
Migrating Microservices to Graph
Database

Master of Science Thesis
University of Turku
Department of Computing
Software Engineering
2021
Tuomo Virolainen

Supervisor:
MSc. (Tech) Sampsa Rauti

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UTUPub

https://core.ac.uk/display/395382235?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF TURKU
Department of Computing

Tuomo Virolainen: Migrating Microservices to Graph Database

Master of Science Thesis, 82 p., 7 app. p.
Software Engineering
February 2021

Microservice architecture is a popular approach to structuring web backend ser-
vices. Another emerging trend, after a period of hibernation, is utilizing modern
graph database management systems for managing complex, richly connected data.
The two approaches have rarely been used in tandem, as microservices emphasize
modularization and decoupling of services, while graph data models favor data in-
tegration.
In this study, literature on microservices and graph databases is reviewed and a syn-
thesis between the two paradigms is presented. Based on the theoretical discussion,
a software architecture combining the two elements is formulated and implemented
using microservices serving content metadata at Yleisradio, the Finnish national
broadcasting company. The architecture design follows the Design Science Research
Process model.
Finally, the renewed system is evaluated using quantitative and qualitative metrics.
The performance of the system is measured using automated API queries and load
tests. The new system was compared to an earlier version based on a PostgreSQL
database. The tests gave slight indication that the renewed system performed better
for complex queries, where a large number of relations were traversed, but worse in
terms of throughput under heavy load. Based on the these findings, a number of
performance-enhancing optimizations to the system are introduced. Observations
and perpectives are also gathered in a project retrospective session.
It is concluded that the resulting architecture holds promise for managing complex
data rich in relations in a safe manner. In it, the different domains of the knowledge
graph are decoupled into distinct named graphs managed by different microservices.

Keywords: microservices, graph databases, knowledge graphs, RDF, SPARQL,
AWS, Amazon Neptune, broadcasting, media

Contents

1 Introduction 1

1.1 Context of the thesis . 2

1.2 Methodology . 2

1.3 Research questions . 4

1.4 Structure of the study . 4

2 Central concepts 7

2.1 Microservice architecture . 7

2.1.1 Definitions . 7

2.1.2 Background . 9

2.1.3 Microservice best practices . 12

2.2 Knowledge graphs . 15

2.2.1 Graph databases . 15

2.2.2 Data formats . 17

2.2.3 SPARQL . 19

2.3 RQ1: Graph databases in microservices 22

3 Case context 24

3.1 APIs at Yle . 24

3.2 Content metadata services . 25

3.2.1 Content Index . 26

i

3.2.2 Meta API . 28

3.2.3 Relations API . 30

3.3 Use cases . 31

4 Migration to graph database 34

4.1 Background . 34

4.2 Technological choices . 36

4.3 Amazon Neptune . 37

4.4 Proof of concept . 38

4.5 Migration process . 43

4.5.1 Phase 1 . 45

4.5.2 Phase 2 . 49

4.5.3 Phase 3 . 52

4.5.4 Phase 4 . 54

4.6 RQ2: A process for migration . 55

5 Evaluation 58

5.1 Performance benchmarks . 58

5.1.1 API response times . 59

5.1.2 Load tests . 62

5.2 Project retrospective . 69

5.2.1 What was the original problem? 71

5.2.2 What was the most important thing you learned? 72

5.2.3 When would you choose a graph database now? 72

5.2.4 Is the project worth continuing? 73

6 Discussion 74

6.1 Fulfillment of requirements . 74

6.2 RQ3: Perspectives to using GDB in microservices 76

6.3 Contributions of the research . 79

7 Conclusion 81

References 83

Appendices

A Code examples A-1

B Retrospective answers B-1

List of Figures

1.1 DSRP process model (adapted from Peffers et al. 2006) 3

2.1 A partial visualization of the concept “cosplay”. 18

3.1 Data model of Content Index . 28

3.2 Content-to-content links as shown in Yle Areena 29

3.3 An example of relation inheritance 32

4.1 Architecture of the Proof of Concept 39

4.2 Framework for Disciplined Evolution of Legacy Systems, applied from

Weiderman et al. (1997) [90] . 45

4.3 Architecture of Phase 1 . 46

4.4 Architecture of Phase 2 . 50

4.5 Architecture of Phase 3 . 53

5.1 Neptune CPU usage under load tests 67

5.2 Responses to the fourth question . 73

B.1 What was the original problem? . B-2

B.2 What was the most important thing you learned? B-2

B.3 When would you choose a graph database now? B-3

iv

List of Tables

1.1 Thesis structure overview . 4

2.1 Microservice best practices . 13

4.1 Migration process phases . 44

5.1 Performance comparison . 60

5.2 Comparison of load test results . 63

5.3 Comparison of load test results, with API v2 (opt) included 66

5.4 Comparison of load test results with API v2 (opt) and Neptune included 68

5.5 Resource details for load test runs . 68

v

List of acronyms

ACID Atomicity, Consistency, Isolation, Durability

Allärs Allmän tesaurus på svenska

API Application Programming Interface

BIDW Business Intelligence Data Warehouse

CD Continuous Deployment

CI Continuous Integration

DevOps Development and Operations

DSL Domain-Specific Language

DSRP Design Science Research Process

ECR Elastic Container Registry

ECS Amazon Elastic Container Service

GDPR General Data Protection Regulation

IAM Identity and Access Management

MSA Microservice Architecture

PoC Proof of Concept

RDF Resource Description Framework

RDS Amazon Relational Database Service

REST Representational State Transfer

ROI Return on investment

RPC Remote Procedure Call

S3 Simple Storage Service

SNA Social Network Analysis

SOAP Simple Object Access Protocol

SOA Service-Oriented Architecture

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SSH Secure Shell

URI Unique Resource Identifier

VPC Virtual Private Cloud

WSDL Web Service Definition Language

Yle Yleisradio

YSO Yleinen suomalainen ontologia

1 Introduction

In computing, ideas radically different from the established approaches sometimes

take a while before bubbling to the surface from being an undercurrent. In recent

years, we have seen the rise of concepts such as functional programming [1], artificial

intelligence [2] and Lisp [3], all of which have long histories but up until now little

relevance for the mainstream of computing. Graph databases are one such concept,

with deep theoretical roots [4], that is experiencing a rise in popularity and practical

applications, after seasons in the margins [5]. Graph databases excel in handling

and querying interconnected, complex and feature-rich data and are optimized for

use cases that require traversing relations between data components [6]. In an

environment where both the ever more increasing volumes of data and the need

to counter the shortcomings of traditional database systems built on the relational

model [6], graph databases are ticking the right boxes for many use cases.

Another trend in application development today is structuring software systems

into atomic, loosely coupled microservices [7]. In an architecture like this, the ser-

vices expose a clearly defined interface, most commonly a REST API, for clients,

while being black boxes implementation-wise. The experienced benefits of microser-

vice approach include scalability, distributed development, modularity and main-

tainability of the system, as the components can be developed, deployed, scaled and

monitored individually [8].

While microservices have become mainstream [9] and interest in graph databases

CHAPTER 1. INTRODUCTION 2

is surging [10], these approaches have seldom been combined. In fact, they are

sometimes perceived as a poor fit, as microservice architecture is organized on the

principles of isolation and modularization, while graph databases emphasize inte-

gration between components, especially when they are used for organizing data into

large, traversable knowledge graphs. Due to these considerations, it is worthwhile to

investigate whether there is a fundamental disconnect between the two approaches

and, if not, how they should be consolidated.

1.1 Context of the thesis

This study examines a software project conducted at Yleisradio, for which the ab-

breviated form Yle is henceforth used, the Finnish national broadcasting company

[11]. In the project, three closely related microservices serving content metadata

were migrated to use a graph database as a data store. In the process, the archi-

tecture of the components, for which the umbrella term Content Metadata Services

is used, was re-structured. It is the aim of this thesis to describe, document and

evaluate this transition and outline possibilities for further developing the resulting

architecture.

1.2 Methodology

In this study, a design science approach is adopted. Philosophically rooted in prag-

matism [12], design science is an approach in information systems research whereby

a purposeful IT artifact is created to address an important organizational problem

[13]. More specifically, the study is organized along the Design Science Research

Process (DSRP) model proposed by Peffers et al. (2006) [14]. Based on a review of

earlier research attempting to identify the common process elements, they identified

six common phases of an information systems design science research process. The

CHAPTER 1. INTRODUCTION 3

Figure 1.1: DSRP process model (adapted from Peffers et al. 2006)

phases are defined as follows:

1. Problem identification and motivation. Problem definition, showing the im-

portance of it.

2. Objectives of a solution. Inferred from the problem statement. What would a

better artefact accomplish?

3. Design and development. Develop the artefact based on the previous stage.

4. Demonstration. Use artefact to solve the problem. Generate metrics and

analysis knowledge.

5. Evaluation. Observe efficiency, iterate back to design if needed.

6. Communication. Communicate the results.

Even though the model encompasses six phases, not every research process has

to proceed linearly from the first to the last but the research can enter the process in

different stages depending on the approach. In this study, a design and development

centered approach is adopted. This approach takes the design and development

of an artefact as the focal point. The preceding phases are touched upon, but

more emphasis is laid to design and development, demonstration and evaluation.

The thesis is the medium by which the results are communicated. The process is

summarized in Figure 1.1.

CHAPTER 1. INTRODUCTION 4

Table 1.1: Thesis structure overview

Chapter Main section DSRP phase Research question

1 Background

2 Background RQ1

3 Case study

4 Case study 1, 2, 3 RQ2

5 Retrospective 4, 5

6 Retrospective 6 RQ3

1.3 Research questions

This thesis addresses the following research questions:

• RQ1 How does using graph database as a persistence layer fit into microservice

architecture best practices?

• RQ2 How can microservices be migrated from a relational database into a

graph database?

• RQ3 What benefits, opportunities and risks does adopting a graph database

provide in a microservice architecture?

The questions will be addressed based on literature (RQ1), the experiences and

artefacts from the migration process of the case (RQ2) and quantitative perfor-

mance metrics, user comments and stakeholder perspectives gathered in a project

postmortem session (RQ3).

1.4 Structure of the study

On a high level, the structure of the thesis can be broken down into three main

sections corresponding to the research questions: background (Chapters 1-2, RQ1),

CHAPTER 1. INTRODUCTION 5

case study (Chapters 3-4, RQ2) and retrospective (Chapters 5-6, RQ3). An overview

of the structure is presented in Table 1.1.

On a more granular level, the thesis consists of the following chapters.

The introductory chapter gives an overview of the topics and problems addressed

is this thesis, as well as providing motivation for the subsequent chapters.

Chapter 2 provides theoretical background for the core concepts of the study, the

most central of which are microservice architecture and knowledge graphs. Concern-

ing the former, definitions of the terms, background for the microservice approach

and its objectives and related risks are touched upon. As to the latter, the theoret-

ical foundations of graph databases are summarized and related standards, formats

and languages are discussed. The ideas behind related concepts such as the Seman-

tic Web and Linked Open Data are also covered in brief. To conclude the first main

part of the thesis, an answer to RQ1 is formulated.

In Chapter 3 focus is shifted to the case study of the thesis. The content metadata

services at Yle are presented along with the technical context they are running in.

The three services central to the topic of this study, Meta API, Relations API

and Content Index are presented. The motivation and objectives of the database

migration as well as the related architectural changes are presented. In terms of the

DSRP model, this chapter covers Phases 1 and 2.

In Chapter 4, the design of and migration to a renewed architecture is discussed.

The process is analyzed in terms of the data model, software architecture and the

process phases. In the DSRP model, this chapter corresponds to Phase 3. An answer

to RQ2 is presented at the end of this chapter.

Chapter 5 is focused on evaluating the renewed system. Architectural viewpoints

are discussed. The benefits, risks, maintainability and extensibility of the revamped

architecture are discussed. The performance of the original and the renewed imple-

mentations are compared. In DSRP terms, this chapter corresponds to Phases 4

CHAPTER 1. INTRODUCTION 6

and 5.

The findings are discussed and RQ3 is answered Chapter 6. The limitations of

the research are discussed and recommendations for future work are presented.

In Chapter 7, conclusions about the project are presented.

2 Central concepts

In this chapter, concepts central to the topic of study are discussed. We first delve

into microservices — what they are, what the rationale behind them is and which

problems they are used to address. Next, graph databases, knowledge graphs, se-

mantic web and related ideas are discussed.

2.1 Microservice architecture

2.1.1 Definitions

Microservice Architecture (MSA) has become a popular approach to building back-

end systems for web services in recent years. Perhaps the most widely accepted

definition defines microservice architecture as “an approach for developing a single

application as a suite of small services, each running in its own process and commu-

nicating with lightweight mechanisms, often as an HTTP API” [15].

As the preceding citation states, the approach is characterized by building a

system using independent atomic constituent parts, which communicate using REST

APIs or message queues. These components are small yet independent, each with

clearly defined roles and responsibilities, forming a modular system [16]. In such a

system, each component can be developed, administered, deployed, versioned and

monitored individually [17]. Since services like this are loosely coupled and the

communication between them is done via clearly defined APIs, they can be developed

CHAPTER 2. CENTRAL CONCEPTS 8

using different technologies. In order to be genuinely independent of each other,

microservices should “own” the data they administer. In other words, according to

microservice best practices, each microservice should have a separate database that

is accessible to the other services solely through the application layer, such as a

REST API [18].

Different breakdowns of the distinctive characteristics of microservice architec-

ture have been presented. Nadareishvili, Mitra, McLarty and Amundsen [19] have

defined three characteristics of a microservice architecture. First, microservice ar-

chitecture is typically implemented for big systems. Although it is difficult to define

exactly what constitutes a big system, breaking a large system down into small com-

ponents is an approach for managing complexity. Conversely, it can be stated that

such an approach probably would not serve a purpose for simple and small systems

with limited functionality. The second characteristic of microservice architecture in

their typology is that it is goal-oriented. This refers to the fact that this kind of ap-

proach is used for a reason, that it is a means to an end — a solution for a problem.

The third aspect in their breakdown is that the constituent parts are replaceable. In

a microservice architecture, it is thus possible to switch independent parts without

the others being affected.

Bogner, Zimmermann and Wagner [20] have defined five principles for microser-

vice architecture, these being Bounded Context, Decentralization, Lightweight Com-

munication, Single System and Technological Heterogenuity. Bounded Context is a

term derived from the Domain-Driven Design, referring to a specific domain where a

interpretation of a concept is valid — or that an application serves. Decentralization,

on the other hand, refers to the decentralized structure of the microservice-based

system, where distinct services operate independent of each other, with no orches-

tration or technological standardization. Parts of the whole are loosely coupled,

communicating via REST or RPC APIs, message queues or other lightweight mes-

CHAPTER 2. CENTRAL CONCEPTS 9

saging protocols, which is here termed Lightweight Communication. This principle

is also often known as smart endpoints and dump pipes [7]. Single System, on the

other hand, refers to the identifiable whole that the components form. Lastly, Tech-

nological Heterogenuity entails that different parts of a microservice architecture

can be implemented using different technologies. This is more a possibility that

microservice architecture offers than an integral feature of its implementations.

2.1.2 Background

What is known as Unix philosophy, as formulated in the Unix Time-sharing System

manual released by the Bell Labs in 1978, is often quoted as the earliest antecedent

to microservice thinking:

1. Make each program do one thing well. To do a new job, build afresh rather

than complicate old programs by adding new features.

2. Expect the output of every program to become the input to another, as yet

unknown, program. Don’t clutter output with extraneous information. Avoid

stringently columnar or binary input formats. Don’t insist on interactive input.

3. Design and build software, even operating systems, to be tried early, ideally

within weeks. Don’t hesitate to throw away the clumsy parts and rebuild them.

4. Use tools in preference to unskilled help to lighten a programming task, even

if you have to detour to build the tools and expect to throw some of them out

after you’ve finished using them. [21]

Indeed, the analogy between Unix command-line applications and microservices

is not as far-fetched as the temporal distance between the dawn of the Unix era and

the current age of cloud computing might suggest. As is often the case in computing,

ideas have lasted longer than implementations. These kind of “maxims”, to use the

original terminology of the Bell Labs manual, are applicable on a high level. They

are about how to think about building software rather than anything as palpable as

CHAPTER 2. CENTRAL CONCEPTS 10

an architectural pattern. As Unix utilities, microservices should have limited scope,

be robust and work predictably, be composable and cheap to spin up and rewrite.

As an architectural style, microservices are seen to have grown out of Service-

Oriented Architecture (SOA). Like microservices, SOA is characterized by the pat-

tern of assembling a complex system out of autonomous components. The SOA

design paradigm is defined on a high level, without consideration to actual implemen-

tations or standards [22]. Despite the general nature of the official definition, SOA

implementations have traditionally shared certain common technological choices,

such as SOAP/WSDL APIs and building the system around a central Enterprise

Service Bus (ESB). It is a question of definition whether microservice architecture

is viewed as a form of SOA pattern or a separate paradigm that has grown out

from it [20][23]. Some consider the term SOA too carelessly used to be useful for

describing microservice architecture, which is understood in a more specific sense

[7]. The relation between these two concepts has sparked a multitude of definitions

and terms. Microservices have been called “fine-grained SOA” and “SOA done right”

among other things [16]. Cockcroft (2016) summarized the idea of microservices as

“loosely coupled Service-Oriented Architecture with bounded contexts”[24].

Some general technological trends can clearly be identified as drivers to the

rising popularity of the microservice approach. The most crucial of these are cloud

computing, container technologies and DevOps.

DevOps is a philosophy and a set of practices intended to bridge the gap between

development and operations. Where these functions have traditionally served by

distinct teams, one developing features for the software and the other managing

it in production, DevOps tries to bring down the proverbial wall separating these

silos [25]. While the concept primarily refers to an approach and not any singular

tools or technologies, using modern tools and cloud-based infrastructure makes this

feasible [26]. Central to the DevOps way is automating testing and provisioning

CHAPTER 2. CENTRAL CONCEPTS 11

software using CI/CD pipelines, as well as automated monitoring and managing

infrastructure as code. Having automated pipelines for provisioning code into cloud

makes it possible to deploy new features continuously without explicit releases.

Container technologies are often utilized in DevOps context [25]. Containers, the

best known and most widely used being Docker, are a common way to package and

run applications in a similar environment in different contexts, such as locally on the

developer’s machine and in the cloud. Containers are an approach to virtualization,

where the applications run in separate environments but share the OS kernel [27].

Compared to virtual machines, containers are lightweight, consume less resources

and can be built, started up and shut down as needed almost instantly [28]. They can

also be organized into clusters and orchestrated using tools like Docker Compose and

Kubernetes. Container environments, such as Docker images, can also be published

and shared using centralized or private registries like Docker Registry or Amazon’s

Elastic Container Registry (ECR). A typical way to deploy microservices, or any

other software for that matter, using DevOps principles is configuring a CI/CD tool

like Travis, CircleCI or Amazon CodeDeploy to build a container whenever new

commits are pushed to version control, run the tests and if they pass and deploy the

artefact into the cloud.

Microservice architecture ties into DevOps also in the way roles and responsi-

bilities are managed. In the microservice way, the responsibility of operating the

service usually lies on the same team, usually a small one, as its development. As

Werner Vogels, then CTO of Netflix, famously stated the principle: You build it, you

run it [29]. With responsibility comes autonomy. In microservices, a distinction can

be made between shared and local capabilities [19]. The former refer to a shared

set of services in a large organization, such as hardware, code management tool,

service orchestration, security-related practices and common architectural policies.

Local capabilities then encompass team-level choices and policies that the autonomy

CHAPTER 2. CENTRAL CONCEPTS 12

mandates. These can be for example different tools and configurations.

While microservices can be technically run on on-premise hardware, they are

considered as a cloud-native architectural pattern [30]. Running microservices on a

cloud platform makes resource allocation and scaling a matter of configuration. In

a cloud environment, services can be scaled horizontally by adding more application

instances. Vertical scaling by allocating more resources like memory and CPU as

needed, is likewise possible.

2.1.3 Microservice best practices

As the idea and practice of using microservices is not based on a single authori-

tative set of rules but rather a multitude of somewhat different interpretations of

the concept, no single official set of best practices for microservices has been com-

piled. Instead, many such listing have been published, with more or less overlapping

suggestions. For this discussion, a yet new list has been compiled, combining and

synthesizing ideas from different sources, [7] [8] [19] [18] [23] some of which are based

on a literature review or industry survey themselves [17] [31] [32]. The points listed

in Table 2.1 can be categorized under a few common themes: APIs, data, design,

communication and operation.

On the topic of APIs, there is a consensus on that an API gateway should mediate

traffic to microservices [8] [19] [18]. It is responsible for routing requests to different

services, API composition and services like authentication. As these responsibilities

are delegated to the gateway, the services can operate in protocols that would not

be practical for internet access. The API gateway also determines the contract to

the clients. Developers are free to alter the API of their service, as long as the

API gateway is updated accordingly. According to the literature, customer-facing

APIs should also be versioned and the old versions should stay usable to maintain

backwards compatibility [8].

CHAPTER 2. CENTRAL CONCEPTS 13

Table 2.1: Microservice best practices

Name Description Source

API Gateway Helps with monitoring and API updates [8] [32] [17] [19] [18]

API Versioning Backwards compatibility [8] [31] [18]

Data Ownership Data is owned by a single service [17] [31] [18]

Database Cluster Database cluster with distinct schemas [17]

Decentralized Data Management Each service has its own database [17] [7] [18]

Design for Failure Circuit breaker, safeguards [7] [8] [17] [32] [19] [18]

Evolutionary Design Changing the design as needed [7] [18] [23]

Infrastructure Automation DevOps approach, automatic deployment [7] [18] [23] [19] [17] [32]

Limited Scope No micro-monoliths, maintainability [31] [19] [18]

Loose Coupling No ESB, no sharing custom libraries [31] [19] [23] [18] [17] [32]

between services

Organized around Capabilities over organizational structure [7] [19] [31] [18] [23]

Business Capabilities

Service Registry Discoverability [17] [18] [19] [18]

Team Operates Same team is responsible for building and operating [18]

Service Independence Maintainability, individual deployment [8] [18] [31] [19] [17]

Smart Endpoints, Dumb Pipes Communication via APIs and MQ’s [7] [8] [18] [19] [17] [32]

CHAPTER 2. CENTRAL CONCEPTS 14

Concerning data, a widely held principle is that each microservice should control

and “own” their data. In practice, this is usually taken to mean that each service

should have its own database instance, which should only be accessible to other

services through the application layer. However, there are alternative approaches

too. One such approach is the “Database Cluster” pattern, which entails that each

service stores its data into a shared database cluster or even a shared database

[17]. In such a scenario, a comparative degree of data hygiene is achieved by using

different database schemas for different services and allowing each service to only

touch data stored in its own schema.

As to design, best practices as defined here state that microservices should have

as limited scope as is feasible and be structured around business capabilities [19].

The same team should be responsible for building and operating the services. The

teams should be cross-functional, encompassing people with diverse skill profiles.

The services should evolve alongside business needs and their design should be evo-

lutionary, not locked.

Communication between the services should be done via APIs, message queues

and similar protocols. Also, sharing custom libraries between services is discouraged

to avoid coupling the services together this way. A service registry of some kind is

necessary for keeping track of the available services and making them discoverable

[17] [18].

Finally, as to operations, state-of-the-art tools should be utilized for detecting

anomalies. What is termed here as the Circuit Breaker pattern means setting up

comprehensive logging, monitoring and alerts for services so that problematic situa-

tions in production can be detected as they occur and necessary measures can taken

without delay.

CHAPTER 2. CENTRAL CONCEPTS 15

2.2 Knowledge graphs

2.2.1 Graph databases

Graph databases are systems where the data is modelled as graphs — that is, as

nodes and edges connecting them [33]. In a graph model, nodes describe entities

and edges the relations between them. In a graph database context, both nodes and

edges have labels describing their content. Labels can convey information about the

entity set as well as the relation [34]. The labels are also known as properties and

this kind of graphs as property graphs. The theoretical basis for this is derived from

graph theory, a field of mathematics specializing in the study of graphs.

A graph can be defined formally as follows. A graph is a pair (V,E), where V is

a set of nodes and E a set of edges connecting the nodes. In the case of a directed

graph or digraph the set E is ordered. In other words, the pair (u, v) describes an

edge from u to v, but if the path can be traversed the other way as well, the set E

contains also the edge (v, u) [4].

A labeled graph can be defined as a tuple

G = (V,E,Σ, λ) (2.1)

where V is a set of nodes, E ⊆ V × V a set of edges connecting them, Σ a set of

labels and λ : V ∪ E → Σ a function mapping the labels to nodes or edges [34].

In mathematical terms, a graph database is a set of directed labeled graphs. In

technical terms, it is a software system comprised of two main layers: the underlying

storage and the processing engine [33]. The first of these is responsible for persisting

the data, either using a native graph storage or serializing it in a format accepted

by a relational or document database. The latter accepts inputs from the user and

performs them on the storage layer, returning results defined in the operations.

Unlike relational databases, graph databases are schemaless. This means that

the structure of the graph does not need to conform to a predefined structure. Con-

CHAPTER 2. CENTRAL CONCEPTS 16

straints are also typically not enforced, although there are tools and specifications

for this in existence [35]. Also, where knowing the table structure of a relational

database is necessary for performing queries on it, this is not the case for graph

databases — knowing the types of relations inside a graph database is sufficient.

The data models in graph databases are also often open for extension. In relational

databases, altering a database structure calls for a migration but in graph databases

this can be simply a matter of adding new relations. This is not to say that design-

ing a data model is any less necessary in graph database context than it is in the

relational world. The data of a graph database can be structured as one big graph

or a set of distinct graphs [36].

Graph databases and formatting data as a graph are a natural fit for cases

where the data is rich with connections. Typical examples are different kinds of

social structures, recommendations, geospatial data, Master Data Management and

network and data center management [33]. Sometimes, the interesting thing is

understanding how a dataset is structured. One example of such a use case is social

network analysis (SNA), a popular research paradigm in the social sciences, where

graph theory and graph databases are valuable tools [37]. A graph-based approach

is also useful for cases where the data is not only densely connected but also dynamic

or unevenly structured [37]. Shortly put, graph databases are a good fit for use cases

where the data is structured as a graph or a web.

Graph databases are optimized for graph-like queries, such as finding a shortest

path between two nodes. In relational databases, operations like this can be com-

putationally expensive, requiring multiple joins between tables [38], where in graph

databases, relations are first-class citizens. In other words, in relational databases

the relations between tables are computed as the queries are executed, while in graph

databases relations are stored along with the other entities [39]. The efficiency by

which graph databases can process relations is in most cases based on a concept of

CHAPTER 2. CENTRAL CONCEPTS 17

index-free adjancency, at least in the cases where a native graph storage is used for

persisting the data [36]. This means that the nodes stored on disk have physical

pointers to their adjacent nodes and relations, which is why queries on the data

are efficient without using indexes. However, methods for indexing RDF data for

efficient queries have been developed [40] and are used in commercial products as

well [41].

Knowledge graph is a concept that is closely related to graph data models. The

term refers to a rich collection of information, modelled semantically in to a graph

and arbitrarily queryable, intended to be used by humans. A definition formulated

by Ehrlinger & Wöß (2016) reads as follows:

A knowledge graph acquires and integrates information into an ontology and

applies a reasoner to derive new knowledge. [42]

This definition identifies two components to a knowledge graph; an ontology and

a reasoner. An ontology, in the sense used in information sciences, is an “explicit

specification of conceptualization” [43] [44] or, less formally, “a representational vo-

cabulary for a shared domain of discourse - definitions of classes, relations, functions

and objects” [43]. A reasoner or a reasoning engine, on the other hand, is a system

that allows deriving new knowledge from the ontology — a database or a query

engine [44]. In this definition, what differentiates a knowledge graph from a collec-

tion of data — an ontology — is the reasoner component. Following this definition,

a graph database management system and the data stored into it qualifies as a

knowledge graph.

2.2.2 Data formats

Data that is organized as a graph can be expressed in various different formats. For

the present discussion, the most important of these is RDF or Resource Description

Framework. It is a data model, or strictly speaking a family of specifications, by the

CHAPTER 2. CENTRAL CONCEPTS 18

Figure 2.1: A partial visualization of the concept “cosplay”.

Word Wide Web Consortium (W3C). The first version of the RDF specification was

published in 1999 [45], version 1.0 in 2004 and 1.1, which is the latest edition, in

2014 [46]. RDF, as well as many related technologies such as the SPARQL language

and the idea of Linked Data [47], were originally developed with the vision of Se-

mantic Web in mind [48]. Semantic Web was conceptualized as a global, distributed

RDF-base data graph [49] [48]. Although the Semantic Web has failed to materialize

in the degree it was originally envisaged, technologies pertaining to it have found

more specialized use cases.

RDF is a data model that is based on making statements about resources. These

statements are expressed as triples consisting of subject, predicate and object. In

RDF terms, subject is a resource identified with a global unique persistent identifier,

a URI. The predicate defines a property for the subject. In a graph comprised of

RDF triples, the properties correspond to labels. Compared to tables in relational

databases, predicates correspond semantically to table attributes [50]. The object

can be defined in different ways, for example as a URI or a literal such as an integer

or a string, much like the values in rows of SQL tables. Consequently, converting

RDF data to relational format and back is feasible [51]. A simple example illustrates

how RDF triples work.

The example comes from the General Finnish Ontology YSO [52]. The code, in

Turtle format, is found as Appendix A. Its subject is the concept “cosplay”, denoted

by the URI yso:p20742, a short form for http://www.yso.fi/onto/yso/p20742. In

Figure 2.1, six properties have been defined for it. The skos:prefLabel predicates

CHAPTER 2. CENTRAL CONCEPTS 19

state that the concept is known as “cosplay” in Finnish and Swedish as it is in

English. The skos:altLabel property denotes that the concept is also known by

the alternative term “pukuilu” in the Finnish language. An hierarchical relation

to another concept is defined using the skos:broader predicate. This states that

“cosplay” is subcategory to the concept performing (artistic creation). Finally, the

skos:exactMatch predicate forms what is known as a “bridge” between two ontologies,

denoting that the concept refers to exactly the same thing as the term “cosplay” in

Allärs, the deprecated Finnish Swedish-language thesaurus.

The relations defined via RDF predicates are not transitive. In other words,

data structures expressed as RDF data are directed graphs. Although some types

of relations are implicitly transitive, such as skos:exactMatch in the example, these

kind of relations should be expressed explicitly in both directions.

RDF is a conceptual data model for representing graph data. To put it into

practical use, the data needs to be serialized using a file format designed for it.

Most popular options for this are RDF/XML, Turtle and JSON-LD. RDF/XML

was a popular option in the early years of RDF but has been losing ground in recent

years due to its verbosity, repetitiveness and being laborious to edit by hand. Turtle

[53] stands for Terse RDF Triple Language. As is apparent from its etymology, the

Turtle format was designed by W3C to curtail the problems of RDF/XML by being

terse and readable for humans as well as for machines. JSON-LD [54] is an acronym

from JavaScript Object Notation for Linked Data and it is yet another data format

specification from W3C. JSON-LD is a way to encode RDF data using the popular

and well-known JSON format.

2.2.3 SPARQL

Where the SQL language is the de facto standard for interacting with relational

databases, it is not suited to be used with graph databases [33]. Because of this,

CHAPTER 2. CENTRAL CONCEPTS 20

graph databases are sometimes classified as belonging to the NoSQL category of

databases. For graph databases, there is no single query language over others but

modern graph database management systems typically support multiple query lan-

guages. Arguably the best known are SPARQL, Gremlin and Cypher, the first of

which is examined here in more detail.

SPARQL, which is a recursive acronym for SPARQL Protocol and RDF Query

Language, is a query language for RDF data developed by the World Wide Web

Consortium in 2008 [55]. The latest version of the language (1.1) was published in

2013. As the name implies, SPARQL is based on SQL. SPARQL queries are based

on pattern matching against the triples forming the graph, but the language also

provides operations for ordering, filtering and other ways of manipulating the result

sets.

The structure of a SPARQL query can be broken down into different parts. A

PREFIX phase starts the query. Here, aliases are defined for the URI identifiers used

in the query, so that they do not have to be repeated inside the body of the query.

This is followed by the query body, which consists of three phases: pattern matching,

solution modifiers and output. More generally, the query is of the form H ← B,

where B is the body of the query, an RDF pattern expression potentially containing

variables, conjunctions, disjunctions and optional parts, and H the head of the

query, containing an expression that defines how the results should be formulated.

As the query Q is evaluated against data D, the operation is done in two steps.

First, the body of Q is matched against D to get a set of bindings, which are then

formulated according to the instructions in the head of Q, using operators largely

familiar from SQL [56].

Code Snippet 1 demonstrates a SPARQL query to obtain the total amount of

programs from a data graph. In the first rows, two prefixes are declared. The

first, rdf, is a reference to the RDF definition of the W3C and is included in almost

CHAPTER 2. CENTRAL CONCEPTS 21

Code snippet 1 Retrieving the total number of programs in a graph
{sparql}

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX yleid: <http://id.yle.fi/>

SELECT (COUNT(?s) as ?count)

WHERE {

GRAPH <http://content-index.yle.fi/>

{

{

?s rdf:type yle:ProgramEditorialObject .

}

}

}

all SPARQL queries. The other one identifies a namespace internal to Yle. The

SELECT -part, or the head H of the query, determines the required format of the

results. Here, the amount of instances of the variable ?s are computed using the

function COUNT and the result is bound to a new variable ?count. The pattern

matching phase, the body B, is defined inside a WHERE block. The operator

GRAPH is used to point the query to the graph <http://content-index.yle.fi/> in

the database. This is followed by the pattern matching, where each triple with the

relation rdf:type defined for the object yle:ProgramEditorialObject is fetched, their

subject is bound to the variable ?s and returned. The dot at the end of the row is

a statement terminator.

CHAPTER 2. CENTRAL CONCEPTS 22

2.3 RQ1: Graph databases in microservices

Based on the preceding discussion, a synthesis between microservice architecture

and knowledge graph -based approach can be attempted. In Section 1.3, RQ1 was

formulated as How does using knowledge graph as a persistence layer fit into mi-

croservice architecture best practices?

Organizing applications based on microservice principles and organizing data

into a knowledge graph can be seen as contrasting forces. Where microservice ar-

chitecture stresses modularization and hygienic decoupling of services, knowledge

graphs favour integration of data into a large interconnected structure. However,

the two paradigms address different concerns — a knowledge graph is an approach

and technical solution to organizing data, whereas microservice architecture is a

paradigm for structuring, designing and operating software. It is in the intersection

of these two worlds where they can be seen to be in conflict. A common princi-

ple in microservice architecture is to isolate the persistence layers of the individual

services by assigning an own database for each microservice. A microservice appli-

cation should own the data it manages, and the said data should only be accessible

to other services or clients through the application layer [18]. Storing the data of

multiple microservices into a single graph database seems to violate this pattern.

One approach to curtail this issue would be to follow this design principle strictly,

and to assign each microservice a graph database of it own. However, the downside

to this would be that performing queries combining data from different services

would require multiple API calls and come with a possibly significant performance

penalty imposed by the network latency. While this is feasible and it would be in line

with the way microservices usually interact, some of the potential benefits of using a

graph database is lost. Another approach more suitable to a graph database context

is applying what is known as the Database Cluster pattern, where the services share

a database but keep their data separate within it. In such a scenario, it is important

CHAPTER 2. CENTRAL CONCEPTS 23

to set up the database in a way that prevents the services accidentally messing each

other’s data. Graphs databases supporting the RDF or property graph specifications

allow creating multiple named graphs inside a single database instance [57]. Here, a

named graph is conceptually similar to a named schema in relational databases like

PostgreSQL. If an architecture is designed in a way that only allows the microservice

to modify data in the graph it owns, a reasonable degree of data hygiene is achieved.

This can be considered as a variation of the database cluster pattern recognized in

the microservice patterns overview.

The answer to RQ1 can be formulated as follows: using a graph database as a

persistence layer fits well to into microservice architecture best practices when (1)

the data owned by the services is structured into different graphs and (2) measures

are taken to ensure that the services can only modify data in the graph they own.

3 Case context

In this chapter, focus is laid on the context of the case study. Before the case is

delved into, the technical and business context are succintly presented. To conclude,

a motivation for the architecture renewal and database migration are discussed.

3.1 APIs at Yle

The systems architecture at Yle is comprised of dozens of microservices. While some

of the internally developed systems are structured as monoliths, such as news site

backends based on Drupal and other content management systems, many customer-

facing applications like the streaming service Yle Areena and the mobile applications,

such as the Uutisvahti news app, fetch their content and the related metadata from

a fleet of microservices. These services are hosted in Amazon Web Services and

written mostly in the Clojure and Python programming languages, along with some

Scala [58]. Yle was an early adopter of this architectural style, having organized its

backends as microservices since the year 2014 [59].

For a broadcasting company, microservice architecture can have multiple upsides.

For instance, Yle Areena, the most popular streaming service in the country [60], is

available to users through the Web [61] and via applications for different platforms,

such as Android, iOS, iPadOS and all major Smart TV brands. The backend to

these systems is a constellation of microservices that each of the different clients

can use to search and stream video and audio content and related metadata [62].

CHAPTER 3. CASE CONTEXT 25

Some of the APIs are also open for public, which makes it possible to develop

third-party clients [63] within the limits of API terms of service [64]. Another

palpable benefit of using a microservice architecture hosted in the cloud is being

able to cope with traffic spikes. Certain events, such as broadcast of the President’s

Independence Day Ball, election results broadcasts, the Eurovision Song Contest

and major sports events with Finnish athletes participating, generate huge amounts

of traffic to Yle’s services [62]. During these peaks, the amount of data transmitted

can exceed 800 gigabytes per second [65] [66]. To cope with such loads, the relevant

services can be temporarily scaled up horizontally and vertically. For major events

on TV, this is made easier by the fact that the upsurges of traffic are expected. For

unexpected events like breaking news, which also generate traffic spikes to news sites,

microservice architecture and related mechanisms are also valuable as monitoring

helps notice the spikes quickly and auto-scaling can be enabled for crucial services

[62].

Microservices architecture is also easier to extend than monoliths. For example,

as more interactive elements are included in broadcast concepts, like chats, voting

or gathering other kinds of real-time consumer feedback, the related applications

can be developed and deployed separately, and used via APIs from all the different

clients [65]. Another benefit achieved at Yle by using microservices is the loose

coupling of legacy systems, for example those used for publication planning and

managing content, from client applications [62]. The legacy systems need only to

be integrated into a mediating microservice application, through which the clients

can then use the underlying system indirectly.

3.2 Content metadata services

Three closely related microservices were involved in the graph database transition.

Since each of these services processes metadata related to content, whether the

CHAPTER 3. CASE CONTEXT 26

content is video, audio or text articles, they are referred to using an umbrella term

Content Metadata Services in this thesis. In the following subchapters, the roles of

each of these services are briefly described. All of them are developed using similar

technologies. They are written in Clojure, deployed as Docker containers into the

Amazon Elastic Container Service (ECS) and their data is persisted into Amazon

RDS PostgreSQL databases. All of the services also publish the changes in their

data as change messages to a RabbitMQ message queue. Consumer applications

inside the same network can listen to these messages and react accordingly.

3.2.1 Content Index

Content Index is a service that tracks relations between content IDs. It reads in

operational data related to production planning and outsourcing from a Business

Intelligence Data Warehouse (BIDW) service, as a daily data dump, and consumes

RabbitMQ change messages from Program Store and Articles API. As the names of

these services hint, Program Store stores and publishes information about TV and

radio programs, their publication times and other related metadata. Articles API

deals with similar metadata related to news articles originating from the different

content management systems. The role of Content Index is to bridge the gap between

operational data and content metadata by analyzing the relationships between these

different IDs, using various heuristics, and to publish these relationships through its

API.

Figure 3.1 shows the different ID types and their interrelations in Content Index.

The lowest-level entity in the diagram is the program, a single program or clip

that end users can consume through the various client applications. Oftentimes,

a program belongs to a season or series, or both. A series can contain multiple

seasons, or none. Seasons and series in turn belong to a product. In this context, a

product is an operational concept that refers to an artefact produced in the scope of

CHAPTER 3. CASE CONTEXT 27

a project. An example of a product could be for example Docventures 2020 — all the

different episodes, articles, podcasts, clips and other content related to a production

done in a year. Products can be grouped into product families. An example of a

product family would the children’s program Pikku Kakkonen [67], which has been

running for decades and is comprised of a website, articles and other related content

besides thousands of video episodes. A product family groups all these different

artefacts from different years together. A project is the process wherein a product

is produced. Finally, each project has a cost center, which is the most high-level

concept in this hierarchy. Besides the audio-visual content, Content Index also keeps

track of text articles, each of which has a cost center.

As is apparent from the diagram, the IDs do not form a clean hierarchy. It is

made even messier by the fact that the cardinality of most of the relations is of type

N:M. However, there exists a “default path” of 1:N relations from a program all the

way to a cost center, which can be traversed upwards and downwards, depending

on the starting point. In Figure 3.1 this path is bolded. The most common use

case of Content Index is requesting the ancestors or descendants of an identifier.

Queries of the type ancestors typically return only one instance of each ID type

above the queried ID in the hierarchy, whereas descendants-queries branch out on

each level. The extreme case is ancestors-query for a cost center, which can have

tens of thousands of related IDs — such as for the cost center of news broadcasts.

Technically, traversing the data model and retrieving all the different related IDs

requires multiple computationally expensive joins between tables. The appendix

contains an example query and its result from Content Index as the Snippet 6.

Unlike the other two Content Metadata Services, Content Index is a service that

is only available for internal use within the company. This is due to the fact that

while it only serves ID hierarchies, some of the data it processes is sensitive. The

data of Content Index that has other than internal use cases is also available through

CHAPTER 3. CASE CONTEXT 28

Figure 3.1: Data model of Content Index

other channels, such as the public Programs API [68].

3.2.2 Meta API

Meta API, the name being short for metadata, is a service for managing and query-

ing concepts and — for historical reasons — content-to-content-relations. The con-

cepts in Meta API are used in descriptive metadata about content, such as subject

headings describing the content, style, atmosphere or other qualities of an article,

program, series or other entities. However, Meta API only stores information about

what concepts are available for the annotations along with some metadata about

them, while the information concerning what concepts are related to which content

is maintained in another service, the Relations API. When these concepts are used

in subject indexing, they are referred to using the ID of the concept, while the data

CHAPTER 3. CASE CONTEXT 29

Figure 3.2: Content-to-content links as shown in Yle Areena

related to the concept, such as the textual title in different languages, are fetched

separately from Meta API.

While the data of Content Index is updated programmatically as reaction to

changes in the master data it reads in, the data in Meta API is curated both manually

and automatically. The common way to add concepts in its database is via different

content management systems as an article or some other content is published. In

this case, the user searches for concepts in remote sources, such as Wikidata [69]

or Finto [70], saving suitable concepts into Meta API. Concepts can also be added,

searched and edited using a web-based GUI simply known as Concept Editor.

Meta API was originally responsible for storing both concepts and their rela-

tions to content items, but it was later broken down into two distinct applications.

Relations between content and concepts were moved into Relations API, while the

concepts were managed in Meta API. Counter-intuitive as it may seem, one type of

relations was not moved out from Meta API, namely content-to-content-relations. In

practice, this means relations from articles to programs. These links are created by

journalists when publishing articles. If a video or audio program has relevance to an

article, these are linked and the relation is stored in Meta API. Figure 3.2 illustrates

the practice by an example from the Yle Areena streaming service, where articles

related to the TV series Babylon Berlin are linked to a making-of -documentary

about the show.

CHAPTER 3. CASE CONTEXT 30

3.2.3 Relations API

Relations API stores relations between concept and content IDs. The data model

of Relations API is the simplest of the three Content Metadata Services, as it stores

only relations between IDs. For each relation, Relations API stores the ID of the

relation, the IDs of the source and target, the ID of system that has created the

relation and the type of the relation. Currently there are eight relation types: isSub-

jectOf, isGenreOf, isPersonOfInterestOf, isAtmosphereOf, isRelatedEventOf, isTar-

getAudienceOf, isEditorialSectionOf and isCountryOfOriginOf. From these labels

it is apparent that the relations from concepts to content can be both descriptive

and structural metadata [71].

The relations stored in Relations API are created both manually and automati-

cally. For creating relations — or giving subject headings to different content items

— manually, a tool named Tagger exists. It is a browser widget written in Clo-

jureScript that can be embedded in browser UIs of different systems. It allows the

user query concepts from Meta API and associate them to content IDs, saving the

relations to Relations API. Using Tagger, programs and other content can be tagged

with subject headings in different phases of its life cycle, inside different systems.

This can also be done directly using the different content management systems used

for publishing articles.

Besides manual subject indexing, the journalists have a tool for automated sub-

ject indexing at their disposal as well. This application, Text Analysis API, a service

integrated to various content management systems for publishing articles. It scans

the text to publish and suggests subject headings describing the content, from which

the journalist can then pick the most suitable ones. The suggested keywords origi-

nate from a third-party service using a proprietary ontology, although open source

CHAPTER 3. CASE CONTEXT 31

alternatives are being tested as well [72].

An example query in Snippet 7 illustrates how Relations API can be used. In

the example, the queried ID 1-2155797 refers to the TV series Il commissario Mon-

talbano. The result set contains four relations that point to the series. The relation

52-47016285 is of type isCountryOfOriginOf and points to the ID 18-177017. A

query from Meta API reveals that this ID refers to Italy. The three isGenreOf re-

lations tell that the series is — yes — a series (18-299297), a thriller (18-299306),

the third genre being crime (18-299286).

It is apparent from the example that the data model of Relations API has been

designed from the get go to emulate the statement triples of RDF. As was noted

in Section 2.2.2, RDF statements follow the subject-predicate-object pattern. In

Relations API, the subject is an identifier, the predicate a relation type and the

object another ID.

3.3 Use cases

The three Content Metadata Services are functionally tightly interlocked. For an-

notating content with concepts, all three services are needed. In this domain, Meta

API and Relations API are used for associating concepts to content, and Content

Index for keyword inheritance. Using Content Index, it is possible to annotate the

parts high in the ID hierarchy as depicted in Figure 3.1 with subject headings that

the lower-level items inherit. This way, keywords shared by all low-level entities

can be set to their parent entity instead of being repeated for, for example, every

episode of a series. In the previous example with Snippet 7, the keywords for the TV

series “Il commissario Montalbano” were set on series level, which means that they

are inherited by each episode. Besides the shared keywords, the episodes can be

annotated with keywords of their own, usually specifying the content of the episode

in more detail.

CHAPTER 3. CASE CONTEXT 32

Figure 3.3: An example of relation inheritance

Figure 3.3 illustrates how a program inherits relations from above. The program

in question is the first episode in the travel show Ray Winstone’s Sicily [73]. The

keywords associated to it are all set on the higher rungs of the ID hierarchy. The

product level has concepts series, travel, lifestyle, fact and Sicily. The series level has

the concept Great Britain with the relation isCountryOfOriginOf, along with some

other subject headings that are redacted from the illustration to make it readable.

All of these relations are shown for the individual episodes, which in this case do

not have concepts related directly to them. This functionality is made possible by

interaction of the three Content Metadata Systems: Relations API calls Content

Index to get the hierarchy related to an identifier, which can then be used for

showing the inherited relations either through its API or in its changes messages,

which clients such as Packages API can consume.

Besides subject indexing, Content Index has a number of other use cases as well.

Perhaps the most significant of these is its use by the customer analytics team at

CHAPTER 3. CASE CONTEXT 33

Yle. The PostgresSQL database of Content Index contains a materialized view over

the ID hierarchies, which analysts can access directly using the Tableau Business

Intelligence software. This way, Content Index can be added to the list of data

sources used for analytics and its data can be combined with other metrics. This

makes it possible to aggregate usage metrics on a higher level than individual items

or series. For instance, with this setup it is relatively straightforward to generate a

view collecting the all the metrics related to a operational level entity, like product

or a project. Combined with financial numbers related to a production, this makes

it possible to calculate return on investment (ROI) which can in turn be used in

planning future productions. The usage metrics can also be compared and visualized

on a higher level than a mere series or season.

4 Migration to graph database

In this chapter, the case of the study is described. Systems architecture at the differ-

ent phases of the migration project, data flows, data models along with the reasoning

behind choices are discussed. To conclude, an answer to RQ2 is formulated.

4.1 Background

While the original implementation of the Content Metadata Services satisfied the

functional requirements set to them, some of the non-functional attributes, such as

the architecture and division of labor, had their drawbacks. Due to the strict sepa-

ration of concerns between the services on the one hand, and to the tight interlock

between them on the other, the system they form was considered to be complex [74].

Due to the original design, even a simple task such as associating a subject heading

to an article requires at least five HTTP calls to the APIs of the three microservices

[75]. The situation was not ideal from the users’ point of view, due to the excessive

amount of calls and the resulting added latency, and it was relatively difficult to

maintain. As noted in Chapter 2, the idea of a microservice architecture is to break

the services down into as small components as possible for enabling the necessary

functionality, but it can be argued that the fragmentation was taken too far in the

case of the three Content Metadata Services. This is more due to historical reasons

and the incremental nature of adding functionality than to conscious design. As

noted in the discussion about microservice best practices in Section 2.1.3, an evolu-

CHAPTER 4. MIGRATION TO GRAPH DATABASE 35

tionary design and scoping of the services is by itself a typical modus operandi when

developing microservices. However, in the case of long-living applications, a larger

re-structuring is sometimes in order.

The latest of the three Content Metadata Services, Content Index, was imple-

mented, first as a pilot project, during the latter half of the year 2019. The scope of

the pilot phase of the project included testing out a graph database for the use case.

This was due to the interest at the organization towards graph database technologies

and the possibilities their adoption in suitable contexts could provide. Because of

this, a Proof of Concept for an implementation on top of a graph database was cre-

ated for the Content Metadata Services along with the implementation of Content

Index, even though the original persistence solution was a traditional SQL database.

One key reason why the Content Metadata Services were selected for testing the

graph database was, beside the aforementioned architectural factors, the structure

of the data they manage. The content metadata in the three different services forms

a logical whole, ergo it could be organized into a single data structure. The data

also seemed to fit a graph representation due to its inherent structure [76]. Graph

databases are all about explicitly encoded relationships between entities, which is

exactly what Relations API and Content Index provide to their clients, whilst Meta

API manages the entities themselves. Providing analysts with access to a SPARQL

endpoint to this data could also enable interesting, unforeseen uses.

Before testing the graph database in practice, there were ideas about new func-

tionalities the new implementation could enable. One idea present in the discussions

was re-structuring the currently flat structure of the concepts used as subject head-

ings into an hierarchical ontology [74]. This would enable making the subject head-

ing searches and tagging more semantic, for example by returning articles tagged

with a hyponym, or a more specific concept, of the search term used in a query. All

in all, structuring different sets of data into a graph database and building services

CHAPTER 4. MIGRATION TO GRAPH DATABASE 36

around it was seen as an exciting prospect with a lot of potential for intelligent

services.

To formulate the motivation for the graph database migration in terms of the

DSRP model as summarized in Figure 1.1, the two first definitions can be expressed

as follows.

1. Problem identification and motivation. The structure of the current Con-

tent Metadata Services is too fragmented, HTTP call chains are unnecessarily

long and data maintenance is unwieldy.

2. Objectives of a solution. The new implementation should be simpler and

work with less requests. In the future, the potential of the graph database

could be utilized more fully, for example by forming ontologizing the concepts

currently stored in Meta API [74]. The solution should also be more perfor-

mant for complex queries.

4.2 Technological choices

The most crucial choice to make in the scope of the experiment was choosing the

graph database management system to test. Multiple alternatives are available in

the market, the current market leader being Neo4j [77], an open-source solution [78]

based on the Property Graph data model [37]. Many public cloud providers have

also started to include a proprietary graph database solution in their services [77].

Since Neo4j had been tested before in an unsuccessful project, the team wanted

to try out something different. Since practically all of Yle’s microservices are hosted

in Amazon Web Services [66], the recent graph database solution offered by Ama-

zon, called Neptune, seemed worth looking into. Using a graph database hosted and

managed as part of the AWS services seemed to offer perks in terms of integration

to the existing cloud infrastructure, by means of for example Identity Access Man-

CHAPTER 4. MIGRATION TO GRAPH DATABASE 37

agement (IAM) and backups. Due to these considerations, a decision was made to

test Neptune in the project.

As Neptune supports both the RDF data model with SPARQL query language

and the property graph model with the Apache TinkerPop Gremlin language [79],

but not both simultaneously, another choice needed to be made with regards to the

data format. Since the team had a passing familiarity with RDF and SPARQL but

none with Property Graph or Gremlin, RDF was chosen as the data model and

consequently SPARQL as the language for interacting with the database system.

4.3 Amazon Neptune

Amazon Neptune is a recent, hosted graph database supporting open source data

specifications[79]. Neptune appears to have been built upon a well-known open

source project BlazeGraph [80], which is used by for example WikiData and is thus

thoroughly battle-tested, although there has been no official confirmation about this

[81].

According to Amazon, Neptune supports queries on “billions of relationships with

millisecond latency” [82]. In production cases, Neptune has been used on massive

scale with up to 300 reads and 1000 writes per second [83]. As a hosted service,

data backups are managed automatically. The documentation states that Neptune

maintains six copies of data spread across three availability zones to minimize pos-

sibilities for data loss [84]. Query processing in Neptune is ACID compliant with

strong consistency [82]. In a recent report comparing the available graph data plat-

forms, Neptune was ranked second, right behind Neo4J [77]. To cope with high

loads, a Neptune cluster can be scaled horizontally by adding up to 15 read replicas

[79].

In Neptune, data is modelled as quads, four-position elements comprised of the

subject, predicate and object familiar from RDF, plus a fourth element, the graph

CHAPTER 4. MIGRATION TO GRAPH DATABASE 38

[41]. Each stored triple is thus associated with a graph, either a named graph,

identified by a URI in RDF, or the default graph, the union of all named graphs [85].

4.4 Proof of concept

To make an informed decision about whether a migration to Neptune was feasible,

a test phase was conducted as a proof of concept. The scope of the pilot was

limited: to create a Neptune cluster for testing purposes, to import a subset of the

data from the Content Metadata Services as RDF triples into the Neptune instance

and replicate the common queries needed to implement the APIs of the Content

Metadata Services in SPARQL format. It was not in the scope of the Proof of

Concept to implement any API on top of the Neptune instance, or any automated

data processing for that matter, but to manually test out Neptune with real data.

The architecture of the Proof of Concept is summarized in Figure 4.1. Imple-

menting it was done in the following steps. First, a Neptune cluster and an Amazon

S3 bucket were created. Second, database dumps were taken of the RDS databases

of the three Content Metadata Services. These data sets were then converted into

the N-Triple format, which is a serialization format for RDF data [86], and uploaded

into the S3 bucket. Finally, the data was imported from S3 to the Neptune instance

using the Neptune Bulk Loader functionality [87]. At this point, SPARQL queries

could be performed on the data using the SPARQL endpoint of the Neptune cluster.

Case 1: Concepts and hierarchy

From the testing conducted during the Proof of Concept -phase, four use cases

were identified where an implementation based on Neptune could bring benefits in

comparison to the original architecture. The first of these was colloquially referred

CHAPTER 4. MIGRATION TO GRAPH DATABASE 39

Figure 4.1: Architecture of the Proof of Concept

to as concepts and hierarchy [75]. This means, in a nutshell, the way queries are

simplified when all the interlinked data of the three Content Metadata Services live

in a same graph database.

To illustrate, would the user want to retrieve all Finnish subject headings asso-

ciated with a program, for example the film Dances with the Wolves, the first step

would be to do a query to Relations API for all relations for the said ID (1-50203154).

This will yield five relations to concept ID’s, the Finnish titles of which have to be

queried separately from Meta API. In total, six API calls would thus be needed.

Using the graph database containing all the content metadata, a single query would

suffice. The example in Snippet 2 illustrates how this looks like in SPARQL. In the

example, the preliminary data model used in the Proof of Concept is used.

Case 2: Concept merge and relations

The second case tried in the Proof of Concept was called concept merge and rela-

tions. A relatively commonplace operation related to managing the concept data is

CHAPTER 4. MIGRATION TO GRAPH DATABASE 40

Code snippet 2 Retrieving the Finnish subject headings for a content ID
{sparql}

PREFIX purl: <http://purl.org/dc/elements/1.1>

PREFIX yleid: <http://id.yle.fi/>

PREFIX ylerelation: <http://relation.yle.fi/>

SELECT ?content ?concept ?relationType ?title WHERE {

{

yleid:1-50203154 ylerelation:isMemberOf* ?content .

?concept ?relationType ?content .

?concept purl:title ?title .

FILTER (lang(?title) = 'fi') .

}

}

combining concepts, when for example two semantically overlapping concepts have

been retrieved as distinct concepts from external sources. In this scenario, merging is

done using the Concept Editor application. The flow between different components

in the case of merging two concepts is as follows. First, Concept Editor sends an

API call to Meta API to combine the two concept IDs. Upon receiving the request,

the Meta API application chooses one of the IDs as primary and the other as an

alternative ID. After the merge, Meta API sends a change message via RabbitMQ

describing the operation, which Relations API will in turn process, updating the

changed relations to point to the new primary concept identifier. In SPARQL, the

same result can be achieved by simply adding an owl:sameAs relation between the

two concept IDs.

CHAPTER 4. MIGRATION TO GRAPH DATABASE 41

Case 3: Concept search and content hits

The third case examined during the pilot has to do with content-to-concept metrics.

When querying Meta API, the resulting concept data includes a number describing

how many content items have been tagged with the said concept. This data has

currently been stored in a materialized view in the PostgresSQL database. The

view is re-generated nightly, based on change messages received from Programs API

and Articles API. In Neptune, this kind of calculation is based on relations going

from concept to the content identifier and is thus efficient to compute on the fly.

What is not efficient, however, is doing full-text searches. If, for example, the

user would like to query all program and article titles containing a certain word,

this could be achieved by using a regular expression in the SPARQL query [88].

While the query language supports this kind of search, Neptune is not optimized

for it. Consequently, such searches trigger a collection scan and are thus very slow.

Fortunately, Amazon offers a solution around this where the data from Neptune is

replicated into an Elasticsearch cluster, which can subsequently be used as an index

for full-text searches [89]. However, testing this setup was not in the scope of the

Proof of Concept.

Case 4: Combining the services

The fourth and final case examined in the Proof of Concept touched upon combining

the data layers of the three Content Metadata Services. Being able to aggregate all

the data needed for a use case in a single query, instead of cross-calling three distinct

services, would simplify usage and maintenance. It could also allow for re-structuring

of the three applications themselves into a logical whole.

CHAPTER 4. MIGRATION TO GRAPH DATABASE 42

Possible architectures

Finally, different possibilities for future architecture, with the Neptune cluster in-

cluded, were considered. The possible architectures differed mainly in the division

of labor between the microservice-specific RDS databases and the shared Neptune

instance.

The first option was to migrate all data to Neptune from the RDS databases.

The pros of this option are architectural simplicity and being able to access the data

of all three microservices in a single query, which could potentially simplify queries

and reduce latency. The downsides include the amount of work necessary to migrate

all data to Neptune, transfer the functionality built on the RDS databases to work

on Neptune and the potential performance surprises involved in working with new

technology.

The second alternative presented for consideration in the Proof of Concept phase

was splitting the data between the databases. In this scenario, part of the data

of each microservice would live in the dedicated RDS database, while the rest of

it would be stored in Neptune. This way, performance benefits could be gained

by playing on the strengths of the different database systems — for example, by

querying relations between identifiers from Neptune and doing full-text searches from

the Postgres databases. The drawbacks to this approach would include complexity

and difficulty of orchestration.

The third proposed possibility was using the Neptune database as a secondary

data store, whilst the RDS instances would remain as master databases. In this

architecture, the updates to the RDS databases would be replicated to Neptune.

The state of Neptune graphs would stay in sync with the RDS databases on the

principle of eventual consistency. In this model, the Content Metadata Systems

could combine the different databases, optimizing performance. The downsides to

this approach include cost, the complexity of managing the state of different data

CHAPTER 4. MIGRATION TO GRAPH DATABASE 43

stores, data redundancy and potential data coherence problems.

4.5 Migration process

After the Proof of Concept, the team, the product owners and system architects

discussed the alternatives. Eventually, the first scenario with the full migration

from RDS to Neptune was selected, as the alternatives were considered to bring

about unnecessary complexity. It was thus decided to migrate all three Content

Metadata Services to use Neptune as the master data store, with the intention of

phasing out the RDS instances altogether in time. However, since the services in

question were already in production and had clients, the switch was planned to be

gradual, and the original and renewed systems would live side by side during the

transition. Essentially, the third scenario would be implemented first and converted

then to the architecture of the first scenario.

Based on the experiences gained from the Proof of Concept and stakeholder

discussions about the objectives of the migration, a number of steps were identified

to be done in the scope of the transition [74]. First, a Neptune cluster needed

to be created, populated with the data currently residing in the RDS databases

and connected to the existing applications. Second, a solution for performing full-

text searches needed to be implemented. After the data had been migrated and

the functionality ported from the original implementation to the renewed solution,

new functionality could be built on top of it. Based on these considerations, a

process consisting of distinct phases with different goals, illustrated in Table 4.1, was

sketched. In the phasing, Phase 1 is concentrated on setting up the infrastructure,

initial data migrations and communication between the different components. In

Phase 2, support for full-text searches are implemented and the data replication

from the applications to the Neptune cluster is enhanced, so that both persistence

solutions are in sync. In Phase 3, the RDS storage solutions are deprecated and

CHAPTER 4. MIGRATION TO GRAPH DATABASE 44

Table 4.1: Migration process phases

Phase Description

PoC Testing out Neptune with Yle’s content metadata

Phase 1 Setting up infrastructure, data replication with eventual consistency

Phase 2 Implementing full-text search, synchronous data replication

Phase 3 Making Neptune the master data source, deleting Postgres instances,

updating applications

Phase 4 Building new functionality, adding data graphs

the application architecture is modified to allow searches going across graphs. In

Phase 4, the knowledge graph is enriched with more data sources allowing for new

services. The horizontal line between Phase 2 and Phase 3 marks the demarcation

between migration and development of new features. It also denotes the status of

the project, as the last two phases are in progress as of this writing.

The process can be perceived in terms of the Framework for the Disciplined

Evolution of Lecacy Systems model presented by Weiderman et al. (1997) [90]. A

diagram depicting the elements involved in this model is found in Figure 4.2. In this

framework, a transition from a legacy system to a renewed target system is achieved

via a system evolution initiative, which is shaped by multiple influencing contextual

forces. Here, new technology, like a graph database solution, enters the system via

software engineering and systems engineering efforts. The element of organization

marks the organizational context where the system is operated and which it serves,

in this case Yle. Finally, project is a way to organize the development effort. In the

case of the graph database implementation, the project was one task among many

done by the team, also responsible for various other services and projects pertaining

to content metadata.

While the model helps in making sense of the contextual factors involved in

CHAPTER 4. MIGRATION TO GRAPH DATABASE 45

Figure 4.2: Framework for Disciplined Evolution of Legacy Systems, applied from

Weiderman et al. (1997) [90]

a systems renewal project, it reflects a sort of waterfall-model mindset. In agile

development, which is the norm in Yle as in most organizations these days, it is

not trivial to mark the cut point where a systems development initiative ends and

a finished product starts. For the purposes of this study, it can be placed between

Phase 3 and Phase 4, where the legacy implementation has been deprecated.

4.5.1 Phase 1

The goals of Phase 1 were to set up the Neptune clusters, for testing and production

environments, to populate them with the data from the RDS instances and cascade

all incoming changes to the data of the three microservices onward to Neptune as

they occur. For now, the RDS databases would remain as master data stores. The

architecture of Phase 1 is visualized in Figure 4.3.

Setting up the infrastructure

To shield the Neptune cluster, to control how it can be used and to decouple it from

the clients using it, a fourth microservice was created to act as a gateway. This

CHAPTER 4. MIGRATION TO GRAPH DATABASE 46

Figure 4.3: Architecture of Phase 1

application, Content Graph API, is deployed into a Virtual Private Cloud (VPC)

— not accessible from the outside — and is the only component communicating

directly with the Neptune cluster. As the other microservices, Content Graph API

is implemented in Clojure, exposes a REST API and is deployed as an ECS container.

At its first iteration, Content Graph API exposed an API endpoint that the client

services can use for performing non-mutating SPARQL queries.

As for performing updates on the Neptune cluster, the initial data migration

from RDS was done, in the case of Meta API and Relations API, using a migration

script. The script connects to the RDS database to process, retrieves the data dump,

converts it to N-Triple format [86] using the rdflib Python package [91], stores it in an

S3 bucket and triggers a Bulk Loader process from Neptune. As Neptune supports

dividing data inside the same database cluster into multiple named graphs [41], the

data originating from and owned by the different services were inserted into different

graphs.

In the beginning of the migration project, different solutions were considered for

CHAPTER 4. MIGRATION TO GRAPH DATABASE 47

validating the data to be written in the graph, as well as checking that the stored

data conforms to the designed data model. While graph databases are traditionally

schema-less, and their data models are open for extension, the team considered

utilizing a solution such as SHACL [35] for data validation. However, this idea

was later dropped and removed from the project backlog. Since Neptune does not

support schema validation natively, a solution would have involved reading back

data directly after a write to be able to validate it. It was decided that validating

data against a data model, essentially a database schema, would be against the idea

of using a graph database and implementing it would require contorting the tools

available to an unoptimal degree.

Data replication

All new changes in the data of the Content Metadata Services are populated to

Neptune by way of message passing. Every time one of the services mutates the

data in its database, the application sends a change message to a RabbitMQ ex-

change [92]. Client applications interested in this data, such as Content Graph API,

can then subscribe to these messages by creating a private message queue to the

exchange. Each time the Content Graph API receives a change message from one of

the services, it translates the change to a SPARQL statement and applies it to the

relevant graph inside Neptune. This way, the changes to the master RDS databases

are forwarded asynchronously to Neptune, the state of which is eventually consistent

with that of the RDS instances.

Since the data model of Content Index is markedly more complex than those of

the other services, its data was loaded to Neptune in a slightly different manner.

After the handling of change messages of Content Index in the Content Graph

API application had been implemented, it was noted that the number of different

messages types was large and the logic for handling all the cases took a relatively

CHAPTER 4. MIGRATION TO GRAPH DATABASE 48

large amount of code. Because of this, it was decided that replicating this logic to a

migration script would be unnecessarily cumbersome. Instead, the bulk load phase

was implemented by initiating a mass export from Content Index via RabbitMQ.

This way, the contents of the whole RDS database of Content Index was exported

via RabbitMQ change messages, or perhaps pseudo-change messages, which Content

Graph API then interpreted, updating Neptune accordingly.

For the data in the Neptune cluster to be queryable for clients, new versions of

the APIs of the three Content Metadata Services were implemented. For each of the

three microservices, an API version 2 was published. Each new API replicated the

functionality of the original API implementations on top of Neptune. An example

of the flow between the components is given below for a basic use case.

Code snippet 3 SPARQL template for an ancestors-query into Neptune
{sparql}

SELECT ?id ?altid ?type ?editorialObjectType

WHERE {

GRAPH <http://content-index.yle.fi/>

{

{

<http://id.yle.fi/{{id}}> (skos:member)+ ?id .

OPTIONAL { ?id owl:sameAs ?altid }

OPTIONAL { ?id rdf:type ?type }

OPTIONAL { ?id ebucore:editorialObjectType ?editorialObjectType }

}

}

}

1. A client application calls the API version 2 of Content Index, asking for all

CHAPTER 4. MIGRATION TO GRAPH DATABASE 49

the ancestors of an identifier.

2. The call passes through the AWS Api Gateway and load balancer to the Con-

tent Index service and triggers a handler function inside the application.

3. A SPARQL query is parsed based on the query parameters; the requested ID

and the path parameter “ancestors”. The application reads a query template

file, which looks as shown in Snippet 3, parses it into a query by placing the

ID parameter between the double curly braces, URL encodes it and calls the

/query/ path of the Content Graph API with the encoded query string as

parameter.

4. Content Graph API receives the call, extracts the query string and performs

the query on the Neptune database. In the query itself, relations of type

skos:member, which are defined from lower-level IDs to those higher in the

hierarchy, are traversed along with some optional properties associated with

them. The response from Neptune is returned as it is.

5. Content Index receives the response, in JSON format, parses it first into EDN,

which is the native data format for Clojure [93], and then to the same format

as the original API, before returning it to the client as JSON.

4.5.2 Phase 2

Two main goals were defined for Phase 2 of the migration: implementing support

for full-text searches and making the replication of data from the microservices to

Neptune synchronous and independent of the RDS databases. The architecture of

Phase 2 is visualized in Figure 4.4.

CHAPTER 4. MIGRATION TO GRAPH DATABASE 50

Figure 4.4: Architecture of Phase 2

Full-text search

As for the full-text search, a solution extending the functionality of Neptune by using

an Elasticsearch cluster as an additional search index was available from Amazon, as

noted in Section 4.4. This approach utilizes a recent feature of the Neptune database

called Neptune Streams [94], which was only consolidated as a stable feature of the

Neptune engine from an experimental Neptune Lab Mode [95] status two months

prior to its adoption in the project. Neptune Streams is a change-log stream of the

database, which can be read by clients using an API over HTTP [96]. It is possible

to index all changes to the database to an Elasticsearch cluster using a Lambda

function that reads data from the Neptune Stream and writes it to Elasticsearch.

To achieve this, a ready-made CloudFormation template is available [97].

After the Elasticsearch integration was set up, the data from the RDS databases

needed to be re-imported into Neptune for the full-text index to be up-to-date.

Although an experimental solution for exporting existing data from Neptune to

Elasticsearch exists [98], setting it up seemed too time-consuming, and the team

CHAPTER 4. MIGRATION TO GRAPH DATABASE 51

opted to use the existing import scripts and mass export functionality of Content

Index instead.

With this setup, queries with text-search components utilizing both Neptune

and Elasticsearch can be defined seamlessly in SPARQL. The full-text searches can

be implemented as sub-queries directed to the Elasticsearch cluster [99]. The sub-

queries return IDs that can be used by the rest of the query. In hybrid queries like

this, Neptune can call Elasticsearch directly, provided that the necessary parameters,

such as the address of the Elasticsearch cluster, are provided in the query and that

the Neptune instance has been granted the necessary IAM permissions.

Synchronous updates

The second goal of Phase 2 was making the updates from the applications to Neptune

happen synchronously and independently of the RDS databases. In Phase 1, the

microservices processed changes by first updating the RDS database and publishing

the change via RabbitMQ — in Phase 2, the updates are done without delay over

HTTP to Neptune, via Content Graph API. This way, reads and writes to Neptune

are close to being strongly consistent. For this to be possible, the API of the Content

Graph application was updated to process updates and deletions in addition to the

non-mutating queries of the first phase. To maintain hygiene between the different

graphs, no generic update path was implemented. Instead, each microservice has

its own update path in the API, which can only mutate the graph owned by the

client application. As a consequence, logic for updating the Neptune database was

moved upstream from Content Graph API to the individual applications — while

in Phase 1 the Content Graph API needed to be able to interpret change messages

from the applications and translate them to SPARQL statements, in Phase 2 the

parsing is done in the applications and Content Graph API only calls Neptune on

the instruction it receives.

CHAPTER 4. MIGRATION TO GRAPH DATABASE 52

Outcomes

As Phase 2 was concluded, the functionality of the three Content Metadata Services

had been re-created on top of the Neptune database. The original RDS databases

were still running, up-to-date and queryable via the original API paths, as all clients

of the services still did at this point. However, the new API versions replicated this

functionality on top of the new implementation, fetching the data from the graph. At

this point, no real benefits had yet been gained, as the structure and the public APIs

of the three Content Metadata Services were exactly the same as before. However,

the next phases of the project, which as of this writing are underway, are all about

enhancing the overall system and leveraging the benefits from the graph database.

4.5.3 Phase 3

Phase 3 has three main goals defined for it: making Neptune the master data source,

deleting the RDS databases and enhancing the application structure of the Content

Metadata Services to be better aligned with the objectives of the project. The

architecture of Phase 3 is depicted in Figure 4.5.

Making Neptune the master data source

In order to be able to delete the RDS instances of the services, the original APIs of

the applications need to be deprecated. Before this, all clients using the APIs have

to be instructed to move to the new API versions. For a transitional period, both

APIs will be supported and used simultaneously. In the end, the RDS instances will

be deleted, leaving Neptune the only database for the Content Metadata Services.

An alternative to disabling the original APIs altogether would be to redirect

then to point to the new API implementations. Since the functionality and usage

of the APIs are identical to the earlier versions, this change would in principle not

be noticeable to the clients. In addition, it would follow the API Versioning and

CHAPTER 4. MIGRATION TO GRAPH DATABASE 53

Figure 4.5: Architecture of Phase 3

Backwards Compatibility principle outlined before in Section 2.1.3.

Enhancing the application architecture

To be able to reap benefits from having the data of the three Content Metadata

Services in a same graph database, the structure and division of labor between the

applications needs to be updated. The first step towards this is deprecating the

Meta API and replacing it with a new service, Concepts API. This application is

essentially a rewrite, or the next version of Meta API, written and deployed in

tandem with the Neptune migration. It will allow queries for concepts and relations

as the two services did before, but using Neptune. Concepts API will also support

queries crossing over the two domains; for example, when querying relations for an

ID, all the information related to the concepts can be returned along with concept

ID. This way, the number of HTTP queries can be cut down as was one of the

original goals for the migration.

CHAPTER 4. MIGRATION TO GRAPH DATABASE 54

4.5.4 Phase 4

Phase 4 of the project does not have clearly defined goals as of now. Rather, it

marks a starting point for building new functionality and applications on top of

the services and infrastructure created in the previous phases. Two new services

are currently in the proof of concept -phase: Author API and storing location data

into Concepts API. Both have been planned and discussed with the idea that the

Neptune cluster serving the Content Metadata Services will become a master store

for different types of data that are currently fragmented into different systems. This

way, the data assembled into the Neptune database would be gradually refined into

an Enterprise Knowledge Graph [100], a centralized, interconnected data structure

connecting data from different domains of the organization.

For the time being, data about people creating content, such as journalists, pho-

tographers and illustrators is dispersed throughout the company. This data is found

in content management systems, publishing systems and different administrative

systems. The status quo is considered to be sub-optimal and discussions have been

conducted about how this data could be stored and managed in a centralized man-

ner. The working hypothesis has been that a new application, currently known

informally as Author API, would be built on top of the Neptune instance, provid-

ing a centralized entry point to this data. Many questions are yet to be answered,

though, from how to identify persons reliably from the data to how and by whom

it should be managed. Processing personal data also brings strict data security and

GDPR compliance requirements into the equation.

Another future service to be built on the Neptune database is a service for man-

aging location data. Currently, different departments in the company are managing

location data for their own use cases. In recent discussions on the subject, a need

for an internal service managing and serving location data for the different use sites

has been identified. As for the Author API, this has been planned to be developed

CHAPTER 4. MIGRATION TO GRAPH DATABASE 55

using Neptune, since querying location data is one of the classical uses cases for

RDF and graph databases [33].

A third possible avenue for investigation is the ontologization of concepts used

as subject headings. Since the concepts originate in semantically structured sources,

such as WikiData [69] and Finto [70], the relations found in the source ontologies

can be used instead of encoding them manually, which would be laborious [47].

One possible route to achieving the three objectives outlined above would be to

widen the understanding of the term concept in the context of content metadata,

by handling the geographical concepts and author data as concepts used as subject

headings. Regardless of what the implementation will be, semantic relations between

the concepts allow for more intelligent search services and better utilization of the

existing metadata.

4.6 RQ2: A process for migration

In the preceding sections, a migration of three microservices from service-specific

relational databases to a shared graph database containing named graphs for each

application has been described. To conclude the part of the thesis dealing with the

case of the study, an answer to RQ2 — How can microservices be migrated from a

relational database to a graph database? — remains to be addressed.

The migration process of the case project comprised of a number of consecutive

major phases, enumerated below.

1. Phase 1

• Graph database cluster initialization and setting up the infrastructure.

• Replication of the data to the graph database along with the earlier data

store.

• Migration of historical data from the earlier data store to the graph.

CHAPTER 4. MIGRATION TO GRAPH DATABASE 56

• Implementing a functionally identical new version of the API on top of

the graph database.

2. Phase 2

• Implementing support for full-text search.

• Implementing synchronous data replication.

• Advising users to move to the new API.

3. Phase 3

• Enhancing the application infrastructure, supporting cross-graph queries.

• Redirecting the original API (v1) to the new API (v2).

• Deleting the old persistence solutions.

Gradual transitioning to the new database and data model was a suitable ap-

proach for the case project. The transition to Neptune for the Content Metadata

Services was an experimental effort for the company, where learning and experience

were valuable results along with the actual revamped version of the system. Due

to these circumstances, the team had a possibility to experiment, try different ap-

proaches, learn on the go and find a solution that works well for the use case. Since

the migration project dealt with production systems, the transition to the target

architecture needed to be gradual and the original implementations had to be sup-

ported until the renewed implementation was comprehensively tested. However, the

process by which the transition was achieved is the result of iterative work in agile

sprints and is only obvious and detailed when viewed with the benefit of hindsight.

While the migration of the services to work on top of a new persistence solution

was successful, the main functional requirement for the project — a system working

with less HTTP calls — has not yet been reached. At this point, Phase 1 and

Phase 2 of the project, dealing with the migration to Neptune, have been completed

CHAPTER 4. MIGRATION TO GRAPH DATABASE 57

and the latter ones are in still in progress. As the published APIs are identical to

the original implementation, the usage of the Content Metadata Services works as

before, including the amount of requests. One aspect where using a graph database

benefits the current setup is data maintenance. As noted in the concept merge and

relations use case identified in the Proof of Concept, described in Section 4.4, for

example combining synonymous concepts necessitates far less ceremony when using

a graph database as opposed to the original setup. The non-functional requirements

like performance will be discussed in the next chapter.

While the described process is a way to migrate to graph database, it is obviously

not the way to do it, as the procedure applied was designed for a specific use case.

In any case, it is interesting to evaluate how widely the experiences gained from

this project can be generalized. First, the process of gradual transitioning by first

replicating data to the new persistence solution, implementing an API to use it,

testing it and then making it the master data store is likely to be applicable for

other production microservice systems. The architectural pattern emerging from

the project, where a gateway application is used to mediate traffic to a shared graph

database cluster, is an approach that could be considered when implementing similar

projects in other contexts, as the gatekeeper application can provide security and

data hygiene guarantees by restricting mutative operations to the graph owned by

the client performing them. Based on the experiences gained from this case, it can

be proposed to be used in contexts where maximising performance is not the main

requirement.

5 Evaluation

This chapter starts the retrospective part of the thesis. In this chapter, the renewed

architecture is evaluated and discussed. First, the performance of the two implemen-

tations are compared. After this, feedback gathered from the project retrospective

session is presented and discussed. In terms of the DSRP model as outlined in Table

1.1, this chapter corresponds to Phases 4 (Demonstration) and 5 (Evaluation). In

both sections of this chapter, these phases are intertwined. Both in performance

evaluation and the retrospective session, metrics and analysis knowledge is first gen-

erated and then evaluated and discussed. Evaluation, as in the DSRP model, is

further continued in the next chapter.

5.1 Performance benchmarks

Performance of the original and renewed implementation of the application architec-

ture were compared by running two kinds of programmatic tests comparing the two

API versions of the Content Metadata Services, using the Content Index application

as a test case. First, a generic comparison of response times for different types of

queries was performed. Second, a load test scenario was developed and run for the

application, using both API implementations.

Going into the comparison, it was hypothesized that the two implementations

would probably have minor differences in performance. This was partly due to the

initial experiences gained at the Proof of Concept -phase [75]. The renewed imple-

CHAPTER 5. EVALUATION 59

mentation, or API v2, was expected to respond slightly slower for simple queries,

partly due to the network latency of two extra HTTP calls, first to Content Graph

API and onward to Neptune. For more complex queries, or queries where a large

number of relations are traversed, API v2 was expected to give better performance.

Before the overall architecture of the Content Metadata Systems is re-organized into

utilizing the graph more fully for queries, instead of the current heavy cross-calling,

a slight performance drop is to be expected. The main goal of the performance

comparison is to validate that the performance of the new system is acceptable and

will not impose a significant performance penalty compared to the original state.

5.1.1 API response times

API response times comparison was performed for the Content Index application.

The data on API response times was collected as follows. First, a sample of IDs was

gathered from the database of the testing instance of Content Index. The sample

size n was 1000 for each identifier type except cost center — since the data contained

only 371 distinct cost centers, all were included in the test. The selected IDs were

saved into text files, each of which contained only one type of IDs.

Second, a Python program was implemented for performing and comparing

queries on both APIs. It processed the sample IDs, performing the following steps

for each:

1. Check the type of the ID. For program and article, perform an ancestors-query,

for cost center perform a descendants-query, for other types perform both.

2. Parse the API query strings based on the ID. They are of the format

https://ENDPOINT/API-VERSION/QUERY-TYPE/ID&API-KEYS.

3. Perform both queries, measuring the response times.

CHAPTER 5. EVALUATION 60

4. Save the responses, along with the response times, into a local PostgreSQL

database.

5. Compare the responses field-by-field. When noting any discrepancies between

the responses, such as IDs present only in one of the responses, save the dif-

ferences to another database table.

After the data was collected, the response times comparison was formulated

using an SQL query. For the results to be comparable, only the queries where both

APIs returned an identical, non-empty response were included in the comparison.

The results are collected in Table 5.1. Here, v1 denotes API version 1, the original

implementation using the PostgreSQL database, while v2 is API version 2, the

renewed implementation based on Amazon Neptune. For each query type, the mean,

the standard deviation, the median, the minimum and the maximum are reported as

to the response times. The recorded response times are in seconds. In these figures,

smaller is better.

Table 5.1: Performance comparison

Id type Query type n v1 mean v2 mean v1 stddev v2 stddev v1 median v2 median v1 min v2 min v1 max v2 max

Cost center descendants 86 0.233 0.215 0.123 0.058 0.206 0.202 0.128 0.121 1.238 0.42

Product ancestors 573 0.36 0.343 0.429 0.332 0.25 0.268 0.099 0.11 5.819 6.13

Product descendants 207 0.341 0.433 0.304 0.379 0.27 0.331 0.102 0.131 3.734 3.338

Program ancestors 131 0.188 0.22 0.042 0.136 0.184 0.199 0.066 0.127 0.33 1.254

Project ancestors 985 0.266 0.287 0.229 0.179 0.211 0.243 0.095 0.109 5.198 2.152

Project descendants 710 0.269 0.299 0.157 0.183 0.229 0.258 0.1 0.108 2.306 2.51

Season ancestors 307 0.259 0.27 0.146 0.093 0.221 0.243 0.103 0.124 1.463 0.628

Season descendants 565 0.272 0.306 0.164 0.143 0.222 0.266 0.107 0.12 1.521 1.304

Series descendants 450 0.196 0.231 0.054 0.068 0.189 0.216 0.107 0.125 0.633 0.783

The results seem to support the hypothesis that the API version 1 would be

faster for simple cases, whereas API version 2 would outperform it in more complex

queries. While the differences are minuscule, there is a slight performance difference

in descendants-queries for cost centers, which is by far the most relation-rich of the

CHAPTER 5. EVALUATION 61

different query types. For these queries, API version 2 is on average 8 % faster

than the original implementation, despite the added network latency of two extra

HTTP calls. Interestingly, also ancestor-queries for products are also slightly faster

in API version 2. This is unexpected, since queries going upwards from product

should only return a single project and cost center and are thus by no means highly

connected. Looking more closely at the raw data, as well as the maximum times at

the breakdown, reveals that the difference seems to be due to a handful of outliers

in the data. Removing the queries where execution takes longer than 1.5 seconds

from either API (n = 34) brings the means down to 0.307 for API version 1 and

0.315 for version 2. The outliers were probably due to some momentary slowdown in

performance, for example during load spikes, instead of any systematic performance

bottleneck in the implementations. This was confirmed by re-running the outlier

queries on a later date, where the response times were closer to the mean.

While the data is enough to confirm that the performance of API version 2 is

not considerably worse than that of the original implementation, and it thus fills

the performance requirements set for it, there are some potential sources of error in

the measurements. First, the number of comparable queries is small, especially so

for queries with cost center IDs. This is due to the fact that at the time the perfor-

mance data was collected, slight discrepancies between the responses of the different

APIs occurred. For instance, only 86 of the 371 descendants-queries for cost centers

returned identical results from both APIs and were thus included in the comparison

data. There are two primary reasons for this: state for the data and implementation

details. First, as the data was gathered from the testing instance, since no produc-

tion environment existed, the data updated to the two database instances can have

been out of sync at times due to momentary errors, such as failures in the message

passing between the services. Second, while the both APIs were designed to format

their responses similarly, some elements can have been formatted slightly differently

CHAPTER 5. EVALUATION 62

and consequently excluded from the comparison. For instance, the identifier type

product family is in an experimental state. More specifically, product families were

actually lacking proper IDs. While this data was stored into Neptune, the API

version 2 did not serve them at the time the tests were run.

Another question altogether is how the different components of the system affect

performance. For instance, response to a query to the API version 2 is returned

from Neptune to Content Graph API as JSON, which is then parsed into the EDN,

the Clojure-specific exchange format, in Content Graph API and the parsed result

is again converted into JSON that the client receives in his response. For very large

result sets, this parsing overhead can potentially influence the overall performance —

and undermine the potential performance gains provided by the Neptune database

for complex queries. However, scrutinizing and optimizing this kind of performance

details were not in the scope of the test.

5.1.2 Load tests

Another automated testing that was used to evaluate and compare the two dif-

ferent implementations were load tests. The purpose of running load tests on the

system were getting data about how the applications perform under heavy traffic

and whether this information could be used to optimize the performance. To do

this, the open-source tool Gatling [101] was used. Gatling is a popular load testing

framework written in Scala, first published in 2012 [102]. In Gatling terminology, a

test suite, technically a Scala class, is called a simulation [103]. A simulation con-

sists of one or more scenarios, which are essentially test cases. A scenario mimics a

user interaction with the system, where multiple simulated users are simultaneously

performing similar operations. Scenarios are implemented using a custom Domain-

Specific Language [103]. Gatling uses the Akka [104] and Netty [105] toolkits to

simulate simultaneous users [106]. Again, Content Index was used for testing the

CHAPTER 5. EVALUATION 63

performance. As with the generic response time comparison, the load tests were run

against both API implementations, version 1 and version 2, to get insight into how

the transition into Neptune-based system affects performance under load.

The load test scenario performed on Content Index consisted of queries, in both

directions, using identifiers of type project. In the scenario, the core functionality

of which is shown in Snippet 4, project identifiers are read from a file, parsed into

query strings and saved into the Set pathSet. In the scenario proper, a feeder [107] is

created from the input data, which is then fed as an input to an object GetHierarchy

that performs the API calls using the method get. Two parameters are modified

between runs: apiVersion, which controls whether the API using the original or

renewed implementation is used, and concurrentUsers, which controls the amount

of simulated users. The tests were run from a local computer. Caching of responses

in the API gateway was disabled by setting the Cache-Control header to no-cache

[108].

Table 5.2: Comparison of load test results

Executions Response times (ms)

API version Users Total reqs Failed Reqs/s Min 50th pct 75th pct 95th pct 99th pct Max Mean Stddev

1 10 11196 0 92.529 56 67 103 272 339 13914 107 201

2 10 6114 2 49.306 68 122 187 334 589 60003 197 1181

1 50 44201 0 337.412 56 89 145 306 613 18346 136 249

2 50 7765 3 51.424 91 639 918 1614 2076 60002 778 1315

1 100 45770 0 360.394 56 129 283 906 1904 18570 263 446

2 100 8289 3 55.26 432 1229 1726 2648 3237 60006 1455 1376

On the first iteration, the scenario was run six times with varying settings. The

results are found in Table 5.2. Starting from the left side, the table contains data

about the API version used, the number of concurrent users enabled in the scenario,

the total number of requests performed and the request throughput — the average

number of requests performed per second in the simulation. The section in the right

side contains statistics, in milliseconds, about response times in the scenario.

CHAPTER 5. EVALUATION 64

Code snippet 4 Gatling load test scenario for Content Index
{Scala}

object GetHierarchy {

val get = exec {

http(s"$${query}")

.get(s"$${query}")

}

}

val getHierarchiesScenario = scenario("Get hierarchies for projects")

.during(duration seconds) {

val queryFeeder: Feeder[String] =

Stream.continually(pathSet.map(t => Map(("query", t))))

.flatten.toIterator

feed(queryFeeder)

.exec(GetHierarchy.get)

}

The results suggest a significant difference in performance under load between

the implementations. Based on the simulation runs, the original implementation of

Content Index can handle an average number of 360 requests per second, while the

mean in API version 2 is around 50 queries. Even then, singular requests result in

timeouts, as can be seen from the Max column, as 60 seconds is the timeout limit.

A possible explanation for the timeouts could be the garbage collection process

running in the Java Virtual Machine of running the Content Graph API, a nuisance

reportedly experienced by teams developing API services at the company. It is also

noteworthy how responses from API version 2 start to take longer when the amount

of concurrent users rises. In the case of the test run with 100 simulated users, the

average response time for API version 2 is almost 1.5 seconds, which compared to

CHAPTER 5. EVALUATION 65

the 0.26 seconds from the original API is dramatically slower. Under such load, even

the minimum response time rises to 0.43 seconds for API version 2, whereas for API

version 1 this metric stays constant throughout the runs. Curiously, a number,

albeit a small one, of queries fail and result to timeout on each test run against the

API version 2.

Based on these observations, a number of optimizations were implemented. First,

on the infrastructure level, the Neptune cluster, originally consisting of one writer

and a single reader instance, was scaled up horizontally by adding a new read replica

to it [109]. On the application level, the Content Graph API application was modi-

fied to direct all non-mutating queries to its reader endpoint whereas all operations

were previously pointed at its cluster endpoint [110]. A related application-level

optimization was changing the logic for parsing SPARQL queries to be proxied to

Content Graph API inside the Content Index application. As described in Section

4.5.1, Content Index parses SPARQL queries by placing parameters into query tem-

plates. Originally, these templates were stored on disk inside the Docker container

the application runs in and read from file on each request. Since reading from disk

is relatively slow, the read latency can theoretically form a performance bottleneck

under extreme load. Due to these considerations, the handling of the template files

was changed to be done only once at compile time, after which they are stored in

memory for faster access.

After the optimizations, the load test scenario was re-run. Table 5.3 contains

the original load test data augmented with results for running the scenario on API

version 2 after the optimizations. These figures are found under the API 2 (opt).

By comparing the results to the previous runs, it is evident that the optimizations

boosted the performance of API version 2 significantly. For instance, with 100 simu-

lated simultaneous users, the performance of API version 2 was previously drastically

hindered, while after the optimizations for example the minimum response times are

CHAPTER 5. EVALUATION 66

Table 5.3: Comparison of load test results, with API v2 (opt) included

Executions Response times (ms)

API version Users Total reqs Failed Reqs/s Min 50th pct 75th pct 95th pct 99th pct Max Mean Stddev

1 10 11196 0 92.529 56 67 103 272 339 13914 107 201

2 10 6114 2 49.306 68 122 187 334 589 60003 197 1181

2 (opt) 10 8059 3 52.331 69 89 112 201 462 60004 154 1245

1 50 44201 0 337.412 56 89 145 306 613 18346 136 249

2 50 7765 3 51.424 91 639 918 1614 2076 60002 778 1315

2 (opt) 50 14352 7 81.585 67 273 477 1009 2009 60004 428 1506

1 100 45770 0 360.394 56 129 283 906 1904 18570 263 446

2 100 8289 3 55.26 432 1229 1726 2648 3237 60006 1455 1376

2 (opt) 100 13425 6 100.985 68 626 966 2670 5528 60006 913 1737

consistent along the runs.

While the aforedescribed load tests give insight into the performance of the

system as a whole, they fail to illuminate where the performance bottleneck lies. This

also did not become immediately evident by monitoring the different components in

the system during the test runs. For example, the CPU usage of the Neptune cluster

did not reach full capacity, as can be seen in Figure 5.1. To get data about this, one

more test run was performed. This time, the load test scenario was run directly on

the Neptune reader endpoint, without layers of indirection in between. Data about

the performance of Neptune under load gives some indication about how much of

the performance drop from API v1 to v2 is due to the database itself and what is

the role of the different applications.

In order to run the tests straight to the Neptune cluster, which lives inside a

Virtual Private Cloud that is not open to the internet, an SSH tunnel was opened

to the reader endpoint in the cluster via a jump server, through which the cloud

resources can be accessed at Yle. The tunnel was bound to a localhost port, which

was then used as the endpoint for the queries. The simulation was modified to parse

CHAPTER 5. EVALUATION 67

Figure 5.1: Neptune CPU usage under load tests

the test IDs into SPARQL queries, which were then sent to the cluster in the body

of a HTTP POST request with the Content-Type header set to application/sparql-

query. The responses are gathered on the final Table 5.4 under the API Neptune.

For readability, data from the previous runs are included as well.

The results indicate that the differences between API version 2, after the opti-

mizations, and plain Neptune are not as great as one might expect. For instance,

their response times in the simulation with 100 concurrent users are quite near each

other. Unlike with test runs on API version 2, queries to the plain Neptune instance

do not result in timeouts, although a handful of responses come in very slowly, tak-

ing up to 47 seconds to complete. Even so, the amount of very slow responses is

small, as the 99th percentile is nowhere near these numbers. One area where plain

Neptune clearly outperforms API version 2 is the amount of queries it can handle

simultaneously. According to the simulation, the average number of queries plain

Neptune can process in a second is over 200, while this metric is 100 queries for API

version 2 after the optimizations. Even the latter is a high number which far exceeds

the traffic the Content Metadata Services currently receive. User experience reports

CHAPTER 5. EVALUATION 68

Table 5.4: Comparison of load test results with API v2 (opt) and Neptune included

Executions Response times (ms)

API version Users Total reqs Failed Reqs/s Min 50th pct 75th pct 95th pct 99th pct Max Mean Stddev

1 10 11196 0 92.529 56 67 103 272 339 13914 107 201

2 10 6114 2 49.306 68 122 187 334 589 60003 197 1181

2 (opt) 10 8059 3 52.331 69 89 112 201 462 60004 154 1245

Neptune 10 24497 2 204.158 60 548 908 2240 3796 47044 856 1953

1 50 44201 0 337.412 56 89 145 306 613 18346 136 249

2 50 7765 3 51.424 91 639 918 1614 2076 60002 778 1315

2 (opt) 50 14352 7 81.585 67 273 477 1009 2009 60004 428 1506

Neptune 50 25285 2 210.708 60 549 883 2403 5442 43585 829 1365

1 100 45770 0 360.394 56 129 283 906 1904 18570 263 446

2 100 8289 3 55.26 432 1229 1726 2648 3237 60006 1455 1376

2 (opt) 100 13425 6 100.985 68 626 966 2670 5528 60006 913 1737

Neptune 100 25405 2 211.725 59 469 819 2254 6770 46735 825 1318

have indicated that Neptune is able to handle up to 300 reads and 1000 writes per

second with 75 millisecond response times [83]. This is in line with the simulation

in terms of throughput, but not in terms of latency. Exactly why higher latency is

experienced in the simulation is difficult to evaluate, but setup, type of queries and

cluster settings, like enabled capacity, may play a role. In any case, for the present

discussion, the exact performance details of Neptune are not the main focus, but

the notion that the API applications built upon it seem to limit the throughput

Neptune can handle, but do not contribute significant latency to the requests.

Table 5.5: Resource details for load test runs

API version Number of containers Container memory Database Database class Database RAM DB vCPU Database engine version

1 2 2048 MB Amazon RDS PostgreSQL db.m4.large 8 GB 2 11.1

2 2 + 2 2048 MB + 1024 MB Amazon Neptune db.r5.large, db.r5.large 16 GB + 16 GB 2 + 2 1.0.2.1

2 (opt) 2 + 2 2048 MB + 1024 MB Amazon Neptune db.r5.large, db.r5.large, db.r5.xlarge 16 GB + 16 GB + 32 GB 2 + 2 + 4 1.0.2.1

Neptune - - Amazon Neptune db.r5.large, db.r5.large, db.r5.xlarge 16 GB + 16 GB + 32 GB 2 + 2 + 4 1.0.2.1

Table 5.5 lists the resources available for each of the load test runs. Starting

from left, the table lists the API version, the number of container instances, the

amount of memory allocated to the containers, database type, database class in

CHAPTER 5. EVALUATION 69

AWS terminology, the amount of RAM allocated for the database, the number of

virtual CPUs in the database instance and the database engine version. Since two

applications are involved in the API version 2, namely Content Index and Content

Graph API, the resource details of both are reported, in this order. In the database

class property for the Neptune cluster, the first value denotes the writer instance

while the subsequent values are for readers.

From the tests it becomes obvious that the renewed implementation performs

notably worse under heavy load than the original system based on the PostgresSQL

database, but what are the implications of this? For one thing, this gives extra

impetus to cut down the number of HTTP calls the Content Metadata Services

perform across each other, even though it is unlikely that the limits of the system

are going to be reached in the foreseeable future. To achieve this, the possibilities

of having all the data of the three Content Metadata Services in the same graph

database cluster should be utilized more fully. This means for example offering

clients more “intelligent” API endpoints, where all the data pertaining to a user

need could be pulled using a single request. Even though premature optimization is

among the most infamous anti-patterns in software development [111], in terms of

future-proofing it is good to be conscious of the limitations of a system, especially

as the Neptune cluster sitting behind Content Graph API is planned to act as a

central data store for many stakeholders in the long run.

5.2 Project retrospective

A project retrospective session for the graph database migration was held on 14.12.

2020. Participants of the post-mortem included developers involved in the different

phases of the project, current and previous product owners, systems architects and

a facilitator. While the graph database migration was not done in isolation, but

concurrently with the development of multiple other services the team the developers

CHAPTER 5. EVALUATION 70

were working in, and was consequently discussed in the team-level retrospectives in

the course of normal sprint cycles, the migration debriefing was devoted entirely to

this project and a wider array of stakeholders were present.

In agile software development, retrospective sessions are considered as “collective

learning activities” [112], where the team can reflect the experiences and problems re-

lated to a development project, adjusting its practices accordingly. In a retrospective

session, three steps can be identified: target definition, reflection and corrective ac-

tion development [113]. The objectives of the session followed this structure closely:

the aim of the meeting was to evaluate the choices made in the project (reflection),

how the new implementation fits the original requirements (target definition) and

what should the next steps be going forward (corrective action development).

According to Myllyaho et al. (2004), the benefits of conducting project post-

mortems include 1) helping team members share and understand each other’s per-

spectives, 2) integrating individual and team learning, 3) identifying hidden problems,

4) documenting good practices and problems, 5) increasing job satisfaction through

feedback and 6) improving project cost estimation [114]. Of the six points in their

model, the first three were explicit goals for the session: the session aimed at form-

ing a shared understanding of the project and the potential of generated system,

to identify its shortcomings and potential drawbacks and to create a vision of its

future.

The session was conducted online and the input from participants was collected

using Google Jamboard whiteboard software. The discussion was structured around

four questions, which are discussed in the following subsections. The full answers to

the questions, in the original Finnish, are found in Appendix B.

CHAPTER 5. EVALUATION 71

5.2.1 What was the original problem?

The first question discussed in the retrospective concerned the understanding of the

original goals for the project. In this context, it was considered more interesting to

discuss how the different participants understood these goals instead of how they

were defined in the project documentation. From the answers and discussion, four

themes can be identified: competence building, data modelling and management,

performance and architecture.

Regarding competence building, it was stressed that the project was experimental

in nature and one of the goals was to gain experience and insight into how graph

databases could be utilized at Yle and what opportunities they could provide. It

was noted that an earlier experiment had been conducted as a proof of concept,

using Neo4J, but this project was terminated before it made it to production.

The points made regarding data modelling, data management and performance

were conceptually intertwined. On the one hand, it was understood that the data in

the three Content Metadata Services would form a graph or a network and be rich

with relations. This being the case, a graph database seemed fitting for the use case

both in terms of modelling the data as an RDF graph instead of using a relational

approach, and that a graph database could potentially give better performance for

complex queries.

In terms of systems architecture, an idea was expressed regarding the potential

of the graph-based approach for managing product data in the long term. Although

the scope of the data managed in the Content Metadata Systems is limited, it could

be expanded to form a centralized Enterprise Knowledge Graph [100] [115] or Data

Catalog [116], which could act as an entry point for all content resources. This would

entail migrating more resources into the Neptune instance, finding ways to make the

data model more interconnected, as opposed to the strict separation of graphs as in

the earlier implementations, and building new services on top of it. It would also

CHAPTER 5. EVALUATION 72

mark a wider shift in the systems and data architecture levels at the company.

5.2.2 What was the most important thing you learned?

The second question encouraged the participants to reflect on the learning achieved

in the project. Answers centered around two main themes: learning curve and scope

of the project.

By far the most common point made in the answers concerned the learning curve

involved in the transition from relational to the graph database. The migration was

said to have taken much longer than was originally expected and it had involved

learning a lot about the new data formats and technologies. One related issue in

the answers was that the tooling for managing the graph database were not up to

par with those designed for relational databases and that transitioning from one to

the other had crystallized the differences.

The other point made in the answers was that it is questionable how well the

potential of the graph database can be evaluated based on the current use cases.

The scope of the project was seen as limited, although one comment stressed that it

had made clear that a graph database is a valid alternative for production use and

“not a toy”.

5.2.3 When would you choose a graph database now?

The third question was about the kinds of use cases the participants would choose a

graph database for, now that they have some practical experience and insight about

them. The answers varied a lot in content and scope.

A single answer was sceptical and read: “With the current levels of competence

and productization, probably not for anything”. The other comments were more

optimistic. Multiple people mentioned data rich with relations as one criterion

along with related queries traversing the relations. Two answers mentioned also

CHAPTER 5. EVALUATION 73

Figure 5.2: Responses to the fourth question

that they would only pick a graph database to use with a new application written

from scratch.

5.2.4 Is the project worth continuing?

To conclude, the question “Is the project worth continuing?” was discussed. To

elaborate, the idea of the question was to discuss whether the participants felt like

it made sense to continue developing the solution built atop the graph database or if

going back to the original implementation would still be advisable. The participants

were asked to put a mark somewhere on an axis from no to yes.

As can be seen from Figure 5.2, the answers spread from very pessimistic to quite

positive, falling mostly on the positive side. One participant expressed his feeling

towards the matter by drawing a distribution of sorts, also leaning clearly in favor

of continuing.

6 Discussion

This chapter concentrates on discussing the findings and perspectives emanating

from the case study and the preceding theoretical discussion. Insights from the

practical work on the migration project and experiences using a graph database in

production are presented.

6.1 Fulfillment of requirements

When the graph database migration project was initiated, both functional and non-

functional requirements were defined. The main functional requirement was defined

to be reduction of complexity in the Content Metadata Services as a whole and de-

creasing the amount of HTTP calls. A non-functional requirement of better overall

performance would be attained as a consequence — foremostly by achieving the use

cases with less requests, secondly by making complex queries traversing a large num-

ber of relations faster. Four distinct use cases were defined to elucidate the potential

benefits: concepts and hierarchy for replacing multiple API calls to different systems

with a single query, concept merge and relations for simpler merging of duplicate

concepts, concept search and content hits for lightweight calculation of the amount

of relations going out from a concept and combining the services for merging the

functionality of the three Content Metadata Services into a single application. In

addition, ideas about enriching the data inside the graph with new data sources,

such as geographical data and personal data about content authors for centralized

CHAPTER 6. DISCUSSION 75

access and for connecting it to the data already in the graph, were laid out.

For the time being, the Content Metadata Services have been migrated to use the

Neptune database as their master data store, but the process of enhancing the overall

application architecture and enabling the novel use cases is still a work in progress.

Consequently, not all of the requirements outlined above have been attained — yet.

For the use case, the adoption of a graph database is not a goal in itself, and will

not solve any problems as such, but it is rather an enabler for and a step towards an

architecture more fitting to the current and future needs for managing and serving

content metadata at the organization.

To summarize, the concept merge and relations and concept search and content

hits were successfully enabled by the migration, while the concepts and hierarchy and

combining the services scenarios are yet to be achieved. However, implementing

them for the Content Metadata Services is currently a matter of designing and

developing the next API versions, foremostly of Concepts API, to better utilize the

potential of SPARQL queries to aggregate all the necessary data for the use cases of

clients. This requires discussions with the different stakeholders to better understand

their needs and use cases and to design the next API versions accordingly.

On the non-functional requirements foremostly pertaining to performance of the

renewed system, the results of the API performance comparison give some indication

that the renewed system better in term of response times for queries traversing

a large amount of relations, as was expected. However, the data on this is not

conclusive, as the sample is rather small and the performance differences between

API versions are not significant. However, based on performance testing, it can be

stated with more confidence that the renewed system performs worse under load than

original implementation. While this performance was enhanced by implementing a

number of optimizations, the renewed system is still slower under heavy traffic and

has about half of the throughput of the original version. While the relative numbers

CHAPTER 6. DISCUSSION 76

differ drastically between the implementations, it is unlikely that the performance

limits are to be encountered in the foreseeable future. Performance under load will

not, based on the current understanding, prevent further development of the system

to support new use cases as planned.

6.2 RQ3: Perspectives to using GDB in microser-

vices

After the preceding discussion, Research Question RQ3 remains to be addressed. It

was formulated as follows: What benefits, opportunities and risks does adopting a

graph database provide in a microservice architecture?

As noted in Section 2.3, a graph database is a valid choice in the context of

microservice architecture, provided that basic precautions pertaining to data hy-

giene are taken. In microservice architecture, data should be owned by a single

service. In the context of graph databases, this can mean a named graph inside a

shared database. While the architecture needs to be set up in a way that only the

owning service can modify data in the graph, non-mutating queries can transcend

these limitations. In Neptune, querying data across named graphs is as simple as

omitting the GRAPH parameter from the SPARQL statement. This way, there is a

separation between the named graphs for modifications but all the data in a cluster

can be traversed freely when doing queries. Achieving this naturally presupposes

that the access to the cluster is protected and mutative operations are restricted.

This approach is a variation of the database cluster pattern, wherein distinct mi-

croservices use a shared database cluster but only touch application-specific tables.

Architecturally, the data hygiene can be enhanced by accessing the graph database

through a gateway service that manages access to it. It can be argued that this ap-

proach — restricting modifications to a graph to “owning” applications but allowing

CHAPTER 6. DISCUSSION 77

queries from any client — gives the necessary safety guarantees as required by the

microservice approach while maintaining the benefits of having the data in a shared

graph database that can be queried across the named graphs inside it.

The migration project made it clear, as was discussed in the retrospective, that

migrating production systems to a new persistence solution is not a trivial task. In

general, switching core parts of a production system to new technologies is costly

and such a project should only be initiated after thorough deliberation. On the

other hand, probably the only feasible way to build organizational competence on

novel technologies, such as on graph databases, is to experiment with them and to

build services on top of them. One of the goals of the project was, as noted in

the retrospective session, to build competence and gain experience on using graph

databases. This expertise can then be leveraged when planning new kinds of services,

playing on the strengths of the new technologies available.

From a managerial viewpoint, utilization of niche technologies such as graph

databases is a moderate risk staffing-wise. As of now, it is likely to be difficult

to find developers with prior experience in these technologies, as their use in the

industry is still relatively rare. While there definitely is a learning curve involved

with adopting a graph database in a project, this should not be overstated. The

experiences from the case project suggest that experienced developers can pick up

the core concepts quickly and be productive in a couple of weeks. However, having

at least one person with experience on graph databases would have made all the

difference in planning the project and doing effort estimation. As this was not the

case, help was received instead from having a handful of benchmarking discussions

with other organizations with relevant experience. Now that the original team has

gained competence, it is likely to be easier for future new team members to get the

hang of the system, as they have access to personal guidance and have someone

present their questions to.

CHAPTER 6. DISCUSSION 78

A difficulty in adopting graph database technologies, from a developer viewpoint,

is to not approach them with the same mindset as relational databases. Schema val-

idation, for instance, is a feature that graph database management systems do not

generally support. Instead, the types of relations and entities present in a data

graph determine its structure. Graph database systems also differ from relational

databases in terms of tooling. For instance, an operation as commonplace as con-

necting to a database with a client application in order to browse the stored data

might not be possible, or at least not as straightforward, with graph database sys-

tems. In the case of the Neptune database, the solution closest to this experience is

using Neptune Workbench, essentially a modified Jupyter Notebook hosted in the

Amazon Sagemaker service, for interactive queries and basic data visualization. The

application libraries available for manipulating RDF data in Clojure were also lack-

ing, but since Clojure has good interoperation capabilities with Java, the existing

Java libraries could be leveraged.

Perhaps the most promising aspects of using a graph database in a microservice

context are their flexibility and extensibility. For use cases based on tracking and

traversing relations, sometimes complex and even messy, between identifiers, a graph

database is a natural fit. In a graph database, knowing the cardinality of relations

beforehand, for example, is not necessary, as new relations can be added cheaply.

For the use case of the Content Index service, for example, this approach was a

great fit. Arguably, storing the data of multiple microservices in a shared graph

database can also help re-structuring the application architecture, if needed. In

order to move functionality from one microservice to another using the same cluster,

no database migrations would be needed. A new kind of microservice architecture

could consist of a constellation of services responsible for maintaining an area of

a large, interconnected knowledge graph. An approach like this could result in an

architecture where focus is shifted from communication and message passing between

CHAPTER 6. DISCUSSION 79

components to data management, organization and complex queries across graphs.

6.3 Contributions of the research

In the Design Science approach, the result of a study should, by definition, be

an artifact. This artifact is generated by following a process of distinct steps from

statement of a problem to communication of the results, and it should solve a relevant

problem in the organization. The main artifact produced via this thesis has been the

new architecture of the services in the case study, built upon the Amazon Neptune

graph database. In this architecture, multiple microservices share a graph database

cluster, where each service owns and maintains a named graph but is allowed to

perform arbitrary queries combining data from different graphs. In the system, the

graph database cluster is decoupled from the client services by a mediating proxy

microservice that defines the contract by which the storage layer can be accessed.

The proposed architecture, implemented for the case project, can be considered a

valid approach for similar use cases. Like graph databases in general, the architecture

is well suited for use cases where a large number of relations between entities need to

be tracked and traversed. Extending the graph with an Elasticsearch index for full-

text queries allows for querying text fields in addition to URI-based queries. Similar

use cases are likely to be found in the broadcast industry as well as other industries

where product data management or master data management are in focus. The

architecture is also open for extension, as new microservices writing to their named

graphs can easily be added to the mix. Managing a knowledge graph via specialized

microservices helps decouple the different contexts in the data, here termed named

graphs, making the complex data structure arguably more manageable than a single

web of data would be.

In addition to the architecture, the research has presented a synthesis of lit-

erature on microservices and graph databases, two approaches that have thus far

CHAPTER 6. DISCUSSION 80

rarely combined. An approach was presented for implementing a software architec-

ture utilizing the two paradigms in tandem, without compromising on using best

practices related to microservice architecture. Furthermore, a process for migrating

microservices into graph databases has been outlined and aspects for consideration

in a similar process have been identified. While not all of the goals inferred from

the problem statement have yet been achieved, a roadmap towards reaching them

has been outlined.

7 Conclusion

This thesis discussed methods for fitting together microservices and graph databases.

Following the Design Science Research Process approach, the thesis was structured

into theoretical background, an empirical part and a retrospective section. The

theoretical section synthesized literature on microservice architecture and graph

databases, the empirical part described a case study of migrating three microservices

into using the Amazon Neptune graph database, and the final part evaluated and

discussed the outcome based on data from performance measurements and a project

retrospective session.

Based on the theoretical discussion, a synthesis of literature on microservice

architecture and graph databases was proposed. It was proposed that it is feasible

to use a shared graph database from multiple microservices, as long as the data

ownership principle is ensured by structuring the data into different named graphs

“owned” by a single service.

In the case study, an architecture was implemented where three distinct mi-

croservices share a graph database cluster, each service modifying only a single

named graph. An additional microservice was implemented to act as a gateway to

the database, limiting where mutative operations can be performed. An Elastic-

search cluster was added to the system, to act as an additional search index for

full-text queries.

Performance measurements gave slight indication that the new implementation

CHAPTER 7. CONCLUSION 82

would be more performant for complex queries where a large number of relations are

traversed. However, the new system was found to less performant under extreme

load.

References

[1] B. Moseley and P. Marks, “Out of the tar pit”, Software Practice Advancement

(SPA), 2006. [Online]. Available: http://www.shaffner.us/cs/papers/

tarpit.pdf.

[2] L. Floridi, “AI and its new winter: From myths to realities”, Philosophy &

Technology, vol. 33, Feb. 2020. doi: 10.1007/s13347-020-00396-6.

[3] R. Hickey, “A history of Clojure”, Proc. ACM Program. Lang., vol. 4, no. HOPL,

Jun. 2020. doi: 10.1145/3386321. [Online]. Available: https://doi.org/

10.1145/3386321.

[4] M. Ruohonen. (2013). “Graafiteoria”, [Online]. Available: http://math.tut.

fi/~ruohonen/GT.pdf (visited on 10/06/2020).

[5] R. Angles and C. Gutierrez, “Survey of graph database models”, eng, ACM

computing surveys, vol. 40, no. 1, pp. 1–39, 2008, issn: 0360-0300.

[6] R. Angles, “A comparison of current graph database models”, Apr. 2012,

pp. 171–177, isbn: 978-1-4673-1640-8. doi: 10.1109/ICDEW.2012.31.

[7] M. Fowler and J. Lewis. (2014). “Microservices: A definition of this new archi-

tectural term”, [Online]. Available: https://martinfowler.com/articles/

microservices.html.

http://www.shaffner.us/cs/papers/tarpit.pdf
http://www.shaffner.us/cs/papers/tarpit.pdf
https://doi.org/10.1007/s13347-020-00396-6
https://doi.org/10.1145/3386321
https://doi.org/10.1145/3386321
https://doi.org/10.1145/3386321
http://math.tut.fi/~ruohonen/GT.pdf
http://math.tut.fi/~ruohonen/GT.pdf
https://doi.org/10.1109/ICDEW.2012.31
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html

REFERENCES 84

[8] V. F. Pacheco, Microservice patterns and best practices: explore patterns like

CQRS and event sourcing to create scalable, maintainable, and testable mi-

croservices, 1st ed. Birmingham: PACKT Publishing, 2018.

[9] V. Lenarduzzi, F. Lomio, N. Saarimäki, and D. Taibi, “Does migrating a

monolithic system to microservices decrease the technical debt?”, J. Syst.

Softw., vol. 169, p. 110 710, 2020. doi: 10 . 1016 / j . jss . 2020 . 110710.

[Online]. Available: https://doi.org/10.1016/j.jss.2020.110710.

[10] Y. A. Megid, N. El-Tazi, and A. Fahmy, “Using functional dependencies

in conversion of relational databases to graph databases”, in Hartmann S.,

Ma H., Hameurlain A., Pernul G., Wagner R. (eds) Database and Expert

Systems Applications. DEXA 2018. Lecture Notes in Computer Science, vol

11030. Springer, Cham, 2018, pp. 350–357.

[11] (). “About Yle”, [Online]. Available: https://yle.fi/aihe/about- yle

(visited on 01/23/2021).

[12] J. Nurmi, Enterprise architecture in public sector ecosystems: A systems per-

spective. University of Jyväskylä, 2021, isbn: 978-951-39-8518-9.

[13] A. R. Hevner, S. R. March, J. Park, and S. Ram, “Design science in informa-

tion systems research”, Management Information Systems Quarterly, vol. 28,

pp. 75–, Mar. 2004.

[14] K. Peffers, T. Tuunanen, C. Gengler, M. Rossi, W. Hui, V. Virtanen, and

J. Bragge, “The design science research process: A model for producing and

presenting information systems research”, in DESRIST International Con-

ference on Design Science Research in Information Systems and Technology,

Claremont, CA, USA, February 24-25, 2006, 2006, pp. 83–106.

https://doi.org/10.1016/j.jss.2020.110710
https://doi.org/10.1016/j.jss.2020.110710
https://yle.fi/aihe/about-yle

REFERENCES 85

[15] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices architecture en-

ables DevOps: An experience report on migration to a cloud-native architec-

ture”, IEEE Software, vol. 33, pp. 1–1, May 2016. doi: 10.1109/MS.2016.64.

[16] P. Jamshidi, C. Pahl, N. C. Mendonca, J. Lewis, and S. Tilkov, “Microser-

vices: The journey so far and challenges ahead”, eng, IEEE software, vol. 35,

no. 3, pp. 24–35, 2018, issn: 0740-7459.

[17] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for microser-

vices: A systematic mapping study”, in CLOSER 2018 - Proceedings of the

8th International Conference on Cloud Computing and Services Science, In-

ternational Conference on Cloud Computing and Services Science - Funchal,

Madeira, Portugal, 19 Mar 2018 – 21 Mar 2018, Mar. 2018, pp. 221–232.

doi: 10.5220/0006798302210232.

[18] C. Richardson, Microservices Patterns: With examples in Java. Manning

Publications, 2018, isbn: 9781617294549.

[19] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen, Microservice

Architecture: Aligning Principles, Practices, and Culture, 1st. O’Reilly Media,

Inc., 2016, isbn: 1491956259.

[20] J. Bogner, A. Zimmermann, and S. Wagner, “Analyzing the relevance of SOA

patterns for microservice-based systems”, in 10th ZEUS Workshop, ZEUS

2018, Dresden, Germany, 8-9 February 2018, Mar. 2018.

[21] M. D. McIlroy, E. N. Pinson, and B. A. Tague, “Unix time-sharing system:

Foreword”, Bell Sys. Tech. J., vol. 57, no. 6, pp. 1899–1904, 1978.

[22] (2010). “SOA manifesto”, [Online]. Available: http://www.soa-manifesto.

org/ (visited on 09/23/2020).

https://doi.org/10.1109/MS.2016.64
https://doi.org/10.5220/0006798302210232
http://www.soa-manifesto.org/
http://www.soa-manifesto.org/

REFERENCES 86

[23] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N. Josuttis,

“Microservices in practice, part 1: Reality check and service design”, IEEE

software, vol. 34, no. 1, pp. 91–98, 2017, issn: 0740-7459.

[24] A. Cockcroft. (2016). “The evolution of microservices”, [Online]. Available:

https://learning.acm.org/techtalks/microservices.

[25] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles, “A survey of

DevOps concepts and challenges”, ACM computing surveys, vol. 52, no. 6,

pp. 1–35, 2020, issn: 0360-0300.

[26] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Devops”, IEEE soft-

ware, vol. 33, no. 3, pp. 94–100, 2016, issn: 1937-4194.

[27] S. Yegulalp, “What is Docker? Docker containers explained”, InfoWorld.com,

Apr. 2019. [Online]. Available: https://www.infoworld.com/article/

3204171/what-is-docker-the-spark-for-the-container-revolution.

html.

[28] J. Muli, Beginning DevOps with Docker : automate the deployment of your

environment with the power of the Docker toolchain, 1st edition. Birmingham:

Packt, 2018, isbn: 1-78953-957-9.

[29] J. Gray, “A conversation with Werner Vogels”, ACM Queue, vol. 4, no. 4,

2006. [Online]. Available: https : / / queue . acm . org / detail . cfm ? id =

1142065.

[30] M. Garriga, “Towards a taxonomy of microservices architectures”, in Software

Engineering and Formal Methods, A. Cerone and M. Roveri, Eds., Springer

International Publishing, 2018, pp. 203–218, isbn: 978-3-319-74781-1.

[31] D. Taibi and V. Lenarduzzi, “On the definition of microservice bad smells”,

IEEE Software, vol. 35, no. 3, pp. 56–62, 2018.

https://learning.acm.org/techtalks/microservices
https://www.infoworld.com/article/3204171/what-is-docker-the-spark-for-the-container-revolution.html
https://www.infoworld.com/article/3204171/what-is-docker-the-spark-for-the-container-revolution.html
https://www.infoworld.com/article/3204171/what-is-docker-the-spark-for-the-container-revolution.html
https://queue.acm.org/detail.cfm?id=1142065
https://queue.acm.org/detail.cfm?id=1142065

REFERENCES 87

[32] P. Di Francesco, P. Lago, and I. Malavolta, “Architecting with microservices:

A systematic mapping study”, The Journal of systems and software, vol. 150,

no. 4, pp. 77–97, 2019, issn: 0164-1212.

[33] I. Robinson, J. Webber, and E. Eifrem, Graph Databases: New Opportunities

for Connected Data, 2nd ed. O’Reilly, 2015, isbn: 978-1-4919-3089-2.

[34] D. W. Williams, J. Huan, and W. Wang, “Graph database indexing using

structured graph decomposition”, in 2007 IEEE 23rd International Confer-

ence on Data Engineering, 2007, pp. 976–985.

[35] H. Knublauch and D. Kontokostas, “Shapes Constraint Language (SHACL)”,

W3C Recommendation, Jul. 2017. [Online]. Available: https://www.w3.org/

TR/shacl/.

[36] J. Pokorný, “Functional querying in graph databases”, Vietnam journal of

computer science, vol. 5, no. 2, pp. 95–105, 2018, issn: 2196-8888.

[37] M. Needham and A. Hodler, Graph Algorithms: Practical Examples in Apache

Spark and Neo4j. O’Reilly Media, Incorporated, 2019, isbn: 9781492047681.

[38] J. Pokorný, “Integration of relational and graph databases functionally”, Foun-

dations of computing and decision sciences, vol. 44, no. 4, pp. 427–441, 2019,

issn: 2300-3405.

[39] Y. Unal and H. Oguztuzun, “Migration of data from relational database to

graph database”, in ICIST ’18: 8th International Conference on Information

Systems and Technologies, March 16–18, 2018, Istanbul, Turkey, 2018.

[40] A. Harth and S. Decker, “Optimized index structures for querying rdf from

the web”, in Third Latin American Web Congress (LA-WEB’2005), IEEE,

2005, 10 pp.–80, isbn: 0769524710.

https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/

REFERENCES 88

[41] (). “Neptune graph data model”, [Online]. Available: https://docs.aws.

amazon . com / neptune / latest / userguide / feature - overview - data -

model.html (visited on 01/12/2021).

[42] L. Ehrlinger and W. Wöß, “Towards a definition of knowledge graphs”, in

Joint Proceedings of the Posters and Demos Track of 12th International

Conference on Semantic Systems - SEMANTiCS2016 and 1st International

Workshop on Semantic Change & Evolving Semantics (SuCCESS16), Leipzig,

Germany, 2016.

[43] T. R. Gruber, “A translation approach to portable ontology specifications”,

Knowledge Acquisition, vol. 5, pp. 199–220, 1993. [Online]. Available: http:

//tomgruber.org/writing/ontolingua-kaj-1993.pdf.

[44] C. Feilmayr and W. Wöß, “An analysis of ontologies and their success factors

for application to business”, Data & Knowledge Engineering, vol. 101, pp. 1–

23, 2016, issn: 0169-023X. doi: https://doi.org/10.1016/j.datak.2015.

11.003. [Online]. Available: http://www.sciencedirect.com/science/

article/pii/S0169023X1500110X.

[45] O. Lassila and R. R. Swick, “Resource Description Framework (RDF) Model

and Syntax Specification”, W3C, W3C Recommendation, Feb. 1999. [Online].

Available: http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.

[46] G. Klyne, J. J. Carroll, and B. McBride, “RDF 1.1 Primer”, W3C, W3C

Working Group Note, Jun. 2014. [Online]. Available: https://www.w3.org/

TR/rdf11-primer/.

[47] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so far”, Int.

J. Semantic Web Inf. Syst., vol. 5, pp. 1–22, 2009.

[48] T. Berners-Lee, J. Handler, and O. Lassila, “The semantic web”, Scientific

American, vol. 284, no. 5, pp. 34–43, 2001.

https://docs.aws.amazon.com/neptune/latest/userguide/feature-overview-data-model.html
https://docs.aws.amazon.com/neptune/latest/userguide/feature-overview-data-model.html
https://docs.aws.amazon.com/neptune/latest/userguide/feature-overview-data-model.html
http://tomgruber.org/writing/ontolingua-kaj-1993.pdf
http://tomgruber.org/writing/ontolingua-kaj-1993.pdf
https://doi.org/https://doi.org/10.1016/j.datak.2015.11.003
https://doi.org/https://doi.org/10.1016/j.datak.2015.11.003
http://www.sciencedirect.com/science/article/pii/S0169023X1500110X
http://www.sciencedirect.com/science/article/pii/S0169023X1500110X
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf11-primer/

REFERENCES 89

[49] N. Shadbolt, W. Hall, and T. Berners-Lee, “The semantic web revisited”,

IEEE intelligent systems, vol. 21, no. 3, pp. 96–101, 2006, issn: 1541-1672.

[50] E. Prud’hommeaux, “Optimal RDF access to relational databases”, W3C,

Tech. Rep., Nov. 2004. [Online]. Available: https://www.w3.org/2004/04/

30-RDF-RDB-access/.

[51] P. Cuddihy, J. McHugh, J. Williams, and V. Mulwad, “SemTK: An ontology-

first, open source semantic toolkit for managing and querying knowledge

graphs”, Oct. 2017.

[52] (). “Cosplay”, [Online]. Available: https://finto.fi/yso/fi/page/p20742.

[53] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers, “RDF

1.1 Turtle”, W3C Recommendation, Feb. 2014. [Online]. Available: https:

//www.w3.org/TR/turtle/.

[54] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, P.-A. Champin, and N.

Lindström, “JSON-LD 1.1”, W3C Recommendation, Jul. 2020. [Online]. Avail-

able: https://www.w3.org/TR/json-ld/.

[55] E. Prud’hommeaux and A. Seaborne. (2008). “SPARQL query language for

RDF”, [Online]. Available: https://www.w3.org/TR/rdf-sparql-query/

(visited on 10/07/2020).

[56] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of SPARQL”,

ACM Transactions on Database Systems (TODS), vol. 34, no. 3, pp. 1–45,

2009, issn: 0362-5915.

[57] (). “RDF datasets”, [Online]. Available: https://www.w3.org/TR/rdf11-

concepts/#section-dataset (visited on 01/18/2021).

[58] M. Hjort, “Polyglot microservices: Comparison between Javascript, Scala and

Clojure”, ClojuTRE, 2015, [Online]. Available: https://clojutre.org/

2015/#polyglot-microservices.

https://www.w3.org/2004/04/30-RDF-RDB-access/
https://www.w3.org/2004/04/30-RDF-RDB-access/
https://finto.fi/yso/fi/page/p20742
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/json-ld/
https://www.w3.org/TR/rdf-sparql-query/
https://www.w3.org/TR/rdf11-concepts/#section-dataset
https://www.w3.org/TR/rdf11-concepts/#section-dataset
https://clojutre.org/2015/#polyglot-microservices
https://clojutre.org/2015/#polyglot-microservices

REFERENCES 90

[59] J. Karemo, P. Valkonen, and T. Haapaniemi. (Jan. 2017). “A story of a

microservice: Lessons from the trenches”. Reaktor blog, [Online]. Available:

https://www.reaktor.com/blog/a-story-of-a-microservice/.

[60] (Jun. 2020). “Yle areena on kasvanut ylen kiinnostavimmaksi palveluksi”,

[Online]. Available: https : / / yle . fi / aihe / artikkeli / 2020 / 06 / 11 /

suomen-suosituin-suoratoistopalvelu-on-edelleen-yle-areena.

[61] (). “Yle Areena”, [Online]. Available: https://areena.yle.fi/ (visited on

11/29/2020).

[62] M. Hjort, “Modern Finnish enterprise level microservices at Yle”, Reaktor

Breakpoint, 2015, [Online]. Available: https : / / vimeo . com / channels /

973982/144467127.

[63] (2020). “Yle API tutorials”, [Online]. Available: https://developer.yle.

fi/en/tutorials/index.html (visited on 11/29/2020).

[64] (May 2015). “Käyttöehdot Ylen API-rajapintaan liittymiselle”, [Online]. Avail-

able: https://developer.yle.fi/static/terms-of-service.pdf.

[65] H. Laukkanen, “Clojure powered services at Finnish Broadcasting Company”,

Amsterdam Clojure Days, 2019, [Online]. Available: https://youtu.be/

WRI7lTJ_hX0.

[66] K. Ylä-Anttila. (Jun. 2019). “Yleisradion pilvimatka - oppeja ja kokemuksia”.

Solita Public Sector Pulse, [Online]. Available: https://www.slideshare.

net / Solita _ Oy / yleisradion - pilvimatka - oppeja - ja - kokemuksia -

kalle-ylanttila-yle.

[67] (2020). “Pikku Kakkonen”, [Online]. Available: https://yle.fi/pikkukakkonen/

(visited on 12/07/2020).

https://www.reaktor.com/blog/a-story-of-a-microservice/
https://yle.fi/aihe/artikkeli/2020/06/11/suomen-suosituin-suoratoistopalvelu-on-edelleen-yle-areena
https://yle.fi/aihe/artikkeli/2020/06/11/suomen-suosituin-suoratoistopalvelu-on-edelleen-yle-areena
https://areena.yle.fi/
https://vimeo.com/channels/973982/144467127
https://vimeo.com/channels/973982/144467127
https://developer.yle.fi/en/tutorials/index.html
https://developer.yle.fi/en/tutorials/index.html
https://developer.yle.fi/static/terms-of-service.pdf
https://youtu.be/WRI7lTJ_hX0
https://youtu.be/WRI7lTJ_hX0
https://www.slideshare.net/Solita_Oy/yleisradion-pilvimatka-oppeja-ja-kokemuksia-kalle-ylanttila-yle
https://www.slideshare.net/Solita_Oy/yleisradion-pilvimatka-oppeja-ja-kokemuksia-kalle-ylanttila-yle
https://www.slideshare.net/Solita_Oy/yleisradion-pilvimatka-oppeja-ja-kokemuksia-kalle-ylanttila-yle
https://yle.fi/pikkukakkonen/

REFERENCES 91

[68] (2020). “Programs API”, [Online]. Available: https://developer.yle.fi/

en/api/index.html#/programs- api- search- programs- clips- and-

episodes/ (visited on 12/01/2020).

[69] (). “Wikidata”, [Online]. Available: https://www.wikidata.org/ (visited on

01/05/2021).

[70] (). “Finto”, [Online]. Available: http://finto.fi/en/ (visited on 01/05/2021).

[71] J. Riley, Understanding Metadata: What is Metadata, and What is it For?:

A Primer. NISO, 2017, isbn: 978-1-937522-72-8.

[72] O. Suominen and P. Virtanen. (2020). “Yle meets Annif - an open source tool

for automated subject indexing”. MDN Workshop 2020, [Online]. Available:

https://tech.ebu.ch/contents/publications/events/presentations/

mdn2020/yle-meets-annif--an-open-source-tool-for-automated-

subject-indexing (visited on 12/03/2020).

[73] (2020). “Ray Winstonen Sisilia. Jakso 1: Palermo”, [Online]. Available: https:

//areena.yle.fi/1-50482178 (visited on 12/05/2020).

[74] K. Snabb and T. Kalvas, “GraphDB: Ehdotus ja roadmap”, Internal presen-

tation, 2020.

[75] ——, “GraphDB demo: GraphDB as an option for improving meta-api, relations-

api and content-index”, Internal presentation, 2019.

[76] J. Ruotsalainen, interview, Oct. 26, 2020.

[77] N. Yuhann, “The Forrester Wave™: Graph data platforms, Q4 2020 — the

12 providers that matter most and how they stack up”, Forrester, Tech. Rep.,

Nov. 2020. [Online]. Available: https://reprints2.forrester.com/#/

assets/2/374/RES161455/report (visited on 01/31/2020).

[78] (). “Neo4j”, [Online]. Available: https://github.com/neo4j/neo4j (visited

on 02/21/2021).

https://developer.yle.fi/en/api/index.html#/programs-api-search-programs-clips-and-episodes/
https://developer.yle.fi/en/api/index.html#/programs-api-search-programs-clips-and-episodes/
https://developer.yle.fi/en/api/index.html#/programs-api-search-programs-clips-and-episodes/
https://www.wikidata.org/
http://finto.fi/en/
https://tech.ebu.ch/contents/publications/events/presentations/mdn2020/yle-meets-annif--an-open-source-tool-for-automated-subject-indexing
https://tech.ebu.ch/contents/publications/events/presentations/mdn2020/yle-meets-annif--an-open-source-tool-for-automated-subject-indexing
https://tech.ebu.ch/contents/publications/events/presentations/mdn2020/yle-meets-annif--an-open-source-tool-for-automated-subject-indexing
https://areena.yle.fi/1-50482178
https://areena.yle.fi/1-50482178
https://reprints2.forrester.com/#/assets/2/374/RES161455/report
https://reprints2.forrester.com/#/assets/2/374/RES161455/report
https://github.com/neo4j/neo4j

REFERENCES 92

[79] (). “Amazon Neptune”, [Online]. Available: https : / / aws . amazon . com /

neptune/ (visited on 01/09/2021).

[80] (). “BlazeGraph”, [Online]. Available: https://github.com/blazegraph/

database (visited on 01/09/2021).

[81] B. DuCharme. (). “SPARQL and Amazon Web Service’s Neptune database”.

blog article, [Online]. Available: http://www.snee.com/bobdc.blog/2017/

12/sparql-and-amazon-web-services.html (visited on 01/09/2021).

[82] B. Bebee, D. Choi, A. Gupta, A. Gutmans, A. Khandelwal, Y. Kiran, S.

Mallidi, B. McGaughy, M. Personick, K. Rajan, S. Rondelli, A. Ryazanov,

M. Schmidt, and K. S, “Amazon Neptune: Graph data management in the

cloud”, 2018, [Online]. Available: http://ceur-ws.org/Vol-2180/paper-

79.pdf (visited on 01/31/2020).

[83] T. Riggan, S. Marshall, and S. Singamaneni, “Using Amazon Neptune to

power identity resolution at scale”, 2019, [Online]. Available: https://www.

slideshare.net/AmazonWebServices/using-amazon-neptune-to-power-

identity-resolution-at-scale-adb303-atlanta-aws-summit (visited

on 01/31/2020).

[84] I. Robinson, “Amazon Neptune”, AWS Dev Day, Jul. 2018, [Online]. Avail-

able: http : / / aws - de - media . s3 . amazonaws . com / images / DevDays %

202018/DM4-AWS18_DevDay_neptune.pdf (visited on 01/31/2020).

[85] (). “SPARQL default graph and named graphs”, [Online]. Available: https:

//docs.aws.amazon.com/neptune/latest/userguide/feature-sparql-

compliance.html#sparql-default-graph (visited on 02/06/2021).

[86] (). “RDF 1.1 N-Triples”, [Online]. Available: https://www.w3.org/TR/n-

triples/ (visited on 01/13/2021).

https://aws.amazon.com/neptune/
https://aws.amazon.com/neptune/
https://github.com/blazegraph/database
https://github.com/blazegraph/database
http://www.snee.com/bobdc.blog/2017/12/sparql-and-amazon-web-services.html
http://www.snee.com/bobdc.blog/2017/12/sparql-and-amazon-web-services.html
http://ceur-ws.org/Vol-2180/paper-79.pdf
http://ceur-ws.org/Vol-2180/paper-79.pdf
https://www.slideshare.net/AmazonWebServices/using-amazon-neptune-to-power-identity-resolution-at-scale-adb303-atlanta-aws-summit
https://www.slideshare.net/AmazonWebServices/using-amazon-neptune-to-power-identity-resolution-at-scale-adb303-atlanta-aws-summit
https://www.slideshare.net/AmazonWebServices/using-amazon-neptune-to-power-identity-resolution-at-scale-adb303-atlanta-aws-summit
http://aws-de-media.s3.amazonaws.com/images/DevDays%202018/DM4-AWS18_DevDay_neptune.pdf
http://aws-de-media.s3.amazonaws.com/images/DevDays%202018/DM4-AWS18_DevDay_neptune.pdf
https://docs.aws.amazon.com/neptune/latest/userguide/feature-sparql-compliance.html#sparql-default-graph
https://docs.aws.amazon.com/neptune/latest/userguide/feature-sparql-compliance.html#sparql-default-graph
https://docs.aws.amazon.com/neptune/latest/userguide/feature-sparql-compliance.html#sparql-default-graph
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/n-triples/

REFERENCES 93

[87] (). “Using the Amazon Neptune bulk loader to ingest data”, [Online]. Avail-

able: https://docs.aws.amazon.com/neptune/latest/userguide/bulk-

load.html (visited on 01/03/2021).

[88] (). “Regex”, [Online]. Available: https://www.w3.org/TR/rdf-sparql-

query/#funcex-regex (visited on 01/11/2021).

[89] (). “Amazon Neptune full-text search using Amazon Elasticsearch service”,

[Online]. Available: https://docs.aws.amazon.com/neptune/latest/

userguide/full-text-search.html (visited on 01/11/2021).

[90] N. Weiderman, D. Smith, and S. Tilley, “Approaches to legacy system evo-

lution”, Software Engineering Institute, Carnegie Mellon University, Pitts-

burgh, PA, Tech. Rep. CMU/SEI-97-TR-014, 1997. [Online]. Available: http:

//resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12919.

[91] (). “Rdflib 5.0.0 documentation”, [Online]. Available: https : / / rdflib .

readthedocs.io/en/stable/ (visited on 01/13/2021).

[92] (). “AMQP 0-9-1 model explained”, [Online]. Available: https : / / www .

rabbitmq.com/tutorials/amqp-concepts.html (visited on 01/16/2021).

[93] (). “Edn - extensible data notation”, [Online]. Available: https://github.

com/edn-format/edn (visited on 01/13/2021).

[94] (). “Using Neptune Streams”, [Online]. Available: https : / / docs . aws .

amazon.com/neptune/latest/userguide/streams-using.html (visited

on 01/14/2021).

[95] (). “Neptune Lab Mode”, [Online]. Available: https://docs.aws.amazon.

com/neptune/latest/userguide/features-lab-mode.html (visited on

01/14/2021).

https://docs.aws.amazon.com/neptune/latest/userguide/bulk-load.html
https://docs.aws.amazon.com/neptune/latest/userguide/bulk-load.html
https://www.w3.org/TR/rdf-sparql-query/#funcex-regex
https://www.w3.org/TR/rdf-sparql-query/#funcex-regex
https://docs.aws.amazon.com/neptune/latest/userguide/full-text-search.html
https://docs.aws.amazon.com/neptune/latest/userguide/full-text-search.html
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12919
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=12919
https://rdflib.readthedocs.io/en/stable/
https://rdflib.readthedocs.io/en/stable/
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://github.com/edn-format/edn
https://github.com/edn-format/edn
https://docs.aws.amazon.com/neptune/latest/userguide/streams-using.html
https://docs.aws.amazon.com/neptune/latest/userguide/streams-using.html
https://docs.aws.amazon.com/neptune/latest/userguide/features-lab-mode.html
https://docs.aws.amazon.com/neptune/latest/userguide/features-lab-mode.html

REFERENCES 94

[96] (). “Capturing graph changes in real time using Neptune Streams”, [Online].

Available: https://docs.aws.amazon.com/neptune/latest/userguide/

streams.html (visited on 01/14/2021).

[97] (). “Using AWS CloudFormation to set up Neptune-to-Neptune replication

with the Streams consumer application”, [Online]. Available: https://docs.

aws.amazon.com/neptune/latest/userguide/streams-consumer-setup.

html (visited on 01/14/2021).

[98] (). “Export Neptune to ElasticSearch”, [Online]. Available: https://github.

com/awslabs/amazon-neptune-tools/tree/master/export-neptune-

to-elasticsearch (visited on 01/14/2021).

[99] (). “Sample SPARQL queries using full-text search in Neptune”, [Online].

Available: https://docs.aws.amazon.com/neptune/latest/userguide/

full-text-search-sparql-examples.html (visited on 01/14/2021).

[100] J. Aasman, “Transmuting information to knowledge with an enterprise knowl-

edge graph”, IT Professional, vol. 19, no. 6, pp. 44–51, 2017.

[101] (). “Gatling”, [Online]. Available: https://gatling.io/ (visited on 12/17/2020).

[102] (). “Gatling (software)”, [Online]. Available: https://en.wikipedia.org/

wiki/Gatling_(software) (visited on 01/23/2021).

[103] (). “Gatling: Concepts”, [Online]. Available: https://gatling.io/docs/

current/general/concepts/ (visited on 01/23/2021).

[104] (). “Akka”, [Online]. Available: https://akka.io/ (visited on 01/23/2021).

[105] (). “Netty”, [Online]. Available: https://netty.io/ (visited on 01/23/2021).

[106] (). “Gatling”, [Online]. Available: https://github.com/gatling/gatling

(visited on 01/23/2021).

https://docs.aws.amazon.com/neptune/latest/userguide/streams.html
https://docs.aws.amazon.com/neptune/latest/userguide/streams.html
https://docs.aws.amazon.com/neptune/latest/userguide/streams-consumer-setup.html
https://docs.aws.amazon.com/neptune/latest/userguide/streams-consumer-setup.html
https://docs.aws.amazon.com/neptune/latest/userguide/streams-consumer-setup.html
https://github.com/awslabs/amazon-neptune-tools/tree/master/export-neptune-to-elasticsearch
https://github.com/awslabs/amazon-neptune-tools/tree/master/export-neptune-to-elasticsearch
https://github.com/awslabs/amazon-neptune-tools/tree/master/export-neptune-to-elasticsearch
https://docs.aws.amazon.com/neptune/latest/userguide/full-text-search-sparql-examples.html
https://docs.aws.amazon.com/neptune/latest/userguide/full-text-search-sparql-examples.html
https://gatling.io/
https://en.wikipedia.org/wiki/Gatling_(software)
https://en.wikipedia.org/wiki/Gatling_(software)
https://gatling.io/docs/current/general/concepts/
https://gatling.io/docs/current/general/concepts/
https://akka.io/
https://netty.io/
https://github.com/gatling/gatling

REFERENCES 95

[107] (). “Feeders”, [Online]. Available: https://gatling.io/docs/current/

session/feeder/#feeder (visited on 01/24/2021).

[108] (). “Cache-Control”, [Online]. Available: https://developer.mozilla.org/

en-US/docs/Web/HTTP/Headers/Cache-Control (visited on 01/24/2021).

[109] (). “Adding Neptune replicas to a DB cluster”, [Online]. Available: https:

//docs.aws.amazon.com/neptune/latest/userguide/manage-console-

add-replicas.html (visited on 01/27/2021).

[110] (). “Connecting to Amazon Neptune endpoints”, [Online]. Available: https:

//docs.aws.amazon.com/neptune/latest/userguide/feature-overview-

endpoints.html (visited on 01/27/2021).

[111] D. E. Knuth, The Art of Computer Programming, Vol. 1: Fundamental Algo-

rithms, Third. Reading, Mass.: Addison-Wesley, 1997, isbn: 9780201896831.

[112] T. Dingsøyr, “Postmortem reviews: Purpose and approaches in software en-

gineering”, Information and Software Technology, vol. 47, pp. 293–303, Mar.

2005. doi: 10.1016/j.infsof.2004.08.008.

[113] T. O. A. Lehtinen, J. Itkonen, and C. Lessenius, “Recurring opinions or pro-

ductive improvements—what agile teams actually discuss in retrospectives”,

Empirical Software Engineering, vol. 22, pp. 2409–2452, 2017.

[114] M. Myllyaho, O. Salo, J. Kääriäinen, J. Hyysalo, and J. Koskela, “A review

of small and large post-mortem analysis methods”, VTT, Dec. 2004, [Online].

Available: http://virtual.vtt.fi/virtual/proj1/projects/merlin/

pub/analysis%20_of_small_and_large_post-mortem_review_methods.

pdf (visited on 01/31/2020).

[115] B. Bebee, R. Chander, A. Gupta, A. Khandelwal, S. Mallidi, M. Schmidt,

R. Sharda, B. Thompson, and P. Upadhyay, “Enabling an enterprise data

https://gatling.io/docs/current/session/feeder/#feeder
https://gatling.io/docs/current/session/feeder/#feeder
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cache-Control
https://docs.aws.amazon.com/neptune/latest/userguide/manage-console-add-replicas.html
https://docs.aws.amazon.com/neptune/latest/userguide/manage-console-add-replicas.html
https://docs.aws.amazon.com/neptune/latest/userguide/manage-console-add-replicas.html
https://docs.aws.amazon.com/neptune/latest/userguide/feature-overview-endpoints.html
https://docs.aws.amazon.com/neptune/latest/userguide/feature-overview-endpoints.html
https://docs.aws.amazon.com/neptune/latest/userguide/feature-overview-endpoints.html
https://doi.org/10.1016/j.infsof.2004.08.008
http://virtual.vtt.fi/virtual/proj1/projects/merlin/pub/analysis%20_of_small_and_large_post-mortem_review_methods.pdf
http://virtual.vtt.fi/virtual/proj1/projects/merlin/pub/analysis%20_of_small_and_large_post-mortem_review_methods.pdf
http://virtual.vtt.fi/virtual/proj1/projects/merlin/pub/analysis%20_of_small_and_large_post-mortem_review_methods.pdf

REFERENCES 96

management ecosystem using change data capture with Amazon Neptune”,

2017, [Online]. Available: http://ceur-ws.org/Vol-2456/paper49.pdf.

[116] J. Stillerman, T. Fredian, M. Greenwald, and G. Manduchi, “Data catalog

project — a browsable, searchable, metadata system”, Fusion Engineering

and Design, vol. 112, pp. 995–998, 2016.

http://ceur-ws.org/Vol-2456/paper49.pdf

Appendix A Code examples

APPENDIX A. CODE EXAMPLES A-2

Code snippet 5 The concept “cosplay” in the General Finnish Ontology in Turtle

format
{Turtle}

@prefix yso: <http://www.yso.fi/onto/yso/> .

@prefix skos: <http://www.w3.org/2004/02/skos/core#> .

@prefix allars: <http://www.yso.fi/onto/allars/> .

@prefix koko: <http://www.yso.fi/onto/koko/> .

@prefix ysa: <http://www.yso.fi/onto/ysa/> .

@prefix dc: <http://purl.org/dc/terms/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

yso:p20742

skos:related yso:p19001, yso:p2901, yso:p1273, yso:p4733 ;

skos:prefLabel "cosplay"@en, "cosplay"@sv, "cosplay"@fi ;

a <http://www.yso.fi/onto/yso-meta/Concept>, skos:Concept ;

skos:exactMatch allars:Y38283, koko:p50474, ysa:Y165778 ;

skos:inScheme yso: ;

dc:modified "2020-01-25"^^xsd:date ;

dc:created "2009-05-15"^^xsd:date ;

skos:broader yso:p562 ;

skos:closeMatch <http://id.loc.gov/authorities/subjects/sh2015001998> ;

skos:altLabel "pukuilu"@fi .

APPENDIX A. CODE EXAMPLES A-3

Code snippet 6 A query example.
{json}

GET https://content-index.api.yle.fi/v2/ancestors/1-50547210

{

"data":{

"plasma-seasons":[

"16-0-1113061592527"

],

"projects":[

"40-2-3050582"

],

"products":[

"40-1-4056529"

],

"plasma-series":[

"16-10-1189564427527"

],

"cost-centers":[

"60-12107"

],

"areena-seasons":[

"1-50547206"

],

"areena-series":[

"1-50654666"

],

}

}

APPENDIX A. CODE EXAMPLES A-4

Code snippet 7 Example query from Relations API.
{json}

GET https://relations.api.yle.fi/v2/relation?targetId=1-2155797

{

"data":[

{

"id":"52-47016285",

"sourceId":"18-177017",

"targetId":"1-2155797",

"originId":"51-3",

"relationType":"isCountryOfOriginOf"

},

{

"id":"52-47016286",

"sourceId":"18-299297",

"targetId":"1-2155797",

"originId":"51-3",

"relationType":"isGenreOf"

},

{

"id":"52-47016287",

"sourceId":"18-299306",

"targetId":"1-2155797",

"originId":"51-3",

"relationType":"isGenreOf"

},

{

"id":"52-47016288",

"sourceId":"18-299286",

"targetId":"1-2155797",

"originId":"51-3",

"relationType":"isGenreOf"

}

]

}

Appendix B Retrospective answers

APPENDIX B. RETROSPECTIVE ANSWERS B-2

Figure B.1: What was the original problem?

Figure B.2: What was the most important thing you learned?

APPENDIX B. RETROSPECTIVE ANSWERS B-3

Figure B.3: When would you choose a graph database now?

	Introduction
	Context of the thesis
	Methodology
	Research questions
	Structure of the study

	Central concepts
	Microservice architecture
	Definitions
	Background
	Microservice best practices

	Knowledge graphs
	Graph databases
	Data formats
	SPARQL

	RQ1: Graph databases in microservices

	Case context
	APIs at Yle
	Content metadata services
	Content Index
	Meta API
	Relations API

	Use cases

	Migration to graph database
	Background
	Technological choices
	Amazon Neptune
	Proof of concept
	Migration process
	Phase 1
	Phase 2
	Phase 3
	Phase 4

	RQ2: A process for migration

	Evaluation
	Performance benchmarks
	API response times
	Load tests

	Project retrospective
	What was the original problem?
	What was the most important thing you learned?
	When would you choose a graph database now?
	Is the project worth continuing?

	Discussion
	Fulfillment of requirements
	RQ3: Perspectives to using GDB in microservices
	Contributions of the research

	Conclusion
	References
	Code examples
	Retrospective answers

