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Abstract

Dynamic Factor Models (DFMs), which assume the existence of a small number of unob-

served underlying factors capturing the comovements in large systems of variables, are very

popular among empirical macroeconomists to reduce dimension and to extract factors with

an economic interpretation. Factors can be extracted using either non-parametric Princi-

pal Components (PC) or parametric Kalman �lter and smoothing (KFS) procedures, with

the former being computationally simpler and robust against misspeci�cation and the latter

being e�cient if the speci�cation is correct and coping in a natural way with missing and

mixed-frequency data, time-varying parameters, non-linearities and non-stationarity among

many other stylized facts often observed in real systems of economic variables. This paper

analyses the empirical consequences on factor estimation and forecasting of using alternative

extraction procedures and estimators of the DFM parameters under various sources of po-

tential misspeci�cation. In particular, we consider factor extraction when assuming di�erent

number of factors and di�erent factor dynamics. The factors are extracted from a popular

data base of US macroeconomic variables that has been widely analyzed in the literature

without consensus about the most appropriate model speci�cation. We show that this lack

of consensus is ony marginally cruzial when it comes to factor extraction but it matters when

the objective is forecasting.
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1 Introduction

In recent decades, dynamic factor models (DFMs) have been widely used to represent comove-

ments within large systems of macroeconomic and �nancial variables where the cross-sectional

dimension is often relatively large compared with the time dimension; see Stock and Watson

(2017) for the importance of DFM in time series econometrics. DFMs generally assume the

existence of a small number of unobserved factors capturing the comovements in the system.1

Two main types of procedures for factor extraction are popular in the related literature. First,

in many applications factors are extracted using non-parametric procedures based on Principal

Components (PC), which are attractive because they are computational simple and have well-

known theoretical properties. In particular, PC is consistent under mild conditions and, as far as

the factors are pervasive and the idiosyncratic dependence is weak, it is robust to the underlying

dependence of common factors and idiosyncratic components . As a consequence, PC procedures

are very popular for factor estimation and several excellent surveys are available in the literature;

see, among others, Bai and Ng (2008a) for a technical survey on the econometric theory for PC

and Stock and Watson (2011) for an overview with a focus on applications. However, when the

common factors and/or idiosyncratic components are serially dependent, PC procedures do not

use this information and, consequently, they are not e�cient.

Alternatively, after casting the DFM as a state-space model (SSM), factors can be extracted

using Kalman Filter and Smoothing (KFS) procedures. One important feature of these proce-

dures is that they open the door to Maximum Likelihood (ML) estimation of the model param-

eters. Furthermore, if the model speci�cation is correct, KFS is e�cient for factor extraction.

KFS is also very �exible allowing to handle in a straightforward way data characteristics often

observed in practice as, for example, missing data, mixed frequencies, seasonal dependencies,

nonstationarity or regime-switching nonlinearity. Moreover, KFS procedures are also of interest

in empirical applications because they allow incorporating restrictions on the factor loadings,

as in multilevel DFMs, or on the idiosyncratic components and to perform counterfactual exer-

cises; see, for example, Banbura, Giannone and Reichlin (2011), Forni and Reichlin (2001), Beck,

Hubrich and Marcellino (2009, 2016), Camacho, Pacce and Perez-Quiros (2020) and Coroneo,

Giannone and Modugno (2016) for multilevel models and Luciani (2015) for counterfactual anal-

ysis. However, KFS procedures also have drawbacks, the main one being that they require full

speci�cation of the dependence of the common and idiosyncratic components, opening the door

to potential misspeci�cation; see Poncela, Ruiz and Miranda (forthcoming) for a very recent

survey on KFS for factor extraction in DFMs.

This paper analyses the empirical consequences on factor estimation and forecasting of using

1See Chen, Dolado and Gonzalo (2021) for a factor model with the factors being common in the quantiles.
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alternative factor extraction procedures and estimators of the DFM parameters under various

sources of potential misspeci�cation. In particular, we consider factor extraction when assuming

di�erent number of factors and di�erent factor dynamics. We focus our analysis on the factors

extracted using PC and KFS from the ubiquitous data base of US macroeconomic variables

described by McCracken and Ng (2016). Factor extraction procedures have been previously be-

ing compared using this data set; see, for example, Poncela and Ruiz (2015) and the references

therein. However, as far as we know, the empirical properties of KFS extraction under poten-

tial sources of misspeci�cation has not been analysed before when extracting factors from the

same data set; see, Aruoba, Diebold and Scotti (2009) for the importance of comparing factor

extraction procedures in the context of the same data set.

The rest of the paper is organized as follows. Section 2 brie�y describes the representation

of DFMs as SSMs and how factor extraction can be performed using KFS based on alternative

estimates of the parameters. In Section 3, the factors are extracted from a system of US macroe-

conomic variables under the assumption of serially uncorrelated idiosyncratic components. We

analyse the di�erences, both in terms of point and interval estimation of factors and forecasting,

when factors are extracted using PC and the KFS under di�erent assumptions on the number

of factors and their dynamic dependence. Section 4 concludes the paper with our conclusions.

2 Dynamic Factor Models, KFS factor extraction and EM

parameter estimation

In this section, we brie�y describe how the DFM can be cast as an SSM, how to extract the

factor using KFS (assuming that the parameters are known) and how the model parameters can

be estimated.

2.1 DFMs as SSMs and KFS

DFMs are examples of the much larger class of SSMs, in which observable variables are expressed

in terms of unobserved or latent variables, which in turn evolve according to some lagged dy-

namics. Consider that Yt = (Y1t, ..., YNt)
′
, t = 1, ..., T , is a stationary zero mean N × 1 vector

time series generated by the following static DFM2

Yt = ΛFt + εt (1)

2We assume that all deterministic components have been removed from the series in Yt previous to their

analysis.
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where Λ is the N × r matrix of factor loadings and Ft, the r × 1 vector of common factors, is

assumed to evolve over time following a stationary VAR(p) model given by

Ft = Φ1Ft−1 + Φ2Ft−2 + ...+ ΦpFt−p + ut, (2)

where ut is an r × 1 white noise vector with covariance matrix Σu. Finally, εt = (ε1t, ..., εNt)
′

are N × 1 vectors representing the common idiosyncratic components, each of them speci�ed as

an AR(p∗i ) process as follows

εit = θ1iεit−1 + θ2iεit−2 + ...+ θp∗i iεit−p∗i + eit. (3)

Let et = (e1t, ..., eNt)
′ be the vector of idiosyncratic errors, assumed to be white noise with

covariance matrix Σe. If the idiosyncratic components, εt, are assumed to be cross-sectionally

uncorrelated, i.e. Σe is diagonal, the DFM is known as �exact� while, if the idiosyncratic noises

are weakly cross-correlated, the DFM is called �approximate�.

First, we consider the DFM with serially uncorrelated idiosyncratic components, i.e. θji = 0

for i = 1, ..., N and j = 1, ..., p∗i . In this case, it is straighforward to write the DFM as a SSM.

Assuming that r and p as well as all DFM parameters are known, KFS can be implemented to

extract the factors, regardless of the cross-sectional dimension, N ; see Poncela, Ruiz and Miranda

(forthcoming) for a detailed description.

When the idiosyncratic components are serially correlated and, assuming for simplicity that

p∗i = 1,∀i, the DFM can be reformulated as follows:

Yt = ΘYt−1 +
[

Λ −ΘΛ
] Ft

Ft−1

+ et (4)

 Ft

Ft−1

 =

 Φ1 0

Ir 0

 Ft−1

Ft−2

+

 ut

0

 , (5)

where Ir is the r × r identity matrix and Θ is a diagonal N ×N matrix containing the autore-

gressive parameters θi in its main diagonal. De�ning the observations as Yt −ΘYt−1, the model

in (4) and (5) can be directly cast in state space form.3

2.2 Estimation of the parameters of DFMs

The KFS factor extraction requires not only a known speci�cation of the DFM (r, p and p∗)

but also knowledge of the model parameters in Λ, Φ1,...,Φp, Σu, Θ1,...,Θp∗ and Σe. However,

3Alternatively, one can deal with the autocorrelation of the idiosyncratic noises by augmenting the state vector

by εt. The main problem associated with this alternative is that the state vector dimension increases with N

and can be unfeasible from a computational point of view for large cross-sectional dimensions. Additionally,

the resulting measurement equation will lack measurement noise, which could be an issue when estimating the

DFM parameters using the Expectation Maximization (EM) algorithm. If the parameters were known, both

formulations lead to the same results when the initialization issues are properly accounted for.
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in practice, both the speci�cation and the parameters are unknown and need to be determined

and estimated, respectively, before running the KFS algorithms. In this subsection, we describe

estimation of the parameters when the model speci�cation is assumed to be known; see the

survey by Poncela, Ruiz and Miranda (forthcoming) for a discussion on how to deal with the

DFM speci�cation.4

First, we consider the DFM in (1) with Σε = Σe being a diagonal matrix, i.e. the idiosyncratic

components are serial and cross-sectionally uncorrelated although they can be cross-sectionally

heteroscedastic. In this case, after assuming normality, estimation of the parameters can be

carried out by ML with the Kalman �lter (KF) used to compute the innovation decomposition

form of the Gaussian likelihood, which is given by

logL(Y ; Ψ) = −NT
2
log(2π)− 1

2

T∑
t=1

log|Σt| −
1

2

T∑
t=1

ν
′
tΣ
−1
t νt, (6)

where Y = (Y1, ..., YT ) and Ψ is the vector of parameters to be estimated, namelly the loadings

in Λ, the variances in the main diagonal of the covariance matrix of the idiosyncratic noises,

σ2ε1 , ..., σ
2
εN
, the autorregressive parameters of the VAR model for the factors in Φ1,...,Φp and the

parameters in the covariance matrix Σu. Finally, νt = Yt − E(Yt|Y1, ..., Yt−1) is the innovation

vector and Σt is its covariance matrix, and both can be obtained from the Kalman �lter. Note that

the likelihood decomposition in (6) requires inverting the covariance matrix of the innovations.

Using the Woodbury identity, it is possible to see that

Σ−1t = Σ−1ε − Σ−1ε Λ
(
P−1t|t−1 + Λ

′
Σ−1ε Λ

)−1
Λ
′
Σ−1ε , (7)

where Pt|t−1 is the MSE of the one-step-ahead estimates of the underlying factors. Given that

Σε is diagonal, obtaining Σ−1t and, consequently, the expression of the log-likelihood in (6) is

straightforward. After imposing the necessary identi�cation restrictions, the log-likelihood can

be maximized using, for instance, numerical optimization with, for example, Newton-Raphson

algorithms.5 The parameters are restricted before estimation in order to identify the model. In

this paper we follow the suggestion of Harvey (1989) and restrict the parameters in such a way

that λi,j = 0 for j > i and i = 1, ..., r and Σu = Ir. However, in this very simple DFM, the main

hurdle found in the numerical maximization of the likelihood appears when N is extremely large,

because the number of parameters to be estimated, r2 × p+N × (r + 1), increases with N .6

Alternatively, given that directly optimizing the log-likelihood can be unfeasible when N is

large, the ML estimator of the DFM parameters can be obtained by the iterative expectation

4We focus on time domain frequentist methods. Bayesian estimators have shown to be very useful in the context

of, for example, multilevel DFMs; see Camacho, Pacce and Perez-Quiros (2020) and the references therein.
5The optimization algorithm used in the empirical application of this paper is a Quasi-Newton-Raphson algo-

rithm as implemented in the subroutine Optim in R.
6The proposal by Delle Monache and Petrella (2019) could be useful when the likelihood needs to be evaluated

a very large number of times as when using Bayesian procedures based on simulations.
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maximization (EM) algorithm proposed by Shumway and Sto�er (1982) and Watson and Engle

(1983) for estimation in the context of state-space models. The EM algorithm works iteratively.

To simplify the description of the EM algorithm, let us assume that p = 1, i.e., the factors are

speci�ed as a VAR(1) model.7 First, starting values for the parameters, Λ̂(0), Σ̂
(0)
ε , Φ̂(0) and Σ̂

(0)
u ,

should be obtained. These starting values are usually based on factors and loadings estimated

by Principal Components. Denote by f̃PC , the
√
T times the eigenvectors corresponding to the

r largest eigenvalues of Y Y ′ arranged in decreasing order and Λ̃PC′ = 1
T f̃

PC′Y . By construction,

the estimators f̃PC and Λ̃PC are such that f̃PC′f̃PC/T = Ir and Λ̃PC′Λ̃PC/N is the r × r

diagonal matrix consisting of the �rst r eigenvalues of the matrix 1
TN Y Y

′ arranged in decreasing

order. Then, the starting parameters for the loadings are Λ̂(0) = Λ̃PC while the autoregressive

parameters are estimated by the following Ordinary Least Squares (OLS) estimator

Φ̂(0) =

(
T∑
t=1

f̃PC
t−1 f̃

PC′
t−1

)−1 T∑
t=1

f̃PC
t f̃PC′

t−1 , (8)

and the covariance matrix of the idiosyncratic compoenents is estimated by

Σ̂(0)
ε = diag

{
1

T

T∑
t=1

ε̃tε̃
′
t

}
(9)

where ε̃t = Yt − Λ̃PC f̃PC
t .

The expectation step consists in running the KFS algorithm with the parameters of the

DFM substituted by the starting values above to obtain f
(0)
t|T , P

(0)
t|T and C

(0)
t , where f

(0)
t|T and P

(0)
t|T

are the smoothed estimate of Ft and its corresponding estimated MSE, given by the Kalman

smoother, and C
(0)
t = E

[(
Ft − f (0)t|T

)(
Ft−1 − f (0)t−1|T

)′
|Y1, ..., YT

]
can also be obtained by the

Kalman smoother by augmenting the state vector to include Ft−1.
8 In the maximization step,

the parameters of the DFM are estimated as follows

Λ̂(1) =

T∑
t=1

Ytf
(0)′
t|T

(
T∑
t=1

f
(0)
t|T f

(0)′
t|T + P

(0)
t|T

)−1
, (10)

Φ̂(1) =

(
T∑
t=1

f
(0)
t|T f

(0)′
t−1|T + C

(0)
t

)(
T∑
t=1

f
(0)
t−1|T f

(0)′
t−1|T + P

(0)
t−1|T

)−1
, (11)

while Σ(ε) is estimated as in (9) with the PC residuals substituted by ε̂
(1)
t = Yt−Λ̂(0)f

(0)
t|T .

9 Recall

that, for identi�cation, the parameters of the DFM need to be restricted and, therefore, using

7Note that, if the VAR order is p > 1, the EM estimator can be easily modi�ed.
8The estimates f

(0)

t|T of this �rst iteration are usually known as two-step LS estimates of the factors; see Doz,

Giannone and Reichlin (2011). In this case, the covariance matrix of ut is estimated by

Σ̂(0)
u =

1

T

T∑
t=1

ũtũ
′
t

where ũt = f̃PC
t − Φ̂(0)f̃PC

t−1.
9Note that Bai and Li (2016) propose using Λ(1) instead of Λ(0) to calculate the idiosyncratic residuals.
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the restrictions described above, Σu = Ir does not need to be estimated. Furthermore, denoting

by Y the T × N matrix of observations and by F (S) and P (S), the T × r matrix of smoothed

factors and their corresponding MSE matrix in the steady state, respectively, the restrictions in

the loadings can be imposed as follows10

vec
(

Λ̂(1)∗
)

= vec
(

Λ̂(1)
)
−(

Rvec
(

Λ̂(1)
)
− c
)′ [

R

((
F (S)′F (S) + P (S)

)−1
⊗ IN

)
R′
]−1

R

((
F (S)′F (S) + P (S)

)−1
⊗ IN

)
(12)

where R is an r(r−1)
2 ×Nr matrix of zeros and ones of the coe�cients of the parameters in the

restrictions and c is a r(r−1)
2 vector of zeros for the restrictions considered in this case. Consider,

for example, that r = 3, then the matrix of coe�cients of the restrictions is given by the following

3× 3N matrix

R =


0 0 ... 0 1 0 ... 0 0 0 ... 0

0 0 ... 0 0 0 ... 0 1 0 ... 0

0 0 ... 0 0 0 ... 0 0 1 ... 0


︸ ︷︷ ︸

N

︸ ︷︷ ︸
N

︸ ︷︷ ︸
N

(13)

The expectation and maximization steps are iterated until convergence. The parameters

of the DFM with serially and cross-sectionally uncorrelated idiosyncratic components can be

estimated by ML using the EM algorithm regardless of N ; see, among many others, Stock and

Watson (1989, 1991) with N = 4, Quah and Sargent (1993) with N = 60 and Proietti (2011)

with N = 148.

Several authors have shown the consistency of the Two-step LS and ML estimators of the

parameters of the DFM and of the corresponding factors extracted by wrongly considering Σε

as diagonal when it is not. First, Doz, Giannone and Reichlin (2011) show that the smoothed

factors extracted using the two-step OLS estimates of the parameters are consistent due to

the misspeci�cation error vanishing as N and T diverge to in�nity. Later, Doz, Giannone and

Reichlin (2012) extend the result to the EM estimator with the resulting estimator known in

the related literature as Quasi-ML (QML). The min
(√

N,
√
T
)
- consistency and asymptotic

normality of the estimates of the loadings, factors and common components have been proved by

Barigozzi and Luciani (2019) who derive the conditions under which the asymptotic distribution

can still be used for inference in case of miss-speci�cation.11

10Note that, if the factors were known, the estimator of Λ can be written in a compact form as Λ̂(1) =

Y ′F (S)
(
F (S)′F (S) + P (S)

)−1

and vectorizing it, vec
(

Λ̂(1)
)

=

((
F (S)′F (S) + P (S)

)−1

⊗ IN

)
vec

(
Y ′F (S)

)
.

11Barigozzi and Luciani (2019) compare the loadings, factors and common components estimated using PC and

QML estimators and conclude that, in static DFMs, both procedures are rather similar.
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Finally, it is also relevant for empìrical factor extraction to consider DFM with serially cor-

related idiosyncratic errors, i.e. when θji 6= 0 for i = 1, ..., N and j = 1, ..., p∗i . In this case,

regardless of N , the parameters of the DFM in equations (4) and (5), with serially correlated

idiosyncratic errors speci�ed as independent VAR models, can still be estimated by ML using

the EM algorithm modi�ed with Cochrane-Orcutt iterations to estimate Θ conditional on Λ and

Λ conditional on Θ; see Reis and Watson (2010).12

2.3 Forecasting with DFM

Once the factors have been extracted, it is very popular to obtain out-of-sample forecasts of the

variables of interest using di�usion indexes (also known as factor augmented predictive regres-

sions) proposed by Stock and Watson (2002), according to which the one-step-ahead forecast of

the i-th variable in the system is given by

ŷiT+1|T = µ+

q∑
j=1

δjyT−j+1 +
s∑

j=1

B′jFT−j+1 (14)

where Bj = (β1j , ..., βrj)
′ are parameters and Ft are the underlying common factors of the

system Yt. In practice, the parameters of the di�usion indexes in (14) are estimated by LS

after substituting the factors by the corresponding estimates. When the factors are extracted

by PC, Stock and Watson (2002) show that ŷiT+1|T is consistent for yiT+1. Bai and Ng (2006)

show that, if
√
T

N → 0, the LS estimates if the parameters are
√
T consistent and asymptotically

normal. Furthermore, they show that the conditional mean predicted by the estimated factors

is min[
√
T ,
√
N ] consistent and asymptotically normal.13 Finally, Bai and Ng (2006) also derive

the asymptotic distribution of the forecasts of yiT+1, which can be used to construct forecast

intervals.14

3 Empirical extraction of factors

The forecasting performance of KFS procedures for factor extraction are illustrated, both in-

sample and out-of-sample, in the context of the ubiquitous database described in McCracken and

12Alternatively, one can deal with serially dependent idiosyncratic noises by considering the SSM with the

state vector augmented with the idiosyncratic noises. Banbura and Modugno (2014) modify the steps of the EM

algorithm for a general pattern of missing data and show how to model serial correlation by augmenting the

state; Alvarez, Camacho and Perez-Quiros (2016) for an empirical application. Augmenting the state may be

computationaly expensive when N is very large. Consequently, Jungbacker et al. (2011) show how to reduce the

computational burden by alternating between the representation of Reiss and Watson (2010) and the augmented

SSM; see Pinheiro, Rua and Dias (2013) for an application. Alternatively, one can also use Bai and Li (2016) to

estimate the DFM with serially correlated errors.
13As far as we know there are not corresponding results when the factors are extracted using the Kalman �lter.
14The asymptotic variance is obtained using the usual formulae for regression models, adding an additional

term due to the estimation of the factors. However, if N is large, this additional term dissapears.
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Ng (2016) that consists of N = 128 variables observed monthly from January 1983 up to and

including December 2020, with a total of 444 observations per series.15 We consider forecasting

in the context of stationary DFM. With this purpose, previous to its analysis, the data are

transformed to stationarity and outliers and missing observations are dealt with as described in

McCracken and Ng (2016). Then, all variables in the system are centered and standardized. The

sample period is split into an estimation period from January 1983 to December 2016 (T = 396)

and an out-of-sample forecast period, from January 2017 to December 2020 (H = 48). The focus

of prediction are Industrial Production (IP) Index and in�ation �rst di�erences; see applications

in Quah and Sargent (1993), Bai and Ng (2008), Alvarez, Camacho and Perez-Quiros (2016) and

McCracken and Ng (2016), for forecasts of these same variables.

Figure 1: Scree plot of the eigenvalues of the covariance matrix of the US macroeconomic data set.

To determine the number of static factors, we inspect the scree plot proposed by Cattell

(1966), which appears in Figure 1; see, for example, Hindrayanto, Koopman and de Winter

(2016) who also look at the scree plot to determine r. The message from the scree plot is not

clear with the presence of one factor being obvious but not other factors appearing in a neat way.

Alternatively, by using the second criteria proposed by Alessi, Barigozzi and Capasso (2010), the

number of factors is determined to be r = 7, which is also the number determined using the

criteria proposed by Bai and Ng (2002) by many authors, as, for example, Stock and Watson

15This data base is an update version of the data base used by Stock and Watson (2002, 2012). Although

data are available from January 1959, there is a generalized consensus about the presence of a structural break in

1982 due to the change of policy rule of the Federal Reserve which swichted from targeting non-borrowed reserve

to targeting the federal funds rate; see, for example, Hallin and Liska (2007) and Luciani (2015). To avoid the

problems associated to the presence of structural breaks when determining the number of factors, we analyse the

data set observed from 1983; see Breitung and Eickmeier (2011) who show that, in the presence of a structural

break, the number of factors is overestimated and the factor loadings are inconsistently estimated, and Chen,

Dolado and Gonzalo (2014) for a test for breaks in DFMs.
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(2005), Bai and Ng (2007), Pinheiro, Rua and Dias (2013), McCracken and Ng (2016), Kristensen

(2017) and Despuis and Doz (2020), analysing the same data set over a di�erent period of time.

Furthermore, the �rst criteria of Alessi, Barigozzi and Capasso (2010) determines, r = 5; see also

Poncela and Ruiz (2015) who chose r = 4. Moreover, the criteria proposed by Onatski (2010)

determines r = 1; see, for example, Alvarez, Camacho and Perez-Quiros (2016) who consider

the case of r = 1 factors in this data set. Therefore, there is no agreement about the number

of factors. Is this important? In order to analyse the e�ect of the number of factors on the

conclusions, we carry out the analysis by assuming the three most likely scenarios given the scree

plot, namely, r = 1 and r = 3, and analyse the implications in the estimation of the �rst factor

and on the forecasts of industrial production and in�ation.

3.1 Extracting one single factor

After extracting a single factor by PC, its correlogram and partial correlogram suggest that the

factor could be represented by an AR(3) model. Should we worry about an adequate speci�cation

of the dynamic dependence of the factors? In this subsection, in order to analyse the e�ect of the

dynamic dependence assumed for the factors on the estimated factors and on the corresponding

forecasts, we estimate the exact DFM with r = 1 assuming either that p = 1 or p = 3. For

each of these cases, the parameters of the DFM are estimated by TS-LS and ML, the latter

maximized either using numerical optimization or by the EM algorithm. Table 1 reports some

summary of the results. In particular, it reports
∑N

i=1 λ̂
2
i ,
∑N

i=1 σ̂
2
ei as well as the estimated

autoregressive parameters and the MSE of the smoothed factor.16 First of all, we can observe

that the sums of squared loadings and of idiosyncratic variances and MSE(f̂t|T ) are the same

regardless of whether the factor is assumed to be AR(1) or AR(3) or whether we estimate the

model parameters by ML either using EM or numerically maximizing the log-likelihood. When

the Kalman �lter is run with the parameters estimated by TS-LS, we can observe that the sum

of squared loadings is slightly larger and the sum of idiosyncratic variances is slightly smaller.

As a consequence, the Kalman (steady) MSE of the smoothed factor, f̂t|T , is smaller with an

apparent increase in precision as compared with the steady MSE obtained when the parameters

are estimated by ML. In any case, it is remarkable that the MSE of the PC extracted factor

estimated as proposed in Bai (2003) is 0.01, approximately 5 times smaller than that obtained

when the factors are extracted using the Kalman �lter with ML estimates of the parameters.

16Note that for the results to be comparable, all estimated loadings and factors have been rotated to the same

base as those estimated by PC; see Poncela and Ruiz (2015) for the rotation. This rotation is need because of the

di�erent restrictions used for identi�cation by PC and ML. While under PC the sample variance of the factors

is assumed to be one, the restriction imposed when estimating by ML is that σ2
u = 1. The ML estimate of the

autoregressive parameter, φ̂1 = 0.87 implies that the factor has variance 4.11. Therefore, the ML weights should

be divided by 2.03 for the variance of the common component to be the same.
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Furthermore, the implications of the estimation method and speci�cation assumed for the factor

are also clear when estimating its dynamic dependence. Consider �rst the estimated parameters

in the model with p = 1. The ML estimate of the autoregressive parameter (regardless of whether

it is estimated maximizing numerically the likelihood, 0.87, or using the EM algorithm, 0.85) is

larger than that based on PC, 0.78. Furthermore, note that the slight di�erences between the ML

results obtained when the likelihood is maximized numerically or when using the EM algorithm

dissappear when p = 3 is assumed. It seems that when the "true" log-likelihood is maximized its

value at the maximum is the same regardless of the procedure used for its maximization. Finally,

it is important to look at the roots implied by the estimated parameters of the AR(3) model.

When the parameters are estimated based on the PC factors, the roots are 0.94 and −0.30±0.35i

while, if they are estimated by ML, the roots are 0.95 and −0.27±0.28i. In both cases, there is a

cyclical behaviour of the factor which has a largest real root when the parameters are estimated

by ML. In any case, the persistence of this real root is clearly larger than when an AR(1) model

is assumed for the factor. These di�erences in the estimated persistence and number of lags of

the factor may have implications for forecasting, mainly in periodos of changing points because

the forecasts adapt quicker if the number of lags is smaller. Finally, Table 1, which also reports

the value of the log-likelihood at the maximum for the ML estimates, shows that, although there

are not signi�cant di�erences between the log-likelihood values obtained when the maximization

is based on EM or numerical optimization, the di�erence between the log-likelihood when p = 1

and p = 3 is signi�cant, according to the log-likelihood ratio test.

Figure 2 plots the loadings estimated by PC and ML, in the latter case by using both

numerical optimization and EM. As an illustration, Figure 3 plots the factors together with

their corresponding 95% con�dence intervals obtained by the KFS based on the PC and EM

parameter estimates reported in Table 1, together with their 95% con�dence intervals.17 As

before, the EM estimated factors have been rotated to be in the same space as those estimated

by PC. More importantly, the intervals constructed using ML parameter estimates are clearly

larger than those obtained using PC parameters; see also Poncela and Ruiz (2005) who conclude

that the asymptotic RMSEs obtained from the asymptotic distribution of the PC factors are

unreallistically small.18

To analyse whether the di�erences in the estimation of the parameters above have implica-

tions in forecasting, we obtain out-of-sample one-step-ahead forecasts of IP and in�ation �rst

di�erences from January 2017 up to December 2020 using the factor-augmented predictive re-

gressions in equation (14) with q = s = 4.19 Table 2 reports the estimates of the parameters of

17The con�dence intervals of the PC factors are based on the asymptotic distribution derived by Bai (2003).
18The intervals for the factors could be more realistic if the asymptotic MSE is modi�ed by subsampling as

proposed by Maldonado and Ruiz (forthcoming).
19Residual diagnosis analysis of the factor augmented predictive regressions is available upon request.
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Table 1: Parameter estimates of Static-DFMs: Two-step Least Squares (TS-LS); Maximum Likelihood

with numerical optimization (ML-NO); Maximum Likelihood with EM (ML-EM).

TS-LS ML-NO ML-EM TS-LS ML-NO ML-EM

p = 1 p = 3

r = 1∑N
i=1 λ̂

2
i 18.09 17.72 17.75 18.09 17.75 17.75∑N

i=1 σ̂
2
εi 109.87 110.97 110.87 109.86 110.88 110.86

φ̂1 0.78 0.87 0.85 0.34 0.42 0.41

φ̂2 - - - 0.35 0.36 0.36

φ̂3 - - - 0.20 0.14 0.15

MSE(F̂t) 0.030 0.038 0.044 0.03 0.05 0.05

log-Lik - -69475.1 -69485.94 - -69437.7 -69438.5

r = 3∑N
i=1 λ̂

2
i 18.09 - 17.90 18.09 - 17.90∑N

i=1 σ̂
2
εi 89.52 92.67 89.52 92.65

φ̂1 0.78 - 0.86 0.24 - 0.85

φ̂2 - - - 0.49 - 0.31

φ̂3 - - - 0.15 - -0.27

MSE(F̂t) 0.022 0.022 0.024 - 0.027

log-Lik - - -61211 - - -61123.9

these regressions obtained in-sample for the IP growth together with their corresponding p-values

obtained under the assumption of homoscedastic forecast errors, eit = yit − ŷit|t−1.20

Finally, using the estimated factor-augmented regressions reported in Table 2 and the �ltered

factors obtained from the Kalman �lter run in the out-of-sample period, we obtain one-step-ahead

forecasts of IP variations from January 2017 to December 2020. Table 3 reports the variance

of the one-step-ahead forecasts of the IP variations. It also reports the empirical Mean Square

Forecast Errors (MSFEs) and the empirical coverages of the 70% forecast intervals computed

both with the forecasts obtained until December 2019 and until December 2020.21 Note that in

the latter case, we are incorporating in the analysis the forecasts obtained during the turbulent

times due to the recession induced by the COVID-19 pandemic. However, in the former case,

20The results for in�ation are not reported as, regardless of the particular procedure used to estimate the factor,

the parameters associated with the factor and its lags in the regressions are not signi�cant.
21Note that these quantities are merely descriptive as they are based on just 36 forecasts in the former case

and 48 in the latter. Results for intervals with 95% nominal coverage are also available upon request.
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Figure 2: Factor loadings estimated for the set of macroeconomic variables using: i) PC (blue bars) and

ii) ML with numerical optimization, ML-NO (green bars) and with EM, ML-EM (orange bars).

the forecasts are obtained in a "normal" time in the evolution of the variables. First of all,

Table 3 shows that, even if the di�erences between the in-sample estimated factors are very

minor, the performance of one-step-forecasts can be quite di�erent. The procedure used to

extract the factors and the estimator of the DFM parameters when the factors are extracted

using the Kalman �lter and smoother is relevant for the out-of-sample one-step-ahead forecasts

performance. Note that the di�erences are more obvious when there are extraordinary movements

in the series, as those observed during the COVID-19 crisis; see Figure 4. This is so for industrial

production. Notice that this �rst factor captures quite well the business cycle. When we take into

account 2020, the di�erences in the MSFE obtained with PC are striking (for instance, the out

of sample MSE of the PC extracted factors is more than twice that of the ML extracted factors).

However, removing the year 2020 gives very di�erent numerical results. First, the magnitude of

the MSFEs is considerably reduced. In particular, PC induced MSE is around 10 times smaller

when excluding 2020. Nevertheless, the PC extracted factors still renders out of sample MSFEs

around 20% larger than those of ML methods. Regarding the length of the AR polynomial of the

common factor for IP, notice that we always obtain smaller MSEs for p = 1, that is, the shorter

the memory of the common factor, the smaller the MSFE. The picture for in�ation is a little bit

di�erent. The MSEs without the year 2020 are also smaller for all methods, as expected, but

those induced by PC with 1 factor are still the largest ones. However, �gures are closer among

them for the three methods. Finally, for in�ation, the MSFE is not always smaller for p = 1

than for p = 3, as expected, given the di�erent induced �uctuations of the pandemic crisis in

prices than in real economic activity.
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Figure 3: A single factor (blue) extracted from the set of macroeconomic variables using PC (�rst row)

and KFS with EM estimates of the parameters (second row). The �rst column plots the smoothed factor

extracted assuming an AR(1) dependence while in the second column the factor is assumed to be an

AR(3) process. The red lines represent the corresponding 95% con�dence intervals.

3.2 Extracting three factors

As mentioned above, the number of common factors in the system is unknown and should be

determined beforehand. In the case of the data set considered in this paper, r is not clearly

determined with a variety of possibilities depending on the criteria used. In this subsection, we

analyse whether the potential misspeci�cation about r has implications for factor extraction and

forecasting. We assume that r = 3 and analyse the di�erences observed in the �rst factor with

respect to that extracted above and in forecasting industrial production and in�ation.

Table 1 reports a summary of the estimation results.22 Consider �rst the case with p = 1.

Comparing the results reported in Table 1 with those obtained when r was assumed to be one,

we can observe that the only di�erence is that, obviously, the sum of idiosyncatic variances is

now smaller and, consequently, the MSE of the extracted factors is reduced to half.23 It is also

remarkable that the maximum of the log-likelihood reported in Table 1 is signi�cantly larger when

r = 3 than when r = 1. Similarly, when we assume that r = 3 and p = 3 and the parameters are

estimated by ST-LS, we can observe that the estimation results are very similar to those obtained

22In this case, it is unfeasible to maximize numerically the likelihood. Consequently, only the ML results for

EM are reported.
23Note, however, that the MSE still doubles that obtained for the PC factors, which is 0.009.
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Table 2: Parameter estimates of factor-augmented predictive regressions for IP based on factors esti-

mated using: PC; Two-step Least Squares (TS-LS); Maximum Likelihood with EM (ML-EM). p-values

in parenthesis.

r = 1 r = 3

PC p = 1 p = 3 PC p = 1 p = 3

TS-LS ML-EM TS-LS ML-EM TS-LS ML-EM TS-LS ML-EM

µ -0.006 -0.006 -0.006 -0.005 -0.005 -0.006 -0.005 -0.002 -0.005 -0.002
(0.88) (0.90) (0.89) (0.91) (0.90) (0.89) (0.91) (0.95) (0.91) (0.97)

δ1 -0.216 -0.256 -0.224 -0.224 -0.191 -0.179 -0.262 -0.128 -0.231 -0.102
(0.01) (0.00) (0.00) (0.01) (0.01) (0.03) (0.01) (0.07) (0.01) (0.15)

δ2 -0.094 -0.096 -0.032 -0.113 -0.060 -0.083 -0.125 -0.030 -0.131 -0.046
(0.23) (0.23) (0.64) (0.16) (0.39) (0.32) (0.17) (0.66) (0.15) (0.50)

δ3 0.300 0.306 0.271 0.298 0.262 0.238 0.252 0.254 0.220 0.243
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.02) (0.00)

δ4 0.408 0.382 0.288 0.381 0.293 0.370 0.427 0.283 0.437 0.287
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

β11 0.486 0.584 0.671 0.521 0.580 0.322 0.526 0.783 0.421 0.817
(0.00) (0.00) (0.00) (0.00) (0.00) (0.03) (0.00) (0.00) (0.01) (0.00)

β12 0.486 0.472 0.359 0.519 0.471 0.467 0.572 0.607 0.705 0.643
(0.00) (0.00) (0.02) (0.00) (0.00) (0.00) (0.00) (0.01) (0.00) (0.01)

β13 -0.220 -0.282 -0.321 -0.267 -0.305 -0.177 -0.433 -1.003 -0.480 -1.097
(0.10) (0.05) (0.03) (0.05) (0.03) (0.24) (0.02) (0.00) (0.01) (0.00)

β14 -0.603 -0.586 -0.508 -0.588 -0.544 -0.429 -0.441 -0.270 -0.419 -0.239
(0.00) (0.00) (0.00) (0.00) (0.00) (0.04) (0.01) (0.17) (0.01) (0.23)

σ2ε 0.723 0.725 0.726 0.731 0.698 0.719 0.718 0.708 0.716 0.698

R2
A 0.27 0.27 0.27 0.27 0.30 0.28 0.28 0.29 0.28 0.30

when we assumed that r = 1 and p = 3. Looking at the estimated dynamics of the �rst factor,

we can observe that, they are very similar to those estimated when assuming that r = 1.24 In

particular, when the parameters are estimated by TS-LS, the roots of the characteristic equation

are 0.935 and 0.348± 0.20i, very close to those estimated above. However, the results are rather

di�erent when the parameters are estimated by ML. In this case, the roots are 0.807, -0.557 and

0.6, rather di�erent from those obtained when the parameters are estimated by TS-LS and when

assuming that r = 1.

Finally, it is important to mention that the sample pairwise correlations between the �rst

factor estimated in the di�erent speci�cations and estimators considered range from 0.96 to 1.00.

The minimum correlation, 0.96, is obtained when the factor is extracted assuming that r = 1

and p = 1 and estimating the parameters by ML and when it is assumed that r = 3 and p = 3

and the parameters of the DFM used to extract the factors are estimated by TS-LS. On the

other hand, the maximum correlation, 1.00, is obtained when it is assumed that r = 1 and p = 3

and the parameters are estimated by ML either maximizing numerically the likelihood or using

24The o�-diagonal elements of the estimated autoregressive matrices are �xed to zero as, in practice, they are

not far from zero.
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Figure 4: Out-of-sample forecasts of IP (�rst row) and in�ation (second row) together with the corre-

sponding 70% con�dence intervals.

(a) IP forecasts with one PC factor and p=1 (b) IP forecasts with one EM factor and p=1

(c) In�ation rate forecasts with one EM factor and

p=1

(d) In�ation rate forecasts with three EM factors

and p=1

the EM algorithm; see also Lewis et al. (2020), who conclude that the factors are robust to

whether PC or KFS is implemented for factor extraction when constructing a weekly index of

real activity (EWI) based on N = 10 variables for USA.

When instead of one factor, we estimate the predictive regressions using three factors, the

results are similar for IP forecasts; see Table 2, which only reports the parameter estimates for

the �rst factor, as the second and third factors are not signi�cant in the predictive regression of

IP. Note that McCracken and Ng (2016) interpret the �rst common factor (extracted using PC)

as a real activity/employment factor. They �nd that although in initial forecasting samples more

than one factor seems to have predictive information over IP, when we move to latter samples only

the �rst common factors seems to retain its predictive information. However, when forecasting

in�ation, the second lag of the three factors is signi�cant. McCracken and Ng (2016) interpret

the third common factor as an in�ation factor while the second common factor was dominated

by forward-looking variables such as term interest rate spreads and inventories. They show that,

in the sample period they consider, the �rst common factor does not have any predictive content

for forecasting in�ation in later times. According to our results, forecasts of in�ation based on

models with r = 1 or r = 3 are di�erent; see Figure 4. On top of the noticeable di�erences
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Table 3: One-step-ahead out-of-sample forecasts of �rst di�erences of industrial production and in�ation.

Factor-augmented predictive regressions based on factors estimated by: PC; Two-step Least Squares

(TS-LS); Maximum Likelihood with EM (ML-EM).

St. error MSE (2019) MSE (2020) Cov. 70% (2019) Cov. 70% (2020) St. error MSE (2019) MSE (2020) Cov. 70% (2019) Cov. 75% (2020)

p = 1 p = 3

Industrial production growth

r = 1

PC 0.88 0.61 5.62 72.22% 60.42%

TS-LS 0.87 0.51 3.16 80.56% 64.58% 0.88 0.51 3.24 80.56% 64.58%

ML-EM 0.88 0.50 2.37 77.78% 64.58% 0.89 0.51 2.51 77.78% 66.67%

r = 3

PC 0.87 0.59 5.09 75% 62.5%

TS-LS 0.87 0.51 3.17 77.78% 64.58% 0.87 0.52 3.25 72.22% 60.42%

ML-EM 0.94 0.55 2.95 75% 64.58% 0.93 0.55 3.16 75% 62.5%

In�ation rate

r = 1

PC 0.92 0.34 0.91 94.44% 85.42%

TS-LS 0.94 0.35 0.84 91.67% 83.33% 0.94 0.35 0.84 91.67% 83.33%

ML-EM 0.95 0.34 0.78 94.44% 85.42% 0.95 0.34 0.77 94.44% 85.42%

r = 3

PC 0.90 0.33 0.89 94.44% 85.42%

TS-LS 0.93 0.35 0.90 94.44% 85.42 0.93 0.36 0.89 94.44% 85.42%

ML-EM 1.034 0.38 1.028 94.44% 83.33 0.93 0.38 0.89 94.44% 85.42%

between results including pre-COVID times and those that do not include them that we can

also observe with three factor models, notice that both for industrial production and in�ation

including more factors does not necessarily translate into smaller out of sample MSEs. Indeed,

in occasions those are larger than the corresponding ones from one factor predictive regressions.

4 Conclusions

Given the model speci�cation, the main di�erence between factor estimates obtained using PC or

two-step LS versus ML (either numerical optimization or EM) appears in the factor dynamics. In

the particular US macroeconomic data set analysed in this paper, the largest autoregressive root

is closer to one when the model parameters are estimated by ML. This stronger persistence has

implications in forecasting. Furthermore, the sum of squared loadings (idiosyncratic variances)

is larger (smaller) when the parameters are estimated by TS-LS than when estimated by ML

and, consequently, the con�dence intervals for the factors are larger (and more realistic?) when

the parameters are estimated by ML. Assuming a larger number of factors imply reducing the

sum of idiosyncratic variances and, consequently, decreasing the MSE of the factors extracted

using KF. While the likelihood-ratio tests favour speci�cations with more factors and more

lags, the forecasting results point towards the importance of the factor extraction procedure

and the parameter estimator. Therefore, it seems that, in practice, one should analyse the

sensitivity of alternative speci�cations and factor extraction procedures case by case. Although

in sample results might render the conclusion that the di�erences in the estimation method are

not so important, the picture changes when we focus on out of sample results. On the one

hand, more factors does not necessarily mean smaller out of sample MSFEs. On the other hand,

small di�erences in the in-sample results, might render noticeable di�erences in the out-of-sample
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MSFEs. However, this is case dependent, specially in the vicinity of the turning points. Moreover,

we do not obtain the same results for industrial production and in�ation, leaving the issue as

an empirical matter. In any case, answering the question in the title of this work, a careful

speci�cation of the DFM before factor extraction could be important in terms of forecasting.
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