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ABSTRACT: 
 
Spark plugs are used to ignite the fuel in the Wärtsilä’s SG engine ignition process and over-time 
they can suffer from various conditions such as wearing and fouling. More diagnostic infor-
mation about the health condition of the spark plugs is needed and machine learning can be 
used to train a model with data from spark plugs to find the underlying relationship between 
the created model’s inputs and outputs. This thesis evaluates if machine learning can be used to 
provide such diagnostic information from the WCD-20 engine module data, and as a result a 
concept machine learning model is implemented and tested. 
 
The machine learning model is first designed, and the chosen learning technique and algorithm 
are supervised learning and neural network, respectively. The designed machine learning model 
classifies spark plugs into three different classes based on the input features, and these classes 
present the health conditions of the spark plugs. The data for the model’s training and validation 
processes is gathered by testing spark plugs in different conditions with a spark plug test rig 
machine. During this testing, the spark plugs are labeled into the three different classes accord-
ing to their conditions. The machine learning model is implemented with Python programming 
language using Tensorflow library, and after implementing and training, the model is saved and 
downloaded into an engine module. The engine module’s source code is programmed to be able 
to run the machine learning model.  
 
The machine learning model’s accuracy is tested, and it achieves an overall accuracy of 82% 
when testing it with unseen data. The model has a high recall value for the output class that 
presents the spark plugs in good condition, but the model does not classify the spark plugs that 
are in bad condition as well. The model increases the overall CPU usage of the used engine mod-
ule by 4,3%, which is relatively high, and this is due to the many matrix multiplication that are 
performed in the model’s dense layers for each spark plug separately. Based on these results it 
is evident that spark plug health condition can be generally diagnosed by using machine learning, 
but some misclassifications can still occur. 
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TIIVISTELMÄ: 
 
Sytytystulppia käytettään Wärtsilän SG moottoreissa sytyttämään polttoaine, ja ajan kuluessa 

ne voivat kärsiä monenlaisista kuntoa heikentävistä asioista, kuten likaantumisesta ja 

kulumisesta. Sytytystulppien kunnosta tarvitaan lisää diagnostiikka informaatioita ja 

koneoppimisen avulla voidaan kouluttaa malli mikä käyttää sytytystulpista saatavaa dataa 

löytääkseen suhteen luodun mallin sisään- ja ulostulojen välillä. Tämä opinnäytetyö arvio 

koneoppimisen soveltuvuutta tuottamaan tarvittavaa diagnostiikka informaatioita 

sytytystulpista WCD-20 moottorimoduulista saatavalla datalla, ja lopputuloksena konsepti 

koneoppimismalli toteutetaan ja testataan. 

Koneoppimismalli suunnitellaan ensimmäisenä ja valittu koneoppimisen oppimistekniikka ja 

algoritmi ovat valvottu oppiminen ja hermoverkko. Suunniteltu koneoppimismalli luokittelee 

sytytystulppia kolmeen eri luokkaan valittujen sisäänmeno piirteiden perusteella, ja nämä 

luokat edustavat sytytystulppien kunnon tiloja. Koneoppimismallin opetuksessa käytetty on 

kerätty testaamalla erikuntoisia sytytystulppia käyttäen sytytystulppien testaus laitteistoa. 

Näiden testien aikana sytytystulpat luokitellaan kolmeen eri luokkaan niiden kunnon 

perusteella. Koneoppimismalli toteutetaan ja koulutetaan käyttäen Python ohjelmointikieltä ja 

Tensorflow kirjastoa, mikä jälkeen malli tallennetaan ja ladataan moottorimoduulille. 

Moottorimoduulin lähdekoodia ohjelmoidaan siten että se pystyy käyttämään 

koneoppimismallia. 

Koneoppimismallin tarkkuus testataan ja se saavuttaa 82 %:n kokonaistarkkuuden testattaessa 

sitä ennennäkemättömällä datalla. Mallilla on korkea herkkyysarvo ulostuloluokalle mikä 

edustaa sytytystulppia hyvässä kunnossa, mutta malli ei luokittele huonokuntoisia 

sytytystulppia yhtä hyvin. Malli kasvattaa prosessorin käyttöastetta 4,3 %, mikä on melko 

korkea lisäys. Tämä lisäys johtuu monista matriisien kertolaskuista mitkä suoritetaan mallin 

tiheissä kerroksissa jokaiselle sytytystulpalle erikseen. Näiden tuloksien perusteella 

koneoppimista voidaan yleisesti käyttää sytytystulppien kunnon luokittelemiseen, mutta vääriä 

luokittelutuloksia voi silti tapahtua. 

KEYWORDS: WCD-20, koneoppiminen, sytytystulppa 
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1 Introduction 

 

Wärtsilä’s SG engines use spark plugs in their combustion process, which require mainte-

nance at certain time intervals. WCD-20 module controls and measures variables related 

to the spark plugs, but currently more diagnostic information about the health of the 

spark plugs could be used. Different types of spark plugs, spark plugs from different man-

ufacturers and the engine configuration can all affect the behaviour of the spark phe-

nomenon and the measurement values, thus adding complexity to the spark plug health 

diagnosis process. 

 

Machine learning corresponds to the concept of teaching a system to learn and improve 

from experience and data, to build a model that can provide a relation between input 

data and an output result.  Machine learning is used by many companies in their systems 

and applications because it can be used effectively to solve problems that would be very 

challenging or time consuming to do with standard programming (Hao Karen 2018).  

Considering the analysis and prediction capabilities of machine learning, it is worth of 

investigation if the spark plug health condition can be estimated by using machine learn-

ing with the data that the WCD-20 module can provide. 

 

 

1.1 Objective of the thesis 

The objective of this thesis is to evaluate the possibility to use machine learning to diag-

nose spark plug health condition in Wärtsilä’s SG engines.  The motivation for this is to 

increase the maintenance interval for the SG engines and improve the diagnostic infor-

mation about the spark plugs, thus making it easier to detect spark plug failure. 

 

The data for this thesis will be gathered from several spark plugs in different conditions 

and they will be tested using a spark plug test rig machine. The WCD-20 module data 

from this testing is used in the machine learning model, and appropriate parameters that 
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can indicate spark plug health condition from this data will be selected with the help of 

the information gathered in the theory part of this thesis. The suitable machine learning 

algorithms will be discussed and the best fitting algorithm for this problem will be chosen 

based on the ability to estimate the spark plug health condition. Finally, the performance 

of the developed machine learning model will be tested, and the results will be analysed 

to evaluate whether it is feasible to use machine learning in this issue. 

 

1.2 Structure of the thesis 

This thesis consists of six chapters. Chapter 1 is the introduction of the thesis and the 

chapters 2 and 3 focus on the relevant theory that provides support and information 

about the objective of the thesis. Chapter 4 presents the designing of the machine learn-

ing model and Chapter 5 is about the implementation process of the machine learning 

model. In Chapter 6 testing and analysis of the machine learning model is introduced. 

The Chapter 7 is the final chapter of this thesis and it will provide the conclusion to this 

thesis.   
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2 Machine learning 

In general machine learning is artificial intelligence that is capable of learning, and gen-

erally data and algorithms are used to build and train a machine learning model that can 

be descriptive, predictive or both. When a system is in a changing environment it needs 

to learn and adapt in order to be intelligent, and the learning capabilities also relieve the 

system designer from thinking and designing every possible solution for every possible 

scenario and event that could occur. (Ethem Alpaydin 2020: 3-7) 

 

Machine learning is considered to be a part of artificial intelligence, and it mainly differs 

from traditional definition of artificial intelligence in that passive observations from data 

are used to learn and to make the predictions. Artificial intelligence is a broader subject 

which involves machines and computers interacting with and learning from their sur-

rounding environment intelligently, and one way to achieve this can be by utilizing ma-

chine learning. The definition of artificial intelligence can also change and grow overtime 

when technology advancements occur. (Roberto Iriondo 2018) 

 

Machine learning algorithms are great for solving problems related to analyzing data and 

using that data to make, for example, predictions, classifications, optimizations, trouble-

shooting or controlling (Ethem Alpaydin 2020: 3-4). Some possible tasks could include 

finding the most satisfying solution for non-polynomial problem through optimization, 

troubleshooting a system by finding patterns and deviations from the patterns in data or 

classification of data samples into categories based on their individual features. Thanks 

to these features machine learning can be used in various applications and fields such as 

robotics, banking and medicine to solve myriads of problems. (Mehryar M., A. Rostami-

zadeh & A. Talwalkar 2018: 1-2) 

 

The ability to learn is achieved by building a mathematical model based on collected 

sample data, also known as training data. This training data is used to train the model 

through different kinds of techniques and various iterations. An example of the training 

process could be using collected training data that has been labeled by a human with 
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labels such as “good” or “bad” sample, and then going through the training data and it’s 

features and training the machine learning model to be able to label future unlabeled 

data by evaluating the features of the data. During the learning process the machine 

learning model will try to predict the label of a training data sample by using the values 

of the features of the training data sample, and depending on the result the mathemat-

ical model that is used to calculate the value of the label will be adjusted accordingly. 

(Mehryar M., A. Rostamizadeh & A. Talwalkar 2018: 1-3) 

 

 

Figure 1 Example stages of a machine learning process (Mehryar M., A. Rostamizadeh & 
A. Talwalkar 2018: 5). 

 

2.1 Learning techniques 

The techniques to train a machine learning model can vary and depending on the data 

available the most suitable learning technique for a given problem can be chosen. The 

machine learning techniques include (Mehryar M., A. Rostamizadeh & A. Talwalkar 2018: 

1-3): 

• Supervised learning.  

• Unsupervised learning.  

• Semi-supervised learning.  

• Transductive inference. 

• On-line learning. 

• Reinforcement learning. 
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• Active learning. 

 

2.1.1 Supervised learning 

Supervised learning is a learning technique that utilizes readymade training data during 

the training process. The training data can be labeled and during the training the ma-

chine learning model tries to learn the relation between the input training data and the 

labeled output. The input data can consist of many features and it can be represented 

for example as a feature vector. The relation between the input data and the output can 

be represented as a mathematical function, for example as a linear regression model. 

(Vladimir Nasteski 2017: 3-5). 

 

Other parts of this learning technique include the validation of the model with part of 

the data saved for this phase, where the maker of the machine learning model validates 

it’s performance and correctness with some part of the data that has been available to 

them. After the machine learning model is ready and working, it can be tested in the real 

environment to see how it performs. (Vladimir Nasteski 2017: 3-5) 

 

Figure 2 The process of supervised learning. (Vladimir Nasteski 2017: 4). 
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Supervised learning is most commonly utilized in neural networks and decision tree al-

gorithms, which both depend on the information and data that is given to them by the 

pre-determinate classification. In the end, supervised learning is used in two different 

learning tasks, classification and regression. In regression problems the label is continu-

ous and in classification scenarios the label is discrete. Applications that use supervised 

learning are such of a kind where historical data can likely predict feature events. (Vladi-

mir Nasteski 2017: 5) 

 

2.1.2 Unsupervised learning 

Unsupervised learning aims to find regularities or patterns in the input data without 

readymade training data with labels or supervision that tells the machine learning model 

if it is right or wrong. Unsupervised learning is most commonly used in density estima-

tion. Main methods that are used in unsupervised learning include principal component 

analysis and clustering. In clustering the goal is to group the input data into separate 

clusters according to their features. In a successful scenario this will result a division be-

tween data points that have different kinds of features and in contrast data points with 

similar features will be clustered together. (Ethem Alpaydin 2020: 11-12). 

 

2.1.3 Reinforcement learning 

Reinforcement learning focuses on optimizing the policy of a sequence of correct actions 

needed to reach the satisfactory output of a system. In other words, the machine learn-

ing algorithm learns a policy how to act and respond to specific events that happen in 

the world around it. These events have an impact on the environment, which in turn 

affects and provides feedback to the machine learning system that it can use and learn 

form. (Vladimir Nasteski 2017: 2) 

 

 Systems which output can be in such form include robots that are trying to navigate in 

an area to a desired destination or a game where the artificial intelligence tries to win.  

In such learning scenarios a single action or move is not that important, and these single 
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decisions are also only good if they are a part of the right policy that will eventually reach 

the desired goal. (Ethem Alpaydin 2020: 12-13) 

 

2.2 Algorithms 

The available data and the chosen learning technique affect the algorithm that can be 

used in a machine learning model. It is important to choose the right algorithm for a 

given model, because the core of the machine learning is the algorithm that is created 

to learn from the data that will be inputted to it. The algorithm can mimic human style 

learning in some tasks and in addition the algorithm can represent how difficult it is to 

learn in different environments. Currently many of the machine learning algorithms have 

already been developed and improved over the years and choosing a readymade algo-

rithm and altering it for the desired application can be a part of the workflow of many 

machine learning systems. (Vladimir Nasteski 2017: 1-3) 

 

Some of the machine learning algorithms are listed below, and in this thesis, I will focus 

on some of the most suitable candidates that could solve the WDC-20 spark diagnostic 

problem. (Vansh Jatana 2019: 1-4) 

• Linear regression.  

• Logistic Regression.  

• Decision tree.  

• Boosting. 

• Naive Bayes. 

• Neural networks. 

• K-means. 

 

Machine learning algorithm also behave differently and have unique properties to one 

another.  Properties such as memory consumption and size, time to learn and to predict 

and overfitting tendency also separate algorithms from each other and must be consid-

ered when developing a machine learning model. (Vansh Jatana 2019: 1-4) 
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Each machine learning algorithm is typically used either in classification or regression 

problems, and classification problems can be also divided into single- and multiclass clas-

sification tasks. Algorithms can be transformed to perform multiclass classification from 

single class classification by using methods such as “one vs all” or “one vs one”, which 

split the single class classification problem into multiple different classification problems. 

These divided and new classification problems are then calculated and used to create 

output with multiple classes. (Mehryar M., A. Rostamizadeh & A. Talwalkar 2018: 213-

230) 

 

2.2.1 Linear Regression 

Linear regression aims to find and model the relationship between some explanatory 

variables and some real valued outcome. When this is cast as a learning problem, the 

domain set X is a subset of Rd for some d, and the label 𝑦 is the set of real numbers. The 

goal is to learn a linear function h : Rd → R that is the best approximation of the rela-

tionship between the models input and output variables, where input is vector 𝑥 and 

output is (𝑤, 𝑥) + 𝑏 where 𝑏 is the added bias value and the symbol R corresponds to a 

set of real numbers. The hypothesis for this class of linear regression is the formula below. 

(Shai S. S. & B. D. Shai 2014: 123-125) 

 

𝐻𝑟𝑒𝑔 = 𝐿𝑑 = {𝑥 → (𝑤, 𝑥) + 𝑏: 𝑤 ∈  𝑅𝑑 , 𝑏 ∈ 𝑅 } 

 

In addition to this a definition for a loss function is needed. In a classification task the 

definition is simple, and it can be defined as 𝑙(ℎ(𝑥, 𝑦)), and this indicates if the ℎ(𝑥) 

with 𝑥  as an input value correctly predicts desired output 𝑦. In the case of regression, 

we need to define how much penalty we will have the further away our prediction ℎ(𝑥) 

from the correct y value is. The formula for the squared-loss function is shown below, 

and this is one common way of calculating the loss-function. The empirical risk function 

for the squared-loss function is called Mean squared error, which is used to calculate the 
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expected value of a loss function, is also represented below the loss function formula.  

(Shai S. S. & B. D. Shai 2014: 123-124) 

 

𝑙(ℎ(𝑥, 𝑦)) = (ℎ(𝑥) − 𝑦)2 

 

𝐿𝑆(ℎ) =
1

𝑚
∑(ℎ(𝑥𝑖) − 𝑦𝑖)2

𝑚

𝑖=1

 

 

The mathematical model for simple regression and multiple regression that has a linear 

combination of features is shown respectively in the formulae below. They depict linear 

regression between a continuous scalar dependent variable 𝑦 and one or more explan-

atory variables 𝑥. Variables for 𝛽 represent the regression coefficients for the explana-

tory variables and variable 𝛽0 represents the intercept. Variable 𝑒 is the error term. The 

variable y is often called a label or a target in machine learning terminology, and the 

explanatory variables are called features or input variables for example. (Vladimir 

Nasteski 2017: 6-7) 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝑒 

 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+. . +𝑒 

 

The output of a simple linear regression can be similar to the picture 4, where the red 

line corresponds to the output of the linear regression model. This output has been cal-

culated to fit the blue points, in other words the input data, as accurately as possible by 

trying to minimize a value of a loss function that is used in this case. (Vladimir Nasteski 

2017: 7) 
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Figure 3 Output of linear regression. (Vladimir Nasteski 2017: 7). 

 

Linear regression algorithm tends to have low memory consumption and size compared 

to other machine learning algorithms. It is also fast in the learning process and is gener-

ally fast when doing the prediction calculations. Simple linear regression algorithm also 

has low overfitting tendency, but can be prone to underfitting, and the parametrization 

is usually fairly straightforward. (Vansh Jatana 2019: 1-4) 

 

2.2.2 Logistic regression 

Logistic regression is a discriminative classifier that is used to predict the probability of 

an event by fitting the data to a logistic function. The hypothesis of the logistic regression 

is the first represented formula below, where the function 𝑔 corresponds to a sigmoid 

function, which is also represented as a formula after the hypothesis,  and 𝜃 is the vector 

of parameters which will be calculated to fit the classifier. Logistic regression function is 

best fitted to be used in classification problems. (Vladimir Nasteski 2017: 8) 

 

ℎ𝜃 = 𝑔(𝜃𝑇𝑥) 

 

𝑔(𝑧) =
1

1 + 𝑒−𝑧
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The basic logistic regression algorithm functions by first extracting a set of weighted fea-

tures from the input data and then taking logarithms from the input data features and 

combining the results linearly. The input variables to the logistic regression can be either 

numerical or categorical and the output will be in the range of [0, 1] (Vladimir Nasteski 

2017: 8). The logistic regression function is generally fast in doing the learning process 

and calculating the predictions, while having a small memory usage (Vansh Jatana 2019: 

1-4).  

 

 

Figure 4 Output of logistic regression. (Vladimir Nasteski 2017: 8). 

 

The logistic regression can also be extended to do a multiclass classification. The ex-

tended logistic regression formula is the formula that is represented below, and it is of-

ten called the Softmax equation. The 𝑊 values correspond to the weights, 𝑥 values are 

the input values, the 𝑏 values are the bias or added error values and K represents the 

number of classes in the multi-class classifier. The Softmax equation divides the expo-

nent of each input element with the sum of exponents of all of the input elements, thus 

creating an output with multiple classes and probabilities assigned to them. The sum of 

the output probabilities is equal to one and every single class will have an own output 

that is between [0, 1]. (Developers.google 2020) 
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𝑝(𝑦 = 𝑗|𝑥) =
𝑒(𝑊𝑗

𝑇𝑥+𝑏𝑗)

∑ 𝑒(𝑊𝑘
𝑇𝑥+𝑏𝑘)

𝑘∈K

 

 

2.2.3 Artificial neural networks 

Artificial neural networks are based on the idea of multiple neurons that join together 

with communication links to carry out complex computations, which mimics the behav-

iour of human brain. The neurons themselves are all modelled as a simple scalar function, 

for example the sign-function, sigmoid-function or the threshold-function, and these 

functions of the neurons can be called the activation functions and are defined as σ: R →

R. The outputs of the neurons are then connected to the inputs of some other neuron 

and the input of a neuron is obtained by taking a weighted sum of the outputs of all the 

neurons connected to it. These weights related to the neurons are adjusted in the learn-

ing process of the artificial neural network according to the error of the output of the 

network, which is gotten from calculating the output of a selected loss function. 

Methods such as stochastic gradient descent can be used in the training process of a 

neural network to adjust the weights. Example structure of a feedforward neural net-

work, which does not have any cycles, can be seen in the picture 4. (Shai S. S. & B. D. 

Shai 2014: 269-271) 

 

The mathematical formula for a layered feedforward neural network is represented be-

low. This is described as a directed acyclic graph 𝐺 = (𝑉, 𝐸) , where 𝐸  represents the 

edges of the graph and 𝑉 depicts the layers of the graph,  and the weight function over 

the links between the neurons is 𝑤 ∶ 𝐸 → R .  When advancing from here, the set of 

nodes can be decomposed into a union of disjoint subsets 𝑉 = ⋃ 𝑉𝑡
𝑇
𝑡=0 , such that every 

edge in 𝐸 connects some node in 𝑉𝑡−1 to some node in 𝑉𝑡, for some 𝑡 ∈ [T]. The input 

layer 𝑉0 contains 𝑛 + 1 neurons, where 𝑛 is the dimensionality of the input space, and 

for every 𝑖 ∈ [n] the output neuron 𝑖 is simply 𝑥𝑖. We then denote 𝑣𝑡,𝑖 the 𝑖 :th neuron 

of the 𝑡:th layer and by 𝑜𝑡,𝑖(𝑋) the output of 𝑣𝑡,𝑖  when the network is fed with the input 

vextor 𝑋. Therefore, for 𝑖 ∈ [n] we have 𝑜0,𝑖(𝑋) = 𝑥𝑖 and proceed calculations in layer 

by layer manner, which is represented in the form of calculations for the layer 𝑡 + 1, 
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where 𝑣𝑡+1,𝑗 ∈ 𝑉𝑡+1, and let 𝑎𝑡+1,𝑗(𝑋) denote 𝑣𝑡+1,𝑗  when input vector 𝑋 is fed into the 

network. (Shai S. S. & B. D. Shai 2014: 269-271) 

 

𝑎𝑡+1,𝑗(𝑋) = ∑ 𝑤 ((𝑣𝑡,𝑟 , 𝑣𝑡+1,𝑗)) 𝑜𝑡,𝑟(𝑋)

𝑟:(𝑣𝑡,𝑟,𝑣𝑡+1,𝑗)∈E

 

 

𝑜𝑡+1,𝑗(𝑋) = σ(𝑎𝑡+1,𝑗(𝑋)) 

 

In other words, the 𝑣𝑡+1,𝑗   is a weigthed sum of the neurons outputs in 𝑉𝑡  , which are 

connected to the 𝑣𝑡+1,𝑗. Weighting is done according to 𝑤, and the output of 𝑣𝑡+1,𝑗  is 

the application of the activation function on its input. (Shai S. S. & B. D. Shai 2014: 269-

271, 281-282) 

 

 

Figure 5 Artificial neural network with three layers (Shai S. S. & B. D. Shai 2014: 270). 
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Neural networks can be modified to support multiclass classification by using the “one 

vs all” or “one vs one” methods. In such a scenario the output layer can consist of mul-

tiple binary neurons instead of one which will output the result as a multiclass classifi-

cation and the last layer of neurons can be represented as a Softmax function layer (De-

velopers.google 2020). This concept is shown in the picture 6 below, and the 𝑥 values 

are the input values to the network, 𝑤 values are the weights of the neurons and the 𝑧 

values are the outputs of the neurons (Ashutosh S. & Y. Li 2017). 

 

 

Figure 6 An example of an artificial neural network with multiple classification (Ashutosh 
S. & Y. Li 2017). 

 

Artificial neural networks are usually fast when calculating the predictions, but time they 

need to train and learn can be quite high in comparison to other machine learning algo-

rithms. They also consume more memory than the regression algorithms, but not as 

much as for example random forest or boosting algorithms, making them average in that 

regard. Artificial neural networks are mainly used in classification problems. (Vansh Jat-

ana 2019: 1-4) 
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2.3 Data 

Typically, the first requirement for the data that can be used in a machine learning model 

is that it is in a format that can be read by a computer. It can be represented for example 

as a vector or in tabular form where every row represents a particular data sample and 

every column represents a feature. The data can also be in such a format that is not 

obviously a ready table or vector, such as text, images or genomic sequences, thus mak-

ing the feature selection and data preparation more demanding of a job.  (Deisenroth M. 

P, A.A. Faisal & C. S. Ong 2020: 251-253) 

 

After the data is in the right format, it still has to be converted into numerical format if 

it is not yet in it. For example, data that is in categories such as “up” or “down” should 

be converted to 0 and 1 for example.  Numerical data must also be inspected in case of 

the scale, units and constraints of it are fit for the entire model. (Deisenroth M. P, A.A. 

Faisal & C. S. Ong 2020: 252-254). 

 

One of the problems that the data can have is the noise. It is difficult for the machine 

learning model to learn for example the right relation between the input and the output 

from data that has too much noise. In such a scenario the model could learn some right 

parts about the actual model it tries to predict, but in addition to that it can learn the 

noise too (Kalapanidas E., N. M.Avouris, M. V. Craciun & D. Neagu 2003: 2-4). This leads 

to incorrect model or overfitting or underfitting. Ways to reduce noise in data include 

removing features that are not useful, regularization of the model, cross-validation using 

more data and early stopping. (Elite data science 2019). 

 

2.4 Model validation and testing 

After the machine learning model is complete the performance of the model needs to 

be validated in order to find out if the model can predict the expected outcome in a right 

manner. The basic idea of the validation process is to calculate how many times the ma-

chine learning model predicted the expected result right or wrong, or how much error 
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the model has between the values it predicted versus the expected result values. (Shai 

S. S. & B. D. Shai 2014: 146-150) 

 

The validation and testing for the machine learning model can be done by splitting the 

training, validation and test data into different sets and after the training and model val-

idation sets have been completed, the test set is used to calculate the error the machine 

learning model produces with unseen data. Other method to test the model is to use k-

fold cross validation, which splits the data into k amount of folds and trains the data on 

k-1 folds and then tests on the fold that was left out . This is done for all of the combina-

tions and the results are averaged for every instance. The advantage with this method is 

that every observation is used for both training and validation. In addition to these meth-

ods there are also other methods that can used in the validation and testing process of 

the machine learning model. (Shai S. S. & B. D. Shai 2014: 149-150) 
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3 Engine ignition 

 

Engine ignition system is responsible for generating the spark that is used in the ignition 

of the fuel-air mixture. This energy created in the ignition is then used to move the en-

gine cylinder piston thus also rotating the crankshaft of the engine, and general illustra-

tion of this process is represented in the picture 6. In Wärtsilä’s spark gas engines the 

WCD-20 module is responsible for managing and measuring the parameters related to 

the spark plugs and the ignition. In 4-stroke combustion engines, the stages of the com-

bustion cycle include induction, compression, power and emission. (University of Calgary 

2019) 

 

 

Figure 7 Combustion and spark (Wouter K., P. Coombes & G. Couvert 2019: 3). 

 

During the intake process the intake valve opens and lets the air-fuel mixture inside the 

combustion chamber. After this the combustion part begins and the piston starts to 

move upward in the cylinder, thus compressing the air-fuel mixture and increasing the 

temperature, pressure and the density according to the ideal gas law. Right before the 

piston reaches the top dead center, a spark plug is used to generate the spark that ignites 

the air-fuel mixture.  The stage preceding this point is called the power phase, and during 



24 

this phase the pressure of the gases in the combustion push the piston downward, thus 

decreasing the density, temperature and pressure of the combustion gases in the cylin-

der according to the ideal gas law. Right before the piston reaches the bottom dead cen-

ter, the exhaust valve opens, thus causing the exhaust gases to expand. The piston con-

tinues to move upward after the bottom dead center pushing the exhaust gases out of 

the cylinder through the exhaust vent, and this last stage is called the exhaust phase. 

(University of Calgary 2019) 

 

For the ignition to happen, the conditions in the cylinder must be correct and the equip-

ment used in the combustion must be in good condition. The equipment will wear over-

time and it is critical to notice the possible signs that might indicate a need for service, 

in order to maintain proper engine combustion cycle and avoid any severe downtime or 

damage to the engine. To increase awareness to these issues, different automated diag-

nostic systems and sensors can be used to detect and measure various parameters that 

help in the diagnosis of the engine. (Raman K Autar 2004: 1-5) 

 

3.1 Spark plugs 

Spark plugs are the components in the cylinder that receive a short burst of high voltage 

from the ignition system to generate a spark between the small gap in the tip of the 

spark plug. This generated spark is then used to ignite the air fuel mixture inside the 

cylinder, and the design and features of the spark plugs used in an engine have an impact 

on the ignition and combustion process in general (Javan S., S. V. Hosseini, S. S. Alaviyoun 

& F. Ommi 2013: 32–33).  Despite having different properties, spark plugs should still be 

able to generate the spark in various operating conditions, where the temperature, air 

fuel mixture, pressure and engine speed and load can vary. (Wouter K., P. Coombes & G. 

Couvert 2019: 18). 

 

The general structure of a spark plug can be seen in the picture 7. The tip of the spark 

plug is the area where the spark event itself occurs, and it consists of the centre elec-

trode and the ground electrode. The housing of the spark plug provides support and 
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protection to the insulator, and also secures the spark plug assembly to the engine. The 

insulator part of the spark plug gives electrical insulation between terminal, centre elec-

trode, housing and the centre shaft.  

 

 

Figure 8 General structure of a spark plug (Wouter K., P. Coombes & G. Couvert 2019: 
18). 

 

The voltage and the electrical energy that discharges during the spark event is depend-

ent on multiple factors, such as the spark plug gap length, internal resistance of the spark 

plug and the pressure of the gas between the spark plug gap. Generally increasing the 

pressure or the spark plug gap length will lead to higher required voltage to generate the 

spark. Additionally, in order for the ignition in the cylinder to happen, the voltage that is 

generated in the spark has to be high enough. Depending on the fuel type and it’s mix-

ture, the electrical conductivity inside a cylinder can vary, and typically gasoline requires 

less voltage for the ignition than compressed natural gas fuels. The shape of the elec-

trodes in the spark plug also affect the required voltage, generally smaller electrodes 

decreasing the required voltage, but ultimately also raising the tip temperature, thus 
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leading to reduced lifetime. (Javan S., S. V. Hosseini, S. S. Alaviyoun & F. Ommi 2013: 32–

33) 

 

A general view of the behaviour of the voltages during a spark can be seen in the picture 

8 below. At point ‘a’ the current applied to the primary winding of the ignition systems 

coil is cut off, thus inducing a high voltage which passes down to the spark plug. In point 

‘b’ the voltage increases and between points ‘b’ and ‘c’ the gas between the spark plug 

ioinises, thus generating the spark. This phase is also known as capacitance spark. Bet-

ween the points ‘c’ and ‘d’ a longer duration of the spark is maintained and this stage is 

called the inductance spark, which refers to the fact that the spark is generated and 

maintained by the electromagnetic energy of the coil in the ignition system, in which the 

current gradually reduces. This electromagnetic energy of the coil is not enough to main-

tain the spark after point ‘d’, thus ending the spark and the discharge. (Wouter K., P. 

Coombes & G. Couvert 2019: 20). 
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Figure 9 Voltages and phases of a spark plug’s spark (Wouter K., P. Coombes & G. Couvert 
2019: 20). 

 

Spark plugs have to withstand high temperatures and pressures in the combustion cham-

ber, thus causing the electrodes of the spark plug to erode. This erosion can lead to the 

increase in the spark plug gap length, which will increase the required voltage to gener-

ate the spark. If the required spark voltage grows too large, the ignition system will not 

be capable of producing enough voltage for the spark to occur, thus causing misfires. 

(Javan S., S. V. Hosseini, S. S. Alaviyoun & F. Ommi 2013: 32, 37) 

 

While the spark plug gap growth is one of the main reasons that leads to increased volt-

age after several running hours, other factors such as electrical insulator deposits and 

oxide layers to the spark plug can also cause the required spark voltage to increase. This 

lessens the quality of the spark and can enable the spark to occur from a different path. 

This different path can be for example from the side of the electrode, which can lead to 
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increase in the cyclic variation of the indicated mean effective pressure, which also af-

fects the required the spark voltage.  In general, older and more used spark plugs have 

higher required voltage to generate the spark and worse spark quality compared to new 

and less used spark plugs, but the rate of the erosion decreases overtime, which implies 

that newer spark plugs suffer from it more than the older plugs. (Javan S., S. V. Hosseini, 

S. S. Alaviyoun & F. Ommi 2013: 32, 37) 

 

In addition to the above conditions and effects, spark plugs can go through other various 

kinds of wearing and aging conditions during their running hours. For example, the 

air/fuel mixture, fuel type, mechanical damage and the general conditions in the com-

bustion chamber can affect the health of a spark plug. Some of these conditions with 

causes and effects are represented in the table 1 below. (Bosch 2019: 1-2). 

 

Table 1. Spark plug condition (Bosch 2019: 1-2). 

Condition Cause Effects 

Lead fouling Lead additives in 

fuel. Glazing results from 

high engine loading after 

extended part-load opera-

tion. 

At high loads, the glazing 

becomes conductive and 

causes misfiring. 

Oil-fouled Too much oil in 

combustion chamber. 

Misfiring, difficult starting. 

Formation of ash Alloying constituents, par-

ticularly from engine oil, 

can deposit this ash in the 

combustion chamber and 

on the 

spark-plug face. 

Can lead to auto-ignition 

with loss of power and 

possible engine damage. 
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Center electrode covered 

with melted deposits 

Overheating 

caused by auto-ignition. 

 

Misfiring, loss of power (en-

gine damage). 

Heavy wear on 

center electrode 

Spark plug 

exchange interval has 

been exceeded 

Misfiring, 

particularly during 

acceleration (ignition 

voltage no longer sufficient 

for the large electrode gap). 

Poor starting. 

Heavy wear on 

ground electrode 

Aggressive 

fuel and oil additives. 

Unfavorable flow 

conditions in 

combustion chamber, en-

gine knock.  

Misfiring, particularly dur-

ing acceleration (ignition 

voltage no longer sufficient 

for the large electrode gap). 

Poor starting. 

Insulator-nose fracture Mechanical 

damage 

Misfiring, spark arcs-over 

 

 

  

3.2 Engine ignition system 

Engine ignition systems are responsible for creating the high voltage that can produce 

the spark to the spark plugs. The basic structure of an ignition system consists of ignition 

coils, spark plugs, contact breaker switch and rotator arm in distributor body. The igni-

tion coil typically contains primary and secondary windings, and the primary winding is 

supplied with electrical current. This produces a magnetic field around both of the wind-

ings, but when the current is switched off, the induced voltage to the secondary winding 

will be much higher because of its structure. This induced voltage is then used to gener-

ate the spark in the spark plugs. The contact breaker switch is used to open and close 
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the circuit that supplies the electrical current to the primary winding, and the rotator 

arm is used to distribute the induced voltage to the correct cylinders and spark plugs in 

the right cylinder firing order. (Wouter K., P. Coombes & G. Couvert 2019: 6-7). 

 

In Wärtsilä’s 34SG engines the ignition coil is located in the cylinder cover and is inte-

grated in the spark plug extension. The ignition module communicates with the main 

control module of the engine control system to aid in determining the global ignition 

timing, and the ignition module controls the cylinder specific ignition timing based on 

the combustion quality. (Wärtsilä engines 2011: 6-8) 

 

In the ignition process of the 34SG engine the lean mixture of gas fuel and air, which 

corresponds to the greater amount of air present in the cylinder than is needed for com-

plete combustion, is first ignited in the pre-chamber before it sets the flame front for the 

main combustion chamber. This design is essential part of the learn-burn spark-ignited 

gas engine, which enables the generation of less 𝑁𝑂𝑥 emission, extended spark plug life 

and reliable and powerful ignition with high combustion efficacy and stability. (Wärtsilä 

engines 2011: 6-8). 
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Figure 10 Overview of the 34SG engine (Wärtsilä engines 2011: 6). 

 

WCD-20 module is a part of some of the Wärtsilä’s SG-engine ignition systems, which 

controls and measures ignition and spark related parameters of the cylinders, such as 

ignition timing and spark energy level values, and the engine control module provides 

information to the module for it to operate as accurately as possible (Wärtsilä Engines 

2019: 100-101).  An example of another modular ignition system is the Altronic LLC’ CPU-

XL VariSpark ignition system for large gas engines, and it uses an improved capacitive 

discharge ignition technology where only a measured amount of a large capacitor is dis-

charged to generate a spark. (Altronic 2020). 

 

The capacitor discharge ignition functions by storing energy in an external capacitor, 

which is discharged into the ignition systems primary coil winding when the spark is re-

quired to be generated. The capacitor charging process is fast, thus enabling short tran-

sient response, fast voltage rise and a short spark peak duration. The high initial spark 

that this type of system generates allows combustion to occur in an engine that has ex-

cess oil or an over rich fuel air mixture in the combustion chamber. The high initial spark 
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voltage also avoids leakage across the spark plug insulator and electrode caused by foul-

ing, but on the other hand, the short spark duration caused by the fast capacitor dis-

charge leaves less energy for a longer spark duration to take place which might be 

needed for complete combustion in some cases. This short spark duration can cause 

misfires and increased exhaust emission, but the use of multi-spark ignition can alleviate 

this issue. In multi-spark the spark is generated multiple times in an engine cycle to 

achieve complete combustion, but this stresses the spark plug and can cause increased 

spark plug wearing. (Industrial gas engine controls 2020) 

 

The structure of a generic capacitor discharge system can be seen in the picture 11. The 

basic operating principle of this system is that current is supplied to the circuit for exam-

ple, through a battery or an alternator, and the supplied electricity charges the capacitor. 

The diode prevents the capacitor from discharging before the desired ignition timing, 

which is provided by the engine control unit. When the ignition timing is right the elec-

tronic switch is turned on and the capacitor discharges it’s energy to the ignition coil. 

(eeweb 2020) 

 

 

Figure 11 Generic structure of a capacitor discharge ignition system (eeweb 2020). 

 

In general, an Altronic CPU-XL VariSpark system consists of four modules that are used 

to control, to generate and measure the spark and ignition, and this concept is visible in 

the picture 12. The logic/display module manages all inputs, communication and control 

functions used to maintain and generate the spark. Junction/diagnostic module houses 
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all of the spark discharge diagnostic logic and all cylinder assignments for the engine 

firing order are done by this module. The output module is installed on every cylinder 

bank on the engine, and this module accepts logic-level firing signals and generates the 

high energy electrical pulse for the ignition coil/EZRail modules. The ignition coils or the 

EZRail modules, which consist of multiple ignition coils, are the final part of the system, 

and they are used to generate the spark voltage. (Altronic 2020) 

 

 

Figure 12 Generic structure of an Altronic CPU-XL VariSpark system (Altronic 2020). 

 

The ignition timing signal in the Altronic’s system is generated by using the angle of the 

engines flywheel to determine crankshaft’s position. The magnetic sensing holes in the 

flywheel are monitored to calculate the angle of the flywheel and these values are 

matched with the programmed engine firing patterns and angles, thus allowing precise 

spark ignition timings. The adjustment of the spark energy level is also possible in this 

kind of a system. These adjustments can lower the emissions and increase the spark plug 



34 

lifetime by using less electrical energy to generate the spark with newer plugs and opti-

mal cylinder conditions. Readjustments such as increasing the spark energy level to en-

sure that a spark occurs, and misfires are avoided can be made when the situation re-

quires them. This can be for example, due to spark plug wear or transformed conditions 

in the cylinder. (Altronic 2020) 
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4 Model design 

 

In this chapter the machine learning model’s design and contributing factors to it are 

presented.  In this thesis the general design of the machine learning model consists of 

the used machine learning technique, algorithm and data, while the contributing factors 

to this core design are the hardware architecture and designing of how to test the 

model’s performance. The goal of the model is to estimate the spark plug health condi-

tion as accurately as possible, because the result value is needed to inform the user 

about the health state of the spark plugs, but also possibly adjust parameters related to 

ignition with this diagnostic estimation data. 

 

The planned phases to develop the machine learning model in this thesis consists of the 

following parts, and these parts will be gone through later in this chapter: 

• Collect the data 

• Create the model 

• Train the model 

• Evaluate the model’s performance 

 

4.1 Hardware architecture design 

The used hardware will affect the amount of available processing power that the model 

can use, thus contributing to the model’s core design. Overall, there are three possible 

hardware architecture designs available in this case, which are: 

• Wärtsilä engine module. 

• Wärtsilä engine module and a pc. 

• Wärtsilä engine module and a microcontroller. 

 

Implementing the machine learning model directly to a Wärtsilä’s engine module does 

not require any additional hardware and successful integration of the machine learning 

model to the engine module could be an effective way of implementing the model. In 
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this scenario the model could directly read the data from the WCD-20 module and use 

this data to calculate the spark plug condition predictions and based on the results con-

trol the module or inform the user about the results. Plausible limitations or disad-

vantages with this approach may arise if the CPU and memory usage become too high 

due to the implemented model, thus negatively impacting the engine module’s perfor-

mance.  

 

The other options use other hardware to perform the processing related to the machine 

learning model. In these two scenarios the model would be implemented on to a pc or 

on to a microcontroller and the WCD-20 module would communicate with them about 

the spark plug measurement data and machine learning model prediction results. The 

microcontroller is an additional piece of hardware that would be required to be pur-

chased and installed to implement this approach, but a pc can already be used in the 

spark plug measurements. These two approaches enable the usage of more processing 

power for the model, but at the same time they have a more complicated design due to 

the additional hardware component.  

 

Considering these points, the chosen approach for this thesis is to implement the ma-

chine learning model directly to the Wärtsilä’s engine module. This approach was chosen 

because no additional hardware is needed to implement it straight to the engine module 

and it will be useful to see if the engine module CPU and memory usage will increase too 

much or remain at a suitable level when the machine learning model is running on the 

module. 

 

The final hardware architecture of the machine learning system will consist of the WCD-

20 module and a COM module. The WCD-20 will provide the necessary measurement 

information about the spark plugs to the COM module, which is responsible for several 

control functions, communication, software and engine configuration update manage-

ment (Wärtsilä Marine solutions 2017). The machine learning model is located in the 
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COM module, thus making the COM module responsible for running the machine learn-

ing algorithm and calculating the spark plug diagnostic information from the WCD-20 

data. The plausible CPU limitations must also be considered when developing the ma-

chine learning model, meaning that the model cannot be too complex that it requires 

more CPU and memory resources than those that are available to it.   

 

4.2 Used software and equipment 

The machine learning model will be implemented and trained initially on a desktop pc, 

and the used programming language will be Python. Python has a wide support for mul-

tiple machine learning and data analysis packages and libraries, such as Tensorflow, 

Numpy and Matplotlib, which make it an excellent choice to be used in the development 

of machine learning applications (Nimshi V. & S. Konam 1.5.2020). 

 

Tensorflow is Google’s machine learning platform, which is used to build and deploy ma-

chine learning models for a wide variety of systems and devices, and it will be used in 

the machine learning model of this thesis (Tensorflow 2020). Wärtsilä also already uses 

Tensorflow in their Expert insight system, which makes Tensorflow a practical choice to 

be also used in the WCD-20 spark diagnostic machine learning model (Wärtsilä 2019). 

The Tensorflow platform will be a critical part of the machine learning model, because 

after the model has been implemented and trained on a desktop pc, it can be saved to 

a file, for example with “.h5”- or “.tflite”-format, and the saved machine learning model 

file can be transferred to be used in the engine module (Tensorflow 2020b). The saved 

model will contain the trained weight values and the architecture of the model, thus 

making it usable without the need to initially train it on the engine module (Tensorflow 

2020b). 

 

The positive fact about a model which is saved as a “.tflite”-file is that it requires less cpu 

and memory resources to operate (Tensorflow 2020b), thus making it the most suitable 

option to be used on an embedded device like the engine module. The model cannot be 
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retrained however if it is saved as a “.tflite”-file, but the retraining process is not neces-

sary in this case because training process is generally a part of a machine learning model 

that requires a lot of CPU time which the module has a very limited amount of, and it 

would need an expert to inspect the condition of the spark plugs that a running engine 

uses and inputting the inspected spark plug conditions as classes to the system, which is 

not feasible in this case. Better option in comparison to this is to collect the data and 

train the machine learning model under supervised conditions and create a new “tflite”-

file which can be put to the embedded device to be used. 

 

The engine module source code is written using c-programming language and the ma-

chine learning model will be used inside a c-program that controls the ignition energy 

and WCD-20. The part which opens, initializes and controls the machine learning model 

file will be implemented using the c++-programming language, because it supports the 

Tensorflow library and can open saved Tensorflow machine learning model files. The 

model can be tested using Wärtsilä’s UNITool software, which is the tool generally used 

for configuration, tuning of engine parameters, troubleshooting, and loading software 

into the engine modules (Wärtsilä 2020b). 

 

4.3 Machine learning technique and algorithm 

To create and train the machine learning model, the used learning technique and ma-

chine learning algorithm must be selected. The used machine learning technique will be 

supervised learning because the available data that can be used for training is labelled. 

This makes it possible to teach the machine learning model which is a good spark plug 

and which is bad based on the selected features of the training data, thus making the 

input of the model the selected features from the training data and the output of the 

model the condition estimate of the spark plug. A machine learning algorithm that is 

suitable for supervised learning will be used and it will find the most suitable function to 

depict the relation between the input and the output of the model. In this thesis the 

machine learning algorithms candidates that I will consider are the regression algorithms 

and neural networks. 
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4.3.1 Neural network 

One option in this thesis is to use a neural network to model the spark plug condition. 

Inputs in this algorithm are the selected features of a spark plug and the outputs are 

classes that tell in which condition a spark plug is currently in. A multiclass neural net-

work is the most suitable alternative to solve this problem, because multiple classes can 

provide more options to make adjustments in ignition related parameters during the 

lifetime of a spark plug, than two classes implying only that a spark plug is in a good 

condition or in a bad condition. The adjustments can be made for example, to try to 

increase the spark plugs lifetime or to increase engine ignition performance. Better clas-

ses would be “very good”, “good”, “average”, “bad” and “very bad” because this kind of 

a division provides more accuracy for the user and for the possible ignition parameter 

adjustments.  

 

The designed neural network will consist of multiple neurons that are divided into mul-

tiple layers, and the number of neurons and layers will depend on the prediction accu-

racy results and performance impact. The layers are connected to each other and if mul-

tiple layers will be used, then the hidden layers before the output layer will use an acti-

vation function such as sigmoid function or rectified linear function. Rectified linear func-

tion is defined in the equation below and it returns input value 𝑥 if it is greater than zero, 

otherwise it returns a zero (Prajit R, B. Zoph & Q V. Le 16.10.2017: 1-2).  

 

𝑓(𝑥) = max (𝑥, 0) 

 

The output layer will consists of as many neurons as there are different classes in the 

created model, and each neuron will get an output value that will tell how likely it is that 

the current input belongs to the class that an output neuron represents. A Softmax func-

tion layer can be used as the last layer of the neural network to get the output values in 

probabilities which are easy to interpret. The model’s training process will consist of cal-

culating the output of the model using the real training data and updating the weights 
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of the neural network using the error value that a loss function outputs. This neural net-

work will use a loss function that is suited for multiple classification problems, such as a 

cross entropy loss function (Feng L., S. L. Shu, Z. Lin, F. Lv, L. Li & B. An 2020: 2206-2210). 

 

The formula for the cross entropy loss is represented below and the data set used is 𝐷 =

{(𝑥𝑖, 𝑦𝑖)|1 ≤ 𝑖 ≤ 𝑚} where 𝑥𝑖 ∈ 𝑋 (𝑋 ∈ R𝑑) is a 𝑑-dimensional feature vector and 𝑦𝑖 ∈

{1, … , 𝑘} is the label associated with the symbol 𝑥𝑖. A classifier is a function that is going 

to map the feature space to the label space 𝑓: 𝑋 → R𝑘 . In the formula 𝑓𝑦(𝑥) depicts the 

𝑦:th element of 𝑓(𝑥) and the symbol 𝑒𝑦 is a one-hot vector where 𝑒𝑦𝑗 = 1 if 𝑗 = 𝑦, and 

otherwise 0. (Feng L., S. L. Shu, Z. Lin, F. Lv, L. Li & B. An 2020: 2206-2210) 

 

𝐿𝐶𝐶𝐸(𝑓(𝑥), 𝑦) = −𝑒𝑦 log 𝑓(𝑥) = log 𝑓𝑦(𝑥) 

 

A stochastic gradient descent method will be used in the training process of the network 

to update the weights, because of the fast training speed of these methods and a general 

formula for it is represented below (L´eon Bottou 2012: 421-425). Stochastic gradient 

descent algorithm estimates the gradient of empirical risk function with a randomly 

picked example 𝑧𝑡  during each iteration. The Symbol 𝑄 corresponds to a loss function 

and 𝛾𝑡  is the chosen learning rate. Values of 𝑤 are the weights of the neurons and these 

values are updated in each iteration based on the estimated gradient of the empirical 

risk function. (L´eon Bottou 2012: 421-425) 

 

𝑤𝑡+1 = 𝑤𝑡 − 𝛾𝑡𝛻𝑤𝑄(𝑧𝑡 , 𝑤𝑡) 

 

A more optimized method to perform stochastic gradient descent is called adaptive mo-

ment estimation, which is an algorithm for first-order gradient-based optimization of 

stochastic objective functions, based on adaptive estimates of lower-order moments 

(Kingma D. P. & J. L. Ba 2015: 1). The idea of this method is to calculate individual adap-

tive learning rates for different parameters from estimates of first and second moments 

of the gradients, and it only requires first-order gradients to do so, which means that this 
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method is fast but also has a small memory consumption (Kingma D. P. & J. L. Ba 2015: 

1-2). Because of these points, this could be the best method to be used in the learning 

process of the model. 

 

The mathematical process of adaptive moment estimation is represented below and it 

consists of first updating the biased moment estimates 𝑚𝑡+1 and 𝑣𝑡+1 which are then 

used to compute bias-corrected versions of themselves, marked as 𝑚̂𝑡+1 and 𝑣𝑡+1. The 

parameters of the model are then updated in the last formula and new parameters are 

stored to 𝑤𝑡+1. Symbol 𝑡 depicts the timestep parameter which increases by one after 

every iteration, 𝜖 is a small scalar to prevent division by zero and 𝛾𝑡  is the defined learn-

ing rate. Parameters 𝛽1, 𝛽2 ∈ [0,1] control the exponential decay rates of the moment 

estimates and 𝛻𝑤𝑄𝑡+1(𝑤𝑡) represents the gradients of the used loss function 𝑄 with pa-

rameters 𝑤 at timestep 𝑡 + 1. (Kingma D. P. & J. L. Ba 2015: 2-4)  

 

𝑚𝑡+1 = 𝛽1 ∗ 𝑚𝑡 + (1 − 𝛽1)𝛻𝑤𝑄𝑡+1(𝑤𝑡) 

𝑣𝑡+1 = 𝛽2 ∗ 𝑣𝑡 + (1 − 𝛽2)(𝛻𝑤𝑄𝑡+1(𝑤𝑡))2 

𝑚̂𝑡+1 = 𝑚𝑡/(1 − 𝛽1
𝑡+1) 

𝑣𝑡+1 = 𝑣𝑡/(1 − 𝛽2
𝑡+1) 

𝑤𝑡+1 = 𝑤𝑡 − 𝛾𝑡 ∗ 𝑚̂𝑡+1/(√𝑣𝑡+1 + 𝜖) 

 

4.3.2 Regression algorithm 

 A regression algorithm can be used to generate a graph that most accurately fits the 

input and output data according to a specified mathematic criterion. In this thesis the 

input data is the feature data of the spark plugs and the output data is the spark plug 

health condition’s estimate value. Based on a given input to the regression model the 

output value of the health condition estimate could then be used to adjust the ignition 

parameters or inform it to the user. The scale of the output could vary between zero and 

one, and a value of zero could indicate that the spark plug is in a very good condition and 

while the output value increases the estimated health condition decreases. 

 



42 

The general degradation process of a spark plug is fairly linear but it slows down the 

further the process proceeds, thus implying that a simple linear regression could be suit-

able enough to model this phenomenon with pleasing accuracy (Javan S., S. V. Hosseini, 

S. S. Alaviyoun & F. Ommi 2013: 34-36).  On the other hand, other conditions in addition 

to regular wearing can cause spark plugs to behave differently, which might render sim-

ple linear regression insufficient, but in this case a polynomial regression model can also 

be used to model this process if so desired. 

  

In any case, the simplest mathematical formula for this linear regression machine learn-

ing model is the formula represented below, where 𝛽 values are the weigth coefficients 

which are altered in the training process. The variable 𝑦 corresponds to the predicted 

spark plug health condition value, 𝑥 variable is the used value of the selected spark plug 

measurement feature and 𝑒 is the error value. If more than one input feature is used the 

model’s formula will be similiar to the multiple regression formula presented in the chap-

ter 2.2.1.  

𝑦 = 𝛽0 + 𝛽1𝑥 + 𝑒 

 

The training process of this regression model will consists of calculating the output of 

the model with the training data, calculating the error value of the selected loss function 

and updating the weigths with the error value. A stochastic gradient descent method 

can also be used to update the weights in this model (L´eon Bottou 2012: 423-430). The 

used loss function in this design is either the mean squared error-function, which was 

also presented in the chapter 2.2.1, or the mean absolute error function. 

 

Mean absolute error function differs from the mean squared error in the way that it does 

not take into account the direction of the error but only the magnitude of it (Prince 

Grover 5.6.2018). The absolute value loss function is the first formula represented below 

and the empirical risk function for it, which is called the mean absolute error, is the the 

second formula represented below (Shai S. S. & B. D. Shai 2014: 123-124). The ℎ(𝑥) and 

https://heartbeat.fritz.ai/@pgrover3?source=post_page-----4fb140e9d4b0--------------------------------
https://heartbeat.fritz.ai/@pgrover3?source=post_page-----4fb140e9d4b0--------------------------------
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ℎ(𝑥𝑖) represent the actual output values, 𝑦 and 𝑦𝑖  are the output values from the im-

plemented machine learning model, and the symbol 𝑚 is the total number of data points.  

 

𝑙(ℎ(𝑥, 𝑦)) = |ℎ(𝑥) − 𝑦| 

 

𝐿𝑆(ℎ) =
1

𝑚
∑|ℎ(𝑥𝑖) − 𝑦𝑖|

𝑚

𝑖=1

 

 

 

 

4.4 Data 

The data that will be used to train and validate the model will be collected using a spark 

plug test rig machine. Different spark plugs in different health conditions will be tested 

and the collected results from the tests will be saved. During this process, the spark plugs 

will be labelled according to their health conditions. The saved data will be arranged in 

such a format that the columns will depict the different measured properties of the spark 

plugs and ignition, and the rows of the saved data are the individual measurement points 

over a certain amount of time. The amount of spark plugs that are available for testing 

is limited and the conditions of them don’t necessarily represent every possible spark 

plug health condition, thus affecting the model’s overall accuracy and performance. 

 

The planned measured properties include the spark voltage, the coefficient of variation 

of the voltage, primary open current and a status indicating if the coefficient of variation 

of the voltage is high or not. These values are selected because of their established con-

nection to a spark plug’s health (Javan S., S. V. Hosseini, S. S. Alaviyoun & F. Ommi 2013: 

32, 37), and these values are also obtainable to be used in the engine module. The coef-

ficient of variation 𝐶𝑜𝑉  is calculated by dividing the standard deviation of the spark volt-

age 𝜎 with the mean of the spark voltage µ. The formula is represented below. 

𝐶𝑜𝑉 =
𝜎

µ
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4.5 Testing 

The accuracy of the machine learning model will be tested using the available spark plug 

data and performing predictions to it. This accuracy measure will be used in analysing 

the model’s performance. The difference between the model’s prediction value versus 

the real value will be analysed and this testing will determine the accuracy of the model. 

The 𝑥𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠  is the total amount of errors occurred during the testing of the 

model and 𝑥𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠  is the total number of all observed data points. 

 

𝑀𝑜𝑑𝑒𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 1 −
𝑥𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑟𝑟𝑜𝑟𝑠

𝑥𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
 

 

The model’s average absolute error value is also tested, meaning that the average abso-

lute error will be calculated with test data. The regular average error will also be calcu-

lated using the test data, and this will tell whether the model classifies the mistakes too 

high or too low on average compared to the real class values. In the first formula below 

𝑛 corresponds to the number of errors, 𝑦 depicts the predicted class value and 𝑥 values 

are the real class values. The second formula below is for calculating the direction of the 

error and same variables are used there. 

 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 =
∑ |𝑦𝑖 − 𝑥𝑖|

𝑛
𝑖=1

𝑛
 

 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑒𝑟𝑟𝑜𝑟 =
∑ 𝑦𝑖 − 𝑥𝑖

𝑛
𝑖=1

𝑛
 

 

The precision and recall of every predicted class will be tested, and these are particu-

larly useful when inspecting how well the model can classify certain classes correctly. 

Precision determines the proportion of results for a predicted class that really belong 

to this predicted class. The formula for precision is the first formula represented below 

and 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 is the amount of outputs that were correctly classified in to the 
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class under inspection, and the  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 depicts the amount of classification 

outputs that were incorrectly classified as the class that is currently being inspected. 

Recall on the other hand measures the proportion of correct classification outputs for a 

given class and the formula for Recall is the second formula below. 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 

in this formula presents the amount of false classification results for a class under in-

spection. (David M. W. Powers 2007: 1-3) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
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5 Model implementation 

This chapter presents the implementation process of the machine learning model and 

the model design part of this thesis is used as a guideline during the implementation 

process. The implementation of the model starts with performing tests and gathering 

data from several spark plugs in different conditions. When the testing was complete, 

the machine learning model was developed with Python programming language using 

Tensorflow library, and this model is introduced later in this chapter.  

 

5.1 Gathering data for the model 

To get the data for the model, several spark plugs in different conditions were tested 

totaling in 15 different spark plugs. These conditions included spark plugs in normal good 

condition, lead fouled plugs, sooted-carbon-fouled plugs, plugs with worn electrodes, 

plugs with ash formation or a combination of these. This testing was done using a spark 

plug test rig machine, which simulates a real engine, in one of Wärtsilä’s laboratories. 

The tests consisted of: 

• Switching different spark plugs in to the spark plug test rig machine. 

• Powering on the spark plug test rig machine and connecting it to a pc with ether-

net cable 

• Commencing the tests by setting the test rig machine into run mode. 

• Monitoring and gathering data using Wärtsilä’s UNITool software. 

 

The gathered data during these tests consisted of spark voltage, the coefficient of varia-

tion of the spark voltage, primary open current, a status indicating if the coefficient of 

variation of the voltage is high or not, and in addition to these planned features the used 

spark profile was also measured. The spark profile indicates which kind of a profile is 

used to generate the spark, for example engine start has a different profile than average 

operation.  
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Before installing different spark plugs into the spark plug test rig machine, the spark 

plugs were categorized into three different classes, “Good”, “Average” and “Bad”, based 

on their current conditions and history of use. These new formed classes were then used 

to label the tested spark plugs accordingly so that each spark plug belonged to one of 

these three classes and the measured data for every spark plug could be associated with 

one of these three classes as well.  

 

After these tests were finished the results were exported to a “.csv”-file to be able to be 

used in the machine learning model. The final form of the data consisted of five columns 

representing the measured features during the testing and approximately 1000 data 

points for every test. Every tested spark plug also had the label which indicated the class 

of the spark plug.  

 

It was clear from the gathered data that typically spark plugs in bad condition had higher 

coefficient of variance of the ignition voltage and higher ignition current than spark plugs 

in good condition. The average coefficient of variance of the ignition voltage was 83% 

larger than the average value of the good spark plugs, and the average values of the 

ignition current were 4.4% larger than the values of the good spark plugs. 

 

Exceptions still occurred, for example when simulating the engine start with the spark 

plug test rig machine spark plugs of all conditions had higher ignition voltage coefficient 

of variation values compared to running the test rig in normal mode, and the values of 

some good spark plugs could even be briefly on par with some bad spark plugs. This 

indicates that singular predicted values of a class for a given spark plug may not be 

enough to solely classify a spark plug into a category, but a larger number of classification 

results overtime could be averaged and based on that a spark plug could then be cate-

gorized with better accuracy. 
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5.2 Implementing the model 

There were two algorithms that were presented as possible choices to be used in the 

machine learning model of this thesis, a neural network and a regression algorithm, and 

the chosen machine learning algorithm for this thesis was a neural network. This was 

mainly because the tested spark plugs were labeled into three different classes meaning 

that output classification based on the input data could be done accordingly to the 

formed classes and also because different kinds of health conditions that spark plugs 

may have can produce different types of behavior to the input features than regular 

wearing. Neural networks are also generally good algorithms to be used in classification 

problems (Vansh Jatana 2019: 1-4), which further encouraged to choose a neural net-

work to be used in this thesis. Regression based algorithm could have also been a plau-

sible choice, but regarding these points related to the spark plug labeling and multiple 

types of conditions spark plugs may have, the neural network was chosen as a more 

suitable algorithm for this machine learning model. 

 

The model was implemented with Python programming language and the Tensorflow 

library was used in the implementation process. The first part of the implementation 

consists of reading the measured test data from “.csv”-files into variables and concate-

nating all data into a one array that contains all of the data that is used the training pro-

cess of the model. Some data is also reserved to do some testing with the machine learn-

ing model and this same procedure is done separately to this testing data as well. 

 

The input is first normalized when it enters the machine learning model. This normaliza-

tion is done by a Tensorflow preprocessing layer which is inserted into the “normalizer” 

variable with a correct input shape (Tensorflow 2020e). This “normalizer”-variable is 

then adapted to the input data using “adapt()”-function with variable  “df_allplugs”, 

which contains all data that will be used in the training of the model. The normalization 

is done to scale all the inputs, because some values of the features are much larger than 
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the values of other features, for example, ignition voltage versus high coefficient vari-

ance status. This will prevent these larger values from dominating the other values in the 

training process, thus making the neural network more accurate in this case. 

 

#prepare the neural network with normalization of data 

normalizer = preprocessing.Normalization() 

normalizer = preprocessing.Normalization(input_shape=[5,]) 

normalizer.adapt(np.array(df_allplugs)) 

 

The neural network model is constructed using Tensorflow-library’s ”keras.Sequential()” 

function, which groups a linear stack of layers into Tensorflow keras model, which also 

provides training and inference features on the model (Tensorflow 2020c). The created 

model has four layers, and this amount was chosen because it was the minimum amount  

that is required for a multiple classification Tensorflow model of this kind to work 

properly, thus also requiring the least amount of processing power to operate. 

 

The first layer is the normalization layer which normalizes the input data according to 

the data that has been adapted to it. The second layer is a densely connected neural 

network layer of 16 neurons per feature, which uses a rectified linear activation function 

that was considered in the design part of this thesis. This second layer of the neural net-

work gets it’s input from the normalized input feature vector from the normalization 

layer and the output of the second layer is connected to the third layer which is also a 

densely connected neural network layer with three neurons. Each of these three neu-

rons corresponds to one of the three classes “Good”, “Average” and “Bad” that were 

formed during the spark plug test rig machine testing.  The final layer of the neural net-

work is a Softmax-layer as was planned during the design part of this thesis. The Softmax-

layer is used to calculate the Softmax-activation function values, which are the probabil-

ities for each of the three classes represented as an array of three values. The highest 

probability out of the three is then chosen to be the right classification result. 

 

#create the model, 3 Dense outputs = 3 classes => attached 

to a #Softmax-layer to get the final output as probabilities 

neural_network_model = tf.keras.Sequential([ 

    normalizer, 
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    layers.Dense(16, activation='relu'), 

    layers.Dense(3), 

    tf.keras.layers.Softmax() 

]) 

 

The next step is to configure the training process of the machine learning model. This is 

done by using the Tensorflow library’s “Model.compile()”-function, which allows to se-

lect the optimizer or in other words the way the model’s weights are updated, loss func-

tion and the metrics which provide information about the training and testing of the 

model (Tensorflow 2020e). In the model of this thesis the “optimizer” that is used is the 

adaptive moment estimation method, which is called “Adam” in Tensorflow’s syntax 

(Tensorflow 2020c). Adaptive moment estimation was reintroduced in the design part of 

this thesis and it was chosen to be used because of the performance and speed this 

method provides. The used loss function is the “SparseCategoricalCrossentropy”-func-

tion, which calculates the regular cross-entropy loss values between the predictions and 

the labels during the training process of the model (Tensorflow 2020c). This loss function 

was chosen because it is suitable for multiclass classification problems and the model of 

this thesis does that. Finally, the information about the training process is also configured 

to display as “accuracy” metrics. 

 

#configure the training process of the model 

neural_network_model.compile( 

    optimizer=tf.optimizers.Adam(learning_rate=0.01), 

    loss=tf.keras.losses.SparseCategoricalCrossen     

tropy(from_logits=True), 

    metrics=['accuracy']) 

 

When the model is constructed and the training process is configured, the model’s trai-

ning can be performed. The Training is done by using Tensorflow libarary’s function “Mo-

del.fit()”, where the number of epochs, or in other words iterations over the entire input 

and output of the model, training data, training labels, logging features and validation of 

the trained model are configured (Tensorflow 2020c). The variables “df_allplugs” and 

“train_labels” correspond to the training data and training labels respectively, and “ver-

bose” corresponds to the logging information that is displayed. The “validation_split” in 

this model is configured to be 20% of the data used in the training process, and this 
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proportion is randomly taken out of the training data to be solely used in the validation 

process.  

  

#configure the training process of the model 

#perform the training of the model 

epochs_number=100 

history = neural_network_model.fit( 

    df_allplugs, train_labels, 

    epochs=epochs_number, 

    # suppress logging 

    verbose=0, 

    # 20% training data used in validation 

    validation_split = 0.2)   

 

 

When the model is trained the performance statistics about the training can be ins-

pected and the model is ready to do classifications on real data. The classifications are 

done by using Tensorflow library’s function “Model.predict()”-function, and inserting the 

desired input data of right dimensionality to this function (Tensorflow 2020e). The model 

of this thesis outputs an array of three numbers as probabilities for the classes “Good”, 

“Average” and “Bad” and these probability values can be inspected to choose the great-

est of them, when the input is an array containing five columns that represent the fea-

tures. This trained model can be saved in “tflite”-file format so that it can be used later 

or so that it can be put into an embedded device (Tensorflow 2020f).  

 

5.3 Engine module implementation 

To run the created tflite-file in the engine module, which contains the machine learning 

model, the Tensorflow library must be included into the project which contains the en-

gine module source code. The model also must be downloaded separately into the en-

gine modules filesystem, where it is stored in its own folder. After these steps the model 

can be loaded to be used by creating an object from “FlatBufferModel” class and using 

a function “BuildFromFile(filename)”, where the filename corresponds to the used 

model’s filename and entire path to the model (Tensorflow 2020f). 

 

pModel = tflite::FlatBufferModel::BuildFromFile(filename); 
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To put input and get the output classification results from the loaded model, an “Inter-

preter” object is needed. This object is constructed by calling “InterpreterBuilder” from 

the “tflite”-library and inputting the model and resolver into it. The resolver is used to 

register the interpreter operations with the used kernel library. Then the “Interpreter”-

objects “AllocateTensors()”-function is used to allocate memory for the inputs and out-

puts of the model. The model’s input size and output size can be specified separately, 

but in this case the size of the input is five and the size of the output is three, according 

to the used input features and output classes. (Tensorflow 2020f) 

 

 tflite::InterpreterBuilder(*pModel,*pResolver)(&pInter-

preter); 

 

 

To make the model do classification, a separate function called TensorFlowRun() is used. 

This function takes a struct that contains the required input features and the number of 

current cylinder as it’s inputs. This function then outputs the classification result as a 

number that present the inspected spark plugs condition class, and these numbers are 

either 0 meaning good, 1 meaning average and 2 meaning bad.  

 

In this function an object of Tensorflow class is used to put the input into the model and 

get the output from the model, and this object is called ”TensorFlow”.  The input is 

created by using the struct that contains the relevant data and taking these values into 

the variables which are added as inputs to the input tensor in the AddInput()-function 

below. After this the RunInference()-function is called where the interpreter object’s In-

voke()-function is used to calculate the output from the input. If this succeeds the the 

calculated output is taken into the tensorflowOutput variable from the output tensor in 

the GetOutput() -function. Finally, to get the highest probability value for a predicted 

class, the three output values are gone through in the for-loop and the result are com-

pared to each other. The index of the highest probability value is then stored into the 

maxindex variable and returned. 
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TensorFlow.AddInput( 

    std::array<float, 5>{SparkVoltage, covVoltage, pri-

maryOpenCurrent, highCOVstatus, code}); 

 

if (TensorFlow.RunInference()) 

{ 

 tensorflowOutput = gTensorFlow.GetOutput<float>(); 

} 

 

// go through 3 classes and return the index of the highest 

//probability value 

for (i = 0; i < 3; i++) 

{ 

 if (tensorflowOutput[i] > tensorflowOutput[maxindex]) 

 { 

  maxindex = i; 

 } 

} 

 

return maxindex; 

 

The model is first initialized and after this it is used in a diagnostic loop that calculates 

cylinder related diagnostics and values. The TensorFlowRun()-function is called in each 

iteration of the cylinder diagnostic loop and the spark plug condition classification results 

are calculated for each cylinder separately. 
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6 Model training and testing 

The testing of the implemented machine learning model occurs right after the training 

process as the validation of the trained model with the validation part of the training 

data and the other part of the training includes testing the model with new unforeseen 

data from spark plug rig machine measurements. In this chapter these test results are 

gone through in detail and the model’s performance is analyzed. 

 

6.1 Training and validation 

The data that was used in the training process of the model consisted of 19200 different 

data points of measurements from the spark plug test rig machine. The values were from 

all three types of labeled spark plugs, “Good”, “Average” and “Bad”, and the data was 

stored in “csv”-format. 80% of this data was used in the training process and 20% of this 

data was used in the validation process of the model. This split is widely used in many 

different areas such as economics and it generally provides good results (Mike Vladimer 

2018). 

 

The model’s training process was done multiple times with different values for the num-

ber of epochs, learning rate and the number of neurons, but initially the learning rate 

was 0.10 and the number of neurons per feature was 64. With these numbers the model 

was able to achieve accuracy between 50%-70% in the training and validation parts of 

the process. The model most likely suffered from the high learning rate and found a local 

maximum too quickly and started converging towards it too soon. When lowering the 

learning rate to 0.01 the model started to achieve better results of around 75%-85%. 

Lowering the number of neurons to 16 per feature to make the training process faster 

and the model simpler did not reduce the accuracy and the final model was trained with 

such parameters. Most likely the reason why the reduction of neurons did not impact 

the accuracy was because the spark plug diagnostic problem with these parameters does 
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not require more than 16 neurons to be solved. There are a limited number of parame-

ters that affect the outcome of the neural network and a certain number of neurons in 

relation to these parameters is needed to perform classifications with good accuracy. 

 

During the training process the model is validated with 20% of the training data that is 

reserved to do this validation. The picture 13 below depicts the training process and 

different performance metrics can be seen from it. These metrics include the loss, vali-

dation loss, accuracy, and validation accuracy of the model. The model is trained over 

140 epochs and the accuracy that it reaches with the training data is 85%. The accuracy 

with the validation data is 82%, which is a little lower than the training data accuracy. 

These results imply that the model can correctly classify 82%-85% of the spark plug data 

that it is given to it, and that the model has most likely been able to find a suitable gen-

eralization for the spark plug classification diagnostic problem. Based on these training 

results no undertraining has occurred and most likely no over-training, at least not a sig-

nificant amount. 
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Figure 13 The model’s training and validation processes. 

 

6.2 Testing the model with real data 

The trained model is tested with real spark plug test rig measurement data that was not 

used in the training process, thus being unforeseen data for the model. This testing data 

consists of 3180 data points of spark plugs in all three conditions. This testing is per-

formed by constructing a new array that holds feature data in the columns from spark 

plugs of all three classes and creating a label array that has the corresponding labels for 

each entry in the new data array. The model is then used to predict the class of every 

entry in the data array and this result is compared to the label array’s value. 

 

The accuracy that was obtained from this testing was 82%, which is in line with the ac-

curacy of the model validation. This further suggests that the model is indeed able to 

correctly classify that percentage of the spark plugs and it has found a way to generalize 

this relation between the model’s inputs and outputs.  
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The average error that the model produces is -0,937 and the average absolute error is 

1.50. The average error value implies that when the model misclassifies the output it on 

average classifies it better as it is, meaning that if the true output should be “Bad” the 

model classifies it as “Average”. On the other hand, the average absolute error value tells 

that on average the model misclassifies the outputs as either one or two classes different 

than the real value should be. 

 

The precision and recall values of the model are presented in the table 2 below. The class 

“Good” has the highest recall value of 99,8%, which means that the model classifies that 

amount of actually good spark plugs into the “Good” class, and the remaining 0.2% is 

misclassified to the other classes. The lowest value for the recall is in the class “Bad”, and 

this tells that real bad spark plugs are being misclassified into the other classes the most. 

The precision values are more even, but the highest precision value of 87,8% is in the 

“Average” class. This implies that 87,8% of output results from this testing that were 

classified as “Average” were average spark plugs. The precision of 78,9% from the class 

“Good” was the lowest by a small margin and it means that most of the misclassifications 

that the model does are from the classes “Average” and “Bad” to the class “Good”.  

 

 

 

 

Table 2. Precision and recall of the model. 

Class Precision Recall 

Good 78,9% 99,8% 

Average 87,8% 85,2% 

Bad 80,4% 61,4% 
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When further analyzing these recall and precision values, it becomes clear that the 

model can distinguish a good spark plug from the average and bad spark plugs with de-

cent accuracy of 99,8%. This is a good thing because it means that when the model out-

puts a result of either class “Average” or “Bad” the result most likely is either of those 

classes and not misclassified value of a class “Good”. This should prevent false alarms 

about spark plug being bad while it is good, thus avoiding a spark plug being replaced in 

vain. 

 

The lowest recall value of 61,4% from the class “Bad” is worrisome.  The 48,6% of the 

bad spark plugs are being misclassified into the other two categories and this can cause 

some bad spark plugs to be unnoticed by this model. It is not that critical if a bad spark 

plug is miscategorized as an average spark plug while being a bad spark plug by the 

model, but because the absolute average error was 1.50 it implies that a bad spark plug 

can be classified as a good spark plug as well. However, the precision values for each of 

the classes are relatively good and close to the model’s overall accuracy of 82% that was 

obtained in this test, and they provide some indication about the model’s overall decent 

performance in this test. 

 

Overall, this model produced mixed results from the testing. On one hand, the model’s 

overall accuracy of 82% is pretty good and the model can classify good spark plugs into 

the right category with satisfying accuracy, thus giving the model some credibility when 

it outputs that a spark plug is in an average or bad condition. On the other hand, when 

the model outputs that a spark plug is in a good condition, there is a 21,1% chance that 

the spark plug actually is in an average or bad condition, which can be negative and lead 

to problems in some diagnostic cases. 

 

6.3 Engine module performance 

The Tensorflow model’s performance impact was tested on engine module. This was 

done by monitoring the total CPU usage during a one-minute period three times with 

and without Tensorflow model in Wärtsilä’s UNITool program and calculating the average 
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of these measured values. The CPU usage increased by 4,3% when using the Tensorflow 

model, which is a moderate increase. This moderate impact is caused by the Tensorflow 

model’s matrix multiplications in the dense layers which are performed for every spark 

plug in every cylinder separately during a single ignition diagnostic calculation loop. 

 

One straightforward way to decrease this impact to the CPU’s performance still exists. 

This way is to perform the spark plug health condition classification less often, for exam-

ple only in every 10th ignition diagnostic loop. This way the calculations needed in the 

Tensorflow model are not performed as frequently and this decreases the CPU usage.  
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7 Conclusions 

This thesis presented a way to classify spark plug health conditions into three different 

classes by utilizing machine learning and the available data from the WCD-20 engine 

module. This was done because more diagnostic information about the spark plugs in 

the engine is needed and investigating if machine learning could be an effective way of 

doing this could give more information about machine learning’s capabilities in engine 

applications. 

 

The machine learning model was designed by first introducing machine learning overall 

and focusing on the most suitable approaches from plausible learning techniques and 

algorithms. The chosen learning technique was the supervised learning because of the 

labeled data that was gathered to be used in the training process and the selected algo-

rithm was a neural network. The algorithm choice was mainly done due to the neural 

network’s ability to do well in classification problems. 

 

Implementation process consisted of first gathering the data from spark plugs in differ-

ent conditions and developing the designed machine learning model. After this the 

model was trained and transferred into the engine module. The engine module imple-

mentation was chosen because no additional hardware was required to run the machine 

learning model, even though the CPU was a plausible a bottleneck. In the testing part 

the model increased the engine module’s CPU usage by 4,3%, which indicates that the 

model might be too demanding to be operated directly in the engine module during 

every ignition diagnostic loop.  This problem however can be alleviated by running the 

model less often in the diagnostics calculation loop. 

 

The developed machine learning model was tested and the overall accuracy from this 

testing was 82%. This indicates that the developed model was able to correctly classify 

82% spark plugs from the test data. Other test metrics such as recall and precision were 

also measured and on one hand, the high recall value 99,8% of the “Good” spark plug 

class was a positive outcome and indicates that the model is able to separate good spark 
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plugs from the other with high accuracy. On the other hand, the lower recall value of 

61,4% of the “Bad” spark plug class tells that the model is not as good in distinguishing 

bad spark plugs, leading to more misclassifications for the bad spark plugs. The relatively 

high precision values for every class still gives some indication of the model’s overall de-

cent performance. 

 

Overall based on the training validation and final testing accuracy values, it can be con-

cluded that the model has learned to classify spark plugs by using the given input fea-

tures with the tested accuracy of 82% and that it is possible to use machine learning to 

diagnose spark plug health condition. It still does misclassifications in some cases, but 

the accuracy could possibly be improved by getting more spark plugs and gathering more 

data for the training process.  

 

Nevertheless, this developed spark plug health condition diagnostic machine learning 

model can be used in the future, or a different model can be implemented by utilizing 

the same design and development process, and slightly modifying the engine module 

implementation, if so desired. If the approach of this thesis is further developed, the 

next development step from this point on would be to use the machine learning model’s 

output to adjust the ignition related parameters. This could be done so that for example, 

the spark plugs that are classified as bad will have increased ignition voltage values and 

those that are classified as good could have lower ignition voltage values to prolong the 

life of the spark plugs.  

 

If a simpler and less demanding way to diagnose spark plugs is required than a machine 

learning version, one possibility is to define different thresholds for the inspected values, 

such as the coefficient of variation of the voltage, and these could be monitored without 

machine learning. If these defined thresholds are exceeded for example a certain 

amount of times or too many times consecutively a spark plug could be diagnosed as 

being “Bad” for example. 
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