sPTB specific candidate genes not thought to 

be related to gestational age. Selected genes overlapped with previously identified 

pregnancy-pathology related genes including serine peptidase, CD163 and VSIG4 

that have been characterized as maternal biomarkers of pre-eclampsia. PDE2A is a 

gene containing a SNP associated with recurrent miscarriage and ADORA3 

modulates secretion of matrix metalloproteinases and is important in the PPROM 

signaling pathway (Kim et al. 2008). 

Human decidua transcriptomics 

The maternal – fetal interface (decidua basalis and decidua parietalis) may 

play a key role in the onset of labour both at term or preterm. It is the anatomical site 

of contact between maternal and fetal tissues.   

Rinaldi et al. (2017) removed decidua from fetal membranes sampled at birth 

from four groups; term and preterm, non-labouring and labouring women. The 

decidual lymphocytes were isolated, RNA bead chip microarray was used to evaluate 

gene expression change and qRT-PCR was used to validate microarray results. Like 
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previous findings, term and preterm birth were associated with widespread gene 

expression changes related to inflammatory signalling pathway. However, no change 

in lymphocyte subpopulations were seen between the groups and no functional data 

of cell populations were available. There was elevated expression of CDID in PTL 

decidua which may suggest activation of invariant natural killer cells (iNKT) in PTL 

samples.  

Bukowski et al. (2017) attempted to solve issues of reduced power of small 

sampling numbers by increasing the number of samples taken from the same 

individual. They collected maternal and fetal blood, chorion, amnion, decidua, 

placenta and myometrium and identified expression profiles uniquely identifying 

four phenotypes.  A ten by ten samples cross validation was performed to predict 

how well their model could correctly classify samples into the four groups; term non-

labour, term labour, preterm non-labour and preterm labour. Forty-two percent of 

samples could be correctly classified, and this was an improvement on 25% of 

correctly classified samples using a random classifier. The largest differences in gene 

expression were observed in decidual samples with the proportion of genes with 

expression differences at least 1 or 2 standard deviations approximately six times 

greater than those seen in maternal blood. Results showed that regulation of immune 

pathways and immunological processes occur at the maternal-fetal interface; mainly 

in the decidua, chorion and amnion. Although the authors agreed to some degree 

with previous work stating that expression profiles of the ‘term not in labour’ group 

show local suppression of chemokines with simultaneous suppression of the NFkB 

inflammatory pathway; they disagreed that term labour is heavily related to 

inflammation. Instead they attributed the labour process to immune suppression. 

They theorise that such chemokine suppression prevents chemotaxis of immune 



 

72 
 

cells, such as effector T cells, from trafficking into gestational tissues such as the 

decidua, thus preventing the onset of labour (Bukowski et al. 2017). 

Fetal membrane transcriptomics 

Although the use of fetal membranes role in prediction of sPTB remains 

limited, transcriptomic studies of fetal membranes have been used to try and predict 

the neurocognitive status of the infant at 18-24 months (Pappas et al. 2015). A 

retrospective case-control study was conducted to examine the chorioamniotic 

membranes of 66 very preterm neonates (22-32 weeks) with and without 

neurocognitive impairment using RNA microarray. One hundred and seventeen 

genes were differentially expressed among neonates with and without subsequent 

neurocognitive impairment (p<0.05 and fold change >1.5). Differentially expressed 

genes were input into to a multi-gene model, developed to predict 18–24-month 

neurocognitive impairment (using the ratios of OSR1/VWF and HAND1/VWF at 

birth) (sensitivity = 74%, specificity = 83%) and validated on an independent dataset 

(n=19) (Pappas et al. 2015) 

Cervical transcriptomics 

The first study to examine the differences between sPTL (n=6) and PPROM 

(n=5) by collecting cervical biopsy samples up to 30 minutes following PTL showed 

distinct differences in the microarray gene expression and clear clustering effects 

between groups (Makieva et al. 2017). Four novel proteins with the potential to cause 

cervical remodelling leading to ruptured membranes were identified (PRAM1, 

CEACAM3, FGD3, and NDRG2) and the activity of MMP9 was found to be higher 

in the PPROM cervix. Prior to this study only 4% of all transcriptomic studies in 

term and pre-term human pregnancies utilized cervical tissue and did not look at 

PPROM as a distinct phenotype. 
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Small non-coding RNA molecules called microRNA’s (miRNA) have been 

differentially expressed in gestational tissue such as cervix at two time points; 20-23 

weeks and 24-27 weeks (Elovitz et al. 2014) and placenta collected at delivery from 

patients with pre-eclampsia, sPTB < 35 weeks and a term elective CS control 

(Mayor-Lynn et al. 2011), but several researchers have found that these differences 

do not extend to peripheral maternal whole blood (Elovitz et al. 2015, Knijnenburg et 

al. 2019).  

Maternal blood transcriptomics 

Heng et al. (2016) collected maternal blood samples at two separate time 

points 17–23 and 27–33 weeks of gestation in a low risk pregnant population. 

Interestingly, when they examined differential gene expression at both time points 

between the women who went on to have sPTB and PPROM (n=51) there were no 

differentially expressed genes. Therefore data were combined and analysed as one 

single group and compared to 114 term matched controls. At timepoint 1 (17-23 

weeks; n = 51) there was no differentially expressed genes at a false discovery rate 

(FDR) <0.05 or at FDR<0.10, but at 27-33 weeks (n=47) and a FDR <0.10 there 

were 26 differentially expressed genes at between women who had SPTB and term 

delivery. It is important to note that the mean gestational age at delivery in the sPTB 

group was 33 weeks and 6 days, almost immediately following timepoint 2. Some of 

these gene changes may reflect early labour which may limit their usefulness as an 

early predictive biomarker.  

In the same study by Heng et al. (2016) no significant change in any gene 

was detected between SPTB and term delivery. Paired data and gene set enrichment 

analyses provided additional evidence that inflammatory genes were consistently 

raised at 17–23 and 27–33 weeks of gestation in the blood of asymptomatic women 
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with sPTBs compared to women with term deliveries.  Significantly enriched 

inflammatory pathways included leukocyte migration, lysosomes, NF-kB activation, 

pathways involving cytokines and their receptors (e.g. IL1, IL2, IL6, IFN, IL1R, 

TNFR2, CCR3, CXCR4 and CD40) as well as toll-like and NOD-like receptor 

signalling. In contrast, women with SPTBs had lower RNA metabolism, RNA 

processing and T cell activation (including CTLA4 pathway) compared to women 

who had term deliveries (n = 163 downregulated gene sets at T1, n = 100 at T2; 77 

common gene sets). Therefore, despite not observing any significant gene at 

FDR<0.05, numerous gene sets were significantly associated with sPTB. This team 

hypothesized that circulating maternal leukocytes respond to ‘signals’ from 

gestational tissues and alter their gene expression. The most striking gene set 

enrichment result was that women who had SPTBs have increased interleukin 

signalling, mainly driven by IL1 and IL6, and leukocyte migration into gestational 

tissues as early as 18 weeks compared to women who had term deliveries. This in 

theory could accelerate cervical ripening by increasing local oxytocin and 

prostaglandin production, weakening the fetal membranes and causing early 

contractions. Unfortunately, this study did not obtain cervical length measurements 

or fetal fibronectin and the prediction models could not be compared to current 

clinical tools. 

This study by Heng et al. (2016) was one of three (Bukowski et al. 2017, 

Heng et al. 2014) included in a recent meta-analysis of transcriptomic studies of gene 

expression profiling to identify gene expression differences detectable in maternal 

whole blood (Vora et al. 2018). Spontaneous preterm birth was defined as delivery 

less than 37 weeks’ gestation.  Combining the studies provided additional power and 

revealed 210 differentially expressed genes, and clear enrichment of immune 
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mediated pathways. Interestingly, 18 of these 210 genes also demonstrated 

differential expression in the second trimester, suggesting a possibility for early 

identification of patients who might deliver preterm. IL-1R1 and TFPI, both of which 

encode immune-related proteins, were found to be differentially expressed and 

secreted longitudinally. Perhaps the most interesting finding of all was that preterm 

maternal whole blood showed upregulation of innate immunity and downregulation 

of adaptive immunity suggesting perhaps a breakdown in maternal-fetal tolerance. 
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2.4 Metabolomics 

The study of metabolomics is the large-scale study of small molecules known 

collectively as metabolites. Metabolites are typically small molecules that are the 

intermediate products of metabolic reactions occurring within cells or biological 

systems, and the end-product of the interaction of the system's genome with its 

environment. (Rochfort. 2005) By undergoing catabolism in a complex metabolic 

network, metabolites can also be components of higher order biological structures 

(DNA, transcripts, proteins) and cell structures energy, or ATP (Dunn et al. 2011). 

Although the study of metabolite profiling has a long history that started in 

the 1950’s (Rochfort. 2005), the phrase “metabolomics” was coined by Oliver S.G. 

et al. in 1998 who identified metabolites as part of a functional analysis of the yeast 

genome (Olivier et al. 1998). The Metabolomics Society defines metabolomics as; 

‘the comprehensive characterization of the small-molecule metabolites in biological 

systems, which can provide an overview of the metabolic status and global 

biochemical events associated with a cellular or biological system’ (Metabolomics 

Society. 2019). There has been some overlap with the term ‘metabonomics’ defined 

as the “quantitative measurement of time-related multiparametric metabolic 

responses of multicellular systems to pathophysiological stimuli or genetic 

modification” (Nicholson et al. 1999). Due to similar analysis techniques, 

‘metabolomics’ and ‘metabonomics’ are frequently used interchangeably, however 

the all-encompassing term ‘metabolomics’ remains the most popular in the literature 

(Rochfort. 2005, Dunn et al. 2011., Smolinska et al. 2012.) and will be used from 

here onwards in this thesis. 

Untargeted metabolomics studies are characterised by the simultaneous 

measurement of a large number of metabolites from each sample. This strategy is 
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known as a top-down approach and avoids the need for a priori specific hypothesis 

on a set of metabolites, and instead analyses the global metabolomics profile (Alonso 

et al. 2015). Recent advances in the technologies used to extract and analyse this type 

of data have revolutionised its wide range of application including biomarker 

discovery (Meyer et al. 2013, Armitage and Barbas. 2014, Julia et al. 2014) and the 

analysis of complex disease. Of note, metabolomics has been successfully used to 

investigate complex pregnancy conditions such as gestational diabetes, fetal growth 

restriction and pre-eclampsia (Horgan. 2009, Sulek. 2014, He. 2015). 

Metabolites are the downstream products of gene transcription and 

translation, and metabolomics can give a clearer picture of a phenotype than 

genomics or transcriptomics. However, this layer of omics data increases in 

complexity as there are currently 114,100 metabolite entries on the Human 

Metabolome Database (HDMB) including both water soluble and lipid soluble 

metabolites (Wishart. 2018). Due to this complexity there is not one method that can 

capture all the known metabolites and to do this would require multiple techniques 

and instruments.  

The most widely used technologies in metabolomics are nuclear magnetic 

resonance (NMR) due to its high precision and mass spectrometry (MS) with 

excellent reproducibility. Fourier transform infrared (FT-IR) is also becoming more 

popular in diagnostics. It has a rapid high throughput and is relatively inexpensive, 

but with low chemical specificity.  

A chromatographic separation technique is often coupled with mass 

spectrometry such as liquid chromatography (LC) or gas chromatography (GC) to 

enhance resolution. An overview of data processing for metabolomics studies is 

shown in Figure 2.6. 
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In this section of the chapter I will review metabolomic publications that have 

attempted to elucidate mechanistic pathways, or predictive metabolites of sPTB 

using either NMR or MS using different biological fluids for analysis. A summary 

table is included on page 88 (Table 2.3). 
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Amniotic Fluid  

Two studies have looked exclusively at AF for the prediction of sPTB using 

two different mass spectroscopy techniques (Menon et al. 2014, Baraldi et al. 2016). 

One used 24 samples obtained at amniocentesis from an asymptomatic group of 

women between 21- and 28-weeks pregnancy and compared metabolic signalling to 

8 samples obtained at term caesarean section (Baraldi et al. 2016). The other 

obtained AF samples during labour from 25 women <34 weeks in labour and 

compared metabolomic signalling to 25 term controls (Menon et al. 2014). These 

studies faced challenges in their study designs as AF is not an easily accessible 

biological fluid and gestational matched controls were not available. Samples had to 

be regrouped based on detection of paracetamol metabolites but both studies revealed 

different metabolites either raised or lowered in the preterm birth group. This lack of 

concordance is possibly due to the different analytical techniques used and the 

differences in metabolites present during labour versus asymptomatic women. 

Orczyk-Pawilowicz et al. (2016) using NMR and Virgiliou et al. (2016) using 

mass spectrometry combined analysis of AF metabolites with the metabolites in 

maternal plasma and serum respectively in an untargeted approach. Their aim was to 

identify if the metabolite signatures of AF were correlated in maternal blood, which 

is a much easier and more accessible biological fluid to study. In the study conducted 

by Orczyk-Pawilowicz et al.(2016) the metabolomic profiles of plasma and AF 

samples of healthy women with normal pregnancies in the second trimester and three 

timepoints in the third trimester were studied. The highest correlation was observed 

between AF and plasma in the transition from the second to third trimester. However 

only 8 samples of plasma and 7 samples of AF were available for the second 

trimester group.   
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Interestingly, Virgiliou et al.(2016) only sampled in the second trimester but 

observed no correlation between maternal serum and AF based on the most 

commonly detected metabolites. Maternal serum was recommended for future 

metabolomic profiling studies due to ease of access and repeatability of sampling. 

The Virgiliou et al. (2016) study included 35 women delivering between 29 weeks 

and 36 weeks and compared metabolite profiles to 35 women delivering at term. 

Using partial least square discriminant analysis (PLS-DA) there was good separation 

between the groups, which was attributed to 13 lipid features. Despite a well 

conducted study, the author did not attempt to validate the results. The groups were 

also close in gestational age and there was only one week between the latest preterm 

delivery and the earliest term delivery; and four weeks between the average 

gestations of labour (35 weeks cf. 39 weeks).  This tells us little about clinically 

important preterm births (<34 weeks) but suggests that lipids may be an area of 

interest for further research. Samples were obtained from healthy patients requiring 

amniocentesis or blood tests to rule out other pathology. Unsurprisingly the resulting 

populations used in the study are heterogenous, with varying number of samples 

taken from different trimesters in the study with only a small subset with paired 

plasma and AF samples from the same woman (n=50; T2=1, T3=15, term=26, 

prolonged pregnancy=8). The AF was obtained through both transabdominal 

amniocentesis and transvaginal amniotomy. These two different collection methods 

would be subject to different contamination risks, particularly transvaginal 

amniotomy occurring at term delivery.  

From these studies different trends were observed in the two different 

biofluids of serum and plasma. Very early pregnancy elevations in total cholesterol 

and levels of triglycerides were associated with a 2.8-fold increased risk for preterm 
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birth before 34 weeks and a 2-fold increase risk for PTB between 34 and 37 weeks. 

Pyroglutamic acid and tryptophan were found to be in lower levels in the maternal 

serum of women with preterm labour.  

Pyroglutamic acid is derived from glutathione and decreased levels suggest a 

potential glutathione deficiency.  A deficiency could result in a reduced ability to 

neutralise toxins and defend against oxidative stress.  

Tryptophan is an important precursor for production of bioactive metabolites 

such as serotonin. Serotonin and tryptophan levels have been linked to depression in 

pregnancy and preterm delivery (Waters K. 2010). Tryptophan may also be a marker 

of inflammation through activation of the kynurenine pathway. Metabolism is 

catalysed by the IDO enzyme (indoleamine 2,3-dioxygenase) and acts as an 

endogenous regulator of T-cell proliferation. Inflammation leads to more IDO 

activity and expression and increased metabolism of tryptophan resulting in lower 

levels in maternal serum.  

Urine 

NMR was the method employed to examine a nested case-control group from 

the Rhea mother-child cohort (Maitre et al, 2014). Samples of urine were obtained 

between 10-14 weeks, from 1317 women in Crete, Greece. Eighty-eight women had 

sPTB and 26 women had medically induced preterm births (IPB), all defined as birth 

less than 37 weeks gestation. Samples from 288 healthy controls were also collected.  

Thirty-four urinary metabolites were identified from spectra and two methods 

of univariate analysis was performed to select likely candidate metabolites to subject 

to multivariate regression analysis. The analysis of PTB < 37-week outcomes was 

conducted both on the combined clinical subtypes (PB) and separately on each 

subtype (sPTB and IPB). Formate, N-methyl2-pyridone-5-carboxamide (2-Py), 
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glycine, TMAO, lysine and the singlet at 0.63 ppm (a steroid conjugate) significantly 

varied between sPTB and control groups (p<0.05). However, only three of the six 

candidate metabolites for sPTB; formate, lysine and the singlet at 0.63 ppm, showed 

a significant trend (p<0.05) when the trend of these metabolites in the proportion of 

women with PTBs was examined (dataset split in quartiles of metabolite levels to 

investigate dose-response and sPTB). When a logistic regression model was used to 

account for other factors such as maternal age, education, parity and smoking habits, 

high lysine and low formate levels were significantly associated with a higher risk of 

sPTB. (Maitre et al. 2014) 

High levels of tyrosine, acetate, trimethylamine and formate were also 

significantly associated with a decreased incidence of fetal growth restriction 

(birthweight below 10th centile) (IORs between 0.27 and 0.14). Whereas, high levels 

of N-acetyl glycoproteins were associated with an increased risk of iatrogenic PTB.  

It is very difficult to compare or validate these findings with other 

metabolomic studies due to the differences in analytical platform and biofluid 

chosen. One other group looked at both maternal urine and plasma in different 

trimesters of healthy pregnancy and compared this to the non-pregnant state (Pinto et 

al. 2015) but no cases of sPTB were examined. As expected, levels of some amino 

acids required by the fetus decreased in the first trimester, but novel findings 

included early changes in citrate, lactate, and dimethyl sulfone levels. This is 

possibly due to a metabolic energy shift in the first trimester. Alteration in creatine 

levels was also noted, along with creatinine changes. Plasma high density 

lipoproteins (HDL) and low and very low-density lipoproteins (LDL + VLDL) levels 

were confirmed to increase throughout pregnancy, but at different rates and 
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accompanied by increases in fatty acid chain length with increase in lipolysis in the 

third trimester.  

Metabolites in Maternal Blood  

Plasma metabolites were examined using mass spectrometry from women 

who had preterm labour between 24 and 37 weeks of gestation (n = 57), threatened 

preterm labour but delivered at term (n=49) and samples collected at normal term 

delivery between 38 and 41 weeks (n=25) (Lizewska et al. 2018). PLS-DA models 

differentiated preterm and term births based on metabolomic profiles alone. This 

may be partly due to differences in gestational age across groups, but this was 

somewhat mitigated by including a threatened preterm labour group that were 

sampled at a similar gestation as the preterm labourers but when on to deliver at 

term. Fatty acids were found to be the group most significantly different but based on 

the results of the study by Pinto et al. (2015) this may not be wholly unexpected in 

view of the fact that there are significant gestational age changes with this group. In a 

study that took samples from women at delivery, higher levels of omega-3 fatty acid, 

docosahexaenoic acid (DHA), were seen in the preterm group when compared with a 

threatened preterm group (who went on to deliver at term) with no difference 

between preterm and term groups suggesting that detection of this fatty acid 

metabolite may occur with initiation of labour. Lower levels of amino acids were 

seen in women with preterm labour compared to threatened preterm labour possibly 

associated with a source of energy or a link to oxidative stress. Lower tryptophan in 

the PTB group had the highest statistical significance of change compared to 

threatened PTB (delivered at term) and term labour groups and has been associated 

as an inducer of oxidative stress (Elisia et al. 2011). However, it is difficult for this 

study to truly assess the differences in metabolites between PTB and gestational age 



 

85 
 

as the preterm birth group on average were sampled at 30 weeks and the threatened 

PTB group were sampled at 32 weeks. 

Souza et al. (2019) did not have this challenge with their study design as they 

analysed samples stored from the “SCOPE” cohort, an international pregnancy 

biobank serving to predict novel biomarkers for complications of pregnancy. 

Samples taken at 15 weeks and 20 weeks of pregnancy were analysed by GC-MS for 

164 nulliparous women from Cork, Ireland (sPTB <37 wks., n=55) and 157 

nulliparous women from Auckland, New Zealand. Decane, undecane and dodecane, 

belonging to a class called alkanes, were significantly associated with sPTB (FDR 

<0.05) at 20 weeks in the Cork subset but not in the Auckland cohort. The 

observation of elevated alkanes in the maternal serum of women who had sPTB was 

also linked by the authors to a possible oxidative stress response. However, this 

association was not seen in the most clinically important sPTB <34 weeks nor 

confirmed in the Auckland cohort, therefore their confidence remains limited in this 

finding. (Souza et al. 2019) 

A nested case-control study of samples collected prospectively from 305 

women attending with reduced fetal movements (RFM) in the third trimester of 

pregnancy examined the serum from 40 women with poor pregnancy outcomes using 

ultra performance liquid chromatography mass spectrometry (UPLC-MS) (Heazell et 

al. 2012). This was made from a composite of sPTB with normal weight centiles 

(n=3), preterm SGA (n=8), term SGA (28) and unexpected admissions to SCBU 

(n=1). The controls were taken from the same cohort and included women that had a 

normal birthweight infant with no perinatal complications (n=40). Principal 

component analysis (PCA) could not separate cases and controls. Univariate analysis 

demonstrated that most classes of metabolites (glycerolipids, glycerophospholipids, 
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fatty acids/organic acids and vitamin D metabolites) showed a trend towards 

decreased concentrations in the poor pregnancy outcome individuals. Two 

progesterone metabolites were significantly downregulated in the poor pregnancy 

outcome group; 17 hydroxy pregnenolone sulphate and pregnanediol-3-glucuronide, 

intermediates of progesterone production. It is possible that there is downregulation 

of the entire progesterone pathway in poor pregnancy outcomes. This study is largely 

biased by a fetal growth restriction population and it is unclear how to apply these 

results to sPTB, particularly as samples have been collected in the third trimester.  

The previously mentioned study by Virgiliou et al. (2016), took plasma 

samples from 35 women delivering at a mean of 35 (29 − 36 + 5) weeks in labour 

and compared them to 35 term controls, however all patients underwent 

amniocentesis. This group used lipid profiling and discovered that 13 lipid features 

contributed significantly to group separation, but the features could not be identified 

with their methodology. Using targeted profiling 54 metabolites were detected in 

maternal serum samples, using Orthogonal projections to latent structures-

discriminant analysis (OPLS-DA) the term and preterm groups showed separation 

based on their metabolomic profiles and 8 metabolites in the serum showed 

significance following unpaired t tests (p < 0.05). Pyroglutamic acid was found to be 

higher, while hypoxanthine and tryptophan were found to be lower in PTB samples. 

Using a second set of samples to confirm performance of serum predictors the results 

were found to be the same with the addition of choline, contributing to the 

classification of the two study groups in serum. This is the first study of maternal 

blood biomarkers that have collected blood prospectively between 14 and 23 weeks.  

Table 2.3 has summarised all significant metabolites when comparing 

preterm +/- associated pathologies such as fetal growth restriction to a term control in 
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a PTB cohort irrespective of whether the metabolite was increased or decreased 

relative to the control group and irrespective of the methodology; NMR or MS based 

techniques. The only study that achieves sampling at the same gestation in both the 

case and control groups is Virigliou et al (2016), and many of the top metabolites 

found in the other studies but not this one may be reflecting gestational age changes. 
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Table 2.3. Summary of metabolites identified in metabolomic studies of preterm labour. 
Metabolites that have been identified in four or more studies are in bold. 

Author Baraldi  Heazall  Lizewska  Maitre Menon  Romero Souza Virigliou 

Samples (total) n=31 n=80 n=131 n=363 n = 50 n=168 n=109 n=70 

PTB samples n=21 n=11 n=57 n=88 n = 25 n=112 n=55 n=35 

Mass Spec. ✓ ✓ ✓  ✓  ✓ ✓ 

NMR     ✓     

Amniotic Fluid ✓    ✓ ✓  ✓ 

Maternal Blood  ✓ ✓    ✓ ✓ 

Maternal Urine    ✓     

Timepoint collected 21-28 wk RFM; 

28-40 

wk 

Admission; 

24-40 wk 

T1* Delivery; 

29-40 

wk 

22-33 

wk 

T1 = 

15 wk  

T2 = 

20 wk 

(+/-

1wk) 

14-23 wk 

Alpha sorbopyranose      ✓   

Amino acid chain ✓        

Acetate    ✓     

Acetaminophen metabolites     ✓ 
(7) 

   

Alanine    ✓     

Beta hydroxyl 

phenylethylamine 

     ✓   

Biliverdin     ✓    

Catechol      ✓   

Cholesterol      ✓   

Citrate    ✓     

Decane       ✓  

Dodecane       ✓  

Eicosanoic acid      ✓   

Fatty acids ✓ ✓ ✓(11)  ✓(18)    

Formate    ✓     

Fructose      ✓   

Galactose      ✓   

Glutamine      ✓  ✓ 

Glycerol      ✓   

Glycerolipids  ✓       

Glycerophospholipids  ✓       

Glycine    ✓  ✓   

Heptanedioic acid      ✓   

Hexose cluster       ✓(3,5,6)   

Histidine   ✓  ✓    

Hydropyridine ✓        

Hypoxanthine        ✓ 

Inositol      ✓  ✓ 

Isoleucine      ✓   

Lactate     ✓     

Leucine    ✓  ✓   

Lysine   ✓ ✓     

Mannose      ✓   

Methionine      ✓   

Methyladenine      ✓   

Muconic dialdehyde ✓        

N-acetyl glutamine      ✓   

N-methyl-2-pyridone-5-

carboxamide 

   ✓     

Phenylalanine      ✓   

Phenylacetylglutamine    ✓     

Phosphatidylcholine ✓        

Prostaglandin  ✓       

Progesterone     ✓    

Pyroglutamic acid        ✓ 
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Pyruvate        ✓ 

Salicylamide      ✓   

Succinate      ✓   

Steroid conjugate – 0.63    ✓     

Theophylline     ✓    

Trimethylamine    ✓     

Trimethylamine-N-oxide    ✓     

Tryptophan  ✓ ✓   ✓  ✓ 

Tyrosine    ✓     

Undecane       ✓   

Vitamin D  ✓       

3-methoxybenzene 

propanoic acid 

✓ 
 

       

4-hydroxynonenal alkyne ✓ 
 

       

1-methylurate     ✓    
*T1 – end first trimester 
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2.5 Classification of Births  
 

It is important to be precise and consistent in defining the phenotype for a 

study population. From the omic studies discussed in this chapter there is wide 

heterogeneity between classifications of sPTB and the gestational ages of patients 

included in studies.  This is a hurdle for direct comparison of studies and makes 

meta-analysis of multiple studies arduous.   

The complexity of defining clear phenotypes of sPTB are discussed in a 

series of papers published in 2012 (Goldenberg et al. 2012, Kramer et al. 2012, Villar 

et al. 2012.). The authors of the articles in this series are recognised experts in PTB 

research across USA and Canada. They were brought together as a direct result of the 

Global Alliance to Prevent Prematurity and Stillbirth (GAPPS) meeting to define a 

prototype classification system for PTB for general consideration.  

The issues considered in their published discussions included difficulty 

defining the lower gestational age of PTB definitions. Frequently the clinical 

definition of a PTB is based on the potential for a ‘livebirth’ and excludes births 

below 23 weeks or other arbitrary gestational week, classifying this group as 

‘spontaneous miscarriage’. As causes of births between 16-22 weeks do not differ 

substantially from those after 22 weeks and the authors felt that there was no reason 

to exclude them from a classification system.  

The authors’ consensus was that the actual method of delivery (e.g. assisted 

delivery or caesarean section) should not be included in the phenotype. The focus of 

the clinical phenotype should derive from features of pregnancy and spontaneous 

labour, such as short cervix, bleeding and ruptured membranes. Risk factors such as 

low socioeconomic status and smoking were also considered unhelpful, and although 
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data were recommended to be collected in a systematic way, it should not be part of a 

phenotypic classification system. 

The issue of potential causes such as stress and assisted reproductive 

technologies (ART) which are included in some classifications were considered but it 

was felt unless a condition can be clearly defined and there is a clear pathway to PTB 

causation it should not be included in a classification system and should also be 

reported as risk factors.  

A controversial area the authors covered was the issue of stillbirths. The 

preference of the authors was to include all births above a lower gestational age 

threshold for PTB, whether it was a termination or not. They felt “a system that 

includes some terminations but not others would likely be confusing for all” 

(Goldenberg et al. 2012). Although it is important to keep classification methods 

simple and understandable, I disagree with this rationale. My opinion is that it 

remains important that any birth included in the classification system, whether the 

infant was born alive or not, should be subject to the same phenotyping definitions 

and classifications.  Intrapartum and antepartum stillbirths should be included if the 

signs and symptoms of preterm labour are present, e.g. spontaneous contractions or 

ruptured membranes. However, if there is no evidence that the parturition process 

has started (i.e. no fluid leakage, no contractions or bleeding) and there is no 

likelihood that the baby would have delivered if not for the intervention of the 

obstetric team, it should be defined as care giver initiated or iatrogenic PTB. The 

same criteria would be applied to any livebirth or antepartum stillbirth. The key for 

the definition, in my view, is that the event of labour itself occurred spontaneously.   

To illustrate my point, if a baby with severe growth restriction was delivered 

prematurely due to concerns of fetal health and risk of demise; this would be 
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classified as care giver initiated. If in another pregnancy, very early growth 

restriction occurred resulting in an intrauterine death before obstetric intervention 

could occur, the subsequent induction of delivery should also be classed as care 

giver initiated. By combining all stillbirths into a definition of spontaneous PTB, 

more heterogeneity of pathology is included under the umbrella term of sPTB. An 

increasingly puristic definition will only enable the scientific community to get 

closer to identifying true biological pathways and reducing “noise”.  

Despite wanting to avoid confusion, the authors recommend dividing 

iatrogenic deliveries into three or four groups of “urgent”, “discretionary”, 

“iatrogenic” or “social”. This seems to be largely unhelpful as these decisions are 

based on many factors including human decision making which itself is a very 

complex process. For the purpose of a sPTB classification, I feel that care giver-

initiated birth classifications are outside of this remit and should be identified as 

simply a single group of “care giver initiated”. Despite these areas of disagreement in 

approach, the authors make one thing clear; no matter what classification is used, it 

should be well defined with no ambiguity on how to classify difficult cases (e.g. 

threatened preterm labourers who are ultimately augmented).  

The authors subsequently published a prototype classification system based 

on their considerations and divided the phenotype into maternal, fetal, placental and 

signs of parturition (Villar et al. 2012). Manuck et al. (2015) attempted to use this 

classification system to retrospectively classify 1025 women delivering <34 weeks 

for whom data had been collected prospectively during a case-control study. They 

claimed they had successfully classified women into 9 sPTB phenotypes: 1) 

infection/inflammation, 2) decidual haemorrhage, 3) maternal stress, 4) cervical 

insufficiency, 5) uterine distension, 6) placental dysfunction, 7) premature rupture of 
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the membranes (PPROM), 8) maternal comorbidities, 9) familial factors. Despite a 

committed effort to apply a strict and well-defined classification system for 

phenotyping, there are certain limitations that makes this design difficult to translate 

across research studies. Firstly, 4% of that cohort had no evidence of any described 

phenotype. They were essentially unclassifiable, and this is a finding that cannot be 

ignored.  The authors could have created a 10th category for this group of women 

such as ‘unexplained PTB’. An additional 78% met the criteria for more than one 

phenotype which makes women hard to put into mutually exclusive groups for 

comparison. Unsurprisingly, in this attempt at using the prototype classification 

system by Manuck et al. (2015), more than half of women had evidence for strong, 

moderate or possible evidence of maternal stress. All clinical data including 

‘perceived stress’ was collected in the month following a PTB <34 weeks and is not 

reflective of stress levels during pregnancy. As prediction of PTB remains poor, it is 

hard to record self-reported stress, unless this is done prospectively. Evidence of 

biological stressors should be examined through omics signatures, rather than trying 

to include this in a classification system. As there is currently no clear mechanistic 

pathway to causation, this should be reported as a risk factor rather than being an 

integral part of the classification system.  

Most women in this cohort did not have antenatal cervical screening. The 

criteria for classifying “cervical insufficiency” was split into strong, moderate and 

weak. Moderate evidence for cervical insufficiency was “cervical length <1.5cm 

prior to 28 weeks”. Contrary to this assertion, this evidence should be viewed as 

exceptionally weak evidence for cervical insufficiency, if evidence at all, particularly 

in a population without previous PTB. To illustrate this point, evidence from a 

randomised control trial of over 47,000 low risk women who were screened for a 
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short cervix and randomised to expectant management or cerclage showed that only 

24% of women with cervix <15 mm delivered prior to 33 weeks. Therefore, although 

short cervix is certainly a recognised risk factor, it is insufficient to imply causation. 

Additionally, true cervical insufficiency has an unclear and often inconsistent 

definition. Overall, it is thought to apply to a very small group of women in the 

region of 1% of PTBs and generally presents before 24 weeks of pregnancy (ACOG 

practice bulletin No. 142. 2014). The American College of Obstetrics and 

Gynaecology defines cervical insufficiency as “the inability of the cervix to retain a 

pregnancy in the absence of contractions or labour or both”. The criteria defined in 

this study for cervical insufficiency does not make it exclusive of contractions and 

accounts for 14.4% of deliveries with a mean gestational age at delivery of 29.5 

weeks (+/-SD of 3.3). As cervical shortening and effacement must also occur in 

labour, this definition only serves to confuse these terms further. 

Therefore, an alternative classification system based on the considerations of 

these proposed classification systems of phenotyping will be used for my study and 

this is outlined in Chapter 3.  
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2.6 Methodologies for Integrating Omics  

Evaluating each ‘omic’ data type individually before integrating data is 

essential, as each data type poses unique challenges. Individual analysis methods, 

including quality control performed for each omics layer, will be presented in the 

relevant omics chapter. The methodologies to integrate the data layers will be 

discussed here.  

A review of omics data integration by Ritchie et al. (2015) broadly 

categorized all methods of data integration into two types of approaches; multi-

staged analysis and meta-dimensional analysis. (Figure 2.7)  

Figure 2.7. Alternative hypothesis of complex trait aetiology. Hypothesis A (grey arrow) is 
the theory that variation is hierarchical, such that variation in DNA leads to variation in RNA 
and so on in a linear manner. Hypothesis B (black arrow) is the idea that cross talk across 
omics layers leads to a phenotype. 

 



 

96 
 

 

Multi-Staged Analysis 

In multi-staged analysis, predictive models are constructed in a stepwise or 

hierarchical manner reflecting hypothesis A of Figure 2.7. The analysis is divided 

into multiple steps and use genetic variation as the foundation of all the other omic 

variations. Steps usually include filtering SNPs associated with the disease on a 

genome-wide significance level, and then testing these SNPs for association with 

another level of omic data. For example, using transcriptomic data or gene 

expression levels. These SNPs are known as expression quantitative trait loci 

(eQTL). Alternatively, methylation QTLs (mQTLs) when SNPs are associated with 

DNA methylation levels or metabolite QTLs if associated with metabolite levels. 

These data are then used to test for correlation with the phenotype of interest.  

An example of such an integrative analysis is performed by Knijnenburg et 

al. (2019) who integrated molecular and clinical data for 629 families. Whole 

genome sequencing, mRNA sequencing, miRNA sequencing and DNA methylation 

profiling were carried out on maternal whole blood from the same individuals.  After 

performing a genome wide statistical test to identify candidate PTL genes, eQTL and 

mQTL analyses were performed to identify genes and methylation probes that 

overlapped with the candidate genes. Their study did not replicate the findings of the 

previously mentioned GWAS by Zhang et al. (2017) at a genome wide significance 

level of 10-8, but at a less stringent level could identify four of the same genes (albeit 

with different SNPs). Specifically, for the very early PTBs (<28 weeks) various 

significantly associated variants were uncovered as well as differentially expressed 

and methylated genes, many of which are involved in growth factor signalling, 

inflammation and immune related pathways. However, in this study maternal blood 

samples were taken in the four days following delivery so this may reflect 
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transcriptomics of preterm labour or involution of the uterus rather than any 

causative factor for sPTB (Knijnenberg et al., 2019). 

However, omic integration can occur on separate populations when samples 

cannot be obtained from within the same populations. Brubaker et al. (2016) 

disappointed with the poor results of multiple GWAS studies of PTB, examined top 

scoring SNPs just below genome wide threshold significance from PTB GWAS. 

They performed an integrative protein-protein interaction (PPI) network analysis 

including candidate genes associated with the relevant PTB-SNPs and myometrial 

tissue transcriptome data to try to identify networks of genes and proteins regulating 

the onset of labour. The genomic and transcriptomic data was obtained from different 

datasets but examined the same preterm labour phenotype.  Six hundred and twenty 

nine biological or cellular processes were enriched using the PTB-SNP data from a 

mixed cohort of 3,485 mother-child pairs, but when this was refined through 

functional mRNA expression data from a total of 22 tissue expression datasets (from 

either term or preterm, and both labour and non-labour myometrial tissue samples), 

38 significant subnetworks associated with preterm labour were found and 22 

networks associated with term labour. The authors concluded that TWIST1, MEF2C, 

PLA2G4C and LGALS2 may be worthy of further investigation as the MEF2C-

LGALS2 and MEF2C-PLA2G4C term subnetworks were the only ones noted to be 

dysregulated in the preterm myometrium. In term labour all these genes were 

downregulated, whereas in preterm labour they were upregulated by qRT-PCR plus 

there was evidence of coregulation of these genes. TWIST1 acts to modulate 

downstream genes and is a repressor of MEF2C, it carries a PTB associated SNP, 

and is part of the negative feedback loop for the cytokines TNF-a and IL-1B in the 
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NF-KB signalling pathway. Biological plausibility was offered for PLA2G4C as it is 

a phospholipase which regulates prostaglandin synthesis independent of oxytocin.  

Meta-Dimensional Analysis  

In meta-dimensional analysis all omics data are combined simultaneously to 

create a multivariate model associated with a given outcome, reflecting hypothesis B 

of Figure 2.7 (Ritchie et al. 2015). This allows for combinations of heterogenous 

datatypes, including clinical data and assays that cannot be mapped back to a specific 

gene. The three main approaches for this type of analysis are concatenation-based 

integration, transformation-based integration and model-based integration (Ritchie et 

al. 2015). 

Concatenation Based Integration  

In concatenation-based integration all available datasets are merged into a 

single matrix for modelling. An advantage of this method is that once a data matrix 

has been created, then multiple statistical tests or machine learning methods for 

modelling can be applied to the data for analysis. The challenge for this type of 

integration is identifying the best way to combine different types of data in a 

meaningful way, whilst avoiding bias from certain data types and ensuring it is 

computationally feasible (Ritchie et al. 2015).  

Transformation Based Integration 

Here data is combined only after the original data has been transformed into an 

intermediary state, such as a kernel or graph matrix. This is a matrix that represents 

relative positions of all samples by valid graph or kernel functions. In short, kernels 

allow transformation of randomly distributed or linearly inseparable data to linearly 

separable ones by increasing the dimensional space of the data points. This approach 
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is robust to different measurement scales, but some data-specific properties may be 

lost when integrating them. As data is transformed independently, it may make it 

difficult to detect some of the effects between e.g. SNP/gene and metabolite 

interaction if the transformation removes the ability to detect the original interaction 

(Ritchie et al. 2015).  

Model-Based Integration 

In this method each omic data type is used as a training set to develop a 

model. A final model is then created from these training set models (Figure 2.8) 

which preserves the data specific properties. However, these methods of model 

integration are well known for overfitting and is suitable if the data types to combine 

are extremely heterogenous and the other methods of concatenation and 

transformation are not suitable.  

To my knowledge, Ghaemi et al. (2019) have performed the only study that 

has attempted to do this type of omics combination in pregnancy.  They compared 

multivariate predictive modelling using an Elastic Net (EN) algorithm to predict 

gestational age. Using stacked generalisation, the individual omics models were then 

combined into a single model. Three hundred and fifty seven samples taken at 51 

separate timepoints from seventeen women with term pregnancy were analysed for 

seven omic subtypes; cell-free transcriptomics, antibody-based cytokine 

measurements in plasma and serum, microbiome analyses (of vaginal swabs, stool, 

saliva and tooth/gum), mass cytometric analyses of whole blood, untargeted 

metabolomics and targeted proteomics analysis of plasma (Ghaemi et al. 2019). 

Their multi-variate analysis algorithm (EN model) with cross-validation steps (leave-

one-subject-out) were compared to the other machine learning algorithms of Random 

Forest, Gaussian Process, Support Vector Regression and XGboost. Their model 
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increased their predictive power by combining all the datasets and revealed novel 

biological interactions. A strong relationship between pregnanolone sulphate and the 

behaviour of the NF- ΚΒ myeloid dendritic cells and regulatory T cells was revealed 

by the model. These play a critical role in feto-maternal tolerance. Although 

modulation of immune cell function by progesterone and its derivatives is not a new 

concept, the specific immune cell subsets of this action are not well understood. 

Additionally, a strong interaction between the transcript of protein factor CSH-1 

(cell-free RNA) and STAT5activity in CD4+ T cells, may suggest that CSH-1 may 

directly activate the JAK2/STAT5 signalling pathway in CD4+ and CD8+ subsets in 

pregnancy. However, the limitations of this study are that the number of subjects in 

this proof of concept project (n=17) are small compared to the large number of 

variables generated by the seven omics platforms described increasing the possibility 

of finding a false positive.  
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Prediction Modelling Bias-Variance Trade Off 

An important concept to understand in prediction modelling is the trade-off 

between a model’s ability to minimize bias and variance (Figure 2.9), the prediction 

errors leading to underfitting and overfitting a model. It is important to understand 

how closely the model follows the actual patterns of the data. 

Variance is the variability of a model prediction for a given data point or a 

value which tells us the spread of the data. A model with a high variance pays a lot of 

attention to training data and doesn’t generalise on data points that it has never seen. 

As a result, these models perform well on training data but has a high error rate on 

test data. This is also known as ‘overfitting’.   

Bias refers to the gap between the value predicted by your model and the 

actual value of the data. (Theobald. 2017. pp 93). A high bias can cause an algorithm 

to miss the relationship between features and the target output (i.e. underfitting the 

model). 
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Figure 2.9. Targets used to represent the trade-off between bias and variance. Adapted 
from Ramchandani, P. "Random Forests and the bias-variance trade-off", Towards Data 
Science. https://towardsdatascience.com/random-forests-and-the-bias-variance-tradeoff-3b77fee339b4 
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2.7 Limitations of omics approaches and data integration  

Multiple technical platforms are usually available for the same type of -omic. 

Various manufactures produce multiple versions of e.g. microarray and sequencing 

platforms which have different coverage of the genome. Alternatively, different 

types of technology can be used to investigate the same -omic, such as MS and NMR 

for metabolomics investigation which will ultimately result in the identification of 

different compounds within the same sample. Advances in technology usually mean 

that improvements in quality occur with new versions and researchers are keen to 

take advantage of the latest developments.  This technological heterogeneity makes 

reproducibility, validation and meta-analysis of results challenging. 

There are systematic differences in high throughput data between different 

laboratories, batch-effects and multiple operators which is widely accepted and 

documented. Efforts are made to reduce “batch-effects” by standardising 

experimental protocols and applying quality control steps prior to data analysis, but it 

is impossible to completely eliminate batch effects. They can be responsible for 

spurious findings unrelated to the outcome of interest. Using methods to account for 

these variations and applying appropriate statistical models such as mixed-effect 

models can at least address some issues in technical variation.  

Genomics is a unique -omic in so far as the genome is fixed per individual 

cell and tissue type; how the genome is expressed and the subsequent molecular 

states existing in each tissue will vary dramatically and will also be influenced by 

environmental factors. Therefore, the selection of tissue type for disease study and 

the heterogeneity of tissues chosen will play a factor in -omic combination and 

choosing the same fluid or tissue is preferable. Even within a tissue, a sample will 

involve several cell types with its own unique -omic profile leading to heterogeneity 
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of results depending on proportions of cell types within samples. Using purified cell 

types can be an answer but can become unrealistic when faced with the cost of 

performing different omics on multiple cell types. 

Recruitment to PTB studies will always remain challenging due to the 

difficulty in prediction of sPTB, the relatively low incidence in the general 

population and trying to clean or split data even further to investigate very specific 

phenotypes. Individual studies are almost certainly going to be underpowered for 

multiple omics analysis, and one solution is to try and improve power by obtaining 

more data. Meta-analysis of omics data may be the only way that power will be 

increased sufficiently to enable identification of candidate pathways following 

millions of comparisons between so many data points. This in itself poses its own 

challenges as data is likely to be collected, processed and recorded in very different 

ways introducing bias between studies for meta-analysis, as has been a challenge 

historically for comparison of randomised clinical trials.  

We are also limited by our current knowledge of gene-transcript-protein-

metabolite interactions. In network analysis we rely on pre-existing knowledge to 

inform pathways of data. The same analysis performed on the same data in the future 

may reveal a completely different result as our knowledge about the function of the 

human body in pregnancy at a cellular and sub-cellular level is likely to increase and 

pathways will become increasingly informed.  

Data reduction necessary to create models that are computationally feasible 

may accidentally filter out important associations. For example, a single functional 

SNP may associate with sPTB. However, if this SNP is in linkage disequilibrium 

with another non-functional SNP, the functional SNP may be filtered out in favour of 

the non-functional SNP. Therefore, it is important to understand the assumptions of 
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any model and limitations of analysis before making inferences and interpretations of 

the data (Ritchie et al. 2015). 
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2.8 Conclusion 

The development in “omics” technology has led to exciting breakthroughs 

and new avenues of investigation for sPTB prediction.  Although we are yet to 

translate these changes to clinical and patient benefit our increasing understanding of 

the complex pathways underpinning sPTB is increasing and this is a promising and 

novel area of investigation.  
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Chapter 3: Study Population  
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3.1 Introduction 

Having argued in the previous chapter the importance of using omics 

technology for the prediction of sPTB and provided an overview of the various 

methodologies available; this chapter will describe the design and methodology 

selected to combine omics datasets for preterm birth prediction and investigate sPTB 

phenotypes using multiple omics and systems biology approaches. It was important 

to design a study that minimizes the limitations of the omics approaches described in 

chapter 2, to remain focused on the research hypothesis, but still to be sufficiently 

pragmatic to be achievable. 

Chapter 1 demonstrated that current ability to predict sPTB remains poor as 

mechanisms of disease are not understood. Currently used screening methods are 

insufficient to detect all women at risk. The sequelae of preterm birth can lead to 

significant mortality and morbidity and there is a clear need for improvements in 

disease prevention, which cannot be obtained until we have a better understanding of 

causation or a more robust way of accurately discriminating those at high risk.  

Our ultimate goal is to establish clinically useful personalized risk assessment 

with a combination of clinical and comprehensive molecular phenotyping. This 

approach will lead to better and safer use of currently available preventative 

therapies (drug repositioning) and development of novel, more effective therapies 

both in high and low resource settings. 
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3.2 Aims 

To investigate preterm birth phenotypes by using multiple omics and systems 

biology approaches in high risk population. My goals were: 

• To recruit over a 3-year period a prospective cohort of women with sPTB at 

<34 weeks gestation (cases) and a cohort of women with spontaneous term 

delivery (controls). All women should have well-characterized clinical 

phenotypes with biologic samples suitable for multi-platform systems biology 

analysis that were collected at a minimum of 2 time points during gestation 

and at delivery. 

• To apply multi-omic high-throughput technologies to generate longitudinal 

datasets. 

• Pilot integration of these datasets into systems biology approaches to allow 

for interpretation 
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3.3 Population Identification 

The samples used for analysis in this study come from participants recruited as 

part of “The development of novel biomarkers for prediction of preterm labour in a 

high-risk population” study” (REC reference: 11/NW/0720) collected between 1st 

March 2012 and 28th May 2015 (Appendix A and B). This project was co-sponsored 

by Liverpool Women’s Hospital and the University of Liverpool (Appendix C). 

Women were consented and recruited at the Liverpool Women’s Hospital Harris-

Wellbeing Preterm Birth Prevention Clinic. In routine clinical practice women are 

screened for a short cervix in pregnancy if they have:  

• a history of sPTB or PPROM (between 16 and 33+6 weeks), or  

• if they have had significant excisional treatment of the cervix (2 x Large 

Loop Excision of the Transformation Zone (LLETZ) or single knife cone 

biopsy) from 16 weeks pregnancy onwards.  

To try to avoid large variation in aetiology of sPTB in our recruited women we 

limited this study to women who had only had a history of sPTB or PPROM. Women 

attending because of a history of excisional cervical surgery but no history of preterm 

labour were excluded.  

Our clinical audit figures from 2010-2013 showed that at the Liverpool Women’s 

Hospital the sPTB rate <34 weeks is 17% for women with a history of sPTB or 

PPROM. In 2011, 135 new women were referred, 95 (70%) had a history of sPTB or 

PPROM <34 weeks. Estimating a 50% recruitment rate, we expected to recruit 140 

women over 3 years, and approximately 24 cases of sPTB <34 weeks. The advantage 

of recruiting cases experiencing a recurrent preterm birth is that there may be 

positive selection of aetiologies of sPTB inherent to the mother rather than an 

individual pregnancy. For example, women with a genetic predisposition to sPTB 
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may be more likely to have two pregnancies affected by sPTB than if infection was 

the cause, which may only affect a single pregnancy.  

Women with a history of sPTB or PPROM who had a subsequent term birth 

without treatment for short cervix were used as a control group.  

Inclusion Criteria  

• Previous PPROM >16 and <34 weeks 

• Previous sPTB >16 and <34 weeks 

• Singleton pregnancy 

• Willing to undergo transvaginal ultrasound scan 

• Age >18 years 

• Understands English 

• Understands study requirements, agrees to participate and written consent 

obtained. 

Exclusion Criteria 

• Iatrogenic PTB  

• PPROM <16 and >34weeks 

• Multiple pregnancy 
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3.4 Time points and Sampling  

Two time points were chosen for sampling; 16 and 20 weeks. Serial sampling 

was chosen to provide more information than isolated measurements of biomarkers 

at a single timepoint. 

Sixteen weeks is the gestation at which high risk patients commonly attend 

for their first cervical length screening (Care et al. 2019). This is after the risk of first 

trimester miscarriage has passed, but prior to the risk of late second trimester 

miscarriage or preterm birth. At the first visit to the clinic, a member of the clinical 

staff recruiting team would discuss the project and provide an information leaflet to 

the potential participant (Appendix D). The woman would have her clinical 

appointment as normal and if she agreed to participate, a consent form was signed 

(Appendix E). Bloods were taken at the end of the appointment when the participants 

data was also collected. Twenty weeks is four weeks prior to the risk of sPTB and 

when low risk women would routinely attend hospital for anomaly scan, which 

would facilitate rolling out any successful screening tests.  

As recommended by the World Health Organisation (Wilson and Jungner. 

1968), a good screening test would detect pathology early to allow for enough time 

for intervention to decrease this risk. Sampling at 16 and 20 weeks in an 

asymptomatic population would hopefully allow for this time prior to the onset of 

labour. Although blood taking is widely accepted in medicine as a necessary test for 

a variety of conditions, it is invasive and can be painful. More frequent sampling 

every two weeks was considered. However, it was likely to deter women from 

participating. Accordingly, 16 and 20 weeks were considered to be the most useful 

time points in pregnancy for a screening test for sPTB prediction. 
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Three omics layers per patient were selected to be analysed from blood for 

predictive biomarkers of preterm birth; genetics, transcriptomics and metabolomics. 

Venepuncture performed with BD Vacutainer® Eclipse™ blood collection needles 

allowed for a:  

• 6ml BD vacutainer® K2EDTA for maternal genome (lavender small),  

• 2.5ml PAXgene Blood RNA Tube  

• 6ml BD vacutainer® tubes containing clot activator for biomarkers (red 

tube) to allow storage of serum for metabolomics study 

All samples were inverted 10 times to allow for mixing between the blood and tube 

reagents then stored on ice immediately after collection until taken to the 

laboratory at a convenient time but no more than 1 hour after sampling. Samples 

were processed according to the standard operating procedure (appendix F).  
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3.5 Method of Classification 
 

Hospital records were used to ascertain delivery details for all women giving 

birth at Liverpool Women’s Hospital. For participants that delivered elsewhere, the 

research department at the delivering unit were contacted and asked to provide 

delivery details. Where this was not possible, as a final resort, participants were 

contacted directly by telephone. 

Figure 3.1 shows the workflow for the classification of births, and Table 3.1 

shows how clinical diagnoses were defined. The judgement of the 

contemporaneously recorded treating clinicians was used to record diagnoses unless 

further information became available later that refuted this. The clinical notes of 

participants whose first event (sPTB or PPROM) was ≤36+6 weeks gestation was 

accessed and reviewed independently by myself and senior clinical lecturer, Dr 

Andrew Sharp. In the cases where there was a discrepancy between reviewers, the 

case was reviewed by a third researcher, Professor Zarko Alfirevic, until the team 

reached a consensus on classification of the birth. Both Professor Alfirevic and Dr 

Andrew Sharp and have extensive experience both clinically and in research, in the 

field of preterm birth. They have both worked at the specialist preterm birth 

prevention clinic in Liverpool Women’s Hospital since it opened in 2010 and have 

published research papers in this field. 

For patients with PPROM the gestation at the time of ruptured membranes was 

taken as the significant gestation for the analysis, rather than the gestation at 

subsequent birth. For women with spontaneous preterm labour, the gestation at birth 

was used as the significant gestation for analysis. 

Additional risk factors and phenotypic pregnancy features related to preterm 

birth were systematically recorded but not included in the overall classification 
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system. Table 3.2 shows a collection of risk factors that have been defined for 

reporting. An additional step was included for the women who had PPROM to 

describe whether infection was thought to be present at the time of PPROM. 

Infection is considered a cause of PPROM and a consequence of ascending genital 

tract infection without protection from intact membranes. Therefore, a seven-day 

period was used to distinguish between early chorioamnionitis (likely cause of 

PPROM) and late chorioamnionitis (likely consequence of PPROM). This workflow 

is detailed in Figure 3.2.  

If an intrauterine death or termination of pregnancy had been preceded by 

PPROM, this was included as a PPROM case. In cases where there was an induction 

of labour for suspected PPROM both the method of diagnosis (history and pad check 

only, history and speculum examination +/- bedside test +/- USS of mean pool depth 

of AF) and the success of the induction were evaluated. In cases where there was no 

definitive method of PPROM diagnosis (e.g. history and pad check only) or there 

was suspicion of a false positive diagnosis (recurrent USS showing normal AF 

volumes) the case would be excluded if an artificial rupture of membranes (ARM) 

was required during labour to facilitate progress.  

For cases where there was either growth restriction <5th centile or severe pre-

eclampsia diagnosed, providing that the onset of preterm labour was spontaneous 

these cases were included in our definition and these risk factors reported as possible 

signs of placental dysfunction.  

Threatened preterm labour that was later augmented were excluded (i.e. no 

symptoms of labour could be documented such as shortening or dilation of cervix, or 

ruptured membranes). 
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The workflow used the following definitions: 

Table 3.1. Definitions used for clinical diagnosis 

Classification Description 

Spontaneous 

labour 

Regular uterine activity with cervical shortening or dilation 

such that the treating clinicians judged labour to be present 

Prelabour rupture 

of membranes 

Rupture of membranes confirmed either by speculum 

examination or the AmniSure ROM or ActimPROM bedside 

test without onset of spontaneous labour in the following 12 

hours 

Caregiver initiated 

preterm birth 

Induction of labour or Caesarean section ≤36+6 weeks 

gestation without evidence of PPROM or spontaneous 

preterm labour 

 

Figure 3.2. Workflow for additional classification for women with PPROM. See Table 3.2 for 
definition of chorioamnionitis. 

No

Evidence of chorioamnionitis within 7 
days of membrane rupture

Yes

PPROM with early onset 
chorioamnionitis

Additional classification for 
PPROM

PPROM without early 
onset chorioamnionitis
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Table 3.2. Definitions of contributing factors to sPTB based on the clinical phenotyping tool 
developed by Villar et al. (2012). 

Contributing 

factors to preterm 

birth 

Description 

Chorioamnionitis Contemporaneous clinical notes documenting diagnosis of 

chorioamnionitis due to one or more of; persistent 

maternal pyrexia (≥38oC), purulent or foul-smelling 

amniotic fluid, or the use of broad spectrum antibiotics to 

treat chorioamnionitis based on the clinical situation and 

evidence of chorioamnionitis on placental histology or 

blood culture. 
Note: IF histologic evidence of chorioamnionitis only and 

no clinical features this was classified as subclinical 

chorioamnionitis. 

Placental dysfunction Evidence of placental dysfunction contributing to preterm 

labour. Defined as evidence of placental abruption at time 

of delivery or on placental histology report, birthweight 

under 5th customised centile, or severe preeclampsia  

Extra amniotic 

infection  

Contemporaneous clinical notes documenting concern 

about major systemic infection due to one or more of; 

raised white cell count (>15 x 109/L), raised C-reactive 

protein (CRP >30), persistent maternal pyrexia (≥38oC), 

microbiological culture of pathological organism from a 

normally sterile site, or the use of broad-spectrum 

antibiotics for presumed extra amniotic infection (e.g. 

UTI). 

Polyhydramnios  Maximum pool depth ≥ 10cm on ultrasound assessment 

Uterine anomaly  Documented uterine anomaly 

Maternal 

comorbidities 

Maternal medical condition that affects a major organ 

system or is associated with preterm birth (for example 

antiphospholipid syndrome, chronic hypertension, chronic 

renal failure, Elhers-Danlos syndrome, epilepsy, pre-

existing and gestational diabetes) 

Cervical shortening Received treatment for short cervical length <28 weeks 

gestation. Short cervix is defined as ≤25 mm or <3rd 

centile for gestational age on a validated cervical reference 

chart for pregnancy.   
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All participants were classified in the following mutually exclusive categories: 

Table 3.3. Final classification system. Term births highlighted in green were included as 
controls. Early PPROM (yellow) and sPTB (blue) were included as two separate groups of 
cases. 

Participant 

population 

Major classification Description of birth 

High risk  

Previous 

PPROM or 

sPTB between 

16+0 -33+6 

weeks gestation 

Term Birth ≥37+0 weeks gestation; no Rx 

for short cervix 

Birth ≥37+0 weeks gestation; Rx for 

short cervix. EXCLUDED 

Caregiver initiated 

preterm birth 

Caregiver initiated preterm birth 

Early PPROM PPROM ≤33+6 weeks gestation with 

early chorioamnionitis 

PPROM ≤33+6 weeks gestation with 

polyhydramnios 

PPROM ≤33+6 weeks gestation 

without early chorioamnionitis 

Late PPROM PPROM 34+0-≤36+6 weeks gestation 

with early chorioamnionitis 

PPROM 34+0-≤36+6 weeks gestation 

without early chorioamnionitis 

Early sPTB sPTB ≤33+6 with evidence of 

infection 

sPTB ≤33+6 without evidence of 

infection 

Late sPTB sPTB 34+0-≤36+6 

Unknown Unable to ascertain birth details 
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3.6 Sample Size and Power Calculation 

A challenge for multiomic studies is obtaining enough samples to power 

results. The power of a study is the probability of successfully detecting a given 

effect size. The importance of this remains paramount, as reflected by the American 

National Institute of Health’s funding application non-optional component of sample 

size and power analysis. Yet statisticians face challenges when asked to estimate a 

sample size required for a multiomics study.  Classical methods for calculating 

statistical power to reject a null hypothesis at a specified level of significance are not 

applicable to this problem (McKeigue. 2019). In “omics” the high dimensionality is a 

source of difficulties since the number of variables vastly exceeds the number of 

samples or participants in the studies. Some “omics” studies focus on reducing the 

risk of making a false assertion that an observed difference is true when it isn’t (type 

1 error). In GWAS studies, allele frequencies and effect size are taken into 

consideration and then a correction (e.g. Bonferroni correction) is applied for 

multiple comparisons. Most analyses of GWAS data sets consider genetic variants on 

a microarray chip comparing hundreds of thousands of SNPs. This leads to a 

stringent statistical cut-off level that defines a true variant for common and complex 

diseases (p value threshold of <5 x 10-8). Many sub significant hits may also be 

mapped to genes involved in disease that are true risk loci but differentiating them 

from false positives is difficult. 

Power analysis for high throughput sequencing based experiments (not used 

in this thesis) are even more complex. Firstly, due to the unique parameters for 

sequencing read depths that directly affect the ability to detect variants or gene 

expression and therefore need to be considered in the power analysis (Li et al. 2018). 

Secondly, the number of possible applications for sequencing greatly exceeds 
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microarray, introducing a variation of unique statistical scenarios (Li et al. 2018). 

The data platforms used for omics studies assay thousands of SNPs, gene transcripts 

and metabolites to try and account for individual differences in disease susceptibility. 

Methods described to date for estimating the sample size required for classification 

using high dimensional biomarkers require more understanding of how changes in 

one variable are associated with changes in a second variable, or covariance of the 

biomarkers (Dobbin and Song. 2013).  

Unfortunately, most of the published methodologies for microarray 

summarised by Lin et al. (2010) and Jung et al. (2012) and high dimensional data (Li 

et al. 2018) are restricted to two group (case-control) comparisons and require a user-

defined effect size. This does not allow for comparison of three groups (PPROM, 

sPTB and control). Additionally, power is calculated individually on each type of 

omics analysis, to date there has been no described method to perform a power 

calculation for multiomics data from the same patient and published studies that have 

attempted omics data combination in omics have not discussed a power calculation 

(Knijnenberg et al. 2019). 

It might be tempting to increase sample sizes in groups by retaining a broad 

classification for sPTB, e.g. including all patients who deliver <37 weeks or 

combining cases of sPTB and PPROM. Unfortunately, this is likely to have the 

opposite effect, as increasing the heterogeneity within study groups makes it very 

difficult to separate true signals from noise and importantly it will become harder to 

validate the results. Clear or stricter phenotyping of sPTB will reduce the potential 

number of samples included in the analysis, but it may serve to increase biological 

homogeneity and thus increase power by increasing effect size differences. For sPTB 
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the issue of heterogeneity is almost an inherent problem until we better understand 

the causes.  

Women experience labour at different gestational ages, experience different 

symptoms of labour, if at all. They rupture membranes and/or experience 

contractions and dilate the cervix at different relative time points of pregnancy and 

experience differences in predictive symptoms such as bleeding or a short cervix. 

However, there is sufficient evidence that, as a minimum, sPTB and PPROM behave 

differently to each other (Capece et al. 2014). 

A strength of omics data combination is that by combining multiple data 

types, this can provide increased power. Data integration can compensate for missing 

data in any single data type and multiple sources of evidence all pointing to the same 

biological pathway or gene reduce the likelihood of a false positive result.  

Our study sample is not therefore based on an a priori power calculation. 

This is a pilot analysis of the samples available from this project collected between 

1st March 2012 and 28th May 2015 to assess: 

• How many samples could be collected 

• How much ‘omics’ data would be available following quality control 

of samples due to technical requirements of the laboratory, 

• Financial limitations  

• Patient drop out or failure to follow up rate.  
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3.7 Results 

One hundred and twenty-nine women were recruited to the study. Written 

consent was obtained at the time of the first blood collection. One participant was 

subsequently excluded as she had previously only had an episode of threatened 

preterm labour. According to clinician signatures on the consent forms, I personally 

recruited 80% of all 128 participants. All women were followed up and gestational 

ages at delivery were obtained. For five participants birthweights were not available.   

Pregnancy Outcomes and Classifications 

Table 3.4 shows the final numbers recruited to each category of cases and 

controls. Twenty-four exclusions are detailed. For sPTB, PPROM and term control 

cases (highlighted in colour in Table 3.4) their demographics are shown in Table 3.5. 

Excluded cases 

Three cases were excluded as they were caregiver-initiated (iatrogenic) 

preterm births. These women did not require treatment for a short cervix and were 

delivered at 34+1, 35+3 and 36+1 for maternal cancer treatment, poorly controlled 

diabetes and fetal growth restriction respectively.  

All women who had received preterm birth prevention treatment and had a 

delivery after 37 weeks were excluded. We are unable to tell if the treatment they 

received affected the natural history of biological events and presume that 

intervention prevented a sPTB. However, it is entirely possible that some of these 

women may have achieved a term delivery without prevention treatment. As this 

group may have heterogenous biomarkers of risk, they have been excluded 

completely from analysis. One pregnancy where birth was induced following 
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PPROM at 17+1 was found to have a supernumerary ring chromosome in 17/20 cell 

lines and was excluded.
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Table 3.4 Pregnancy outcomes following delivery of 128 participants. Control cases 
highlighted in green. Preterm prelabour rupture of the membranes (PPROM) cases 
highlighted in yellow and spontaneous preterm birth (sPTB) cases highlighted in blue.  

Participant 

population 

Major 

classification 

Description of birth Number Recruited 

High risk  

Previous 

PPROM or 

sPTB 

between 16+0 

-33+6 weeks 

gestation 

Term Birth ≥37+0 weeks gestation; 

no Rx for short cervix 

60 

Birth ≥37+0 weeks gestation; 

Rx for short cervix. 

EXCLUDED 

21 

Caregiver 

initiated 

preterm birth 

Caregiver initiated preterm 

birth - EXCLUDED 

3 

Chromosomal 

abnormality 

Chromosomal abnormalities 

discovered on post-mortem 

that may have influenced 

miscarriage risk - 

EXCLUDED 

1 

Early PPROM PPROM ≤33+6 weeks 

gestation with early 

chorioamnionitis 

2 

PPROM ≤33+6 weeks 

gestations with 

polyhydramnios 

1 

PPROM ≤33+6 weeks 

gestation without early 

chorioamnionitis or known 

polyhydramnios 

10 

Late PPROM PPROM 34+0-≤36+6 weeks 

gestation with early 

chorioamnionitis 

1 

PPROM 34+0-≤36+6 weeks 

gestation without early 

chorioamnionitis  

0 

Early sPTB sPTB ≤33+6 with evidence of 

infection  

2 

sPTB ≤33+6 without evidence 

of infection 

12 

Late sPTB sPTB 34+0-≤36+6  15 
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Demographics 

Table 3.5. Demographics for participants in biomarker study split into women delivering 
after 37 weeks, Preterm prelabour rupture of membranes (PPROM) <34 weeks and 
spontaneous preterm labour (sPTB) <34 weeks. 

 Early 

sPTB 

N=14 

Early 

PPROM 

N=13 

Term 

Birth 

N=60 

P 

value 

Participant Demographics 

Maternal age, mean years +/- SD 31 (6.7) 29 (5.3) 31 (5.2) .538a 

Booking BMI, mean +/- SD 27 (5.9) 25 (3.4) 25 (4.2) .289a 

Ethnicity     

Caucasian, n(%) 14 (100) 12 (92) 54 (89) .396b 

Non-Caucasian, n (%) 0 1 (8) 7 (11) 

Smoking during pregnancy   

Yes, n(%) 1 (7) 5 (39) 16 (26) .158b 

No, n(%) 13 (93) 8 (61) 45 (74) 

Clinical Characteristics 

Gravidity, mean+/-SD 3.21 (1.3) 2.9 (1.2) 3.4 (1.6) .503c 

Parity 1.21 (0.8) 1.36 (0.9) 1.75 (1.6) .422c 

History of previous PTB 

Previous sPTB, n (%) 6 (43) 5 (39) 27 (44) .187b 

Previous PPROM, n (%) 6 (43) 6 (46) 33 (54) 

Both previous sPTB and PPROM 

(%) 

2 (14) 2 (15) 1 (2) 

Previous twin sPTB, n (%) 0 0 0 N/A 

Cervical surgery, n (%) 3 (21) 1 (8) 1 (2) .002b 

Gestational age, visit 1, mean +/- SD 

days 

16+3 (6) 16+3(4) 16+3 (5) .908a 

Cervical length visit 1, mean +/- SD 33.3 (7) 35.5 (9) 36.5 (6) .352a 

Gestational age, visit 2 143 (7) 20+3 (4) 20+2 (6) .860a 

Cervical length visit 2, mean +/- SD 21.8 (12) 27 (12) 36.4 (7) .000a 

Antiphospholipid Syndrome     

Yes, n (%) 0 0 0  

No, n (%) 14 (100) 13 (100) 61 (100) N/A 

Other chronic medical conditions     

Yes, n (%) 9 (64) 10 (77) 24 (39) .022b 

No, n (%) 5 (36) 3 (23) 37 (61) 

Polyhydramnios      

Present, n (%) 0 1 (8) 0 .054 b 

Absent, n (%) 14 (100) 12 (92) 61 (100) 

Labour and Delivery Characteristics 

Onset of labour     

Spontaneous 12 (86) 3 (21) 33 (54) .011b 

Induction 2 (14) 10  (71) 19 (31) 

No labour 0 1 (7) 9 (15) 

Gestational age at PPROM, mean 

+/- SD  

N/A 27+5 (42) N/A N/A 
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Gestational age at delivery, mean +/- 

SD days 

29+0 (33) 29+2 (40) 39+1 (9) .000a 

Birthweight, mean grams +/- SD 1395 

(779) 

1448 

(747) 

3290 

(453) 

.000a 

Neonatal gender      

Female, n (%) 5 (36) 8 (62) 23 (38) .471b 

Male, n (%) 8 (57) 5 (38) 35 (57) 

Not recorded (%) 1 (7) 0 3 (5) 

Placental Abruption      

Yes, n (%) 0 0 0 N/A 

No, n (%) 14 (100) 14 (100) 61 (100) 

Chorioamnionitis / Infection     

Yes, n (%) 2 (14) 2 (15) 0 .009b 

No, n (%) 12 (86) 11 (85) 61 (100) 

Growth <10th centile     

Yes, n (%) 2 (14) 3 (21) 11 (18) .922b 

No, n (%)  11 (79) 11 (79) 48 (79) 
aOne way analysis of variance (ANOVA). bChi squared cKruskal Wallis 
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3.8 Recruitment Feasibility 

Monthly recruitment rates are shown below in Table 3.6 with the average 

monthly recruitment figures in Figure 3.3.  

Table 3.6. Monthly recruitment figures. 

Month Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

2012  - - 1 5 3 2 2 2 1 1 4 0 

2013  3 4 6 4 7 1 10 2 4 2 1 3 

2014  2 1 3 2 3 2 4 3 1 4 7 5 

2015.  6 5 4 6 9 - - - - - - - 

 

 

Figure 3.3. Average monthly recruitment figures per year of study from LWH preterm birth 
prevention clinic. The X axis shows year of recruitment and the Y axis shows average 
number of recruited women per month.  

 

Overall there was a gradual increase in recruits per month. There are several 

possible reasons for this; firstly, the preterm labour clinic increased the overall 

number of new patients from 2012 to 2015, increasing the number of eligible 

participants. Secondly, once more funding was available laboratory staff were 

recruited to assist in processing the samples to allow clinicians to remain in clinic 
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and recruit. Thirdly, to prevent eligible patients attending clinic at the same time, and 

therefore reducing the likelihood of only one patient being recruited eligible patients 

were offered appointments approximately 30 mins apart when possible. Lastly with 

time, the running of the study became more efficient with increasing help from the 

other clinical and auxiliary staff. 

In the laboratory, no RNA was extracted following an extraction run of 24 

samples (12 patients) due to an error with the reagents from a single defective RNA 

extraction kit. This was identified and rectified with the kit supplier, but these 

samples were lost.  This is likely to be an isolated incident but for future studies, 

performing a test run with an individual sample when opening a new kit would be 

advised to avoid the loss of samples. The total number of patients from 56 that ended 

the study with a complete set of omic data at both time points was 25 (45%), 

although this could have been as high as 37 (66%) if RNA had not failed to be 

extracted.  

For full omics integration, late sPTB and PPROM were excluded to try 

creating distinct biological groups to identify biomarkers for clinically important 

preterm birth. However, for independent omics analysis such as GWAS (where meta-

analysis with other studies would be possible), a cut-off of 37 weeks has been used 

and the data for ‘late sPTB’ has been included. This is discussed in the relative 

chapters.
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3.9 Study Samples for Omic Integration  

At several stages of the recruitment process it was possible to reduce the 

number of samples contributing to the final omics analysis. Figure 3.4 illustrates at 

what stage a sample could be excluded from the dataset and the reason.  

Table 3.7 illustrates how many individual participants had datasets available 

for each layer of omics analysis and Table 3.8 shows how many participants had 

complete “omics” sets available for integration.  
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ONLY SAMPLED AT ONE TIMEPOINT 

Participant only recruited at second timepoint 

Participant did not attend scheduled follow-up 

ERROR AT VENIPUNCTURE 

Failure to collect sample, multiple attempts at collecting blood. 

Haemolysis during sampling 

Underfilling of sampling tube, inadequate ratios of blood to 

anticoagulant medium  

Specimen compromised  - e.g. clotting 

Unacceptable specimen – wrong tube container, incorrect labelling.  

  

LABORATORY ERROR 

Sample overturned, pipetting error. 

Sample unacceptable for analysis – not labelled in freezer 

 

SAMPLE PROCESSING / QUALITY CONTROL 

DNA / RNA degraded during storage or extraction.  

Contamination of sample 

Does not meet quality control thresholds  

Kit/Reagent Failure 

 

Figure 3.4. Possible areas of error in sampling process 
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Table 3.7. Omics data collected for all 103 included pregnant participants (exclusions 

detailed in Table 3.4 removed) 
Participant 

Number 

Phenotype GWAS 

(DNA) 

RNA 

16 

weeks 

RNA 

20 

weeks 

Metabolome 

16weeks 

Metabolome 

20 weeks 

Full Omic 

Integration 

16w 

Full Omic 

Integration 

20w 

1 TERM 

CONTROL 

Yes No No No Yes No No 

2 TERM 

CONTROL 

Yes No No Yes Yes No No 

3 TERM 

CONTROL 

Yes No No No Yes No No 

4 TERM 

CONTROL 

Yes No No Yes Yes No No 

5 TERM 

CONTROL 

Yes No No Yes Yes No No 

6 TERM 

CONTROL 

Yes No No Yes Yes No No 

7 TERM 

CONTROL 

Yes No No Yes Yes No No 

8 TERM 

CONTROL 

Yes No No Yes Yes No No 

10 TERM 

CONTROL 

Yes No No Yes Yes No No 

12 TERM 

CONTROL 

Yes No No Yes No No No 

13 TERM 

CONTROL 

Yes No No Yes No No No 

14 LATE sPTB Yes No No Yes Yes No No 

15 LATE sPTB Yes No No Yes Yes No No 

16 PPROM Yes No No Yes Yes No No 

17 PPROM Yes No No Yes Yes No No 

18 TERM 

CONTROL 

Yes No No Yes Yes No No 

19 LATE sPTB Yes No No Yes Yes No No 

20 sPTB Yes No No Yes No No No 

21 TERM 

CONTROL 

Yes No No Yes Yes No No 

22 TERM 

CONTROL 

Yes No No Yes Yes No No 

23 TERM 

CONTROL 

Yes No No Yes No No No 

24 TERM 

CONTROL 

Yes No No Yes Yes No No 

25 TERM 

CONTROL 

Yes No No Yes Yes No No 

27 TERM 

CONTROL 

Yes No No No Yes No No 

28 TERM 

CONTROL 

Yes No No Yes Yes No No 

29 TERM 

CONTROL 

Yes No No Yes Yes No No 

31 TERM 

CONTROL 

Yes No No Yes Yes No No 

32 PPROM Yes No No Yes Yes No No 

33 PPROM Yes No No Yes Yes No No 

34 sPTB Yes No No Yes Yes No No 

35 sPTB – 

infection 

Yes No No No Yes No No 

37 PPROM Yes No No Yes Yes No No 

38 PPROM Yes No No Yes Yes No No 
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39 TERM 

CONTROL 

Yes No No Yes Yes No No 

41 TERM 

CONTROL 

Yes No No Yes Yes No No 

43 LATE sPTB Yes No No Yes Yes No No 

44 TERM 

CONTROL 

Yes No No Yes Yes No No 

45 TERM 

CONTROL 

Yes No No Yes Yes No No 

46 TERM 

CONTROL 

Yes No No Yes No No No 

47 TERM 

CONTROL 

Yes No No Yes Yes No No 

49 sPTB Yes No No Yes Yes No No 

52 TERM 

CONTROL 

Yes No No Yes Yes No No 

53 sPTB Yes No No No Yes No No 

54 PPROM + 

chorio 

Yes No No Yes Yes No No 

55 sPTB Yes No No Yes Yes No No 

57 LATE sPTB Yes No No Yes Yes No No 

59 TERM 

CONTROL 

Yes No No Yes Yes No No 

60 PPROM Yes No No Yes Yes No No 

61 TERM 

CONTROL 

Yes No No Yes Yes No No 

62 TERM 

CONTROL 

Yes No No Yes Yes No No 

63 sPTB Yes No No Yes Yes No No 

65 sPTB – 

infection 

Yes No No Yes Yes No No 

66 sPTB Yes No No Yes Yes No No 

67 LATE sPTB Yes No No Yes No No No 

68 TERM 

CONTROL 

Yes No No Yes Yes No No 

73 PPROM Yes Yes No Yes No Yes No 

74 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 

75 sPTB Yes Yes Yes Yes Yes Yes Yes 

76 TERM 

CONTROL 

Yes Yes Yes Yes No Yes No 

77 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 

78 PPROM Yes Yes Yes Yes Yes Yes Yes 

79 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 

81 PPROM + 

chorio 

Yes Yes No Yes No Yes No 

82 PPROM Yes Yes Yes Yes Yes Yes Yes 

83 sPTB Yes Yes Yes Yes Yes Yes Yes 

84 LATE sPTB Yes Yes Yes Yes Yes Yes Yes 

85 sPTB Yes Yes Yes Yes Yes Yes Yes 

86 TERM 

CONTROL 

Yes No Yes No Yes No Yes 

87 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 

88 sPTB Yes Yes Yes Yes Yes Yes Yes 

89 TERM 

CONTROL 

Yes Yes No Yes Yes Yes No 

90 LATE sPTB Yes Yes Yes Yes Yes Yes Yes 



 

135 
 

91 TERM 

CONTROL 

Yes No Yes No Yes No Yes 

92 LATE sPTB No Yes Yes Yes Yes No No 

95 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 

96 TERM 

CONTROL 

Yes No Yes Yes Yes No Yes 

97 LATE sPTB Yes No Yes No Yes No Yes 

98 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 

101 TERM 

CONTROL 

Yes No No Yes Yes No No 

102 TERM 

CONTROL 

Yes No No Yes Yes No No 

103 TERM 

CONTROL 

Yes No No Yes Yes No No 

105 TERM 

CONTROL 

Yes No No Yes Yes No No 

107 TERM 

CONTROL 

Yes No No Yes Yes No No 

108 LATE sPTB Yes No No Yes Yes No No 

109 TERM 

CONTROL 

Yes No No Yes Yes No No 

110 LATE sPTB Yes No No Yes Yes No No 

111 TERM 

CONTROL 

Yes No Yes Yes Yes No Yes 

112 TERM 

CONTROL 

Yes No Yes Yes Yes No Yes 

113 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 

114 LATE sPTB Yes No Yes Yes Yes No Yes 

115 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 

116 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 

117 TERM 

CONTROL 

Yes No Yes Yes Yes No Yes 

118 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 

119 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 

120 LATE sPTB Yes Yes Yes Yes Yes Yes Yes 

121 LATE sPTB Yes Yes Yes Yes Yes Yes Yes 

122 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 

123 sPTB Yes Yes No Yes Yes Yes No 

124 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 

126 PPROM – 

poly 

Yes Yes Yes Yes Yes Yes Yes 

128 PPROM – 

genetic  

Yes Yes No Yes No Yes No 

129 TERM 

CONTROL 

Yes Yes Yes Yes Yes Yes Yes 
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3.10 Conclusion 

Between 1st March 2012 and 28th May 2015 from a single large preterm birth 

prevention clinic (approx. 140 new patients per year) it was possible to recruit 128 

patients meeting our specific inclusion criteria. From these patients; 61 (48%) term 

controls, 14 (11%) sPTB and 14 (11%) PPROM cases were obtained.  

RNA was only collected for a subset of 56 patients in this cohort (29 controls, 

5 sPTB, 6 PPROM). However, following sample storage, extraction and laboratory 

quality control checks using our methodologies the available data for three set omic 

integration (genomics, transcriptomics and metabolomics) at 16 weeks was 15 (51%) 

term controls, 5 (100%) sPTB and 6 (100%) PPROM cases.  

For larger cohort studies it is important to consider all the potential areas that 

samples may be lost and collect enough samples to allow for error.  Recruiting from 

a larger pool of participants (multi-site studies) depending on timescales and a priori 

recruitment targets will improve the speed of sample attainment.
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Chapter 4: Assessing genetic predisposition to 

preterm birth in women with recurrent 

spontaneous preterm birth 
 



 

139 
 

4.1 Introduction 

In this chapter the quality control and genomic analysis is discussed prior to 

data integration. As described in chapter 1, sPTB is a complex disease with a 

complex pattern of inheritance. After consideration of different methods of genetic 

analysis in chapter 2, a genome wide association study (GWAS) was chosen as the 

analytical tool of choice. A case-control design was selected to integrate with the 

other ‘-omic’ data used in this thesis.  

The underlying hypothesis of a GWAS is that there are likely to be several 

susceptibility variants for common but complex diseases. This results in minor allele 

frequencies that are high in the population rather than a single gene disorder. This is 

better known as the “common disease/common variant” hypothesis (Reich and 

Lander. 2001).  The focus of a GWAS is the study of single nucleotide 

polymorphism (SNP) frequencies within populations of interest. These single base 

pair changes act as genetic markers in a region of the genome that may be involved 

in disease presentation. This can be directly, as a functional SNP, or indirectly as a 

tag SNP that is in linkage disequilibrium with an influential SNP. Therefore, 

significant SNP associations detected from GWAS cannot be assumed to be causal 

variants. As these genetic variants are so common in the population the effect size of 

a single variant must be small, therefore, inheritance of a single SNP may only 

confer a small change in risk for the woman in pregnancy. This study will examine 

different SNPs that may confer risk.  
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4.2 Methods 

Population 

From the 128 women included in this study, 127 women had whole blood 

available for GWAS analysis. As a case-control design was used for GWAS we were 

unable to perform a three-way comparison for sPTB, PPROM and our control group 

of women delivering >37 weeks (TERM). Therefore, cases of sPTB and PPROM 

were combined to create a single sPTB group for analysis of GWAS data. The 

gestational cut-off of <37 weeks was used for “cases” and therefore early and late 

sPTB and PPROM were combined (see definitions Table 3.3).  

Allele frequencies can differ between groups of people with different ethnic 

backgrounds, and multiple ‘subpopulations’ within a dataset can lead to false 

positive associations and/or conceal true associations. This is known as population 

stratification and is an important source of bias in GWAS studies (Marees et al. 

2018). Approximately 90% of our recruited population report as Caucasian (Table 

3.5). Hapmap3 Caucasians (CEU), Han Chinese (CHB), Japanese (JPT) and Yoruba 

(YRI) were included as reference populations and participants that anchored against 

the Caucasian population were retained in the study to increase homogeneity of our 

small sample size. All (genotyped) non-Caucasians were excluded. 

DNA extraction and genotyping 

DNA was extracted from the whole blood samples using the Chemagic 

Magnetic Separation Module I (Perkin Elmer) machine in runs of 12 at the Wolfson 

Centre for Personalised Medicine, University of Liverpool. Quantification of DNA 

per sample was subsequently performed under the supervision of Dr Laurence 

McEvoy using PicoGreen® fluorometric methods and normalised according to 

Oxford Genomics Centre laboratory specifications with at least 0.5 ug of DNA as a 
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concentration of 10 ng/ul. (Appendix G) Samples were shipped to Oxford Genomics 

Centre, Oxford University for genome-wide genotyping using the UK Biobank 

Axiom Array (Affymetrix). 

The UK Biobank Axiom array chip raw data was saved in PLINK file 

formats, a tool for handling SNP data. Originally these were stored in .ped and .map 

PLINK files, and transferred to binary PLINK file format (.bed, .bim and .fam files). 

Quality control steps and analysis were performed using PLINK software version 

1.07 (http://pngu.mgh.harvard.edu/purcell/plink/) on the bioinf1 cluster 

(www.bioinf.liv.ac.uk) accessible on the University of Liverpool campus (Appendix 

H). The quality control steps described below involved the identification and 

removal of DNA samples and markers that introduce bias to the study. These critical 

steps are paramount to the success of GWAS case-control study are well described in 

the literature, and are necessary before statistically testing for association (Anderson 

et al. 2010). These steps were performed with the help and guidance from Dr Eunice 

Zhang at the Wolfson Centre for Personalised Medicine.  

Quality Control of Samples  

The quality control (QC) filtering of single nucleotide polymorphisms (SNPs) 

is an important step as part of GWAS studies. This ensures minimisation of potential 

false positives. SNP QC uses expert guided filters based on QC variables such as 

Hardy-Weinberg equilibrium (HWE) for controls (HWE p ≤ 1x10-6) and mean allele 

frequency (MAF) <0.01 for cases and controls to remove SNPs with insufficient 

genotyping quality. 

http://pngu.mgh.harvard.edu/purcell/plink/
http://www.bioinf.liv.ac.uk/
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Identification of individuals with discordant sex information 

Genetic gender was compared to clinically reported gender. As males only 

have a single X chromosome, genotypes of SNPs on chromosome X can be 

estimated to be homozygous. Females are expected to have an X chromosome 

homozygosity estimate (XHE) of <0.2 and males >0.8-1. As all participants in this 

study are female, any XHE >0.2 was considered to be a contaminant from another 

sample or a mix up and marked for exclusion.  

Low DNA quality - sample genotyping call rates  

Samples of low DNA quality or concentration often have below average 

genotyping call rates and genotype accuracy. The genotype failure rate is a measure 

of DNA sample quality. Files were created to identify missing genotypes per sample 

(.imiss file) and per SNP (.lmiss). A pre-specified threshold of > 95% individual call 

rate was required for inclusion in the analysis. 

Heterozygosity Assessment  

An excessive individual heterozygosity rate can indicate sample 

contamination with DNA from another individual, and excessively reduced 

heterozygosity can signify inbreeding, both of which require removal to ensure data 

quality.  The heterozygosity rate was calculated for each individual. The threshold 

used was 5 ± standard deviations (SD) to include as many samples as possible.  

Identity by Descent (IBD)  

Related individuals will share more alleles than what is expected by chance 

and it is important to exclude related individuals to avoid over representation from a 

particular genome. The degree of recent shared ancestry for a pair of individuals 

(IBD) was estimated. The expectation is that IBD = 1 for monozygotic twins, IBD = 
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0.5 for first degree relatives, IBD = 0.25 for second degree relatives and IBD = 0.125 

for third degree relatives. Due to genotyping error, population structure and linkage 

disequilibrium there is often some variation around these theoretical values and it is 

typical to remove one individual from each pair with IBD > 0.1875 (Anderson et al. 

2010).  

Pooled Data Analysis 

To try to ensure good quality data in our GWAS we chose a cut off for sPTB 

of <37 weeks instead of <34 weeks. Given the relatively small sample size for this 

group we compared our results to the largest published GWAS for preterm birth to 

assess whether our results showed similar findings, albeit without reaching a 

significance threshold. A pooled data-analysis with published GWAS data (Zhang et 

al. 2017) was then performed to test whether our data shows similar findings for the 

SNPs that have previously reached genome wide significance (GWAS) in a mostly 

low risk population. The R script used for this analysis has been included in the 

appendix (Appendix J). This work was performed with Dr. Till Andlauer at the Max-

Planck Institute, Munich. 

Statistical Analysis 

Descriptive statistics were performed for this case-control cohort. SPSS v.22 

was used to examine the clinical variables of the cohort for effects on sPTB outcome. 

Continuous variables; age, BMI and cervical length, were analysed using analysis of 

variance test (ANOVA).  For binary data, cervical surgery and smoking, a chi-

squared test was used. Gestational age at delivery is reported for interest as median 

and range and compared with Mann Whitney U test.  

Plink v.107 was used to perform the QC steps and add the binary file sets and 

generate the files necessary for imputation.  The imputation was performed by PhD 

https://www.psych.mpg.de/person/35541/1496336
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student Juhi Gupta using the free online Michigan Imputation Server (Das et al, 

2016), available at https://imputationserver.sph.umich.edu/index .html using 

Minimac3 (Howie et al. 2012). Minimac is a low memory, computationally efficient 

implementation of the MaCH algorithm for genotype imputation and it can handle 

very large reference panels. The genotype data were imputed against the Haplotype 

Reference Consortium (HRC) (Version r1.1 2016). The HRC is the largest and most 

relevant available panel consisting of 64,976 haplotypes of predominantly European 

ancestry. Additional phasing tools Eagle (v2.3.2) and ShapeIT (v2) allow pre-

phasing of input haplotypes for improved imputation accuracy (Delaneau et al. 

2011). Initially an extensive QC process is performed. This is to ensure the SNPs 

have the correct ID (n = 625518), same position in the genome (n=634721), SNPs 

are removed if there is a mean allele frequency difference of greater than 20% 

(n=336) and palindromic SNPs are removed (n=2713).  

Manhattan plots were generated using RStudio v.3.1.1. (R, 2017). The 

threshold for genome-wide significance is 5 x 10-8 and a suggested significance 

threshold of p= 1x10-5 was applied. LocusZoom (v0.4.8), a web based plotting tool 

(Pruim et al. 2010) was used to focus on the regions of potential genomic interest. 

Statistical software R (http://cran.r-project.org/) was used for all graphical 

representation of the results.  

Pooled data analysis was performed using RStudio v 3.1.1. (R, 2017) and 

summary statistical outcomes of the top 10,000 SNPs from Zhang et al. (2017) were 

obtained from the GeneStation repository (www.genestation.org/analysis/gwas/ 

Zhang_2017/discovery).

https://imputationserver.sph.umich.edu/index%20.html
http://cran.r-project.org/
http://www.genestation.org/analysis/gwas/
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4.3 Results 

From a pool of 127 participants, 82 individuals remained for analysis (35 

cases and 47 controls) following all QC steps.  

Low DNA quality 

In the total dataset there were 830,115 SNPs present originally. After 

frequency and genotyping pruning 644,287 SNPs were remaining. 

Discordant sex information  

One sample failed gender check. This sample failed to meet the XHE of <0.2 

but did not score >0.8 to test male. Given the nature of the study it is certain the 

sample that we collected and processed in Liverpool is female, and inclusion of the 

sample was considered.  However not all processing of the sample occurred in 

Liverpool and sample contamination or mix up could not be excluded. Additionally, 

the quality of the DNA in the sample may be insufficient for reliable results and 

therefore the sample was excluded. 

Heterozygosity Assessment  

No samples were excluded after applying an individual genotyping call rate 

and heterozygosity rate QC step (Figure 4.1). 

Identity by Descent (IBD)  

Four participants samples were excluded due to cryptic relatedness with an 

identity by descent (PI_HAT) threshold score >0.1875 when paired with another 

sample (Figure 4.2). The individual removed from the pairs identified are shown in 

Table 4.1. 
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Figure 4.1 Individual genotyping call rate and heterozygosity rate. The horizontal red 

dashed line indicates the 95% genotyping call rate applied, the vertical red dashed lines 

indicate 5 ± SD and the green dashed lines indicate 3 ± SD of heterozygosity rate.  
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Figure 4.2 Estimated mean pairwise Identity by descent (IBD) of each participant.  

 

 

Individual removed from pairs 

with IBD >0.1875 
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Table 4.1 Pairwise comparison of individuals with shared ancestry (PI_HAT >0.1875) F_MISS 
indicates the missing call rate. PI_HAT indicates the identity by descent threshold. The 
shaded participants were recorded for removal at the end of the quality control pro 

Individual ID 

1 

F_MISS 

Individual ID 

2 

F_MISS PI_HAT 

PTB_11A 0.01272 PTB_107A 0.009018 0.2213 

PTB_11A 0.01272 PTB_23A 0.007393 0.2192 

PTB_11A 0.01272 PTB_31A 0.01267 0.2164 

PTB_11A 0.01272 PTB_60B 0.01336 0.2306 

PTB_11A 0.01272 PTB_62B 0.005675 0.2288 

PTB_107A 0.009018 PTB_23A 0.007393 0.2139 

PTB_107A 0.009018 PTB_31A 0.01267 0.2164 

PTB_107A 0.009018 PTB_60B 0.01336 0.2231 

PTB_107A 0.009018 PTB_62B 0.005675 0.2253 

PTB_23A 0.007393 PTB_31A 0.01267 0.2266 

PTB_23A 0.007393 PTB_60B 0.01336 0.2286 

PTB_23A 0.007393 PTB_62B 0.005675 0.2249 

PTB_31A 0.01267 PTB_60B 0.01336 0.2281 
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Ethnicity 

Twenty-three additional participants were excluded after being identified as 

ethnic outliers according to their projection onto the reference populations (Figure 

4.3). One hundred participants that clustered within the Caucasian population were 

retained in the study (n=100). This was ten less than expected from self-reported 

ethnicity (Table 4.2). 

 

Figure 4.3. Principal component analysis (PCA) of genetic ethnicities of PTB pilot 

study participants. (C1 = Principal component 1, C2 = Principal component 2). 

Study samples are labelled in purple, most overlap with blue circles (Caucasian 

Hapmap population) 27 ethnic outliers were identified for removal. PTB - Liverpool 

PTB Clinic Cohort; CEU - Utah residents with Northern and Western European 

ancestry from the CEPH collection;  CHB - Han Chinese in Beijing; China JPT 

Japanese in Tokyo, Japan; YRI - Yoruba in Ibadan, Nigeria 
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Table 4.2. Self-reported ethnicities compared to genetic ethnicities 

 Self-Reported 

Ethnicities 

Genetic 

Ethnicities 

Caucasian (White British)  110 100 

Caucasian (other)  2 Excluded 

African Origin / YRI (Black British) 6 Excluded 

Chinese 1 Excluded 

Asian-Bangladeshi/Indian/Sri 

Lankan/Other 

4 Excluded 

Not reported 2 Excluded 

Mixed ethnicity 2 Excluded 

 

Population 

The seventeen cases treated for short cervix were removed from the final 

quality control file before imputation for reasons discussed in chapter three. 

Participant Characteristics 

Demographic and pregnancy related outcome for all preterm birth 

participants are described in chapter 3. Table 4.3 describes just the participant 

characteristics for the 35 cases and 47 controls whose data was available for this 

GWAS analysis.  

The groups show no demographic differences in age, BMI, parity and 

smoking rates. Of note are six women who have had cervical surgery in addition to a 

previous pregnancy loss (4 single LLETZ, 2 multiple LLETZ and 1 knife cone 

biopsy) who are ‘cases’ due to a subsequent preterm birth. This is compared to zero  

 



 

151 
 

Table 4.3. Demographic and clinical characteristics for preterm birth biomarker study 
participants included in genome wide association analysis 

 sPTB <37 weeks 

(n=35) 

Term delivery ≥37 

weeks (n=47) 

P value 

Maternal Demographics    

Age (SD) 29.0 (5.0) 30.4 (4.8) .216 

BMI (SD) 25.4 (4.9) 24.2 (4.2) .226 

Parity (SD) 1.4 (1.0) 1.7 (1.6) .296 

Cervical surgery 6 (17%) 0  .016 

Smoking in Pregnancy 9 (25.7%) 13 (28%) .503 

History of sPTB  21 (60%) 20 (43%) .205 

History of PPROM 12 (34%) 24 (51%) .130 

Pregnancy Features    

Cervical length at 16 weeks 

(SD) 

32.4 (8.0) 36.83 (6.5) .009 

Cervical length at 20 weeks 

(SD) 

26.32 (10.7) 37.28 (6.3) .000 

Delivery Outcomes    

Gestational Age at Delivery 

(median, range) 

33+5 (17+2 – 36+6) 39+3 (37+0 – 41+5) .000 

 

women with a history of cervical surgery in the term pregnancy group, however this 

difference is not shown to be statistically significant (p 0.16).  

There is an expected statistically significant difference between cervical length at 16 

and 20 weeks between the sPTB group and the term cohort. Cervical length is a 

known risk factor for sPTB and women with a cervical length below the 3rd centile 
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receive preventative treatment. Participants who required treatment for a short 

cervix, and reached term, possibly suggesting successful treatment, have been 

removed from the term/control cohort. Thus, artificially increasing the difference in 

cervical lengths between these groups. Interestingly the mean cervical length 

difference between 16 and 20 weeks is approximately a change of 6 mm shorter in 

the high-risk group compared to no change in the term delivery group. 

Genome Wide Association Analysis  

SNP frequencies of women with recurrent sPTB <37 weeks were compared 

to women with only a history of sPTB <34 weeks. No SNPs reached genome wide 

significance (Red line on Figure 4.4). However top SNPs on chromosome 3 and 16 

fell just below genome wide significance and some interesting SNPs and SNP stacks 

can be seen in chromosome 11, 12, 21 and 22 which were investigated further.  

On the Manhattan plot (Figure 4.4) the x -axis shows each SNP position 

organised by chromosome, shown in black and grey blocks. On the Y-axis is the 

negative logarithm of the P-value for association of sPTB in cases compared to 

controls for each single SNP. Each block is composed of thousands of dots, each dot 

representing one SNP. The strongest associations with the trait have the smallest p 

values, therefore their negative logarithms will be the largest number on the Y axis.  

The areas of interest include SNPs that fall just below genome wide 

significance but also the appearance of stacked towers of SNPs suggesting that 

potentially multiple SNPs from the same chromosome region or even gene are 

associated with the sPTB trait.  

These regions of interest on the Manhattan plot were then examined using 

LocusZoom, to identify the SNPs of interest above the suggestive threshold. (Figures 

4.5-4.9) The SNPs were mapped back to their genes to identify if the biological 
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function of the gene made the gene target a possible candidate for a risk profile of 

sPTB in pregnancy. 
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Figure 4.5 Regional LocusZoom plot of top hit from the Manhattan plot in Figure 4.4 on 
chromosome 3 

 
Figure 4.6 Regional LocusZoom plot of top hit from the Manhattan plot in Figure 4.4 on 
chromosome 16 



 

156 
 

 

Figure 4.7 Regional LocusZoom plot of top hits from the Manhattan plot in Figure 4.4 on 
chromosome 22

 

Figure 4.8. Regional LocusZoom plot of top hits from the Manhattan plot in Figure 4.4 on 
chromosome 11 
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Figure 4.9 Regional LocusZoom plot of top hits from the Manhattan plot in Figure 4.4 on 

chromosome 12 
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Pooled Data Analysis 

Figure 4.10 is taken from the GWAS publication by Zheng et al. (2017) who also 

used <37 weeks as their cut off for sPTB. They identified two genes, EEFSEC and 

EBF1 (shown in Figure 4.10) associated with sPTB above the genome-wide 

threshold level. Pooled data analysis with the same SNPs used to tag these genes 

using both published data (Zhang et al. 2017) and Liverpool data and found that only 

EEFSEC shows similar odds ratios (OR) in our population. Our data remains 

inconclusive for EBF1 due to wide confidence intervals. (Table 4.4; Figures 4.11).  

 

 

Figure 4.10. Figure from Zhang et al. “Genetic Associations with Gestational Duration and 

Spontaneous Preterm Birth”, N Engl J Med 2017;377:1159 demonstrating SNPS that reach 

genome wide significance in red and those genes meeting a suggestive threshold in orange.  
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Table 4.4. Comparison of odds ratios for sPTB SNPs associated with EEFSEC and EBF1 from 
Zhang et al. (published data) and Liverpool data from this thesis. 

 Alleles Zhang et al. (2017)  

Odds Ratio (95% 

CI) 

Liverpool 

Odds Ratio (95% CI) 

EEFSEC    

rs2955117 A/G 1.20 (1.14 – 1.26) 2.01 (1.28 – 2.74) 

EBF1    

rs2963463 C/T 1.23 (1.18-1.28) 0.93 (0.19-1.66) 

 

 

 

Figure 4.11. Forest plot demonstrating comparison of odds ratio (OR) band confidence 
intervals (CI) between Liverpool and Zhang et al. 2017 data for A) SNP rs2955117_A 
mapped to the EEFSEC gene and B) SNP 2963463_C mapped to the EBF1 gene. 
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4.4 Discussion  

Our study did not reveal any genes with genome wide significance, but 

several SNPs were identified above a pre-specified threshold level for significant 

association. The top SNPs and SNP towers were investigated on chromosomes 3, 11, 

12, 16 and 22. All but rs35156804 on chromosome 3 and rs17298557 on 

chromosome 12 were identified as intronic variants and did not map directly to a 

known gene.   

SNP rs35156804 mapped just under the genome wide significance level was 

located to chromosome 3 on EPHB1 gene. EPH receptors are the largest family of 

receptor tyrosine kinases (RTKs) and are divided into two subclasses, EPH A and 

EPH B (Figure 4.12). Originally, they were identified as mediators of axon guidance 

but now EPH receptors are implicated in many processes, including injury and 

inflammation (Ivanov and Romanovsky. 2006).  

Figure 4.12 Domain structures of EPH receptors and ephrins. Figure taken from Wei, W., 
Wang, H., & Ji, S. 2017. Paradoxes of the EphB1 receptor in malignant brain tumours. 
Cancer Cell International, 17, 21. 
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Their role in inflammation and the immune system remains unclear. A study 

found that ephrin-B1 is highly expressed in peripheral blood lymphocytes (PBLs) 

obtained from patients with rheumatoid arthritis (Kitamura T. 2008). Ephrin-B1 

ligand and EphB1 receptor are thought to play an important role in this inflammatory 

condition through influencing function of T cells through stimulation of the 

production of TNF-alpha in PBLs and IL-6 in synovial cells (Kitamura T. 2008). The 

function of EphB1/ephrin signalling in the development of immune organs and the 

corresponding mechanism of immune regulation are an area for future study and may 

also be implicated in pregnancy.  

The EPHB1 gene has been previously linked to sPTB but only, at present, in 

animal models investigating mechanisms of uterine stretch and over-distension. One 

study using a non-human primate model of pigtail macaques demonstrated that 

EPHB1 was significantly downregulated in uterine myometrium that had been 

excessively stretched using balloon catheterisation to trigger preterm labour 

compared to controls when measuring mRNA levels (Waldorf et al. 2015). 

Therefore, this provides a rationale to explore the mechanistic role of EPHB1 

further in reproductive tissues. 

SNP rs17298557 mapped to gene PLXNC1 on chromosome 12 (Figure 4.9). 

However, there was no evidence of a tower of SNPs to suggest that other SNPs in 

this area or on this gene showed an association between cases and controls making it 

less likely that this gene is truly associated with preterm birth. PLXNC1 has been 

linked to involvement in inflammatory response which suggests potential biological 

plausibility behind this finding. This gene encodes a member of the plexin family. 

Plexins are transmembrane receptors for semaphorins, a large family of proteins that 

regulate axon guidance, cell motility and migration, and immune response (NCBI 
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2018. Accessed https://www.ncbi.nlm.nih.gov/ gene/10154). There are, to date, no 

published associations of this gene in pregnancy in either human or non-human 

models, therefore further validation of this finding would be required before planned 

investigation of its role in sPTB is taken further.  

Pooled data analysis of Liverpool data compared to Zhang et al. (2017) 

investigated the performance of just a couple of SNPs on known genes of interest 

rather than all SNPs. In the EEFSEC gene; the Liverpool data shows strong 

agreement with the directionality of this gene with an odds ratio and 95% CI of 2.01 

(1.28 – 2.74) for sPTB <37 weeks for SNP rs2955117 (Figure 4.11). This gene 

encodes selenocysteine tRNA-specific eukaryotic elongation factor which is aides in 

the incorporation of selenocysteine into selenoproteins. The physiologic functions of 

selenium have been linked both to the parturition process and preterm birth (Rayman 

et al. 2011, Zhang et al. 2017). Additionally, in a population of preterm very low 

birth weights neonates they have been found to be deficient in selenium at birth and 

supplementation at 10 µg/day reduces their risk of late-onset sepsis (Aggarwal et al. 

2016). Therefore, we would agree that further evaluation of the role of maternal 

selenium micronutrient status on prematurity risk should be investigated, both in the 

general obstetric population and specifically within the Liverpool population. 

Interestingly, our data was not able to support the association of EBF1 

involvement with sPTB within our population with an OR (95%CI) of 0.93 (0.19-

1.66) compared to Zhang et al. OR (95%CI) 1.23 (1.18-1.28). There is a large 

confidence interval around the Liverpool OR and these data are largely inconclusive 

with relation to this gene and its association with sPTB in the Liverpool population. 

This is most likely to be due to weaknesses in our study design with very low 

numbers in this case control study, which only makes the strong agreement of the 

https://www.ncbi.nlm.nih.gov/%20gene/10154
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directionality of the EEFSEC gene more interesting. Alternatively, this difference 

may be related to the comparison of a high-risk population (Liverpool) with a low 

risk population (Zhang et al. 2017). 

EBF1 encodes for early B-cell factor and is important for B-cell 

development. It has been associated with control of blood pressure and metabolic 

risk (Zhang et al. 2017) and therefore may contribute to preterm birth more generally 

through these pathways that influence gestation, rather than pregnancy or sPTB 

specific pathways. A high-risk population with recurrent preterm births such as ours 

may not select for this gene as strongly as a low risk or general pregnancy 

population.  

There are two primary platforms in chip-based microarray technology for 

assaying upwards of one million SNPs. These two competing technologies, 

Affymetrix (Santa Clara, CA) and Illumina (San Diego, CA) will choose different 

SNPs for their assays and use slightly different technologies. The UK Biobank 

Axiom Array (Affymetrix) was chosen for this project due to the overall genomic 

coverage which comprises of 820,967 genetic markers. This is also the array used by 

the UK Biobank (www.ukbiobank.ac.uk), a large research biobank of 500,000 

participants from the UK which could provide data for meta-analysis. As we have 

demonstrated results of multiple GWAS can be pooled together to perform meta-

analysis, developed to examine and refine significant effect sizes of published 

GWAS investigating the same disease. Meta-analysis becomes increasingly difficult 

if studies use different genotyping platforms and different SNP marker sets, therefore 

we have tried to stay in line with current major health resources. 

The small sample size of our study is a significant limitation that increases 

the likelihood of finding a false positive result with the hundreds and thousands of 

http://www.ukbiobank.ac.uk/
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multiple comparisons on only a relatively small number of cases and controls. 

Nevertheless, despite the small number the quality of the clinical phenotype is 

excellent, and this cohort is particularly unusual as the women represented by the 

‘cases’ have had recurrent sPTB not just a single preterm birth. To obtain this type 

and quality of data on the scale necessary to be confident in the findings and validate 

SNPs of interest will take years of work and the collaboration of many groups, 

therefore meta-analysis is likely to become a predominant method of genomic and -

omic research in the field of sPTB research.  

The ability to extrapolate our findings into other non-Caucasian populations 

is another potential weakness, as we excluded non-Caucasians to reduce spurious 

findings. Disease associating alleles can have different frequencies in different 

populations as a result of demographic events, such as migration.  

The most difficult decision for this –omics analysis was deciding on a 

preterm birth cut-off for our groups. A <34 week cut-off would be more in keeping 

with the other omics analysis layers (where this has been used as a cut-off), however 

making the number of cases smaller would have negatively affected the quality of 

our results and increased the likelihood of false positive findings resulting in poor 

data quality for the –omics combination. Consequently, a <37 week cut-off was 

chosen for this omic layer only. Encouragingly the SNP rs2955117_A mapped to the 

EEFSEC gene showed the same directionality as the largest GWAS published in this 

field of research, which supports our findings that this SNP falls just below the 

genome wide significance threshold in this high-risk population. 
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4.5 Conclusion 

There is recent evidence from a GWAS study that supports the genetic 

predisposition of sPTB. Our data reinforces the finding that EEFSEC, a gene 

involved in the creation of selenoproteins, is associated with sPTB. Inconclusive 

results were found for EBF1 which may be attributed to the small sample size or due 

to our rare population of women with recurrent sPTB, as opposed to women with just 

one sPTB. We found no SNPs in our cohort that were of genome wide significance, 

but several SNPs fell above a suggestive threshold. A SNP from the EPHB1 gene fell 

just below genome wide significance and further investigation of this gene in the role 

of sPTB should be considered in other omic layers from this cohort; particularly as 

this gene has previously been shown to be downregulated in mammal models of 

sPTB (Kin et al. 2016).
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Chapter 5: Longitudinal Transcriptomic Analysis 

for the Prediction of Spontaneous Preterm Birth  
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5.1 Introduction 

Transcriptomics is the study of all RNA molecules in a cell, otherwise known 

as ‘the transcriptome’ (Wang et al. 2009). The biomarker potential for disease 

prediction of RNA was identified over two decades ago (Kusec et al. 1994, Seal et al. 

1995, Gillis et al. 1995) and since then biomarker discovery in transcriptomics has 

occurred for many diseases, but most prominently in the field of oncology (Xi X. 

2017). Most transcription studies focus on the measurement of cell messenger RNA 

(mRNA) and microarray technology allows examination of relative levels of gene 

transcripts to establish which genes are being up or down regulated at a given 

moment in time.  

As addressed in the literature review in Chapter 2 there have been several 

studies looking at transcriptomics in both the threatened and asymptomatic high-risk 

sPTB population. A metanalysis of three studies (n=339 maternal whole blood 

samples; n=134 preterm, n=205 term) identified by the Gene Expression Omnibus 

(GEO) database found a set of 210 significant differentially expressed genes in 

maternal blood (Vora et al. 2018). Many of these were downregulated immune 

related genes. Based on the maternal data from this study, genes and cell types 

associated with innate immunity were upregulated in sPTB, while those relevant to 

adaptive immunity were downregulated. However, several limitations still exist with 

the data, including the small number of studies with publicly available data that can 

be aggregated. Samples lack demographic information as well as detailed clinical 

annotations and are heterogeneous, making comparison difficult. Examples of 

heterogeneity include the type of study (cohort or case-control), definitions and 

populations or phenotypes of preterm birth (i.e. asymptomatic and threatened 

preterm labour, early and late sPTB). Despite these limitations, a link to regulation of 
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immune function is a recurring theme in sPTB research and study of the 

transcriptome demonstrates potential for biomarker discovery.  

Due to the limitations of cost only a subset of the women in this study 

provided RNA samples. I examined gene expression across the transcriptome, at 16 

and 20 weeks of pregnancy between women with sPTB, PPROM and term deliveries 

(>37 weeks) in our cohort to identify the leading pathways demonstrating 

differentiation of gene expression profiles. 
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5.2 Methods  

Population 

Samples of whole blood were obtained from 58 participants (94 samples). 

2.5ml of whole blood was stored in PAXgene Blood RNA Tube and frozen at -80oC 

until RNA extraction. Following thawing to room temperature, total RNA was 

extracted using the PAX gene blood RNA Kit (PreAnalytix/QIAGEN) adhering to 

the manufacturer’s protocol (Appendix I). Purification occurred with a centrifugation 

step to pellet nucleic acids in the PAXgene Blood RNA Tube. The pellet was washed 

and resuspended, followed by manual purification.   

Quality Control of RNA prior to Hybridization 

RNA quantity and purity was established using a NanoDrop (ND) 

spectrophotometer. The A260 value was used for RNA quantification. RNA has a 

maximum absorption at 260 nm and RNA concentration is determined by the 

following conversion; an A260 of 1.0 is equivalent to 40 µg/mL of RNA. 

In addition, measurements were also taken at 280nm.  The A260/A280 ratio 

is an indication of the level of contamination of protein, DNA, phenol, ethanol and 

salts in the sample. A high-quality RNA sample is free of these and contamination 

affects how efficiently RNA is amplified prior to hybridisation to the array chip. Pure 

RNA has an A260/A280 ratio of 2.1, however values between 1.7-2.2 were 

considered acceptable for our protocol. The ND sample values were checked prior to 

freezing at -80 in preparation for transfer to the Centre for Genomic Research 

(CGR), University of Liverpool.  

The RNA integrity was established using the Agilent 2100 Bioanalyser 

(Agilent Technologies, Santa Clara, CA). Reverse transcribing partially degraded 
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mRNA can generate cDNA that lacks parts of the coding region. Therefore, only 

samples with an RNA integrity number (RIN) >7 were hybridised to Clariom™ D 

Assay, human (Affymetrix/Thermo Fischer Scientific).  

RNA Amplification, Purification, Quantitation & Hybridization 

For RNA amplification and gene chip cartridge array hybridization the 

GeneChip™ WT PLUS Reagent Kit was used and the manufacturers protocol was 

followed (Figure 5.1). Initially RNA controls were prepared and diluted and labelled 

together with the total sample RNA. The hybridization intensities of the controls help 

to monitor the labelling process independently from the quality of the starting RNA 

samples. Then first strand complimentary DNA (cDNA) was synthesised in a reverse 

transcription procedure. Total RNA was primed with primers containing a T7 

promoter sequence. The reaction synthesized single-stranded cDNA with T7 

promoter sequence at the 5' end. Then second strand cDNA was synthesised. Single 

stranded cDNA was converted to double stranded cDNA. This step used RNase H to 

degrade RNA whilst DNA polymerase synthesised the second strand to act as a 

template for synthesising and amplifying antisense RNA (complimentary RNA). 

This method of RNA sample preparation is based on the original T7 RNA 

polymerase in vitro transcription (IVT) technology known as the Eberwine or RT-

IVT method (Van Gelder et al. 1990). A purification step then removed 

unincorporated nucleotides, salts, enzymes and inorganic phosphates in preparation 

for the next single stranded cDNA synthesis step. Second cycle primers including 

dUTP at a fixed ratio relative to 
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Figure 5.1. WT PLUS Amplification and Labelling Process. Image taken from 

GeneChip™ WT PLUS Reagent Kit Manual Target Preparation for 

GeneChip™Whole Transcript (WT) Expression Arrays User Guide 

T7 Promoter 

 

T7 Promoter 
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dTTP were then used in the next cDNA synthesis step. This was to allow 

incorporation of uracil into the cDNA strand to allow for easier fragmentation. 

Template RNA was then hydrolysed by RNase H leaving single-stranded cDNA. To 

prepare the cDNA for fragmentation and labelling another purification step removed 

excess salts and unincorporated nucleotides. Fragmentation then occurred by uracil-

DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease 1 (APE 1) at the 

unnatural dUTP sites in the cDNA. The fragmented cDNA is then labelled by 

terminal deoxynucleotidyl transferase (TdT) and a proprietary labelling reagent 

covalently linked to biotin ready for chip hybridization. The chip was loaded onto the 

Affymetrix GeneChip™ Scanner 3000 7G for scanning.  

The Clariom™ D chip was selected, as at the time of the study it had the most 

comprehensive cover of the human genome. Clariom D can detect greater than 

540,000 transcripts, which was the most comprehensive coverage of the human 

transcriptome at the time of the study. This was to maximise discovery of any 

actionable biomarkers and ensure any rare or low expressing transcripts not detected 

by other methodologies were not missed. 

Affymetrix® Expression Console™ software was required to perform QC 

analysis of transcriptome data and was downloaded from the Affymetrix website as 

part of the Transcriptome Analysis Control (TAC) Software. 

(https://www.thermofisher.com/uk/en/home/life-science/microarray-

analysis/microarray-analysis-instruments-software-services/microarray-analysis-

software/affymetrix-expression-console-software.html). Probes were annotated by 

this software using NetAffx information associated with this particular probe set. 

Outliers were identified if they had two standard deviations away from the mean of 

the metric values for this experiment. Hybridizations that consistently had metric 

https://www.thermofisher.com/uk/en/home/life-science/microarray-analysis/microarray-analysis-instruments-software-services/microarray-analysis-software/affymetrix-expression-console-software.html
https://www.thermofisher.com/uk/en/home/life-science/microarray-analysis/microarray-analysis-instruments-software-services/microarray-analysis-software/affymetrix-expression-console-software.html
https://www.thermofisher.com/uk/en/home/life-science/microarray-analysis/microarray-analysis-instruments-software-services/microarray-analysis-software/affymetrix-expression-console-software.html
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values at the tails of distribution were removed to prevent problematic downstream 

analysis. An overview of the quality control steps performed by CGR are shown in 

Figure 5.2. 

Once the metrics were run, a link was prepared by the Centre for Genomics 

Research to access the data. Further bioinformatic analysis was performed by Juhi 

Gupta (University of Liverpool) and Professor Bertram Müller-Myhsok (Max-Planck 

Institute, Munich, Germany and University of Liverpool). Microarray CHP files were 

normalised using Robust Multi-array Average and scaled (Bioconductor, R).  

Once the QC steps were completed, clinical data and phenotypic 

classification was used to remove cases that did not qualify as sPTB <37 weeks, 

PPROM <37 weeks or TERM delivery. Only samples that had both timepoints were 

included in the analysis.  

Differential gene expression was initially performed between sPTB and 

PPROM at Timepoint 1 (16 weeks) and Timepoint 2 (20 weeks) to determine if any 

gene was differentially expressed between these two subtypes of sPTL.  
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Figure 5.2. Expression Console Software Workflow. The steps in red were performed by the 
Centre for Genomic Research prior to exportation of the data files for further analysis.  
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Statistical Analysis  

The machine learning approach used was random forest methodology 

(Breiman. 2001) performed with the R-package “rager”. The basis of the machine 

learning method is the ‘decision tree’ which asks questions of the data and plots all 

the possible answers (Figure 5.3). The random forest combines many decision trees 

together into a single model. The target is what the model should predict, those 

women with sPTB, PPROM or term delivery. The features are the columns of data in 

the data matrix used as input data (i.e. transcript levels per individual). We expect 

there to be some relationship between the features and the target value and the model 

will ‘learn’ these relationships during training. To do this, the model splits the data 

into a training set and a test set. On the test set, the model will ‘see’ the preterm birth 

classifications of the target and formulate ‘questions’ of the features to create a 

predictive model.  Then on the test set, the model does not know the target 

classifications and tries to classify them using just the data features. The answers can 

be compared to our classifications (‘true’ values) to judge how accurate the model 

performs.  This is performed in an out-of-bag (OOB) fashion so model building and 

testing are not confounded.  

The name “random” forest gets its name because each decision tree in the 

model considers a random subset of the data features when forming its ‘questions’. 

The random collection of features is called a ‘node’ and these input co-ordinates are 

what the model subsequently splits on.  Individually decision trees may have a wide 

variance in prediction of the outcome, but on average many thousands of decision 

trees will get closer to the correct answer. This leads to more overall robust 

predictions as it increases diversity in the model.  
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Of note, for this analysis we did not use the random forest for prediction in its 

original usage, but rather focussed on the possibility of obtaining variable 

importance’s in a multivariate setting. In this analysis, 10,000 trees were generated 

aiming to predict the phenotype of interest. Historically random forest models have 

been biased in such a way that categorical variables with a large number of 

categories are preferred (Altmann et al. 2010). Therefore, we used a normalising 

feature importance measure to correct feature importance bias called permutation 

importance score (Altmann et al. 2010). From this, the permutation importance was 

taken and the scale function in R was executed expressing the permuted importance 

in terms of a pearsonised variate. Variable importance values of five standard 

deviations above the mean variable importance was used for further Gene Set 

Enrichment Analysis (GSEA). In addition, we also performed a confirmatory 

analysis to verify the variable importance’s identified using the alternative method of 

Janitza et al. (2016) and found very good agreement between the two approaches.  

Gene Set Enrichment Analysis (GSEA) 

Pre-ranked GSEA (Subramanian et al. 2005) was used to determine 

significantly enriched gene sets/pathways.  To achieve our aim, Functional Mapping 

and Annotation (FUMA) tool (Watanabe et al. 2017) was used to identify the 

enriched genes and associated systems. As described above, transcripts exhibiting 

more than five standard deviations above the mean variable importance were used. 

GENE2FUNC (gene to function) option was used to explore the significance of 

identified pathways. Identified pathways were further explored using the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) pathway database.  



 

178 
 

Hierarchical Clustering of Expression Profiles  

To measure the non-linear statistical dependence between random variables a 

Randomised Dependence Coefficient (RDC) was used (Lopez-Paz et al. 2013) and 

extended (Jia et al. 2019, in preparation) to define the distance metric used in 

hierarchical clustering.  
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5.3 Results 

From 58 women with whole blood RNA samples, 27 women were included 

in the final analysis. (Figure 5.4/Appendix K) RNA was available for analysis on 16 

term controls (NORM), 9 sPTB <37 weeks (SPON), 2 PPROM < 37 weeks 

(PPROM). No predictive clinical variables were significantly associated with sPTB 

(Table 5.1).  

Quality Control RIN values can be seen in Appendix J. Classical differential 

expression analysis did not reveal significantly different expression values for any of 

the transcripts measured, likely owing to small sample size.  

Following random forest analysis, 178 transcripts had ENSEMBLE ID’s 

suitable for further analysis and were subject to GSEA. The R code used for the 

random forest analysis is available to view in Appendix K and an example of one of 

the 10,000 trees is shown in Figure 5.5. Functional Mapping and Annotation of 

Genome-Wide Association Studies (FUMA) demonstrated significant enrichment of 

the selenoamino acid metabolism pathway in the high-risk preterm birth population 

(Figure 5.6). Three significant genes highlighted out of 26 genes from the selenium 

metabolism pathway (CTH, LCMT1, TRMT11) (Table 5.2). The p value is 3.84e-3 

after adjusting for multiple testing across the entirety of KEGG pathways.  

Clusters of women delivering at term (NORM), sPTB (SPON) and PPROM 

(PPROM) are represented in Figure 5.7. The hierarchical clustering indicates there 

are differences between these phenotypes across the selenoamino acid metabolism 

pathway.
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Table 5.1. Demographics of participants in transcriptomic study 

 sPTB 

N=9 

Early 

PPROM 

N=2 

Term 

Birth 

N=16 

P value 

Participant Demographics 

Maternal age, mean years +/- SD 31.3 (5.8) 32.5 (0.7) 31.3(5.6) .959 a 

Booking BMI, mean +/- SD 27.9 (6.7) 24.5 (1.8) 24.6 (3.0 .250a 

Ethnicity     

Caucasian, n(%) 8 (89) 2 (100) 14 (87.5) .492 b 

Non-Caucasian, n (%) 1 (11) 0 2 (12.5) 

Smoking during pregnancy   

Yes, n(%) 2 (22)  0 5 (31) .606b 

No, n(%) 7 (88) 2 (0) 11 (69) 

Clinical Characteristics 

Gravidity, mean+/-SD 4.1 (1.6) 3 (0) 3.75 (2.1) .507 c 

Parity 1.4 (1.0) 1.5 (.71) 1.7 (2.3) .771 c 

History of previous PTB 

Previous sPTB, n (%) 5 (56) 1 (50) 8 (50) .964 b 

Previous PPROM, n (%) 4 (44) 1 (50) 8 (50) 

Both previous sPTB and PPROM 

(%) 

0 0 0 N/A 

Previous twin sPTB, n (%) 0 0 0 N/A 

Cervical surgery (single LLETZ), n 

(%) 

0 0 1 (6.3) .700 b 

Gestational age, visit 1, mean +-/- 

SD days 

114 (4) 111.5 (.7) 115 (4) .574 a 

Cervical length visit 1, mean +/- SD 33.3 (5) 38 (4) 34.6 (5) .545 a 

Gestational age, visit 2 141 (4) 140 (.7) 142 (6) .669a 

Cervical length visit 2, mean +/- SD 30 (8) 23 (4) 36.6 (7) .0.16 a 

Other chronic medical conditions     

Yes, n (%) 6 (67) 2 (100) 5 (31) .074 b 

No, n (%) 3 (33) 0 11 (69) 

Polyhydramnios      

Present, n (%) 0 0 0 N/A 

Absent, n (%) 9 (100) 2 (100) 16 (100) 

Labour and Delivery Characteristics 

Onset of labour     

Spontaneous 7 (78) 0 5 (31) .037 

Induction 0 1 (50) 9 (56) 

No labour 2 (22) 1 (50) 2 (13) 

Gestational age at delivery, mean +/- 

SD days 

239 (18) 221.5 

(25) 

271 (8) .000 

Birthweight, mean grams +/- SD 2338 

(567) 

1847 

(584) 

3209 

(522) 

.000 

Neonatal gender      

Female, n (%) 4 (44) 2 (100) 6 (38) .245 

Male, n (%) 5 (56) 0 10 (62)  
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Figure 5.5. One of 10,000 trees from random forest analysis. Nodes are using data from 
week 16, week 20 and the difference between both weeks to differentiate the data into 
groups. Gene IDs are shown. 

 

 

 
Table 5.2. Functional Mapping and Annotation (FUMA) summary of enriched genes. N = 
total no genes in the gene-set, n = number of genes enriched in the gene set. 

GeneSet Total genes 

(N) 

Enriched 

genes (n 

P-value adjusted 

P 

Genes 

KEGG 

selenoamino acid 

metabolism 

26 3 2.07e-5 3.84e-3 CTH, 

LCMT1, 

TRMT11 

 

 



 

183 
 

 

F
ig

u
re

 4
. 
S

ig
n
if

ic
an

t 
en

ri
ch

m
en

t 
o
f 

se
le

n
o
am

in
o
 a

ci
d
 m

et
ab

o
li

sm
 p

at
h
w

ay
 w

as
 i

d
en

ti
fi

ed
 i

n
 a

 h
ig

h
-r

is
k
 p

re
te

rm
 b

ir
th

 p
o
p
u
la

ti
o
n
. 

F
U

M
A

 g
ra

p
h
ic

al
 r

ep
re

se
n
ta

ti
o
n
 o

f 
o
v
er

la
p
p
in

g
 g

en
es

 i
n
 t

h
e 

id
en

ti
fi

ed
 p

at
h

w
ay

s 



 

184 
 

Fi
gu

re
 5

.7
. H

ie
ra

rc
h

ic
al

 c
lu

st
e

ri
n

g 
o

f 
p

at
ie

n
ts

’ e
xp

re
ss

io
n

 p
ro

fi
le

s 
d

er
iv

ed
 f

ro
m

 t
h

e 
se

le
n

iu
m

 p
at

h
w

ay
. T

h
e 

d
is

ta
n

ce
 m

at
ri

x 
w

as
 d

ef
in

ed
 a

s 
1

-
R

D
C

, R
D

C
 d

en
o

ti
n

g 
th

e 
ra

n
d

o
m

iz
ed

 d
ep

en
d

en
ce

 c
o

ef
fi

ci
en

t 
d

ev
el

o
p

ed
 b

y 
Lo

p
et

-P
az

 e
t 

al
, 2

0
1

3
 (

h
tt

p
s:

//
ar

xi
v.

o
rg

/a
b

s/
1

30
4

.7
7

1
7

) 
an

d
 

ex
te

n
d

ed
 b

y 
Ji

a 
&

 M
ü

lle
r-

M
yh

so
k 

(i
n

 p
re

p
ar

at
io

n
).

 

 



 

185 
 

 

F
ig

u
re

 5
.8

. 
S

el
en

iu
m

 m
et

ab
o
li

sm
 p

at
h

w
ay

 f
ro

m
 K

E
G

G
 p

at
h
w

ay
 d

at
ab

as
e 

(K
an

eh
is

a 
et

 a
l.

 2
0

1
7

) 
C

o
m

p
o

u
n

d
s 

in
v
o

lv
ed

 i
n

 s
el

en
iu

m
 

m
et

ab
o
li

sm
 



 

186 
 

5.4 Discussion 
 

In this part of the thesis, we investigated the association of whole blood gene 

expression across two clinically relevant timepoints between women who had 

recurrent sPTB, PPROM and women who had term births following a history of a 

sPTB. The findings of our GSEA suggest a role or an association of selenium in the 

initiation of early labour.  

After adjusting for multiple testing, three genes in the selenium pathway were 

found to be statistically significant: CTH, LCMT1, TRMT11.  

• CTH gene encodes a cytoplasmic enzyme in the trans-sulfuration 

pathway that converts cystathionine derived from methionine into 

cysteine (Figure 5.8).  

• LCMT1 catalyses the methylation of the carboxyl group of the C-

terminal leucine residue (leu309) of the catalytic subunit of protein 

phosphatase-2A (De Baere et al. 1999).  

• TRMT11 is a protein coding gene for tRNA methyltransferase 11 

homolog that transfers a methyl group onto a single guanidine residue 

present in most tRNAs and thereby modifies them post 

transcriptionally (Hori H. 2014).  

It is possible that the effects of a dysfunctional selenoprotein may change this 

metabolite pathway in gestational or maternal tissues affecting gene expression and 

may also associate with low maternal selenium status. Selenium is known to be 

involved in attenuating inflammation and low maternal levels have been reported in 

the literature as associated with preterm birth (Rayman et al. 2011).  

Our pilot analysis was based solely on random forest profiling which are fast 

to perform, easy to implement, produce highly accurate predictions and can handle a 

https://www.omim.org/entry/610286#1
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large number of input variables without overfitting (Biau. 2012, Ahmad et al. 2018.). 

Random forests are considered to be one of the most accurate general-purpose 

learning techniques available (Biau. 2012). It generates data trees at random and is 

therefore completely unbiased from prior knowledge of the possibility of selenium 

involvement in PTB pathways. Strengthening our interest in the Se hypothesis is:  

1) the recent discovery of association of the EEFSEC gene discussed in 

chapter 4,  

2) Dutch PTB cohorts demonstrating women in the lowest quartile of 

serum selenium having twice the risk of PTB as the women in the 

highest quartile (OR 2.0, 95% CI 1.19-3.47) (Rayman et al. 2011). 

3) low serum selenium concentration being independently related to PTB 

(OR 2.18, 95% CI1.25-3.77). (Rayman et al. 2011). 

Interestingly, there are comparably low serum concentrations of selenium that 

have been found in a UK obstetric population compared to the Dutch population 

(Rayman et al. 2003). This important result from our pilot work requires validation 

before more credence can be given to this theory, but there are potential translational 

implications for patients. 

With regards to the science and plausibility of this theory, the trace mineral 

selenium plays a role in immune response and the body’s resistance to infection. 

Enzymes containing selenoenzymes can attenuate the inflammatory response 

associated with sPTB by downregulating the expression of pro-inflammatory genes 

(Vunta et al. 2007). The amino acid residue selenocysteine (Sec) is a major form of 

Se in the cell and Sec is encoded by the UGA codon. Proteins containing Sec are 

thought to be largely responsible for the health benefits of Se. Sec is introduced into 

selenoproteins by a complex mechanism that requires trans-acting protein factors, 
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Sec-tRNA (Shetty et al. 2014). When UGA codon is encountered by a ribosome this 

normally signals as a “stop” codon and translation is terminated, however Sec 

machinery interacts with translational machinery to prevent premature termination. 

At least two trans-acting factors are required for efficient recoding of UGA as Sec in 

eukaryotes; SBP2 and EEFSEC. It is not clear if women with higher levels of this 

Sec-specific translation elongation factor are more genetically capable of translating 

selenoproteins that cascade to prevent inflammation or if there are the creation of 

selenoproteins that are causing sPTB birth or PPROM.  

Our hierarchical clustering analysis suggests that this high-risk group could 

be differentiated on their expression profiles of the selenium pathway by machine 

learning (Figure 5.7).  

Further studies are required to validate these findings, but our data are 

strengthened by our GWAS data from the same cohort in chapter 4 reflecting 

EEFSEC gene expression from pooled data analysis in this cohort.  
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5.5 Conclusion 
 

This analysis used whole blood gene expression across two timepoints to 

differentiate sPTB and PPROM from women delivering at term in asymptomatic 

women. Using expression levels and random forest alone, no predictors were found. 

However, a gene set enrichment in this population demonstrates that the selenoamino 

acid pathway differentiates asymptomatic high-risk women. Hierarchical clustering 

in a non-linear distance matrix can differentiate all but one of the sPTB cases. More 

studies are required to validate the findings from our analysis.  
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Chapter 6: Metabolomic Profiling of Pregnant 

Women to Assess for Candidate Metabolites 

Useful for the Clinical Prediction of Spontaneous 

Preterm Birth 



 

191 
 

6.1 Introduction 

The advantage of metabolomics for biomarker discovery is that this “omics” 

layer is the most downstream from gene expression and protein synthesis and may be 

more representative of physiology at a functional level (Romero et al. 2010). 

Pregnancy is a state of adaptation for the human female with many processes 

changing over the course of gestation (Lain KY. 2007). Glucose, protein, calcium 

and lipid metabolism change to accommodate the growing fetus, with additional 

adaptation in maternal respiratory, endocrine, renal and cardiac physiology. Maternal 

blood as a candidate biological fluid should detect these changing biochemical 

dynamics and remains easily accessible for study or screening. Blood also remains in 

constant exchange with the fetus through the placenta providing nutrients required 

for growth and development.  

As discussed in Chapter 2, two main approaches to the generation of 

metabolomics data are nuclear magnetic resonance (NMR) and mass spectrometry 

(MS). I chose to use NMR for analysis as it is a fast and highly reproducible 

technique that requires very little sample preparation or manipulation and typically 

identifies around 50 metabolites in serum. It is based on energy absorption and re-

emission from the atom nuclei due to variations in the external magnetic field 

(Bothwell and Griffin. 2011). Hydrogen is the most commonly targeted nucleus (1H-

NMR) due to its natural abundance in biological samples. The resulting spectral data 

allows for indirect quantification of the concentration of the metabolite but also 

provides information about the chemical structure (Alonso et al. 2015). The pattern 

of the spectral peaks informs the physical properties (chemical structure, oxidative 

state, phosphorylation etc.) of the metabolite and is used in metabolite identification, 

whilst spectral peak areas are an indirect measure of quantity of metabolite in the 
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sample. Aside from the high reproducibility and short acquisition times, other 

advantages of 1H-NMR include requirement of small sample volumes, low cost of 

analysis, non-destructiveness of the sample which remains intact after analysis. As a 

spectroscopic technique (rather than spectrometric) metabolite profiles obtained are 

virtually independent of the operator and instrument. Its main disadvantages include 

a high instrument cost and relatively low sensitivity to molecules present in low 

volumes (Kamath-Rayne et al. 2013). This chapter will discuss using NMR 

metabolomic profiling to assess candidate metabolites in the prediction of sPTB and 

PPROM.  
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6.2 Aims 
 

1) To compare the metabolite profiles at 16 and 20 weeks of gestation in all 

participants (sPTB, PPROM and TERM groups) 

2) To compare temporal metabolite profile changes between 16 and 20 weeks 

(sPTB, PPROM and TERM groups). 

3) To assess the differences in metabolite profiles between women experiencing 

sPTB and PPROM at 16 and 20 weeks. 
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6.3 Methods 

Population 

From the population described in chapter three, of 128 women who had given 

at least one serum sample for analysis 46 were excluded from participation. To 

summarise, women were excluded if they had a 1) caregiver initiated preterm birth 

(i.e. not spontaneous), 2) sPTB that had a likely identifiable cause (i.e. infection or 

placental abruption), 3) women with PPROM that were associated with 

polyhydramnios or chorioamnionitis, 4) genetic abnormality associated with 

spontaneous preterm birth or miscarriage, 5) late spontaneous preterm birth (34+1-

36+6) and 6) women delivering >37 weeks who had treatment for short cervix.  

Materials 

500 µl aliquots of serum were securely stored at -80°C in the NMR Centre for 

Structural Biology laboratory after transfer from the Centre for Women and 

Children’s Health, prior to processing in batches. On the day of analysis, samples 

were thawed for 1 hour and 330µl aliquots of serum and 330 µl of phosphate buffer; 

consisting of 66µl of 1M Sodium Phosphate (Na+PO4
3-) buffer prepared in 99.8% 

deuterated water (2H2O or D2O); pH 7.4, and 264 µl of double distilled water 

(ddH20) prepared in Eppendorf tubes following established protocols (Beckonert et 

al. 2007) (Figure 6.1). The Eppendorf tubes were centrifuged at 21,500g for 5 

minutes at 4°C and 600µl of the supernatant was transferred into 5-mm NMR tube. 
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Figure 6.1 Ratio of Serum, Water and Phosphate Buffer 

Spectral Acquisition 

Spectra were acquired using Bruker Avance spectrometer operating at the 

proton frequency of 600MHz and equipped with a triple resonance TCI cryoprobe 

(Bruker, GmBH, Germany). A one-dimensional Carr-Purcell-Meiboom-Gill (CPMG) 

1H NMR echo pulse sequence with water suppression was employed to filter out 

broad spectral resonances arising from the macromolecules (such as lipoproteins and 

albumins). Spectra were manually phased and the baseline corrected using the 

Topspin 3.1 software (Bruker, GmBH, Germany). The whole spectrum was 

referenced and aligned to the glucose anomeric hydrogen signal (δ= 5.23 ppm). The 

residual water region (4.40-5.00ppm) was selectively removed.  

Binning NMR spectra 

NMR outputs are extremely complex spectra of metabolite resonances that 

are produced without any prior separation of the sample. Therefore, overlap of 

chemical signals makes it impossible to identify all the components in a spectrum. 

To analyse this type of data, reduction techniques are necessary. The practice of 
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splitting up spectra into integral regions is called “binning” or “bucketing”. Each 

sample spectra were subsequently divided into bins, assigning peak boundaries as 

they appeared on the spectra. Background noise had previously been removed using 

the QC steps discussed above.  

Spectral Annotation and Metabolite Identification  

Characteristic metabolite peaks have previously been identified and can now 

be used to annotate spectra via pattern recognition (Soininen et al. 2009). The 

schematic in Figure 6.2 shows A) the spectra produced from this analysis and B) an 

animation showing the characteristic identification peaks. Most spectra overlap, 

however some spectra showed obvious differences. Using Chenomx™ metabolomics 

software, compounds were annotated by comparison to databases of independently 

verified and externally validated metabolites. If a bin could not be annotated it was 

labelled as ‘unknown’ and each unknown bin was given a unique identifying 

number. 

Statistical Analysis  

SPSS v.24 (IBM Corporation, USA) was used for statistical analysis of 

clinical demographic data of the participants involved in this analysis. Descriptive 

statistics for the cohort included median and range values for age, BMI, smoking 

status, gestational age and cervical lengths at sampling.  

The metabolomic data were analyzed using Metaboanalyst 4.0 Statistical 

Analysis (Xia and Wishart. 2016), an online tool for metabolomics analysis and 

interpretation. Following data upload, median intensity values were used for data 

filtering.
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Data filtering identifies and removes variables unlikely to be of use during 

data modelling. No phenotype information is used in the filtering process, so the 

result can be used with any downstream analysis. This step is strongly recommended 

with untargeted datasets such as spectral binning, as the large number of variables 

provide baseline noise. (Hackstadt and Hess. 2009) 

Preprocessing of the data matrix plays a crucial role in ensuring that 

subsequent data analysis is more robust and accurate. Two key steps in preprocessing 

are i) normalization and ii) scaling of the data. Probabilistic quotient normalization 

(PQN) was used to normalize our spectra (Dieterle et al. 2006, Kohl et al. 2012). The 

data were scaled using auto-scaling (mean-centred and divided by the standard 

deviation of each variable) (Jackson. 2006, Van den Berg et al. 2006).  Together 

these normalization and scaling methods gave the most Gaussian distribution of the 

dataset prior to univariate statistical analysis.  

Outlier Identification 

An overview of the data was initially performed with a principal component 

analysis (PCA) to identify any outliers prior to further analysis. If an outlier was 

identified, then the participant clinical data was considered as a whole to explain why 

this was an outlier (i.e. medications taken within 48 hours of sampling). If no 

explanation was found for the outlier, the point was removed from the dataset in case 

of errors being introduced during sampling or the NMR process.  

Univariate Analysis 

Univariate analyses were used to identify difference in metabolite bins 

between groups. When all three groups (sPTB, PPROM, Term) were compared, 

statistically significant differences were evaluated using the one-way analysis of 

variance (ANOVA) test between all metabolites. A p-value of <0.05 was considered 
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significant. To address the problem of multiple testing, adjusted p values were 

determined using the False Discovery Rate (FDR) approach. Post hoc analyses using 

Tukey’s Method was used to explore any statistically significant differences between 

multiple group means while controlling the experiment-wise error rate to assess 

between which groups were the biggest differences When comparing two groups 

(SPTB and PPROM) fold change (FC) analysis, t-test and volcano plots were used. 

The purpose of fold change was to compare absolute value change between two 

group means per metabolite. The result is plotted in log2 scale, so the same +/- fold 

change was plotted the same distance from the zero baseline. T-test was used to 

determine if there was a significant difference between the means of the two groups.  

Multivariate Analysis  

PCA was conducted for detection of inherent trends and separation of group 

data. PCA is a powerful method of data extraction, which finds combination of 

variables that describe trends in large data, called principle components visualized in 

scores and loading plots. 

To attempt to get sharper separation between the two groups a Partial Least 

Squares- Discriminant Analysis (PLS-DA) was performed. This is a supervised 

multivariate analysis that attempts to maximise the variances that separate the groups 

and minimise the differences within the patient groups to build a discriminant model. 

The model required cross-validation to ensure that the data was not overfit. A leave-

one-out cross-validation was used to establish a sum of squares value (R2) and a 

predicted sum of squares value (Q2) to describe the sample clustering and the 

accuracy of prediction to which cluster each sample belongs. (Xia and Wishart. 

2011).
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6.4 Results 

Demographics 

From 128 women recruited to the biomarker pilot study, 46 participants were 

excluded prior to analysis. (Figure 6.3) Following exclusions three groups remained:  

1) Women with sPTB ≤33+6 without evidence of infection; n=12  

(16wk n= 11, 20 wk. n=11, paired samples n=9)  

2) Women with PPROM ≤33+6 without known cause for PPROM; n=10  

(16 wk. n=10, 20 wk. n=9, paired samples n=9) 

3) Term controls; TERM n = 60 

(16wk n=55, 20wk n=53, paired sample n=50) 

Metabolites Identified 

 Background noise was removed using the QC steps outlined. A data matrix of 

145 bins per sample, with 101 bins assigned to 35 metabolites was produced. 

Appendix M details the full list of metabolites identified.  

Removing Outliers 

Once phenotype exclusions had occurred (Figure 6.3), the initial PCA for 16 

weeks (Figure 6.4a) and 20 weeks (Figure 6.4b) demonstrated outlying samples in 

the term control group. 

Both samples for participant 129 were flagged as outliers at both 16 and 20 

weeks. This makes a measuring error during NMR processing less likely. Her 

clinical data was examined for potential causes. Apart from reporting eczema, 

smoking 6-10 cigarettes and taking pregnancy vitamins, no unusual medications or 

drug use was reported. Specific questions regarding diet were not explored beyond 

type of diet (vegetarian or non-vegetarian). 
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Therefore, a specific diet or undisclosed drug consumption may have affected this 

profile. As no explanation was found, this patient was excluded. The sample for 

control participant no. 28 was also noted to be an outlier. In an otherwise fit and 

healthy individual, it was considered that this could be a sampling or measuring error 

and was removed.  

Participant Demographics 

Table 6.1 shows the clinical characteristics of these study participants. There 

are no significant differences between groups based on age, BMI, smoking or the 

gestation the samples were taken. The cervical length measured at 16 weeks does not 

show a statistical difference, but at 20 weeks it does fitting with this as a known 

predictor of sPTB.  

 

Table 6.1 Characteristics of Study Participants 

Data sPTB (n=12) PPROM 

(n=10) 

TERM (n=59) p-val 

Age, yr.* 31 (20-40) 31 (21-36) 31 (19-40) .557 

BMI, *  28 (20-39) 25 (23-33) 25 (18-35) .312 

Smoking, (%) 1 (8) 3 (30) 16 (27) .322 

n, samples A visit 11 10 54 NA 

GA at sampling, 16wk 

visit* 

16+2 (14+5-

17+1) 

16+0 (15+3–

17+3) 

16+2 (14+1–

18+1) 

.370 

CL at sampling, 16wk 

visit* 

33 (20-42) 39 (19-52) 36 (25-60) .277 

n, samples 20wk visit 11 9 51 NA 

GA at sampling, 20wk 

visit* 

20+1 (17+5–

21+6) 

20+3 (19+2–

21+3) 

20+1 (18+1–

23+1) 

.693 

CL at sampling, 20wk 

visit* 

25 (5-37) 28 (0-37) 35 (23-56) <.001 

n, paired samples 10 9 46 NA 

GA at delivery, wk.* 32+2 (22+4–

33+5) 

33+0 (17+2–

34+2) 

39+5 (37+0–

41+5) 

<.001 

*median(range). sPTB Spontaneous labour <34 weeks, PPROM PPROM <34 weeks, TERM women with term 
delivery. NA Not Applicable. GA Gestational Age. CL Cervical Length. Statistical p values calculated by Kruskal-
Wallis 
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Comparison of all participants at 16-week gestation (TERM n=54, PPROM n=10, 

sPTB n=11).  

The uploaded data matrix file contained 75 samples by 145 spectra bins for 

analysis, with zero missing values. Normalisation and scaling were performed before 

analysis (Figure 6.5).  

The one-way ANOVA is shown in Figure 6.6. The metabolites meeting the p 

value threshold of 0.05 are labelled in blue. To show the differences in normalised 

metabolite concentrations between the groups, Figure 6.7 presents the boxplots of the 

assigned metabolites per group (PPROM – red, sPTB – green, TERM – blue). The 

median values of the PPROM group and TERM group appear consistently more 

similar in this analysis compared to the sPTB group coloured in green. However, 

none of these metabolites were statistically significant after adjusting for multiple 

testing (FDR < 0.05), therefore no post hoc analysis was performed.  
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Figure 6.5. Box plots and kernel density plots before and after normalisation prior to 

data analysis at 16 weeks. Normalisation: Probabilistic quotient normalization 

(PQN). Data scaling; autoscaling 



 

206 
 

 

Fi
gu

re
 6

.6
. O

n
e-

w
ay

 A
N

O
V

A
 p

lo
t 

co
m

p
ar

in
g 

sa
m

p
le

s 
ta

ke
n

 a
t 

1
6

 w
ee

ks
. T

h
e 

n
o

m
in

al
 (

p
 v

al
) 

0
.0

5
 e

rr
o

r 
ra

te
 is

 d
ra

w
n

 a
cr

o
ss

 t
h

e 
gr

ap
h

 a
s 

a 
b

la
ck

 li
n

e.
 M

et
ab

o
lit

e
s 

ab
o

ve
 t

h
is

 li
n

e 
ar

e 
h

ig
h

lig
h

te
d

 in
 b

lu
e 

an
d

 la
b

el
le

d
. 



 

207 
 

 

Figure 6.7. Boxplots of the assigned metabolite per group. The bottom and top of the box 
are the 25th and 75th percentile. The black dots represent the concentrations of the selected 
metabolite from all the samples. The mean concentration of each group is indicated with a 
yellow diamond. 
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Comparison of all participants at 20-week gestation (TERM n=51, PPROM n=9, 

sPTB n=11).  

The uploaded data matrix file contained 73 samples by 145 spectra bins for 

analysis with zero missing values for the three analysis groups. Normalisation and 

scaling of the data were performed as described. 

The one-way ANOVA comparing assigned metabolites is shown in Figure 

6.8. Ten metabolite peaks annotated above the black line represent the features that 

showed a statistical difference based on p value <0.05. The box plots to allow 

comparison of groups is shown in Figure 6.9. Although the PPROM group (labelled 

in red) appears to have consistently lower mean values than sPTB and term groups, 

the variance around normal is large and there is overlap between the concentrations 

of metabolite in the PPROM/sPTB and the term group. There were no metabolites 

with an FDR <0.05.  
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Figure 6.9. Boxplots of the assigned metabolite per group. The bottom and top of the box are 
the 25th and 75th percentile. The black dots represent the concentrations of the selected 
metabolite from all the samples. The mean concentration of each group is indicated with a 
yellow diamond. 
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Time-paired Sample Analysis  

The next analysis compared temporal changes in the metabolites from week 

16 to week 20. For this analysis a balanced design was required to perform one way 

repeated measures (within subjects) ANOVA, the groups had to be equal and 

therefore nine pairs of samples sPTB (n=9), PPROM (n=9) and TERM (n= 9) were 

analysed, with the TERM samples selected at random. 54 samples were included in 

the analysis matrix of 145 bins per sample, with 101 bins assigned to 35 metabolites. 

Following normalisation of the data, the data was viewed as 3D PCA plot (Figure 

6.10), no outliers were identified and no clear separation between groups was 

demonstrated. The results of the temporal analysis ANOVA are shown in Figure 6.11 

and Table 6.2. 

 
Figure 6.10. Still image taken from an interactive 3D PCA plot. No clear separation can be 
seen between the three groups. 
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A. 

 
Figure 5. ANOVA for metabolites between 16 and 20 weeks. The table below the graph 
shows the p values and FDR (adjusted P-val) for the metabolites showing the biggest 
difference between groups over time. None remain statistically significant (<0.05) following 
adjustment for multiple testing 

 

 

 
Table 6.2. Metabolites showing the largest temporal change between groups, p values and 
FDR (adjusted P-val) shown. None remain statistically significant (<0.05) following 
adjustment for multiple testing 

 

Name F-value Raw P-val Adjusted P-val 

desaminotyrosine_12 38.642 0.024915 0.71431 

Isoleucine_138 31.609 0.030211 0.71431 

unknown_73 30.251 0.031503 0.71431 

Leucine_141 18.043 0.051203 0.71431 
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Comparison of sPTB (n=11) versus PPROM (n=10) groups at 16 weeks 

Samples taken at 16 weeks for women with sPTB (n=11) and women with 

PPROM (n=10) were compared. Fold change (FC) analysis compared absolute 

values of group means per assigned metabolite. The four metabolites reaching the FC 

threshold (1.2) are highlighted in pink (Figure 6.12). Boxplots of concentration 

values for these four metabolites, unknown 21/22, proline and acetoacetate are 

shown in Figure 6.13. 

T test results found no significant features between the two groups for an 

adjusted p-value cut-off of 0.05 (FDR). Figure 6.14 shows the summary volcano plot 

of FC change and t test results (p values). Only acetoacetate showed a difference 

between the two groups with lower concentrations on average in the PPROM group 

(Figure 6.15). However, if using adjusted p values, acetoacetate is not associated 

with a difference between groups. 

Principal component analysis score plot (Figure 6.16) shows no separation 

between the groups at 16 weeks. As no obvious differences can be seen between the 

two groups, no further analysis was performed. 



 

214 
 

 

 

 

 

 

 

F
o
ld

 C
h

a
n

g
e 

(F
C

) 
A

n
a
ly

si
s 

to
 c

o
m

p
a
re

 a
b

so
lu

te
 v

a
lu

es
 o

f 
sP

T
B

 a
n

d
 P

P
R

O
M

 g
ro

u
p

 m
ea

n
s 

p
er

 m
et

a
b

o
li

te
 

a
t 

1
6
 w

ee
k

s.
 

U
n
k
n
o
w

n
 

(2
1
) 

A
ce

to
ac

et
at

e 

U
n
k
n
o
w

n
 

(2
2
) 

P
ro

li
n
e 

Fi
gu

re
 6

. R
es

u
lt

s 
o

f 
fo

ld
 c

h
an

ge
 a

n
al

ys
is

 c
o

m
p

ar
in

g 
m

et
ab

o
lit

e 
p

ro
fi

le
s 

b
et

w
ee

n
 P

P
R

O
M

 a
n

d
 s

P
TB

, t
h

e 
fo

ld
 c

h
an

ge
 t

h
re

sh
o

ld
 is

 s
et

 t
o

 1
.2

. 
Si

gn
if

ic
an

t 
va

ri
ab

le
s 

ar
e 

sh
o

w
n

 in
 p

in
k.

 



 

215 
 

 

F
ig

u
re

 6
.1

3
. 
B

ar
 p

lo
ts

 o
n
 t

h
e 

le
ft

 s
h
o
w

 t
h
e 

o
ri

g
in

al
 v

al
u
e 

(m
ea

n
 +

/-
 S

D
).

 T
h
e 

b
o
x
 a

n
d

 w
h

is
k

er
 p

lo
ts

 o
n

 t
h

e 
ri

g
h

t 
su

m
m

ar
iz

e 
th

e 

n
o
rm

al
is

ed
 v

al
u
es

. 
a)

 U
n

k
n
o
w

n
 m

et
ab

o
li

te
 (

2
1
) 

b
) 

U
n
k
n
o
w

n
 m

et
ab

o
li

te
 (

2
2
) 

c)
 A

ce
to

ac
et

at
e 

d
) 

P
ro

li
n
e.

 



 

216 
 

 
V

o
lc

a
n

o
 P

lo
t 

fo
r 

1
6
 w

ee
k

 m
et

a
b

o
li

te
 c

o
m

p
a
ri

so
n

 b
et

w
ee

n
 s

P
T

B
 a

n
d

 P
P

R
O

M
 g

ro
u

p
s 

F
ig

u
re

 6
.1

4
. 

V
o
lc

an
o
 p

lo
t.

 T
h

e 
im

p
o
rt

an
t 

fe
at

u
re

s 
se

le
ct

ed
 b

y
 f

o
ld

 c
h

an
g
e 

(x
 a

x
is

) 
th

re
sh

o
ld

 1
.2

 a
n

d
 t

-t
es

t 
ra

w
 p

 v
al

u
e 

th
re

sh
o
ld

 (
y
) 

0
.0

5
. 
T

h
e 

p
in

k
 c

ir
cl

es
 r

ep
re

se
n
t 

fe
at

u
re

s 
ab

o
v
e 

th
e 

th
re

sh
o
ld

 



 

217 
 

 

Figure 6.15. Boxplot of acetoacetate. The black dots represent the concentrations of 
acetoacetate in all samples. The mean concentration of the group is represented with a 
yellow diamond. The whiskers extend to the highest and lowest observations. 

Score plot for top PCA to differentiate sPTB and PPROM at 16 weeks 

 
Figure 6.16. Score plot between top principal components (PC). The explained variances are 
shown in brackets. 
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Comparison of sPTB (n=11) versus PPROM (n=9) group metabolites at 20 weeks 

gestation 

Serum analysis comparing metabolite spectra from the second 20-week 

timepoint was performed on 11 sPTB samples and 9 PPROM samples. 

Normalisation and scaling were performed as previously to achieve Gaussian 

distribution of data.  

FC analysis (Figure 6.17) echoed the findings for 16 weeks and with a 

threshold of 1.2 both unknown metabolite 21 and 22 were differentiated between the 

groups (higher in PPROM group compared to sPTB). In addition, mannose, 

desaminotyrosine and unknown metabolite peak 1 had lower concentrations in the 

PPROM group compared to sPTB. T test analysis found no statistically significant 

differences between the two groups with an FDR of 0.05. The volcano plot (Figure 

6.18) are shown below, with desaminotyrosine shown to be the metabolite with the 

largest difference between the two groups. The normalised concentrations are shown 

by boxplots in Figure 6.19. 

A principal component analysis (PCA) was performed but shows little 

separation between the two groups with mostly overlapping 95% CI (Figure 6.20). A 

discriminant analysis was performed to sharpen the separation of the groups based on 

the metabolomic observations. This gives a better distinction between the groups 

(Figure 6.21a). However, when the cross validation of the model is investigated, it 

shows the model is a poor predictor and almost certainly overfitted due to the small 

number of samples (Figure 6.21b).  
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Score plot for top PCA to differentiate sPTB and PPROM at 20 weeks  

 
Figure 6.20. Score plot between top principal components (PC). The explained variances are 
shown in brackets. 95% CI are shown by coloured circles. 

Figure 6.19. Boxplots to show differences in the metabolomic feature desaminotyrosine 
between PPROM and sPTB. The black dots show the normalised concentration for each 
sample. The mean concentration of each group is represented with a yellow diamond 
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6.5 Discussion  
 

A detailed assessment has been made of the NMR profile of serum collected 

at two different time points in the second trimester from women at high risk of sPTB.  

This study found that overall maternal serum samples could not differentiate 

between women experiencing PPROM, sPTB and TERM deliveries based on their 

metabolite profiles at 16 or 20 weeks. A subset of data to give balanced groups were 

used to perform a time paired analysis across 16 to 20 weeks in all three groups; 

sPTB, PPROM and TERM. No metabolites with temporal change showed any 

association with sPTB or PPROM. 

No metabolites differentiated between PPROM and sPTB groups at 16 

weeks. Acetoacetate showed a greater magnitude fold change than other metabolites 

and statistical significance (p value), however, it did not associate with sPTB 

following adjustment for multiple testing, which is not surprising given the small 

number of samples tested. However, this finding was not seen at the 20-week 

comparative analysis, which might be expected if this metabolite was predictive of a 

difference between sPTB and PPROM. It has also not been reported in other 

metabolomic studies of PTB. Acetoacetate is the conjugate base of acetoacetic acid 

and is released into the bloodstream during periods of fasting (Berg et al. 2002). As 

we have no information on time from last meal, we cannot be sure if the difference in 

fasting times between groups may have caused this result. 

At 20 weeks, desaminotyrosine differentiated the groups after fold change 

and t-test analysis showed a lower maternal serum concentration level in women 

subsequently experiencing PPROM. Again, given the small sample size, it is not 

surprising that the FDR was >0.05. In Figure 6.9 the boxplot of desaminotyrosine 
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comparing all three groups (PPROM, sPTB and TERM), showed that mean levels for 

sPTB and TERM were similar, and only PPROM appears to have lower levels. Adding 

strength to this finding was the differentiation at multiple metabolite peaks for the 

same metabolite on the spectra. The NMR spectral signature for desaminotyrosine 

is shown in Figure 6.22. Desaminotyrosine (DAT) has four peaks on the spectra, 

Figure 8. Figure 60. 1H NMR Spectrum (HMDB0002199). Compound name 
'Desaminotyrosine'. Image taken from the Human Metabolome Database (accessed at 
http://www.hmdb.ca/spectra/nmr_one_d/1862 on 3 October 2019) 
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however only the two peaks in the ppm range 2-3 were detected by NMR, and both 

differentiated between groups.  

It is difficult to understand biological plausibility behind participants with 

PPROM having lower DAT. Desaminotyrosine, also known as 4-

hydroxyphenylpropionic acid, is a degradation product of flavonoids, a compound 

most commonly found in plants. The gut microbiota generates many small 

metabolites that enter the systemic circulation, and DAT is produced by human 

enteric bacteria from flavonoids and amino acids (Steed et al 2017). In mice, DAT 

produced by gut bacteria has been shown in mice to be protective against influenza 

through the augmentation of type 1 interferon (IFN) (Steed et al. 2017). However, 

when type 1 IFN has been studied in a pregnant mouse model, upregulation of type 

1 IFN sensitises the animals to bacterial products predisposing to spontaneous PTB. 

(Cappelletti et al. 2017). Therefore, it is not clear how reduced DAT serum levels 

could contribute to PPROM. We did not collect detailed dietary information and low 

levels of DAT may be simply a surrogate for a poor diet containing low quantities of 

plants (i.e. low flavonoids) which also contain other antioxidant properties. If DAT is 

protective against viral illnesses through augmentation of type 1 IFN, it could be 

surmised that potentially there is a viral cause for PPROM and the sPTB and TERM 

groups are protected. This is highly unlikely as there has been very little evidence 

for the role of viral infection in PPROM to date. Out of 174 AF samples from 

patients with PPROM tested with PCR for human cytomegalovirus (HCMV), herpes 

simplex virus (HSV), parvovirus B19, human adenoviruses (HAdV), enteroviruses 
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(EV) and human parechovirus (HPeV), only 1 was positive for a viral genome 

(Bopegamage et al. 2013).  

Of interest are the two unknown metabolites (or a single metabolite with two 

closely related peaks) found to differentiate the groups on fold change analysis at 

both 16 and 20 weeks increases the possibility that this may not be a chance finding. 

If this is truly a novel metabolite or drug degradation product to be identified, then 

the next step would be to try to perform a full structure elucidation. This would 

typically entail isolation and purification of the metabolite from serum and using 

techniques of NMR spectroscopy, MS, infrared spectroscopy and ultraviolet 

spectroscopy detail the metabolites full structure. (Dona et al. 2016).  

Overall principal component analysis showed comparable variance between 

the two groups at both gestations tested and a predictive model could not be 

generated without overfitting data. This may be due to the small sample size and the 

community recognition of PLS-DA as a limited technique (Gromski et al. 2015). 

This study is the first metabolomic study that has compared multiple 

timepoints in high risk women with a preterm birth <34 weeks, that has also 

attempted to establish if there are different metabolomic phenotype profiles between 

sPTB and PPROM.  

Strengths of this study are the unique high-risk population from which these 

samples are obtained, the extent to which births have been phenotyped and that 

samples are available for multiple timepoints in the second trimester. Prior studies 

examining metabolites associated with preterm birth have noted the importance of 

collecting samples at the same timepoints instead of immediately prior to labour 

which is a limitation of some metabolomic studies (Menon et al. 2014, Lizewska et 

al. 2018).  
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A particular strength of this study is focussing on predictors in the early 

preterm birth group (<34 weeks). Naturally it is a harder group from which to obtain 

samples as there is a much lower incidence than late preterm births (34-37 weeks). 

Many studies which at first glance appear to present impressive numbers of 

participants, often have included all sPTBs <37 weeks which clinically has less value 

due to the burden of morbidity and mortality associated with the earlier gestations of 

delivery. An example would be the largest metabolomic study from the SCOPE 

cohort that recruited 5,690 low risk nulliparous women across several hospital sites 

in four different countries (Souza et al. 2019). Data was available from 55 sPTB 

from Cork in Ireland (discovery) and 55 women with sPTB from Auckland in New 

Zealand (validation). Approximately half of whom had been classified as PPROM, 

but unlike our study not analysed as a separate group. Only 16 women in Auckland 

and 13 women in Cork delivered <34 weeks, similar to the numbers in our study 

(n=21 at 16 weeks, n=20 at 20 weeks if PPROM and sPTB were combined). Using 

GC-MS analysis they found that elevated alkanes (decane, undecane and dodecane) 

were higher in sPTB <37 weeks in the Cork cohort only, but there was no evidence 

these alkanes were associated with sPTB < 34 weeks in either study site. (Souza et al. 

2019) 

The strength of NMR analysis is that it isn’t hypothesis driven and can 

provide new insights into the pathology of complex diseases such as preterm birth. 

The entire visible metabolome is taken into account and metabolites with both large 

and small effect contribute to differentiation of groups and predictive modelling.  

Appropriate scaling and normalisation was performed as part of the study 

design. PQN normalisation has been shown to be more accurate than integral 

normalization for 1H NMR metabolomics (Dieterle et al., 2006). 
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Limitations of this study include 1) small sample size, 2) methodological 

limitations in identifying all metabolites, 3) absent validation cohort, 4) no 

controlling for type of diet or fasting times.  

Our findings are somewhat limited by the relatively small number of cases 

used, despite the well phenotyped cohort of births <34 weeks. Our small number of 

cases and controls may increase the risk of reporting false negatives. This is 

particularly important for our smaller sub-groups of sPTB (n=12) and PPROM 

(n=10) that did not differentiate in this analysis when false positives were properly 

controlled for however, some differences have been suggested by the data that 

warrants further exploration. Therefore, the null hypothesis cannot be confidently 

excluded. 

The disadvantages of the 1H NMR method using multiple bins are that it is 

time consuming to assign metabolite peaks to get maximum identification of 

metabolites and can be subject to data interpretation errors due to overlapping peaks. 

However overall, NMR is highly reproducible but limitations in our current 

knowledge meant that not all metabolite peaks could be identified at this time, 

illustrated by unknown samples 21 and 22. 

We did not perform a validation study as the purpose of this thesis was to 

combine different omic layers. However, an important progression of this study is to 

identify a validation cohort to establish the reliability of these results. Additionally, 

studying samples from low risk women (i.e. no previous preterm births) may see 

bigger discrepancies in effect sizes that are captured more easily.  

We did not control for other probable sources of variability in the metabolite 

profile such as time of day, type of diet and time from most recent meal. Normalising 

for these many variables may have improved separation between our groups. 
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However, we did not collect this type of self-reported data from our participants and 

therefore this depth of analysis was not possible.  
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6.6 Conclusion 

From 1H NMR analysis of different birth phenotypes there is no data to 

suggest there are metabolite differences at 16 and 20 weeks or between 16 and 20 

weeks, that can contribute to prediction of birth phenotype. Our data suggests some 

potential differences between sPTB and PPROM groups, but these findings should 

be interpreted with caution given the small study size. Further work in this area 

should be pursued before ruling in our out any differences. Overall, there was no 

purely NMR metabolic model that could clearly discriminate the groups leading to 

the possibility that any successful model would require additional information 

(enzyme, gene, physiological) or more sensitive metabolite measurements (MS).
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Chapter 7: Integromics for the Prediction of 

Spontaneous Preterm Birth 
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7.1 Introduction  
 

The objective of integrating multi-omic data (Integromics) is to construct a 

model that can be used to predict women who will have sPTB. By integrating the 

omics data from the same women, as opposed to data sets from different populations, 

we are increasing the chance of identifying ‘cross-talk’ across omics platforms and 

potentially identifying predictive biomarkers.  The previous four chapters explored 

the data from individual “omics” layers and phenotypes from this cohort of pregnant 

individuals and highlighted the quality control methods employed to ensure a reliable 

input dataset. This chapter will outline the combination of these data. 

Different analysis methods of combining omics data were previously 

discussed in chapter 2. In summary, the meta-dimensional approaches to combine 

different omics dataset for analysis included concatenation, transformation and 

model-based integrations, each with their own strengths and weaknesses. We chose a 

concatenation-based model as it’s a) is relatively easy to apply statistical tests for 

categorical data analysis and b) does allow for crosstalk between omics layers via 

interaction. We tested seven different machine learning strategies on our dataset to 

identify the most predictive strategy and provided a prediction of sample sizes for a 

new multi-omic study required for replication. Finally, we interrogated the most 

predictive model for novel biological hypothesis.
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7.2 Methodology 
  

Study Population  

From the cohort described in chapter 3 we included only women that had data 

genomics, transcriptomics and proteomics once quality control processes were 

complete. How these results were obtained is described in chapters 4, 5 and 6. 

Women with a sPTB or PPROM <34 weeks (as per chapter 3 definition) were 

included as cases and women with delivery >37 weeks were controls. All women 

delivering between 34-37 weeks (late sPTB) were excluded.  

Multivariate Modelling 

Using concatenation-based integration, a large matrix of all data types was 

created from the raw data. Data combination followed by machine learning analysis 

performed by Professor. Bertram Müller-Myhsok, an expert in statistical genetics 

and machine learning based at the Max-Planck Institute of Psychiatry, Munich, 

Germany. 

Cross Validation 

In this analysis, while the subjects were independent, the samples collected 

from various trimesters of the same subject were not. The unsupervised nature of the 

multi-omic methods makes it difficult to determine whether a method is overfitting or 

identifying a true biological relationship. To account for this, we designed a ‘leave-

one-out’ cross-validation strategy. A model was trained on all available samples 

except for all the samples at 16 and 20-week timepoints of a given subject. The 

model was then tested on all samples of the subject that it was blinded to. This 

process was repeated for all subjects until a blinded prediction was produced for all 

samples to confirm that the reconstruction error of the model on the left-out points is 
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close to the error in the training set. Final results are reported using these blinded 

predictions. This ensures complete independence from any inter-subject correlations.  

Multi-Omic Machine Learning Method Comparisons 

We ran prediction algorithms on the cross-validation data. The seven 

statistical approaches used were 1)‘linear discriminant analysis’ (Fisher. 1936) 

2)‘Genetic expression programming’ (Ferreira. 2001), 3)‘K-means’ (MacQueen. 

1967), 4)‘Support vector machine with a linear kernel’, (Cortes and Vapnik. 1998, 

Bradley and Mangasarian. 1998), 5)‘Support vector machine with a Gaussian 

Kernel’ (Cortes and Vapnik. 1998, Bradley and Mangasarian. 1998), 6)‘Probabilistic 

neural network (Specht. 1990)’ and 7)‘Random Forest’ (Ho. 1995). These were 

chosen as representatives of commonly used types of methods. We estimated the area 

under the curve (AUC) of the receiver operating characteristic (ROC) in cross-

validation data with the null set equal to an AUC score of 0.5 (equal to random 

guess), which enabled comparison of the performance of the different methods on 

this dataset. This methodology also permits calculation of sample sizes for future 

multi-omics project.  

Linear Discriminant Analysis 

Discriminant analysis is a popular method for multiple class classification 

(sPTB, PPROM and TERM). In its original form it goes back to Fisher (1936). It 

focuses on reducing the original variable data matrix into a lower dimensional space 

and maximises the separability among known categories. This is performed through 

three steps; the first is calculating between-class variance, the second is calculating 

within-class variance. The third step is to reduce the dimensional space to maximise 

between and within-class variance. Essentially LDA maximises the distance between 
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separate variable means whilst minimising the variation (or scatter) within each 

category (Tharwat et al. 2017). 

Genetic Expression Programming 

Genetic Expression Programming (GEP) is a learning algorithm invented by 

Candida Ferrerira in 2001 (Ferreira. 2001). GEP learns specifically about 

relationships between variables in sets of data and subsequently builds models to 

explain these relationships. It functions through an architecture based on two entities; 

‘the chromosome’ and the ‘expression tree (ET)’. This is a full-fledged 

genotype/phenotype system with expression trees of different sizes and shapes 

encoded in linear chromosomes of fixed length. GEP chromosomes are multigenic, 

encoding multiple expression trees or sub-programs that can be organized into a 

much more complex program. Figure 7.1 shows the reproduction process containing 

the modifications performed by the algorithm operations that allows for the evolution 

of a simple replicator system.  

K-means 

The term “k-means” was first coined by James MacQueen in 1967 (MacQueen. 

1967). K-means is the most popular clustering algorithm (Jain. 2010). It is an 

unsupervised learning algorithm. K-means clustering attempts to divide data into “k” 

number of separate groups and is effective at uncovering novel patterns (Theobald. 

2017). In our analysis, K was set to two (sPTB and TERM). In the first step, the 

algorithm examines the unclustered data and selects a central point or centroid for 

each of the clusters. The rest of the datapoints are then assigned to a centroid using 

the Euclidean distance. Once all datapoints are allocated, the mean value of the 

datapoints in each cluster is aggregated. These are then used to update the centroid 

co-ordinates, which may affect the Euclidean distances of the datapoints resulting in 
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some datapoints switching clusters. If this happens the whole process is repeated, 

until there is no more movement (Theobald. 2017). 

 

 

 

Figure 7.1. Flowchart from GEP algorithm. From Gullu, H. 2012. Prediction of peak 
ground acceleration by genetic expression programming. Engineering Geology. 141-142: 
92-113. Adapted from Ferreria, C. 2001. Gene Expression Programming: A New Adaptive 
Algorithm for Solving Problems. Complex Systems. 13(2): 87-129. 
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Support Vector Machine with a Linear Kernel 

Support vector machine formulation is used to enlarge the feature space of 

predictors to create a decision boundary that is linear, where the original decision 

boundaries are non-linear. With already so many features, enlarging a feature space 

even further may make the data unmanageable. However, the support vector machine 

allows for enlargement of the feature space in a way that leads to efficient 

computation (James et al. 2013). It creates a fast, linear programming algorithm that 

will discriminate between massive datasets in n-dimensional space and results in an 

optimal separating plane for the entire dataset (Bradley and Mangasarian. 1998). 

Support Vector Machine with a Gaussian Kernel 

A Kernel is a computational function that quantifies the similarity of two 

observations (James et al. 2013). A kernel does not always have to be linear, it could 

be polynomial, radial, or as used here, gaussian. The advantage of using a kernel, 

rather than enlarging the feature space, is that it makes it computationally faster to 

perform these functions on data pairs, avoiding always having to work in the 

enlarged feature space. In summary, this is another way of creating hyperplanes to 

capture decision boundaries between groups.  

Probabilistic Neural Network  

This is a popular classification technique in machine learning to process data 

through layers of analysis. Like neurons in the human brain, networks are formed by 

interconnecting neurons, called nodes, which interact with each other through axons, 

called edges (Figure 7.2). There is an “all or nothing” arrangement as the sum of the 

connected edges must satisfy an activation threshold to communicate with the node 

at the next layer (Theobald. 2017). 
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 The final decision node will output the class with the highest summed 

activation. This has the advantage of being a very flexible type of analysis, but 

computationally takes much longer to complete. The specific implementation used 

here goes back to Specht (1990). 

Random Forest 

The random forest methodology has been previously explained in detail in 

section 5.2. In short, this technique uses multiple decision trees with an artificial cap 

on the number of variables that can be considered for each split. It has the advantage 

of being relatively easy to perform and computationally fast. 

 

Figure 7.2 Schematic of basic neural network. Nodes are stacked in layers. The first layer of 
input is the raw omics data divided into nodes. Each node sends information to the next layer 
via edges. If the sum of the connected edges satisfies a set threshold (activation function) this 
activates the node at the next layer. 
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Sample Size Estimations 

Once all classification algorithms were run, we then calculated the predicted 

sample size required for a three-layer multiomics study against different accuracies 

of AUC. Under the assumption that we would have 80% term controls and the same 

biomarker effect sizes as well as phenotypic distribution, we estimated the sample 

sizes needed via the R function power.roc.test from the R package pROC.  
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7.3 Results 

Four women with sPTB, one woman with PPROM and ten women delivering 

at term had full omic data available at both timepoints analysis. As there was only 

one PPROM participant this could not constitute a group and would not have been 

classified by machine learning. Having had such poor differentiation of PPROM and 

sPTB classes in the omics analysis performed in the other chapters, we kept this as a 

case and included it as a case of sPTB (Figure 7.3). 

The AUCs for all six tests can be seen in Figures 7.4-7.10. A summary of the 

results of the machine learning analysis are shown in table 7.1. K-means and 

probabilistic neural network were the most predictive statistical tests with an AUC of 

1.00. The variable importance’s for each test are included in Appendix M. 

Figure 7.11 demonstrates that for a clinically predictive AUC (>90) it would 

be possible to obtain reasonable power with a relatively small number of women 

recruited to a multi-omics study. Using this graph, if we expected a minimum AUC 

of 0.9 to be found with a repeat study, with an alpha level of 0.001 (probability of 

rejecting the null hypothesis when true) being desirable, then we can estimate that a 

sample size of 50 would be required This calculation is based on 80% term controls 

which would equate to 40 term controls and 10 sPTB cases in a two group 

comparison. 
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Figure 9. AUC for Linear Discriminant Analysis 

 
Figure 10. AUC for Genetic Expression Profiling 
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Figure 7.6. AUC for K-means 

 
Figure 7.7. AUC for Linear Support Vector Machine 
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Figure 7.8. AUC for Support Vector Machine with Gaussian Kernel 

 

 
Figure 7.9. AUC for Probabilistic Neural Network 
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Figure 7.10. Random Forest 

 

 

 

 
Table 7.1. Summary of results of machine learning algorithms to predict sPTB in our cohort. 

Algorithm used AUC of ROC 

obtained 

Linear discriminant analysis 0.90 

Genetic expression programming 0.70 

K-Means 1.00 

Linear support vector machine 0.96 

Support vector machine with a Gaussian Kernel 0.94 

Probabilistic neural network 1.00 

Random Forest 0.92 
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Figure 11. Estimates of sample size across AUC's with significance levels colour 

coded (at power = 0.8 assuming 80% term controls) 
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7.4 Discussion 
 

This chapter shows that combination of multiomics from individuals to 

predict sPTB is possible. Nearly all analysis methods that were tested on our dataset 

found good levels of prediction except for genetic expression profiling (GEP). GEP 

only gave an AUC of 0.7, which was much lower than other methods with excellent 

prediction (≥0.9). These findings clearly need to be validated in another multiomics 

study. 

A challenge for designing multiomic studies is obtaining enough samples to 

generate enough statistical power, particularly when testing a relatively rare 

population or condition that is hard to predict, such as sPTB. Simulation tools such 

as OmicsSIMLA have the ability to combine omics and calculate sample size and 

power for a new multiomics study (Chung and Kang. 2019). McKeigue (2019) has 

described a simple method based on a Gaussian approximation for calculating the 

predictive performance of the learned classifier, given the size of the biomarker 

panel, the size of the training sample, and the optimal predictive performance of the 

biomarker panel if a training sample of unlimited size were available, however these 

are not based on real data. We have provided a more accurate estimate for the 

purposes of trying to calculate a sample size that would provide enough power to 

predict sPTB classification.  

A criticism of the data would be that we have such small groups in our final 

analysis. RNA analysis was only collected and performed for a subset of 56 patients 

in this cohort (of which 29 controls, 5 sPTB, 6 PPROM) which has been the largest 

limiting factor for numbers in our overall omic analysis. However, following sample 

storage, extraction and laboratory quality control checks using our methodologies the 

available data for a three set omic integration (genomics, transcriptomics and 
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metabolomics) at 16 weeks were limited to only 10 term controls and 5 sPTB cases 

(4sPTB and 1 PPROM). This means, at this stage, that we cannot clearly answer if 

omics can differentiate between sPTB and PPROM as we have insufficient sized 

subgroups. We had to combine the sPTB and PPROM to create a single sPTB group, 

predominantly represented by sPTB. This is disappointing as the purpose of rigorous 

classification was to avoid heterogenous groupings as much as possible. However, 

when compared to other sPTB studies in the literature, it is not uncommon to have 

such small comparison groups. For example, Chan et al (2014) compared RNA 

sequencing data in the myometrium collected at caesarean section of n=5 sPTB cases 

and n=5 term births,  Gray et al (2017) compared miRNA of n=7 sPTB with n=8 

term controls, Pereyra et al (2019) published a transcriptomic analysis of fetal 

membranes comparing n=15 term birth cases and n=9 sPTB cases and chapter 2 of 

this thesis contains many more examples. Not only did these examples study only 

one type of omic, but for two of these studies listed above the samples were taken at 

delivery, for which they do not have a gestational age matched control. A clear 

strength of this study is that our samples were not only taken at the same gestational 

age timepoints, we also have different layers of omics data from the same individual 

which we have shown can reduce the number of samples required to power this type 

of study.  

After discussing different methods of combining omics data for further 

analysis in chapter 2, we chose a concatenation-based model as it’s a) is relatively 

easy to apply statistical tests for categorical data analysis and b) does allow for 

crosstalk between omics layers via interaction. 

The obvious question is, why is it necessary to evaluate so many different 

statistical approaches? Is there not one single best method that can be decided a 
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priori? As the different methods work better or worse depending on the dataset, there 

is no one method that dominates all the others on every dataset. (James et al. 2013) 

With a specific dataset, it is an important task to decide which method produces the 

best result, but this is not necessarily transferable to a similar but different dataset.  

With prediction accuracy and model interpretability there will always be a 

trade-off between the flexibility of the model to fit the available data points and 

interpretability. In general, as the flexibility increases the interpretability decreases. 

(James et al. 2013) Some methods can lead to very complicated estimates of the 

unknown function of predictor variables. It can become too difficult to work out how 

individual predictors are associated with outcome. This can be seen clearly with 

support vector machines with non-linear kernels which are higher in flexibility than 

trees, but also much harder to interpret. There are many more variable importance’s 

produced from the random forest than the support vector machines (Appendix M). 

The type of model that we would ultimately choose may depend on how much 

inference is important once prediction was established.  

To try and better understand sPTB, particularly to design new preventative 

interventions, it is important that we ultimately understand how our dependent 

variable changes as a result of important predictors. However, the primary purpose of 

this thesis was first and foremost to establish accurate prediction, therefore the 

interpretability when choosing models was a secondary consideration. This does not 

necessarily mean that the most flexible model is either the most accurate or best 

choice. Highly flexible models can model so closely to the known data points (and 

errors), that they become poor predictors when attempting to classify new datasets – 

a concept called ‘overfitting’ a model.  



 

250 
 

7.5 Conclusion 

This analysis shows that it is possible to combine multiomics data to predict sPTB. 

For a future study using multiomics methodology we would expect an AUC of >0.9 

for prediction of sPTB. Only a sample size of approximately 50 participants (with 10 

sPTB cases) would be required for validation at a power of 0.8. However, in view of 

the small size of this discovery set, there is a possibility of an overfitted model. In 

addition, the practical issues in obtaining the samples and sample dropout rate should 

be taken into consideration when planning a validation study. This recruitment figure 

would need to be doubled, as a minimum, to allow for a complete omics data set at 

the analysis. Lastly, this calculation only accounts for the combination of sPTB and 

PPROM cases as a single group – if further analysis of different subtypes were to be 

performed this calculation would no longer apply. 
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Chapter 8: Discussion and Conclusion 
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8.1 Addressing Aims 
 

The primary aim of the thesis was to establish a way of combining three 

different types of ‘omics’ analyses used in a pilot study for the prediction of sPTB. 

Chapters 3, 4, 5 and 6 showed the analysis of the individual layers of omics data 

including how the participants were divided based on phenotype. Chapter 7 

addresses the multi-omic machine learning comparisons that were used for 

‘prediction’ using this pilot cohort group. Overall, this thesis shows that this type of 

analysis is possible. It may not only be a useful tool to establish predictors of preterm 

birth but may allow us to evaluate the most important cross-omic biological signals 

that weight these predictions.  

I also aimed to establish if there were distinct differences in biomarkers 

between PPROM and sPTB subgroups of sPTB within my results. Contrary to my 

expectations, I did not find many signals suggesting differences between the 

subgroups, but I feel there is further work to perform in this area. The GWAS data 

analysis require large sample size to find differences in groups, and for this analysis 

the groups were kept as large as possible (sPTB and PPROM cases were combined 

into one larger group) – therefore genetic data could not contribute to finding 

differences. The transcriptomic data found no differences between sPTB and 

PPROM groups. After FUMA analysis demonstrated enrichment of the selenoamino 

acid metabolism pathway in the high-risk preterm birth population, the hierarchical 

clustering analysis that followed clustered the PPROM cases among the sPTB cases 

(Figure 5.7). Only metabolomic data showed a suggestion that there might be 

differences between sPTB and PPROM, but these data were not controlled for diet or 

time from fasting and there is a high chance that any differences seen are potential 

false positives until validation testing is performed.  
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8.2 Key Findings 
 

Perhaps the most interesting, clinically relevant and unexpected finding from 

this work was the support for selenium playing a key role in sPTB. Existing work 

from a GWAS study (Zheng et al. 2017) had already suggested that the EEFSEC 

(Selenocysteine elongation factor) gene is associated with sPTB. When we compared 

odds ratios for a SNP on the EEFSEC gene with published data from the Zheng et al. 

study, our data agreed that this gene is associated with sPTB <37 weeks. 

Independently, the findings of our GSEA of the transcriptomic data also suggest a 

role of selenium in the initiation of sPTB. After adjusting for multiple testing three 

genes in the selenium pathway were found to be statistically significant; CTH, 

LCMT1, TRMT11. The machine learning method of analysis we used could not have 

been influenced by any prior knowledge. Having both omic layers (genomic and 

transcriptomic) support this data independently is far more powerful than either on 

its own and suggests this is an important area for future study.  

Another important output from this study is the ‘feasibility’ of performing a 

multi-omic study with well phenotyped groups. There are several stages at which 

samples are ‘lost’ despite good overall recruitment of participants to the study. 

Patients not attending (n=6) or declining participation (n=2) at follow up occurred. 

Declining participation occurred at follow up as one woman had experience of a 

difficult venepuncture at her GP practice and remained bruised. She did not wish to 

have any further unnecessary blood tests. Another woman could not wait to see the 

recruitment team following her clinic appointment due to time pressures with 

childcare. The biggest area to impact recruitment Figures was establishing a clear 

delivery phenotype, which frequently resulted in exclusion from the study. 

Implementing a strict phenotype for inclusion meant that the samples available for 
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analysis are fewer than those recruited. Of 128 women recruited, 41 (32%) women 

were excluded once delivery phenotypes were available (Table 3.4, page 126). For 

future multi-omic studies, this data will be useful for setting recruitment targets and 

remaining realistic about what any single centre can achieve. Collaboration of 

multiple centres is likely to be necessary to achieve a study size of value in multi-

omic work to allow for discovery and validation and allow for subgroup analysis of 

sPTB and PPROM. 

8.3 Discussion Points 
 

One of the major strengths of this study is the unique nature of the sPTB 

population. All the participants had a history of sPTB and therefore this is a study of 

recurrent sPTB versus a high-risk control. The advantage of recruiting cases 

experiencing a recurrent preterm birth is there may be positive selection of 

aetiologies of sPTB inherent to the mother rather than an individual pregnancy. For 

example, women with a genetic predisposition to sPTB may be more likely to have 

two pregnancies affected by sPTB than if infection was the cause, which may only 

affect a single pregnancy.  

Although recruitment was performed in a high-risk population for sPTB < 34 

weeks gestation, recruiting both low and other high-risk populations for sPTB were 

considered. Opening recruitment to the whole obstetric (low risk) population would 

enable recruitment of women with sPTB/PPROM <34 weeks and additionally 

women with only term deliveries >37 weeks (i.e. no previous preterm births, a low 

risk control). However, the incidence of preterm birth in a low risk population <37 

weeks is approximately 7.1% in the UK (Office of National Statistics 2017). When 

considering only early sPTB or PPROM between 23 and 34 weeks this figure 

decreases to approximately 1-2% (Beta et al. 2012). Recruiting for cases would be 
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difficult in the low risk population as too many participants overall would be 

required to achieve the same number of cases. Additionally, the design of our study 

would have changed if we had decided to recruit from the general obstetric 

population. Scheduled hospital contact for ultrasound scans occur at 12 and 20 

weeks, with additional midwifery appointments frequently occurring in the 

community; therefore 12 and/or 20 weeks would pragmatically have been the best 

recruiting timepoints at hospital for a low risk population. Compared to recruiting 

from the preterm birth clinic, difficulties with this method of recruiting include 

identifying and contacting women for participation in advance of their first scan, 

particularly as the viability of the pregnancy may not be known. Recruitment would 

take a long time, and bias may be introduced by the type of women choosing to 

participate in the research study, potentially leading to fewer preterm births amongst 

the participants than planned. However, adding a low risk control group to this study 

in the future is an area to consider and would be feasible if only “healthy” volunteers 

with a history of term birth are approached. To get samples at the 16- and 20-week 

gestation timepoints, women would have to be invited to participate and a separate 

research appointment scheduled. Women could be identified after viability was 

confirmed at the 12-week scan, there is a singleton gestation and no abnormal or 

concerning USS features are present. Hospital records could be searched to ensure 

that only women with previous term pregnancies are approached. Even if only 50% 

of women approached from this population accept participation in the study, they are 

all highly likely to have a subsequent term birth and the prevalence of this population 

is high, therefore recruitment will be faster than the high risk cohort even if take up 

to the study is low. 
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There were other risk factors for sPTB/PPROM that I chose to exclude when 

recruiting. Women with short cervix without a history of sPTB, women who had 

‘significant’ cervical surgery and multiple pregnancies are three of the most 

significant examples. One of the strengths of this cohort was the homogeneous 

(“clean”) phenotype. Given that our analysis involved so many variables within the 

omics layers, the more we could minimise the differences in the aetiologies of sPTB, 

the more the groups may cluster and give us significant findings or new results that 

may have been missed in more heterogenous cohorts. Additionally, in the UK, 

screening for short cervical length does not occur routinely at present and therefore 

recruiting women with short cervix, but no history of sPTB is not feasible for our 

recruitment setting. Multiple pregnancies are seen frequently throughout pregnancy 

in the multiple pregnancy clinic (MPC) therefore recruitment would be feasible; 

however, the aetiology of preterm delivery in twin pregnancies is likely different 

from that of singletons.  

We also considered obtaining samples from large UK pregnancy biobanks. On 

enquiry, the samples obtained frequently did not have multiple timepoints from the 

same individual, the samples were not collected in the second trimester, the type of 

biological fluid we wished to use was not available or there would only be enough 

sample available for one type of omic analysis. The heterogeneity would have been 

too large and further highlights the uniqueness and importance of our recruited 

cohort.  

It was challenging to decide how to analyse the group of women who had a 

treatment for a short cervix, but ultimately delivered at term. It could be argued that 

these women had “successful” treatment i.e. the treatment prevented another sPTB. 

To the contrary, these women were always going to have a term birth and the 
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treatment given was superfluous. The truth is likely to be somewhere in between 

these two positions; therefore, we excluded these women.  

A criticism of our phenotyping is that despite being as thorough as possible, we 

were dependent on information recorded in clinical notes and made retrospective 

judgements on groupings. Relevant information may have been missed from the 

records. In the UK we do not perform specific screening for polyhydramnios or 

infection in pregnancy. It is possible that there may have been other cases of 

polyhydramnios where PPROM occurred before the increased amniotic fluid 

volumes were ever noted. Additionally, women who bled throughout pregnancy may 

have never reported this symptom or might not have been recorded clearly  

We did not see the differences between sPTB and PPROM that we had 

hypothesised that we might. A possible explanation, and another criticism of this 

data, is that our groups were too small to see significant differences at an individual 

omic level. We also did not have enough samples in the multi-omic comparison 

(chapter 7) to have PPROM as its own group, and therefore differences could not be 

tested. Another possible explanation is that there are no differences between these 

groups, i.e. we are not seeing a difference because there isn’t one. However, our 

phenotyping of the PPROM group was strict and we may have excluded cases with 

an aetiology that would have shown significant differences like infection or 

polyhydramnios. Without these, sPTB and PPROM are in fact the same when 

defined by omics signatures. This may also explain why other studies in the literature 

have suggested there are differences as they were not phenotyped with this degree of 

precision. To address this, further research with larger groups of sPTB and PPROM 

should be performed. Other methods of analysis might be better at differentiating 
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these groups, such as mass spectroscopy which typically identifies more metabolites 

than NMR. 

Of note, our population in this study is predominantly Caucasian (90%), as is 

typical for a Liverpool population. On one hand this makes our cohort increasingly 

homogenous, reducing known genetic variation based on ethnicity. On the other 

hand, this may reduce the generalisability of our results to a wider population. 

The issue of the small dataset was addressed in the discussion in Chapter 7 

(section 7.4). Despite being an obvious criticism of the data across all ‘omic’ analysis 

in this thesis, the evidence in the literature demonstrates how common other studies 

with comparatively small figures are. These studies are frequently only a single time 

point, and only investigating one specific omic analysis or panel of biomarkers. This 

highlights again the strength of this dataset, including the well-designed study 

methodology, use of multiple omics to increase predictive value and data from 

multiple timepoints. 

RNA was only collected for a subset of 56 patients in this cohort (29 controls, 

5 sPTB, 6 PPROM) and this is certainly the largest limiting factor for the 

integromics, as many women were excluded as they didn’t have RNA despite 

samples for genetics and metabolomics being available. Following all other 

exclusions only 15 women were left for analysis in Chapter 7. This data is essential 

for planning further omic studies as we would expect approximately a quarter of the 

women recruited to proceed to the final analysis, based on our estimates.  

Should we have collected a different sample for omics analysis such as urine 

or saliva, or used a more pregnancy specific tissue such as placenta or amniotic fluid 

instead of blood? I think it is reasonable to use blood as a source for biomarker 

prediction as it is easily accessible and generally acceptable to pregnant women who 
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are required to have blood taken at various stages during pregnancy. It is common for 

genetic studies to use whole blood for DNA extraction, but would gene expression 

from blood truly reflect a difference between the pregnancy cohorts? Popular belief 

initially assumed that mammalian erythroid cells, lacking a nucleus, were devoid of 

mRNA and therefore incapable of protein synthesis, making it a poor fluid for omics 

analysis, particularly transcriptomic analysis. Microarray studies on mRNA isolated 

from whole blood demonstrated that up to 70% of the total RNA isolate was actually 

from haemoglobin/erythrocytes and not the leukocyte fraction. (Tian et al. 2009). 

Blood quickly became a surrogate for tissue-specific RNA. Studies using microarray 

analysis have shown that blood cells share more than 80% of the transcriptome with 

each of nine tissues studied (brain, colon, heart, kidney, liver, lung, prostate, spleen 

and stomach), and estimates are that the blood transcriptome contains 16,000–20,000 

transcripts (Liew et al. 2006). Therefore, we felt that this was an appropriate fluid to 

study. As although it is not pregnancy specific like for example amniotic fluid, it 

may still detect signals from the uterus/placenta and has the advantage of being safe 

to collect in the mid-trimester to provide a gestational age matched control. 

A criticism of using cross-omics data as a predictive tool is that there could 

be a long way to go before any positive results of this type of research become 

translatable to a clinical setting for patient benefit. Omics analysis is unlikely to ever 

be fast enough for a bedside test. Omic services will remain highly specialised, 

samples require time and care to process, pass strict quality control thresholds and 

frequently require shipment to a specialist laboratory which may have a wait time for 

results that is incompatible with clinical need. Interpretation of omic data requires 

time and expertise that are not yet widely available and by the time samples are 
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analysed using the techniques here, a woman would have already delivered. That is 

without mention of the prohibitive cost of the tests.  

A more realistic goal of data integration using advanced omic technologies is 

to identify key variables that are used by machine learning to classify women based 

on their outcome. These variables may subsequently be used to create a panel of 

predictive biomarkers that can be used in the clinic.  

Therefore, it would be prudent to move away from machine learning analyses 

that are very difficult to interpret. One disadvantage of neural networks is the “black 

box” dilemma. Despite the networks ability to approximate accurate outcomes, there 

is no way of tracing its decision structure, which then reveals very little insight about 

the variables that impact the final classification outcome (Theobald. 2017). Even 

given a dataset and network topology, there can be two neural networks with 

different weights and same result. This makes the analysis hard. The ‘Random 

Forest’ analysis struck the best balance in our dataset between being a good 

predictor, not being prone to overfitting and remaining interpretable. It is also 

unaffected by prior knowledge and completely at random generates trees from the 

predictor variables.  

8.4 Implications for Future Research 

Validation of results and training our models on new cohorts is required to 

understand the reliability of our results. Although we have used very advanced cross-

validation methods on all our machine learning algorithms to ensure accurate model 

performance, this should be repeated on an independent cohort to ensure the results 

are the same. Although we have focussed on the accuracy of prediction in this thesis, 
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a future direction would be to examine model interpretability to assess the key 

variables leading to prediction. 

We have only used three omics in this pilot study. More omic layers may be 

included in future analysis, particularly omics that are starting to show some promise 

towards differentiating sPTB from term outcomes. The vaginal microbiome 

discussed on pages 23 to 25 is a promising area of research and proteomics using 

electrophoresis techniques or mass spectroscopy may complement the 

transcriptomics and metabolomics analysis. Mitochondrial RNA might also be a 

useful analysis in addition to messenger RNA. MiR223, a mitochondrial RNA, has 

been found to be increased in sPTB when compared to term (Hassan et al. 2015, 

Sanders et al. 2015, Gray et al. 2017). However, this would also require significantly 

more funding and may become prohibitively expensive or require too many vials of 

blood to be taken from the participant. Additionally, for each layer of omic analysis 

there is the potential to create more “noise” as hundreds, and sometimes thousands, 

of variables are added  

Assessing other groups such as a low risk pregnant cohort would also be 

useful. Examining omics in women who have not had a history of preterm birth may 

show a greater discrepancy between some of the most significant variables between 

cases and controls.   

Our initial results are suggestive of a link between selenium and sPTB. The 

next logical research step is to evaluate the selenium pathway or markers of selenium 

in our groups. If there is a large difference in selenium concentrations between the 

sPTB group and the term group this result may suggest that there are possible clinical 

implications for selenium supplements in high risk women.
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8.5 Final Conclusions 

This research aimed to combine different types of ‘omics’ analysis for the 

prediction of sPTB. Following integration of genomic, transcriptomic and 

metabolomic data, six out of seven machine learning algorithms to predict sPTB 

provided excellent prediction, making individualized preterm prediction a realistic 

possibility and a research area that should be pursued. This research provides 

valuable insight into planning future omic studies. 

A key limiting factor in our study was the small overall number of samples 

that were included as cases and controls in the final analysis. This did not allow us to 

investigate the differences between sPTB and PPROM groups and this remains an 

area for future study.  While the sample size limits the generalisability of the results, 

our results did provide new insights into the role of selenium in the prediction of 

sPTB and identified the selenium pathway as an important avenue for future study 

with the potential for clinical impact. 
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DAHER, S. (2009). Inflammatory cytokine gene polymorphisms and spontaneous 
preterm birth. Journal of Reproductive Immunology. 80:115–21.  
 
MOZURKEWICH, E.L., LUKE, B., AVNI, M., WOLF, F.M. (2000). Working conditions 
and adverse pregnancy outcome: a meta-analysis. Obstetrics & Gynecology. 
95(4):623-35. 
 
MUSILOVA, I., KACEROVSKY, M., STEPAN, M., BESTVINA, T., PLISKOVA, L., 
ZEDNIKOVA, B., JACOBSSON B. (2017). Maternal serum C-reactive protein 
concentration and intra-amniotic inflammation in women with preterm prelabor 
rupture of membranes. PLoS One. 12(8). 
 
MUSTAFA, M.D., BANERJEE, B.D., AHMED, R.S., TRIPATHI, A.K., GULERIA, K. (2013) 
Gene-environment interaction in preterm delivery with special reference to 
organochlorine pesticides. Molecular Human Reproduction. 19(1):35–42.  
 
MYKING, S. BOYD, H.A., MYHRE, R., FEENSTRA, B., JUGESSUR, A., DEVOLD PAY, A.S., 
ØSTENSEN, I.H.G., MORKEN, N.H., BUSCH, T., RYCKMAN, K.K., GELLER, F., MAGNUS, 
P., GJESSING, H.K., MELBYE, M., JACOBSSON, B., MURRAY, J.C. (2013). X-
Chromosomal Maternal and Fetal SNPs and the Risk of Spontaneous Preterm 
Delivery in a Danish/Norwegian Genome-Wide Association Study. PLoS One. 8(4): 
e61781.  
 
MYKING, S., MYHRE, R., GJESSING, H.K., MORKEN, N.H., SENGPIEL, V., WILLIAMS, 
S.M., RYCKMAN, K.K., MAGNUS, P., JACOBSSON, B. (2011). Candidate gene analysis 
of spontaneous preterm delivery: new insights from re-analysis of a case-control 



 

287 
 

study using case-parent triads and control-mother dyads. BMC Medicine Genetics. 
12:174. 
 
NAGALAKSHMI, U., WANG, Z., WAERN, K., SHOU, C., RAHA, D. GERSTEIN, M., 
SNYDER, M. (2008). The transcriptional landscape of the yeast genome defined by 
RNA sequencing. Science. 6(320):1344-1349. 
 
NATIONAL CENTRE FOR BIOTECHNOLOGY INFORMATION [Internet]. (2018) 
Bethesda (MD): National Library of Medicine (US), National Institute of Health. 
[cited 2018 Sep 2]. Available from: https://www.ncbi.nlm.nih.gov/gene/10154 
 
NHS ENGLAND. (2019) Saving Babies' Lives Care Bundle Version 2. [online] Available 
from: https://www.england.nhs.uk/wp-content/uploads/2019/07/saving-babies-
lives-care-bundle-version-two-v5.pdf 
 
NICHOLSON, J. K.; LINDON, J. C.; HOLMES, E. (1999). "Metabonomics": 
understanding the metabolic responses of living systems to pathophysiological 
stimuli via multivariate statistical analysis of biological NMR spectroscopic data. 
Xenobiotica, 29, 1181−1189. 
 
NIKOLOVA, T., UOTILA, J., NIKOLOVA, N., BOLOTSKIKH, V.M., BORISOVA, V.Y., DI 
RENZO, G.C. (2018). Prediction of spontaneous preterm delivery in women 
presenting with premature labor: a comparison of placenta alpha microglobulin-1, 
phosphorylated insulin-like growth factor binding protein-1, and cervical length. 
American Journal of Obstetrics and Gynaecology. 219 (610):e1-9. 
 
NORMAN, J.E., MARLOW, N., MESSOW, C.M., SHENNAN, A., BENNETT, P.R., 
THORNTON, S., ROBSON, S. C., MCCONNACHIE, A., PETROU, S., SEBIRE, N. J., 
LAVENDER, T., WHYTE, S., NORRIE, J. OPPTIMUM STUDY GROUP. (2016). Vaginal 
progesterone prophylaxis for preterm birth (the OPPTIMUM study): a multicentre, 
randomised, double-blind trial. Lancet. 387, 2106-16. 
 
OFFICE FOR NATIONAL STATISTICS. (2017). Statistical Bulletin: Births in England and 
Wales: 2017. Accessed at: 
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriag
es/livebirths/bulletins/birthsummarytablesenglandandwales/2017 (22 Aug 2018) 
 
OH, D.Y., TALUKDAR, S., BAEE, J., IMAMURA, T., MORINAGA, H., FAN, W., LI P., LU 
W.J., WATKINS S.M., OLEFSKY, J.M. (2010). GPR120 is an omega-3 fatty acid 
receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 
142:687-98.  
OLIVEIRA, T.A., DA CUNHA, D.R., POLICASTRO, A., TRAINA, É., GOMES, M.T., 
CORDIOLI, E. (2011). The progesterone receptor gene polymorphism as factor of risk 
for the preterm delivery. Revista Brasileira de Ginecologia e Obstetrícia. 33:271–75.  
 

https://www.ncbi.nlm.nih.gov/gene/10154
https://www.england.nhs.uk/wp-content/uploads/2019/07/saving-babies-lives-care-bundle-version-two-v5.pdf
https://www.england.nhs.uk/wp-content/uploads/2019/07/saving-babies-lives-care-bundle-version-two-v5.pdf
https://www.sciencedirect.com/science/article/pii/S0002937818307646
https://www.sciencedirect.com/science/article/pii/S0002937818307646
https://www.sciencedirect.com/science/article/pii/S0002937818307646
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/bulletins/birthsummarytablesenglandandwales/2017%20(22
https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/bulletins/birthsummarytablesenglandandwales/2017%20(22


 

288 
 

ORCZYK-PAWILOWICZ, M., JAWIEN, E., DEJA, S., HIRNLE, L., ZABEK, A., MLYNARZ, P. 
(2016). Metabolomics of Human Amniotic Fluid and Maternal Plasma during Normal 
Pregnancy. PLoS One. 11(4):e0152740 
 
PACAGNELLA, R.C., MOL, B.W., BOROVAC-PINHEIRO, A. Renato Passini 

Jr., Nomura, M.L., Andrade, K.C., Ellovitch, N., Fernandes, K.G., Bortoletto, T.G., 
Pereira, C.M., Miele, M.J., França, M.S., Cecatti, J.G., P5 Working Group. (2019) A 
randomized controlled trial on the use of pessary plus progesterone to prevent 
preterm birth in women with short cervical length (P5 trial). BMC Pregnancy 
Childbirth 19, 442.  
 
PAPPAS, A., CHAIWORAPONGSA, T., ROMERO, R., KORZENIEWSKI, S.J., CORTEZ, J.C., 
BHATTI, G., GOMEZ-LOPEZ, N., HASSAN, S.S., SHANKARAN, S., TARCA, A.L. (2015). 
Transcriptomics of maternal and fetal membranes can discriminate between 
gestational age matched preterm neonates with and without cognitive impairment 
diagnosed at 18-24 months. PLoS One. 10(3):e0118573. 
 
PARTHIBAN, P & MAHENDRA, J. (2015). Toll-Like Receptors: A Key Marker for 
Periodontal Disease and Preterm Birth - A Contemporary Review. Journal of clinical 
and diagnostic research. 9(9),e14-7. 
 
PATEL, K., WILLIAMS, S., GUIRGUIS, G., GITTENS-WILLIAMS, L., APUZZIO, J. (2017) 
Genital tract GBS and rate of histologic chorioamnionitis in patients with preterm 
premature rupture of membrane. Journal of Maternal-Fetal & Neonatal Medicine. 
1-4. 
 
PEREYRA, S., SOSA, C., BERTONI, B. & SAPIRO, R. (2019). Transcriptomic analysis of 
fetal membranes reveals pathways involved in preterm birth. BMC Medical 
Genomics. 12:53. 
 
PEREZA, N., PLEŠA, I., PETERLIN, A., JAN, Z., TUL, N., KAPOVIC, M., OSTOJIĆ, 
S., PETERLIN, B. 
(2014). Functional polymorphisms of matrix metalloproteinases 1 and 9 genes in 
women with spontaneous preterm birth. Disease Markers. 171036. 
 
PETRICEVIC, L., DOMIG, K.J., NIERSCHER, F.J., SANDHOFER, M.J., FIDESSER, M., 
KRONDORFER, I. HUSSLEIN, P., KNEIFEL, W., KISS, H. (2014). Characterisation of the 
vaginal Lactobacillus microbiota associated with preterm delivery. Scientific Reports. 
4:5136. 
 
PETRUNIN, D.D., GRYAZNOVA, I.M., PETRUNINA YU, A.,TATARINOV YU, S. (1976). 
Immunochemical identification of the human placenta organospecific α2 globulin 
and its concentration in the amniotic fluid. Byulleten Eksperimentalnoi Biologii i 
Meditsiny. 82 (7): 83-84.  
 
PHARANDE, P. MOHAMED, A. L. BAJUK, B. LUI, K. BOLISETTY, S. (2017). Preterm 
infant outcomes in relation to the gestational age of onset and duration of 

https://www.ncbi.nlm.nih.gov/pubmed/27070784
https://www.ncbi.nlm.nih.gov/pubmed/27070784
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pappas%20A%5BAuthor%5D&cauthor=true&cauthor_uid=25822971
https://www.ncbi.nlm.nih.gov/pubmed/?term=Chaiworapongsa%20T%5BAuthor%5D&cauthor=true&cauthor_uid=25822971
https://www.ncbi.nlm.nih.gov/pubmed/?term=Romero%20R%5BAuthor%5D&cauthor=true&cauthor_uid=25822971
https://www.ncbi.nlm.nih.gov/pubmed/?term=Korzeniewski%20SJ%5BAuthor%5D&cauthor=true&cauthor_uid=25822971
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cortez%20JC%5BAuthor%5D&cauthor=true&cauthor_uid=25822971
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bhatti%20G%5BAuthor%5D&cauthor=true&cauthor_uid=25822971
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gomez-Lopez%20N%5BAuthor%5D&cauthor=true&cauthor_uid=25822971
https://www.ncbi.nlm.nih.gov/pubmed/?term=Hassan%20SS%5BAuthor%5D&cauthor=true&cauthor_uid=25822971
https://www.ncbi.nlm.nih.gov/pubmed/?term=Shankaran%20S%5BAuthor%5D&cauthor=true&cauthor_uid=25822971
https://www.ncbi.nlm.nih.gov/pubmed/?term=Tarca%20AL%5BAuthor%5D&cauthor=true&cauthor_uid=25822971
https://www.ncbi.nlm.nih.gov/pubmed/?term=Pappas+et+al.+fetal+membranes+2015
https://www.scopus.com/authid/detail.uri?authorId=7004119209&amp;eid=2-s2.0-0017169320
https://www.scopus.com/authid/detail.uri?authorId=6701810801&amp;eid=2-s2.0-0017169320
https://www.scopus.com/authid/detail.uri?authorId=55663611500&amp;eid=2-s2.0-0017169320
https://www.scopus.com/authid/detail.uri?authorId=55664070000&amp;eid=2-s2.0-0017169320
https://www.scopus.com/sourceid/13847?origin=recordpage
https://www.scopus.com/sourceid/13847?origin=recordpage


 

289 
 

prelabour rupture of membranes: a retrospective cohort study. BMJ Paediatrics 
Open. 1, 1-8.  
 
PINTO, J., BARROS, A.S., DOMINGUES, M.R., GOODFELLOW, B.J., GALHANO, E., PITA 
C, ALMEIDA MDO, C., CARREIRA, I.M., GIL, A.M. (2015). Following healthy pregnancy 
by NMR metabolomics of plasma and correlation to urine. Journal of Proteome 
Research. 14(2):1263-74.  
 
PLUNKETT, J., DONIGER, S., ORABONA, G., MORGAN, T., HAATAJA, R., HALLMAN, 
M., PUTTONEN, H., MENON, R., KUCZYNSKI, E., NORWITZ, E., SNEGOVSKIKH, V., 
PALOTIE, A., PELTONEN, L., FELLMAN, V., DEFRANCO, E.A., CHAUDHARI, B.P., 
MCGREGOR, T.L., MCELROY, J.J., OETJENS, M.T., TERAMO, K., BORECKI, I., FAY, J., 
MUGLIA, L. (2011). An evolutionary genomic approach to identify genes involved in 
human birth timing. PLoS Genetics. 7(4):e1001365. 
 
PORTER, T.F., FRASER, A.M., HUNTER, C.Y., WARD, R.H., VARNER, M.W. (1997). The 
risk of preterm birth across generations. Obstetrics & Gynecology. 90 (1):63-7. 
 
PRUIM, R.J., WELCH, R.P., SANNA, S., TESLOVICH, T.M., CHINES, P.S., GLIEDT, T.P., 
BOEHNKE, M., ABECASIS, G.R., WILLER, C.J. (2010). LocusZoom: Regional 
visualization of genome-wide association scan results. Bioinformatics. 26(18): 2336-
2337. 
 
PLUNKETT, J., FEITOSA, M.F., TRUSGNICH, M., WANGLER, M.F., PALOMAR, L., 
KISTKA, Z.A., DEFRANCO, E.A., SHEN, T.T., STORMO, E., PUTTONEN, H., HALLMAN, 
M., HAATAJA, R., LUUKKONEN, A., FELLMAN, V., PELTONEN, L.,  PALOTIE, A., DAW 
E.W., ANN, P., TERAMO, K., BORECKI, I., MUGLIA, L.J. (2009). Mother’s genome or 
maternally inherited genes acting in the fetus influence gestational age in familial 
preterm birth. Human Heredity. 68:209–219 
 
POLETTINI, J., DUTTA, E.H., BEHNIA, F., SAADE, G.R., TORLONI, M.R., MENON, R. 
(2015). Aging of intrauterine tissues in spontaneous preterm birth and preterm 
premature rupture of the membranes: A systematic review of the literature. 
Placenta. 36(9):969-73.  
 
PU, J. & ZENG, W.Y. (2007) Gene polymorphism of tumor necrosis factor-alpha 
promoter region in -308 site and premature births in Chinese Han populations. 
Sichuan Da Xue Xue Bao Yi Xue Ban. 38:984–6.(Abstract)  
 
RADOCHOVA, V., KACEROVSKA MUSILOVA, I., STEPAN, M., VESCICIK, P., SLEZAK, R., 
JACOBSSON, B., KACEROVSKY, M. (2018). Periodontal disease and intra-amniotic 
complications in women with preterm prelabor rupture of membranes. Journal of 
Maternal-Fetal & Neonatal Medicine. 31(21):2852-2861. 
 
RAVEL, J., GAJER, P., ABDO, Z., SCHNEIDER, G.M., KOENIG S.S.K., MCCULLE, S.L., 
KARLEBACH, S., GORLE, R., RUSSELL, J., TACKET, C.O., BROTMAN, R.M., DAVIS, C.C., 
AULT K., PERALTA, L., FORNEY, L.J. (2011). Vaginal microbiome of reproductive-age 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hallman%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19521103
https://www.ncbi.nlm.nih.gov/pubmed/?term=Haataja%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19521103
https://www.ncbi.nlm.nih.gov/pubmed/?term=Luukkonen%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19521103
https://www.ncbi.nlm.nih.gov/pubmed/?term=Fellman%20V%5BAuthor%5D&cauthor=true&cauthor_uid=19521103
https://www.ncbi.nlm.nih.gov/pubmed/?term=Peltonen%20L%5BAuthor%5D&cauthor=true&cauthor_uid=19521103
https://www.ncbi.nlm.nih.gov/pubmed/?term=Palotie%20A%5BAuthor%5D&cauthor=true&cauthor_uid=19521103
https://www.ncbi.nlm.nih.gov/pubmed/?term=Daw%20EW%5BAuthor%5D&cauthor=true&cauthor_uid=19521103
https://www.ncbi.nlm.nih.gov/pubmed/?term=Borecki%20I%5BAuthor%5D&cauthor=true&cauthor_uid=19521103
https://www.ncbi.nlm.nih.gov/pubmed/26004735


 

290 
 

women. Proceedings of the National Academy of Sciences U S A. 108 (Suppl. 
1):4680-4687. 
 
RAYMAN, M.P., BODE, P., REDMAN, C.W. (2003). Low selenium status is associated 

with the occurrence of the pregnancy disease pre-eclampsia in women from the 

United Kingdom. American Journal of Obstetrics and Gynecology. 189; 1343-9.  

 

RAYMAN, M.P., WIJNEN, H., VADER, H., KOOISTRA, L., POP, V. (2011). Maternal 
selenium status during early gestation and risk for preterm birth. Canadian Medical 
Association Journal. 183:549-555. 
 
REICH, D.E., LANDER, E.S. (2001). On the allelic spectrum of human disease. Trends 
in Genetics. 17: 502-510.  
 
REID, G., YOUNES, J.A., VAN DER MEI, H.C., GLOOR, G.B., KNIGHT, R., BUSSCHER, H.J. 
(2011). Microbiota restoration: natural and supplemented recovery of human 
microbial communities. Nature Reviews Microbiology. 9(1):27–38. 
 
REY, G., SKOWRONEK, F., ALCIATURI, J., ALONSO, J., BERTONI, B., SAPIRO, R. (2008). 
Toll receptor 4 Asp299Gly polymorphism and its association with preterm birth and 
premature rupture of membranes in a South American population. Molecular 
Human Reproduction. 14:555–9.  
 
RINALDI, S.F., MAKIEVA, S., SAUNDERS, P.T., ROSSI, A.G., NORMAN, J.E. (2017). 
Immune cell and transcriptomic analysis of the human decidua in term and preterm 
parturition. Molecular Human Reproduction. 23 (10):708-724. 
 
RITCHIE, M., HOLZINGER, E., LI, R., PENDERGRASS, S., KIM, D. (2015). Methods of 
integrating data to uncover genotype-phenotype interactions. Nature Reviews 
Genomics. 85-97. 
 
ROBERTS, C.L., WAGLAND, P., TORVALDSEN, S., BOWEN, J.R., BENTLEY, J.P., 
MORRIS, J.M. (2017). Childhood outcomes following preterm prelabor rupture of 
the membranes (PPROM): a population-based record linkage cohort study. Journal 
of Perinatology. 37; 1230-1235. 
 
ROCHEFORT, S. (2005). Metabolomics Reviewed:  A New “Omics” Platform 
Technology for Systems Biology and Implications for Natural Products Research. 
Journal of Natural Products.68(12);1813-1820. 
 
ROGGERO, P., GIANNI, M.L., GARBARINO, F. & MOSCA, F. (2013). Consequences of 
prematurity on adult morbidities. European Journal of Internal Medicine. 24 (7), 
624-6. 
 
ROHART, F., GAUTIER, B., SINGH, A., LÊ CAO, K.A. (2017). mixOmics: An R package 
for ‘omics feature selection and multiple data integration. PLOS Computational 
Biology 13(11): e1005752.  



 

291 
 

 
ROMERO, R., FRIEL, L.A., VELEZ EDWARDS, D.R., KUSANOVIC, J.P., HASSAN, S.S., 
MAZAKI-TOVI, S., VAISBUCH, E., KIM, C.J., EREZ, O., CHAIWORAPONGSA, T., PEARCE, 
B.D., BARTLETT, J., SALISBURY, B.A., ANANT, M.K., VOVIS, G.F., LEE, M.S., GOMEZ, 
R., BEHNKE, E., OYARZUN, E., TROMP, G., WILLIAMS, S.M., MENON, R. (2010a). A 
genetic association study of maternal and fetal candidate genes that predispose to 
preterm prelabor rupture of membranes (PROM). American Journal of Obstetrics 
and Gynecology. 203(4):361.e1-e361.  
 
ROMERO, R., VELEZ EDWARDS, D.R., KUSANOVIC, J.P., HASSAN, S.S., MAZAKI-TOVI, 
S., VAISBUCH, E., KIM, C.J., CHAIWORAPONGSA, T., PEARCE, B.D., FRIEL, L.A., 
BARTLETT, J., ANANT, M.K., SALISBURY, B.A., VOVIS, G.F., LEE, M.S., GOMEZ, R., 
BEHNKE, E., OYARZUN, E., TROMP, G., WILLIAMS, S.M., MENON, R. (2010b). 
Identification of fetal and maternal single nucleotide polymorphisms in candidate 
genes that predispose to spontaneous preterm labor with intact 
membranes. American Journal of Obstetrics and Gynecology. 202:431.e1-34. 
 
ROMERO, R., MAZAKI-TOVI, S., VAISBUCH, E., KUSANOVIC, J.P., CHAIWORAPONGSA, 
T., GOMEZ, R., NIEN, J.K., YOON, B.H., MAZOR, M., LUO, J., BANKS, D., RYALS, J., 
BEECHER, C. (2010c). Metabolomics in premature labor: a novel approach to 
identify patients at risk for preterm delivery. The Journal of Maternal-Fetal & 
Neonatal Medicine. 23(12):1344-59. 
 
ROMERO, R., NICOLAIDES, K., CONDE-AGUDELO, A., TABOR, A., O'BRIEN, J.M., 
CETINGOZ, E., DA FONSECA, E., CREASY, G. W., KLEIN, K., RODE, L., SOMA-PILLAY, P., 
FUSEY, S., CAM, C., ALFIREVIC, Z., HASSAN, S. S. (2012). Vaginal progesterone in 
women with an asymptomatic sonographic short cervix in the midtrimester 
decreases preterm delivery and neonatal morbidity: a systematic review and 
metaanalysis of individual patient data. American Journal of Obstetrics and 
Gynecology. 206(2), e1-19. 
 
ROMERO, R., HASSAN, S.S., GAJER, P., TARCA, A.L., FADROSH, D.W., NIKITA, L., 
GALUPPI, M., LAMONT, R.F., CHAEMSAITHONG, P., MIRANDA, J., 
CHAIWORAPONGSA, T., RAVEL, J. (2014). The composition and stability of the 
vaginal microbiota of normal pregnant women is different from that of non-
pregnant women. Microbiome. 2:10. 
 
ROMERO, R., CONDE-AGUDELO, A., DA FONSECA, E., O'BRIEN, J.M., 
CETINGOZ, E., CREASY, G.W., HASSAN, S.S., NICOLAIDES, K.H. (2018). 
Vaginal progesterone for preventing preterm birth and adverse perinatal outcomes 
in singleton gestations with a short cervix: a meta-analysis of individual patient 
data. American Journal of Obstetrics & Gynecology. 218(2):161–180.  
 
RYCKMAN KK, MORKEN NH, WHITE MJ, VELEZ DR, MENON R, FORTUNATO SJ, 
MAGNUS, P., WILLIAMS, S.M., JACOBSSON, B. (2010). Maternal and fetal genetic 
associations of PTGER3 and PON1 with preterm birth. PLoS One. 5(2):e9040.  
 



 

292 
 

SAADE, G., BOGGESS, K.A., SULLIVAN, S.A., MARKENSON, G.R., IAMS, 
J.D., COONROD, D.V., PEREIRA, L.M., ESPLIN, M.S., COUSINS, L.M., LAM, 
G.K., HOFFMAN, M.K., SEVERINSEN, R.D., PUGMIRE, T., FLICK, J.S., FOX, A.C., LUETH, 
A.J., RUST, S.R., MAZZOLA, E., HSU, C., DUFFORD, M.T., BRADFORD, 
C.L., ICHETOVKIN, I.E., FLEISCHER, T.C., POLPITIYA, A.D., CRITCHFIELD, 
G.C., KEARNEY, P.E., BONIFACE, J.J., HICKOK, D.E. (2016) Development and 
validation of a spontaneous preterm delivery predictor in asymptomatic women. 
American Journal of Obstetrics and Gynaecology. 214(5):633.e1-633.e24. 
 
SAK, S., BARUT, M., INCEBIYIK, A., AGACAYAK, E., KIRMIT, A., KOYUNCU, I., SAK, M. 
(2017). Comparison of sVCAM-1 and sICAM-1 levels in maternal serum and vaginal 
secretion between pregnant women with preterm prelabour ruptures of 
membranes and healthy pregnant women. Journal of Maternal-Fetal and Neonatal 
Medicine.1-6. 
 
SALMINEN, A., KAARNIRANTA, K., KAUPPINEN, A. (2012). Inflammaging: disturbed 
interplay between autophagy and inflammasomes. Aging. Mar;4(3):166-75. 
 
SALOMON, L.J., DIAZ-GARCIA, C., BERNARD, J.P., VILLE, Y. (2009). Reference range 
for cervical length throughout pregnancy: non-parametric LMS-based model applied 
to a large sample. Ultrasound in Obstetrics & Gynecology. 33(4):459-64. 
 
SANDERS, A.P., BURRIS, H.H., JUST, A.C., MOTTA, V., SVENSSON, K., MERCADO-
GARCIA, A., PANTIC, I., SCHWARTZ, J., TELLEZ-ROJO, M.M., WRIGHT, R.O., 
BACCARELLI, A. (2015). A microRNA expression in the cervix during pregnancy is 
associated with length of gestation. Epigenetics, 10(3):221-8. 
 
SANDMAN, C.A. & DAVIS, E.P. (2012). Neurobehavioural risk is associated with 
gestational exposure to stress hormones. Expert Review in Endocrinology 
Metabolism. 7(4):445-459.  
 
SATA, F., TOYA, S., YAMADA, H., SUZUKI, K., SAIJO, Y., YAMAZAKI, A. MINAKAMI, H., 
KISHI, R. (2009). Proinflammatory cytokine polymorphisms and the risk of preterm 
birth and low birthweight in a Japanese population. Molecular Human 
Reproduction. 15(2):121–30.  
 
SCHENA, M., SHALON, D., DAVIS, R.W., BROWN, P. (1995). Quantitative monitoring 
of gene expression patterns with a complementary DNA microarray. Science, 
270(5235): 467–470. 
 
SCHMID, M., HASLINGER, P., STARY, S., LEIPOLD, H., EGARTER, C., GRIMM, C. (2012). 
Interleukin-1 beta gene polymorphisms and preterm birth. European Journal of 
Obstetrics and Gynecology and Reproductive Biology. 165(1):33–6. 
 
SEAL, B.S., KING, D.J., BENNETT, J.D. (1995). Characterization of Newcastle disease 
virus isolates by reverse transcription PCR coupled to direct nucleotide sequencing 

https://www.ncbi.nlm.nih.gov/pubmed/22411934


 

293 
 

and development of sequence database for pathotype prediction and molecular 
epidemiological analysis. Journal of Clinical Microbiology. 33(10):2624-30. 
 
SEALFON, S.C. AND CHU, T.T. (2011). RNA and DNA microarrays. Methods Molecular 
Biology. 671:3-34. 
 
SHARP, G.C., HUTCHINSON, J.L., HIBBERT, N., FREEMAN, T.C., SAUNDERS, P.T., 
NORMAN, J.E. (2016). Transcription Analysis of the Myometrium of Labouring and 
Non-Labouring Women. PLoS One. 11(5):e0155413.  
 
SHEIKH, I.A., AHMAD, E., JAMAL, M.S., REHAN, M., ASSIDI, M., TAYUBI, I.A., ALBASRI, 
S.F., BAJOUH, O.S., TURKI, R.F., ABUZENADAH, A.M., DAMANHOURI, G.A., MOHD, 
A., AL-QAHTANI, M. (2016). Spontaneous preterm birth and single nucleotide gene 
polymorphisms: a recent update. BMC Genomics. 17(Suppl 9):759. 
 
SHEN, R. OLSHEN AB, LADANYI M. (2009). Integrative clustering of multiple genomic 
data types using a joint latent variable model with application to breast and lung 
cancer subtype analysis. Bioinformatics, 25, 2906–2912. 
 
SHETTY, S & COPELAND, P. (2018). The Selenium Transport Protein, Selenoprotein P, 
Requires Coding Sequence Determinants to Promote Efficient Selenocysteine 
Incorporation. Journal of Molecular Biology. 430(24); 5217-5232. 
 
SHREE, R., CAUGHEY, A.B., CHANDRASEKARAN, S. (2017). Short interpregnancy 
interval increases the risk of preterm premature rupture of membranes and early 
delivery. Journal of Maternal- Fetal and Neonatal Medicine. 31(22):3014-3020. 
 
SMOLINSKA, A., BLANCHET, L., BUYDENS, L.M.C., WIJMENGA, S.S. (2012). NMR and 
pattern recognition methods in metabolomics: From data acquisition to biomarker 
discovery: A review. Analytica Chimica Acta. 750(1); 82-97.  
 
SOCIETY FOR MATERNAL FETAL MEDICINE PUBLICATIONS COMMITTEE. (2008). 
ACOG Committee Opinion number 419: Use of progesterone to reduce preterm 
birth. Obstetrics & Gynecology. 112, 963-5. 
 
SOININEN, P., KANGAS, A.J., WÜRTZ, P., TUKIAINEN, T., TYNKKYNEN, T., 
LAATIKAINEN, R., JÄRVELIN, M.R., KÄHÖNEN, M., LEHTIMÄKI, T., VIIKARI, J., 
RAITAKARI, O.T., SAVOLAINEN, M.J., ALA-KORPELA, M. (2009). High-throughput 
serum NMR metabonomics for cost-effective holistic studies on systemic 
metabolism. Analyst. 134 (9):17781-5. 
 
SOORANNA, S.R., LEE, Y., KIM, L.U., MOHAN, A.R., BENNETT, P.R., JOHNSON, M.R. 
(2004). Mechanical stretch activates type 2 cyclooxygenase via activator protein-1 
transcription factor in human myometrial cells. Molecular Human Reproduction. 
10(2), 109-13. 
 
SPECHT, D.F. (1990). Probabilistic neural network.Neural Networks, 3; 109–118. 

https://www.ncbi.nlm.nih.gov/pubmed/27176052
https://www.ncbi.nlm.nih.gov/pubmed/?term=Olshen%20AB%5BAuthor%5D&cauthor=true&cauthor_uid=19759197


 

294 
 

 
SPONG, C.Y. (2013). Defining “term” pregnancy: recommendations from the 
Defining “Term” Pregnancy Workgroup. Journal of the American Medical 
Association. 309(23):2445-6. 
 
STANFIELD, Z., LAI, P. F., LEI, K., JOHNSON, M. R., BLANKS, A. M., ROMERO, R., 
CHANCE, M. R., MESIANO, S., & KOYUTÜRK, M. (2019). Myometrial Transcriptional 
Signatures of Human Parturition. Frontiers in genetics, 10, 185.  
 
STEFFEN, K.M., COOPER, M.E., SHI, M., CAPRAU, D., SIMHAN, H.N., DAGLE, J.M., 
MARAZITA, M.L., MURRAY, J.C. (2007). Maternal and fetal variation in genes of 
cholesterol metabolism is associated with preterm delivery. Journal of Perinatology. 
27 (11):672–80.  
 
STOUT, M.J., ZHOU, Y., WYLIE, K.M., TARR, P.I., MACONES, G.A., TUULI, M.G. (2017). 
Early pregnancy vaginal microbiome trends and preterm birth. American Journal of 
Obstetrics and Gynaecology. 217 (3), 1–18. 
 
STONEK, F., METZENBAUER, M., HAFNER, E., PHILIPP, K., TEMPFER, C. (2008). 
Interleukin-10 -1082 G/A promoter polymorphism and pregnancy complications: 
results of a prospective cohort study in 1,616 pregnant women. Acta Obstetrics 
Gynecology Scandinavia. 87:430–43.  
 
STRAUSS, J.F., ROMERO, R., GOMEZ-LOPEZ, N., HAYMOND-THORNBURG, H., MODI, 
B.P., TEVES, M.E., PEARSON, L.N., YORK, T.P., SCHENKEIN, H.A. (2018). Spontaneous 
preterm birth: advances toward the discovery of genetic predisposition. American 
Journal of Obstetrics and Gynaecology. 218 (3): 294-314.e2 
 
SUBRAMANIAM, A., TAMAYO, P., MOOTHA, V.K., MUKHERJEE, S., EBERT, B.L., 
GILLETTE, M.A. PAULOVICH, A., POMEROY, S.L., GOLUB, T.R., LANDER, E,S., 
MESIROV, J.P. (2005). Gene set enrichment analysis: a knowledge-based approach 
for interpreting genome-wide expression profiles. Proceedings of the National 
Acadamy of Science USA. 102(43):15545–50.  
 
SUGITA, N., KOBAYASHI, T., KIKUCHI, A., SHIMADA, Y., HIRANO, E., SASAHARA, J., 
TANAKA, K., YOSHIE, H. (2012). Immunoregulatory gene polymorphisms in Japanese 
women with preterm births and periodontitis. Journal of Reproductive Immunology. 
93(2):94–101.  
 
SUH, Y.J., KIM, Y.J., PARK, H., PARK, E.A., HA, E.H. (2008). Oxidative stress-related 
gene interactions with preterm delivery in Korean women. American Journal of 
Obstetrics and Gynecology. 198:541. e1–7.  
 
SUNG, J.H., KUK, J.Y., CHA, H.H., CHOI, S.J., OH, S.Y., ROH, C.R., KIM, J.H. (2017). 
Amniopatch treatment for preterm premature rupture of membranes before 23 
weeks' gestation and factors associated with its success. Taiwanese Journal of 
Obstetrics & Gynecology. 56(5):599-605. 



 

295 
 

 
SUH, Y.J., PARK, H.J., LEE, K.A., LEE, B.E., HA, E.H., KIM, Y.J. (2013). Associations 
between genetic polymorphisms of beta-2 adrenergic receptor and preterm 
delivery in Korean women. American Journal of Reproductive Immunology. 69:85–
91. 
 
TAKANO, M., LU, Z., GOTO, T., FUSI, L., HIGHAM, J., FRANCIS, J., WITHEY, A., HARDT, 
J., CLOKE, B., STAVROPOULOU, A.V., ISHIHARA, O., LAM, E.W., UNTERMAN, T.G., 
BROSENS, J.J., KIM, J.J. (2007). Transcriptional cross talk between the forkhead 
transcription factor forkhead box O1A and the progesterone receptor coordinates 
cell cycle regulation and differentiation in human endometrial stromal cells. 
Molecular Endocrinology. 21(10):2334-49. 
 
THAN, N.G., ROMERO, R., TARCA, A.L., DRAGHICI, S., EREZ, O., CHAIWORAPONGSA, 
T., KIM, Y.M., KIM., S.K. VAISBUCH, E., TROMP G. (2009). Mitochondrial manganese 
superoxide dismutase mRNA expression in human chorioamniotic membranes and 
its association with labor, inflammation, and infection. The Journal of Maternal-
Fetal & Neonatal Medicine. 22(11):1000-13. 
 
THARWAT, A., GABER, T., IBRAHIM, A., HASSANIEN, A.E. (2017). Linear discriminant 
analysis: A detailed tutorial. AI Communications. 00; 1–22 
 
THEOBALD, O. (2017). Machine Learning for Absolute Beginners (2nd Ed). Great 
Britain. Publisher: Amazon.  
 
THOTA, C., MENON, R., WENTZ, M.J., FORTUNATO, S.J., BARTLETT, J., DROBEK, C.O., 
NAIR, S., AL-HENDY, A. (2012) A single-nucleotide polymorphism in the fetal 
catechol-O-methyltransferase gene is associated with spontaneous preterm birth in 
African Americans. Reproductive Science 19(2):135–42.  
 
TIAN, Z., PALMER, N., SCHMID, P., YAO, H., GALDZICKI, M., BERGER, B., WU, E., 
KOHANE, I.S. (2009) A practical platform for blood biomarker study by using global 
gene expression profiling of peripheral whole blood. PLoS ONE. 4(4):e5157 
 
TIERENEY, B. (2018) Random Machine Learning in R, Python and SQL – Part 1. Toad 
World Blog. Aug, 31. Available at: https://blog.toadworld.com/2018/08/31/random-
forest-machine-learning-in-r-python-and-sql-part-1 
 
TING, H.S., CHIN, P.S., YEO, G.S. & KWEK, K. (2007). Comparison of bedside test kits 
for prediction of preterm delivery: phosphorylated insulin-like growth factor binding 
protein-1 (pIGFBP-1) test and fetal fibronectin test. Annals of the Academy of 
Medicine. 36(6), 399-402. 
 
TO, M.S., ALFIREVIC, Z., HEATH, V.C., CICERO, S., CACHO, A.M., WILLIAMSON, P.R., 
NICOLAIDES, K.H., FETAL MEDICINE FOUNDATION SECOND TRIMESTER SCREENING 
GROUP. (2004). Cervical cerclage for prevention of preterm delivery in women with 
short cervix: randomised controlled trial. Lancet. 363(9424), 1849-53. 

https://blog.toadworld.com/2018/08/31/random-forest-machine-learning-in-r-python-and-sql-part-1
https://blog.toadworld.com/2018/08/31/random-forest-machine-learning-in-r-python-and-sql-part-1


 

296 
 

 
TO, M.S., SKENTOU, C.A., ROYSTON, P., YU, C.K., NICOLAIDES, K.H. (2006). Prediction 
of patient-specific risk of early preterm delivery using maternal history and 
sonographic measurement of cervical length: a population-based prospective study. 
Ultrasound in Obstetrics & Gynecology. 27(4); 362-7. 
TONDE, C., & ELGAMMAL, A.M. (2016). Learning Kernels for Structured Prediction 
using Polynomial Kernel Transformations. ArXiv, abs/1601.01411. 
 
TOPRAK, E., BOZKURT, M., DINCGEZ CAKMAK, B., OZCIMEN, E.E., SILAHLI, M., 
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Appendix F: Standard Operating Procedure for Sample Collection  
 

The development of novel biomarkers for the prediction of preterm labour in a 

high risk population 

  

Standard Operating Procedure for Sample Identification, Collection, Processing 

and Storage. 

 

The purpose of this document is to provide instruction on correct sample 

identification, collection, processing and storage for the precision medicine for 

preterm birth prevention project.  

Sample Identification – High Risk (150) 

Women who are eligible for recruitment must have: 

• Singleton pregnancy 

• History of previous preterm delivery >16 weeks and  <34 weeks / history PPROM 

>16 weeks - <34 weeks 

• Able to provide informed consent 

Sample Identification – Low Risk (250) 

• Singleton pregnancy 

• Previous uncomplicated term birth  

o (Exclude if e.g. gestational diabetes, pre-eclampsia, abruption, IUGR,  fetal 

anomaly, medical condition necessitating iatrogenic preterm delivery) 

Exclude women who have: 

 Uterine anomaly 

 Fetal congenital anomaly 

 History of “care-giver” indicated (iatrogenic) preterm birth 

Visit 1 – 16 weeks (sample A) 

Patient should have samples collected 16+0-16+6 weeks of gestation. (For practical 

purposes samples will be accepted between 15+0-18+0)  

Samples required:  

• Blood 

• Vaginal Swabs 

• Urine (optional) 

• Stool (optional) 

Visit 2 – 20 weeks (sample B) 

Patients should give samples between 20+0-20+6 weeks of gestation (for practical 

purposes samples will be accepted between 19+0-22+0). 

Samples required: 

• Blood  

• Vaginal Swabs  

• Urine (optional) 

• Stool (optional) 
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SAMPLING 

1 . Maternal Blood  

Materials needed: 

Transport Container 

Coolbox with ice 

BD Vacutainer® Eclipse™ blood collection needles 

6ml BD vacutainer® tubes containing clot activator for biomarkers (Red tube) 

6ml BD vacutainer® K2EDTA for maternal genome (Lavender small) 

10mL BD vacutainer® K2EDTA for plasma (Lavender large) 

2ml PAXgene RNA tube for RNA (PAXgene, red top) 

Sharps bin 

Alcowipe 

Cotton wool 

Small plaster 

Tourniquet 

Trigene spray 

Virkon 2% solution 

Waste  

Pipette tips 

7ml bijou 

Pastettes 

1ml cryotubes (approx. 9) 

 

1. Place a small polystyrene box with crushed ice or cool block into a transport 

container. 

2. Venepuncture will be performed with BD Vacutainer® Eclipse™ blood 

collection needles. 24ml maternal blood will be obtained at 16 (sample A) 

and 20 (sample B) week visits by staff trained in venepuncture at the preterm 

labour clinic. Bottles required for the study are listed above. 

3. Skin should be prepared with an alcowipe prior to blood sampling. Cotton 

wool can be used to apply pressure once the needle is withdrawn post 

sampling, prior to putting a plaster over the puncture site if required. 

4. Immediately after blood has been taken gently invert all tubes 3-5 times to 

mix with any reagent in the vacutainer. 

5. Label all specimens with study number, letter to indicate sample visit (e.g. 

1A), “PTB study”, date and time of sample collection. 

e.g. 1A         PTB study 

       1/1/2015     14:00  

6. 10mL  and 6 mL BD vacutainer® K2EDTA (largeand small lavender top 

tube) should be stored on crushed ice immediately following labelling and 

arrive at lab within 90 minutes of collection, but as soon as possible. 

7. 6ml BD vacutainer® tubes (red top) and 2ml PAXgene RNA tube (clear/red) 

should be stored at room temperature until transfer to the lab.  
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8.  On arrival to laboratory 0618, log the samples in the Sample Reception Log 

(black file) 

9. The proprietary reagent in the PAXgene Blood RNA tubes stabilizes 

intracellular RNA in collected blood specimens for 3 days at room 

temperature (15–25°C).  Therefore from time of arrival to lab they are stored 

at room temperature for 2 hours standing.  

10. Turn the centrifuge on. Set the centrifuge speed to 3000rpm, the time to 

10mins, temperature to 4°C. 

11. Place 6ml BD vacutainer® with clot activator (Red tube) tubes and 10mL BD 

vacutainer® K2EDTA (lavender large) in the bucket inserts in the centrifuge 

ensuring samples are balanced by both volume and position. Using water 

filled blood bottles next to the centrifuge on left hand side if necessary for 

balance. The 6mL BD vacutainer® K2EDTA for maternal genome (Lavender 

small) and 2ml PAXgene RNA tube should NOT be centrifuged. 

12. Place clear lid over rotor buckets in use. Close the lid and press start. 

13. Ensure rotor buckets and centrifuge basin are cleaned with ethanol and dried 

after use. Switch off the centrifuge and leave lid open. Complete user log.  

14. Turn on safety hood.  

15. Spray work surface with 1:100 Trigene spray and wipe with paper towels 

before starting. 

16. Prepare all equipment required.  i) Partly fill one waste container 

(approximately one eighth full) with Virkon 2% solution. ii) polystyrene cold 

block (located to left of hood) iii) Pastettes iv) Sharps bin (already in hood), 

cooled cryotube holder (located top drawer LEC freezer in Prep lab), 1000ml 

Gilson pipette and racked (sterile autoclaved) blue tips. 

17. Carefully transfer centrifuged blood to hood. Remove lid from serum (red 

top) blood tube and aspirate serum layer into 7ml bijou using a pastette. Eject 

any residue from pastette into waste container containing Virkon. Transfer 

1ml aliquot into 1ml cryotubes using Gilson pipette (approx. 2-3 x 1ml 

cryotube per sample), any remaining serum into 500μl aliquots. Any residual 

serum will be stored if a minimum of 250μl.  Fill blood tube with Virkon and 

replace the lid securely prior to disposal in sharps bin. 

18. Remove lid from 10ml BD vacutainer® K2EDTA. Using fresh pastette 

aspirate plasma layer into 7ml labelled bijou. Pipette plasma in 1ml aliquots 

into 1ml cryovials.  

19. Using a fresh pastette, aspirate 2ml sample of packed red blood cells with 

buffy coat into 1ml cryotube . 
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20. Eject any residue from pastette into waste container containing Virkon. Fill 

blood tube with Virkon and replace the lid securely prior to disposal in sharps 

bin. 

21.  Remove cold block containing samples from hood. Ensure all samples 

correctly labelled with unique study number, sample A, sample B or sample 

C, date of collection and substance (plasma, serum, or RBC) with sample 

number (e.g. serum 1, serum 2 etc).  

22. Remove equipment once finished. Clean hood surface with Trigene and 

switch off hood.  Allow waste products to stand for 24hours for disinfection 

prior to disposal.  

23. Store labelled cryotubes in freezer at -80°C and log location of cryotubes 

under “PTL Biomarker study” (study 12) in freezer log.  

24. The PAX gene blood RNA tube will be moved to the -20 freezer for 24hours 

and then moved to the -80 freezer until RNA extraction. 

25. The 6ml vacutainer® K2EDTA is stored in the freezer in the original tube 

labelled with date of collection, unique study number, sample A or B and 

study name. The box is located in freezer 4. Shelf 3. Enter into freezer log 

(study 12). 

26. Upload sample and demographic information to MACRO samples database. 
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Appendix G: Standard Operating Procedure for Quantifying DNA using 

PicoGreen Reagent Kit 
 

STANDARD OPERATING PROCEDURE 

QUANTIFYING DNA USING PICOGREEN™ REAGENT KIT 

 

Consumables 

 

Description Supplier Catalogue 

Number 

Quant-iT™ PicoGreen® dsDNA Assay 

Kit (2000 assays) (10 x 100 µL) 

Invitrogen P11496 

 

 

Reagents 

1xTE buffer (10mM Tris-HCl, 1mM EDTA, pH7.5) – must be nucleic acid free. 

 

 

Preparing the Assay Buffer  

 

Prepare a 1X TE working solution by diluting the concentrated buffer 20-fold with 

sterile, distilled, DNase-free water.  

 

For a complete 96 well plate add 2.5ml of 20X TE to 47.5ml of  DNase-free water. 

 

Preparing the DNA Standard Curve  

 

Dilute the lambda DNA standard (100μg/ml), provided in the Quant-iT™ 50-fold in 

1X TE to make a 2 μg/ml working solution.  

 

To prepare sufficient for the standard curve, pipette 5μl of the 100 μg/ml dsDNA 

standard and 245μl of 1X TE into a sterile eppendorf tube. Briefly mix by pipetting up 

and down.  

 

To create a five-point standard curve from 1 ng/ml to 1 μg/ml, dilute the 2 μg/ml DNA 

stock solution in sterile eppendorf tubes as shown in the table below. Briefly mix the 

standards by pipetting up and down. 

 

 

Volume of 1X TE (μl) 
Volume of 2 μg/ml DNA 

stock (μl) 
 [DNA Standard] 

0 220 2 μg/ml 

228 22 200 ng/ml 

247.8 2.2 20 ng/ml 

999 1 2 ng/ml 

220 0 0 ng/ml 

Unused 1 ng/ml standard and 2 μg/ml DNA stock can be stored with the Quant-iT™ 

PicoGreen® kit for further assays.   
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Add 100µl of each DNA standard to the wells of a 96-well plate according to the 

following wells: 

 

[DNA Standard] (ng/ml) Wells 

2 μg/ml A1 + A2 

200 ng/ml B1 + B2 

20 ng/ml C1 + C2 

2 ng/ml D1 + D2 

0 ng/ml E1 + E2 

 

 

 

Sample Analysis  

 

For samples measuring under 200 ng/μl by nanodrop, add 1ul to 99 ul 1xTE (1/100 

dilution). 

 

For samples measuring over 200 ng/μl by nanodrop, add 1 to 9 ul 1xTE (1/10 dilution) 

and add 1ul diluted solution to 99 ul 1xTE (total 1/1000 dilution). 

 

Add 1xTE followed by your DNA samples to the wells of a 96-well plate according to 

your plate plan.  

 

 

Preparing the Reagent  

 

On the day of the experiment, allow the Quant-iT™ PicoGreen® reagent to warm to 

room temperature before opening the vial. 

 

In a plastic container, prepare a diluted working solution of the Quant-iT™ 

PicoGreen® reagent by making a 200-fold dilution of the concentrated solution in 1X 

TE.  

 

For a 96-well plate, prepare enough diluted solution to assay 100 samples in a 100 µl 

final volume per well, add 50μl of Quant-iT™ PicoGreen® dsDNA reagent to 9.95ml 

of 1X TE. 

 

Protect the working solution from light by covering with foil or placing in the dark. 

Use this solution within a few hours of its preparation. 

 

In reduced lighting add 100µl of the aqueous working solution of PicoGreen® reagent 

to each sample and DNA standard.  

 

Incubate the plate for 2 to 5 minutes at room temperature, protected from light. 

 

Measure the sample fluorescence using the Beckman Coulter DTX880, Warehouse 

Building; Room A212. 
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Using the Beckman Coulter DTX880 Multimode Detector 

Turn on the machine using the switch at the back.  Press the “load/eject” button the 

front of the machine and place the assay plate on the tray that emerges ensuring that 

well A1 is in the left-rear position as shown below: 

 
Press the “load/eject” button to send the tray back in. On the desktop of the PC 

(shown below), select the “Multimode Detection” software as highlighted. 

 
 

 

 

Select “Protocols” and highlight “Ana Picogreen assay 96 Well”.  Click on the “Run 

Protocol” icon (highlighted below): 
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On the “Prepare to Run” screen (below) click “Next” (highlighted below) to 

commence the assay run: 

 
 

 

 

After approximately 3 minutes the run will complete and the following screen will 

appear: 
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Click finish (highlighted) and an Excel spreadsheet of your data will be opened.  

Save this file to an appropriate folder. 

 
In the “Cycle 1” tab (highlighted), select and copy the 8x12 grid of numbers 

representing your raw data as shown above. 
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Open the file “Standard Template for Picogreen Assay.xlsx”.

 
Paste the raw data into the green box in the top left (1).  As instructed, type the 

figures from the trend line equation into the Red and Green boxes (2).  Your 

unknown sample concentrations will appear in “Column U” with the associated Well 

coordinate in “Column P” 

 

1

2
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Appendix H: GWAS QC protocol 

 

From UK Biobank Axiom array chip raw data is saved in PLINK file formats. 

Originally these are stored in .ped and .map PLINK files, but they may be 

transferred in binary PLINK file format (.bed, .bim and .fam files).  

GWAS QC protocol 

[Key: yellow highlight = file names; can be changed 

Blue highlight = subfolder the files are saved in (after this full protocol has been 

carried out) 

Green highlight = name of covariate in analysis; can be changed] 

 

Using binary files (ptb.bed, ptb.bim and ptb.fam). Add sex information to original 

fam file (i.e. 2 for females) to all samples in fam file (open up in excel, keep FID, 

IID and replace column E with 2 for all samples, then remove columns C, D and F). 

Save at text file, then use following command to create an updated fam file: 

 

plink --noweb --bfile ptb --update-sex ptb_gender.txt --make-bed --out ptb_gender 

 

Resulting files are saved in subfolder: 1_ptb_gender 

 
1) Remove duplicate 

No duplicate samples present. 
 
2) Gender check 
 

plink --noweb --bfile ptb_gender  --check-sex --out ptb_gender_sex_check    

Generates .sexcheck file. 
 

grep PROBLEM ptb_gender_sex_check.sexcheck > fail_sex_check_ptb.txt  

 
Produce a text file of samples that have failed sex check - first table of patients to exclude, 
include FID and IID (GWAS write-up). 
 

Resulting files are saved in subfolder: 2_ptb_gender_sex_check 
 
3) Missing data 

 

plink --noweb  --bfile ptb_gender --missing  --out ptb_missing  

 

This produces imiss and lmiss files. 

 

Resulting files are saved in subfolder: 3_ptb_missing 
 
4) Remove non-autosomes 

 

Generate a list of nonautosome SNPs by filtering original study bim file for 

chromosomes: 23, 24, 25 and 26. Make a text file of these SNPs/rs IDs 

(ptbnonautosomes.txt ) to be removed.  
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plink --noweb --bfile ptb_gender  --exclude ptbnonautosomes.txt  --make-bed  --out 

ptb_gender_ex 

 

Resulting files are saved in subfolder: 4_ptb_gender_ex 
 
5) Heterozygosity 
 

plink --noweb --bfile ptb_gender_ex  --het --out ptb_gender_het 

 
Use script to produce imiss vs het plot - can adapt to make it for 98% call rate. To use R 
scripts to use command: r_submit (script filename). 
File imiss_script.R contains: 

# IMISS-vs-Het plot for all SNPs, 95% Call rate: 

imiss=read.table("ptb_missing.imiss",h=T) 

imiss$logF_MISS = log10(imiss[,6]) 

het=read.table("ptb_gender_het.het",h=T) 

het$meanHet = (het$N.NM.-het$O.HOM.)/het$N.NM. 

colors  <- densCols(het$meanHet,imiss$logF_MISS) 

png("ptb_imiss-vs-het.png") 

plot(het$meanHet,imiss$logF_MISS,col=colors,xlim=c(0,0.3),ylim=c(-

3,0),pch=20,xlab="Heterozygosity rate",ylab="Proportion of missing 

genotypes",main="PTB pilot imiss-het",axes=F) 

axis(1,at=c(0,0.05,0.10,0.15,0.2,0.25,0.3),tick=T) 

axis(2,at=c(-3,-2,-1,0),labels=c(0.001,0.01,0.1,1)) 

abline(v=mean(het$meanHet)-(3*sd(het$meanHet)),col="GREEN",lty=2) 

abline(v=mean(het$meanHet)+(3*sd(het$meanHet)),col="GREEN",lty=2) 

abline(v=mean(het$meanHet)-(5*sd(het$meanHet)),col="RED",lty=2) 

abline(v=mean(het$meanHet)+(5*sd(het$meanHet)),col="RED",lty=2) 

abline(h=-1.301030, col="RED", lty=2) 

dev.off() 

 
If there are any patient outliers then this has to be recorded in a table for write-up.  

 

Resulting files are saved in subfolder: 5_ptb_gender_het 

 
6) IBD  
 

plink --noweb --bfile ptb_gender_ex --indep-pairwise 50 5 0.2 --out ptb_gender_ex_thin 

This command will produce .prune.in and .prune.out files.  

 

plink --noweb --bfile ptb_gender_ex --extract ptb_gender_ex_thin.prune.in --genome --out 

ptb_gender_ex_thin.genome 

This second command will produce a .genome file.  
 
Use IBD script to produced histogram. Second table of patients to exclude for GWAS write-
up (need to check F_MISS values from imiss file to decide which samples to remove form 
the pairs that are reported. Include PI_HAT and F_MISS values in the table). 
 
File ptb_ibd_plot.r contains: 

## Histogram of IBD in R: 

 

GEN=read.table("ptb_gender_ex_thin.genome.genome",header=T,as.is=T) 

png("ptb_ibd_histogram.png") 

hist(GEN$PI_HAT,ylim=c(0,100),xlim=c(0,1.0),breaks=100,main="PTB: IBD 

Estimation",xlab="Estimated mean pairwise IBD",ylab="Frequency") 

dev.off() 
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To output a file with outliers use: 
awk '$10 >=0.1875 {print}' ptb_gender_ex_thin.genome.genome > ptb_ibd_outliers 

 

Resulting files are saved in subfolder: 6_ptb_gender_ex_thin.prune 
 
7) Merge with HapMap3 

 

Open ptb_gender_ex bim file. Keep all rs IDs, (delete top two rows and other 

columns). Create text file and save as snplist_ptb.txt. Use HapMap3 bed, bim and 

fam files (provided).  

 

plink --noweb --bfile Hapmap3 --extract snplist_ptb.txt --make-bed --out 

Hapmap3_ptb 

 

Open Hapmap3_ptb bim file in Excel and remove all columns but keep the rs IDs. 

Save as text file, snplist_Hapmap3.txt. 

 

plink --noweb --bfile ptb_gender_ex --extract snplist_Hapmap3.txt --make-bed --out 

ptb_Hapmap3 

 

plink --noweb --bfile Hapmap3_ptb --bmerge ptb_Hapmap3.bed ptb_Hapmap3.bim 
ptb_Hapmap3.fam  --make-bed  --out Hapmap3_ptb_merged1 

 

If a missnp file has been created that means the strands needs flipping. Therefore use: 

plink --noweb --bfile Hapmap3_ptb  --flip Hapmap3_ptb_merged1.missnp --make-

bed  --out Hapmap3_ptb_flipped 

 

If this works, then continue with merge (like in the previous step but with updated 

name of bfile and output only). 

 

plink --noweb --bfile Hapmap3_ptb_flipped --bmerge ptb_Hapmap3.bed ptb_Hapmap3.bim 
ptb_Hapmap3.fam  --make-bed  --out Hapmap3_ptb_merged2 

 

If that still does not work, exclude the missnp file from the previous flip attempt. 

 

plink --noweb --bfile Hapmap3_ptb_flipped --exclude 

Hapmap3_ptb_merged2.missnp  --make-bed --out Hapmap3_ptb_flipped_excl 

 

Exclude .missnp from the ptb_Hapmap3 file.  

 

plink --noweb --bfile ptb_Hapmap3 --exclude Hapmap3_ptb_merged2.missnp  --

make-bed --out ptb_Hapmap3_excl 

 

Then use --bmerge to merge the previous output files with 

Hapmap3_ptb_flipped_excl. Both files should now have an equal number of SNPs. 
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plink --noweb --bfile Hapmap3_ptb_flipped_excl --bmerge ptb_Hapmap3_excl.bed 

ptb_Hapmap3_excl.bim ptb_Hapmap3_excl.fam  --make-bed  --out 

Hapmap3_ptb_merged_final_excl 

 

Resulting files are saved in subfolder: 7_ptb_merged 

 
8) Ethnicity  
 

plink --noweb --bfile Hapmap3_ptb_merged_final_excl --indep-pairwise 50 5 0.2  --out 
Hapmap3_ptb_merged_thin_excl 

 

plink --noweb --bfile Hapmap3_ptb_merged_final_excl --extract 
Hapmap3_ptb_merged_thin_excl.prune.in  --genome  --out 
Hapmap3_ptb_merged_thin_MDS_excl 

 

plink --noweb --bfile Hapmap3_ptb_merged_final_excl --cluster --mds-plot 10  --out 
Hapmap3_ptb_merged_MDS10_excl  --read-genome 
Hapmap3_ptb_merged_thin_MDS_excl.genome 

 
Process output .mds file: 

• Open up MDS10.mds file in excel to add ethnicities for patient samples. Use file 
Hapmap3_populationID_502_CEU_CHB_JPT_YRI.txt for Hapmap ethnicity information. 

• Sort file by IID column, Z to A. Check this has been done correctly, otherwise the plot 
will not be correct. Add in columns: Population and Data label. 

• Excel file should now contain: FID, IID, Population, Data label, Sol, C1, C2 to C10 

• Population column:  
▪ order the Hapmap ethnicities in the same order (IID column, Z to A) as the 

output file 
▪ copy and paste the ethnicities into the population column from Hapmap  
▪ only the study samples should not have ethnicity inputs (i.e. leave blank) 

• Data label column: show Eunice the plot without data labels, then label only the 
outliers identified 

• Use script to produce a PCA plot or SPSS - check the graph is correct, if not, repeat sort 
column step  

• The outliers identified should be used to produce the third table of patients to exclude 
(GWAS write-up). 

 
SPSS: File > open > data (select file). Chart builder > scatterplot > drag on: y-axis (C1), x-axis 
(C2), colours (population) > point ID labels > select the column called data labels 
 
Ethnicity outliers 
 
Use mds file used to plot ethnicity graph. Sort C1 column smallest to largest. Highlight 
values that deviate from the general ethnicity trend e.g. patient 22 drops from -0.044 (C1) 
to -0.02 (C2), this would be an ethnic outlier. Also select outliers that are found between 
ethnicities (when ordered) and have values that deviate. [For ptb study need to select 
everything that is not CEU]. Repeat this step with C2 column using a different colour to 
highlight. Some values will be borderline, select in a third colour. 
 



 

329 
 

Plot a graph in Excel, by selecting the C1 and C2 column to see if the outliers are present or 
not in the ethnicity plot.  
   
Samples to Exclude 
 
Open the .het file in Excel and calculate the het score to determine the outliers due to the 
heterozygosity (samples outside the 3SD and 5SD thresholds on the het-imiss graph from 
earlier).  

Het_score = (N(NM)-O(HOM))/N(NM) 
Sort by the het scores column smallest to largest. Plot this as a graph.  
Identify the lowest values (also compare back to imiss vs het plot to see which samples they 
are) 
 
Create a text file of all samples to be excluded based on sex check, ethnicity, heterozygosity 
and IBD: excludesexhetIBDethnicity.txt. Only include FID and IID columns. This will be 
removed in the next step.  
For ptb do not exclude any of the treated or excluded for clinical reasons patients yet. Do 
this after final QC step. 
 

Resulting files are saved in subfolder: 8_ptb_ethnicity 
 
9) Remove samples outliers  

 

Exclude outliers from the original fam file which includes the nonautosomes, but has 

no duplicate samples.  

 

plink --noweb --bfile ptb_gender --make-bed --out ptb_sampleqc --remove 

excludesexhetIBDethnicity.txt 

 
Resulting files are saved in subfolder: 9_ptb_sampleqc 
 

10) SNP QC 

 

For ptb study use 95% threshold. (Using 98% (0.02) removes more SNPs). Set up a 

text file with FID, IID and phenotype (ptb column) for case-controls (1 = control; 2 = 

case (female): -9 = missing/exclusion). Name file as ptb_pheno.txt. 

 

plink --noweb --bfile ptb_sampleqc --pheno ptb_pheno.txt --pheno-name ptb --geno 

0.05 --hwe 0.000001 --maf 0.01 --make-bed --out ptb_finalqc 

 
Resulting files are saved in subfolder: 10_ptb_finalqc 

 

Statistical analysis 

 

Use ANOVA for continuous data. Use Chi-square for binary data. Generated values 

will be used for results analysis. 

Select variables to investigate. In Excel, format the data. 

• 3 columns: IID, outcome (binary code, 0 or 1) and third column for variable. 

• Code outcomes as 0 = term (normal outcome) and 1 = PTB (for PPROM and SPON, 
as outcome interest).  
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• Leave samples with no outcomes blank for outcomes and variable column (these 
samples will be excluded from phenotypes later). 

• Independent variable (factor/x variable) is outcome. Dependent variable (y 
variable) is the variable under investigation, e.g. BMI. 

• Run ANOVA [open data in SPSS > Analyze > compare means > one way ANOVA]  

• Or run Chi-square [open data > Analyze > Descriptive Statistics > Crosstabs > (rows 
= outcome; column = cervix) > statistics > Chi-square and Phi and Cramer's V > 
continue > cells > Select Observed, Row, Column and Total > ok] 

• For chi-square, report the Pearson Chi-Square value and the Asymp. Sig value in 
the same row (this tells us the significance). 

•  

Preparation for results analysis 

 

Open ptb_finalqc.fam: 

• Delete column 3 to 6  

• Add column headers:  FID, IID, C1, C2, cervix 

• Add in cervix column/phenotype information (-9 for exclusion [for ptb all treated 
and excluded samples] or missing values), write cervix values (for binary variables 
use 0 or 1) for other samples. This file will be used for analysis. 

• Enter C1 and C2 values from previous mds file (should have less samples in fam file 
as samples were excluded from qc) 

• Save as text file ptb_covar_cervix.txt 

 

 

Results analysis 

 

Use ptb_pheno.txt produced in step 10)SNP QC 

plink --noweb --bfile ptb_finalqc --logistic --pheno ptb_pheno.txt --pheno-name ptb -

-covar ptb_covar_cervix.txt --covar-name C1,C2,Cervix --out ptb_cervix --hide-

covar 

 

This produces an assoc.logistic file. 

 

Run command without cervix and rename output file. 

 

plink --noweb --bfile ptb_finalqc --logistic --pheno ptb_pheno.txt --pheno-name ptb -

-covar ptb_covar_cervix.txt --covar-name C1,C2 --out ptb_PCA--hide-covar 

 

This produces another assoc.logistic file. 

 

Haploview 

 

https://www.broadinstitute.org/haploview/downloads  

 
▪ Plink file format 
▪ Upload .logistic output file 
▪ Select integrated Map info box 
▪ Click ‘ok’ 
▪ A table will appear in a new window. Click ‘plot’. 
▪ Another window will appear. In this window add name for the plot (study name).  

https://www.broadinstitute.org/haploview/downloads
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▪ Select x-axis as chromosome. Y-axis as P (for p value). Y-axis scale should be –log10. 
▪ Enter suggested threshold (1x10^-5) as 5 
▪ Enter significance threshold (5x10^-8) as 7.3 
▪ Right-click on Manhattan plot and save as png. 

 

Identify any significant SNPs or SNPs with high p values form Manhattan plot. Open 

the ptb_cervix.assoc.logistic file in Excel and order by p value. Filter p-values <= 

5x10^-4 (less than or equal to 0.0005) to view rsID of SNPs of interest. Order by 

chromosome number, this will tell you how many SNPs per chromosome are top 

SNPs. Chromosomes with more than 1 top SNP are of most interesting to investigate 

further.  

 

Regional plots can be produced in order to further investigate specific SNP calls. Go 

back to original table window, select chromosome and specify marker (can type SNP 

ID rs). Alternatively, can use Locus Zoom. 

 

Locus zoom 

 

http://locuszoom.org/ 

 

• Select plot your data > single data > set for: PLINK data > upload 
ptb_cervix.assoc.logistic file 

• Copy & paste rs ID of SNP of interest into SNP reference name.  

• For genome build ensure the option selected is hg19/1000 Genomes Nov 2014 EUR 

• Legend location: right.   

• Click plot data.  

• A pdf of the graph will automatically be downloaded from the server.  

• Repeat for all relevant SNPs.  

 

Resulting files are saved in subfolder: 11_ptb_analysis_graphs (consists of folders: 

locus_zoom_plots and PTB_study_GWAS_analysis, with graphs produced from 

haploview) 

 

GWAS Pre-Imputation QC 
1) Download latest perl script from Will Rayner to QC your PLINK data against the HRC 

reference panel: http://www.well.ox.ac.uk/~wrayner/tools/#Checking (HRC-1000G-

check-bim.pl) 

 

2) Generate a freq file of final qc binary files using this command: 

plink --noweb --bfile ptb_finalqc --freq --out ptb_feq 

Resulting files are saved in subfolder: 12_ptb_frq 

 
3) Check your genetic variants against the HRC panel using the following command. Latest 

HRC panel is located in the shared bioinf1 directory (use this path name in the reference 

panel part of the following command): /ph-users/shared/Eunice/HRC/HRC.r1-

1.GRCh37.wgs.mac5.sites.tab 

Make sure you have a frequency file generated prior to executing this command: 

perl HRC-1000G-check-bim.pl -b <bim file> -f <Frequency file> -r <Reference 

panel> -h 

http://locuszoom.org/
http://www.well.ox.ac.uk/~wrayner/tools/#Checking
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gwas_perl_command.sh file contains the following command: 

perl HRC-1000G-check-bim.pl -b ptb_finalqc.bim  -f ptb_feq.frq -r /ph-

users/shared/Eunice/HRC/HRC.r1-1.GRCh37.wgs.mac5.sites.tab -h 

script_submit gwas_perl_command.sh 

The script will produce several .txt files. 

Resulting files are saved in subfolder: 13_ptb_perl 

 
4) Perform SNP QC using the PLINK2 script generated from the perl script run. 

script_submit Run-plink.sh 

This script will produce binary files per chromosome (e.g. ptb_finalqc-updated-

chr1.bed). 

Resulting files are saved in subfolder: 14_ptb_finalqc_updated 
 

5) For each chromosome, convert binary PLINK into VCF format: 

## For chromosomes 1-22, use the "--recode vcf-iid --out" command in PLINK2 

plink2_submit --bfile ptb_finalqc-updated-chr1 --recode vcf-iid --out ptb_chr1 

For chr2-22 use commands: 

plink2_submit --bfile ptb_finalqc-updated-chr2 --recode vcf-iid --out ptb_chr2 

plink2_submit --bfile ptb_finalqc-updated-chr3 --recode vcf-iid --out ptb_chr3 

plink2_submit --bfile ptb_finalqc-updated-chr4 --recode vcf-iid --out ptb_chr4 

plink2_submit --bfile ptb_finalqc-updated-chr5 --recode vcf-iid --out ptb_chr5 

plink2_submit --bfile ptb_finalqc-updated-chr6 --recode vcf-iid --out ptb_chr6 

plink2_submit --bfile ptb_finalqc-updated-chr7 --recode vcf-iid --out ptb_chr7 

plink2_submit --bfile ptb_finalqc-updated-chr8 --recode vcf-iid --out ptb_chr8 

plink2_submit --bfile ptb_finalqc-updated-chr9 --recode vcf-iid --out ptb_chr9 

plink2_submit --bfile ptb_finalqc-updated-chr10 --recode vcf-iid --out ptb_chr10 

plink2_submit --bfile ptb_finalqc-updated-chr11 --recode vcf-iid --out ptb_chr11 

plink2_submit --bfile ptb_finalqc-updated-chr12 --recode vcf-iid --out ptb_chr12 

plink2_submit --bfile ptb_finalqc-updated-chr13 --recode vcf-iid --out ptb_chr13 

plink2_submit --bfile ptb_finalqc-updated-chr14 --recode vcf-iid --out ptb_chr14 

plink2_submit --bfile ptb_finalqc-updated-chr15 --recode vcf-iid --out ptb_chr15 

plink2_submit --bfile ptb_finalqc-updated-chr16 --recode vcf-iid --out ptb_chr16 

plink2_submit --bfile ptb_finalqc-updated-chr17 --recode vcf-iid --out ptb_chr17 

plink2_submit --bfile ptb_finalqc-updated-chr18 --recode vcf-iid --out ptb_chr18 

plink2_submit --bfile ptb_finalqc-updated-chr19 --recode vcf-iid --out ptb_chr19 

plink2_submit --bfile ptb_finalqc-updated-chr20 --recode vcf-iid --out ptb_chr20 

plink2_submit --bfile ptb_finalqc-updated-chr21 --recode vcf-iid --out ptb_chr21 

plink2_submit --bfile ptb_finalqc-updated-chr22 --recode vcf-iid --out ptb_chr22 

 

For chromosome 23, use the "--set-hh-missing --recode vcf-iid --out" command in 

PLINK2 

plink2_submit --bfile ptb_finalqc-updated-chr23 --set-hh-missing --recode vcf-iid --

out ptb_chr23 

 

Important note! HRC does not recognise chr23 for imputation, make sure you 

change chr23 to chrX within your VCF file. 

sed ‘s/^23/X/g’ ptb_chr23.vcf > ptb_chrX.vcf 
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Resulting files are saved in subfolder: 15_ptb_vcf (this folder contains the .log files 

for the commands run, but due to the next zip commands being run, the .vcf files 

have been converted to vcf.gz and are not in this subfolder as .vcf files).  

 
6)  Zip each VCF file using bgzip. Bioinf1 bgzip location: /users/apps/htslib/htslib-

1.3.2/bgzip 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr1.vcf 

 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr2.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr3.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr4.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr5.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr6.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr7.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr8.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr9.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr10.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr11.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr12.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr13.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr14.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr15.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr16.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr17.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr18.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr19.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr20.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr21.vcf 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chr22.vcf 

 

Command for ChrX: 

/users/apps/htslib/htslib-1.3.2/bgzip ptb_chrX.vcf 

Files produced with extension .vcf.gz 

Resulting files are saved in subfolder: 16_ptb_vcf_gz 

 
7) Tabix each bgzipped VCF file. Bioinf1 Tabix location: /users/apps/htslib/htslib-

1.3.2/tabixb -p vcf 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr1.vcf.gz 

 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr2.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr3.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr4.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr5.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr6.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr7.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr8.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr9.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr10.vcf.gz 
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/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr11.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr12.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr13.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr14.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr15.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr16.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr17.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr18.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr19.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr20.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr21.vcf.gz 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chr22.vcf.gz 

 

Command for ChrX: 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf ptb_chrX.vcf.gz 

 

Files produced with extension .vcf.gz.tbi 

Resulting files are saved in subfolder: 17_ptb_vcf_gz_tbi 

 

 
8) Upload your VCF files to the Michigan Imputation Server for imputation: 

https://imputationserver.sph.umich.edu/index.html  

Eunice logged into her account for this upload. Imputed files downloaded by Eunice.  

Select the following options: 

• Select latest HRC reference panel 

• Use Eagle to phase chromosomes 1-22 

• Use ShapeIT to phase chromosome X  

• Specify population 

 

Imputation can take around 2 weeks when server is moderately busy. Files will be 

available to download from the website, but has to be done within 2-3 days. These 

will be zip files per uploaded chromosome. 

Resulting files are saved in subfolder: 18_ptb_imputation  

  

https://imputationserver.sph.umich.edu/index.html
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GWAS post-imputation protocol 

 

Preparation to unzip files from Imputation server 
1) Download from https://sourceforge.net/projects/p7zip/?source=typ_redirect  

Copy and paste file onto cluster where zipped, results files are. 

Use command to unzip:  

tar xvjf p7zip_16.02_src_all.tar.bz2  

A file called p7zip_16.02 will be created in the cluster.  

Use command:  

cd p7zip_16.02 

Open file for instructions: /ph-users/juhi/PTB_study/p7zip_16.02/README 

 
2) From this weblink use the command: make all3 

http://www.linuxfromscratch.org/blfs/view/svn/general/p7zip.html  

Then use command:  

make DEST_HOME=/usr \ 

           DEST_MAN=/usr/share/man \ 

           DEST_SHARE_DOC=/usr/share/doc/p7zip-16.02 install 

File 7z should now be located in /ph-users/juhi/PTB_study/p7zip_16.02/bin 

 

Password (generated by Imputation server) for chromosomes 1-22: 

SRObVBj8vTl7uW  

Password (generated by Imputation server) for chromosome X: MBe3PfqEccwPb6 

 
3) To extract files use command:  

/ph-users/juhi/PTB_study/p7zip_16.02/bin/7z x -pSRObVBj8vTl7uW chr_1.zip 

This will give 3 resulting files in the directory for that chr. Repeat this command for 

all chr including chr22. 

For Chr X, change working directing to /ph-users/juhi/PTB_study/chrX  

Then use command:  

/ph-users/juhi/PTB_study/p7zip_16.02/bin/7z x -pMBe3PfqEccwPb6 

chr_X.no.auto_female.zip 

Resulting files are saved in subfolder: 19_ptb_imputation_files 

 

Post-imputation QC steps 
1) View .info.gz files without unzipping the files (they are too large to unzip). Use 

command:  

less chr1.info.gz 

Press q to quit. 

To filter SNPs with score less than 0.3, use command:  

gzip -dc chr1.info.gz | awk '$7<0.3 {print$1, $7}' > chr1_rsq_snps_toexclude.txt 

Repeat this for all chromosomes. (Change working directory for chrX before running 

this command). 

gzip -dc chrX.no.auto_female.info.gz | awk '$7<0.3 {print$1, $7}' > 

chrX_rsq_snps_toexclude.txt 

Resulting files are saved in subfolder: 20_ptb_rsq_snps 

https://sourceforge.net/projects/p7zip/?source=typ_redirect
http://www.linuxfromscratch.org/blfs/view/svn/general/p7zip.html
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2) Convert vcf to plink files using plink2. Use command:  

plink2_submit --vcf chr1.dose.vcf.gz --out chr1_plink 

Repeat for all chromosomes.  

Change directory for chr X and use:  

plink2_submit --vcf chrX.no.auto_female.dose.vcf.gz --out chrX_plink 

Resulting files are saved in subfolder: 21_ptb_plink 

 
3) Generate frequency files. Use:  

plink --noweb --bfile chr1_plink --freq --out chr1_freq 

Repeat for all chromosomes.  

Change directory for chr X and use:  

plink --noweb --bfile chrX_plink --freq --out chrX_freq [problem reading BIM file 

line 1] No file produced for chrX 

Resulting files are saved in subfolder: 22_ptb_frequency 

 
4) Extract SNPS with maf= 0. Use:  

awk '$5==0 {print$2, $5}' chr1_freq.frq > chr1_maf_toexclude.txt 

Repeat for chr2-22. 

Resulting files are saved in subfolder: 23_ptb_maf_toexclude 

 
5) Combine SNP ID columns from rsq txt file and maf txt file. This is to add one list to 

another list in a new file (duplicates are not removed by this command). Use command:  

awk '{print $1}' chr1_rsq_snps_toexclude.txt <(awk '{print $1}' 

chr1_maf_toexclude.txt)  > chr1_excludesnps.txt 

Repeat for chr2-22. 

Resulting files are saved in subfolder: 24_ptb_excludesnps 

 
6) To exclude snps from original vcf file. Use this command in a script not login node!! The 

file produced will be fairly large, so will take a while to run. Use command:  

script_submit exc_snp_chr1.sh 

Script contains the following command for chr1: 

/ph-users/shared/Eunice/vcftools_0.1.13/bin/vcftools --gzvcf chr1.dose.vcf.gz 

--exclude chr1_excludesnps.txt --recode --stdout 

Use the following command in the login node to compress the stdout file (this is a 

temporary file that will get overwritten by next command) before running the next 

command! 

/users/apps/htslib/htslib-1.3.2/bgzip -c stdout > chr1_qc_bgzip.vcf.gz 

For chr2-22, use the --exclude command above in separate .sh script per 

chromosome. For the bgzip command type directly into login node. 

Resulting files are saved in subfolder: 25_ptb_qc_bgzip 

 
7) Use this command in the login node (separately per chr) for bgzip output: 

/users/apps/htslib/htslib-1.3.2/tabix -p vcf chr1_qc.vcf.gz 

Resulting files are saved in subfolder: 26_ptb_qc_tbi 
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SNP test v2.5 

 

Use clinical variable with most significance as covariate for analysis. (Used 

continuous cervical length for 82 patients, excluding medical intervention.) 
1) To prepare file for SNP test analysis (for this data will be using frequentist association 

test), make an excel sheet with the relevant headings and coding: 

http://www.stats.ox.ac.uk/~marchini/software/gwas/file_format.html  

Save excel file in cluster and convert to space separated file. The file headers should 

look like this: 
ID_1 ID_2 missing c1 c2 cvl ptb 

0 0 0 C C C B 

A01_1B PTB_1B 0 99.9532139 99.952438 32 0 

A01_P06_97B PTB_97B 0 99.9538758 99.9520761 27 1 

 

Convert using:  

expand --tabs =1         .txt  >    .txt 

Then use: 

dos2unix samplefile_snptest.sample 

Resulting files are saved in subfolder: 27_ptb_sample 

 
2) Run command for Frequentist Association Tests (in a separate script for each 

chromosome): 

/usr/local/bin/snptest_v2.5 -data chr1.dose.vcf.gz PTB_samplefile.sample -

genotype_field GT -o chr1_ptb_frequentist_gen_snptest_cervixlength.out -

frequentist 1 -method expected -pheno ptb -cov_names c1 c2 cvl -missing_code NA 

-lower_sample_limit 20 -hwe -log chr1_snptest.log 

Output file e.g. chr1_ptb_frequentist_gen_snptest_cervixlength.out 

Resulting files are saved in subfolder: 28_ptb_freqtest 

 

 

QC steps after SNPtest analysis 

 
1) Delete first few lines of chr files. Then rename this to chr001.txt (must have extra zero). 

For chr 1 file: 

sed '/^#/d' chr1_ptb_frequentist_gen_snptest_cervixlength.out > chr001.txt 

Delete all header lines from chr2 to chr 22 files and rename similarly.  

For chr2 file onwards: 

sed '/^#/d' chr2_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr002.txt 

Repeat for chr3 to 22: 

sed '/^#/d' chr3_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr003.txt 

sed '/^#/d' chr4_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr004.txt 

sed '/^#/d' chr5_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr005.txt 

http://www.stats.ox.ac.uk/~marchini/software/gwas/file_format.html
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sed '/^#/d' chr6_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr006.txt 

sed '/^#/d' chr7_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr007.txt 

sed '/^#/d' chr8_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr008.txt 

sed '/^#/d' chr9_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr009.txt 

sed '/^#/d' chr10_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr010.txt 

sed '/^#/d' chr11_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr011.txt 

sed '/^#/d' chr12_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr012.txt 

sed '/^#/d' chr13_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr013.txt 

sed '/^#/d' chr14_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr014.txt 

sed '/^#/d' chr15_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr015.txt 

sed '/^#/d' chr16_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr016.txt 

sed '/^#/d' chr17_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr017.txt 

sed '/^#/d' chr18_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr018.txt 

sed '/^#/d' chr19_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr019.txt 

sed '/^#/d' chr20_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr020.txt 

sed '/^#/d' chr21_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr021.txt 

sed '/^#/d' chr22_ptb_frequentist_gen_snptest_cervixlength.out | sed '/^alternate_ids/d' > 

chr022.txt 

 

To concatenate all chr files use the following command cat chr0*.txt > 

chr1_22_finalsnp.txt submit as script:  

script_submit cat_snps.sh 

Resulting files are saved in subfolder: 29_ptb_concat 

 
2) To extract columns, submit as script: 

script_submit extractcol.sh 

Shell script extractcol.sh contains command: 

awk '{print $3, $2, $4, $45}' chr1_22_finalsnp.txt > chr1_22_snpfile.txt 

 

To rename headers, submit as script: 

script_submit rename_header.sh 

Shell script rename_header.sh contains command: 
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sed -e 's/chromosome/CHR/' chr1_22_snpfile.txt | sed 's/rsid/SNP/' | sed 
's/position/BP/' | sed 's/frequentist_add_pvalue/P/'  > 
chr1_22_snpfile_rename.txt 

 

To remove NA pvalues, submit as script: 

script_submit remove_na.sh 

Shell script remove_na.sh contains command: 

sed '/NA/d' chr1_22_snpfile_rename.txt > chr1_22_snpfile_update.txt 

 

Resulting files are saved in subfolder: 30_ptb_update 

 
3) Use R script to produce Manhattan plot (specify input filename and output filename in 

script): 

r_submit manhattan_qqman_ptb.r 

Script manhattan_qqman_ptb.r contains: 
## This is a R script for generating your manhattan plot! Required 

headers in your results file are CHR SNP BP P.  

## Results file can be space or tab-limited. 

library(qqman) 

results <-read.table("chr1_22_snpfile_update.txt",header=T) ##Specify 

filename containing CHR SNP BP P information. 

png("ptb_manplot.png", width=1500, height=800, res=120) ##Specify 

output filename. 

manhattan(results) 

dev.off() 

To modify Manhattan plot e.g. change colours etc, the following linkas have 

suggestions on the required commands: 

http://www.gettinggeneticsdone.com/2014/05/qqman-r-package-for-qq-and-

manhattan-plots-for-gwas-results.html 

http://www.gettinggeneticsdone.com/2011/04/annotated-manhattan-plots-and-qq-

plots.html 

Resulting files are saved in subfolder: 31_ptb_manhattan 

 

Identify SNPs from Manhattan plot 

 

Based on Manhattan plot, select chromosome of interest. Use following command to 

extract all SNPs from the specified chr.  For example, for chr3 use the following 

commend in a script (snps_chr3.sh): 

awk '$1==03 {print $1, $2, $3, $4}' chr1_22_snpfile_update.txt > snps_chr3.txt 

Open up the text file in excel and sort by pvalue (filter by <=5x10^-6 or 0.000005; 

then sort smallest to largest) to identify the tophits per chromosome.  

To get rsID for one SNP: 

awk '($1 == "3") && ($2 == "134815715") { print $1, $2, $3 }' /ph-

users/shared/Eunice/HRC/HRC.r1-1.GRCh37.wgs.mac5.sites.tab > chr3_tophit.txt 

Calculate plus and minus 500kb (500000b) of the snp position and search for the 

rsIDs in this region per hit. Note these upper and lower bp values may not 

correspond to actual chr positions/rsIDs/p-values, they are only being used to give a 

range of positions that exit.  

To get rsIDs for range of SNPs around region of interest/top hit:  

http://www.gettinggeneticsdone.com/2014/05/qqman-r-package-for-qq-and-manhattan-plots-for-gwas-results.html
http://www.gettinggeneticsdone.com/2014/05/qqman-r-package-for-qq-and-manhattan-plots-for-gwas-results.html
http://www.gettinggeneticsdone.com/2011/04/annotated-manhattan-plots-and-qq-plots.html
http://www.gettinggeneticsdone.com/2011/04/annotated-manhattan-plots-and-qq-plots.html
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awk '($1 == "3") && ($2 <= "135315715" && $2 >= "134315715" ) { print $1, $2, 

$3 }' /ph-users/shared/Eunice/HRC/HRC.r1-1.GRCh37.wgs.mac5.sites.tab > 

chr3_tophit.txt 

 

awk '($1 == "20") && ($2 <= "50449572" && $2 >= "49449572" ) { print $1, $2, 

$3 }' /ph-users/shared/Eunice/HRC/HRC.r1-1.GRCh37.wgs.mac5.sites.tab > 

chr20_tophit.txt 
 

To get p values for SNPs within range of interest (for single digit chr number put 0 in 

front, to match snpfile): 

awk '($1 == "03") && ($3 <= "135315715" && $3 >= "134315715" ) { print $2, $3, 

$4 }' chr1_22_snpfile_update.txt > chr3_pval_tophit.txt 

 

awk '($1 == "20") && ($3 <= "50449572" && $3 >= "49449572")  { print $2, $3, 

$4 }' chr1_22_snpfile_update.txt > chr20_pval_tophit.txt 
Resulting files are saved in subfolder: 32_ptb_topsnps 

 

Prep locus zoom file 

In Excel, open up the file containing p values for the region of interest (chr3_pval 

_tophit.txt) then paste in rsIDs column (from chr3 _tophit.txt). Highlight duplicated 

cells of the two columns containing the positions. Sort by colour (make sure you 

highlight the position column and the rsID column, so that the order is not lost). 

Delete the unique values (shift cells up).  

Highlight duplicate values again but with a different colour e.g. green to pick out any 

repeated rsIDs (order as before, then delete highlighted cells). Delete the second 

duplicates (keep the ones that have rsIDs) as appropriate, find where the remaining 

rsID belong in the order (ctr+f) and paste in. Then check order of positions matches 

across the rows. 

Then arrange columns as: chr pos rsID p and save file as txt file with ext 

locuszoomfile.txt 

 

Locus Zoom 

Submit rsID of the top hit identified. Use tab as the delimiter (also default). Upload 

locuszoomfile.txt and set marker column as rsID and p-value column as p. Flanking 

region is automatically set at 400kb. Genome build is automatically hg19/1000 

Genomes Nov 2014 EUR (latest).  

 

Resulting files are saved in subfolder: 33_ptb_locuszoom 
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Appendix I: R script used for pooled data analysis 
 

library(meta) 

library(rmeta) 

setwd("Documents/Max Planck 27.07.2018/") 

muglia <- read.table("pre_top10000.tab",h=T) 

head(muglia) 

 

lp <- 

read.table("28_ptb_freqtest/chr3_ptb_frequentist_gen_snptest_cervixlength.out",h=T

) 

lp2 <- lp[,c(1:6,29,45,47:48)] 

 

comb <-merge(muglia,lp2,by.x = c("chr","pos"),by.y = c("chromosome","position")) 

comb <- comb[with(comb,order(p)),] 

head(comb) 

 

snp <- comb[1:10,] 

# snp <- comb[which(comb$snp %in% 

c("rs201450565","rs200745338","rs3849531")),]  

snp 

 

snp$eff <- log(snp$eff) 

snp$A2 <- sub("/.*","",snp$alleles) # effect 

snp$A1 <- sub(".*/","",snp$alleles) # reference 

snp$FLIP <- NA 

snp[which(snp$A1==snp$alleleA & snp$A2==snp$alleleB),]$FLIP <- F 

snp[which(snp$A1==snp$alleleB & snp$A2==snp$alleleA),]$FLIP <- T 

snp[which(snp$FLIP),]$frequentist_add_beta_1 <- -

snp[which(snp$FLIP),]$frequentist_add_beta_1 

 

snp$P_1s <- snp$frequentist_add_pvalue/2 

snp[which(sign(snp$frequentist_add_beta_1)!=sign(snp$eff)),]$P_1s <- 1-

snp[which(sign(snp$frequentist_add_beta_1)!=sign(snp$eff)),]$P_1s 

 

i <- 1 

for(i in 1:nrow(snp)) 

   

  metaobj <-

metagen(TE=c(snp[i,]$eff,snp[i,]$frequentist_add_beta_1),seTE=c(snp[i,]$se,snp[i,]

$frequentist_add_se_1)) 

  meta <- metaobj 

  meta <- 

data.frame(t(c(meta$TE.fixed,meta$seTE.fixed,meta$pval.fixed,meta$lower.fixed,m

eta$upper.fixed))) 

  colnames(meta) <- 

c("META_BETA","META_SE","META_P","META_CI_l","META_CI_u") 

  meta <- cbind(snp[i,],meta) 

  if(i==1) res <- meta else res <- rbind(res,meta) 
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res$META_OR <- exp(res$META_BETA) 

res$META_CI_l <- exp(res$META_CI_l) 

res$META_CI_u <- exp(res$META_CI_u) 

 

res$M_OR <- exp(res$eff) 

res$M_CI_l <- res$M_OR-1.96*res$se 

res$M_CI_u <- res$M_OR+1.96*res$se 

 

res$LP_OR <- exp(res$frequentist_add_beta_1) 

res$LP_CI_l <- res$LP_OR-1.96*res$frequentist_add_se_1 

res$LP_CI_u <- res$LP_OR+1.96*res$frequentist_add_se_1 

 

head(res) 

 

write.table(res,"meta_muglia.txt",c=T,r=F,qu=F) 

write.csv(res,"meta_muglia.csv",row.names=F) 

 

# forest(metaobj)   

for(i in 1:nrow(res)) 

  mmean <- c(NA,res[i,]$M_OR,res[i,]$LP_OR,res[i,]$META_OR) 

  mcl <- c(NA,res[i,]$M_CI_l,res[i,]$LP_CI_l,res[i,]$META_CI_l) 

  mcu <- c(NA,res[i,]$M_CI_u,res[i,]$LP_CI_u,res[i,]$META_CI_u) 

  mtext <- 

data.frame(cbind(c("Muglia","Liverpool","Meta"),c(res[i,]$p,res[i,]$frequentist_add

_pvalue,res[i,]$META_P)),stringsAsFactors=F) 

  mtext$X2 <- format(as.numeric(mtext$X2),sci=T,dig=2) 

  mtext <- rbind(c("Name","p-value"),mtext) 

  msum <- c(T,F,F,T) 

  sn <- paste0(as.character(res[i,]$snp),"_",res[i,]$A2) 

  png(paste0(sn,".png")) 

  

forestplot(mtext,mmean,mcl,mcu,is.summary=msum,xlab=sn,zero=1,col=meta.color

s(summary="#1F3D76",lines="grey30",box="grey30",zero="grey80")) 

  dev.off() 
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Appendix J: Procedure for Manual RNA extraction 
 

 
Image from the PAXGene Blood RNA Kit Handbook Version 2 
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Procedure 

 

1. Centrifuge the PAXgene Blood RNA Tube for 10 minutes at 

3000–5000 x g using a swing-out rotor. 

 

Note: Ensure that the blood sample has been incubated in the 

PAXgene 

Blood RNA Tube for a minimum of 2 hours at room temperature 

(15–25°C), in order to achieve complete lysis of blood cells. 

 

Note: The rotor must contain tube adapters for round-bottom 

tubes. If othertypes of tube adapter are used, the tubes may 

break during centrifugation. 

 

2. Remove the supernatant by decanting or pipetting. Add 4 ml 

RNase-free water to the pellet, and close the tube using a fresh 

secondary BD Hemogard closure (supplied with the kit). 

If the supernatant is decanted, take care not to disturb the 

pellet, and dry the rim of the tube with a clean paper towel. 

 

3. Vortex until the pellet is visibly dissolved, and centrifuge for 

10 minutes at 3000–5000 x g using a swing-out rotor. Remove and 

discard the entire supernatant. 

Small debris remaining in the supernatant after vortexing but 

before 

centrifugation will not affect the procedure. 

 

Note: Incomplete removal of the supernatant will inhibit lysis 

and dilute the lysate, and therefore affect the conditions for 

binding RNA to the PAXgene membrane. 

 

4. Add 350 μl Buffer BR1, and vortex until the pellet is visibly 

dissolved. 

5. Pipet the sample into a 1.5 ml microcentrifuge tube. Add 300 μl 

Buffer 

BR2 and 40 μl proteinase K. Mix by vortexing for 5 seconds, and 

incubate for 10 minutes at 55°C using a shaker–incubator at 

400–1400 rpm. After incubation, set the temperature of the 

shaker– 

incubator to 65°C (for step 20). 
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Note: Do not mix Buffer BR2 and proteinase K together before 

adding them to the sample. 

 

6. Pipet the lysate directly into a PAXgene Shredder spin column 

(lilac) 

placed in a 2 ml processing tube, and centrifuge for 3 minutes at 

maximum speed (but not to exceed 20,000 x g). 

 

Note: Carefully pipet the lysate into the spin column and 

visually check that the lysate is completely transferred to the 

spin column. 

To prevent damage to columns and tubes, do not exceed 20,000 x 

g. 

Note: Some samples may flow through the PAXgene Shredder spin 

column 

without centrifugation. This is due to low viscosity of some 

samples and should not be taken as an indication of product 

failure. 

 

7. Carefully transfer the entire supernatant of the flow-through 

fraction 

to a fresh 1.5 ml microcentrifuge tube without disturbing the 

pellet in 

the processing tube. 

 

8. Add 350 μl ethanol (96–100%, purity grade p.a.). Mix by 

vortexing, 

and centrifuge briefly (1–2 seconds at 500–1000 x g) to remove 

drops from the inside of the tube lid. 

 

Note: The length of the centrifugation must not exceed 1–2 

seconds, as this may result in pelleting of nucleic acids and 

reduced yields of total RNA. 

 

9. Pipet 700 μl sample into the PAXgene RNA spin column (red) 

placed 

in a 2 ml processing tube, and centrifuge for 1 minutes at 

8000–20,000 x g. Place the spin column in a new 2 ml processing 

tube, and discard the old processing tube containing flow-

through. 
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10. Pipet the remaining sample into the PAXgene RNA spin 

column, and 

centrifuge for 1 minutes at 8000–20,000 x g. Place the spin 

column 

in a new 2 ml processing tube, and discard the old processing 

tube 

containing flow-through. 

 

Note: Carefully pipet the sample into the spin column and 

visually check that the sample is completely transferred to the 

spin column. 

 

11. Pipet 350 μl Buffer BR3 into the PAXgene RNA spin column. 

Centrifuge for 1 minute at 8000–20,000 x g. Place the spin column 

in 

a new 2 ml processing tube, and discard the old processing tube 

containing flow-through. 

 

12. Add 10 μl DNase I stock solution to 70 μl Buffer RDD in a 1.5 ml 

microcentrifuge tube. Mix by gently flicking the tube, and 

centrifuge 

briefly to collect residual liquid from the sides of the tube. 

 

If processing, for example, 10 samples, add 100 μl DNase I 

stock solution to 700 μl Buffer RDD. Use the 1.5 ml 

microcentrifuge tubes supplied with the kit. 

 

Note: DNase I is especially sensitive to physical 

denaturation. Mixing should only be carried out by gently 

flicking the tube. Do not vortex. 

 

13. Pipet the DNase I incubation mix (80 μl) directly onto the 

PAXgene 

RNA spin column membrane, and place on the benchtop (20–

30°C) 

for 15 minutes. 

 

Note: Ensure that the DNase I incubation mix is placed 

directly onto the membrane. DNase digestion will be incomplete 

if part of the mix is applied to and remains on the walls or 

the O-ring of the spin column. 
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14. Pipet 350 μl Buffer BR3 into the PAXgene RNA spin column, 

and 

centrifuge for 1 minute at 8000–20,000 x g. Place the spin column 

in 

a new 2 ml processing tube, and discard the old processing tube 

containing flow- through. 

 

15. Pipet 500 μl Buffer BR4 into the PAXgene RNA spin column, 

and 

centrifuge for 1 minute at 8000–20,000 x g. Place the spin column 

in 

a new 2 ml processing tube, and discard the old processing tube 

containing flow-through. 

 

16. Add another 500 μl Buffer BR4 to the PAXgene RNA spin 

column. 

Centrifuge for 3 minutes at 8000–20,000 x g. 

 

17. Discard the processing tube containing the flow-through, and 

place 

the PAXgene RNA spin column in a new 2 ml processing tube. 

Centrifuge for 1 minute at 8000–20,000 x g. 

 

18. Discard the processing tube containing the flow-through. 

Place the 

PAXgene RNA spin column in a 1.5 ml microcentrifuge tube, and 

pipet 40 μl Buffer BR5 directly onto the PAXgene RNA spin column 

membrane. Centrifuge for 1 minute at 8000–20,000 x g to elute 

the 

RNA. 

 

It is important to wet the entire membrane with Buffer BR5 in 

order to achieve maximum elution efficiency. 

 

19. Repeat the elution step (step 18) as described, using 40 μl 

Buffer BR5 and the same microcentrifuge tube. 

 

Incubate the eluate for 5 minutes at 65°C in the shaker–incubator 

(from step 5) without shaking. After incubation, chill immediately 

on 

ice. 
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This incubation at 65°C denatures the RNA for downstream 

applications. 

Do not exceed the incubation time or temperature. 

 

21. If the RNA samples will not be used immediately, store at –

20°C or 

–70°C. 
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Appendix K: Samples included in transcriptomic analysis with QC results.  
RNA quality and quantity extracted per samples with corresponding classification 

group. Samples used in analysis highlighted in green. No sample highlighted in red. 
Sample Quantity 

(ng) 

260/280 RIN  Sampl

e 

Quantity 

(ng) 

260/280 RIN  Phenotype Include/ 

Exclude 

N/S N/S N/S N/S P71B 2045 2.11 8.80 Term Rx EXCLU

DE 

N/S N/S N/S N/S P72B 7404 2.16 7.80 Term Rx EXCLU
DE 

P73A 6690 2.12 9 N/S N/S N/S N/S PPROM EXCLU

DE 

P74A 5316 2.1 8.70 P74B 7939 2.15 8.90 TERM 
CONTROL 

INCLUD
E 

P75A 8909 2.12 8.40 P75B 7215 2.09 8.90 sPTB INCLUD

E 

P76A 10927 2.14 8.20 P76B 8681 2.12 8.70 TERM 
CONTROL 

INCLUD
E 

P77A 6194 2.17 8.60 P77B 2785 2.18 8.70 TERM 

CONTROL 

INCLUD

E 

P78A 4803 2.15 8.70 P78B 1771 2.10 8 PPROM INCLUD
E 

P79A 5074 2.09 8.40 P79B 735 1.91 8.50 TERM 

CONTROL 

INCLUD

E 

P80A 4073 2.18 7.90 P80B 3532 2.15 8.50 Iatrogenic PTB EXCLU
DE 

P81A 2272 2.17 8.10 N/S N/S N/S N/S PPROM + chorio EXCLU

DE 

P82A 2408 2.16 8.30 P82B 2145 2.16 8.70 PPROM INCLUD
E 

P83A 3382 2.24 8.20 P83B 4095 2.07 8.10 sPTB INCLUD

E 

P84A 825 2.14 8.40 P84B 7629 2.13 8.20 LATE sPTB INCLUD

E 

P85A 6527 2.16 8.50 P85B 5700 2.11 8.70 sPTB INCLUD

E 

N/S N/S N/S N/S P86B 3495 2.07 8.30 TERM 

CONTROL 

EXCLU

DE 

P87A 6543 2.12 8.50 P87B 4990 2.11 8.30 TERM 

CONTROL 

INCLUD

E 

P88A 6939 2.13 7.90 P88B 3101 2.09 8.10 sPTB INCLUD

E 

P89A 7905 2.12 8.10 N/S N/S N/S N/S TERM 

CONTROL 

EXCLU

DE 

P90A 5130 2.15 8.50 P90B 6128 2.1 9.10 LATE sPTB INCLUD

E 

N/S N/S N/S N/S P91B 2708 2.11 9.20 TERM 

CONTROL 

EXCLU

DE 

P92A 7125 2.16 8.70 P92B 3068 2.07 8.10 LATE sPTB INCLUD

E 

P93A 600 2.34 9 N/S N/S N/S N/S Term Rx EXCLU

DE 

P94A 2625 2.08 8.50 P94B 0.0 0.87 N/A Term Rx EXCLU

DE 

P95A 5175 2.14 9.10 P95B 4628 2.11 8.40 TERM 

CONTROL 

INCLUD

E 

N/S N/S N/S N/S P96B 4005 2.14 8.80 TERM 

CONTROL 

EXCLU

DE 

N/S N/S N/S N/S P97B 2310 2.17 8.70 LATE sPTB EXCLU
DE 

P98A 2572 2.17 8.10 P98B 2183 2.19 8.10 TERM 

CONTROL 

INCLUD

E 

P99A 4278 2.18 8 P99B 0.0  N/A N/A TERM 
CONTROL 

EXCLU
DE 

P100A 2198 2.23 8 P100B 0.0 -0.32 N/A TERM 

CONTROL 

EXCLU

DE 

N/S  N/S N/S N/S P101B 0.0 -1.67 N/A TERM 
CONTROL 

EXCLU
DE 

P102A 0.0 -3.64 N/A P102B 0.1 0.68 N/A TERM 

CONTROL 

EXCLU

DE 

P103A 0.3 2.32 N/A P103B 0.1 0.77 N/A TERM 
CONTROL 

EXCLU
DE 
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P104A 0.0 -0.12 N/A P104B 0.1 0.75 N/A TERM 
CONTROL 

EXCLU
DE 

P105A 0.0 -2.86 N/A P105B 0.2 1.68 N/A TERM 

CONTROL 

EXCLU

DE 

P106A 0.0 0.53 N/A P106B 38 2.55 8.90 Term Rx EXCLU
DE 

N/S N/S NS N/S P107B 0.2 1.36 N/A Term Rx EXCLU

DE 

P108A 0.0 N/A N/A P108B 0.1 2.37 N/A LATE sPTB EXCLU
DE 

P109A 0.1 1.49 N/A P109B 0.1 1.09 N/A TERM 

CONTROL 

EXCLU

DE 

P110A 0.1 1.32 N/A P110B 0.4 1.32 N/A LATE sPTB EXCLU
DE 

P111A 1095 2.23 8.10 P111B 582 2.23 8.10 TERM 

CONTROL 

INCLUD

E 

P112A 0.2 1.35 N/A P112B 1268.5 2.20 8.20 TERM 
CONTROL 

EXCLU
DE 

P113A 2865 2.11 8.70 P113B 794 2.59 8.70 TERM 

CONTROL 

INCLUD

E 

P114A 0.2 1.61 N/A P114B 1175 2.33 8.40 LATE sPTB EXCLU
DE 

P115A 1485 2.36 8.10 P115B 1582 2.14 8.00 TERM 

CONTROL 

INCLUD

E 

P116A 1226 1.96 8.30 P116B 4466 2.07 8.50 TERM 
CONTROL 

INCLUD
E 

P117A 715.5 2.56 2.40 P117B 1648 1.85 7.90 TERM 

CONTROL 

EXCLU

DE 

P118A 2204 1.9 8.30 P118B 2485 1.88 7.90 TERM 

CONTROL 

INCLUD

E 

P119A 1410 1.81 8 P119B 2325 1.96 7.70 TERM 

CONTROL 

INCLUD

E 

P120A 1050 1.86 8 P120B 3278 1.99 8.50 LATE sPTB INCLUD

E 

P121A 1769 1.93 8.20 P121B 2953 2 8.60 LATE sPTB INCLUD

E 

P122A 3528 2.11 8 P122B 2484 2.02 8 TERM 

CONTROL 

INCLUD

E 

P123A 389 1.81 7.50 N/S N/S N/S N/S sPTB EXCLU

DE 

P124A 1138 2.17 7.70 P124B 2743 2.03 7.90 TERM 

CONTROL 

INCLUD

E 

P125A 460 1.74 7.90 P125B 2355 2.01 8 Term Rx EXCLU

DE 

P126A 1548 2.04 8 P126B 1723 1.99 8.20 PPROM - poly EXCLU

DE 

P127A 1552 2.08 7.70 P127B 5169 2.1 8.10 Term Rx EXCLU

DE 

P128A 5092 2.1 8.70 N/S N/S N/S N/S PPROM – genetic 

abn 

EXCLU

DE 

P129A 4185 2.09 7.80 P129B 1508 2.02 7.90 TERM 
CONTROL 

INCLUD
E 
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Appendix L: R script used for random forest analysis 
 
ranger(dependent.variable.name = "phenotype", data = trans_merged[,-
1], importance = "permutation",num.trees=10000) -> ptb.rf 
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Appendix M: List of metabolites detected by NMR 
 

Phosophocholine 

2-hydroxybutyrate 

Arginine 

2-hydroxyvalerate 

3-hydroxybutyrate 

acetate 

acetoacetate 

alanine 

choline 

citrate 

creatine 

creatinine 

desaminotyrosine 

Gln 

glucarate 

myoinositol 

glucose 

glutamate 

glycylproline 

histidine 

histidine 

Isoleucine 

isopropanol 

Lactate 

Leucine 

lysine 

mannose 

mobile-lipids 

n-dimethylamine 

phenylalanine 

proline 

propylene-glycol 

threonine 

tyrosine 

Valine 

 .



 

353 
 

Appendix N: Variable Importance by Test 

Random Forest: 

TPM1_week16         100.000 

CDH1_week16         71.121 

unknown_5_16weeks        64.849 

BAG1_week16         61.099 

SPX_week16         60.438 

BCL2L1_week16         59.805 

YBX3_week16 5        2.718 

unknown_37_16weeks        51.713 

TSTA3_week16         45.386 

glucose_44_16weeks        43.232 

unknown_52_16weeks        42.900 

unknown_54_16weeks        42.900 

ST13_week16         41.704 

threonineunknown_55_16weeks       39.075 

unknown_53_16weeks        38.521 

GABARAPL2_week16        36.739 

ANLN_week16         36.619 

GYPA_week16         34.987 

glucose_36_16weeks        34.483 

SIAH2_week16         33.238 

desaminotyrosine_12_16weeks       32.800 
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phenylalanine_6_16weeks       32.423 

SLC38A5_week16         32.133 

unknown_98_16weeks        31.926 

PLVAP_week16         29.616 

glucose_39_16weeks        29.186 

CTDSPL_week16         28.575 

glucose_40_16weeks        28.308 

proline_108_16weeks        27.702 

XK_week16          27.088 

unknown_125_16weeks        26.771 

glucose_45_16weeks        26.639 

CA1_week16         24.966 

glucoseunknown_50_16weeks       24.821 

GSPT1_week16         24.095 

glucose_35_16weeks        23.725 

X2_hydroxyvalerate_28_16weeks      23.557 

BCL2L13_week16         23.475 

FAM46C_week16         22.879 

SGIP1_week16         22.557 

EPB42_week16         20.791 

GYPB_week16         20.571 

glucose_60_16weeks        20.349 

MOXD2P_diff         20.208 

creatinine_29_20weeks        20.120 
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glucose_43_16weeks        20.056 

glucose_59_16weeks        19.378 

USP17L12_week16        18.304 

unknown_129_20weeks        18.291 

glucose_38_16weeks        18.288 

HIST1H3H_week16        17.921 

unknown_41_16weeks        17.736 

MIR4255_diff         17.124 

glucose_49_16weeks        16.854 

CD79A_week16         16.824 

ProGlu_115_20weeks        16.794 

RSU1_week16         16.707 

TNFRSF17_week16        16.701 

myoinositol_56_16weeks        15.610 

APEX1_week16         15.244 

phenylalanine_8_16weeks       15.098 

glycylproline_114_20weeks       14.965 

glucose_58_16weeks        14.524 

unknown_51_16weeks        13.995 

Isoleucine_138_20weeks        13.967 

glucose_47_16weeks        13.873 

mobile_lipids_18_16weeks       12.600 

glucose_19_16weeks        12.482 

unknown_9_16weeks        12.371 
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glucose_66_16weeks        12.149 

TUBB1_week16         12.135 

lipidunknown_32_16weeks       12.079 

glucaratemyoinositol_30_16weeks      11.987 

glucose_64_16weeks        11.915 

CHRNE_week16         11.626 

glucose_61_16weeks        11.499 

ABALON_week16        11.462 

unknown_10_16weeks        11.352 

CDH1_diff          11.204 

KEL_diff          11.040 

man_20_20weeks         10.902 

DYRK3_week16         10.792 

SNORD41_week16        10.720 

DDB1_week16         10.716 

OR2W3_week16         10.632 

SPTB_diff          10.614 

acetoacetate_111_16weeks       10.507 

citrate_103_16weeks        10.473 

SELENBP1_week16        10.421 

ANXA2_week16         10.345 

glucaratemyoinositol_30_20weeks      10.332 

man_20_16weeks         10.085 

unknown_129_16weeks        10.075 
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SVM linear: 

all variables have equal importance 

 

SVM Gaussian kernel: 

all variables have equal importance 

 

Kmeans 

mobile_lipids_131_20weeks       100.000 

mobile_lipids_131_16weeks       78.502 

Lactate_130_20weeks        39.099 

Lactate_130_16weeks        37.416 

mobile_lipids_132_20weeks       23.241 

mobile_lipids2_hydroxyisovalerate_145_20weeks    19.616 

argininePhosophocholine_82_20weeks      18.935 

mobile_lipids_132_16weeks       18.414 

mobile_lipids2_hydroxyisovalerate_145_16weeks    16.054 

argininePhosophocholine_82_16weeks      13.234 

 

LDA 

All variables have equal importance 

 

Genetic Expression Programming: 

SPTB_diff        100.000 

SNORA11_diff       50.000 
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PNN: 

desaminotyrosine_12_16weeks     100.000 

 


