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VAN DOOREN’S INDEX SUM THEOREM AND
RATIONAL MATRICES WITH PRESCRIBED STRUCTURAL DATA∗

LUIS M. ANGUAS† , FROILÁN M. DOPICO† , RICHARD HOLLISTER‡ , AND

D. STEVEN MACKEY‡

Dedicated to Paul Van Dooren on becoming Emeritus Professor

Abstract. The structural data of any rational matrix R(λ), i.e., the structural indices of its
poles and zeros together with the minimal indices of its left and right nullspaces, is known to satisfy
a simple condition involving certain sums of these indices. This fundamental constraint was first
proved by Van Dooren in 1978; here we refer to this result as the “rational index sum theorem”.
An analogous result for polynomial matrices has been independently discovered (and re-discovered)
several times in the past three decades. In this paper we clarify the connection between these two
seemingly different index sum theorems, describe a bit of the history of their development, and
discuss their curious apparent unawareness of each other. Finally, we use the connection between
these results to solve a fundamental inverse problem for rational matrices — for which lists L of
prescribed structural data does there exist some rational matrix R(λ) that realizes exactly the list
L? We show that Van Dooren’s condition is the only constraint on rational realizability; i.e., a list L
is the structural data of some rational R(λ) if and only if L satisfies the rational index sum condition.

Key words. eigenvalues, index sum theorem, invariant orders, minimal indices, poles, polyno-
mial matrices, rational matrices, structural indices, zeros
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1. Introduction. Rational matrices, i.e., matrices whose entries are scalar ra-
tional functions in one variable, lie at the heart of control theory and linear systems
theory. As a consequence, essentially any book on these disciplines will contain a
wealth of information on rational matrices; see, for instance, the seminal references
[23, 37], or the recent [6]. In the numerical linear algebra community, increased at-
tention has recently been directed at rational matrices, due to their relationship with
the numerical solution of nonlinear eigenvalue problems (NEP) arising in modern ap-
plications. Some of these NEPs arise immediately as rational eigenvalue problems
(REPs) expressed in terms of rational matrices. Even more importantly, there are
many NEPs that are not rational but can be reliably approximated by REPs; these
rational approximations can then be linearized and solved by standard methods for
linear eigenvalue problems, such as the QZ algorithm in the case of dense medium size
problems, or various Krylov methods for large scale problems. Some recent references
on this subject are [1, 2, 3, 14, 19, 20, 33, 39, 44].

This renewed interest in rational matrices is motivating a rethinking of a number
of classical results and concepts, looking for simplifications, revisions, and extensions
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that might make them more amenable to numerical treatment and applications, as well
as to the development of new lines of research on rational matrices themselves. It is
instructive to contrast the study of rational matrices with the parallel investigation of
polynomial matrices, a particular subclass of rational matrices. Polynomial matrices
have been the subject of intense research activity over the last fifteen years, despite
already being a fundamental topic in matrix analysis and numerical linear algebra
that is well covered in classic references [17, 18, 23, 46]. Some representative sources
for various aspects of recent research on polynomial matrices, among a great many
others, are [5, 7, 8, 9, 10, 13, 15, 21, 22, 26, 27, 28, 29, 35, 40, 41, 42, 44, 51]. This
small sample should make clear that modern research on rational matrices is in some
respects well behind modern research on polynomial matrices; indeed, many of the
problems considered and solved for polynomials remain open for rational matrices.

In this context, we solve a problem on rational matrices corresponding to a very
recently settled problem for polynomial matrices [10]; informally stated, this might be
called the general inverse “eigenstructure” problem for rational matrices. Although
this informal statement immediately establishes a connection with REPs, we empha-
size that the problem considered in this paper is much more than just an inverse
“eigenstructure” problem. Our goal is not just to realize a prescribed list of eigenval-
ues, but a complete list of structural data, comprised of finite and infinite zeros and
poles together with their structural indices, as well as the minimal indices of left and
right rational null spaces. More precisely, then, the inverse problem solved in this work
is to find a necessary and sufficient condition for the existence of a rational matrix
when a complete list of “structural data” is prescribed. This necessary and sufficient
condition is that the prescribed structural data satisfy a fundamental relation that we
baptize as the rational index sum theorem, or Van Dooren’s index sum theorem, since
it was proved for the first time by Paul Van Dooren in 1978 and published in [49]
(more information on the history of this result will be provided later). The condition
in Van Dooren’s index sum theorem is extremely easy to check, since it simply says
that for any rational matrix the total number of its poles (counting orders) is equal to
the total number of its zeros (counting orders) plus the sum of all its minimal indices.

We expect the inverse problem solved in this paper to have numerical applica-
tions, since the corresponding result for polynomial matrices has already found one
such application: in particular, the development of stratification hierarchies of polyno-
mial matrices in terms of their complete eigenstructures [13, 22]. These stratification
hierarchies determine what are the possible eigenstructures of all the polynomial ma-
trices in a neighbourhood of a given one. Such results, combined with backward
stable algorithms for computing eigenstructures of polynomial matrices [15], allow
us to determine numerically the defective eigenstructures compatible under roundoff
errors with a given polynomial matrix. The polynomial inverse problem solved in [10]
has recently found another interesting application [12] in the description of sets of
polynomial matrices with bounded rank and degree. We expect that the results in
this paper can also be applied to solve related problems for rational matrices.

An important by-product of this paper is to bring the attention of the numerical
linear algebra community to Van Dooren’s index sum theorem for rational matrices,
a result that has remained essentially unknown in this community. It is also expected
that this rational index sum theorem will find other relevant applications in addition to
the inverse problem solved in this work, since its polynomial matrix counterpart [36, 9]
has already been applied to solve a number of interesting problems. For example, it
has been used to show that many structured classes of even degree polynomial matrices
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that arise in applications contain polynomials that cannot be “strongly linearized”
via a pencil with the same structure [9, Section 7]. It is important to note that the
polynomial and rational index sum theorems can be seen to be easy corollaries of each
other, as we discuss in Section 3 of this paper.

The rest of the paper is organized as follows. Section 2 reviews some basic notions.
Van Dooren’s index sum theorem is revisited in Section 3 from two perspectives: first,
a new proof of this result valid in arbitrary fields is presented, then its history as well
as its relation with the so-called polynomial index sum theorem are briefly discussed.
Section 4 includes the most important original result of this paper, i.e., the solution
of the inverse problem for rational matrices when a complete list of structural data is
prescribed. An alternative formulation of the inverse problem is studied in Section 5.
Finally, some conclusions and lines of future work are discussed in Section 6.

2. Basic concepts, auxiliary results, and notation. The results summarized
in this section on rational matrices, as well as many others, can be found in the
classic references [23, Chapter 6] for real and complex rational functions, and [37] for
rational functions with coefficients in arbitrary fields. Another interesting reference
is [48, Chapters 1 & 3], which only considers real rational functions. We also strongly
recommend the recent reference [4], which works in the general setting of matrices
over principal ideal domains and the corresponding fields of fractions.

In this paper an arbitrary field F is considered. In those results where F is
required to contain infinitely many elements, this property is explicitly stated. The
algebraic closure of F is denoted by F, F[λ] stands for the ring of polynomials in
the variable λ with coefficients in F, and F(λ) for the field of rational functions in
the variable λ with coefficients in F. A polynomial matrix is a matrix whose entries
are elements of F[λ], and a rational matrix is a matrix whose entries are elements
of F(λ). The set of m × n constant matrices is denoted by Fm×n, the set of m × n
polynomial matrices by F[λ]m×n, and the set of m×n rational matrices by F(λ)m×n.
Row or column polynomial (resp., rational) vectors are just m× n polynomial (resp.,
rational) matrices with m = 1 or with n = 1. For any pair of scalar polynomials
p(λ), q(λ) ∈ F[λ], the expression p(λ) | q(λ) means that p(λ) divides q(λ). Given
two matrices A and B, A ⊕ B denotes their direct sum, i.e., A ⊕ B = diag(A,B).
Throughout the paper, the unspecified entries of a matrix are zero.

The degree of a polynomial matrix P (λ) ∈ F[λ]m×n is the largest degree of its
entries and is denoted by deg(P ). If deg(P ) = d, then P (λ) can be written as

P (λ) = Pdλ
d + · · ·+ P1λ+ P0, with P0, P1, . . . , Pd ∈ Fm×n and Pd 6= 0. (2.1)

For any P (λ) ∈ F[λ]m×n of degree d as in (2.1), we define its reversal polynomial as

(revP )(λ) := λdP

(
1

λ

)
= P0λ

d + · · ·+ Pd−1λ+ Pd. (2.2)

It is well known that any rational function has infinitely many representations as
a ratio of polynomials, but can be uniquely simplified to reduced form.

Definition 2.1 (Reduced form). Any nonzero r(λ) ∈ F(λ) can be uniquely

expressed in reduced form r(λ) = α·u(λ)

`(λ)
, where the polynomials u(λ) and `(λ) are

coprime and monic, and α ∈ F. The associated expression r̃(λ) = u(λ)

`(λ)
is the nor-

malized reduced form of r(λ).
Also, any rational matrix R(λ) ∈ F(λ)m×n can be uniquely expressed as

R(λ) = P (λ) +Rsp(λ), (2.3)
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where P (λ) is a polynomial matrix and Rsp(λ) is a strictly proper rational matrix,
i.e., a rational matrix such that for each of its nonzero entries the degree of the
denominator is strictly larger than the degree of its numerator. P (λ) is called the
polynomial part of R(λ) and Rsp(λ) the strictly proper part of R(λ).

The key tool for working with rational matrices is the Smith-McMillan form, in-
troduced by McMillan [31, 32] via the Smith form of polynomial matrices [17, Chapter
VI]. The Smith-McMillan form is the canonical form of a rational matrix under multi-
plication by unimodular matrices, i.e., square polynomial matrices with nonzero con-
stant determinant. We state this result here with the notation we will use throughout
the rest of the paper (see also [37, Chapter 3]).

Theorem 2.2 (Smith-McMillan form). For any rational matrix R(λ) ∈ F(λ)m×n

there exist unimodular matrices U(λ) ∈ F[λ]m×m and V (λ) ∈ F[λ]n×n, and a nonneg-
ative integer r ≤ min{m,n} such that

U(λ)R(λ)V (λ) =


d1(λ)

. . . 0r×(n−r)
dr(λ)

0(m−r)×r 0(m−r)×(n−r)

 =: D(λ), (2.4)

where for i = 1, . . . , r the diagonal entries di(λ) = εi(λ)
ψi(λ) ∈ F(λ) are in normalized

reduced form, and for j = 1, . . . , r − 1 we have εj(λ) | εj+1(λ) and ψj+1(λ) |ψj(λ).
Moreover, the rational diagonal matrix D(λ) is unique.

The diagonal matrix D(λ) in (2.4) is called the Smith-McMillan form of R(λ), and
d1(λ), . . . , dr(λ) are the invariant rational functions of R(λ). The integer r is the rank
of R(λ) when viewed as a matrix over the field F(λ) and is denoted by r = rank(R).
Those polynomials ε1(λ), . . . , εr(λ) and ψ1(λ), . . . , ψr(λ) in (2.4) that are different
from 1 are called the nontrivial numerators and denominators, respectively, of the
Smith-McMillan form of R(λ). Note that ψ1(λ) is the monic least common multiple
of the denominators of the entries of R(λ), when they are expressed in reduced form.

Suppose p(λ) ∈ F[λ] is a nonzero polynomial, and let π(λ) be any nonconstant
monic irreducible polynomial with coefficients in F. Then there is a unique nonnega-
tive integer k and a unique polynomial q(λ) ∈ F[λ] with q(λ), π(λ) coprime such that

p(λ) = [π(λ)]kq(λ). (2.5)

The integer k is called the structural index of p(λ) at π(λ), and is denoted S(p, π). It
follows immediately that for any two nonzero polynomials p1(λ), p2(λ) ∈ F[λ],

S(p1p2, π) = S(p1, π) + S(p2, π) . (2.6)

A natural extension of this concept to rational functions follows from the next lemma.

Lemma 2.3. Let π(λ) be a nonconstant monic irreducible polynomial over the
field F, and let r(λ) be any nonzero rational function in F(λ). Then there is a unique
integer k (possibly zero or negative) and a rational function s(λ) in reduced form
s(λ) = α · u(λ)/ `(λ) where π(λ) is coprime to u(λ) and to `(λ) such that

r(λ) = [π(λ)]k s(λ) .

As before, we call the integer k the structural index of r(λ) at π(λ) and denote
it by S(r, π). The structural index S(r, π) can also be easily calculated from any
representation n(λ)/d(λ) of r(λ) as a fraction of polynomials by

S(r, π) = S(n, π)− S(d, π) . (2.7)
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The following properties are now easy consequences of (2.6) and (2.7).
Lemma 2.4. Consider any nonconstant monic F-irreducible polynomial π(λ), and

any nonzero rational functions r1(λ), r2(λ) ∈ F(λ). Then

S(r1r2, π) = S(r1, π) + S(r2, π) . (2.8)

Also, for any nonzero rational function f(λ) ∈ F(λ),

S(r1, π) = S(r2, π) ⇒ S(fr1, π) = S(fr2, π) , (2.9)

S(r1, π) < S(r2, π) ⇒ S(fr1, π) < S(fr2, π) . (2.10)

There is a further natural extension to rational matrices. Let R(λ) be a rational
matrix over F, with Smith-McMillan form given by (2.4). Let di(λ) = εi(λ)/ψi(λ) for
1 ≤ i ≤ r, and define the structural index sequence of R(λ) at π(λ) to be

S(R, π) :=
(
S(d1, π), S(d2, π), . . . , S(dr, π)

)
. (2.11)

Then by Lemma 2.3, S(R, π) is the sequence of integers (h1, h2, . . . , hr) such that

εi(λ)

ψi(λ)
= π(λ)hi

ε̃i(λ)

ψ̃i(λ)
, (2.12)

where the triples of polynomials
(
ε̃i(λ), ψ̃i(λ), π(λ)

)
are pairwise coprime for i =

1, . . . , r. The sequence of integer exponents (h1, h2, . . . , hr) is unique, and satisfies
the non-decreasing condition h1 ≤ h2 ≤ · · · ≤ hr by the divisibility properties of
the numerators and denominators of the Smith-McMillan form and (2.7); indeed,
these divisibility properties are equivalent to the structural index sequence at every
irreducible π(λ) being non-decreasing. Note that in [4, p. 204], h1, h2, . . . , hr are
called the “invariant orders” at π(λ) of R(λ). In this paper we use “structural indices”
instead, since it is used in the classical reference [23, p. 447] (see also [45, p. 2.4]).

Note that S(R, π) contains nonzero terms if and only if π(λ) in (2.12) divides
either εr(λ) or ψ1(λ) (or both); otherwise, (h1, h2, . . . , hr) = (0, 0, . . . , 0). Includ-
ing sequences with all its structural indices equal to zero in the definition allows us
flexibility and the ability to state certain results in a concise way.

Given the Smith-McMillan form (2.4) of R(λ) ∈ F(λ)m×n over a field F, the roots
of ε1(λ), . . . , εr(λ) in the algebraic closure F are the finite zeros of R(λ). Analogously,
the roots of ψ1(λ), . . . , ψr(λ) in F are the finite poles of R(λ). The finite eigenvalues
of R(λ) are those finite zeros that are not poles. Observe that the uniqueness of
D(λ) in (2.4) implies that the Smith-McMillan form of R(λ) does not change under
field extensions. Thus, D(λ) is also the Smith-McMillan form of R(λ) considered as
a matrix in F(λ)m×n. This makes it possible to consistently define the structural
index sequence of R(λ) at any λ0 ∈ F, denoted S(R, λ0) for simplicity, by identifying
S(R, λ0) with S(R, π(λ)) for π(λ) = λ− λ0. With this notation, observe that:

(1) λ0 is a finite zero of R(λ) if and only if the last term of S(R, λ0) is positive;
(2) λ0 is a finite pole of R(λ) if and only if the first term of S(R, λ0) is negative;
(3) λ0 is neither a finite zero nor a finite pole of R(λ) if and only if all the terms

of S(R, λ0) are zero;
(4) λ0 is a finite eigenvalue of R(λ) if and only if S(R, λ0) contains only nonneg-

ative terms, the last of which is positive.
The following example illustrates these ideas.

Example 2.5. Given the rational matrix

R(λ) = diag

(
λ

λ− 1
,

1

λ− 1
, (λ− 1)2

)
⊕
[

1 λ2 0
0 1 λ7

]
∈ F(λ)5×6 ,
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it is easy to check that the Smith-McMillan form of R(λ) is

D(λ) =

[
diag

(
1

λ− 1
,

1

λ− 1
, 1, 1, λ(λ− 1)2

)
0

]
.

The only nonzero structural index sequences at finite λ0 ∈ F for this R(λ) are
S(R, 1) = (−1,−1, 0, 0, 2) and S(R, 0) = (0, 0, 0, 0, 1); note that the sequence length
is 5 since rank(R) = 5. Thus, 1 is simultaneously a pole and a zero of R(λ), while 0
is a zero but not a pole. Therefore, 0 is the only finite eigenvalue of R(λ).

Notice that the Smith-McMillan form of a rational matrix R(λ) over F can be
uniquely reconstructed from the nontrivial structural index sequences of R(λ) at non-
constant monic irreducible polynomials. Suppose π1(λ), π2(λ), . . . , πk(λ) are the only
nonconstant monic irreducible polynomials in F[λ] such that S(R, πi) is nontrivial, and

let S(R, πi) = (h
(i)
1 , h

(i)
2 , . . . , h

(i)
r ) with h

(i)
1 ≤ h

(i)
2 ≤ · · · ≤ h

(i)
r . Then the invariant

rational functions d1(λ), d2(λ), . . . , dr(λ) of R(λ) are given by

dj(λ) =
k∏
i=1

[πi(λ)]h
(i)
j =

εj(λ)

ψj(λ)
. (2.13)

The following simple result on Smith-McMillan forms and structural index se-
quences is fundamental in proving the main results in this paper.

Lemma 2.6. Let R(λ) ∈ F(λ)m×n be a rational matrix with rank r and Smith-
McMillan form D(λ). Also let f(λ) ∈ F(λ) be any nonzero scalar rational function,
and π(λ) ∈ F[λ] any nonconstant monic irreducible polynomial. Then

S
(
f(λ)R(λ), π(λ)

)
= S

(
f(λ)D(λ), π(λ)

)
= S

(
R(λ), π(λ)

)
+ (s, s, . . . , s) , (2.14)

where s = S(f(λ), π(λ)). Furthermore, the Smith-McMillan form of f(λ)R(λ) ∈
F(λ)m×n can be obtained from the diagonal rational matrix f(λ)D(λ) simply by re-
placing each nonzero entry of f(λ)D(λ) by its normalized reduced form.

Proof. It is immediate that f(λ)R(λ) is unimodularly equivalent to f(λ)D(λ).
Thus f(λ)R(λ) and f(λ)D(λ) have the same Smith-McMillan form, and hence iden-
tical structural index sequences S

(
f(λ)R(λ), π(λ)

)
and S

(
f(λ)D(λ), π(λ)

)
. But by

Lemma 2.4, the structural indices of the diagonal entries of f(λ)D(λ) form a nonde-
creasing sequence for any irreducible π(λ). Thus, aside from expressing these diago-
nal entries in normalized reduced form, the matrix f(λ)D(λ) is already essentially in
Smith-McMillan form, so that

S
(
f(λ)D(λ), π(λ)

)
=
(
. . . , S

(
f(λ)di(λ), π(λ)

)
, . . .

)
= S

(
R(λ), π(λ)

)
+ (s, s, . . . , s) ,

by (2.8) and (2.11).
Remark 2.7. For brevity, in situations such as those in Lemma 2.6, we will

informally say that f(λ)D(λ) is the Smith-McMillan form of f(λ)R(λ).

So far, only finite poles and zeros of rational matrices have been defined. Next,
we define the structure at ∞ as it was originally done by McMillan [31, 32] (see also
[23, p. 450]). In Definition 2.8, bear in mind that 0 ∈ F.

Definition 2.8. Let R(λ) ∈ F(λ)m×n be a rational matrix. The structural
index sequence of R(λ) at infinity, denoted S(R,∞), is defined to be identical with
the structural index sequence of R(1/λ) at 0, or equivalently, as the structural index
sequence of R(1/λ) at π(λ) = λ, i.e.,

S(R,∞) := S
(
R(1/λ), 0

)
:= S

(
R(1/λ), λ

)
.
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According to this definition, then, R(λ) has a pole (resp., a zero) at ∞ if R(1/λ) has
a pole (resp., a zero) at 0. The following simple result about rational functions will
be very useful when calculating the structural indices at ∞ for a rational matrix.

Lemma 2.9. Suppose r(λ) = n(λ)
d(λ) ∈ F(λ) is a nonzero scalar rational function,

where n(λ), d(λ) ∈ F[λ] are scalar polynomials. Then r( 1
λ ) can be expressed in the

form

r

(
1

λ

)
=

f(λ)

g(λ)
λdeg(d)−deg(n),

where f(λ), g(λ) ∈ F[λ] are each coprime to λ, so that S(r,∞) = deg(d)− deg(n).

Proof. r(1/λ) = n(1/λ)

d(1/λ)
= λdeg(d)λdeg(n)n(1/λ)

λdeg(n)λdeg(d)d(1/λ)
= λdeg(d)−deg(n) revn(λ)

rev d(λ)
.

The following example illustrates the structure at infinity of a rational matrix.
Example 2.10. Consider again the matrix R(λ) in Example 2.5 and note that

the degree of its polynomial part is 7. In addition, it is easy to check that R(1/λ) has
as Smith-McMillan form the matrix[

diag

(
1

λ7(λ− 1)
,

1

λ2(λ− 1)
,

1

λ2
, 1, λ(λ− 1)2

)
0

]
.

So, the sequence of structural indices at infinity ofR(λ) is S(R,∞) = (−7,−2,−2, 0, 1)
(= S(R(1/λ), 0)). Therefore, R(λ) has a pole and also a zero at infinity.

The next definitions will play key roles in Van Dooren’s index sum theorem.
Definition 2.11 (Total numbers of poles and zeros). Let R(λ) ∈ F(λ)m×n

be a rational matrix. Then the total number of poles of R(λ), denoted δp(R), is
minus the sum of the negative structural indices at all the poles (finite or infinite) of
R(λ); equivalently, the summation of negative structural indices may be taken over all
λ0 ∈ F ∪ {∞}. Similarly, the total number of zeros of R(λ), denoted δz(R), is the
sum of the positive structural indices at all the zeros (finite or infinite) of R(λ), or
equivalently, the sum of positive structural indices over all λ0 ∈ F ∪ {∞}.

In [4, 23, 45], the positive entries of S(R, λ0) for any λ0 ∈ F ∪ {∞} are called
the orders of the zero at λ0, while the negative entries of S(R, λ0) with their signs
changed are called the orders of the pole at λ0 ∈ F∪ {∞}. In this terminology, δz(R)
(resp., δp(R)) is simply the sum of the orders of all zeros (resp., poles) in F ∪ {∞}.

Remark 2.12. The descriptions of δp(R) and δz(R) given so far all require
passing to the algebraic closure F. This can be avoided by directly using the invariant
rational functions in the Smith-McMillan form over F given by (2.4). If S(R,∞) =
(q1, . . . , qr), then it is easy to see that

δp(R) =
r∑
i=1

deg(ψi)−
∑
qi<0

qi and δz(R) =
r∑
i=1

deg(εi) +
∑
qi>0

qi . (2.15)

Example 2.13. The only nonzero structural index sequences of the matrix R(λ)
in Example 2.5 are S(R, 1) = (−1,−1, 0, 0, 2), S(R, 0) = (0, 0, 0, 0, 1), and S(R,∞) =
(−7,−2,−2, 0, 1). Therefore, δp(R) = 13 and δz(R) = 4. Using the Smith-McMillan
form of R(λ) in Example 2.5, it is easy to check that (2.15) yields the same result.

The final concept we need to complete our survey of the structural data of a
rational matrix is that of minimal indices. Their definition is analogous to the cor-
responding one for polynomial matrices and is recalled here. Note that a rational
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matrix R(λ) is said to be regular if R(λ) is square and detR(λ) is not identically zero;
otherwise, R(λ) is said to be singular. Any singular R(λ) ∈ F(λ)m×n has nontrivial
left and/or right rational null spaces (here rational means over the field F(λ)):

N`(R) := {y(λ)T ∈ F(λ)1×m such that y(λ)TR(λ) = 0},
Nr(R) := {x(λ) ∈ F(λ)n×1 such that R(λ)x(λ) = 0} ,

which are just particular examples of rational subspaces as described in [16]. Any
rational subspace V ⊆ F(λ)n has bases formed entirely of polynomial vectors, which
are called polynomial bases of V. The order of any polynomial basis of V is defined as
the sum of the degrees of its vectors [16, Definition 2]. Among all of the polynomial
bases of V, those with least order are called minimal bases of V [16, Definition 3].
Although there are infinitely many minimal bases of V, the ordered list of degrees of
the polynomial vectors in any minimal basis of V is always the same [16, Remark 4,
p. 497], and is called the list of minimal indices of V. The left and right minimal
indices and bases of a rational matrix R(λ) are defined as those of N`(R) and Nr(R),
respectively. The next example illustrates minimal bases and minimal indices.

Example 2.14. Consider again the 5×6 rational matrix R(λ) from Example 2.5.
Note that rank(R) = 5, so dimN`(R) = 0 and dimNr(R) = 1. This means that
R(λ) has no left minimal indices, and exactly one right minimal index. It can easily
be checked that {v(λ) := [0, 0, 0, λ9,−λ7, 1]T } is a polynomial basis of Nr(R); that
{v(λ)} is a minimal basis follows from all polynomial vectors in Nr(R) being scalar
polynomial multiples of v(λ). So, the unique right minimal index of R(λ) is 9.

By contrast with Example 2.14, determining directly from the definition whether
a general polynomial basis is minimal or not may be very hard. Interested readers
can find useful criteria for minimality in [16], and a recent one in [47, Section 3].

The concepts previously introduced give rise to the following definition.
Definition 2.15. Given a rational matrix R(λ) ∈ F(λ)m×n with rank r, the

complete structural data of R(λ) consists of the following four components:

(i) “Finite structure”: the invariant rational functions ε1(λ)
ψ1(λ) , . . . ,

εr(λ)
ψr(λ) defining

the Smith-McMillan form of R(λ),
(ii) “Infinite structure”: the structural index sequence S(R,∞),
(iii) “Left singular structure”: the left minimal indices η1, . . . , ηm−r of R(λ), and
(iv) “Right singular structure”: the right minimal indices α1, . . . , αn−r of R(λ).

It is worth emphasizing some constraints on the complete structural data of R(λ):
first, the number of invariant rational functions and the number of structural indices at
infinity are both equal to rank(R), and second, the numbers of left and right minimal
indices, the size of R(λ), and rank(R) are related via the rank-nullity theorem.

Remark 2.16. There are several alternative, but equivalent, ways to specify the
finite structure of a rational matrix R(λ) as presented in Definition 2.15(i). Staying
inside the field F, one could list all the nonconstant monic irreducible polynomials
π(λ) ∈ F[λ] such that S(R, π) is nonzero, together with their structural index se-
quences. As discussed in (2.13), this information is sufficient to uniquely reconstruct
the invariant rational functions. At the cost of passing to the algebraic closure F, one
could instead list all the finite poles and zeros of R(λ), together with their structural
index sequences. This description may be more natural in the important case F = C.

2.1. Polynomial matrices: structure at infinity. Polynomial matrices can
be viewed as rational matrices with the denominators of all entries equal to one.
The Smith-McMillan form of any polynomial matrix is identical to its Smith form
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[17, Chapter VI], so the invariant rational functions are the same as the invariant
polynomials. Therefore, polynomial matrices do not have any finite poles, and all
their finite zeros are finite eigenvalues. The structural index sequences at the finite
zeros are nonnegative, and are exactly the same as what in the literature on polynomial
matrices [9, 18, 30] are called the partial multiplicity sequences at the finite eigenvalues.

Consider any m× n polynomial matrix P (λ) of degree d, over the field F. Using
Definition 2.8, we can directly compute the smallest structural index at infinity of
P (λ), viewing P (λ) as a rational matrix. Write P (λ) = [pij(λ)]m×n with

dij = deg pij(λ) and d = degP (λ) = max
ij

dij . (2.16)

By the definition of rev, we have pij
(

1
λ

)
=

revpij(λ)

λdij
. It follows that

P

(
1

λ

)
=

[
pij

(
1

λ

)]
=

[
revpij(λ)

λdij

]
=

1

λd

[
λd−dij revpij(λ)

]
=:

1

λd
Q(λ)

where Q(λ) = revP (λ) is a polynomial matrix. Note that at any (i, j) where dij = d,
the entry Qij(λ) will be coprime to λ, since the reversal of any scalar polynomial is
coprime to λ. Consequently the first invariant polynomial of Q(λ) will be coprime to
λ, since it is the gcd of the entries of Q(λ). This means that S(Q, 0) = (0, ∗, . . . , ∗),
where each ∗ is nonnegative. Hence, by Lemma 2.6, we have

S(P,∞) = S
(
P ( 1

λ ), 0
)

= S(Q, 0) + (−d, . . . ,−d) = (−d, ∗, . . . , ∗), (2.17)

where each ∗ is greater than or equal to −d. Thus any polynomial matrix of degree
d > 0 has a pole at infinity of order d (and perhaps other orders as well). This simple
calculation provides an example of a more general result for rational matrices found
in [4, Section 5] and [48, Chapter 3], that we state here without proof.

Proposition 2.17. Let R(λ) ∈ F(λ)m×n be a rational matrix with each nonzero
entry expressed as rij(λ) = nij(λ)/dij(λ), where nij(λ), dij(λ) ∈ F[λ]. Then the
smallest structural index at infinity of R(λ) is

ω := min
rij(λ)6=0

(
deg(dij)− deg(nij)

)
. (2.18)

Let P (λ) be the polynomial part of R(λ) as in (2.3). If P (λ) 6= 0, then ω = −deg(P ),
while if P (λ) = 0, then ω > 0.
Proposition 2.17 is illustrated in Example 2.10.

As we have seen so far in this section, it is possible to coherently define the struc-
ture at infinity of a polynomial matrix P (λ) by viewing it as a rational matrix, and
then using the structural indices at infinity of this (special) rational matrix. How-
ever, this has not been the typical practice in the literature on polynomial matrices
[9, 11, 18, 29, 30], or even for matrix pencils [17, 38, 43]. Instead, the standard way to
define the structure at infinity of polynomial matrices has been via the reversal polyno-
mial (2.2), as in the following definition. Another classical way to define the structure
at infinity is through the use of homogeneous polynomial formulations [11, 17, 38, 43];
note that this is equivalent to the definition via the reversal polynomial [50].

Definition 2.18. Let P (λ) ∈ F[λ]m×n be a polynomial matrix. Then infinity
is an eigenvalue of P (λ) if 0 is an eigenvalue of the polynomial matrix revP (λ). Let
M(revP, 0) := S(revP, 0) be the partial multiplicity sequence of revP (λ) at 0. The
partial multiplicity sequence of P (λ) at ∞, denoted M(P,∞), is defined as

M(P,∞) := M(revP, 0) .
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We re-emphasize that for polynomial matrices, structural index sequences and partial
multiplicity sequences are identical for all finite λ0. They only differ at infinity; how-
ever, there is a simple relationship between the two, as shown in the next proposition.

Proposition 2.19. Let P (λ) ∈ F[λ]m×n be a polynomial matrix of degree d.
Then

M(P,∞) = S(P,∞) + (d, d, . . . , d) .

Proof. Since S(P,∞) = S(P (1/λ), 0) and M(P,∞) = S(λdP (1/λ), 0), the result
follows from Lemma 2.6 with R(λ) = P (1/λ), π(λ) = λ, and f(λ) = λd.

Remark 2.20. An immediate corollary of (2.17) and Proposition 2.19 is that the
smallest partial multiplicity at infinity of any matrix polynomial is always zero. This
fact also follows easily from Definition 2.18 and the definition of reversal polynomial
in (2.2), which implies that revP (0) = Pd 6= 0. Now if M(P,∞) = (t1, . . . , tr), then
the Smith form of revP can be written as diag(λt1p1(λ), . . . , λtrpr(λ))⊕ 0. So t1 > 0
would imply revP (0) = 0, contradicting the nonzero-ness of Pd; hence t1 = 0.

Remark 2.21. By definition, a polynomial matrix P (λ) = Pdλ
d + · · · + P1λ +

P0 of degree d has an eigenvalue at ∞ if M(P,∞) contains nonzero terms, i.e., if
tr > 0. In light of the Smith form for revP in Remark 2.20, having tr > 0 is
equivalent to rankPd = rank

(
revP (0)

)
< r = rank(revP ) = rank(P ). That is,

P (λ) has an eigenvalue at ∞ if and only if the rank of Pd is smaller than the rank
of the polynomial matrix. This rank deficiency is related to the need to impose
differentiability conditions on the right-hand side of the system of differential-algebraic
equations P (ddt )u = f to guarantee the existence of solutions [18, Chapter 8].

2.2. Polynomial matrices: index sum theorem and inverse problem.
A fundamental result on polynomial matrices is the polynomial index sum theorem,
proved over the real field in [36, 34] and extended to arbitrary fields in [9, Thm. 6.5].

Theorem 2.22 (Polynomial Index Sum Theorem). Let P (λ) ∈ F[λ]m×n be a
polynomial matrix of degree d and rank r, with invariant polynomials p1(λ), . . . , pr(λ),
M(P,∞) = (t1, . . . , tr), left minimal indices η1, . . . , ηm−r, and right minimal indices
α1, . . . , αn−r. Then

r∑
j=1

deg(pj) +

r∑
j=1

tj +

m−r∑
j=1

ηj +

n−r∑
j=1

αj = d r. (2.19)

A second fundamental result, proved in [10, Theorem 3.3], solves the most general
form of inverse problem for polynomial matrices with prescribed complete structural
data.

Theorem 2.23 (Fundamental Realization Theorem for Polynomial Matrices).
Let F be an infinite field, let m, n, d, and r ≤ min{m,n} be given positive integers,
let p1(λ)| · · · |pr(λ) be a divisibility chain of arbitrary monic polynomials in F[λ], and
let t1 ≤ · · · ≤ tr, η1 ≤ · · · ≤ ηm−r, and α1 ≤ · · · ≤ αn−r be given lists of nonnegative
integers. Then there exists an m × n polynomial matrix P (λ) with coefficients in
F, with rank r and degree d, with invariant polynomials p1(λ), . . . , pr(λ) and partial
multiplicities at infinity t1, . . . , tr, and with left and right minimal indices respectively
equal to η1, . . . , ηm−r and α1, . . . αn−r, if and only if t1 = 0 and (2.19) holds.

We emphasize that although the proof of Theorem 2.23 given in [10] is construc-
tive, it is also involved. As an unfortunate side effect, the constructed polynomial
matrix P (λ) does not transparently display any of the prescribed structural data.

Remark 2.24. The proof given in [10, Theorem 3.3] for Theorem 2.23 uses the
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assumption that F is an infinite field only to guarantee the existence for any prescribed
polynomials p1(λ)| · · · |pr(λ) of a constant β ∈ F such that pr(β) 6= 0. Such a β allows
the general inverse problem to be reduced via a Möbius transformation [10, Lemma 3.4
and p. 319] to an inverse problem where there are no prescribed eigenvalues at infinity.
Thus the assumption that F is infinite can be replaced by the weaker assumption that
there exists some β ∈ F such that pr(β) 6= 0. Note that for finite fields there always
exist some choices of polynomials p1(λ)| · · · |pr(λ) that do not satisfy this assumption.

Remark 2.25. The assumption in Theorem 2.23 that m,n, r, and d are positive
integers was made in [10] to avoid consideration of the trivial cases of empty matrices
(when m = 0 or n = 0), zero matrices (when r = 0), and constant matrices (when
d = 0). However, it is not hard to see that Theorem 2.23 still holds even if r = 0 or
d = 0, making the right-hand side of (2.19) zero, and thus forcing all summands on
the left-hand side to be zero. The simple proof of this fact is omitted for brevity.

3. Van Dooren’s index sum theorem revisited. This section has two parts.
First, a new proof of Van Dooren’s index sum theorem is provided, which in contrast
to previous proofs is valid over arbitrary fields. The second part, in Subsection 3.2,
has a historical nature and is not essential for understanding the rest of the paper.

3.1. A new proof of the rational index sum theorem. The first proof of
Van Dooren’s index sum theorem can be found in [45, Proposition 5.10] and [49,
Theorem 3]; a different proof can be found in [23, Theorem 6.5-11]. These proofs
are briefly discussed in Subsection 3.2; for now we only emphasize that both assume
that F = C. In this section, we offer a proof based on Theorem 2.22 that is valid in
arbitrary fields. In order to see that our argument is not “circular”, the main steps
of the proof of Theorem 2.22 provided in [9, Theorem 6.5] are now summarized:

(1) the relation between the structural data of any polynomial matrix and those
of its first Frobenius companion form C1(λ) is established in [9, Theorem 5.3];

(2) Theorem 2.22 is proved for pencils in [9, Lemma 6.3];
(3) the results in steps (1) and (2) are combined in [9, Theorem 6.5] to prove

Theorem 2.22 by counting the rank of C1(λ) in two different ways.

Next, we state and prove Van Dooren’s index sum theorem over arbitrary fields.

Theorem 3.1 (Rational Index Sum Theorem). Let R(λ) be a rational matrix
over an arbitrary field F. Let δp(R) and δz(R) be the total number of poles and zeros,
respectively, of R(λ), and let µ(R) be the sum of the left and right minimal indices of
R(λ). Then

δp(R) = δz(R) + µ(R) . (3.1)

Proof. Let us assume that R(λ) has the Smith-McMillan form D(λ) given in
(2.4), that S(R,∞) = (q1, . . . , qr), and recall that ψ1(λ) is the monic least common
multiple of the denominators of the entries of R(λ). The proof follows easily from
applying the polynomial index sum theorem, i.e., Theorem 2.22, to the polynomial
matrix P (λ) := ψ1(λ)R(λ) and from the relation between the structural data of R(λ)
and P (λ). Note first that the minimal indices of P (λ) and R(λ) are identical, since
ψ1(λ) is just a nonzero scalar in the field F(λ). Lemma 2.6 and (2.4) imply that the

invariant polynomials of P (λ) are ψ1(λ)
εj(λ)
ψj(λ) , for j = 1, . . . , r, which have degrees

deg(ψ1) + deg(εj)− deg(ψj). From Lemmas 2.6 and 2.9, we conclude that

S(P,∞) = S
(
ψ1

(
1
λ

)
R
(

1
λ

)
, 0
)

=
(
q1 − deg(ψ1) , . . . , qr − deg(ψ1)

)
.
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Letting d := deg(P ), Proposition 2.19 then yields

M(P,∞) =
(
q1 − deg(ψ1) + d , . . . , qr − deg(ψ1) + d

)
. (3.2)

The combination of all this information with (2.19), applied to P (λ), and with (2.15)
yields (3.1).

Remark 3.2. The proof of Theorem 3.1 proceeds in the same spirit as the
original proof of the Smith-McMillan form given in [31, 32] (see also [23, p. 443]);
both proofs first reduce the rational problem to a “polynomial problem”, then leverage
known results about polynomial matrices before converting back to rational matrices.
As discussed in Subsection 3.2, other proofs of Van Dooren’s index sum theorem
available in the literature follow different paths, that by contrast might informally
be termed “intrinsically rational”. It is interesting to observe that there also exist
“intrinsically rational” proofs of the Smith-McMillan form [48, p. 10].

Example 3.3. The results in Examples 2.13 and 2.14 allow us to check immedi-
ately that the matrix R(λ) in Example 2.5 satisfies (3.1).

Remark 3.4. It is worth mentioning here the following way to formulate the
rational index sum theorem. Re-arrange (3.1) to the form δz(R) − δp(R) + µ(R) =
0, and recall that δp(R) from Definition 2.11 is minus the sum of all the negative
structural indices. Then this form of the rational index sum theorem simply says that
the sum of all the indices (minimal and structural, positive and negative, finite and
infinite, over all λ0 ∈ F ∪ {∞}) is zero for any rational matrix. Observe that, with
the notation in (2.15), this formulation is equivalent to

r∑
j=1

deg(εj)−
r∑
j=1

deg(ψj) +
r∑
j=1

qj + µ(R) = 0. (3.3)

3.2. History of Van Dooren’s index sum theorem and its relation with
the polynomial index sum theorem. The rational and polynomial index sum
theorems have a rather curious history. In the first place, they seem to have completely
ignored each other until only recently, when the polynomial index sum theorem was
finally recognized to be a corollary of the rational index sum theorem in [10, Remark
3.2]1. This “mutual ignorance” is probably related to two facts:

(a) each index sum theorem uses a different definition of structure at infinity,
which may have created a certain amount of confusion;

(b) the statements of these results appear on their face to be very different from
one another — Theorem 2.22 explicitly displays the rank and degree of the
polynomial matrix, while in Theorem 3.1 there is no explicit reference to
either the rank, or to any degree associated with the rational matrix.

Connected to these facts, we also emphasize that the original proofs of these two index
sum theorems have completely different flavors and use rather different techniques.

Secondly, both index sum theorems seem to have remained unnoticed by many
researchers in the linear algebra community, which is surprising since they establish
basic relationships between the structural data of rational and polynomial matrices.

1This nice connection was pointed out to the authors of [10] by an anonymous referee. During
the ALAMA Meeting held in Alicante (Spain), May-June 2018, this referee identified himself as Ion
Zaballa. The authors of [10] can now publicly acknowledge Ion Zaballa for his constructive and
generous report on the first submitted version of [10].
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As far as we know, the first published index sum theorem is the rational index
sum theorem in [49, Theorem 3], a paper published in 1979 but submitted in 1978.
The authors of [49] write the following footnote (on p.241) concerning the rational
index sum theorem – “First obtained, in a slightly different way, by Van Dooren in
earlier unpublished research”; this is the reason we have referred to this theorem as
“Van Dooren’s Index Sum Theorem”. The same result appears as Proposition 5.10
in the thesis [45], with the same proof as in [49]. The proof of Van Dooren’s index
sum theorem presented in [45] is far from trivial and relies heavily on the theory of
realizations of rational matrices in terms of polynomial matrices.

The rational index sum theorem can also be found in the classic reference [23,
Theorem 6.5-11], with a proof very different from that in [45, 49]. The proof in
[23] uses valuations of rational matrices, defined as in [16] via the valuations of the
minors of the considered rational matrix. Thus the proof in [23] has very much a
“determinantal” flavor. The rational index sum theorem restricted to real rational
matrices with full column rank is also proved via valuations in [48, p. 137].

The first statement that we know of the polynomial index sum theorem is given in
[36, Theorem 3] for real polynomial matrices. The proof in [36] is essentially the same
as that outlined in the first paragraph of Subsection 3.1. Surprisingly, no connections
with the original rational index sum theorem in [45, 49] are mentioned at all in [36].
It is worth noting that the polynomial index sum theorem is used in [36, 34] mainly as
a tool supporting the primary goal of the authors, the development of a numerically
reliable algorithm for column reduction of polynomial matrices. It is perhaps this
auxiliary role that allowed the polynomial index sum theorem to go un-recognized
as a fundamental result for so long in the linear algebra community, and remain
essentially forgotten until its importance was highlighted in [9], where, in addition,
it was extended to arbitrary fields and given its current name. Nevertheless, note
that the polynomial index sum theorem has appeared in some scattered references
such as [24, Proposition 1], but always as a nameless auxiliary result, and without
establishing any connection with Van Dooren’s index sum theorem in [45, 49].

Finally, we note that on page 3093 of the long survey paper [25] by Kublanovskaya,
one can see the rational and the polynomial index sum theorems stated one right after
the other(!)2, without proofs, and again without establishing (or even mentioning)
any connection between them. As we have seen, the connection had to wait until [10,
Remark 3.2]. For completeness we end this section with the following theorem, which
the alert reader has undoubtedly already anticipated.

Theorem 3.5. The polynomial and rational index sum theorems are equivalent.

Proof. The proof of Theorem 3.1 shows that the polynomial implies the rational
index sum theorem. The reverse implication follows immediately from the fact that
if P (λ) is a polynomial matrix with rank(P ) = r, deg(P ) = d, and M(P,∞) =
(t1, . . . , tr), then S(P,∞) = (t1 − d, · · · , tr − d), by Proposition 2.19. Then, (3.1)
applied to P (λ) implies Theorem 2.22.

4. Rational matrices with prescribed complete structural data. This
section presents in Theorem 4.1 the most important original result of this paper,
which solves the basic form of the general inverse problem for structural data of

2The references given in [25] for the index sum theorems are imprecise. With a considerable
degree of interpretation it can be inferred that [25] attributes the rational index sum theorem to
Van Dooren in [45] and the polynomial index sum theorem to V. B. Khazanov in his Ph.D. Thesis,
written in Russian in 1983, which we have not seen.
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rational matrices. In Section 5, another formulation of this problem is studied.
Theorem 4.1. Let F be an infinite field, let m, n, and r ≤ min{m,n} be given

positive integers, and let ε1(λ)
ψ1(λ)

, . . . , εr(λ)
ψr(λ)

be r rational functions in normalized re-

duced form, such that the monic polynomials in their numerators and denominators
form divisibility chains ε1(λ) | · · · | εr(λ) and ψr(λ) | · · · |ψ1(λ). Also let q1 ≤ · · · ≤ qr
be arbitrary integers (i.e., positive, negative, or zero), and η1 ≤ · · · ≤ ηm−r and
α1 ≤ · · · ≤ αn−r be two lists of nonnegative integers. Then there exists a rational ma-

trix R(λ) ∈ F(λ)m×n of rank r, with invariant rational functions ε1(λ)
ψ1(λ)

, . . . , εr(λ)
ψr(λ)

and

S(R,∞) = (q1, . . . , qr), and with left and right minimal indices equal to η1, . . . , ηm−r
and α1, . . . , αn−r, respectively, if and only if

r∑
j=1

deg(ψj) +
∑
qj<0

(−qj) =
r∑
j=1

deg(εj) +
∑
qj>0

qj +
m−r∑
j=1

ηj +
n−r∑
j=1

αj . (4.1)

Before proving Theorem 4.1, we emphasize that, taking into account (2.15) and
(3.1), the necessary and sufficient condition (4.1) can be stated in plain words as “the
prescribed complete structural data satisfy the condition in Van Dooren’s index sum
theorem”. Note also that (4.1) is written to correspond exactly with (3.1).

Proof of Theorem 4.1. The fact that the existence of R(λ) with the specified
properties implies (4.1) is just Theorem 3.1. The proof that (4.1) implies the existence
of R(λ) with the prescribed complete structural data consists of three simple steps:
(a) the prescribed “rational” structural data are transformed into “polynomial” data;
(b) a polynomial matrix P (λ) whose structural data are these “polynomial” data
is provided by Theorem 2.23 ; and (c) the desired rational matrix is proved to be
R(λ) := (1/ψ1(λ))P (λ).

The “polynomial” data in step (a) are:

(i) the divisibility chain ψ1(λ) ε1(λ)
ψ1(λ)

∣∣∣ · · · ∣∣∣ψ1(λ) εr(λ)
ψr(λ)

of scalar monic polyno-

mials with coefficients in F,
(ii) the list of r nonnegative integers 0 ≤ q2− q1 ≤ · · · ≤ qr− q1, whose first term

is zero,
(iii) the two lists of nonnegative integers η1 ≤ · · · ≤ ηm−r and α1 ≤ · · · ≤ αn−r.

Observe that (4.1) (or equivalently, (3.3)) implies that these “polynomial” data satisfy

r∑
j=1

deg

(
ψ1(λ)

εj(λ)

ψj(λ)

)
+

r∑
j=1

(qj − q1) +
m−r∑
j=1

ηj +
n−r∑
j=1

αj = r
[
deg(ψ1)− q1

]
. (4.2)

Since all summands in the left-hand side of (4.2) are nonnegative, deg(ψ1)− q1 ≥ 0.
Thus, (4.2) shows that the “polynomial” data in (i), (ii), and (iii) satisfy the conditions
of Theorem 2.23 (see also Remark 2.25). Therefore, there exists a polynomial matrix
P (λ) ∈ F[λ]m×n with rank r, degree d = deg(ψ1) − q1, invariant polynomials given
in (i), partial multiplicities at infinity given in (ii), and with left and right minimal
indices given in (iii).

Finally, we prove that the rational matrix

R(λ) :=
1

ψ1(λ)
P (λ) ∈ F(λ)m×n (4.3)

has the complete structural data prescribed in the statement. The minimal indices
of R(λ) are obviously equal to those of P (λ). Lemma 2.6 implies that the invariant
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rational functions of R(λ) are ε1(λ)
ψ1(λ)

, . . . , εr(λ)
ψr(λ)

. Proposition 2.19 implies that

S(P,∞) = M(P,∞)− (d, . . . , d) = (q1 − deg(ψ1), q2 − deg(ψ1), . . . , qr − deg(ψ1))

and Lemmas 2.6 and 2.9 imply that S(R,∞) = S(P,∞) + (deg(ψ1), . . . ,deg(ψ1)).
This yields S(R,∞) = (q1, q2, . . . , qr) and completes the proof. 2

The proof of Theorem 4.1 is constructive, since it relies on applying Theorem 2.23
to construct the polynomial matrix P (λ) in (4.3). However, from the comments in the
paragraph just after Theorem 2.23, we deduce that the constructed rational matrix
R(λ) does not transparently reveal any of the prescribed structural data.

Remark 4.2. Remark 2.24 and the proof of Theorem 4.1 imply that we can state
a version of Theorem 4.1 valid for any field, but at the cost of adding the assumption
“further suppose that there exists β ∈ F such that ψ1(β)εr(β)/ψr(β) 6= 0”.

5. Rational matrices with prescribed nontrivial structural data. Theo-
rem 4.1 allows some of the prescribed invariant rational functions to be equal to 1,
as well as some of the prescribed structural indices at infinity to be zero, i.e., to be
trivial. In this context the word “trivial” refers to data that do not carry any infor-
mation on the orders of the poles and/or zeros of the rational matrix whose existence
is guaranteed by Theorem 4.1. The purpose of this section is to provide (in Theorem
5.2) necessary and sufficient conditions for the existence of a rational matrix when
only the nontrivial structural data are prescribed. We emphasize that Theorem 5.2
is a direct corollary of Theorem 4.1. In order to state Theorem 5.2 in a concise way,
we first make the following definitions.

Definition 5.1. Let F be an arbitrary field. A list Lfin of nontrivial finite
structural data is a list of the form

Lfin :=
{
π1(λ)s11 , π1(λ)s21 , . . . , π1(λ)sg11 ,

π2(λ)s12 , π2(λ)s22 , . . . , π2(λ)sg22 ,
...

πt(λ)s1t , πt(λ)s2t , . . . , πt(λ)sgtt
}
,

where π1(λ), . . . , πt(λ) are distinct nonconstant monic irreducible polynomials in F[λ]
and, for each j = 1, . . . , t, s1j ≤ · · · ≤ sgjj is a sequence of nonzero integers (that may
be negative or positive). Moreover, for any rational matrix R(λ) with entries in F(λ),
we say that Lfin is the list of nontrivial finite structural data of R(λ) if the nonzero
structural indices of R(λ) at πj(λ) are exactly s1j ≤ · · · ≤ sgjj for j = 1, . . . , t, while
the structural indices of R(λ) at π(λ) are all equal to zero for any π(λ) ∈ F[λ] such
that π(λ) 6= πj(λ) for j = 1, . . . , t.

The sum of the “signed degrees” of the rational functions in Lfin and the length of
the longest chain of Lfin associated with the same irreducible polynomial are denoted,
respectively, by

δ(Lfin) :=
t∑

j=1

gj∑
i=1

sij deg πj(λ) and g(Lfin) := max
1≤j≤t

gj .

Recall that if F = C, every πj(λ) in Definition 5.1 is of the form πj(λ) = (λ−λj)
with λj ∈ C, while if F = R, either πj(λ) = (λ − λj) with λj ∈ R, or πj(λ) =
λ2 + ajλ+ bj with aj , bj ∈ R and with two complex conjugate nonreal roots.

Theorem 5.2. Let F be an infinite field, let Lfin be a list of nontrivial finite
structural data as in Definition 5.1, let c1 ≤ · · · ≤ cg∞ be a list of nonzero integers,
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and let η1 ≤ · · · ≤ ηq and α1 ≤ · · · ≤ αp be two lists of nonnegative integers. Then
there exists a rational matrix R(λ) of rank r with entries in F(λ), with list of nontrivial
finite structural data equal to Lfin and nonzero structural indices at infinity equal
to c1 ≤ · · · ≤ cg∞ , and with left and right minimal indices equal to η1, . . . , ηq and
α1, . . . , αp, respectively, if and only if the following two conditions hold:

(a) r ≥ max{g(Lfin), g∞} , and

(b) 0 = δ(Lfin) +

g∞∑
j=1

cj +

q∑
j=1

ηj +

p∑
j=1

αj .

In particular, if (b) holds, then for any choice of r satisfying (a) there exists a
rational matrix R(λ) of rank r with the prescribed structural data; such an R(λ) will
have size (q + r) × (p + r). If r does not satisfy (a), then there does not exist any
rational matrix with rank r and the prescribed structural data.

Proof. First, we prove that the existence of R(λ) with rank r and with the
prescribed structural data implies that (a) and (b) hold. According to the definition
in (2.11) and Definition 2.8, r is the length of the sequence of all the structural indices
at any πj(λ) ∈ F(λ) of R(λ), as well as the length of the sequence of structural indices
at infinity of R(λ). Therefore, r is larger than or equal to the number of nonzero
structural indices at πj(λ) or at infinity of R(λ), which is condition (a). Using (2.13)
and (3.3), we see that (b) is just the condition in the rational index sum theorem,
and thus holds for R(λ).

Next, we prove that conditions (a) and (b) imply the existence of R(λ) with the
prescribed structural data and rank r. Let r be any integer satisfying (a). To each
of the t sequences of nonzero integers s1j ≤ · · · ≤ sgjj from Lfin, j = 1, . . . , t, append
r − gj zeroes to form t new integer sequences s̃1j ≤ · · · ≤ s̃rj , each of length r. From
these t sequences, define the following rational functions in normalized reduced form:

εi(λ)

ψi(λ)
:= π1(λ)s̃i1 · · ·πt(λ)s̃it , for i = 1, . . . , r . (5.1)

Note that the polynomials ψi(λ) :=
∏
s̃ij<0 πj(λ)−s̃ij and εi(λ) :=

∏
s̃ij>0 πj(λ)s̃ij

clearly satisfy ε1(λ) | · · · | εr(λ) and ψr(λ) | · · · |ψ1(λ). Analogously, append r − g∞
zeroes to the sequence c1 ≤ · · · ≤ cg∞ of nonzero integers, to get an integer sequence
q1 ≤ · · · ≤ qr of length r. With these definitions and m := q+ r, n := p+ r, condition
(b) is equivalent to (4.1) (or to (3.3)). Theorem 4.1 can now be applied to prove the
existence of R(λ) ∈ F(λ)(q+r)×(p+r) with the prescribed structural data and rank r.

Remark 5.3. Remark 4.2 and the proof of Theorem 5.2 imply that we can state
a version of Theorem 5.2 valid in any field, but at the cost of adding the assumption
“further suppose that there exists ω ∈ F such that πj(ω) 6= 0 for j = 1, . . . , t, where
πj(λ) are the nonconstant monic irreducible polynomials in the definition of Lfin”.

6. Conclusions and future work. We have proved that there exists a rational
matrix with prescribed complete structural data if and only if such data satisfies the
very easily checked necessary condition in Van Dooren’s rational index sum theorem
of 1978. In addition, this rational index sum theorem has itself been revisited from
two points of view: we have extended it to arbitrary fields, and discussed some of its
history and relationship with the polynomial index sum theorem. These two rational
matrix results are based on, and significantly extend, previous results valid only for
polynomial matrices, that can be found in [9, 10]. These previous polynomial matrix
results have already been applied to the solution of a number of problems, some of



RATIONAL MATRICES WITH PRESCRIBED STRUCTURAL DATA 17

them related to numerical algorithms. Consequently, we anticipate that the results in
this paper will have similar applications in the context of rational eigenvalue problems.
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[14] F. M. Dopico and J. González-Pizarro, A compact rational Krylov method for
large-scale rational eigenvalue problems, Numer. Linear Algebra Appl., 2018,
doi.org/10.1002/nla.2214.
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[20] S. Güttel, R. Van Beeumen, K. Meerbergen, and W. Michiels, NLEIGS: a class of fully
rational Krylov methods for nonlinear eigenvalue problems, SIAM J. Sci. Comput., 36
(2014), pp. A2842–A2864.

[21] S. Hammarling, C. J. Munro, and F. Tisseur, An algorithm for the complete solution of
quadratic eigenvalue problems, ACM Trans. Math. Software, 39 (2013), pp. Art. 18, 19.
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