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1
Introduction

1.1 Medical imaging in oncology
Radiotherapy (RT) plays a pivotal role in the treatment of many can-
cers, considering that approximately 50 percent of all cancer patients
can benefit from RT in the management of their disease [3]. RT is de-
livered using radiation produced by a linear accelerator (linac), opti-
mizing the radiation to the tumour with the intent of killing the ma-
lignant cells, while preserving surrounding healthy tissues (referred
to as OARs-organs at risk) and limiting the radiation-induced toxic-
ity [10]. RT relies heavily on medical imaging to determine the extent
of the disease, the spatial relation between target regions and neigh-
bouring healthy tissues, the monitoring of RT delivery and subsequent
follow-up to measure treatment effectiveness [2]. The RT workflow
can be summarized into four distinct phases: diagnosis and staging,
treatment planning, treatment delivery and post-treatment follow-up
(Figure 1.1). Medical imaging intervenes in all of the shown phases.
During diagnosis, patients’ scans are acquired to identify the presence
of suspicious cancerous lesions. These lesions are then classified us-
ing standard guidelines, such as the TNM classification of malignant
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Chapter 1. Introduction

Figure 1.1: Overview of the major role of medical imaging in RT, from diag-
nosis to follow-up. Different imaging modalities are used in the different
phases. Mostly commonly used are: CT (Computed Tomography), FDG-PET
(Positron Emission Tomography), CB (Cone beam) CT, and MR (Magnetic
Resonance).

tumours. The TNM is a globally recognized standard for classifying
the extent of spread of cancer, based on visually identified properties
[5]. Almost all solid cancers have their own TNM classification and
according to the anatomical location of the lesions, different imaging
modalities are employed for diagnosis staging, and molecular charac-
terizations of the tumour. The most common modalities are CT (Com-
puted Tomography), FDG-PET (Positron Emission Tomography) and
MRI (Magnetic Resonance Imaging). Patients’ scans acquired at this
time-point are referred to as diagnostic scans. Diagnosis and staging,
together with information about the patient (e.g. demographics, clin-
ical data) is used to determine the treatment strategy. In RT, the treat-
ment strategy involves the choice of the total amount of dose that tar-
get volumes (cancerous lesions) will receive, which will be delivered
in smaller daily portions (fractions) over a period of several weeks, to
take advantage of the higher repair capacity of normal tissues com-
pared to tumour cells [10]. Additional clinical constraints determine
the maximum amount of dose that OARs should receive, to reduce
the risk of complication because of radiation. To plan the treatment,
a scan of the patient is made around one week before the delivery of
the first fraction. These images are referred to as treatment planning
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scans. The image is used to manually delineate the target volumes
and organ at risks. Treatment plans are always made on CT scans,
because accurate determination of the dose due to ionising radiation
is dependent on knowing the electron density spatial distribution. A
treatment planning system is the software that is used to generate a
radiation dosimetry plan using images, contours, and required clini-
cal constraints. Treatment planning is an inverse optimization prob-
lem, with the goal of delivering the highest and most uniform possible
dose to the target volumes, while reducing as much as possible the
dose to surrounding healthy tissues. CBCT (Cone Beam CT) scanners
integrated with linacs, are widely used in RT to capture the anatomy
prior to treatment delivery. This facilitates tumour alignment to the
original treatment planning position. CBCTs are also used to evalu-
ate changes in patient anatomy such as tumour shrinkage or major
changes in patient’s anatomy, which might require a re-evaluation of
the original treatment planning [16]. A recent development in RT has
been the introduction of the MR-linac, in which MR is integrated with
the linac and used for pre-treatment imaging. To monitor the control of
the disease as well as to reduce the risk of disease relapse or the spread
of tumor in other locations, follow up images are taken from a few
months to up to years after treatment. Follow up times differ among
cancer types and according to patients’ need. Similar modalities as for
the diagnosis and staging time-step are employed. The workflow de-
scribed above emphasises the prominent role of medical imaging in
the RT continuum. Furthermore, it becomes clear how advances in
medical imaging will improve RT, offering better chances for cure, de-
creased side effects and extension of indications. Advances in medical
imaging can be twofold: improvement of the hardware used to image
the patients, and introduction of digital technologies to improve image
analysis. Some of the most famous examples of the first category have
been the introduction of CT scanners in RT, the integration of com-
bined PET and CT imaging [18] and more recently the integration of
combined PET/MR imaging [23]. Multi detector-row CT offered un-
paralleled speed of acquisition, spatial resolution, and anatomic cov-
erage and they have provided the basis for IGRT (Image guided RT)
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Chapter 1. Introduction

[17][21]. A recent application has been the integration of MRI devices
with linacs in the treatment room, allowing a real time monitoring of
the dose combined with large soft tissue contrast during irradiation
(MR-linac) [25]. The second category of advances includes software
applications related to medical imaging analysis. These applications
can be aimed: A) at reducing the burden related to time consuming
activities of clinicians and radiation technicians, such as OARs delin-
eations or providing ultra-fast acquisition and image reconstruction;
B) at augmenting our capability to interpret medical images besides
visual inspection. The former is referred to as automation, while the
latter has been named quantitative imaging.

1.2 The road to precision medicine

Both the presented advances will play a fundamental role in raising
the bar of patient care in RT. There is an urgent demand in improv-
ing patient care towards precision medicine (PM), which is defined
as the capability to tailor therapy with the best response and highest
safety margin to ensure better patient care [8]. By enabling each patient
to receive earlier diagnoses, risk assessments, and optimal treatments,
PM is expected to improve health care while also lowering costs. Im-
provements toward PM in RT can can have an impact for ART (Adap-
tive RT). ART refers to the monitoring of treatment delivery across the
fractions and the possible corrections that can be applied to the orig-
inal plan [22]. In RT, ART strongly relies on patients’ scans and it is
often referred to as IGART (Image Guided ART), to stress the key role
of medical imaging. The urgent demand of introducing PM in RT, re-
quires us to augment the status of ART. Treatment strategy and pos-
sible adaptation should consider unique characteristics of the tumour
of a patient. The tumour environment, as well as the anatomy of a
patient, are dynamic and can change from diagnosis to and within
fractions [4]. Objectively quantifying these changes during fractions
will lead to better tailored treatments, as required by PM. To reach the
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above-mentioned goal, there is the need of re-thinking medical imag-
ing in RT. The new paradigm is to go beyond the traditional practice
of treating medical images as pictures intended solely for visual in-
terpretation. The advent of rapid high-throughput computing make
it possible to extract quantitative descriptors, referred to as features,
from tomographic images daily used in the RT workflow. This transi-
tion of patients’ scans from digital medical images to mineable hyper
dimensional data is known as ‘radiomics’ [13].

1.3 Re-thinking medical imaging: radiomics

The idea underlying radiomics is that medical images potentially em-
bed information that reflects underlying biological properties of tu-
mours, which are patient- and tumor-unique fingerprints. Being able
to measure tumour biology via medical imaging is expected to help
pave the road to precision medicine since it will improve tumour stag-
ing, treatment planning and monitoring. Although radiomics is a nat-
ural extension of CAD (Computer Aided Diagnosis) systems, there is
a fundamental difference. CAD systems are meant to deliver a single
answer (e.g. presence of a cancerous lesion), radiomics is a process
aiming at extracting a vast amount (from hundreds to thousands) of
quantitative features from digital images and subsequently mine the
data for both hypothesis generation and testing. Radiomics by de-
sign is thought to develop decision support tools. Therefore, it re-
quires to combine radiomic data with other patients’ characteristics
and information, as well as with genetic data extracted from the tu-
mour (‘radio-genomics’), generating an hyperspace of data which is
much larger than the starting number of computed features [19]. Suc-
cinctly, radiomics has invited us to re-think medical imaging, translat-
ing the paradigm from visual inspection of medical images to quan-
titative precise measurements from medical images, shifting the at-
tention from qualitative to quantitative image analysis. Although ra-
diomics can be applied to several diseases and multiple conditions, it
has reached its largest maturity in radiation oncology [11]. The strong
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driver of this relies on the fact that RT had a high volume of very stan-
dardized (treatment planning) CT scans which were pre-delineated to
identify the ROI. As we presented earlier, all the patients with can-
cer undergo imaging at some point, but more often, they are imaged
multiple times during their care. Radiomics comes as a “cost-free”
approach, since it is based on daily produced data from clinical care.
With visual inspection only, images are analysed focusing on provid-
ing a (semi)qualitative evaluation of radiological findings and then dis-
carded. Wasting the possibility of recovering precious information that
can support better cancer detection, diagnosis, assessment of progno-
sis, prediction of treatment response and following disease status is a
situation that collides with the aims of the previously presented con-
cept of PM. Furthermore, radiomics opens the door for the develop-
ment of non-invasive cancer-related biomarkers compared for exam-
ple to genomics with the additional advantage that medical images
offer to extract these biomarkers from the entire tumour (or tumours)
rather than just from a sample. One of the most important concepts
behind radiomics is that identifying biological properties of the tu-
mour from medical imaging is a task that cannot be completed only
via human visual inspection. As such, the word radiomics (or more
in general quantitative imaging) cannot be separated from AI (Artifi-
cial Intelligence). AI is driven by machine learning (ML), a method of
data analysis that automates analytical model building [1]. AI via ML
is therefore the tool to fully exploit patients’ daily scans as a valuable
source of patient-centred quantitative information beyond human ca-
pabilities. Advances in ML applied to medical images is expected to
boost our ability to introduce radiomics in the clinic as decision sup-
port tools. The typical radiomic workflow is depicted in Figure 1.2.
Radiomics starts with the acquisition of images from patients. From
these images a ROI (Region of Interest) containing either the whole tu-
mour or sub regions within the tumour or in the surrounding tissues
are identified. Most common regions include GTVs (Gross Tumour
Volume), CTVs (Clinical Target Volume), but also, they extend to OARs
for the evaluation of risks of radiation-induced side effects. Quantita-
tive descriptors, called features, are then extracted from these regions.
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Figure 1.2: Radiomics approach depicted in the use case of lung cancer. (A)
Workflow of extracting radiomic features: (I) A lung tumour is scanned in
multiple slices. (II) Next, the tumour is delineated in every slice and vali-
dated by an experienced physician. This allows creation of a 3D represen-
tation of the tumour outlining phenotypic differences of tumours. (III) Ra-
diomic features are extracted from this 3D mask, and (IV) integrated with ge-
nomic and clinical data. (B) Representative examples of lung cancer tumours.
Visual and nonvisual differences in tumour shape and texture between pa-
tients can be objectively defined by radiomics features, such as entropy of
voxel intensity values (’How heterogeneous is the tumour?’) or sphericity
of the tumour (’How round is the tumour?’). This image is taken from DOI:
10.7554/eLife.23421, under the license agreement CC BY 4.0.
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These descriptors can be hand crafted features defined by mathemat-
ical formulas, or automatically determined by ML algorithms. The
first type includes three main categories: shape descriptors looking at
morphological properties (e.g. elongation, size) of the ROIs, first or-
der statistical features describing the distribution of individual voxels
without concerns related to their spatial distributions (e.g. the mean
of grey level values within a selected ROI), and second order statistical
descriptors, often referred to as ‘textures’, describing statistical interre-
lationships between voxels with similar or dissimilar contrast values.
Textures are meant to provide a measure of intra-tumoral heterogene-
ity. The second type is mainly represented by DL (Deep Learning).
Deep Learning (DL) has revolutionized medical image analysis and
has essentially replaced all the older techniques. The idea behind DL
is intuitive: building large (deep) artificial neural networks that can au-
tomatically mine the images and extract relevant features, referred to
as deep radiomics, without the need of pre-defining them [14]. Extracted
features are then combined using state of the art ML techniques and
correlated with the outcome of interest to build diagnostic, prognostic,
and predictive models. It is important for the reader to understand
that radiomics involves several steps logically concatenated after each
other, where feature values and ML only appear in the last steps of this
process. Uncertainties in the early steps of this chain or inconsistencies
in the input data (images and ROIs) will strongly impact the quality of
the output. In fact, it has been recently shown how ML algorithms are
very sensitive to the quality of input data, with lower quality mean-
ing worse performances in the models [9]. Furthermore, it is of utmost
importance to highlight that a robust and consistent methodology for
feature computations is needed. A small fine tuning of the computa-
tional parameters can lead to conclusions that might not be consistent
with previous results achieved under different settings. Robust and re-
liable radiomics, which can then produce decision support systems to
be used in the clinic, relies on an absolute and meticulous effort in op-
timizing each of the computational steps in the chain shown in Figure
1.2.
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1.4 Issues in radiomics

Looking at the radiomics literature, it emerges that this issue has not
been tackled sufficiently enough for a rapid translation of all published
radiomics models in the clinic. In the past ten years, radiomic research
in tomographic imaging has dramatically increased. Radiomics has
been deeply applied for A) enabling diagnosis allowing differentiation
of cancerous from non-cancerous tissues as well as a quantification of
tumour heterogeneity, B) tumour prognostication by showing relations
between quantitative imaging features and gene expressions or clini-
cal outcomes of interest (mainly overall survival or disease free sur-
vival), C) identification of imaging phenotypes that could guide the
selection of therapy for individual tumours, and D) the development
of imaging features to assess tumour response to treatment beyond the
assessment merely based on shrinkages in tumour volume and the RE-
CIST (Response Evaluation Criteria in Solid Tumours) [12][20]. This
tremendous effort of scientific discoveries has been accompanied in
the latest years by the need to investigate the reasons behind the pre-
viously mentioned unmet clinical need. However, radiomic literature
still is imbalanced towards the idea of publishing radiomic models or
positive discoveries, while being more reluctant to publish negative
results or deeply investigating open methodological questions behind
these discoveries. In all scientific discoveries there is always an excite-
ment phase when a new technology is released, followed by a period
of benchmarking, until it becomes more mature. Questions that arise
during this period are part of science, since they offer the occasion to
reconsider the weaknesses of a new technology and the unique per-
spective to build a better one by listening to all the stakeholders in-
volved. In the radiomic community, we often forget that the primary
stakeholders of our models are clinicians and (indirectly) patients. The
presented clinical unmet need has brought a sense of frustration in the
clinic with respect to AI and more specifically to radiomics [15]. But
focusing only on accepting this frustration will never solve the prob-
lem. This is the time to raise the bar of radiomic studies to finally move
from prototyping and academic exercise to a breakthrough application
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with a meaningful clinical impact. The first step towards reaching the
above goal is to deeply identify and investigate the methodological is-
sues that have caused radiomics translation in the clinic to fail. This
thesis poses itself in this context: highlighting and investigating these
causes and proposing methods to mitigate these issues. The thesis fo-
cuses on three main issues identified in radiomic studies: A) lack of
robustness of radiomic-derived biomarkers; B) methodological issues
associated with a non-cautious use of ML in radiomics, and C) the lack
of standardization and harmonization in radiomic studies.

1.5 Strategies to address the issues and structure of
the thesis

The first issue is related to the fact that many radiomic models
are extensively developed using only single-institutional data, but
their performances degrade when validated on un-seen external
datasets consisting of images often acquired with different scanner
manufacturers or acquisition protocols [26]. Conversely, the need of
generalizability of the models as well as the recommendations from
the TRIPOD (Transparent Reporting of a multivariable prediction
model for Individual Prognosis Or Diagnosis) are calling for
radiomic-models validated across several multi-centre datasets
(TRIPOD-IV type models) [7]. Furthermore, if a radiomic feature (or
a combination of them) is meant to measure a specific biological
property of the tumour (i.e. biomarker) then this property should
be stable and independent from the protocols used to acquire
images. The presented problem is strongly related to the concepts of
reproducibility and repeatability, which will be deeply investigated
in the first part of this thesis. The second issue is related to the fact
that radiomic prognostic and predictive models do not stand in a
vacuum. Radiomic models need to be benchmarked against accepted
clinical prognostic and predictive factors. An example of these is
the TNM staging system. Radiomic models should show that they
build upon previously published models, bringing new insights and
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additional knowledge. Also, because of the complexity of radiomic
feature definitions, hidden relations between radiomic features and
clinical prognostic / predictive factors may exist and need to be
discovered. In fact, introducing many correlated covariates in a ML
classifier leads to the undesirable problem of over-fitting [6]. This
problem as well as proposed solutions to use ML to benchmark
radiomic models will be presented in the second part of this thesis.
The third issue relates to the fact that radiomics lacks standardization
and harmonization. Since the advent of radiomics, each institution
involved in this research topic has developed its own radiomic
computational package (i.e. software) or radiomic computational
pipeline. Because of standalone naming conventions, it is impossible
to compare and even perform radiomic experiments within multiple
institutions. Furthermore, privacy-related issues and barriers to data
sharing are a huge obstacle that require a re-think of the standard
approach of centralized learning. Following the inspiring work
carried out by the IBSI (Image Biomarker Standardization Initiative),
the third part of this thesis focusing on a building a framework based
on ontologies and semantic web technologies to allow the transition
from radiomics to FAIR (Findable Accessible Interoperable Reusable)
radiomics, as key enabler for multi-centre radiomic studies [24]. The
overall structure of the thesis is as follows: Chapter 2 offers a broad
overview of the concepts briefly mentioned in this introduction,
with a dedicated focus on the current challenges and unmet clinical
needs in radiomics. These challenges are then tackled in the work of
this thesis. Chapter 3 provides a systematic review of the concept
of radiomic reproducibility and repeatability identifying unsolved
issues, such as for example the lack of robust methodology for
radiomics in MRI. Therefore, Chapters 4-6 focus on investigating
radiomic reproducibility and repeatability in MRI; while Chapter
7 proposes a method for radiomic harmonization in CT, which can
be expanded to any other imaging modality. This first part of the
thesis tackles the issue related to the need of improving the radiomic
workflow steps related to image quality, image acquisition settings
and lack of robustness of radiomic features. Chapters 8 and 9 are
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related to the second aim of this thesis and they deeply investigate
the role of ML in radiomic providing safeguards for responsible AI
in radiomics. The results of the second part of this thesis contribute
to solve the issue of optimizing the modelling part in the radiomic
workflow presented in this introduction, as well as to reduce the
risk of false discoveries. Chapters 10-13 investigate the third issue
mentioned and offer a basis for FAIR quantitative imaging. The
results of this last part of the thesis contributed to solve the presented
issue of transparency in radiomic studies as well as proposing a
solution for multi-centre radiomic studies. Finally, Chapter 14
provides a vision for the upcoming years of quantitative imaging
research by engaging multiple stakeholders involved in the clinic.
This last chapter offers working statements to re-think radiomics,
not as a vacuum, but posing it in the context of big clinical data and
arguing for the need of close collaboration with clinicians.
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[12] I. Gardin, V. Grégoire, D. Gibon, H. Kirisli, D. Pasquier, J. Thariat,
and P. Vera. Radiomics: Principles and radiotherapy applications.
Critical Reviews in Oncology/Hematology, 138:44–50, June 2019.

[13] Robert J. Gillies, Paul E. Kinahan, and Hedvig Hricak. Ra-
diomics: Images Are More than Pictures, They Are Data. Radi-
ology, 278(2):563–577, February 2016.

[14] Hayit Greenspan, Bram van Ginneken, and Ronald M. Summers.
Guest Editorial Deep Learning in Medical Imaging: Overview

14



and Future Promise of an Exciting New Technique. IEEE Trans-
actions on Medical Imaging, 35(5):1153–1159, May 2016.

[15] Jianxing He, Sally L. Baxter, Jie Xu, Jiming Xu, Xingtao Zhou,
and Kang Zhang. The practical implementation of artificial in-
telligence technologies in medicine. Nature Medicine, 25(1):30–36,
January 2019.

[16] David Jaffray, Patrick Kupelian, Toufik Djemil, and Roger M
Macklis. Review of image-guided radiation therapy. Expert Re-
view of Anticancer Therapy, 7(1):89–103, January 2007.

[17] David A Jaffray. Image-guided radiotherapy: from current con-
cept to future perspectives. Nature Reviews Clinical Oncology,
9(12):688, 2012.

[18] Vibhu Kapoor, Barry M McCook, and Frank S Torok. An intro-
duction to pet-ct imaging. Radiographics, 24(2):523–543, 2004.

[19] Virendra Kumar, Yuhua Gu, Satrajit Basu, Anders Berglund,
Steven A. Eschrich, Matthew B. Schabath, Kenneth Forster,
Hugo J.W.L. Aerts, Andre Dekker, David Fenstermacher,
Dmitry B. Goldgof, Lawrence O. Hall, Philippe Lambin, Yo-
ganand Balagurunathan, Robert A. Gatenby, and Robert J. Gillies.
Radiomics: the process and the challenges. Magnetic Resonance
Imaging, 30(9):1234–1248, November 2012.

[20] J. O. Park. Measuring Response in Solid Tumors: Comparison of
RECIST and WHO Response Criteria. Japanese Journal of Clinical
Oncology, 33(10):533–537, October 2003.

[21] Geoffrey D Rubin. Data explosion: the challenge of multidetector-
row CT. European Journal of Radiology, 36(2):74–80, November
2000.
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Chapter 2. Quantitative radiomics in Radiation Oncology

Abstract
Radiomics utilizes routine clinical imaging data for non-invasive
quantification of tumour phenotypes. The ultimate goal is to use
these features for prediction or prognostication of patient events or
disease types. Radiomics pipelines share parallels with traditional
quantitative imaging processes. This provides opportunities to align
the processes and integrate radiomic features and QI metrics to
advance the investigation of related mechanisms between radiomic
features and QI metrics, thereby improving interpretability of
radiomic features. Engagement of clinicians in radiomic studies
is essential for progression of the field. It has shown potential;
however, clinician involvement and comparison of performance to
clinical standards is required to evaluate clinical relevance. Many
radiomic features were designed for quantification of images and
data not related to medical images. Therefore, caution is warranted
when drawing conclusions about correlations between radiomic,
clinical, and genomic features. Statistical knowledge, or collaboration
with biostatisticians, is required during feature agglomeration,
selection and model building. Extensive reporting of methodology
is needed to safeguard against spurious results, as well as to
increase understanding of the impacts of data and user biases.
Data sharing, methodological refinement, and standardization is
needed for radiomics to meet its full potential. These techniques are
generalized methods from past pattern recognition research. It is,
therefore, foreseeable that these methods could be applied to other
data not previously considered for automated feature information
generation.
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2.1 INTRODUCTION

The importance of computer-aided diagnosis (CAD) and decision
support systems for improved medical care was recognized almost
50 years ago with the influx of medical imaging data. This need
is being highlighted by the rapid technological advancements in
modern medical imaging, which enable precise, detailed, and
quantitative images that are easier to collect before, during, and
following treatment. The magnitude of imaging data collected
per patient—combined with other confounding factors (disease
staging, blood tests, genomic data, patient preferences, quality of
life, etc.)—leads to a complex task that pushes the human cognitive
capacity to its limit [1], but also has the potential to enable an elevated
level of personalized care. As stated in [148], “radiomics involves the
automatic conversion of medical imaging data to quantifiable features
that can be mined in order to provide additional information that
may assist with personalized medicine approaches” [157][45][26][147]
(Figure 2.1). Radiomics is a field that is experiencing increased
interest from both clinicians and researchers. Given the advancements
of artificial intelligence (AI) methods for pattern recognition,
computer vision, and model building, the utilization of radiomics for
diagnostics, prognostics, and treatment decision processes is more
promising than ever. By utilizing features that not only quantify
information regarding the whole tumour, but also the various textures
contained within the tumour, radiomics may serve as a useful method
for quantification of disease heterogeneity [45][72]. This would
provide an additional non-invasive approach for characterizing
disease heterogeneity in addition to traditional quantitative imaging
approaches and invasive targeted biopsies of sub-regions in tumours.
Many of these concepts were introduced back in the 1970s by Hall et
al. [50] and [55]. In these works, they described the use of extracted
features, pattern recognition, and computer vision for radiographic
image classification. These methods went on to demonstrate
successfully that quantified imaging features could be correlated with
tumour grade [157], histopathology [30], and treatment response
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Figure 2.1: Radiomics introduces imaging signals or “image-based biomark-
ers” into the bioinformatics framework that was developed for genetic profil-
ing and correlations with outcome. Imaging brings distinct spatial informa-
tion—such as size, invasiveness and texture— to this framework and can be
measured multiple times during the course of therapy. Diehn et al. (2008)
examined MR images for gene-expression surrogates. Expert radiologists
defined 10 MR image signal phenotypes, and hierarchical clustering of the
gene expression profiles of 32 samples was performed and tested for statisti-
cal significance. Shown here are results specific to contrast accumulation in
the brain and hypoxia. The box colour above the expression map corresponds
to image traits for the different gene expressions in the tumours.
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[108], but successful widespread integration into clinics has still not
been achieved. With increasing computational power and automation,
in conjunction with quantitative imaging (QI)—which is the extraction
of quantifiable image-derived metrics from medical images that are
associated with anatomical, physiological, and biological processes
[66][127] —there have been substantial advances in this arena with
image feature quantification re-branded as “radiomics” in 2012 [73].
Since the 1940s and 1950s, cancer staging using TNM classification
was introduced by Pierre Denoix and the Union for International
Cancer Control (UICC) [11] to help prognosticate and guide
management of cancer patients. Rigorous and exhaustive clinical
validation has been required prior to any changes or adjustments
in these internationally accepted staging standards [97]. Although
radiomic models have shown promise in providing added prognostic
capability, the large majority of current radiomic models have not
yet provided sufficient evidence of generalizability and accuracy
to warrant clinical adoption or implementation as an international
standard [148] [163]. A key limiting factor currently in radiomics
is the lack of standardized quantitative approaches that hinders
external validation and broader clinical applicability. Only through
recognizing of the impact of heterogeneous input imaging data and
developing approaches to address heterogeneities across images will
the full potential of radiomics be realized. Also, the urgent need of a
broader radiomic community, strongly bonded with the medical and
QI efforts worldwide, is crucial to drive radiomics toward a product
that can robustly support clinicians in patient care. This chapter
will introduce the concepts of radiomics. The goal of this chapter
is to familiarize readers to the ground-breaking research occurring
in this field across different imaging modalities, while highlighting
important concepts, challenges, and implications of QI, including the
commonalities and differences of the QI and radiomic pipelines in the
model building workflow. Additionally, the last part of this chapter
discusses practical considerations that will enable reproducible
results, such as software, data quantity and quality, contouring, and
model reporting. As radiomics is a relatively new field for which
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the potential clinical impact is just beginning to be understood, it is
important for researchers to be diligent in their methodology and
reporting to safeguard against spurious results. The authors’ aim for
the information included in this chapter is to prevent radiomics from
being classified as yet-another-omics [147].

2.1.1 State of the art radiomics

Radiomics in computed tomography imaging

Interest in the application of radiomics was first spurred in analysis
of computed tomography (CT) images [26]. The main idea behind
this application was to provide quantitative information related to a
particular region of interest (ROI) and the standard Hounsfield Unit
(HU) values contained within the ROI. Radiomics in CT has largely
been focused on head and neck (HN) and lung cancers. One of the
most comprehensive studies investigating the role of radiomics in
CT was published in 2014 [2]. The authors showed that textural and
first-order statistical features were correlated with overall survival of
HN and lung cancer patients. Following this study, different clinical
end points besides overall survival were exploited. In particular, a
study from 2015 [99] investigated relationships between radiomic
features extracted from CT scans of HN and lung cancer patients,
showing strongest associations for prognosis, histology, and staging.
Other studies focused on predicting the probability of distant
metastases in lung cancers [23], HN cancers[2], or investigated the
association between radiomics and local regional failure [159]. Most
recently, additional studies have investigated the role of radiomics
in CT for oesophageal cancer [75][114] and liver metastases from
other primary diseases [70][3]. There has also been recent interest
in using cone beam CT (CBCT) images acquired at the end of each
radiation treatment fraction to evaluate the pathological response to
the treatment [5] or survival [143]. This is an area of research referred
to as delta-radiomics, and it is discussed in more detail later in section
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2.2.1. However, the CBCT images suffer from poor quantitative
performance compared to CT, and this appears to limit the utility
of radiomics in this particular modality [38]. Recent research into
synthesized CT from CBCT using generative adversarial networks
(GANs) [47] may provide an opportunity to address these challenges,
as they have demonstrated improvements in voxel values, spatial
uniformity, and artifact suppression [67]. However, tuning would
be required for voxel-level analysis to ensure proper mimicking
of details needed for radiomic analysis. Overall, it is important
to note that daily acquired CBCT images are optimized for visual
inspections by clinicians and not for automated pipelines (i.e., texture
analysis). Parallel attention in CT radiomics has also been given to
the investigation of reproducibility and repeatability of individual
radiomic features. A recent review [138] analysed 22 studies explicitly
investigating the reproducibility and repeatability of radiomic
features in CT. Although there was no detailed consensus, first-order
and shape CT features were generally more repeatable than textural
features, with slice thickness re-sampling and different reconstruction
algorithms strongly degrading feature reproducibility; the magnitude
of this degradation was greater for textural features than for
first-order features. This further emphasizes the need for QI as a
pre-condition for robust radiomic-based predictions. In particular, it
becomes clear that detailed knowledge of the acquisition parameters
embedded in DICOM headers and surrogates for the physics
underlying a specific modality is fundamental to guaranteeing the
correct evaluation of reproducibility and repeatability results in
radiomics. Again, this creates a need to form a broader community,
with professionals from a variety of disciplines who have detailed
knowledge of the computational details of the radiomic workflow, as
well as QI knowledge. CT images are derived from the attenuation of
x-ray radiation, and HU provide a measure of the linear attenuation
coefficient of solid tissues relative to water. For this reason, CT
is not likely to fully identify the presence of all texture variation
associated with disease. For example, the contrast-to-noise might not
be sufficient to capture differences in texture between different tissue
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types, or to classify the state of aggressiveness of a tumour based on
its heterogeneity. Due to these concerns, radiomic researchers have
begun to look at different forms of CT imaging. Contrast Enhanced
(CE) CT [3][160] imaging has recently been explored and is known
to provide additional clinical benefit relative to non-contrasted
CT by intravenous injection of an iodinated contrast agent just
prior to imaging. Dual-energy CT (DECT) also improves tissue
characterization and has been preliminarily studied for prognostics in
lung cancer , characterization[19] of cervical lymphadenopathy [119],
and distinguishing small-cell from non-small-cell lung cancer [154].
However, results between radiomic features computed in CT images
might not be comparable with results achieved in CECT or DECT
because of a different contrast-to-noise ratio, as well as differential
agent accumulation at various time points post-injection.

Radiomics in magnetic resonance imaging

Compared to CT imaging, magnetic resonance imaging (MRI)
provides greater soft tissue contrast [27], resulting in more consistent
segmentations [145], as well as a means to measure physiological
parameters and biochemical function of tissue. Besides the most
common MRI techniques, such as T1 or T2 weighted images,
diffusion-weighted imaging (DWI) in MRI enables measurement of
water diffusivity via generation of apparent diffusion coefficient
(ADC) maps, which is an established biomarker of tumour cell
density and cell density changes post-therapy [76]. In addition,
simple quantitative measurements of apparent diffusion coefficients
(e.g., mean, standard deviation) extracted from diffusion-weighted
MRI have shown potential prognostic value in cervical cancer, where
MRI is the leading modality for staging and treatment evaluation
[46]. It is, therefore, of interest to evaluate the role of radiomics as a
complementary method to traditional statistical analysis approaches.
In the literature, the main applications of radiomics in MRI refer to
prostate and pelvic malignancies. For example, Stoyanova et al. [130]
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highlighted the promising role of radiomic features combined with
multiparametric MRI for measuring the aggressiveness of prostate
tumours for risk stratification. This review shows how the majority of
the studies are focused on the usage of radiomics for prostate cancer
differentiations and correlations between images and histology. A
similar approach was adopted for rectal cancer, where radiomic
features were found to be correlated with tumour staging [132], while
Nie et al. investigated associations between treatment outcomes
and MRI-based radiomic features [92]. However, despite the effort
that has been devoted to the investigation of the prognostic and
predictive power of radiomics in MRI, the challenges of achieving
quantitative performance of MRI raises several challenges that need
to be addressed prior to pursuing clinical adoption. These include
feature reproducibility challenges caused by inconsistent scanning
protocols, image reconstruction processes, image post-processing,
as well as absence of defined units associated with the signal in
T1/T2 weighted sequences, which might open arguments about the
validity of some texture feature analysis. This is further compounded
for delta-radiomics as patients are often longitudinally scanned on
different scanners, possibly at differing magnet field strengths and
with differing imaging protocols. Unfortunately, there are few studies
exploring the impact of these challenges on radiomic analysis in the
literature. One study by Fiset et. al. investigated the reproducibility
of radiomic features extracted from MRI images with respect to three
different scenarios: (1) inter-observer variability in delineations,
(2) test-retest stability, and (3) diagnostic vs. radiation oncology
simulation MR scanners. Results revealed that different radiomic
features are sensitive to various degrees based on the perturbations
considered (i.e., no consensus was reached on the most stable
features). In addition, the study revealed strong inter-dependencies
between radiomic features, which should be considered when
developing a radiomic signature [41]. Furthermore, it is common
practice in MRI to pre-filter MR images prior to feature extraction.
However, as pointed out in Traverso et al. (2019) [135], for ADC
maps of rectal cancer patients, these image pre-processing steps
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can alter feature values and can potentially degrade the underlying
radiomic signature, alerting the need for further evaluation of the
impact of image pre-processing on radiomic analysis. An interesting
concept is to compare or even combine radiomic approaches with
more traditional quantitative feature extraction that can occur using
functional MRI (e.g., the volume transfer constant, Ktrans, which
reflects the efflux rate of gadolinium contrast from blood plasma
into the tissue and is perceived to reflect vascular permeability or
average diffusion coefficient (ADC), which is associated with tumour
cell density). As the quantitative parameters are usually determined
using physical and biological models informed by MRI images,
evaluating relationships between these parameters and radiomic
features may reveal complementary information, as shown in [38].
As these traditional QI parameters share the same dependence on
consistent image acquisition, reconstruction, post-pro cessing, and
analysis, addressing these basic challenges will substantially advance
the clinical implementation of imaging-based prognostic features.

Positron emission tomography and radiomics

Radiomics in positron emission tomography (PET) imaging has looked
to supplement standard clinical measures that do not fully describe
tumour heterogeneity. These measures include (1) conversion of PET-
based voxel activity measurements to standard uptake values (SUV)
and (2) metabolically active tumour volumes (MATV) that provide a
single measure for the tumour and could be improved with measures
of aggressiveness and metastatic potential. 18F-Fluorodeoxyglucose
(18FFDG) PET, a measure of glucose cellular metabolism, has been the
primary focus of PET radiomics. In a study by El Naqa et al [32], 18F-
FDG PET images of 9 HN and 14 cervical cancer patients were suc-
cessfully used to prove the potential utility of PET-based functional
images for clinical prognostics. This study has motivated the devel-
opment of standardized imaging methods that can assure consistent
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inputs to assist in the challenges of PET radiomic analysis. PET im-
ages are challenging for radiomic analyses for many of the same rea-
sons as other imaging modalities. These challenges arise because pro-
cesses and imaging systems/parameters vary widely between institu-
tions, and large voxel sizes, low contrast, and activity limiting signal-
to-noise can result in weak features. Additionally, scanner type, in-
jected activity, acquisition time after injection, acquisition time per bed
position, attenuation correction with CT parameters, matrix sizes, and
slice thickness are all potential sources of feature variation that can re-
sult from non-quantitative imaging practices found in PET imaging, as
well as other modalities [57] [22]. In a study from 2017, Lovat et al. ex-
plored the impact of scan time after injection and found that first-order
and texture features varied significantly between the two [80]. Recon-
struction and post-reconstruction interpolation in clinical PET images
also modulate features. This was demonstrated by Shiri et al., where
56% and 59% of image signals and texture features, respectively, were
found to vary depending on the algorithms used [125]. Quantifica-
tion of shape features in PET imaging is a challenging task as well,
since there is no consensus on whether necrotic sections of the tumour
should be included in contours and the subsequent quantification of
the tumour phenotype. Additionally, although PET is one of the more
quantitative imaging modalities, PET images are prone to nonlineari-
ties and artifacts. Scattering events within the patient can displace the
annihilation photon’s line of response. This is particularly problem-
atic in regions proximal to areas of high tracer accumulation (e.g., the
bladder) and can result in substantial nonlinearities in the surround-
ing structures. The challenges of 18F-FDG have been recognized, and
standardization protocols have been proposed. Suggestions have been
made to improve quantization through proper consideration of blood
glucose levels, image acquisition, reconstruction and uptake quantifi-
cation, scanner quality control, and PET timing [7] [121]. Additionally,
a recent study [96] looked at the potential of a post-reconstruction har-
monization method to reduce multicentre differences. The method,
ComBAT, was originally designed for genomic data and estimates the
centre effect based on observed features. In Orlhac et al.’s work, they
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successfully removed the multi-centre effect on textural and SUV fea-
tures when differences in scanner brand, scan type (PET vs. PET/CT),
and reconstruction protocols were present. This is important work that
should be applied to all imaging modalities, but it is particularly im-
portant for PET imaging since data sets are often very small, requiring
collaboration between institutions. Furthermore, biases generated by
volume during PET radiomic studies have also been discovered. These
discoveries have led to suggestions regarding the minimum size of a
region of interest that should be considered during analysis. These
size suggestions to reduce bias and increase complementary informa-
tion have ranged from 10 cubic centimetres [56] to 45 cubic centimetres
and require more analysis.

Radiomic phantoms

For ethical, safety, and logistic reasons, it is very challenging to test the
influence of different acquisition protocols directly in patients. Imag-
ing phantoms represent a useful tool to evaluate the reproducibility
and repeatability of image acquisition and image signals, as well as the
resulting radiomic features under different conditions. Investigators
have used phantoms to study the influence of scanner manufacturers,
slice thicknesses, and image reconstruction algorithms. In Traverso et
al [138], the authors identified six phantom studies investigating the
reproducibility of radiomic features. CT was the most common image
modality (5 of 6), and PET was investigated in only one study. The con-
sistency and quality of imaging data needs to be considered for proper
evaluation and comparison of the performance of radiomic models.
When images are obtained with different scanners, time points, and
institutions, the imaging data is often inconsistently acquired, and the
quality can vary widely. This is a similar challenge faced by tradi-
tional QI pipelines. For traditional QI, one approach taken to simu-
late and assess the quantitative impact of variances within the imaging
data on the results of image analytic models has been the use of digi-
tal reference objects (DRO). Standard phantoms can help evaluate the
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performance of imaging systems for particular imaging protocols, as
shown for MR imaging when determining the stability of scans over
time, and between subjects, sites, and vendors for the purposes of QI
applications. The combined use of physical phantoms and DROs are
being implemented to evaluate components that impact the quantita-
tive capabilities across the QI pipeline. Similar practices in the genera-
tion of prospective data would assist in safeguarding radiomic studies
against imaging variations that impact the repeatability and robust-
ness of extracted features. To account for imaging variations in retro-
spective data, Zhovannik et al. used phantoms to evaluate and quan-
tify the dependence of radiomic features with respect to CT technique
(i.e., tube voltage and current) [162]. These dependencies were quanti-
fied to generate “calibration” curves that accounted for systematic un-
certainties of radiomic features when computed with different settings
and across different institutions. Phantoms could be similarly used to
ensure consistent image acquisition and calibration. These techniques
would provide a level of quality assurance that reflects the sources
of errors across the overall imaging workflow. A full end-to-end ra-
diomic phantom study would also provide excellent evaluation of an
institution’s ability to acquire consistent imaging that is adequate for
meaningful radiomic analysis. However, one question about this type
of work is how anatomy and simulated lesions (usually with inserts)
produce textural features similar to values seen in patients. To the best
of our knowledge, there is only one phantom that was specifically de-
signed with different materials selected to simulate the textural distri-
butions seen in human studies. The phantom was constructed of 10
layers (cartridges) representing different materials. It was scanned in
different institutions, and the data was made publicly available [83].
It may also be possible to utilize more traditional quality assurance
phantoms designed and used for scanner calibration and equipped
with inserts dedicated to simulating lesions with uptakes similar to
human studies [104]. Recent techniques, such as 3-D printing, can also
create phantoms with inserts much more similar to lesions seen in hu-
man studies and will, therefore, enhance the usage and comparison of
results from phantom studies to radiomic analyses in patient cohorts
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[14].

2.1.2 Radiomic workflow and pipeline

Radiomic analysis and model development is a process involving a
sequence of modular events (Figure 2.2). These events combine to-
gether to generate a pipeline that can be performed manually, semi-
automatically, or fully automatically. Defining this pipeline is impor-
tant to understanding the various aspects of radiomic analysis that can
help or hinder the final results. It is traditionally thought of as a simple
four-step process that involves (1) obtaining images, (2) contouring re-
gions of interest, (3) extracting quantitative features, and (4) building
a predictive or prognostic model. While it is true that these are the ba-
sic steps required for proper radiomic analysis, there are many details
that need to be considered. Additionally, the radiomic pipeline shares
many similarities to the traditional QI pipeline [59]. This provides op-
portunities to align processes and integrate radiomic features and QI
metrics to advance the investigation of related mechanisms between
radiomic features and QI metrics, thereby improving interpretability
of radiomic features. This section of the chapter will introduce you to
some of the details that require consideration during image acquisi-
tion, data preparation, feature extraction, and model building.

Image acquisition

In pursuit of personalized cancer care, quantitative imaging
measurements have the potential to stratify patients based on
prognosis, predict treatment response, and even spatially identify
regions of higher risk to guide adaptive local therapies, such as
radiation treatment. Image acquisition is the critical first step in
generating the key data used for radiomic analysis or traditional
quantitative image analysis. Although image post-processing
methods are often applied to improve the consistency of the imaging
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Figure 2.2: The radiomics image analysis pipeline is composed of a series
of modular events designed to develop predictive models useful for clini-
cal decision-making. Image acquisition, data preparation, feature extraction,
model building, and clinical integration are the broad components of this
pipeline. Within each of the pipeline modules there are many details that
need to be considered to ensure positive progression of the field. Interest-
ingly, this pipeline contains many of the same upstream components that
make up a traditional quantitative imaging pipeline that focuses on measur-
ing biophysical parameters on a ratio or interval scale. This provides op-
portunities for researchers to utilize the same input data in both a radiomics
and traditional QI pipeline, thereby improving our ability to understand the
underlying related mechanisms and, therefore, the driving mechanisms of
selected radiomic signatures.

31



Chapter 2. Quantitative radiomics in Radiation Oncology

data used in the pipeline, the impact of variable image acquisition
cannot entirely be corrected. Recognizing the importance of consistent
image acquisition for quantitative image analysis, there have been a
number of international efforts to establish guidelines to improve the
repeatability and reproducibility of quantitative imaging measures
including the Quantitative Imaging Biomarker Alliance (QIBA) of the
Radiological Society of North America and the European Imaging
Biomarkers Alliance (EIBALL). Quantitative imaging measures
that have been addressed by these groups include: CT volumetry,
MR biomarkers (diffusion weighted MR-DWI), dynamic contrast
enhanced (DCE) MR, dynamic susceptibility-weighted MR), and
PET. These groups aim to provide descriptions of image acquisition
procedures with measured and characterized uncertainties based
on test-retest data in the quantitative measures to guide the clinical
implementation and appropriate interpretation of quantitative
imaging biomarkers. However, a major common challenge between
these quantitative imaging biomarkers and radiomics is the paucity
of test-retest data to facilitate the implementation of quantitative
approaches, as highlighted for DWI and DCE-MRI by Shukla-Dave
et al. [128]. An additional challenge of generating quantitative
radiomic models is the current practice of using conventionally
acquired anatomical images, which generally have even less stringent
oversight, even in the setting of clinical trials. The image acquisition
protocol—including the selection of contrast agent, timing of
contrast injection to image acquisition, and the image acquisition
parameters—can impact the measured volume of the tumour.

Data preparation

The Imaging Biomarker Standardization Initiative [164] has provided
the radiomic community with a set of guidelines for the standardiza-
tion and harmonization of radiomic studies. In particular, the authors
dedicated much attention to the computational steps that come prior
to feature extraction, such as (a) contouring and segmentation of the
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ROI, (b) image interpolation, and (c) image signal discretization. We
will briefly describe the mentioned processes in the sections below.

Contouring and segmentation

The process of quantifying a patient image for prognostic and diag-
nostic analysis requires focusing on a specific region thought to be as-
sociated with the outcome of interest. Contouring and segmentation
are used in this scenario to define the region of interest (ROI) that will
be quantified using radiomic features. For application in radiation on-
cology, features are usually extracted from the gross tumour volume
(GTV). The GTV is a convenient ROI to work with for radiomic stud-
ies because it is routinely contoured in clinical practice for radiation
therapy (RT). Additionally, several machine-learning-based (ML) tech-
niques have been proposed to automatically segment ROIs. This is
beneficial because it permits previously un-contoured patient images
to be used in studies, speeds up the contouring process, and reduces
contour subjectivity. In one study by Lustberg et. al. [82], a deep learn-
ing algorithm that contoured the lung showed promising results when
compared to existing solutions, and had marginal time required to
“correct” them manually. The manual correction is there to ensure that
an automatically generated ROI is still considered “clinically accept-
able” and results in a semi-automated method. Semi-automated con-
touring methods were shown to be capable of reducing inter-observer
variability and, therefore, producing a larger subset of reproducible
features [100]. However, there has been a trend in the current literature
to evaluate the accuracy of automated or semi-automated contours by
looking at metrics such as DICE coefficient or Jaccard index [51], which
may not be enough to state confidently that these contours are clin-
ically relevant. To strengthen the conclusion that semi-automatically
or automatically generated contours are clinically relevant, researchers
could import machine-generated contours to treatment planning soft-
ware and compare the dose-volume distributions obtained from orig-
inal and machine-generated contours. Despite most radiomic studies
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focusing on feature extraction from the GTV, recent papers have looked
at using other ROIs. These ROIs can be alterations of a GTV, such as
those used by Dou et al. , where the authors investigated radiomic fea-
tures extracted from the peritumoral region, defined as an extension of
3 mm of the GTV [28]. They identified in this work that peritumoral
radiomic features associated significantly with distant metastases in
lung cancer patients. These results seem to suggest that additional
quantitative information can be extracted from outside of the tradi-
tional GTV region, which may suggest that the traditional definitions
of GTV may not encompass the full extent of tumour, or there may be
additional radiomic changes in the tumour microenvironment. Other
recent applications have also included the evaluation of radiomic fea-
tures extracted from other ROIs, such as clinical target volumes (CTV)
and organs at risk (OAR), showing promising results for predicting
treatment response in breast [9] and glioblastoma [107]. However, lim-
iting feature extraction OARs or target volumes may not be the opti-
mal solution to predicting treatment side effects, such as toxicities. In
fact, toxicity outcomes might be related to a sum of a set of features
extracted from OARs, target volumes, and the morphological combi-
nations of these two, such as the ROI defined as subtraction between
the GTV/CTV and the anatomical primary site of the tumour (e.g., in
lung, the volume of tissue of lung minus GTV/CTV). Most recent pub-
lications that use deep learning-based algorithms overcome the above-
mentioned problem by feeding the algorithm with the full set of slices
of a patient’s study, without any input ROI. For use with most radiomic
platforms, the contour needs to be converted to a binary mask. Since
in radiation oncology most of the contours are available as DICOM
RTSRUCT files, an algorithm that converts the list points defining the
contour to a binarized volume in the same coordinate system as the
image is needed. The most common algorithm is ray casting. The ray
casting algorithm belongs to the family of point in polygon problems
of computational geometry, asking whether a given point in the plane
lies inside, outside, or on the boundary of a polygon. The ray casting
algorithm tests how many times a ray (e.g., the line connecting two
points, starting from the point and going in any fixed direction) inter-
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sects the edges of the polygon. If the point is on the outside of the
polygon, the ray will intersect its edge an even number of times. If
the point is on the inside of the polygon, then it will intersect the edge
an odd number of times (Roth 1982). There is no specific recommen-
dation on the particular choice of the algorithm; however, different
algorithms can lead to different segmentations that can potentially af-
fect the reproducibility of radiomic features [138]. For this reason, we
suggest that researchers provide detailed explanations of the particu-
lar algorithm used for contour conversion. Best practice would be to
use web-described, open-source platforms such as SimpleITK and the
SlicerRT extension of 3-D Slicer [105], or to provide detailed descrip-
tions of the algorithms upon publication. Although focusing our signal
analysis in radiomics to an ROI may be beneficial for processing and
directing our research, it is also a limiting factor. ROIs, such as GTVs
and OARs, are generated for clinical usage and embed prior knowl-
edge important for treatment planning purposes. This knowledge can
involve past experience, adherence to institutional contouring guide-
lines, and uncertainties related to the treatment strategy (e.g. treatment
margins to ensure coverage during treatment). It is, therefore, impor-
tant to consider the inherent risk biases introduced into our analysis
and conclusions as a result of ROI inclusion. Investigations on how
to homogenize and reduce possible biases in contouring are on-going
[129].

Image interpolation

The reconstructed resolution of an image is defined by the size of an
individual pixel in each of the three dimensions, and this can vary with
the imaging protocol used for image acquisition. To reduce image sig-
nal associated biases, pre-processing of images can be performed prior
to feature quantification and extraction. In the specific case of texture
features—which quantify local or distribution patterns of the image
values, images should have harmonized resolution to avoid sampling
a different underlying signal and a different number of image values
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from one patient to the next [112]. That also makes extracted features
invariant to different voxel dimensions, and it is used to guarantee
reproducibility of features with respect to different voxel dimensions.
The procedure of harmonizing the dimension of pixels (or voxels) to
the same value is referred to as creating isotropic voxel representa-
tion. It should be noted that care should also be taken to harmonize
the intrinsic frequency content of the underlying signal transfer, not
just voxel dimensions, to assure consistent information flowing into
the radiomic pipeline. Interpolation of voxels to a uniform size can
be performed through up- or down-sampling. The choice of down-
sampling (reducing to smaller voxel values) or up-sampling (increas-
ing to larger voxel values) of the original images will alter the radiomic
signatures. It has also been shown that re-sampling has an impact on
feature reproducibility (Traverso et al. 2018). Different interpolation
algorithms are used to map the original grid of voxel values to the in-
terpolated grid. In such a grid, the voxels are spatially represented
by their centre. Several algorithms are commonly used for interpo-
lation, such as nearest neighbour, trilinear, tri-cubic convolution, and
higher polynomials of the spline interpolation. In short, nearest neigh-
bour interpolation assigns the signal value of the most nearby voxel
in the original grid to each voxel in the interpolation grid. Alterna-
tively, trilinear interpolation uses the signal values of the eight most
nearby voxels in the original grid to calculate a new interpolated sig-
nal value using linear interpolation. Trilinear interpolation algorithm
is a more conservative approach compared to the nearest neighbour
algorithm since it does not lead to out-of-range signal values, which
may occur due to overshoot with tri-cubic and higher-order interpola-
tions. It is, of course, important to realize that these algorithms alter
the underlying frequency content of the image signal. It is worth men-
tioning that the ROI mask will also require interpolation to match the
dimensions of the newly interpolated image. To avoid possible partial
volume effects (PVE), the nearest neighbour interpolation algorithm
is suggested for ROI mask interpolation [164]. Additionally, the opti-
mal algorithm for image interpolation might be modality or research-
question-dependent, and care should be taken to evaluate the impact
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of different re-sampling algorithms on the particular research question.
However, caution is warranted, as the selection of the algorithms of in-
terest will be biased by a particular user and put the research at risk of
data leakage if proper holdout data sets are not used.

Discretization of image signal values

Image signal values are typically re-sampled to extract texture fea-
tures. This can be a simple process, such as grouping or binning the
values. In fact, texture matrices from which texture descriptors are
computed are obtained by grouping together neighbouring voxels or
regions of voxels. Furthermore, discretization is often employed to
perform noise-suppressing prior to texture descriptor extraction, mak-
ing the calculation more manageable, as explained by Yip and Aerts
[156]. The procedure of image signal value discretization is usually
referred as “quantization” or “binning.” Two main quantization ap-
proaches exist: fixed bin width and fixed bin count. There is currently
no evidence to prefer one method to the other, but some suggestions
have been made [78]. When utilizing non-quantitative images with ar-
bitrary units (e.g., MRI T1 or T2 weighted images for which the signal
does not have a defined unit) there is a lack of linearity present in the
signals. In these scenarios the Image Biomarker Standardisation Initia-
tive (IBSI) recommends using a fixed bin count approach that breaks
any possible relationships between the feature values and physiolog-
ical meaning, but potentially introduces an intrinsic normalizing ef-
fect. However, recent publications focusing on radiomics in MRI have
suggested the performance of a priori explicit normalization, e.g., nor-
malizing the entire image against the values of a specific anatomical
region to increase the stability of radiomic features. In the fixed bin
size approach, a new bin is assigned for every signal value interval of
fixed width, starting from a minimum value. The IBSI suggests assign-
ing the minimum value of the quantization as the minimum value of
a re-segmentation range, or by using the minimum value in the ROI.
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In general, we believe the users should test and verify all the configu-
rations presented above. This empirical approach will then allow ex-
tending the work by IBSI. However, as we have already mentioned and
the quality of reporting of radiomic studies plays a fundamental role
in the field’s success and clinical impact. In fact, without an adequate
standardized reporting system, it becomes impossible to compare and
contrast two different radiomic pipelines and their underlying deter-
mining imaging signal sources.

Verifying limiting dependence on pipeline parameters

As it emerged from the previous subsections, all the available radiomic
computational packages allow a full customization of the procedure
for radiomic feature extraction, but available customizability without
a consensus for a universally accepted, standardized strategy for ra-
diomic features extraction impedes the ability to compare across stud-
ies or more broadly validate radiomic features. As the freedom of
pipeline customization is left to the user, radiomic features could ex-
hibit statistically significant differences that can impact their poten-
tial prognostic or predictive values, but some features might embed
a signal that is independent from the particular configuration of the
pipeline. We believe that the robustness of radiomic features should
be tested with respect to all the parameters available in the computa-
tional pipeline. Of course, the combinations explode as the number of
tuneable parameters in the pipeline increases. To start, we suggest the
user evaluate a grid of parameters that were suggested from previous
studies or within the IBSI document. For example, for MRI, consider a
set of normalizations presented in Traverso et al. [136].

2.1.3 Quantitative radiomic features

Current features used in radiomic studies quantify the shape and sig-
nal value distribution at various scales (i.e., texture) in or of an ROI.
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What have become known as “radiomic features” are defined quanti-
tative features from across the research community. For feature equa-
tions and details, the authors direct readers to documents by the IBSI
[164] and the developers of PyRadiomics [142], an open-source feature
extraction platform.

First-order statistical features

First-order statistical features describe the overall voxel signal value
distribution of an ROI. They can be as simple as the average signal
value of the ROI, which could mean different things for different
imaging modalities. For example, in a CT image it would describe
the Hounsfield units (i.e., average linear attenuation coefficient
relative to water), and in 18F-FDG it would describe the average
glucose-associated activity uptake. First-order features can also
describe heterogeneity of a voxel signal value histogram. For
example, skewness is designed to quantify asymmetry of values,
while entropy measures uncertainty/randomness in values, and
kurtosis describes “peakedness,” or the tendency of the distribution
to be toward the tail or mean of the distribution. Other features that
are found in this class are standard deviation, minimum, maximum,
range, and mean absolute deviation.

Shape features

Features in the shape class are designed to quantify the 2-D or 3-D
shape of the ROI and are independent of the image signal values
found within the ROI. Many of these features have historical relevance
in clinical prognostics. For example, volume may be considered a
surrogate feature for TNM staging, while surface-to-volume ratio and
sphericity (i.e., similarity of the ROI to a sphere) could be descriptors
of tumour spiculation. These types of features are highly referenced
outside of radiomics but would benefit from a more automated
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and objective quantification. However, it should also be noted that
one of the goals of radiomics is to improve upon current clinical
standards, and highly redundant features should be avoided to
prevent over-fitting in models. Care must be taken in understanding
the impact of image resolution on shape features.

Texture features

The final feature class that has become synonymous with radiomic fea-
tures is the texture class. These features quantify voxel signal value
information, while also capturing relationships between two or more
voxels. Texture features can be calculated from a variety of different
matrices (e.g., co-occurrence, run length, or size zone) designed to de-
scribe the distances and relationships between voxels [134][63]. Re-
lationships between pairs of voxels can be quantified using entropy,
homogeneity, and contrast features (not to be confused with features
of the same name in the first-order class), while relationships between
voxels in neighbouring planes can be quantified with features such
as busyness and complexity. Texture features have been the focus of
much of the radiomic field since they are not easily quantified and dif-
fer from standard clinical features like tumour volume or average glu-
cose metabolism-associated activity in 18F-FDG PET imaging. How-
ever, caution is warranted as these features were originally intended
for evaluation of aerial photographs that were uniform in size [53].
This poses a challenge for radiomics since the features are quantifying
ROIs of varying sizes and cause a confounding effect with respect to
the volume feature. This has been noted by many research groups, and
suggestions have been made to correct these features or remove them
from analysis [140][148].
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Filtered images

Another common practice in radiomic feature quantification is to filter
the original image and re-extract first order and texture features from
the newly generated image volume. A filter modifies the information
in the original image and can bring forward features of interest, such
as Laplacian of Gaussian (LOG) filtering, which is designed for edge
detection and identifies areas of rapid change in images. By applying
a LOG filter and re-extracting first-order and texture features, homo-
geneous regions within the heterogeneous ROI, may be more easily
identified. There are many options for filtering methods, but they often
result in less reproducible features [138]. Additionally, when binning a
filtered image, the width or number of bins used should be altered to
represent the range of values present in the image to avoid bins with
single voxel counts. Volume as a confounder Many features used in ra-
diomic studies have confounding features that can result in incorrect
interpretation of results and assignment of causality. A well-known
confounding factor of many features from the first-order and texture
feature classes is volume. In a paper by Fave et al. , they discovered
that five texture features were entirely volume-dependent, and that the
dependency of other features on volume changed with pre-processing
methods [39]. This points to a larger issue regarding reporting of data
processing. In another study by Welch et al. [148] , a widely used ra-
diomic signature was found to be entirely volume-dependent. It was
determined that when applied to images containing simulated ran-
dom noise, the signature and model had the same prognostic accuracy
when used on patient images, indicating that the tumour contour was
all that was required. These types of effects can result in misinterpre-
tation of results and the overstatement of signature and model impor-
tance, and they should be thoroughly explored during feature selection
and modelling building processes. There is no straight-forward way
to deal with these confounding factors. Removal of confounded and
correlated features can be done during feature selection using meth-
ods such as Spearman rank correlations; however, this assumes that a
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confounded or correlated feature does not provide additional informa-
tion, which is not always the case [88]. Alternatively, statistical meth-
ods have also been proposed to eliminate the effects of confounders for
improved utilization in these types of models.

2.1.4 Building prediction models

The ultimate goal of the radiomic pipeline is to describe patterns ob-
served in data using mathematical formulations. These formulations
generate a representation of the disease as it relates to the features that
have been extracted from the image. By describing the patterns in this
way, a model is trained that can be used for classification of an out-
come of interest. Radiomic model development involves the selection
of a set of features that can be combined using statistical and machine
learning methods. The combination of these features results in the abil-
ity to predict an event of interest when new observations are given.
There is no single modelling methodology that will guarantee high ac-
curacy, reliability, and efficiency; therefore, it is suggested to test var-
ious techniques. Comparison of different methods in radiomics has
been performed by groups such as Parmar et al. who compared 14
different feature selection methods and 12 classification techniques in
lung cancer [99]. In their work, they found that Wilcoxon-based fea-
ture selection and random forest modeling had the highest prognostic
performance, with high stability against data perturbation. They also
found that the classification method was the dominant source of per-
formance variation. A similar study was performed in HN cancer by
Leger et al. [77]. They compared 11 classification techniques and 12
feature selection methods and determined that random forests with
maximally selected rank statistics and Spearman rank feature selec-
tion had the best performance. The different results achieved in these
two studies highlight the importance of performing these types of tests
on specific data sets since they can vary between sites. This section
will highlight some of the key points required for model development
and validation. Feature selection The average number of features that
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can be extracted from a radiomic computational package varies from
hundreds up to thousands (around 1000–5000) due to the large num-
ber of possible filter combinations that can be applied to the original
image before feature extraction. This causes radiomics to suffer from
the curse of dimensionality, and no classifiers are currently able to deal
with an injection of such large numbers of features, particularly when
using the data set sizes available for radiomic studies. In fact, even
machine learning algorithms— such as random forests, which are de-
signed to internally deal with large numbers of features—will be af-
fected by other challenges, such as high feature correlations and con-
founders like volume. Techniques to deal with these problems have
been developed mainly for genomic studies, which can present even
higher complexity. Supervised and unsupervised feature selection can
help to reduce over-fitting and increase generalizability; however, no
agreed upon approach has been defined for radiomic studies. Below
is a brief summary of different feature selection types. Unsupervised
methods allow the learning algorithm to find structure in the input
data, instead of responding to feedback from a classifier. They are
called unsupervised methods since they do not make use of target
information, such as patient-associated outcomes, during their proce-
dure. The most commonly used unsupervised technique employed for
feature selection involves finding similar groups of examples within
the data by clustering features together. The clusters are evaluated
for similarity using different metrics, such as distance between points
or distance between points and a centroid [98]. It is also possible to
define the number of clusters. For example, when predicting high and
low risk of an event, you may define the number of clusters as 2. Alter-
natively, some algorithms, like hierarchical clustering, can determine
the optimal number of clusters when little is known about the input
data. These can help reduce feature dimensionality by defining a new
set of features based on the clusters. This would involve either select-
ing one feature from the cluster as a cluster representative feature, or
by defining a new feature based on the cluster (e.g., the centroid of the
cluster). Another useful unsupervised method for feature set reduc-
tion is principal component analysis (PCA). PCA is used to reduce the
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original dimensionality of the problem into orthogonal components
(called principal components). The number of components is chosen as
the minimum number of components that retains a certain amount of
the original variance in the data (usually 95%). Principal components
can then be employed in a classifier and used as a “reduced” features
set. Unsupervised methods are ideal for basic exploratory analysis of
features, but caution is warranted since the clusters or PCAs that are
identified may have no relation to the outcome of interest. Further-
more, despite unsupervised methods being mainly used for feature set
reduction, they may also be beneficial for prognostic modelling. This
was demonstrated in a study by Traverso et. al. where it was shown
that clusters of radiomic features could distinguish between lung can-
cer patients as having high or low risk of death [137]. Supervised fea-
ture selection approaches use event-of interest labels to select features
that are important for the problem. They can be performed using uni-
variate and multivariate analysis, as well as prior to or during classifier
training. However, it should be noted that this approach can introduce
redundant information during the training procedure. Supervised fea-
ture selection methods can largely be divided into filter, wrapper, and
embedded methods. Filter methods of feature selection are performed
prior to classification development, and they rank features according
to a scoring criterion [50], such as a Fisher score [60]. Univariate meth-
ods only score based on the relevancy of a feature to the outcome of
interest; multivariate methods score based on relevancy of the feature
to the outcome of interest and redundancy of that feature in compar-
ison to other features [29][48]. If this method is used, it should be
performed on a set of features that is different than what is used for
training of your classifier. This will ensure optimal generalizability in
the features that are selected. Wrapper methods depend on the clas-
sifier that will be used. They act as a search method that looks at the
entire feature space to find relevant and nonredundant feature subsets
like recursive feature elimination [84]. A selected subset is then used
with the classifier to determine how well this subset performs with
the selected classifier. This method can be computationally expensive
and may result in over-fitting to the type of classifier chosen. Finally,
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embedded methods involve incorporation of feature selection with the
classifier. Embedded methods can be similar to wrapper methods, but
they tend to be more efficient as an intrinsic classification metric is used
during learning. Embedded methods of feature selection are common
in decision tree classification.

Classifiers

Classifiers are statistical or machine learning methods that combine
pre-extracted features in ways that lead to predictive forecasts. There
is often a trade-off between interpretability and complexity of classi-
fiers [52][69]. Simple classifiers, like logistic regression, are often pre-
ferred by clinics, but they lack the ability to discover more complex fea-
ture interactions. Generalized additive models are new methods that
have been applied to real healthcare problems, and they have achieved
high accuracy while retaining interpretability [17]. They have not been
applied to radiomic features yet, but when applied to a pneumonia
risk prediction case, they recognized and allowed removal of patterns
and biases in the data that had prevented complex classifiers from be-
ing used. It is up to the user to decide what aspects of a classifier are
important for the utility of their radiomic models and to test various
methods accordingly. Supervised classification is the most commonly
used method for predictive and prognostic model development in ra-
diomics. It involves the inference of a function from labelled training
data, which consists of a set of examples that contain an input vector of
features (i.e., the selected radiomic features) and a desired output (i.e.,
the event of interest). The function can then be iteratively learned by
evaluating its performance relative to the provided input data. These
types of models can be simple and intuitive, such as linear regression
or Cox modelling, or more complex, like neural networks or decision
trees. More complex methods often have hyper parameters that can
be tuned as well [85][153]. For example, when training a random for-
est, the optimal number of trees, samples in leaf nodes, and samples
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evaluated during splits can be tuned. It is important to tune these pa-
rameters using cross-fold validation on your training set to avoid over-
fitting. After finding the optimal settings, a final model can be fit on
the entire training data set. Supervised learning is the most common
method of classification in radiomic research. Training and testing of
a radiomic classifier, it is important to ensure there is no information
cross-contamination between the two data sets. This means making
sure that your test set has not been seen by your classifier during train-
ing. Due to the lack of openly available data in healthcare, radiomics
often relies on internal validation of models. This involves splitting a
single data set into training and testing sets [12] and can measure the
internal validity, or reproducibility, of the model. Internal validation
can be achieved using internal holdout testing sets or k-fold cross val-
idation. In a hold-out validation methodology pipeline, a single data
set would be divided into a training and a testing data set. The training
data set would be used for feature agglomeration, selection, and classi-
fier training. This division can happen multiple times, each time eval-
uating the trained classifier on the hold-out testing set. The estimated
error rate of the classifier can then be calculated by averaging the per-
formance across all divisions. K-fold cross validation improves upon
the hold-out validation method by preventing test set overlap. In kfold
cross validation, the full data set is randomly divided into “k” subsam-
ples. The k-1 subsamples are then used as the training data, and the
let-out sample is used as the testing data; this is repeated k times for all
potential subsampled combinations. The average performance of the
classifier across all k-folds is taken and also gives an error estimation,
but without the potential overlapping of test sets. As mentioned, in-
ternal validation of classifiers is the most commonly used method due
to availability of data; however, external validation using a related,
but slightly different, population of patients gives more information
regarding the generalizability of the classifier. Despite the difficulty of
external validation studies, it has been performed in radiomic studies
for prediction of cervical cancer recurrence and identification of clini-
cally significant portal hypertension in cirrhosis [79][81]. Most notably,
Aerts et al. showed that a radiomic model trained on a lung data set
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could prognosticate patients with HN cancer, as well as lung and HN
cancer patients from a different institution [2]. It was ultimately dis-
covered that the model used was a surrogate for volume, and building
a complex tool that replaces a simple measure is not what the field aims
to do, but this is an excellent example of external validation. Thought
should also be given to the scoring metric used for your predictive
classifier. Different metrics are appropriate for different outcome types
and distributions. Time-dependent classifications that involve mod-
elling techniques, like Cox regression, require statistical methods con-
ducive to continuous variables. Log rank tests are a common hypoth-
esis test between two survival distributions in order to determine if
they are significantly different, e.g., high or low risk of event based on
a time threshold. Concordance indices are another example of a metric
that quantifies the quality of continuous variable ranking. It looks at
the probability that, for a pair of randomly chosen samples, the sample
predicted to have a higher risk will in fact experience the event before
the comparing sample [102][62]. This is a commonly used metric in ra-
diomic studies and has been used to evaluate classifiers designed for
outcome prediction of stereotactic body radiation therapy lung can-
cer patients, comparison of classifiers for outcome prediction in HN
cancer, exploration of delta radiomics for non-small cell lung cancer
outcome prediction, and the study of radiomic software implementa-
tion impact on radiomic features in 18F-FDG PET HN patients. Binary
classifiers are also a common event for prediction, such as patient sta-
tus at three years or the presence of a malignant tumour. A confusion
matrix is a simple way to visualize the number of true positive, false
positive, true negative, and false negative predictions. Most statistical
metrics are designed to summarize some characteristic of the confu-
sion matrix. Accuracy is very often the first metric used for classifier
evaluation. It quantifies the ratio of true predictions versus all predic-
tions. It is a good metric when working with data sets that are nearly
balanced (i.e., have the same number of events in each class); however,
it should not be used for imbalanced data. For example, a data set with
an event distribution of 99 to 1 might result in a classifier that learns
only to predict the majority class and will have an accuracy of 99%
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despite learning nothing about the minority class. Receiver Operat-
ing Characteristic Area Under the Curve (ROC-AUC) is another metric
that is best used in balanced data sets. The ROC curve shows the false
positive rate vs. the true positive rate, or sensitivity vs. 1-specificity
[40]. ROCs are commonly summarized using an AUC, which shows
the probability that a classifier will rank a randomly chosen positive in-
stance higher than a randomly chosen negative one, similarly to how
the concordance index works in time-to-event predictions. An AUC
of 1 means perfect prediction, and 0.5 means no better than random.
This metric has been used in radiomic studies for binary survival anal-
ysis, identification of metastases or benign lesions in breast and lung
cancer, and identification of biological basis of radiomic phenotypes.
However, this metric, like accuracy, is best used on balanced data sets,
which are not very common in radiomic studies. Precision and recall
are lesser-used metrics that are appropriate for imbalanced data sets,
which are commonly used in radiomics. Precision defines the propor-
tion of patients that are predicted positive who were actually positive,
thereby providing information regarding false positives. Recall tells us
the proportion of patients that are positive who were predicted to be
positive, thereby giving information regarding false negatives. False
negatives are a large concern in cancer care where we want to ensure
we do not miss an event [89]. Precision and recall information can be
presented simultaneously using an F1-score or an AUC of a precision
recall curve. The F1-score takes the harmonic mean of precision and
recall and allows us to learn about the false positive and false negative
predictions of our classifier. These metrics are not as intuitive as accu-
racy, but they are more informative and often more appropriate for the
data sets used in radiomics [106].
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2.2 PRACTICAL CONSIDERATIONS, STANDARDS
AND SAFEGUARDS

2.2.1 Clinical applications of radiomics in radiation oncology

Several recent reviews have provided qualitative overviews of
the available literature regarding the applications of radiomics
in radiation oncology [152][33]. The results show evidence
of a nascent and rapidly growing field in which the potential
prognostic/predictive power of radiomics has so far been applied to
two main categories [43]: pre-treatment tumour characterization and
therapeutic monitoring studies. Pre-treatment tumour characterization
has included the investigation of possible correlations between
imaging features and the biological and genetic properties of tumour
tissues. For example, recent studies showed that imaging features
helped discriminate between p16 positive and negative disease for
HN cancers [99][8]. In one of the first radiomic studies, the authors
used unsupervised clustering analysis to show associations between
radiomic features and gene-expression patterns [2]. A Rad-TRaP
framework has also been proposed to utilize radiomic classifiers to
guide the generation of more focally targeted treatment plans for
prostate cancer using brachytherapy and external beam radiation
therapy [124]. However, the implementation of this technology
into prospective clinical trials has been appropriately cautious.
Therapeutic monitoring refers to the investigation of the prognostic
or predictive power of radiomic features to support particular
treatment decisions, or to monitor the pathological response of the
patient during or after treatments. As analysed by Scalco et al. ,
the treatment effect following thoracic radiotherapy for NSCLC is
one of the most studied subjects in this context, with a particular
focus on RILI (Radiation-induced lung injuries) [118]. For example,
Mattonen et al. developed a preliminary radiomic signature for
the automatic classification of tumour recurrence vs. lung injuries
[87]. Many publications have also been attempting to predict lung
recurrences from PET images [110], while CT has been explored
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for the assessment of pathological response, overall survival, and
distant metastases. In HN [8][25] and prostate cancer, attempts to
find radiomic features that predict for tumour response using ADC
maps from DWI scans have found inconsistent results. Some studies
[35][46] found prognostic or prognostic power in simple statistical
features extracted in ADC maps (e.g., mean, median, 75th, 90th, and
95th percentiles), but another study [93] showed that textural features
were poorly associated with biochemical recurrence. One of the
reasons might be that the lower resolution of DWI imaging may have
hindered consistent extraction of ADC textural information. When
investigating radiomics for therapeutic monitoring, the methodology
of looking at differences of feature values as a function of time has
been referred to as delta-radiomics. Delta-radiomics is a general
technique that looks at feature values as a timeline series. The main
application of delta-radiomics is to compare changes in feature values
between two time points, usually before the start of treatment and
at treatment completion. Additional time points could be added
corresponding to different in-between treatment fractions for a more
detailed evaluation of treatment response. By evaluating treatment
response more frequently, it is possible to detect warning signs for
adverse outcomes earlier. For oesophageal cancers, Yip et al. reported
that differences between pre-treatment and post-treatment radiomic
features combined with maximal wall thickness changes predicted for
pathological response better than morphological features alone [155].
A clinical application of delta-radiomic signatures may be earlier
detection through identified signals that reflect tumour response prior
to tumour volume shrinkage across time. However, feature stability
across time should be carefully evaluated [95] to isolate and exclude
features presenting poor time stability, as variability at each time point
can compound the sources of error and variability in delta-radiomic
feature measurement (e.g., image quality, ROI definition, etc.).
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2.2.2 Outcome selection to address the clinical question

When designing or reviewing a radiomic study, it is critical to have
a clearly defined outcome of interest that addresses the defined clin-
ical question. One of the most popular outcomes used in radiomic
studies is overall survival. In particular, the majority of the studies
binarize this outcome (e.g., alive/dead after two years) for their pre-
diction. While overall survival is an objective binary outcome, it may
not be representative of the cause of patient death that is related to
the clinical questions because overall survival is not strictly related to
a death caused by cancer. Additionally, overall survival may not be
impacted by subsequent salvage treatments following the treatment
of interest, or even supportive care measures that are not related to
the treatment of interest based on the primary clinical question. Other
outcomes that may be used to associate radiomic features with progno-
sis include progression free survival (PFS) or local control (LC). Com-
mon tumour response criteria used to determine PFS and LC include
the response evaluation criteria in solid tumours (RECIST), which fo-
cuses on two-dimensional tumour size changes, Cheson response cri-
teria for malignant lymphomas that track size and metabolic changes
[18], and immune-related response criteria that account for a poten-
tial increase in overall disease burden at initial treatment [151], among
others [133] RECIST are the most commonly used criteria. They were
written in 2000 and updated in 2009 [31] to address pitfalls and limi-
tations within an originally drafted response criteria document by The
World Health Organization in 1979 (World Health Organization 1979).
RECIST contains guidelines for imaging studies performed in CT, MRI,
and FDG-PET, methods of lesion measurement (e.g., all target lesions
must be measured in the longest dimension), and guidance on when
lesions are considered new, which is representative of disease progres-
sion. Despite its wide usage, RECIST is not without its limitations.
Most notable, RECIST focuses on changes in 2-D tumour size of only
five target lesions as indicators of response. This challenge is exacer-
bated when the reliability of tumour size measurements is considered
and found to be inconsistent. Additionally, the limitations of current
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methods to determine reliably these outcomes may limit the clinical
interpretability and application of radiomic features found using these
endpoints [36]. Most of the white papers describing these response
criteria refer to the need for volumetric tracking of tumours to enable
quantitative response assessment. However, the collinearity of track-
ing tumour volume and using these segmentations for radiomic fea-
ture extraction poses an interesting challenge. An additional factor to
consider is the event rate of the outcome that is selected. By selecting
an outcome that is very rare for the particular clinical question when
a large number of features is extracted, there is risk of over-fitting the
model. In order to avoid this problem, the empirical rule of 1 feature
for 10 events has generally been accepted as a conservative estimate.
Recognizing these nuances of outcome selection, a general suggestion
for the radiomic community is to work closely with a clinician or clin-
ical team to determine the outcome of interest that best addresses the
clinically relevant question that can be supported by reliable availabil-
ity of the appropriate feature with adequate quality. For new multi-
centre prospective studies, defining the standardize methodology for
data collection and using established standardized criteria will sim-
plify the consequent analysis. Finally, acquiring statistical input for
the design of radiomic studies is strongly recommended.

2.2.3 Contours

An important point to be considered is that clinical contours in ra-
diation oncology are performed by (1) looking at the particular clin-
ical history of the patient, (2) using additional information from vi-
sual/physical inspection of the patient, and (3) embedding additional
information derived from the reasoning of the clinician that can un-
der particular contouring choices be associated with treatment deci-
sions. For example, contours made by looking at different modalities
(often “fused” together for visualization purposes) can differ from con-
tours using just a single modality, as discussed in Riegel et al. [111]
and Foroudi et al. [42]. Therefore, the goals of tumour segmenta-
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tion, or source of tumour segmentation, should be noted explicitly, as
the goals may influence how the tumour is segmented. For GTV seg-
mentation, there is variability in target volume segmentation across
individuals, practices, and institutions despite attempts to introduce
guidelines for the homogenization of GTV contouring [13][144]. This
problem becomes of interest when performing radiomic studies or val-
idating radiomic-based models through different institutions. To guar-
antee that no biases are introduced when comparing or training mod-
els using data sets from different institutions, it is important to ver-
ify with clinicians the procedure used for delineations. This involves
determining if the contouring procedure was driven by additional in-
formation not necessarily taken directly from visual inspection of the
images. This could also involve information more related to outcomes
found during the physical examination of the patient, or particular
treatment decisions that might affect the original contouring strategy.
Introduction of semi-automated or automated delineation algorithms
could potentially reduce differences in delineations. Manual contours
are prone to variability due to inter-observer variations and differences
in institutional guidelines [113] [115]. This is true even when utilizing
contours developed for radiation treatment plans where consistency
would be expected [91]. Semi-automatic and automatic guidelines
have demonstrated their effectiveness in developing clinically accept-
able contours using both atlas-based [161][82] and deep learning-based
methods [16]. Additionally, semi-automated contouring methods have
been studied for their impact within radiomics, and they demonstrated
improved radiomic feature reproducibility [101].

2.2.4 Data quality and quantity

As the quality and consistency of our images and their acquisition pa-
rameters increases, the quantity of images available tends to decrease.
Therefore, when building a classifier, the data set dictates a portion of
its eventual utility. This means that a large data set with low-quality
images (artifacts, varied reconstruction algorithms, etc.) would gen-
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erate a model with greater generalizability, but less ability to correlate
features with biological processes since a feature in one patient may
actually be quantifying an imaging artifact instead of the disease of
interest. Alternatively, a small data set with highly curated and good-
quality images ensures accurate understanding of what is being quan-
tified in the image, but may not perform well on real-world data sets.
Consideration of this trade-off is needed when building and report-
ing of radiomic classifiers. Scientific developments in oncology require
high-quality data [10]. The garbage-in-garbage-out principle applies to
both user-driven manual pipelines and automated pipelines. Imag-
ing data, such as that used in radiomics, has the potential for large
quality variations, which has led to standardized site specific imaging
guideline development (Lewis-Jones et al. 2016). However, without an
understanding of the image quality used for radiomic model develop-
ment, it cannot be known whether image or patient variability is the
deterministic factor in the model training and prediction. Lack of stan-
dardization in image acquisition and handling is a cause of this issue,
but so is lack of image artifact consideration, as are a variety of other
parameters whose impact on radiomic features have not yet been stud-
ied adequately. Radiomics is currently challenged by the lack of con-
sistency within image acquisition parameters, such as voxel size [120]
and reconstruction algorithms [68]. However, artifacts specific to cer-
tain disease sites and imaging modalities further exacerbate the data
quality issue and can skew learning and validation of radiomic mod-
els. The collection of high-quality prospective data specific to radiomic
analysis that supports causation instead of correlation will strengthen
the findings of radiomic studies; however, until this time, data cura-
tion with respect to data quality would represent a fundamental step
toward reliable and reproducible results. Artifacts come in a variety
of forms that alter an image’s appearance, as well as our ability to
quantify the phenotype of an ROI. It is not understood to what ex-
tent quantification is impacted by the various artifacts, but it logically
follows that if qualitatively the image is degraded, we cannot trust our
quantitative metrics. These artifacts may present as motion artifacts in
PET, CT, or MR images due to the length of scan times [109]. PET im-
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age quality can also be degraded by scattering effects that impact the
quantitative properties of the modality [126]. In MRI and CT images,
metal artifacts caused by dental work, pacemakers, or joint replace-
ments can impact calculated relaxation rates, diffusion metrics, and
Hounsfield units (HU) [90], and current methods are only designed to
salvage qualitative data, not quantitative [25]. In one study on the im-
pact of artifacts on radiomic features, Block et al.looked at the impact
of metal artifact reduction (MAR) methods on radiomic features cal-
culated for a phantom with and without a dental artifact insert [34].
It was shown that radiomic features calculated on images after MAR
were similar to those features calculated on images of the phantom
without the dental artifact insert; however, regions of interest farther
from the dental artifact insert had reduced stability due to the intro-
duction of new artifacts. Additionally, Wei et al. , demonstrated the
importance of DA consideration in radiomic studies by showing that
the removal of DA+ patients from analysis positively impacts radiomic
signature performance [146]. The lack of consensus on proper han-
dling of artifacts often leads to patients being excluded from the data
sets or included and ignored. As the availability of large retrospective
data sets become more common, efficient methods of artifact identi-
fication will be needed. Recent work with deep learning achieved a
precision recall AUC of 0.92 when identifying volumes containing Das
[150]. Promising work in slice removal has also shown that affected
portions of ROIs can be removed without significantly altering some
radiomic features [44]; granted, justification would be required to ex-
plain the implications of slice removal on shape features. When devel-
oping predictive models, it is understood that more data is often pre-
ferred. Larger data sets improve statistical analysis of the model and
have a higher chance of containing heterogeneities that your model
may encounter during clinical usage. Additionally, small data sets
have increased potential for false positive and false negative errors [6].
Smaller data sets are commonly used in radiomic studies, which could
be the result of increased data quality, but is more commonly caused
by data access issues. Rule-of-thumb suggestions on how many fea-
tures to consider per event in the data set are often made to counter
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these issues [45]; however, these are just suggestions and may not be
appropriate for a specific disease site, end point, or set of features. Al-
ternatively, gaining access to more high-quality data can increase the
performance and impact of radiomic studies; however, this is not easy.
Obtaining more data is a challenge that most radiomic researchers will
encounter during their career. Lack of data access may be caused by a
rare disease site of interest or data governance issues. This is a known
area of concern and multiple things can, and are, being done to rem-
edy it. Distributed learning is one method of accessing more data from
different sites without the data needing to leave the hospital. This is
achieved by enabling models to move between sites, learning at each
location, and having the final results combined. Open access data is
another option for increasing the size of data sets. Groups such as The
Cancer Imaging Archive [20] and XNAT [86] contain openly available
patient images from a variety of modalities and disease sites that are
available for anyone to use. This not only improves the research of
others, but it helps the publisher of the data gain greater insight into
their data through collaborative and reproducibility studies. However,
it is advised that feature distributions between different data sets are
analysed to ensure similarity. Open access data is an important step for
radiomic progression that is beginning to be recognized. In particular,
the National Institutes of Health (NIH) is addressing the data sharing
issue by requiring all major funding applications to have a data shar-
ing plan in place [117].

2.2.5 Feature reproducibility and repeatability

The importance of reproducibility and repeatability of radiomic fea-
tures is integral to their successful application within clinics. This par-
allels with quantitative imaging, where technical confidence in repro-
ducibility and repeatability of quantitative measurements is needed
for utilization in clinics and personalized cancer care [128]. Repro-
ducibility refers to features that remain the same when imaged using
different equipment, software, image acquisition settings, or operators
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(e.g., other clinics), be that in the same subject or in different subjects
[71]. It is important to understand that a feature’s stability is not a suf-
ficient condition for a feature to have certain prognostic or predictive
power. However, as explained by Gudmundsson et al. for time series
analysis, less robust features are likely to be found to be less impor-
tant when developing a predictive or prognostic model [49]. Finding a
consensus in the published literature regarding a set of “universally”
reproducible features is difficult. The main reason behind this problem
is that radiomic features exhibit different grades of sensitivity with re-
spect to different settings. Furthermore, the level of sensitivity might
be dependent on the particular modality or perturbation being con-
sidered. For example, a feature that showed good reproducibility for
a certain anatomical site might not be reproducible for another site,
even if the image modality remains the same. This challenge was high-
lighted via a qualitative synthesis in (Traverso et al. [138], despite a
quantitative meta-analysis not being possible due to limitations of data
sharing of the analysed studies or poor quality of reporting. The quali-
tative synthesis showed that inter-observer variability in ROI segmen-
tations affected feature reproducibility for both PET and CT modali-
ties. Out of all the features categories, first-order features were in gen-
eral more robust than textural features, with the first-order entropy
appearing to be robust in CT both for HN and lung sites. No emergent
pattern regarding reproducible PET texture features was found. Digi-
tal image pre-processing prior to feature extraction was also found to
affect the reproducibility of all radiomic features, with the exception of
shape features. If some of the image pre-processing techniques, such as
de-noising, can increase the level of signal-to-noise ratio in an image,
it logically follows that other techniques, such as resampling, could
worsen or improve the quality of features. Repeatability of radiomic
features refers to features that remain the same when imaged multi-
ple times in the same subject, be that a patient or a phantom. The most
common technique that has been used to evaluate feature repeatability
in human studies is called test-retest. In a test-retest scenario, patients
are rescanned using the same configuration but within a short elapsed
time frame from the original scan, sometimes called the “coffee-break
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scan.” Feature stability with respect to the two interval times is then
investigated. Feature repeatability can be seen as a control group sta-
bility test. In fact, in the same short time scenario, with no changes
on other settings, features are expected to not show any change in
their values. Therefore, features that have poor repeatability should
be discarded from further analysis [49]. Repeatability becomes funda-
mental when considering time-series analysis, such as the change in
radiomic features between the start and finish of treatment that may
indicate treatment response. When exploring the reproducibility and
repeatability of radiomic features, it is often difficult to find relevant
datasets that are publicly available. For the former, for example, de-
lineations by multiple observers may be required, which represents a
burden on clinicians. For the latter, test-retest human data sets would
require particular approval on the patient’s side, since additional ex-
posure to radiation or prolonged scanning time is needed. Finally, we
always recommend that users explicitly report the details of the en-
tire computational pipeline used to extract features. This topic will be
touched on in the next subsection.

2.2.6 Software

Software is needed during all steps of the radiomic pipeline and
should be carefully considered. Many open languages, such as R
(R Development Core Team 2008) and Python [139], have libraries
capable of feature agglomeration, feature selection, and classifier
training. However, the extraction of radiomic features often
requires custom-built solutions dependent on the user’s needs. It
is commonly thought that the most important aspect of radiomic
feature extraction software is the variety of feature classes available,
but feature correctness, image and contour handling, transparency,
pre-processing, and batch processing capabilities are equally, if not
more, important. The variety of requirements for radiomic research
often leads to building in-house solutions. Although this allows the
user to customize every aspect of their pipeline, caution is warranted.
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Errors in image handling and mathematical definitions of radiomic
features can quickly lead to incorrect results that are difficult to trace.
By using pre-built solutions, open-source libraries, or by making
in-house software public, it increases accountability and produces
more robust results. Additionally, by using open-source solutions
and libraries, reproducibility of results increases [148]. This need
is highlighted in a study by Bogowicz et al. (2017), where they
demonstrated that features extracted from the same data set, but
using two different software implementations, led to significant
differences in 88% of the features. There are many pre-built radiomic
feature extraction solutions available. MaZda [131] is a solution that
was originally developed for texture analysis of mammograms in the
1990s, demonstrating the historic nature of this field. It was recently
updated to handle 3-D images and is widely used and well tested
[4]. It is designed to work as a stand-alone platform capable of ROI
segmentation, image preprocessing, statistical analysis of features,
and classifier development. Alternatively, predefined ROIs can also
be imported, and generated features can be exported for statistical
analysis in other software. CERR is another solution that was
originally designed for importing, displaying, and analysing radiation
therapy treatment plans in Matlab, but has recently been expanded
to include radiomic feature extraction [24]. It can handle various
imaging modalities and perform image fusion and contouring. IBEX
[158] (Zhang et al. 2015) is another popular standalone solution that is
compatible with various image and contour formats, has contouring
capabilities, and allows for optimization of pre-processing and
feature algorithm parameters that permits optimization for different
modalities. If the user prefers a more custom solution, opensource
libraries also exist. Pyradiomics is an opensource Python package for
extraction of features from 2-D and 3-D binary masks [142]. It has a
large variety of features, filtering methods, and pre-processing steps
available for complete customization. Additionally, batch processing
and parallel processing is easily implemented through the package or
with basic Python scripting. Pyradiomics can also be implemented
using 3-D Slicer [105], which provides a graphical user interface
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and access to Slicer modules that include segmentation methods
and DICOM handling. Pyrex [122] (Shi 2018) is another wrapper
that employs original DICOM and RTStruct files of various images,
and exporting of features in a variety of formats, including those
compatible with radiomic oncology ontologies (Link here).

Reporting and safeguards

In emerging fields such as radiomics, the methodological details
are very important to ensure productive progression of the field.
Understanding the details of a study improves reproducibility
and refinement of its results. In this chapter we have highlighted
some of the potential areas for concern, including pre-processing
of data, confounding factors, software, and model development
and evaluation. This section describes some of the protocols and
standards that have been published to guide radiomic researchers in
proper reporting of these details, thereby ensuring good scientific
developments and eventual transition of appropriate models into
clinics. Broad methodological guidelines were suggested in a paper
by Welch et al. to safeguard development against underlying
feature dependencies and multi collinearities, while ensuring
clinical engagement [148]. Through a detailed analysis they refitted
a radiomic model and found vulnerabilities during a backwards
analysis, which started at a completed model and worked toward
the univariate feature selection. They ultimately discovered that the
signature on a volume of noise performed equally as well as it did
on patient images. To safeguard against these vulnerabilities, they
suggested (1) using open-source software to increase development
accountability and inter-institutional research, (2) determining
added prognostic and predictive accuracy compared to clinical
standards, (3) testing of underlying feature dependencies to prevent
unwarranted usage of computationally expensive features, (4) testing
of feature multicollinearity to improve data variance description,
(5) pre-processing of data to ensure image signal quality, and (6)
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describing manual contouring processes adequately to understand
any prevalent signals that were used for delineation. The radiomic
quality score (RQS) is a reporting guideline designed to reward and
penalize methodology and encourage increased utilization of safe
practices, thereby improving scientific integrity and clinical relevance
[72] . It is divided into data selection (e.g., proper imaging protocols
and prediction targets); medical imaging (e.g., segmentation and
reporting protocols); feature extraction (e.g., feature stability and
algorithm reporting); exploratory analysis (e.g., usage of clinical
variables and data storage), and modelling (e.g., feature selection and
validation) sections. An example of negative scoring may involve -3
points f feature reduction or adjustment for multiple testing is not
performed (as this will lead to potential over-fitting of the model) or
–5 points for no validation of the model. However, +15 points are
awarded if validation is based on three or more data sets from distinct
institutions. The RSQ is focused on data and methodology, and it
does not allot scores for areas such as exploration of confounding
factors and software sharing; however, it does show acceptance of the
need for standards in radiomics. Interestingly, a systematic review
of 41 published radiomic studies discovered that the majority had
earned less than 50% of the possible points that could be awarded
[116], indicating large problems in current studies and the need for
usage of these guidelines. Another, more general reporting guideline
for prediction models was suggested by the TRIPOD Statement [21].
TRIPOD (transparent reporting of multivariable prediction model for
individual prognosis or diagnosis) is available in addition to RSQ to
improve reproducibility and validity of radiomic prediction models.
It is a simple checklist of 22 items that ensures adequate reporting of
data sources, statistical analysis, and risk groups. It was designed as a
census between methodologists, healthcare professionals, and journal
editors. Furthermore, it is a general checklist for all diagnostic and
prognostic models, not just radiomic-based ones. The importance of
reporting guidelines has been thoroughly published [138] and will
ultimately improve the field of radiomic models through greater
understanding of bias risks and the potential usefulness of these
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models. More recently, the American Joint Committee on Cancer
(AJCC) published an article describing the criteria that must be met
for endorsement of a cancer risk model which is complementary to
the TRIPOD guidelines [65]. Among the criteria is the use of multiple
external data sets collected over various times and locations, further
necessitating the need of imaging standardization. Additionally,
models can be excluded if reviewers believe there are not enough
events present in the data sets. This is a challenging task for radiomics
since the field is in its infancy, lending itself only to small retrospective
studies that do not instil confidence in the developed models.
Additionally, the lack of foresight within the healthcare domain
has put us behind in the AI revolution since data management
standardization is not yet the norm. Finally, the Image Biomarker
Standardization Initiative (IBSI) is a comprehensive reference manual
for radiomic research [164]. It exhaustively describes options for
image processing, quantitative features/imaging biomarkers, imaging
biomarker reporting guidelines, and data set benchmarking. The IBSI
has been an international collaborative effort aimed at standardizing
these processes to improve reproducibility and validation of these
methods through consensus-based guidelines and definitions. It is an
excellent resource to consult throughout the development of radiomic
signatures.

Requirements for clinical acceptance and adoption

The number of radiomic publications has been growing exponentially;
however, only a small percentage of published studies have reached
the clinic for their desired utility as a decision support system. The
healthcare market still offers many opportunities for investments,
and commercial interests have taken an interest in transforming
radiomics/quantitative imaging computer- aided diagnosis (CAD)
research prototypes into FDA-approved commercial products. In
July 2017, Quantitative Insights, Inc. (QI) announced that they had
received regulatory clearance (via De Novo classification) from the
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U.S. Food and Drug Administration (FDA) for its QuantX Advanced
system (Link here). This is the industry’s first CAD platform
that incorporates machine learning for the evaluation of breast
abnormalities. The software received approval after showing in an
FDA clinical study that it could be used to enable faster and more
accurate diagnoses. However, this tool is designed for application
in large breast cancer screening campaigns and has radiologists
as its main target users. No indications are available if this CAD
will be expanded to support indications for treatment for radiation
oncologists. It should be noted that the word radiomics is almost
completely absent from the description of this software. In December
2017, the FDA premarket-approved Microsoft’s Radiomics App
V1.0. This app was designed by Inner Eye (Link here), Microsoft’s
research project aimed at turning images into measurable devices using
AI. Again, this product was classified under the category of system,
image processing, radiological, the same as QuantX however, compared
to QuantX, it followed the radiomic workflow presented in this
chapter more closely, including image pre-processing, multi-modality
segmentation, texture analysis, etc. One of the goals of the project
was to identify the boundaries between healthy and nonhealthy cells. The
boundaries can then be used for quantitative radiology and potentially
for more efficient planning of radiotherapy and surgery (Link here). If
premarket approval demonstrates a promising path for the adoption
of AI-driven tools in the healthcare domain, marketing of these
applications will require additional effort. This is mainly related
to the new FDA initiative that attempts to renew its traditional
paradigm of medical device regulations to include AI and machine
learning software for healthcare. This was done as an anticipatory
action, which assumes many of these artificial intelligence and
machine learning-driven softwares may require premarket review.
In April 2019, the FDA came out with a new discussion paper
entitled Proposed Regulatory Framework for Modifications to Artificial
Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device
(SaMD)—Discussion Paper and Request for Feedback (Food and Drug
Administration 2019) where the FDA explicitly expects commitment
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about transparency and real-world performance monitoring for
artificial intelligence and machine learning-based software, which is
now treated at the same level as a medical device. In this view, we
believe that the next generation of radiomics/AI-based prediction
models should incorporate the following:

• Transparency. Full transparency regarding developed
algorithms, including detailed reporting on the category of
developed prediction/prognostic models. Also, benchmarking
of the developed model with respect to external data sets is
needed. With this in mind, a recent publication [163] introduced
a framework for the benchmarking of radiomic models as
TRIPOD IV (e.g., fully external validation). In addition to these
efforts, it would also be beneficial to track the results of this
benchmarking. This is similar to what the FDA calls Complaint
Handling, where every user complaint is tracked, reviewed, and
evaluated. Development platforms such as GitHub, GitLab, and
BitBucket can offer a preliminary solution for tracing the life
cycle of radiomic-based tools.

• Good practice. The FDA document cited above also references
GMLP (Good Machine-Learning Practice). This incorporates
three steps: (1) valid clinical association between the developed
software and the target clinical condition, (2) analytical
validation to test if the software correctly processes input data
to generate reliable and precise output data, and (3) clinical
validation to determine if the developed software output data
produces the intended purpose in the target population in the
context of clinical care.

• Defined life cycle. Following a well-defined life cycle includes
four steps: (1) data management that specifies data collection
protocols, guarantees quality assurance on training, and
validates data sets; well-defined training and retraining strategy
of the algorithms such that if retraining is performed, then
changes to the ML architecture and parameters need to be
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specified; (3) performance evaluation that clearly assesses
evaluation metrics, performance targets, and involves clinicians
in the “evaluation loop”, and (4) planning of the update
procedure that states when and how updates in verification and
validation will be scheduled.

While these development steps will enable informed adoption of ra-
diomic methods, the required processes for clinical acceptance remain
unclear. The added value of radiomics and quantitative imaging in
oncology depends on a number of factors and will require consider-
ation of the methods used (including the underlying data and algo-
rithms), as well as the ability of clinicians to appropriately interpret
the results.

2.3 EMERGING TECHNOLOGIES

2.3.1 RTX-omics

Radiomics in its current state attempts to extract more quantified infor-
mation from pre-treatment medical images. By using these features,
radiomics has demonstrated promise in patient prognostics and out-
come prediction. However, most patients will undergo treatment for
their cancer that alters the natural course of their disease, resulting in
a treatment-specific conditional prognosis or outcome. RTx-omics is a
proposed area of research that suggests quantifying radiation therapy
(RT) treatment plans to gain access to information regarding intrinsic
differences in patient anatomy and dose distributions in tumours and
surrounding OARs. RT lends itself well to quantification since dose
plans are contained in a 3-D voxelized array, similar to an imaging
volume, where a voxel represents a prescribed dose to a correspond-
ing anatomical voxel (typically CT). Additionally, for treatment plan-
ning, contours of tumours and OARs are present due to their need in
treatment plan optimization. RTx-omics has the potential to introduce
new information to the automated information processing field. These
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features could be combined with clinical or radiomic features for pre-
diction of patient outcomes, recurrences, or toxicities, all of which are
known to be tied to RT treatment plan quality and dose distributions
[103][15][54]. In a recent study by Jiang et al. [61], machine learning
methods were used to look at dose patterns in salivary glands to pre-
dict xerostomia. They looked at spatially explicit dose predictors and
voxel doses in parotid glands and submandibular glands and found
that dose patterns influence xerostomia at three months post-RT. This
paper provides motivation for the importance of features that quan-
tify dose and anatomy in patient plans. RTx-omics can provide more
information with the inclusion of accumulated dose volumes and re-
plans. Due to the changing anatomy of patients and variations in pa-
tient setup that occur during treatment, the planned dose volume is not
what is always delivered [141][59]. By accumulating the dose across all
fractions and quantifying features within that volume, we would gain
a clearer picture of the dose distributions in the many ROIs of a plan
[94]. Additionally, if a patient undergoes replanning, there is an oppor-
tunity for “delta” RTx-omic features to be calculated. Welch et al.vhave
explored the potential of these features in combination with radiomic
and clinical features for the prediction of local regional failure in HN
cancer [149]. For this study, they used high-quality, low-quantity data
from a single institution that did not have a sufficient number of events
or planning variability to see an improvement above current clinical
features. Until large data sets from multiple institutions with varied
planning requirements for tumour coverage are available, other end-
points may provide more positive results. Toxicity is a promising area
of study with RTx-omic features since there will be more variable dose
distributions among OARs, as plans are generally optimized for tu-
mour coverage over OAR sparing.

2.3.2 Deep learning approaches

Traditionally, radiomics has been defined by hand-engineered
features—that is, features defined by a user. These types of features
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are excellent for interpretation and explaining any potential ties
to clinical, genomic, or phenotypic observations. However, they
are also limited by the knowledge of the user that defined the
feature. Deep learning—which allows a computer to generate
features it finds to be important for the prediction of an event of
interest—could provide new and interesting information that has
previously not been conceptualized by humans. Deep learning is
a supervised method of machine learning that involves training
a neural network with multiple hidden layers, and it is a form
of hierarchical feature learning. When working with images, a
randomized filter is convolved over an image to generate a set of
new, machine-learned features, and this constitutes one layer of a
convolutional neural network (CNN). The resulting features can then
be convolved with a new filter, with this process being repeated for
many subsequent layers. A final layer predicts an event of interest
based on the machine-generated features. The difference between the
CNN’s predicted outcome and the desired outcome supplied by the
labelled training data is calculated, and the error is back-propagated
through the network to update the weights between features. This
is repeated multiple times until a desired performance metric is
met. The potential of deep learning to be utilized with medical
imaging data for predictions or prognostics has been recognized by
researchers. One way in which it has garnered interest is through the
extraction of “deep features” generated by a CNN. Researchers often
use a pretrained deep learning network and fine tune it with their
data, a process called transfer learning [123]. They are then able to
extract and use the features generated by the network in combination
with radiomic and clinical features. Lao et al. used “deep features”
extracted in this manner in combination with hand-engineered
radiomic features to train a Cox model for prediction of survival in
glioblastoma multiforme patients [74]. They found that the combined
features performed better than traditional risk factors, and that when
combined with traditional risk factors it again improved prediction.
Huynh et al. also demonstrated that deep features in combination
with hand engineered features performed better than they did alone
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when classifying digital mammographic images [58]. Another
method by which deep neural networks can be used for the prediction
of outcomes is an end-to-end process. This involves allowing the
neural network to predict the outcome instead of extracting the
deep features from the network. Esteva et al. demonstrated that
they could achieve dermatologist-level classification of skin cancer
when using transfer learning with clinical imaging [37]. They had
129,450 clinical images of skin lesions with 2032 different diseases.
They trained their CNN to identify the most common cancer types
(i.e., keratinoxyte carcinoma vs. benign seborrheic), as well as the
deadliest (i.e., malignant melanoma vs. benign nevi) and found that it
performed on par with 21 board-certified dermatologists. End-to-end
CNN training has also been used for colorectal outcome prediction
using images of tissue sample [64]. In this work, the CNN trained
on digitized haematoxylin-eosin-stained tumour tissue microarray
samples to assess the tissue microenvironment and predict prognosis
directly from the histopathological images. Future work will involve
prospective validation for integration into clinical workflows.
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Abstract

An ever-growing number of predictive models used to inform clinical
decision making have included quantitative, computer-extracted
imaging biomarkers, or radiomic features. Broadly generalizable
validity of radiomics-assisted models may be impeded by concerns
about reproducibility. We offer a qualitative synthesis of 41 studies
that specifically investigated the repeatability and reproducibility of
radiomic features, derived from a systematic review of published
peer-reviewed literature. The PubMed electronic database was
searched using combinations of the broad Haynes and Ingui filters
along with a set of text words specific to cancer, radiomics (including
texture analyses), reproducibility, and repeatability. This review
has been reported in compliance with Preferred Reporting Items
for Systematic Reviews and Meta-Analyses guidelines. From each
full-text article, information was extracted regarding cancer type, class
of radiomic feature examined, reporting quality of key processing
steps, and statistical metric used to segregate stable features. Among
624 unique records, 41 full-text articles were subjected to review.
The studies primarily addressed non-small cell lung cancer and
oropharyngeal cancer. Only 7 studies addressed in detail every
methodologic aspect related to image acquisition, pre-processing,
and feature extraction. The repeatability and reproducibility of
radiomic features are sensitive at various degrees to processing
details such as image acquisition settings, image reconstruction
algorithm, digital image pre-processing, and software used to
extract radiomic features. First-order features were overall more
reproducible than shape metrics and textural features. Entropy was
consistently reported as one of the most stable first-order features.
There was no emergent consensus regarding either shape metrics
or textural features; however, coarseness and contrast appeared
among the least reproducible. Investigations of feature repeatability
and reproducibility are currently limited to a small number of
cancer types. Reporting quality could be improved regarding
details of feature extraction software, digital image manipulation
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(pre-processing), and the cut-off value used to distinguish stable
features.
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3.1 INTRODUCTION

Medical imaging is widespread, and its value is firmly established in
routine oncologic practice. Image-based biomarkers are used during
screening, staging, stratifying, and intervention planning (surgery and
radiation therapy)[20][57][59] and for predicting treatment outcomes
[1]. In current practice, a radiologist semantically annotates only a
small number of radiologic features as having some clinical signifi-
cance during manual assessment of the images (i.e. with the unaided
human eye). These few features may include Response Evaluation Cri-
teria in Solid Tumours [19] and World Health Organization criteria [62]
for treatment response; a change in the mean apparent diffusion coeffi-
cient [10]; morphologic descriptors (e.g. spiculation) [74]; or the num-
ber of voxels exceeding a threshold for selective uptake of a radioactive
tracer [63]. Tumour phenotypes, as they are manifest in medical im-
ages, may contain more information than can be readily processed by
the unaided human eye. Recent studies have suggested that complex
shape metrics and the nonuniform appearance of the tumour mass in
images (i.e. texture) also provide information about the likely outcome
of the disease [58] [13][2][49]. Radiomics is the computerized extrac-
tion of quantitative features from medical images, beyond the level
of detail accessible to an unaided human eye, with the intent to au-
tomatically label clinically significant tumour phenotypes [41] . Ra-
diomics entails large-scale batch processing [40] via high-throughput
computational “pipelines” that integrate some or all of the following
steps: image pre-processing, tumour segmentation, feature extraction,
feature selection, machine learning–based predictive modelling, and
model validation [42]. A systematic review of false discovery rates in
textural analysis of medical images [11] clearly showed that optimal
cut-off selection for tuning machine-learning predictive models [3] in
combination with a large number of candidate image features (approx-
imately 100) leads to an increased risk of type I error. Furthermore, re-
lated sets of image-derived features tend to be strongly correlated with
each other, and this increases the risk of falsely significant associations.
There are strong interclass correlations for features derived from sim-
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ilar matrix operations [4], and there may be correlations to the abso-
lute tumour volume [55]. There are ways to reduce the risk of a false-
positive association. First, only features with high repeatability and
high reproducibility should be used for training the predictive models.
“Repeatability” refers to features that remain the same when imaged
multiple times in the same subject, be that a human person or a suit-
able phantom [40] [53]. “Reproducibility” refers to features that remain
the same when imaged using different equipment, different software,
different image acquisition settings, or different operators (e.g. other
clinics), be that in the same subject or in different subjects [40][53]. Sec-
ond, estimates of predictive performance in single-institution cohorts
should include multiple-folded repeated cross validation to minimize
the risk of overfitting [7]. Last, assessment of predictive models based
on radiomic features should be based on independent external valida-
tion in multi-institutional settings [14]. The purpose of this systematic
review was to determine which broadly generic type of radiomic fea-
tures has been shown to be repeatable and/or reproducible in peer-
reviewed studies and, if applicable, what degree of repeatability and
reproducibility might be achievable. It was out of the scope of the
reviewers performing this study to provide any subjective evaluation
concerning the goodness of a study. For example, when evaluating the
quality of reporting of a study, we only retrieved objective informa-
tion from the article, without assigning a score aiming at judging the
overall quality of the article.

3.2 METHODS AND MATERIAL

3.2.1 Eligibility criteria

We conducted this systematic review during March and April 2017.
Reporting of this review complies with the PRISMA-P Preferred Re-
porting Items for Systematic Reviews and Meta-Analyses statement
[50]. The included articles met all of the eligibility criteria given in the
subsequent paragraphs.
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3.2.2 Report design

We included only peer-reviewed full-text reports published in journals
that presented full results of repeatability and/or reproducibility tests
on radiomic features. With full results, we intend all the articles that
matching the inclusion criteria defined in material and methods, pre-
sented a statistical analysis of radiomics reproducibility and repeata-
bility. Only articles that included (in their titles or abstracts) at least 1
of the search words specified in the search string were identified.

3.2.3 Population

With regard to the population reported in the study, we included ei-
ther (1) studies of human persons diagnosed with 1 (or more) known
and clearly stated primary solid tumour where medical imaging in the
form of computed tomography (CT), positron emission tomography
(PET), and/or magnetic resonance imaging (MRI) was used or (2) stud-
ies consisting of radiologic phantoms where medical imaging in the
form of CT, PET, and/or MRI was used. We excluded studies consist-
ing of animal subjects, studies using biological samples taken from the
human body, nonclinical imaging studies, or studies in which the type
of primary tumour was not objectively known.

3.2.4 Outcomes

The primary criterion for inclusion was an assessment of the repeata-
bility and/or reproducibility of any number of radiomic features with
respect to any equipment-, scan-, subject-, or observer-related cause.
Included studies also had to report at least 1 of the following quantita-
tive outcomes of interest: variability of radiomic features with respect
to image acquisition parameters, imaging modalities examined, or ef-
fect of pre-processing steps applied to the images from which features
were extracted.
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3.2.5 Language

Only full-text reports in the English language were included in this
review.

3.2.6 Information sources

The Cochrane Database of Systematic Reviews was screened for any
previous systematic reviews addressing repeatability and/or repro-
ducibility of radiomic features. An electronic search was conducted
in PubMed (MEDLINE citations had been previously merged into the
PubMed repository). For all articles for which the full text was ob-
tained for data extraction, the bibliographic references within them
were also screened for potentially eligible studies. No search was made
in gray-literature sources for unpublished material or conference pro-
ceedings.

3.2.7 Search strategy

A search of PubMed citations was performed using the broad Haynes
[31] and Ingui [35] filters in combination with the modifications pro-
posed by Geersing et al [27] (each combined using “OR”). For the final
database search, additional criteria of “cancer” (Medical Subject Head-
ings major topic) and text terms that were each related to reproducibil-
ity, repeatability (fundamental to include test-retest studies), variabil-
ity, and radiomics (including textural analyses) were also included. All
PubMed search results were admitted up to and including the second
week of April 2017.
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3.2.8 Study records

Data management

Electronic full-text articles were downloaded using university library
subscriptions. A review-specific SharePoint (Microsoft Corporation,
USA) page was set up to handle document collection, data extraction
forms, and dissemination of reviewer findings.

Selection process

Two reviewers worked independently throughout all phases of the
study selection process (abstract screening, eligibility, and inclusion
for full-text evaluation). They compared the titles and abstracts against
the inclusion criteria. Each reported whether an abstract was eligible
for evaluation in full. Disagreements were resolved by consensus. All
of the articles deemed eligible were successfully downloaded. Two re-
viewers independently evaluated whether the full-text reports were
suitable for inclusion and synthesis. Disagreements were again re-
solved by consensus. A third reviewer was available if disagreements
could not be resolved, but this option was not exercised. Reasons for
excluding a specific full-text article were documented.

3.2.9 Data extraction: data items

We extracted information about the population used in the studies, in-
cluding the sample size and type of primary tumour for human stud-
ies and the phantom details for phantom studies. The inclusion of
metastatic, secondary, or synchronous tumours was noted, as was any
case in which the nonprimary tumour was used in the derivation of
radiomic features. The study design and image modality used were
noted, including any image acquisition parameters explicitly stated in
the text. We noted the total number of radiomic features tested and
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grouped these features according to (1) shape features (defining the 2-
dimensional or 3-dimensional [3D] properties of the tumour, e.g. vol-
ume or surface area); (2) first-order statistics (derived from statistical
moments of the image intensity histogram); and (3) higher-order tex-
tural features (describing spatial patterns of voxel intensities) [6]. In
addition, we noted the names and versions of the software used to
quantitatively extract radiomic features, including whether any par-
ticular pre-processing steps were applied to the images before feature
extraction. Finally, we noted the statistical methods used as a metric of
repeatability and/or reproducibility of the studied features.

3.2.10 Outcomes and prioritizations

Primary outcome

The primary outcome of interest in this review synthesis was the de-
gree of repeatability or reproducibility of radiomic features, along with
any independent validation used to test repeatability and reproducibil-
ity at an external institution.

Secondary outcomes

The secondary outcomes were the impact of image acquisition settings
on the reproducibly of features and the effect of pre-processing imag-
ing filters applied before feature extraction.

Additional outcomes

Additional outcomes were the statistics and metrics used for report-
ing robustness and reliability and the investigation of the impact of
different segmentation methods used to define the regions of interest
(ROIs).
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Risk of bias in individual studies

To assess the risk of bias in each study, 2 reviewers independently ex-
tracted detailed information from the reports in the following specific
domains:

• Characteristics of the cohort used to perform the study in the
case of human studies or characteristics of the phantom used to
perform the study in the case of phantom studies.

• Description of the software used to compute the features

• Image acquisition parameters reported in the study

• Filtering and/or image pre-processing operation(s) performed
on the original scan before the radiomic features underwent com-
putation

• Segmentation method(s) used to derive an ROI

• Use of either cross validation or independent validation to show
that features are repeatable and/or reproducible after folding or
in separate data sets

• Threshold (cut-off) values used in repeatability and/or repro-
ducibility metric(s) to segregate features

Transparent Reporting of a Multivariable Prediction Model for Indi-
vidual Prognosis or Diagnosis classifications were not applicable here
because tests of repeatability and reproducibility of radiomic features
do not strictly link to diagnostic verification or predictive performance.
The impact of undocumented (or inadequately reported) steps on the
potential repeatability or reproducibility of features was noted. Dis-
crepancies in data extraction between the 2 reviewers were resolved
by consensus after discussion. A third reviewer was available to re-
solve a deadlock, but this option was not needed.
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3.2.11 Data synthesis

The included studies were not uniform by way of reported metrics,
and we could not attempt a quantitative meta-analysis of pooled met-
rics. A systematic qualitative synthesis is given in this publication,
with details presented in text and tables to summarize our findings
about the included studies.

Subgroup analyses

The summary findings on repeatability and reproducibility of features
were grouped by the following: disease type (lung cancer, head and
neck cancer, and other anatomic sites) or phantom study and type of
imaging modality (CT, PET, and MRI).

3.3 RESULTS

3.3.1 Literature search results

The Preferred Reporting Items for Systematic Reviews and
Meta-Analyses flow diagram is shown in Figure 3.1. The PubMed
search yielded 624 abstracts for screening against our selection
criteria, reduced to 623 after elimination of duplicates. The full
text was retrieved for 52 abstracts deemed suitable for in-depth
evaluation, including 5 that were located in the references of retrieved
studies and 2 previously known studies. After full-text evaluation, 11
studies were excluded because they did not meet the aforementioned
eligibility criteria. A qualitative synthesis was derived from 41
studies, of which 35 were performed in human subjects and 6 were
exclusively performed on radiologic phantoms. A detailed checklist is
provided in Appendix E1 (available online at the following link).
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Figure 3.1: Preferred Reporting Items for Systematic Reviews and Meta-
Analyses flow diagram. The primary PubMed search returned 624 records. A
further 5 records were added from references in full-text articles. Two records
were added owing to prior knowledge. After screening and full-text assess-
ment, a total of 41 studies were included in the qualitative synthesis.
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3.3.2 Human study characteristics

Table 3.3.2 summarizes the general characteristics of the human
studies. The vast majority of studies addressed lung cancer (25 of
35 studies), of which 21 specifically addressed non-small cell lung
cancer (NSCLC). There were 3 studies each on head and neck cancer,
oesophageal cancer, and rectal cancer. There was only 1 study each on
breast cancer and cervical cancer. In 2 studies, multiple cancer types
were combined, but details within the subgroups of cancer types were
not specified [26][30]. Two studies combined features from multiple
specified cancers [55][65]. The number of patients reported in the
retrieved studies ranged from 10 (33) to 555 (54), and only 1 study
was prospective [32]. Few studies (7 of 41) specifically referred to
a publicly available image set. The imaging modalities mentioned
in the human lung studies were PET (17 of 35), CT (17 of 35), MRI
(1 of 35), and cone beam CT (CBCT) (2 of 35). Two studies used
multiple imaging modalities. Six studies exclusively investigated
feature repeatability; all others examined either reproducibility alone
or both reproducibility and repeatability. The number of investigated
radiomic features in the studies ranged from 4 [69] to 830 [36]. The
latter was a multi-institutional study, so it was unclear whether the
number included repeated instances of some of the features. All
the studies included textural analysis; the majority (28 of 35) also
evaluated first-order features, but less than half (15 of 35) evaluated
shape metrics. Fourteen studies investigated all categories of features.

3.3.3 Phantom study characteristics

Table 3.3 shows the main characteristics of 6 studies exclusively
concerning radiologic phantoms. Among these, CT was the most
common image modality (5 of 6), and PET was investigated in only
1 study. We did not locate any phantom study of repeatable and/or
reproducible features from MRI. All of these studies investigated
feature reproducibility, and only 1 phantom study was prospective
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Figure 3.2: Summary of human studies included in analysis. Abbreviations:
CBCT = cone beam computed tomography; CCC = concordance correlation
coefficient; CT = computed tomography; FO = first order; ICC = intraclass
correlation coefficient; MR = magnetic resonance; NSCLC = non-small cell
lung cancer; PET = positron emission tomography; SM = shape metric; TA =
textural analysis.
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Figure 3.3: Summary of pure phantom studies included in analysis. Abbrevi-
ations: AAPM = American Association of Physicists in Medicine; CT = com-
puted tomography; FO = first order; NEMA-IQ = National Electrical Manu-
facturers Association–Image Quality; PET = positron emission tomography;
SM = shape metric; TA = textural analysis.

[60]. The number of investigated radiomic features in the phantom
studies ranged from 5 [38] to 213 [60]. All studies included textural
analysis, 3 evaluated first-order features, and 2 evaluated shape
metrics. Only 1 study investigated all categories of features [60].

3.3.4 Quality of reporting in included studies

Human studies

Table 3.4 gives a summary of methodology and reporting quality for
human studies. In general, methodologic aspects were adequately
documented. However, only 7 of 35 studies reported detailed
information in every one of the aforementioned quality domains
[6][22][56][8][47][32][18]. In 3 quality aspects, the overall standard
of reporting was lower: (1) providing details of the software
implementation to extract radiomic features, (2) providing details
pertaining to image pre-processing before extracting radiomic
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features, and (3) stating the cut-off value for discriminating a subset of
repeatable and/or reproducible features. One study did not provide
detailed information about the disease groups used in the analysis,
apart from stating that different types of solid cancers were included
[26]. The practice of pooling heterogeneous tumours is questionable
because there is no a priori reason to assume that any arbitrary
feature that may be stable in one disease site will also prove to be
stable in others. Software details (application framework used for
analysis, programming language, and version) were not reported
in detail in 16 studies. Standards for radiomic features have not yet
been universally adopted; therefore, software should be described
because differences due to feature extraction are likely to influence
the apparent stability of features. All but 2 studies [17][16] provided
detailed tables describing image acquisition settings including
information about scanners (manufacturer, model, reconstruction
package, and software version) and scan protocols. Eight studies
lacked detailed descriptions regarding pre-processing steps (if any)
applied to the original images [1][12][34][37][44][54][71]. Digital
image manipulations (e.g. voxel size resampling, de-noising, and
sharpening) are known to drastically alter the extracted values, and
this is likely to hamper reproducibility across data sets. Six studies
did not provide sufficient information regarding the segmentation
procedures to define an ROI [17][22][34][48][69][28] [65]. Differences
in segmentation methods are likely to bias the stability of shape
metrics and perhaps textural and first-order features. Fifteen studies
did not document the cut-off value used in their statistical metrics
to discriminate between reproducible and irreproducible features.
One of these selected only the top-ranking feature from each of 4
feature groups (first order, shape metric, texture, and wavelet filtered)
[1]. The subset of stable radiomic features selected in a given study
obviously depends on arbitrary threshold values of the repeatability
or reproducibility metric; therefore, the cut-off criterion should be
clearly stated. Two studies validated feature stability in texture
phantoms combined with publicly available clinical images [22][23].
One study assessed feature reproducibility across 7 institutions [37].
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Seven studies made their primary data set of clinical images publicly
available to other researchers [1][6][15][17][33][37][56], and some of
these studies used the same publicly available data set.

Phantom studies

Table 3.5 provides an overview of methodologic aspects and reporting
quality for the phantom studies. All studies reported information
about the phantom used in the analysis. All provided detailed
tables describing image acquisition settings, including information
about scanners (manufacturer, model, reconstruction package, and
software version) and scan protocols. However, no studies reported
detailed information in every one of the aforementioned quality
domains. In 2 quality aspects, the overall standard of reporting
was lower: (1) providing details of the software implementation
to extract radiomic features and (2) stating the cut-off value for
discriminating within a subset of reproducible features. Four studies
made use of commercially available phantoms originally designed for
scanner calibration or image quality checks, whereas 2 studies used
an in-house texture phantom [9][60]. Software details (application
framework used for analysis, programming language, and version)
were not reported in the majority of studies. Five studies described
their in-house software as based on MATLAB (The MathWorks)
[9][38][24][46][60][71] and Kim et al [38] developed a plug-in for
the open-source software ImageJ (National Institutes of Health),
but none of these studies made their code accessible. Only Forgacs
et al [24] lacked a detailed description regarding pre-processing
steps (if any) that were applied to the original images. One study
did not provide sufficient information regarding the segmentation
procedures to define an ROI [24]. Three studies relied on manual
segmentations [9][38][60], and the remainder used semiautomated
segmentations while also specifying the algorithms used. Five studies
did not document the cut-off values used in their statistical metrics
to discriminate between reproducible and irreproducible features
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Figure 3.4: Quality of reporting analysis for human studies. Each cell indi-
cates whether it was possible to evince sufficient information from the text to
re-create the experiment (yes) or not (no).
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Figure 3.5: Quality of reporting analysis for phantom studies. Each cell indi-
cates whether it was possible to evince sufficient information from the text to
re-create the experiment (yes) or not (no).

[9][38][46][60][72]. The statistical analysis was unclear in the text in
the study by Kim et al [38].

3.3.5 Radiomic features according to cancer diagnosis

Lung cancers

The imaging modalities among lung cancer studies were CT (14 stud-
ies), PET (11 studies), and CBCT (1 study). Desseroit et al [17] in-
vestigated PET and CT at the same time. All of the studies inves-
tigating PET acquired these images using a combined PET-CT scan-
ner. Twenty-one studies used NSCLC data sets, and 4 studies used
a combination of different lung cancers [28][39][43][65]. Three stud-
ies evaluated the reproducibility of radiomic features with respect to
multiple manual segmentations in the same patient (interobserver sen-
sitivity) by use of PET [1][44][66]. Each showed that interobserver
differences in delineations affected feature reproducibility to some de-
gree. Interobserver differences were amplified in textural features. Lei-
jenaar et al [44] found that features with high test-retest repeatabil-
ity were also less affected by interobserver differences. Parmar et al
[56] studied interobserver variability with respect to manual versus
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semiautomated segmentation (3D Slicer) and concluded that semiau-
tomated methods improved feature reproducibility in PET. Orlhac et
al [55] studied textural feature reproducibility with respect to 2 differ-
ent semiautomated segmentation algorithms: an adaptive method [52]
and a more conventional thresholding method based on 40% of the
maximum standardized uptake value. Homogeneity, contrast, dissim-
ilarity, and coarseness were found to be the most reproducible features.
The only multi-centre CT study found that among shape metrics, 3
variants—local shape descriptors, global shape descriptors, and textu-
ral features—had the highest variation with respect to segmentations,
whereas size measures had the least variation resulting from segmen-
tation [37]. First-order features were highly reproducible across par-
ticipating centres, and there were strong internal correlations within
each class of features. Four studies examined the impact of differ-
ent PET image reconstruction algorithms or image processing filters
[55][66][68][43]. Grid size had a larger impact on feature reproducibil-
ity than did simple Gaussian filters applied inside the image recon-
struction algorithms; the latter affected reproducibility in only shape
and textural features. Gray-level resampling sensitively affects tex-
tural feature reproducibility, whereas first-order features are less af-
fected. Differences in reconstruction algorithms strongly affect feature
reproducibility, with the exception of first-order entropy. Entropy was
reproducible for both image pre-processing and several reconstruction
algorithms. Three studies compared features using free-breathing PET
versus respiratory-gated PET to evaluate the impact of motion on re-
producibility but showed conflicting results. In the study by Oliver et
al [54], spatial blurring effects due to respiratory motion and intrinsic
noise during acquisition were major factors leading to irreproducibil-
ity. Similar results were seen when textural features on 3D versus 4-
dimensional (4D) PET were compared [69]. The latter study concluded
that 4D imaging reduced motion artifacts, producing less blurred im-
ages and potentially more reproducible textural features. However, in
the study by Grootjans et al [28], the differences between features de-
rived from 3D and 4D imaging were not statistically significant. Zhao
et al [71] evaluated the combined effect of 3 different CT slice thick-
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nesses and 2 different CT reconstruction algorithms. Many features
that had been repeatable under test-retest conditions became irrepro-
ducible with respect to altered slice thickness and image reconstruc-
tion settings, with first-order features and shape metrics being less
sensitive than textural features. Fave et al [23] tested the effect of dif-
ferent image pre-processing filters, such as bit-depth resampling and
smoothing filters, on CT radiomic features. Correlation to tumour vol-
ume and use of pre-processing filters increased the chance of features
being significant on univariate analysis against outcome, but whether
these retain their predictive value in an independent validation set re-
mains unclear. Three studies focused exclusively on repeatability us-
ing the same test-retest images [34][17][65] (31, 37, 57). They consis-
tently found shape metrics and first-order features to be highly repeat-
able, but there was no consensus on repeatable textural features. Two
studies investigated feature reproducibility across different scanning
equipment using a specially constructed texture phantom: Fave et al
[22] using CBCT and Mackin et al [48] using CT. Both investigations
went on to validate their phantom results using clinical images. Fea-
ture reproducibility using CBCT was adversely affected by motion and
scattered radiation, whereas inter-scanner CT differences were found
to be of the same magnitude as interpatient feature differences.

Head and neck cancers

Three studies were concerned with head and neck cancers; all
primary tumours were located in the oropharynx. Modalities
investigated were CT [8], CT and CBCT [5], and PET [47]. Each of
these investigated some aspect of image resampling filters or other
pre-processing regarding feature reproducibility. Bagher-Ebadian
et al [5] applied different smoothing, sharpening, and noise filters
to CBCT and CT images and found that feature reproducibility in
both modalities was most strongly affected by high-pass filters and
logarithmic filters. Smoothing filters and Gaussian noise kernels had
a similar but smaller impact on reproducibility. The authors found
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no major differences in reproducibility between CT and CBCT. The
effect of gray-level discretization was discussed in 2 studies: those
by Bogowicz et al [8] using CT and Lu et al [47] using PET. The first
found that bin size strongly affected reproducibility on perfusion
CT, but the second found a qualitatively similar though less severe
impact on reproducibility in PET. Lu et al [47] also compared different
PET segmentation methods (manual, semiautomated, and fully
automated) and found that more than half of the radiomic features
were reproducible. In addition, the sensitivity of features due to
segmentation differences was less than that due to voxel dimension
resampling.

Oesophageal cancers

Three studies were concerned with oesophageal cancer. All 3 investi-
gated PET modalities. Tixier et al [64] investigated the effect of differ-
ent PET reconstruction algorithms in oesophageal cancer. The most re-
producible tumour heterogeneity markers were entropy, homogeneity,
and dissimilarity (for local characterization) and variability in the size
and intensity of homogeneous tumour regions (for regional character-
ization). The other 2 studies investigated how different thresholding-
based semiautomated segmentation algorithms affect feature repro-
ducibility. The impact was less marked with first-order features than
with textural features. Entropy was the most reproducible first-order
feature, and homogeneity was the most reproducible textural feature.
Segmentation affected reproducibility more than either smoothing or
filtering.

Rectal cancers

Three studies were concerned with rectal cancers. Modalities
investigated included CT (2 studies) and PET (1 study). Orlhac et al
[55] studied textural feature reproducibility using PET with respect
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to different segmentation algorithms and gray-level resampling.
Only a few features (homogeneity, contrast, dissimilarity, and
coarseness) were found to be highly reproducible with respect to
segmentation and resampling. Two studies investigated feature
repeatability using CT [32][65]. Shape features were again found to
be the most repeatable, and higher-order textural features were the
least reproducible. Normalizing the extracted values by ROI volume
generally improved the overall repeatability of features.

Other cancers

Studies were limited for other cancers. Guan et al [29] investigated fea-
ture reproducibility in the apparent diffusion coefficient from MRI of
cervical cancer with respect to interobserver and intra-observer vari-
ability. All entropy measures were highly reproducible independent
of observer effects. Orlhac et al [55] investigated textural feature re-
producibility using PET in breast cancer. Only a few features (contrast,
coarseness, and high gray-level run emphasis) were reproducible with
respect to the number of gray levels used for resampling.

3.3.6 Radiomic features according to imaging modality

Positron emission tomography

PET was the second most common imaging modality overall and
the most common in lung cancer. First-order statistics derived from
a standard uptake value (SUV) histogram, such as mean SUV and
maximum SUV, were consistently among the most repeatable and
reproducible. Interclass correlation coefficients of these features
were consistently higher than 0.95. First-order PET features were
generally robust with respect to segmentation, but textural features
consistently showed greater sensitivity to segmentation differences
[1][55][44][56][66][18]. The choice of image reconstruction algorithm
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had a greater effect on reproducibility of shape metrics and textural
features relative to first-order features [66][68][43].

Computed tomography

Studies using CT were most common in head and neck cancer (2 stud-
ies) [5][8], and CT was the second most common modality in lung can-
cer (14 studies). First-order and shape CT features were generally more
repeatable than textural features [17][32][65]. Slice thickness resam-
pling and different reconstruction algorithms strongly degraded fea-
ture reproducibility [23][71][5][8]. The magnitude of degradation was
greater for textural features than for first-order features.

Cone beam CT

CBCT was used in 1 NSCLC study [22] and 1 oropharyngeal cancer
study [5]. Radiomic feature reproducibility on CBCT appeared to be
adversely affected by scattered X rays and specifics of the imaging de-
vice. Low-amplitude noise and smoothing did not appear to affect the
correlation of CBCT features to planning CT.

Radiomic features according to phantom studies

All the studies that investigated reproducibility on CT agreed that
voxel size resampling strongly affected feature reproducibility. Zhao
et al [72] demonstrated substantial differences in reproducibility
when comparing 1.25- and 5-mm slices. Volume, homogeneity, and
energy (gray-level co-occurrence matrix) were more reproducible for
the finer slice thickness. This study recommended using images with
a slice thickness between 1 and 2.5 mm for radiomic analysis. Studies
confirmed that other CT acquisition parameters, such as tube voltage
or tube current, had no influence on feature reproducibility [9][24].
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3.3.7 Predictive or prognostic power of reproducible or
repeatable features

Of the 35 articles investigating feature reproducibility and repeatabil-
ity in human studies, only 11 also addressed the prognostic or pre-
dictive value of computed features (Table E1, available online at the
following link). Ten studies used NSCLC data sets, and only 1 study
was based on oesophageal cancers. Five studies investigated clinical
outcome and patients’ overall survival, 2 investigated the role of fea-
tures in stratifying patients according to poor or good prognosis (based
on mean overall survival), 3 investigated the pathologic response to
treatment, and 1 investigated tumour recurrence. All studies agreed
that models including quantitative imaging features have better per-
formance than models including only clinical features. The majority
of the studies found textural analysis features to be predictive or prog-
nostic. Unfortunately, there is no consensus on most predictive textu-
ral analysis features. In addition, some studies found some first-order
features to be predictive, but unfortunately, it was not possible to find
a consensus. We suggest that authors clearly document the procedure
adopted for feature selection for their models, possibly by making use
of workflow figures.

3.3.8 Methodologic issues identified in review

Accessibility of software for feature extraction and of image collections

The included studies used a wide range of software to process images
and extract features. Fourteen studies specifically identified MATLAB
as the framework for their feature extraction algorithms. Software in
the studies by Bogowicz et al [8] and Kim et al [38] were based on
in-house code written for Python and ImageJ, respectively. Twenty
studies did not report any details about the software used. Only 1
of the aforementioned studies has made its source code available in a
GitHub repository [47]. Among MATLAB users, only Aerts et al [1]
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and Balagurunathan et al [6] have made their image sets publicly ac-
cessible online. Kalpathy-Cramer et al [37] and Oliver et al [54] also
used in-house created software, but neither provided additional de-
tails or made the software publicly accessible. Kalpathy-Cramer et al
[37] provided open access to images and structure sets (for 40 patients
and 1 phantom) via The Cancer Imaging Archive (TCIA). Four stud-
ies used the IBEX open-source radiomics package [70], developed by
MD Anderson Cancer Center, but their image collections are not pub-
licly accessible online [23][21][23][48]. Among phantom studies, only
2 reported the software used to extract radiomic features. Buch et al
[9] used MATLAB as the framework application for their feature ex-
traction algorithms, and Kim et al [38] developed a dedicated plug-in
for ImageJ. However, none of the phantom studies had publicly re-
leased their image sets. It would be difficult to compare, for consis-
tency and standardization, the radiomic features extracted by different
software implementations if values for a canonical set of features were
not openly accessible. Furthermore, feature stability and predictive
performance of radiomic features cannot easily be externally validated
unless other researchers have access to either the extraction software
or the medical images (or both).

Heterogeneity in statistical metric and cut-off values

The human subject studies in this synthesis were highly
heterogeneous regarding statistical metrics for repeatability and/or
reproducibility. The metrics encountered were the intraclass
correlation coefficient (ICC) in 14 studies, concordance correlation
coefficient (CCC) in 7 studies, Spearman rank correlation in 5 studies,
and various descriptive measures of difference among the remaining
9 studies. Some studies reported more than a single metric. However,
the specific cut-off values used to segregate stable from unstable
features were not always stated. When stated, the threshold values
were highly study dependent. This led to differences in the individual
features that were deemed repeatable or reproducible, and there
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was no universal consensus. The ICC metric [67] is appropriate
where one expects strong correlation within a given class but weak
correlation between classes, and it was most commonly reported
in reproducibility experiments. Five of these ICC-based studies
failed to report the threshold value used to consider a feature as
reproducible. The others defined a feature as highly reproducible
if ICC was >0.9 [15][66][8]; if ICC was >0.81 [29]; if ICC was >0.8
[34][44]; and finally, if ICC was ≥0.8 [56][47]. The CCC metric [45]
assumed each observation was independent and was commonly
reported in both repeatability and reproducibility studies. In the
studies by Kalpathy-Cramer et al [37] and Zhao et al [71], the cut-off
was set at CCC ≥0.75. Other reported cut-offs were CCC ≥0.8
[22][32], CCC >0.85 [65] and CCC >0.9 [6][25]. Spearman rank
correlation [51] measures the ordinal correlation between features in
2 experiments and was reported in 5 studies. Human studies also
tended to stratify features into ordinal groups (e.g. poor, medium,
or high reproducibility or repeatability) according to the statistical
metric. No study made available its calculated metrics at the level
of the individual feature. We did not attempt a meta-analysis of
summary statistics in this review. The phantom studies also used
diverging statistical metrics. In the study by Kim et al [38], the metric
was ambiguous. Two studies used the coefficient of variation 62, 65;
one study used the mean standard deviation [46]; one study used a
multilinear regression method [72]; and Buch et al [9] used a t test.
Only Forgacs et al [24] reported the cut-off used to select reproducible
features. For phantom studies, lack of consensus also excluded
quantitative meta-analysis of the results.

Reporting of digital image manipulations before feature extraction

Radiomic feature values appeared to be sensitive to pre-processing
filters applied to the original image. There was some consensus that
first-order features were not as sensitive to image pre-processing
as were textural features. Because the latter class of features is
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highly sensitive to perturbations in local intensity distribution
and short-range correlations, the use of prefilters might have
enhanced certain details and eliminated information from others.
However, the aforementioned pre-processing steps (if any) were
embedded within each software implementation and were seldom
explicitly documented. Discrepancies between studies using the
same image modalities and the same software may be partly due
to undocumented differences in pre-processing, but it would be
impossible to rule out differences resulting from image reconstruction
algorithm or image acquisition settings.

3.3.9 Qualitative synthesis

Lung studies generally agreed that ROI segmentation affects the
reproducibility of radiomic features for both PET and CT modalities,
especially among the shape metrics and textural features. Image
reconstruction algorithms revealed a difference between filtration
and voxel sampling. The former had more impact on reproducibility
of textural features, but the latter reduced the reproducibility of all
features. Respiratory motion appears to have had a significant adverse
impact on reproducibility of PET and CBCT features. Feature values
were correlated to ROI volume in some software implementations,
which may lead to a confounding association with certain outcomes.
In general, the head and neck cancer studies agreed that either
modifying voxel size or applying intensity discretization influenced
feature reproducibility for both CT and PET, but PET seemed overall
less sensitive with respect to differences in segmentation. This
review did not find any studies addressing differences in image
acquisition settings, reconstruction algorithms, or scanners for head
and neck cancers. In PET human subject studies, first-order entropy
was one of the most stable features across multiple settings. There
were mixed findings for reproducibility of skewness and kurtosis.
Shape metrics were also reproducible using PET but were less
reproducible using CT, likely because of the manual delineation
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sensitivity of the latter. Coarseness and contrast appeared to be least
stable among the textural features. There was no overall pattern for
stable textural features, nor were any significant differences noted
due to different isotopes [47] (i.e. 18F and 11C). First-order entropy
emerged as among the most consistently reproducible features on CT
for both oropharyngeal and lung cancers. Single-institution studies
concluded that CT shape metrics were highly reproducible, but the
only multi-institutional study concluded that shape descriptors
(i.e. flatness and sphericity) and textural features were the least
reproducible [37]. Kalpathy-Cramer et al [37] also showed that
first-order CT features were highly reproducible across participating
centres, even for skewness and kurtosis. There was consensus that
certain texture features, such as coarseness and contrast, were poorly
reproducible. No emergent pattern regarding reproducible PET
texture features was found. No overall trend emerged regarding
repeatable and reproducible CBCT textural features. Among
first-order features, entropy was one of the most stable features,
whereas kurtosis was the least stable. In general, all phantom studies
on CT consistently reported that first-order features such as histogram
mean and entropy were the most reproducible features. Similar
results for entropy were observed on PET radiomic analysis [24] when
examining reproducibility with respect to different acquisition time
intervals and reconstruction settings. The aforementioned qualitative
synthesis across all included studies has been summarized in Figure
3.6, indicating which process steps are most likely, probable, or least
likely to affect the repeatability and reproducibility of radiomic
features.
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Figure 3.6: Qualitative synthesis of radiomic feature classes, indicating pro-
cessing steps that are either highly likely (3 diamonds), probable (2 dia-
monds), or less likely (1 diamond) to exert an adverse effect on repeatabil-
ity and reproducibility for each class of radiomic features. Feature classes for
which no information was available are marked as unknown (question mark).
Abbreviations: CBCT = cone beam computed tomography; CT = computed
tomography; HN = head and neck cancer; NSCLC = non-small cell lung can-
cer; PET = positron emission tomography; ROI = region of interest.
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3.4 DISCUSSION

The total number of published predictive modelling studies using
image-based quantitative features has been rapidly rising, but
global consensus about features that are repeatable and reproducible
has not yet emerged. Lack of unified synthesis could potentially
undermine future discussions about clinical applicability and
prospective multi-institutional external-validation trials. The primary
objective of this review was to identify radiomic features that were
shown to be repeatable and reproducible through an electronic
search of peer-reviewed journal publications. We also evaluated the
methodologic details provided in each of the studies. Summaries of
our findings have been presented in tables. We located a number of
general reviews focusing on the process and challenges of radiomic
studies [42][61]. The previous work has drawn particular attention to
the lack of standardization [73] and need for calibration of imaging
settings. At the time of this writing, there has been no systematic
review focusing on repeatability and/or reproducibility studies of
radiomic features. General recommendations for radiomic research
To homogenize radiomic reproducibility and repeatability studies,
we suggest that the community perform benchmarking studies on
common, shared, and publicly available data sets. In particular, this
concept has already been proposed within the Image Biomarker
Standardization Initiative, where different institutions computed
features on a common data set. However, to expand this effort,
we have been working on (1) providing users with a common
repository with shared data sets for feature benchmarking; (2)
providing a computational infrastructure, which directly connects to
the repository; and (3) suggesting a standardized way of reporting
and collecting computational results. With regard to point 1, we
believe that common data sets should include both phantom and
human studies. Because features could be dependent on several
acquisition parameters (e.g. slice thicknesses and different scanning
protocols and/or scanner manufacturers), our recommendations are
as follows:
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• Include benchmarking data sets collected by different
institutions to guarantee the maximum heterogeneity in terms
of the aforementioned parameters.

• Include different data sets for most common modalities and dis-
eases because, as we have shown in the review, feature repro-
ducibility results can be different when considering different dis-
eases and/or different modalities.

With regard to point 2, we are currently working on developing an in-
frastructure, based on workflow programming language, that allows
users to connect to the mentioned repository and run their feature ex-
traction software. This infrastructure can be expanded by introduc-
ing in the workflow a benchmarking module, where users can easily test
their software on common data sets, directly choosing them accord-
ing to the modality and/or disease population of interest. In such a
module, computational results can then automatically be uploaded,
and a “sanity” report of feature reproducibility, compared with values
already obtained by other institutions (benchmarking), is returned to
the user. We believe that such an infrastructure not only will stimulate
users to perform benchmarking calculations but also will help them in
terms of debugging their software in case of possible errors. Point 3
is strictly related to point 2. In fact, benchmarking intrinsically brings
the concept of comparisons. For this reason, a standardized way of
reporting should be preferred. As already pointed out in this article,
users should report not only the obtained features’ raw values but also
the configurations and/or parameters used to perform computations,
together with details of the software used for computations. To facil-
itate this process, we are working on providing users with standard
template tables that need to be filled in by the users and that include
all the information mentioned earlier. In our view, this represents the
first step toward homogenizing and increasing the quality of report-
ing. However, to facilitate feature comparison, we recommend using
ontology techniques combined with Semantic Web to transform tem-
plate tables into semantically linked data that can easily be queried by
means of universal concepts defined by the ontology. Finally, to in-
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crease the general validity of a radiomics-based model, we believe that
external validation of the developed model should be performed, and
only reproducible and repeatable features should be included in the
model. To achieve this goal, we suggest using a distributed learning
approach. In fact, in a distributed learning environment, models are
“learned” and validated in different centres to increase their general
validity. In addition, we recommend that authors describe in detail
the procedure adopted for selecting features in the model. We suggest
the following possible workflow:

• Perform a reproducibility experiment and rank features from
most reproducible to least reproducible.

• Start scanning the list, picking up the most reproducible features;
train the model; and validate the model externally to investigate
the predictive or prognostic power of the features.

As a final point, we recognize the need to create a community of ra-
diomics users, sharing common methodology in terms of both fea-
ture computation and methodology. In addition, we believe that this
community should be guided by findable, accessible, interoperable,
and reusable (FAIR) principles for a standardized, reliable, and repro-
ducible use of radiomics.

3.4.1 Limitations of review

We are not able to rule out possible publication bias toward favourable
results among the included studies. We did not generate a funnel plot
because of the relatively low number of eligible studies and because
of the specific exclusion of unpublished reports and conference pro-
ceedings. Every published study included in our review identified
at least 1 radiomic feature that was repeatable or reproducible. This
systematic review was limited to only 2 reviewers; though a third re-
viewer was available to resolve disagreements, this option was not ex-
ercised. No disagreements were found after discussion, when compar-
ing the results of the quality of reporting and the qualitative synthe-
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sis. Furthermore, our search was limited to only 1 literature repository
(PubMed) after its incorporation of MEDLINE and Embase citations.
We did not permit conference proceedings, non–peer-reviewed publi-
cations, or other sources of gray literature in this review, which may
have limited the number of studies located. As a fundamental final
point, this review would have benefited from a quantitative synthesis
of the analysed articles. Unfortunately, as already mentioned, the re-
viewed studies applied arbitrary cut-offs during the statistical analysis
of reproducible and repeatable features; in some cases, as we docu-
mented in our article, thresholds used to define a feature as “repro-
ducible” were not reported. We have performed the analysis that was
amenable to us at this time. However, we strongly support consen-
sus toward a standardized metric to quantitatively evaluate reporting
of radiomic studies that will be useful for the community. No such
consensus presently exists, and our review was the first attempt to de-
scribe what has been reported in the reviewed literature. We did not
specifically propose a metric to evaluate the quality of reporting be-
cause this needs to be a consensus effort by our community. This can
be seen as one of our study’s limitations. An anticipated update of the
current review is proposed for April 2019. We hope by that date to
have agreed on a common quantitative evaluation metric within the
research community so that we will be able to update the review, in
terms of not only up-to-date publications but also the inclusion of a
quantitative analysis.
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Chapter 4. Stability of radiomic features of apparent diffusion
coefficient (ADC) maps for locally advanced rectal cancer in response
to image pre-processing

Abstract
Quantitative imaging features (radiomics) extracted from apparent dif-
fusion coefficient (ADC) maps of rectal cancer patients can provide ad-
ditional information to support treatment decision. Most available ra-
diomic computational packages allow extraction of hundreds to thou-
sands of features. However, two major factors can influence the re-
producibility of radiomic features: interobserver variability, and imag-
ing filtering applied prior to features extraction. In this exploratory
study we seek to determine to what extent various commonly-used
features are reproducible with regards to the mentioned factors using
ADC maps from two different clinics (56 patients). Features derived
from intensity distribution histograms are less sensitive to manual tu-
mour delineation differences, noise in ADC images, pixel size resam-
pling and intensity discretization. Shape features appear to be strongly
affected by delineation quality. On the whole, textural features appear
to be poorly or moderately reproducible with respect to the image pre-
processing perturbations we reproduced.

148



4.1 INTRODUCTION

Neo-adjuvant chemoradiotherapy (NACRT) followed by total
mesorectal excision (TME) is the accepted standard of care for
locally advanced rectal cancer (LARC) due to conclusive evidence
of superior clinical outcome [20] [24] [9] [6][19]. However, TME
is a highly invasive procedure leading to bowel and bladder
complications, and its added value for good responders is currently
being debated [23] [18]. Magnetic Resonance Imaging (MRI) has
flexibility for imaging anatomy, physiological parameters and
biochemical function, through appropriate choice of pulse sequences.
Diffusion-weighted imaging in MRI allows construction of 3D maps
of apparent diffusion coefficient (ADC) of water molecules, that are
promising markers of internal tumour pores and cellular interstices
wherein water molecules can migrate [5]. A change in mean value
of ADC has been shown to be associated with tumour response in
a number of different cancers, including LARC [12], [2]. Joye et
al. showed that combined PET (Positron Emission Tomography)
and MRI imaging parameters were strongly associated with pCR
or near-pCR [14]. The above-mentioned results led to an active
search for quantitative imaging biomarkers (radiomic features) that
could have prognostic/predictive power to support indication for
treatment. Radiomics refers to computerized extraction of a large
number of quantitative image metrics from medical images, that
may reveal a deeper level of detail than is accessible to an unaided
human eye, with the intent of defining tumour sub-types [1].
While radiomics has been successfully applied for clinical outcome
predictions in Computed Tomography (CT) and Positron Emission
Tomography (PET), its application to MRI is less advanced. Despite
the chosen modality, recent publications showed the importance
of evaluating radiomic features sensitivity with respect to several
scenarios: different acquisition settings, inter-observer variability in
tumour’s delineations, choice of particular computational settings
prior to features extraction (i.e. image pre-processing). The results
affirm that different categories of radiomic features are, in different
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forms, affected by the abovementioned scenarios. For example,
textural metrics have been shown to sensitively change their values
when computed using different quantization. Trying to isolate a
set of features which appear to be robust to all these factors is of
interest. Again, most of the available work on this topic was carried
on lung and head and neck cancers using CT or PET. However, Hu
et al. [13] did demonstrate that volume-normalized features were
more stable than not normalized features extracted from CT; while
for MRI global textural descriptors showed more temporal stability
than local-regional texture parameters [10]. In this exploratory study
of ADC radiomic features, we seek to determine to what extent
are various commonly-used features sensitive to inter-observer
disagreements in tumour delineation and the application of digital
image filter prior to radiomic feature extraction, which is an adopted
procedure used in most radiomic studies.

4.2 MATERIAL AND METHODS

4.2.1 Images

Ethical clearance was obtained for re-analysis of pre-radiotherapy
LARC images collected between 2009 and 2012 by a Dutch
radiotherapy clinic for inclusion in the THeragnostic Utilities
for Neoplastic Diseases of the Rectum (THUNDER) clinical trial
(NCT00969657, dataset described in [28]). A subset of 23 patients
was retrospectively extracted from the THUNDER set having a
pre-treatment diffusion-weighted imaging (DWI) examination at
gradients of 0, 300 s/mm2 and 1100 s/mm2. ADC maps were
constructed directly from the above field gradients in the Siemens
(Erlangen, Germany) MR scanner console. A retrospective set of
33 LARC patients undergoing routine care were extracted with
review board permission at a Danish radiotherapy clinic (population
details for all the cohorts available in the Supplementary material).
Images with the same DWI field gradients had been obtained using
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a Philips (Eindhoven, The Netherlands) MR scanner. ADC maps
were then constructed using an in-house Matlab script (MathWorks,
Natick, USA). The ADC maps were calculated on a voxel-by-voxel
basis using axial slices for all the cohorts. The above datasets are
hereafter referred to as the “THUNDER” and “CLINIC” cohorts,
respectively. Key elements of the image acquisition settings are given
in Table 1 for each cohort. Other than reconstructed slice thickness
and pulse sequence repetition time, the imaging parameters were
nominally closely matched across the two devices. Gross tumour
volume (GTV) delineation GTVs were manually delineated via a
standardized consensus method between the operators. Specifically,
the ADC was overlaid with a constant false-colour lookup table over
the 1100s/mm2 image. Some anatomical details were visible in the
latter, and using these as a guide, an outline of the hyper-intense
ADC region inside and adjoining the rectum was then drawn in
by hand. On the THUNDER cohort, three observers, working
independently, delineated the tumour on a Mirada (Mirada Medical,
Oxford, UK) workstation. In the CLINIC cohort, two observers,
working independently, delineated the tumour on an Oncentra
External Beam (Elekta AB, Stockholm, Sweden) workstation. One
common observer (author AT) delineated on both THUNDER and
CLINIC cohorts. Observers (median experience, 4 years; range 1–10)
were trained by a resident radiation oncologist to identify relevant
normal and abnormal anatomical structures within the ADC maps. In
addition, original CT scans with annotated lesions for all the patients
were available to the observers, so that they could be guided in the
delineations in the ADC maps. The median DICE for both the cohorts
was 0.75 (range 0.6–0.90). At the end, delineations were exported into
a single DICOM RT Structure Set file per patient. Each patient’s ADC
map was also exported in standard DICOM format.
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4.2.2 Image pre-processing

Digital pre-processing on ADC maps was applied prior to extracting
features. This was intended to test the sensitivity of histogram and
textural features, since shape features in PyRadiomics are entirely in-
dependent of pre-processing. For each patient, a baseline radiomic
feature value was calculated on the native (unprocessed) map. Sub-
sequently, the native ADC map was altered using one digital image
pre-processing operations at a time – (i) filtering, (ii) pixel dimension
resampling and (iii) intensity value discretization. All pre-processing
was performed using only the functions embedded within the open-
source PyRadiomics library [26], which were themselves based on Sim-
pleITK functions [17], [31]. All the filters were applied in 3D. Mathe-
matical details of the image pre-processing operations are provided in
the Supplementary Materials.

4.2.3 Features extraction

Radiomic feature extraction was performed with PyRadiomics. The
open-source PyRex extensions (Link here) were used to manage
the conversions of DICOM and DICOM RT Structure files to
binary masks. A total of 70 radiomic features were extracted from
each subject; 18 first-order (FO) features based on the intensity
histogram, 13 shape metrics (SM), 23 features based on gray-level
co-occurrence matrices (GLCM) and 16 features based on gray-level
size-zone matrices (GLSZM). Mathematical definitions of these
features are given on the PyRadiomics feature documentation page
(https://pyradiomics.readthedocs.io/en/latest/features.html).
Details used for computations, are specified in the Supplementary
Materials. It is important to note that out of the 70 features, 6 features
available in PyRadiomics are not defined in the IBSI (Image Biomarker
Standardization Initiative), namely: Maximum 3D Diameter Column.
Slice, and Row (SM); Total Energy (FO); GLCM Homogenity1/2. All
the remaining features correspond to the definitions provided by
IBSI.
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4.2.4 Statistical analysis

Statistical analysis was performed in R Studio (v1.1.383), R (v 3.5.1)
and Python (v3.6.4). A Concordance Correlation Coefficient (CCC) [16]
was chosen as the reproducibility metric to evaluate the agreement of
radiomic feature values in the perturbed image (with pre-processing
filters, re-binning and resampling) with respect to the baseline feature
values in the native ADC map. For each possible image pre-processing
function, a CCC was computed for the feature value in the perturbed
ADC relative to the native ADC map. The reported stability metric
is the mean value of CCC over all observers in the combined THUN-
DER and CLINIC sets. For inter-observer dependence, we computed
the Intraclass Correlation Coefficient (ICC) [3] across patients for each
feature We proposed that a feature was reproducible if CCC≥0.85, in
keeping with one of the most commonly used thresholds reported in
the literature [25]. Moderately reproducible features were arbitrarily
defined as 0.65<CCC<0.85. However, features with CCC≤0.65 were
deemed poorly reproducible. A threshold value of 0.85 was used also
for the ICC values to define reproducibility. To quantify the degree of
reproducibility of features between the two datasets, the features were
ordered by descending mean CCC and compared using the Spearman
Rank correlation coefficient [32]. Results were considered statistically
significant if p-value <0.05. The p-value roughly indicates the proba-
bility of an uncorrelated system producing datasets that have a Spear-
man correlation at least as extreme as the one computed from these
datasets. Fig. 4.1 proposes a sketch representation of the workflow
used for the experiments.
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Figure 4.1: Schematic representation of the workflow used in the analysis. Ra-
diomic features are extracted from the GTVs annotated in the ADC maps. Dif-
ferent configurations were considered: (a) direct extraction from raw image,
using default PyRadiomics settings; (b) customization of the extraction intro-
ducing different image pre-processing steps such as filtering or image resam-
pling; (c) customization of the extraction, without modifying the original im-
ages, but considering different quantizations when computing features. The
effects of (b) and (c) are then evaluating comparing differences in feature val-
ues with respect to (a) using concordance correlation coefficients.
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4.3 RESULTS

4.3.1 Inter-observer dependence

The overall sensitivity of feature types with respect to differences in
manual GTV delineations were compared using the ICC metric. A
box and whisker boxplot summarising the median ICC and its dis-
tribution for four feature types is given ins Fig. 4.2. Among the FO
and GLCM feature types from the native ADC maps, the median ICC
was consistently high in both THUNDER and CLINIC datasets. Ma-
jor divergences appear for the GLSZM and SM feature types, with re-
spect to the persons performing the delineations in the THUNDER and
CLINIC datasets, respectively, such that GLSZM and SM features ap-
peared more reproducible in the latter. There was significant spread
in ICC for every feature type, so even within a related group of fea-
tures certain individual features are much less sensitive to delineation
differences than others.

4.3.2 Effect of resampling with interpolation

A heatmap of CCC ranges with respect to axial pixel dimension re-
sampling is given as Fig. 4.3. At a glance, it is clear to see that the
FO features are generally reproducible with respect to scale changes in
pixel dimensions. The single FO feature that falls below CCC of 0.65
relative to the native ADC, after perturbation, happens to be Energy in
this study. The GLCM features are moderately reproducible with re-
sampling, since many features retain good or moderate reproducibility
over a wide range of resampling. The majority of GLSZM features are,
on the whole, poorly reproducible.

4.3.3 Effect of intensity value discretization

A heatmap of CCC ranges with respect to changes in the width of dis-
crete intensity bins is given as Fig. 4.4. The overall trend here, once
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Figure 4.2: Box and whisker plots of intraclass correlation coefficient (ICC)
grouped by type of feature – first order (FO), gray-level co-occurrence matri-
ces (GLCM), gray-level size-zone matrices (GLSZM) and shape metrics – for
the (a) THUNDER and (b) Danish CLINIC datasets. The solid bars represent
the median. The upper and lower edges of the boxes represent the upper and
lower quartiles of the ICC distribution, respectively
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Figure 4.3: Heatmap defining ranges of concordance correlation coefficient
(CCC). The perturbation introduced is resampling of the pixel dimensions
in the axial plane with interpolation, the magnitude of which is shown along
the horizontal axis. Each row in the image corresponds to a particular feature
within one of the feature types – first order (FO), gray-level co-occurrence
matrices (GLCM), gray-level size-zone matrices (GLSZM). Shape metrics are
not evaluated, because they are independent of resampling of the image pixel
in the pyradiomics implementation. Results are shown on the left side for the
CLINICAL cohort and on the right side for the THUNDER dataset.
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again, is that FO features (except for Kurtosis and Skewness) are gen-
erally reproducible over a wide range of intensity discretization bin
widths; however, nearly all of the GLCM and GLSZM features are
poorly reproducible. One texture feature – GLSZM Gray Level Non-
Uniformity – could be a potential feature with good to moderate re-
producibility with respect to image intensity discretization. However,
previous studies pointed out the strong correlation between this fea-
ture and tumour volume. In the Supplementary material a list of most
reproducible features is supplied.

4.3.4 Effect of applying digital image filters

A heatmap of CCC ranges with respect to application of different types
of digital image filters is given as Fig. 4.5. In regard to feature types,
FO features seem to be largely reproducible after additive Gaussian
noise. The overall picture is more mixed with curvature flow, Lapla-
cian and Gaussian smoothing filters, but it generally holds that GLCM
and GLSZM feature types are poorly reproducible.
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Figure 4.4: Heatmap defining ranges of concordance correlation coefficient
(CCC). The perturbation introduced is the discretization bin width for the
image intensity values, the magnitude of which is shown along the horizon-
tal axis. Each row in the image corresponds to a particular feature within
one of the feature types – first order (FO), gray-level co-occurrence matrices
(GLCM), gray-level size-zone matrices (GLSZM). Shape metrics are not eval-
uated, because they are independent of intensity discretization in the pyra-
diomics implementation. Results are shown on the left side for the CLINI-
CAL cohort and on the right side for the THUNDER dataset.
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Figure 4.5: Heatmap defining ranges of concordance correlation coefficient
(CCC). The perturbations introduced are four different digital image manip-
ulation filters as described in the main text, which is denoted along the hori-
zontal axis. Each row in the image corresponds to a particular feature within
one of the feature types – first order (FO), gray-level co-occurrence matrices
(GLCM), gray-level size-zone matrices (GLSZM). Shape metrics are not eval-
uated, because they are independent of digital filtering in the pyradiomics
implementation. Results are shown on the left side for the CLINICAL cohort
and on the right side for the THUNDER dataset.
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4.4 DISCUSSION

We have used an ICC metric to examine the overall reproducibility
of radiomic features with respect to tumour (GTV) delineation dif-
ferences between groups of observers. Overall, we find that FO and
GLCM feature types are less sensitive to manual delineation differ-
ences, but within each feature type a wide spread of ICCs are observed.
We hypothesize that the experience level of an observer plays a key
role in feature reproducibility, since we observe the median and distri-
bution of feature ICC values appear more consistent across all feature
types in the CLINIC set than compared to the THUNDER set. How-
ever, it is well known that interobserver variability increases as the
quality of the image decreases. In fact, agreement between clinicians
delineating on Computed Tomography (CT) is usually larger than on
MRI or ADC, due to higher signal to noise ratio [30][7]. To improve
agreement, studies suggest defining strong protocols for delineations,
and training of the observers to strictly follow the mentioned proto-
cols. Qualitatively, taking both datasets into account, the overall trend
for increasing risk of feature group irreproducibility appears to be –
FO (least risk), GLCM, GLSZM and SM (greatest risk). This hypoth-
esis finds some support in recent literature, where a recent study by
van Heeswijk et al. [27] was able to identify a FO feature that was
reproducible when a fast approximate delineation was used in place
of a time-consuming precise delineation of a rectal tumour on ADC
maps. However, that specific study did not consider other feature
groups, except for a subset of FO features. We also examined the repro-
ducibility of types of radiomic features when a range of different image
pre-processing operations were applied prior to feature extraction. We
used a CCC metric to compare the feature value in the processed ADC
map versus the same feature value in the native (unperturbed) ADC
map. We have detected the overall trend that FO feature types were
robust with respect to many of these perturbations, but GLCM and
GLSZM were in general sensitive to such pre-processing. It is not sur-
prising that FO features were less impacted by image pre-processing
than textural features. In fact, FO features can be considered as global
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statistical descriptors, while textural features provide a local measure-
ment by looking at particular patterns inside gray values. Being a lo-
cal measurement, any image pre-processing that alters the local values,
or the matrixes used for computation of TA, can produce values that
are much different than the features computed on the original image.
For example, a study [15] performed on a dedicated texture phantom
for radiomics studies, showed TA features to be very sensitive to the
bin width chosen for computation. In totality, our results suggest that
overall global intensity-based descriptors (such as the FO type) may
be more tolerant to differences in GTV delineation accuracy, pixel di-
mensions, noise level and image-enhancing digital filters compared to
textural features such as GLCM and GLSZM. These results were found
to be consistent across the two different cohorts (p<0.01). The found
results are in line with a recent study [25] proposing a qualitative syn-
thesis of 41 studies investigating the repeatability and reproducibility
of radiomic features. From the analysis, textural features were found
to be more sensitive than FO features with respect to inter-observer
variability and image processing. However, the analysis also revealed
the lack of a consensus. Furthermore, it shows that results could de-
pend on the modality or the anatomical site considered. Unfortunately,
due to the lack of literature investigating this topic for rectal cancers in
MRI, it is not possible to have a quantitate meta-analysis. Neverthe-
less, as this study also shows, it becomes fundamental to report the
exact details used for the computations prior to features extraction.

It is important to note that we do not make a claim about the potential
predictive power of feature types, nor is it in the scope of this study to
identify any set of features as more preferable than others. The CCC
metrics show that image pre-processing has the potential to strongly
change the value of some radiomic features relative to the same feature
value in the unperturbed native image, but the data cannot substanti-
ate whether this change is leading to better or worse predictive perfor-
mance in the final model. Also, as pointed out in [29], when consid-
ering the prognostic/predictive power of radiomic features, their cor-
relation with accepted clinical factors (such as for example tumour ex-
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tension) should be considered. This is to avoid redundant information
that might increase the risk of overfitting, while only features that pro-
vide additional information besides other predictors should be kept
[11]. The purpose of this study is to emphasize that differences in the
steps leading up to feature extraction could negatively affect the wider
generalizability of any given model developed using radiomic features
as a signature. For instance, if it is known in advance that the intended
application of a radiomic signature might include a wide range of pixel
dimensions, it may be preferable to prioritize features whose values do
not change greatly as a function of pixel size. Alternatively, if a partic-
ular radiomics signature uses a specific image-enhancing digital filter,
it is almost certain that the exact same digital filter will be needed to
obtain reasonable validation results, particularly if complex textural
features are part of the radiomic signature being validated. Finally,
it is important to verify the correlation between features. Our cross-
institutional dataset used in this investigation did not allow us to in-
vestigate additional aspects of ADC reproducibility. For example, it is
well known that intensity in MR images may drift significantly over
time. We did not have the data to examine temporal stability of ADC
feature values, though this has been investigated by Newitt et al. [22]
for breast tumours. Here, we used only THUNDER imaging series that
were a nominal match of the field gradients available from the Danish
CLINIC dataset. As pointed out by others, radiomic features may also
depend on the number of unique DWI gradients and the magnitude
of those gradients used when generating an ADC map [21], [8]. As
an additional limitation, we considered in our experiment the prelim-
inary example of radiomic feature sensitivity with respect to the intro-
duction of gaussian noise and the application of gaussian blurring to
possibly reduce the noise. This was meant a) to test features’ behaviour
in an ‘extreme situation’, considering that ADC maps already present
a relevant intrinsic level of noise; b) verifying the sensitivity of features
with respect to one possible de-noising technique. Further studies are
needed to investigate the impact of noise in features’ reproducibility.
Bologna et al. [4] further suggests that ADC feature reproducibility
will depend on the region of the body being examined. This suggests
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that repeatability and reproducibility should be considered early in the
radiomic model development process, by way of a priori feature selec-
tion. This would lead to better generalizability in external validation.
Our future plans include the extension of our study to additional MRI
sequences, such as T1 or T2 weighted imaging, which are often used
as standard imaging for pelvic malignancies. In particular, we would
like to verify if our results can be validated on different modalities, but
within the same anatomical site. This will provide us with an initial
evaluation of the sensitivity of radiomics features and related imaging
pre-processing as a function of different modalities.

4.5 CONCLUSIONS
Evidence in literature clearly points towards the need to evaluate re-
producibility of radiomic features derived on ADC maps. In this work,
we demonstrated that – generally speaking – the mathematically sim-
pler features, such as those derived from intensity distribution his-
tograms, are less sensitive to manual tumour delineation differences,
noise in ADC images, pixel size resampling and intensity discretiza-
tion. Shape features appear to be strongly affected by delineation qual-
ity, and the expertise among groups of observer plays a role. On the
whole, GLCM and GLSZM features appear to be poorly or moderately
reproducible with respect to the image pre-processing perturbations
we reproduced. Further studies are required to elucidate the role of
diffusion gradients and temporal stability of DWI scans in order to de-
velop the role of radiomic analysis in supporting treatment response
monitoring in locally advanced rectal cancer.
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Chapter 5. Repeatability and reproducibility of MRI-based radiomic
features in cervical cancer

Abstract
The aims of this study are to evaluate the stability of radiomic
features from T2-weighted MRI of cervical cancer in three ways: (1)
repeatability via test–retest; (2) reproducibility between diagnostic
MRI and simulation MRI; (3) reproducibility in inter-observer setting.
This retrospective cohort study included FIGO stage IB-IVA cervical
cancer patients treated with chemoradiation between 2005 and 2014.
There were three cohorts of women corresponding to each aim of the
study: (1) 8 women who underwent test–retest MRI; (2) 20 women
who underwent MRI on different scanners (diagnostic and simulation
MRI); (3) 34 women whose diagnostic MRIs were contoured by
three observers. Radiomic features based on first-order statistics,
shape features and texture features were extracted from the original,
Laplacian of Gaussian (LoG)-filtered and wavelet-filtered images, for
a total of 1761 features. Stability of radiomic features was assessed
using intraclass correlation coefficient (ICC). The inter-observer
cohort had the most reproducible features (95.2% with ICC ≥0.75)
whereas the diagnostic–simulation cohort had the fewest (14.1% with
ICC ≥0.75). Overall, 229 features had ICC ≥0.75 in all three tests.
Shape features emerged as the most stable features in all cohorts.
The diagnostic–simulation test resulted in the fewest reproducible
features. Further research in MRI-based radiomics is required to
validate the use of reproducible features in prognostic models.
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5.1 INTRODUCTION

Radiomics, the automated high-throughput extraction of quantitative
imaging features, is hypothesized to capture the histological hetero-
geneity inherent to solid tumours [14][26][13]. The potential of ra-
diomics has instigated a multitude of modality- and site-specific in-
vestigations to provide robust diagnostic and prognostic models. Gen-
erally, computed tomography (CT)-based radiomics have dominated
the literature; however, magnetic resonance imaging (MRI) is gain-
ing popularity owing to its superior soft tissue contrast [19]. While
radiomics is changing the landscape of cancer imaging research, the
lack of consistency in analysis and feature reporting make compari-
son and repetition of studies difficult [18]. Consequently, studies look-
ing at the repeatability (comparison under constant condition) and re-
producibility (comparison under varying conditions) of radiomic fea-
tures have become increasingly common [31]. Identification of repro-
ducible and repeatable features, and their inclusion in predictive mod-
els, are key to ensuring model generalizability. An important indicator
of feature repeatability is test–retest, a comparison of radiomic features
from two images of the same patient acquired within a short time-
frame. Studies looking at two sets of CT images acquired within 15
minutes to 2 weeks found that 29%–98% of calculated features were
not repeatable, thus confirming the need for robust feature selection
[10][33][23][29][2][28][4][1]. There have been no conclusive studies re-
garding the test–retest robustness of MR-based radiomic features. In
addition to a diagnostic MRI, patients planned for radiotherapy often
undergo a simulation MRI in treatment position for radiation treat-
ment planning using a different MRI scanner and image acquisition
protocol. Clinical applicability of radiomics will be dependent on its
widespread external generalizability. It is therefore essential to identify
radiomic features that are able to transcend such differences between
image acquisition parameters. Additionally, tumour delineation un-
certainty can translate into significant variability in radiomic feature
accuracy [8][11]. The need for assessment of inter-observer variabil-
ity in MRI radiomics is further substantiated by two published studies
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which have shown better reproducibility than CT [7][25]. Ultimately,
there is a need to identify MRI-based radiomic features that are robust
and stable against inevitable variation in clinical data. We hypothe-
size that we will identify MRI-based radiomic features that are robust
to tests of repeatability and reproducibility, which can be utilized in
predictive radiomics models. Accordingly, the aims of this study are
to evaluate the stability of radiomic features from T2-weighted MRI of
cervical cancer in three ways: (1) repeatability via test–retest; (2) re-
producibility between diagnostic MRI and simulation MRI; (3) repro-
ducibility in inter-observer setting.

5.2 MATERIAL AND METHODS
5.2.1 Study population

This retrospective cohort study was approved by the institutional
research board, with waiver of informed consent. We retrospectively
identified all patients with stage IB-IVA cervical cancer who were
treated at our centre with chemoradiation between 2005 and 2014.
Those who did not undergo diagnostic MRI at our centre prior
to treatment were excluded. There were three cohorts of women:
(1) 8 women who underwent test–retest simulation MRIs (within
14–47 min); (2) 20 women who underwent a diagnostic MRI and a
simulation MRI within an average timeframe of 8 days; (3) 34 patients
whose diagnostic MRIs were contoured by three observers (Fig.
5.1). There was overlap between the three patient cohorts. Table 5.2
outlines patient demographics.

5.2.2 Image acquisition

All images were acquired on clinical MR scanners with axial
T2-weighted turbo spin-echo (TSE) sequence. Scanner and imaging
parameters are listed in Table 5.2. All imaging parameters were the
same between images from a single patient in the test–retest cohort
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Figure 5.1: Axial T2-weighted MR images of a patient with FIGO stage 2B cer-
vical cancer. (A) Diagnostic MR images with contours by three observers, (B)
Radiotherapy simulation MR images acquired on a different scanner approx-
imately 2 hours following A and (C) Radiotherapy simulation MR images
acquired 20 minutes following B on the same scanner, after a bathroom break.
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Figure 5.2: Patient demographics and image parameters for the three patient
cohorts in this study (test–retest, diagnostic–simulation, inter-observer).
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and the inter-observer cohort. The diagnostic–simulation cohort
had differences in imaging parameters for a given patient including
scanner model, magnetic field, echo time (TE) and repetition time
(TR), as is expected in real clinical scenarios. The cervical tumour was
manually delineated on all images by one gynaecologic radiation
oncologist (KH) with 5 years of experience using Raystation 6
(RaySearch Laboratories). To minimize intra-observer contouring
variability between diagnostic and simulation MRIs in the test–retest
cohort, each patient’s images were soft-tissue co-registered.
Co-registration involved contouring the diagnostic T2 MRI,
propagating the contour onto the simulation MRI, and modifying as
needed. Additionally, the inter-observer cohort was subsequently
contoured by two other gynaecologic radiation oncology observers
(JC and JX with 1 and 10 years of experience, respectively).

5.2.3 Feature extraction

After contouring, all DICOM images and associated contours were ex-
ported and resampled to 0.6×0.6×4mm to exclude potential confound-
ing by variable in-plane resolutions. Resampling was performed us-
ing B-spline interpolation which has been shown to retain tissue con-
trast differences and has good reproducibility [16][15]. Resampling
and subsequent feature extraction were performed using the open-
source PyRadiomics (v.1.3.0) package for Python (v. 3.6.5) [32]. The
custom script which was used to run PyRadiomics is included in this
paper as Supplementary materials. The PyRadiomics platform was se-
lected for radiomic feature extraction to increase accountability and
refinement of methodologies. Additionally, this platform was vali-
dated against the Image Biomarker Standardization Initiative bench-
mark values [36]. MRI gray values (signal intensity) are generally rel-
ative and cannot be compared between images. To ensure better com-
parability of gray values, normalization was performed on the images
by cantering at the mean and dividing by standard deviation of the
gray values in the image as per PyRadiomics standard. In both the
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literature and the PyRadiomics documentation, a fixed bin width is
recommended as opposed to a fixed bin count [27]. An analysis was
performed to determine a suitable bin width value. Due to the normal-
ization, smaller bin widths rather than the default value of 25 in PyRa-
diomics were required to achieve a sufficient number of bin counts
for each patient. A fixed bin width of 0.05 was deemed suitable as it
resulted in an average of 54 bins (minimum 17, maximum 95) in the
original images. While the sources mentioned above recommend the
fixed bin width method, the Image Biomarker Standardization Initia-
tive recommends the use of fixed bin count for T2-weighted MR [22].
To further evaluate the differences between the two methods, the anal-
ysis was repeated using a fixed bin count of 64, which has been com-
monly used in the literature with good reproducibility in PET studies
[24][30][20]. A total of 1761 features were computed for each image.
The main groupings of texture analysis features were (1) First-order
statistics based on pixel gray-level histograms, 18 features; (2) Shape
metrics, 13 features; (3) Statistical features derived from texture matri-
ces including gray-level co-occurrence matrix (GLCM), gray-level size
zone matrix (GLSZM), gray-level dependence matrix (GLDM), gray-
level run length matrix (GLRLM), neighbouring gray tone difference
matrix (NGTDM), 74 features; (4) Statistical features derived from tex-
ture matrices in Laplacian-of-Gaussian (LoG) filtered domain (0.5–5.0
mm kernels), 920 features; and (5) Statistical features derived from tex-
ture matrices in wavelet filtered domains, 736 features. Texture matri-
ces were calculated in 3 dimensions, resulting in 2 neighbors for each
of 13 angles. As per PyRadiomics default, feature values are calculated
in all directions and the mean was recorded. No weighting to distance
was applied to the GLCM matrix.

5.2.4 Statistics

Feature stability was evaluated using the Intraclass correlation
coefficient (ICC). ICC(1,1) was used for the test–retest and
diagnostic–simulation cohorts, whereas ICC(2,1) was used for the
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inter-observer cohort. Here, an ICC of ≥0.75–0.89 was considered
good reproducibility and an ICC≥0.90 was considered excellent
reproducibility as recommended by Koo et al. [12]. The Dice
coefficient was used as a metric for the spatial overlap accuracy
of the three manual contours for the images in the inter-observer
cohort. A Dice coefficient of 0 indicated no overlap and a value of
1 corresponded to exact overlap [35]. Features which were highly
correlated were grouped together in clusters to avoid skewing results
if many features show high ICC but, in fact, are all highly correlated
and would not add additional value to a radiomics model. Cluster
sizes of 10, 100, 200, 300, 400, 500, and 600 were examined. The
optimal cluster size was decided to be the one which 75% of pairs
of features in a cluster are correlated with a Pearson correlation
coefficient above 0.9. This ensures that clusters are highly correlated
within themselves but still reduces the number of features. The
representative feature from each cluster was selected as the feature
with the highest median correlation with the other members of the
cluster. The Pearson correlation coefficient was used to evaluate
the relationship between features and tumour volume. Volume is
a known prognostic indicator; therefore, features which are highly
correlated with volume do not add meaningful information to a
radiomics model and volume dependency can artificially increase a
feature’s repeatability [6]. In order to determine whether a specific
LoG filter or wavelet decomposition offered superior feature stability,
the first-order and texture features calculated on the original image
versus the same features calculated in 19 image domains were
compared. Therefore, the original image was compared with 10
images from LoG kernel sizes ranging between 0 and 5mm, and
8 images from the wavelet decompositions. For this analysis, the
difference between the ICC of the original image and each filtered
image was calculated. Only the features which exhibited an ICC≥0.5
in one of the image domains were included in the analysis to reduce
artificially high differences between very low ICCs which are not of
interest for potential inclusion in radiomics models. An alternative
measure of agreement, Krippendorff’s alpha, was calculated to assess
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for reliability in the three cohorts. Krippendorff’s alpha ranges from 0
to 1, where 0 is perfect disagreement and 1 is perfect agreement [9].
All statistics were performed with R package v 3.4.2, 2017.

5.3 RESULTS

The Dice coefficients were calculated for the contours on each patient.
The mean±standard deviation Dice coefficients were 0.92±0.03,
0.90±0.06 and 0.91±0.06 between observers 1 and 2, 1 and 3, and 2
and 3, respectively. ICC values for the fixed bin width and fixed bin
count methods for the original image domain are provided in Table
E1 (online). The fixed bin width method produced higher ICCs for
the inter-observer cohort whereas the fixed bin count method resulted
in higher ICCs for the test–retest cohort. The two methods were
approximately equal for the diagnostic–simulation cohort. Therefore,
neither method emerged as superior for this study. Only results from
the fixed bin width method are reported for the remainder of this text.
The number of features that fell within either the “good” (≥0.75–0.89)
or “excellent” (≥0.9) ICC category for each cohort is presented in
Table 5.3. The shape metrics have the highest percentage of features
in the “excellent” ICC group in all three cohorts. Overall, the
diagnostic–simulation cohort showed the fewest features with “good”
or “excellent” ICC, 14.1% of all features. This contrasts with the
test–retest and inter-observer cohorts from which 52.1% and 95.2% of
features had good or excellent reproducibility. In addition to analysing
all the features separately, features which were highly correlated were
clustered. The optimal number of clusters was 300 where 75% of
pairs within each cluster have a Pearson correlation of above 0.90 or
below −0.90. When analysing only 1 representative feature from each
cluster, the percentage of features which demonstrated excellent or
good reproducibility in the three cohorts remained largely unchanged
as listed in Table E2 (online). This confirms that there is no skewing
of results from highly correlated features. The diagnostic–simulation
cohort again demonstrated the fewest reproducible features with
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Figure 5.3: Number of features (n) and percentage of their groups (%) which
fall into excellent ICC category (ICC≥0.9), good category (ICC≥0.75–0.89)
and other (ICC<0.75) for all features and distinct feature types (first-order,
shape, texture, LoG filtered and wavelet filtered).
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Figure 5.4: (A) Venn diagram illustrating the number of features which have
ICC≥0.75 in the three cohorts (B) Venn diagram illustrating the number of
features which have ICC≥0.9 in the three cohorts.

15.0% (45/300) having ICC≥0.75. The test–retest and inter-observers
cohorts showed 51.7% and 95.6% of representative features have
ICC≥0.75. Across all three cohorts, 229 common features out of the
total 1761 features (including all image domains) had a good ICC value
≥0.75, and 99 features had an excellent ICC value ≥0.9 as illustrated in
Fig. 5.4. Of the 229 features which had ICC≥0.75 in all three cohorts,
150 features also had a Pearson correlation coefficient of less than 0.9
with volume (i.e. not highly correlated with volume). Many of the
features with both ICC≥0.75 and Pearson correlation coefficient <0.9
were repeated in multiple image domains. A list of the ICC values
and 95% confidence interval for all radiomic features computed is
provided in Table E3 (online). Table E4 provides their Krippendorff’s
alpha values and Pearson correlation coefficients. First-order and
texture features were calculated in 19 image domains: the original
image, 10 images with LoG kernel sizes ranging between 0 and 5mm,
and 8 images from the wavelet decompositions. To explore any
variation in feature stability (ICC) by image domains, ICCs for the 13
first-order and 74 texture features were combined by image domain
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Figure 5.5: Box plot illustrating the distribution of intraclass correlation co-
efficients (ICC) for the first-order (n=13) and texture features (n=74) derived
from the original image, Laplacian of Gaussian (LoG) filtered images with
kernel sizes 0.5–5.0mm and each wavelet decomposition.

in Fig. 5.5. The ICCs from the features for the original image are
included in each graph for comparison. The diagnostic–simulation
cohort demonstrates significantly lower ICCs in all image domains.
The range of ICC values varies between image domains with no clear
image domain emerging as superior to the others. To compare feature
stability in the original versus filtered images, the differences between
the ICCs for each feature calculated on the original image and each
filtered image were plotted for each of the three patient cohorts (Fig.
5.6). The LoG filtered images showed better ICCs than the original
image for the diagnostic–simulation cohort, and worse ICCs for the
test–retest and inter-observer cohorts. For the diagnostic–simulation
cohorts, 31.9% of features demonstrated >10% higher ICCs with LoG
filtered images when compared to the original image in contrast to
23.1% which showed ≥10% lower ICCs with LoG filtered images. The
test–retest and inter-observer cohorts on the other hand demonstrated
24.4% and 3.4% of features with ICCs >10% higher in LoG filtered
images, and 28.3% and 5.1% of features which demonstrated
ICCs≥10% lower with LoG filtered images, respectively. The original
image demonstrated better ICCs than the wavelet filtered images in
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the diagnostic–simulation and test–retest cohorts. Respectively, 70.1%
and 39.0% of features had ≥10% higher ICC in their original images
when compared with wavelet filtered images. This is compared to
6.9% and 22.4% of features which had >10% lower ICC in their
original image when compared with wavelet filtered images in the
same cohorts. The inter-observer cohort demonstrated modestly
higher ICCs from wavelet filtered images than from the original image
domain (10.8% vs 5.6%). Further breakdowns of feature differences
between original images and filtered images categorized by filter or
texture feature type are supplied in Fig. E1 A-L.
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Figure 5.6: Histogram demonstrating the percentage difference between the
ICC for the original vs. filtered feature for the three study cohorts. Only fea-
tures which have ICC>0.5 in either the original image or the filtered image
(n on the figure) are included. Each colour in the bars represents the ICC
differences between the original image and individual filters. (A) The ICC
differences between the original image and the various LoG kernel size fil-
ters. (B) The ICC differences between the original image and the wavelet
decompositions.
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5.4 DISCUSSION

Radiomics has emerged as a means of image-based prognostication.
Ensuring radiomic feature stability is imperative to the external gener-
alizability of such prognostic models. It is anticipated that this study
will help guide the selection of stable radiomic features in future prog-
nostic models by evaluating feature repeatability and reproducibility
of radiomic features in three tests. Specifically, the test–retest cohort
offers a controlled environment to identify radiomic features which
most likely identify characteristics inherent to the tumour. The di-
agnostic–simulation cohort aims to identify features which are robust
against differences in scanners and acquisition protocols, thus mimick-
ing a clinical scenario. Both the test–retest and diagnostic–simulation
evaluate errors originating from data acquisition. The inter-observer
cohort, on the other hand, evaluates error originating from tumor de-
lineation, another important clinical scenario. Combining the results
from the three cohorts can represent a good strategy to perform fea-
ture dimensionality reduction. The importance of careful feature se-
lection is first demonstrated in the test–retest cohort which resulted
in 47.9% of the features with ICC <0.75 (below good reproducibility)
despite the controlled setting. Likewise, even with the use of a phan-
tom and identical imaging parameters, one study has shown that 4%
of CT-radiomic features had a concordance correlation coefficient (a
numerically similar but alternative popular agreement index to ICC
which does not include ANOVA assumptions) of ≤0.85[3]. The inter-
observer cohort demonstrated high ICCs, 74.4% of which were ≥0.9.
Such a high ICC value in the inter-observer setting is expected given
the high Dice coefficients (>0.9) between the observers’ contours. In
comparison, the literature reports Dice coefficients ranging from 0.86
for non-small cell lung cancer (NSCLC) CT to 0.26 for mesothelioma
CT; 91% of features to have ICC>0.8 for NSCLC PET; and an average
ICC of 0.77 for NSCLC CT-PET[33][22][21]. Inter-observer variability
in MRI-radiomics has shown an average ICC of 0.85 for breast can-
cer and an ICC>0.95 for all entropy features (only features examined)
from diffusion-weighted MRI for cervical cancers [7][25]. The diagnos-
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tic–simulation test resulted in the fewest reproducible features, 14.1%
of which have an ICC≥0.75. From this study, we draw three conclu-
sions. Firstly, shape features demonstrated the highest repeatability
and reproducibility in all tests. Shape features are commonly reported
as highly reproducible in the literature, and were shown to be less sen-
sitive to CT slice thickness and reconstruction parameters in a phan-
tom study[34]. Further, shape features were found to be repeatable
in test–retest of rectal cancer and NSCLC[10]. A recent systematic re-
view, mostly based on CT studies, concluded that shape features were
more reproducible than texture features, but that first-order features
are better than both[31]. Secondly, the diagnostic–simulation cohort
was designed to test features in a clinically relevant setting across dif-
ferent MR scanners. Reasonably, the number of reproducible features
was fewer than the other two cohorts, likely due to differing image ac-
quisition parameters. Of the 248 reproducible features in the diagnos-
tic–simulation cohort, 92.3% was also reproducible in the other two co-
horts. Our findings are difficult to compare to the literature as specific
features are uncommonly reported, especially given the sparse litera-
ture on MRI-based radiomics. Of the reproducible features identified
in our study, coarseness has been reported as reproducible for breast
cancer PET imaging[20]. Additionally, Fave et al. reported coarse-
ness, gray length nonuniformity and run length nonuniformity as re-
producible for NSCLC cone-beam CT [6]. Leijenaar et al. reported
that GLCM and GLRLM were more reproducible than GLSZM, each of
which encompasses at least one feature which appeared in our study as
reproducible [17]. Thirdly, there is no substantial difference in feature
stability between the original and filtered image domains. Wavelet
and LoG-filtered images showed both better and worse reproducibil-
ity than the original images in the three cohorts tested in this study.
Specifically with regard to the diagnostic–simulation cohort, this find-
ing suggests that there is no filter or decomposition which overcame
differences in acquisition parameters without losing the inherent tu-
mour texture. Similarly, Schwier et al. demonstrated no significant
improvement in reproducibility with a certain LoG-filter or wavelet
decomposition [27]. Elsewhere, Timmeren et al. reported that wavelet
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features were less reproducible than the unfiltered image features in
a test–retest scenario [33]. We acknowledge limitations in our study.
This was a single-institutional retrospective study with a modest num-
ber of patients that may not be representative of other institutions or
patients. However, our cohort size is very similar to those reported in
the literature [1][2][28][5] and provides important results which high-
light the pressing need for radiomic studies with larger cohorts. Ad-
ditionally, this study focused on cervical cancer and its applicability
to other tumour sites is unconfirmed. Despite the validation of the
PyRadiomics platform, results may differ from other radiomic feature
extraction platforms. The fixed bin method employed in this study is
limited due to the increased number of bins once wavelet filters are ap-
plied. Further investigation on the effect of fixed bin width versus dy-
namic bin width is required. There was no bias field correction applied
to the images in this study. The impact of field variation across the bore
on feature reproducibility requires further study. Finally, although we
used commonly reported cut-offs from the literature for ICC categories
(0.75 and 0.9), these may not represent the ideal threshold for feature
inclusion in prognostic models. While this study presents limitations,
it has systematically evaluated MR-based radiomic reproducibility in
three clinically applicable settings which has scarcely been done previ-
ously. Future work will involve analyses of the dependencies between
radiomic features and clinical variables to better understand which ra-
diomic features are the most appropriate for inclusion in prognostic
models. In conclusion, MRI-based radiomic features of cervical tu-
mours were tested for their repeatability and reproducibility. Shape
features emerged as the most reliable. The diagnostic–simulation re-
sulted in the fewest reproducible features which highlights the impor-
tance of careful feature selection for radiomics generalizability. Further
research in MRI-based radiomics is required to validate the use of re-
producible features in prognostic models.
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Dekker, and Hugo J.W.L. Aerts. Radiomics: Extracting more in-
formation from medical images using advanced feature analysis.
European Journal of Cancer, 48(4):441–446, March 2012.

[15] Ruben T. H. M. Larue, Janna E. van Timmeren, Evelyn E. C.
de Jong, Giacomo Feliciani, Ralph T. H. Leijenaar, Wendy M. J.
Schreurs, Meindert N. Sosef, Frank H. P. J. Raat, Frans H. R.
van der Zande, Marco Das, Wouter van Elmpt, and Philippe
Lambin. Influence of gray level discretization on radiomic fea-
ture stability for different CT scanners, tube currents and slice

193



Bibliography

thicknesses: a comprehensive phantom study. Acta Oncologica,
56(11):1544–1553, November 2017.

[16] T. M. Lehmann, C. Gönner, and K. Spitzer. Survey: interpolation
methods in medical image processing. IEEE transactions on medical
imaging, 18(11):1049–1075, November 1999.

[17] Ralph TH Leijenaar, Sara Carvalho, Emmanuel Rios Velazquez,
Wouter JC Van Elmpt, Chintan Parmar, Otto S Hoekstra, Corne-
line J Hoekstra, Ronald Boellaard, André LAJ Dekker, Robert J
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Chapter 6. Sensitivity of radiomic features to inter-observer
variability and image pre-processing in Apparent Diffusion
Coefficient (ADC) maps of cervix cancer patients

Abstract
The aims of this study are to evaluate the stability of radiomic features
from Apparent Diffusion Coefficient (ADC) maps of cervical cancer
with respect to: (1) reproducibility in inter-observer delineation,
and (2) image pre-processing (normalization/quantization) prior to
feature extraction. Two observers manually delineated the tumour on
ADC maps derived from pre-treatment diffusion-weighted Magnetic
Resonance imaging of 81 patients with FIGO stage IB-IVA cervical
cancer. First-order, shape, and texture features were extracted from
the original and filtered images considering 5 different normalizations
(four taken from the available literature, and one based on urine ADC)
and two different quantization techniques (fixed-bin widths from 0.05
to 25, and fixed-bin count). Stability of radiomic features was assessed
using intraclass correlation coefficient (ICC): poor (ICC<0.75); good
(0.75≤ICC≤0.89), and excellent (ICC≥0.90). Dependencies of the
features with tumour volume were assessed using Spearman’s
correlation coefficient (ρ). The approach using urine-normalized
values together with a smaller bin width (0.05) was the most
reproducible (428/552, 78% features with ICC≥0.75); the fixed-bin
count approach was the least (215/552, 39% with ICC≥0.75). Without
normalization, using a fixed bin width of 25, 348/552 (63%) of features
had an ICC≥0.75. Overall, 26% (range 25–30%) of the features were
volume-dependent (ρ ≥0.6). None of the volume-independent shape
features were found to be reproducible. Applying normalization prior
to features extraction increases the reproducibility of ADC-based
radiomics features. When normalization is applied, a fixed-bin width
approach with smaller widths is suggested.
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6.1 INTRODUCTION

Cervical cancer is the fourth most frequent cancer in women, with an
estimated 570,000 new cases in 2018, representing 6.6% of all female
cancers worldwide. Cervical cancer still represents a significant
burden for middle- and low-income countries [3]. Standard treatment
for locally advanced (stage IB2-IVA) cervical cancer is concurrent
chemoradiation. Computed Tomography (CT) and Magnetic
Resonance (MR) are the standard imaging modalities for cervical
cancer staging and evaluation of treatment response. Through
appropriate choice of pulse sequences MR imaging provides greater
soft tissue contrast than CT and enables assessment of physiological
parameters and biochemical function. Diffusion-weighted imaging
(DWI) in MR enables measurement of water diffusivity via generation
of Apparent Diffusion Coefficient (ADC) maps, and ADC is an
established biomarker of tumour cell density and related changes
post-therapy [15]. DWI is increasing acquired in addition to
T2-weighted MRI to detect cervical tumour [21], and pre-treatment
tumour ADC has been shown to be predictive of recurrence in patients
with cervical cancer treated with chemoradiation [11][8]. Radiomics
refers to the extraction of additional information from the delineated
GTV (Gross Tumour Volume) of patients’ scans: including first order
statistics of intensity values; morphological properties, and textural
descriptors looking at local patterns (textures) [7]. Radiomics has been
extensively applied to CT and Positron Emission Tomography (PET),
with a growing number of studies addressing its role in MRI and
specifically in DWI and ADC maps [13][26]. Two recent publications
[17][18] have discovered and validated an ADC-derived radiomic
feature (EntropyGLCM) as an independent predictor of disease-free
survival and locoregional control in cervical cancer. These results
highlight the promising role of MRI for outcome prediction in
oncology and the urgent need to develop a robust methodology for
feature extraction in DWI. Compared to CT, for example, radiomics
analysis applied to ADC presents additional challenges intrinsic to
the technology (e.g., more variable system and imaging parameters
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limiting features reproducibilities; larger inter-observer variability
in tumour delineation [12]). Feature reproducibility is a necessary,
but insufficient, condition for high predictive power of a radiomic
feature. However, if a radiomic feature has poor reproducibility, then
its predictive power is likely low too. This has been deeply explained
by Gudmundsson et al. [10] when analysing the stability of a
physiological time series. While the Image Biomarker Standardization
Initiative (IBSI) has set standards for feature extraction in CT and PET,
there is still no established agreement on feature stability assessments
and harmonization in MR [27]. Additional image pre-processing
prior to feature extraction might be necessary, including: (a) image
normalization which may reduce site-specific protocol differences;
and (b) optimal configurations for the extraction of textural features,
such as quantization of intensity values from which radiomic
features are extracted. To extensively assess feature reproducibility,
there is a need to investigate the sensitivity of radiomic features to
inter-observer variability and image pre-processing in ADC. Finally,
correlations between radiomic features (many of which seem to be
a surrogate of tumour volume [24]) and tumour volume should
also be investigated, to avoid the risk of introducing redundant
information and over-fitting in radiomics-based prediction models.
With the aim of speeding up the harmonization of radiomics in ADC
and extending the work presented by the IBSI, in this manuscript
a detailed methodology for evaluating the stability of radiomic
features is proposed: (a) with respect to inter-observer variability;
and (b) by comparing different normalizations and quantization
approaches in ADC maps of cervical cancer patients. These analyses
have zero overlap with prior considerations of this data, which tested
factors affecting tumour ADC variability and association between
pre-treatment ADC value with disease recurrence [12][10].
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6.2 MATERIAL AND METHODS
6.2.1 Study population

This retrospective study was conducted using ADC maps derived
from DWI from 81 women with stage IB–IVA cervical cancer treated
with definitive chemoradiation in 2009–2013. This dataset has been
described in [6]. The study was approved by the Institutional Review
Board, with waiver of informed consent.

6.2.2 MRI methodology

Stacks of 2D T2-weighted images and ADC maps covering the cervi-
cal tumour were acquired on Siemens MRI systems [9]. The ADC maps
were acquired according to the parameter sets in Table E1 (Supplemen-
tary Material).

6.2.3 Gross tumour volume (GTV) delineations

Two observers (a senior radiation oncology and a radiology research
fellow) independently manually delineated the GTV in three dimen-
sions directly on ADC maps co-registered to T2-weighted images (Pin-
nacle Treatment Planning System, Philips, The Netherlands). Their
contours were reviewed by a gynaecologic radiation oncologist with
2.5 years of experience and a radiologist with 8 years of experience,
respectively.

6.2.4 Image pre-processing

Digital pre-processing on ADC maps were applied prior to extracting
radiomic features, including a combination of normalization and
quantization. Features were also computed without normalization,
termed ‘baseline features’ to test the sensitivity of first order and
textural features. Table 6.1 summarizes the normalization and
quantization approaches which were applied: no normalization +
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fixed-bin width approach (Raw); no normalization + fixed-bin count
approach (BinCount64); bladder-based normalization+fixed-bin
width approach (BladderNorm), and 4 other normalization +
fixed-bin width approaches (S1, S100BW15, S100BW5, S333).

6.2.5 Normalization

Normalization was applied to the whole image (not only within the
ROI), by subtracting mean intensity centring it and dividing by the
standard deviation. An additional biological-based normalization was
considered by drawing a circular ROI of 10mm diameter in the middle
of the bladder, where the urine signal was maximum for each patient
[9]. Each intensity level was then normalized by dividing original val-
ues by the median intensity of the ROI.

6.2.6 Quantization

Besides normalization, different discretization (binning) of the image
intensities was considered. In fact, textural feature computation
requires the image intensities to be quantized into a discrete number
of gray levels. We chose to compute textural feature using the
fixed-bin width approach, as suggested by Leijenaar et al. [16], where
intensity values are quantized in bins of fixed dimension. The bin
width was chosen to produce between 30 and 128 bin counts as
recommended by Tixier et al. [23]. The normalization S100 (Table 6.1)
with bin width 5 (referred as S100BW5) produced a median of 25 bins
(range 10–40) and thus was excluded from subsequent analysis as
per [24]. While the aforementioned sources recommend a fixed-bin
width approach, the IBSI [27] suggests a fixed bin count approach
for raw MRI with arbitrary intensity units, as the fixed bin count
approach introduces a normalizing effect. Since an optimal strategy
for the extraction of texture features from ADC map (calibrated units)
is not defined yet, we assessed both fixed bin width and fixed bin
count approaches with respect to feature reproducibility. In addition,

204



Figure 6.1: Summary of the normalizations/quantizations considered in the
experiment. The approach “S100BW5” produced a non-conformal (low)
number of bins and thus was excluded from further analysis. For the Raw
and BladderNorm scenarios the first bin starts at 0 intensity (as per ADC unit
definition). The S333 scenario projects original values into values similar to
CT range (-1000 is then the start value). For S1, S100BW5 and S100BW15 the
start value is 0.
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we explored if the “implicit” normalization embedded within the
fixed-bin count approach was comparable to an approach using an
“explicit” normalization combined with a fixed-bin width algorithm.
A fixed bin number of 64 (“BINCOUNT 64”) was chosen since it is
commonly used in the literature, with good reproducibility in PET
studies [23]. Outlier removal (values larger or smaller than 3 standard
deviations with respect to the mean intensity value) was performed
for this configuration, as it was shown to increase reproducibility
in recent publications [4]. Finally, different filters were applied to
the original images before feature extraction. The following options
were considered: (a) Laplacian of Gaussian (σ= 3mm); (b) square; (c)
square root; (d) exponential, and (f) gradient. The filters are explained
in the PyRadiomics documentation (Link here). Filtering, as per
PyRadiomics defaults, always happen before quantization. It is worth
noting that filtering, normalization and quantization only affect first
order and textural features, while shape features are left unchanged,
since they are computed directly using the tumour segmentation
mas. Therefore, shape features were extracted directly from the
segmentation masks, one features for each of the 2 annotated GTVs
for each subject.

6.2.7 Feature extraction

Radiomic feature extraction was performed with PyRadiomics version
2.0.1. The open-source PyRex extensions (Link here) were used to man-
age the conversions of DICOM and DICOM RT Structure files to binary
segmentation masks. Prior to features extraction, images were resam-
pled to 0.6×0.6×4mm, as standard procedure for radiomics studies [27].
A total of 565 radiomic features, of which 13 were shape features, were
extracted from each subject. Mathematical definitions of these features
are given on the PyRadiomics feature documentation page (Link here).
Details used for computations are specified in the supplementary ma-
terial (Section 1). The summary of this study workflow is shown in
Fig. 6.2.
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Figure 6.2: Summary of study workflow. (A) Two observers independently
delineated the gross tumour volume on apparent diffusion coefficient maps.
Contours were then exported as RTSTRUCT DICOM files. (B) Normalization
and quantization procedure prior to feature extraction: 5 different approaches
were applied prior to feature extractions. (C) Feature extraction: radiomic
features were extracted from the two different contours and for all the differ-
ent approaches. Also, features were extracted from raw intensities, without
any prior normalization, using default PyRadiomics settings. Shape, statis-
tics, and textural categories were considered. Image pre-processing filters
were also applied to statistics and textural features. (D) Statistical analysis: to
evaluate the stability of features with respect to inter-observer variability and
the effect of normalization, the ICC metric was used. Feature values were
compared between the two observers for all the configurations considered.
Finally, dependencies between features and tumor volume were evaluated
using the Spearman’s correlation coefficient.
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6.2.8 Statistical analysis

Statistical analysis was performed in R Studio (v1.1.383), R (v 3.5.1)
and Python (v3.6.4). The Intraclass Correlation Coefficient (ICC) [2]
was chosen as the reproducibility metric to evaluate the agreement of
radiomic feature values with respect to interobserver variability for the
different configurations considered. In particular, the definition of ICC
(2,1), corresponding to two ways random effects with absolute agree-
ment [14], was chosen for the analysis. An ICC of ≥0.75–0.89 was con-
sidered good reproducibility and an ICC≥0.90 was considered excel-
lent reproducibility as recommended by Koo et al. [14]. We considered
a feature reproducible if ICC≥0.75. The stability of the 13 shape fea-
tures was evaluated only with respect to interobserver variability and
not for all the quantization/normalization approaches, since they do
not affect shape features. For clarity, the results for the shape features
are presented in a dedicated subsection. The results of the analysis to
test the impact of different approaches with respect to inter-observer
variability refer to a total of 552 features, which corresponds to the
total of computed features (565) minus the number of shape features
(13). The DICE coefficient was used to measure spatial overlap be-
tween the two observers’ contours. It ranges from a minimum of 0
(no spatial overlap) to a maximum of 1 (absolute agreement). Cor-
relations between radiomic features and tumour volume were evalu-
ated using the Spearman correlation coefficient (ρ). Correlations were
computed for all the features and for all the considered approaches.
The reported coefficient is the average coefficient between the two ob-
servers. ICCs were compared using repeated measures ANOVA, and
pairwise p-values were adjusted using the false discovery rate (FDR)
method [20]. Dichotomized ICCs were compared using a chi-squared
test and pairwise p-values were adjusted using the FDR. Conditions of
homogeneity of variance and normality of data were confirmed by per-
forming the Levene’s and Shapiro-Wilk’s tests [5]. A sensitivity anal-
ysis was performed to investigate the possible effects magnetic field
strength (1.5T and 3T) or b-values (0, 100, 800 vs 0, 400, 800 vs 0, 50,
400, 800 vs 0, 50, 400, 1000 s/mm2). The significance of the configura-
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tions was tested using repeated-measures ANOVA controlling for the
magnetic field strength and b-values. Statistical significance was set to
p<0.05.

6.3 RESULTS

The median DICE similarity coefficient for all the patients between
the two observers’ GTV was 0.73±0.12. ICCs values and the
corresponding lower limits of the 95% confidence interval are
provided in Table E2. Out of the 13 shape features, 6 features
had “excellent” reproducibility (ICC≥0.9), 3 features had “good”
reproducibility (ICC≥0.75–0.89), and the remaining 4 features
had poor/moderate reproducibility (ICC<0.75). Overall, shape
features had a mean ICC of 0.85±0.13 (range 0.49–0.95). All the
9 reproducible (ICC≥0.75) features besides tumour volumes had
Spearman correlation with tumour volume ρ ≥ 0.6 and this might
explain their high reproducibility. The number of features within
the “excellent” (≥0.9), “good” (≥0.75–0.89) or “poor/moderate” ICC
category for each approach is summarized in Table 6.3. Overall,
the urine-based approach (“BLADDERNORM”) produced the
largest number (193/552, 34%), while the fixed-bin count approach
(“BINCOUNT64”) resulted in the lowest number (65/552, 12%) of
highly reproducible features (ICC≥0.9). If only features obtained from
the original, unfiltered images are considered (first order+textures,
n=92), the most reproducible configuration remains the urine-based
approach (70/92, 76% of features with ICC≥0.75); the least remains
the fixed bin-count approach (42/92, 46% of features with ICC≥0.75).
Fig. 6.4 summarizes the median ICC values and their interquartile
ranges related to interobserver variability for each of the approaches
considered and for all the 552 features. Repeated-measures ANOVA
test showed significant differences in ICC among the various
approaches (F(5, 546)=7.69, p<0.001). Pairwise comparisons revealed
that the mean ICC from the fixed-bin count approach (0.68±0.18)
was statistically significantly lower than that from all the other
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Figure 6.3: Number of features (n) which fall into excellent ICC category
(≥0.9), good category (≥0.75–0.89) and poor category (<0.75) for each ap-
proach applied to all features, distinct feature types (first order, textural) and
different filters (logarithm, exponential, square, square root and gradient).
This analysis refers to all the features (n=552), excluding shape features.

approaches: S333 (0.76±0.17, p<0.001); S1 (0.78±0.13, p<0.001);
S100BW15 (0.76±0.15, p<0.001); RAW (0.76±0.15, p<0.001); and the
urine-based approach (0.82±0.16, p<0.001). The mean ICC from the
urine-based approach was statistically significantly higher than all
the other approaches (p<0.001 for all comparisons). On sensitivity
analysis controlling for magnetic field strength and b-values, the
same trend was observed: the mean ICC from fixed-bin count
approach was statistically significantly lower, and the mean ICC from
urine-based normalization was statistically significantly higher than
all the other configurations (Tables E3 and E4). Fig. 6.5 is the Venn
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Figure 6.4: Box plots showing intraclass correlation coefficient (ICC) values
for all the features with respect to inter-observer variability, for all the ap-
proaches and for features extracted directly from raw intensities. The box
boundaries represent the 25th–75th percentile range, the middle horizontal
line indicates the 50th percentile, open circles represent outliers, and error
bars represent the maximum and minimum values excluding the outliers.
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Figure 6.5: Venn diagram combining the reproducibility analysis (ICC≥0.75)
in orange, with correlations between radiomic features and tumour volume
(ρ < 0.6) in gray.

diagram summarizing the features with at least good reproducibility
(ICC≥0.75) and a weak correlation with tumour volume (ρ < 0.6). Of
note, 27% (143/552, range 25–30%) of the features on average showed
strong correlations with tumour volume (ρ >0.6). Urine-based
approach resulted in the largest number of reproducible features with
weak correlation with tumour volume (n=380), while the fixed-bin
count approach minimized the reproducible feature count (n=190).
Between these two sets, n=90 features overlapped. The pairwise
chi-squared test showed statistically significant differences between
the urine-based and the other approaches: S333 (n=290, p<0.001);
S1 (n=300, p<0.001); S100BW15 (n=288, p<0.001); RAW (n=292,
p<0.001).

6.4 DISCUSSION

6.4.1 Overall summary and comparison to prior studies

In this study we proposed a methodology for evaluating features’ re-
producibilities with respect to interobserver variability and image pre-
processing (normalization and quantization) in ADC maps of cervix
cancer patients. Despite the relatively small sample size, our work is
the first study to propose a strong methodology to assess the robust-
ness of radiomic features in ADC maps of cervical cancer patients, with
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the aim of extending the effort of harmonization carried by the IBSI for
radiomics in PET and CT. At the best of our knowledge, prior stud-
ies focused mainly on repeatability of radiomic features for prostate
[22], brain [25] and/or dedicate phantoms [1] for T1- and T2-weighted
MR images, except for the prostate study by Schwier et al. which also
examined ADC maps. Our results are in line with the Schwier study,
which stated that: (a) digital image pre-processing prior to features
extraction sensitively changed features values; and (b) normalization
prior to features extraction improved the features repeatabilities. How-
ever, it is important to note that Schwier reported opposite results for
point (b) when looking at prostate T2 maps. Therefore, it is impor-
tant to tune the optimal strategy according to the particular sequence
considered. Dependence of shape features to inter-observer variability
Since shape features measure morphological and topological proper-
ties of the GTV, features such as elongation, flatness or sphericity are
potentially more prone to inter-observer variability. Conversely, a sub-
set of shape features strongly correlated with tumour volume (ρ¿0.6)
have excellent reproducibility, including tumour volume which is the
most reproducible feature. Reducing the inter-observer variability be-
tween clinicians via introducing semi or fully automated algorithms
for contouring might improve the reproducibility of the shape features
that are poorly correlated with tumour volume. However, semi and
automated contouring for MRI, and specifically for ADC maps, is chal-
lenging due to the poorer signal to noise ratio compared for example
to CT.

6.4.2 Normalization

ADC acquisition parameters are particularly variable. Magnetic
field strengths, image geometric features (e.g. field-of-view, spatial
resolution, slice thickness), RF coils, b-values, diffusion-sensitizing
gradient timings, post-processing filters and in-line ADC processing
algorithms, and corrections for gradient non-linearity can
present large variations between institutions [19]. To reduce
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the above-mentioned effects two solutions can be adopted: (a)
homogenization of acquisition protocols across different institutions;
or (b) digital pre-processing of acquired images prior to features
extraction to reduce as much as possible systematic biases. The first
methodology has been proposed by several initiatives such as the
QIBA (Quantitative Imaging Biomarker Alliance), including design
of an ADC standardization phantom which demonstrated that
inter-institutional ADC variability remains around 5% under ideal
conditions. However, guidelines for radiomics calculation still are
not clear, and any interventions which improve variability should
impact radiomics reproducibility favorably. The second approach
considers image operations like normalization, that may reduce the
above-mentioned effects. This approach has been suggested by the
IBSI with guidelines for CT [27]. In this view, our work is the natural
extension for MRI. In principle, there is no strict recipe for choosing a
normalization method. In our work, we applied several techniques
previously presented in the literature, including use of urine as
an internal ADC reference. We compared the impact of different
normalization techniques with respect to inter-observer variability.
As Fig. 6.4, Fig. 6.5 show, urine-based normalization provided a
more stable strategy for feature reproducibility than approaches
which directly extracted features from non-normalized ADC maps.
This result is consistent with a prior study which showed that ADC
normalized to urine was more reliable than non-normalized ADC for
estimating the histological grade of bladder cancer [5].

6.4.3 Quantization

The computation of textural features requires discretization (binning)
of the image intensities within a limited number of gray levels. We de-
cided to use the fixed-bin width approach, since it is the most common
strategy applied in published PET and CT studies. In our study, the
quantization ranged from 0.01 to 25 bin widths. Considering the rec-
ommendations available in the literature [27], the approach S100BW5
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was discarded because it produced a very small number of bin counts
for all the patients, which might make textural features more sensi-
tive to noise. We suggest using a smaller bin width when applying
normalizations, in order to guarantee enough counts to preserve sig-
nal fidelity. For example, the urine-based normalization provided a
bin count of 90 using a bin width of 0.01. An alternative approach
is the fixed-bin count method, where relationship between image in-
tensity and physiological meaning (if any) is broken [27]. It intro-
duces a normalizing effect which may be beneficial when intensity
units are arbitrary (e.g. for T1 or T2-weighted images), as suggested in
[27], although ADC maps have defined units of mm2/s. In this study,
features extracted without prior normalization and with a fixed-bin
count of 64 were the least reproducible (Fig. 6.2, 6.4), and even less so
than features extracted from non-normalized ADC maps. Nonetheless,
these results may be modality- and/or disease-dependent and might
not be transferable. Furthermore, the value chosen for the fixed-bin
count was taken from the PET and CT literature, and might not be
the optimal solution for ADC. Dependencies with tumour volume We
used ρ¡0.6 (between each radiomic feature and the tumour volume)
as the threshold to define a feature as ‘volume-independent’, despite
not being able to find an optimal cut-off in the literature. The se-
lected cut-off eliminates features with strong to moderate correlation
with tumour volume, without being so restrictive. On average, 26%
(range 25–30%) of the features were found to be volume-dependent.
In general, applying normalization reduced the number of volume-
dependent features. Filtered features did not show significant differ-
ences in terms of volume-dependence, with the only exception of gra-
dient filtering. It is worth noting that some of the most stable features
(ICC≥0.9), were highly correlated (ρ ≥0.9) with tumour volume. Sev-
eral limitations need to be highlighted. The relatively small sample
size, compared to the largest number of computed features (and then
the elevated number of degrees of freedom), might have influenced the
statistical significance of the results. Additional data would have en-
hanced the sub-analyses, especially considering more configurations
of b-values. The urine-based normalization should be tested in exter-
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nal datasets. In fact, to test the robustness and the generalizability of
the proposed methodology, the need of additional external datasets
is mandatory. In particular, the presented methodology needs to be
tested with respect to different acquisition protocols. Further experi-
ments should include evaluating inter-observer variability for the de-
lineation of this ROI. Additional studies are needed to verify the prog-
nostic power of reproducible features.

6.5 CONCLUSION
We highlighted the importance of image normalization and quantiza-
tion before feature extraction from ADC maps, and emphasize an ur-
gent need for harmonization. Based on our results, normalizing using
values of the urine in the bladder led to most reproducible features
compared to no-normalization or extracting features using a fixed bin
count approach.
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Chapter 7. Learning from scanners: Bias reduction and feature
correction in radiomics

Abstract
Radiomics are quantitative features extracted from medical images.
Many radiomic features depend not only on tumour properties, but
also on non-tumour related factors such as scanner signal-to-noise ra-
tio (SNR), reconstruction kernel and other image acquisition settings.
This causes undesirable value variations in the features and reduces
the performance of prediction models. In this paper, we investigate
whether we can use phantom measurements to characterize and cor-
rect for the scanner SNR dependence. We used a phantom with 17
regions of interest (ROI) to investigate the influence of different SNR
values. CT scans were acquired with 9 different exposure settings. We
developed an additive correction model to reduce scanner SNR influ-
ence. Sixty-two of 92 radiomic features showed high variance due to
the scanner SNR. Of these 62 features, 47 showed at least a factor 2
significant standard deviation reduction by using the additive correc-
tion model. We assessed the clinical relevance of radiomics instability
by using a 221 NSCLC patient cohort measured with the same scan-
ner. Phantom measurements show that roughly two third of the ra-
diomic features depend on the exposure setting of the scanner. The
dependence can be modelled and corrected significantly reducing the
variation in feature values with at least a factor of 2. More complex
models will likely increase the correctability. Scanner SNR correction
will result in more reliable radiomics predictions in NSCLC.
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7.1 INTRODUCTION

Imaging is an essential part of the radiation oncology workflow:
images are used for cancer staging and treatment planning and
verification. Medical images contain a large amount of data, which
enables their use in clinical practice to personalize radiation therapy
for each patient by deriving quantitative features from these images,
referred to as radiomics [4]. Radiomics describe tumor phenotype
using shape, statistical, and textural features extracted from images
of different modalities: Computed Tomography (CT), Magnetic
Resonance Imaging (MRI), Positron Emission Tomography (PET).
Subsequently, machine learning algorithms use these radiomic
features to predict patient survival time [2][5], treatment toxicity
[1], tumor habitat characterization [9]. Although the radiomics
approach shows promising results, different feature definitions,
image pre-processing methods, and imaging instruments make
cross-institutional learning difficult [6][7][10]. The Image Biomarker
Standardization Initiative (IBSI) standardized radiomics mathematical
definitions and image pre-processing [13]. Still, imaging scanners
are not designed for high quality radiomics, but for the best
possible image quality for visual (human) interpretation. In daily
practice, oncology institutions use their CT scanners with different
imaging settings (reconstruction kernel, voxel spacing, X-ray tube
exposure, etc) for each patient to optimize subsequent diagnosis
and delineation. This lack of inter-scanner (scanner-to-scanner),
intra-scanner (various settings within one scanner), and even
test-retest (with exact the same settings) reproducibility makes the
radiomics approach fragile. The inter- and intra-scanner effects
induce a non-tumor related variation in the measurements which can
be described as bias in the radiomic features. Eventually, this bias
may lead to misinterpretation of the radiomics data. One of the main
intra-scanner variations in the CT images is the X-ray tube exposure
related to the scanner signal-to-noise ratio (SNR). In our study, we
use phantom measurements to quantify how scanner SNR variation
results in biasing the extracted features. We hypothesize that the SNR
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dependent bias can be characterized and quantified, providing the
opportunity to correct for it.

7.2 MATERIAL AND METHODS

7.2.1 Phantom

To investigate the influence of scanner SNR on radiomic features we
used a commercial phantom (Gammex 467 CT phantom, Middletone,
WI, USA). The phantom was used in the standard configuration with
its 16 inserts of different tissue-like densities. We performed five ses-
sions of scans with each 9 exposure settings (from 30 to 460 mAs) with
a Brilliance Big Bore CT (Philips, Best, The Netherlands) using the Tho-
rax protocol. The images were reconstructed with the B reconstruction
kernel with pixel resolution 512×512. To extract radiomics, we delin-
eated regions of interest (ROI) in all the 16 inserts and the phantom
center (total of 17 ROIs) as equally-sized cylinders using the Pinna-
cle 16.0.2 treatment planning system (Philips Healthcare, Fitchburg,
WI, USA). To avoid edge effects, we delineated the ROI smaller than
the inserts as shown in figure 7.1. For radiomics extraction, we used
open-source pyradiomics 2.1.2 software with 25 HU binning and no
re-sampling [11].

7.2.2 Patient cohort

To relate our phantom study to clinical applications, we used images
of a 221 non-small cell lung cancer (NSCLC) cohort (supplementary
table B1) previously treated with (chemo)-radiotherapy and scanned
with the same scanner as the phantom set. The data consists of radio-
therapy treatment planning DICOM CT images with various scanner
settings and physician-delineated primary NSCLC tumors as RT struc-
ture sets. The median X-ray tube exposure was 300 mAs. Radiomic
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Figure 7.1: Gammex phantom configuration with cylindrical delineations.
The 17 plug descriptions are in the supplementary A.

227



Chapter 7. Learning from scanners: Bias reduction and feature
correction in radiomics

Figure 7.2: Formula 1

features were extracted from the gross tumor volume (GTV) of the pri-
mary tumor with the same pyradiomics extraction settings as in the
phantom set.

7.2.3 Correction method

Using the five repeated measurements, we calculated mean and stan-
dard deviation for each exposure value and every ROI. We arbitrarily
defined the target radiomic value (TRV) as the mean value of the ra-
diomic feature measured with the 200 mAs exposure. The aim of the
correction was to correct all exposure values to the value observed at
200 mAs as that was the median exposure value in the phantom set.
Further data processing included: 1) TRV calculation (for 200 mAs) for
each ROI in raw data (figure 7.4), 2) Subtracting TRV from radiomic
feature’s data, isolating the SNR trend in the data (figure 7.4), 3) fitting
the correction function (figure 7.4), 4) Correcting the raw data (figure
7.4). As scanner SNR in CT images is proportional to the square root
of number of photons, and therefore, to

√
E; we analyzed the rela-

tionships between radiomics values and 1√
E

. To avoid overfitting, we
trained a regression model with the only two predictors (excluding in-
tercept): 1√

E
and ( 1√

E
)2 . We used no predictor scaling. Eventually,

we defined the correction model as by formula 7.2, where w – model
weights, b – intercept, E – exposure, ∆ - correction factor. We devel-
oped the model using scikit-learn package for python, version 0.19.1
[8].
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Figure 7.3: Formula 2

7.2.4 Radiomic feature correctability

We defined correctability as the ability to reduce scanner SNR influ-
ence on a radiomic feature. To assess correctability of a feature, we
defined the correctability score (CS) as in formula 7.3. To derive the
score, we used TRV-shifted data (figure 7.4). The correctability score is
a ratio: the numerator describes variability due to exposure (variance
in means), the denominator describes intrinsic repeatability variance;
∆RF stands for TRV-shifted radiomic feature values. For each expo-
sure value in the range [30-460 mAs], numerator calculates mean and
denominator calculates standard deviation of ∆RF values. Then, nu-
merator calculates standard deviation of means and denominator cal-
culates mean standard deviation across the 9 exposure values. A value
of 1 denotes that the correction is of the order of the noise and there-
fore is not very relevant. The correctability becomes more relevant at
increasing values of CS. Eventually, the CS parameter is a measure of
how correctable a feature is based on the phantom scans.

7.2.5 Correction evaluation

The final aim of the correction is to reduce the variance of the RF values
due to the variation of noise, for this purpose, we defined the evalua-
tion score (ES) as ratio of standard deviations before and after the cor-
rection calculated for each ROI and every radiomic feature (RF), where
values above 1 indicate a gain of the correction mechanism, by formula
7.5):
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Figure 7.4: Radiomics correction model in three steps: 1) shift original data to
0 with TRV, 2) fit the model using the shifted data, 3) correct the original data
using the model.

Figure 7.5: Formula 3
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7.2.6 Clinical relevance of the phantom

Phantom radiomics studies should be applicable in clinical
data. To assess clinical relevance, we evaluated 1) distribution
overlap in features to test if a radiomic feature distribution in
phantom set present absolute values of the same magnitude as
values in clinical studies; 2) investigate how scanner SNR distorts
feature values of clinical data by simulating (adding) noise to
the scans. When comparing distributions between the phantom
and patient cohorts, note that all 17 phantom ROIs had the same
shape in the phantom set, while in the patient cohort shape
delineations differ between subjects. Therefore, we performed the
distribution comparison only for 4 volume-normalized features: gldm
DependenceNonUniformityNormalized, glrlm GrayLevelNonUniformi-
tyNormalized, glszm SizeZoneNonUniformityNormalized, and glrlm
RunLengthNonUniformityNormalized. We cannot scan a patient with
different exposure settings, therefore, we modeled scanner SNR in
patient images by adding Poisson noise. The magnitudes of the
Poisson noise were initially calibrated in phantom set to be adequate
to real exposure settings (30-460 mAs) by applying Poisson noise of
different magnitudes to the phantom images with the maximum
exposure of 460 mAs (supplementary figure B3). As the next step,
Poisson noise with the magnitude calibrated for -160mAs SNR
reduction was applied in patient images. We used those generated
images to extract radiomics and evaluate the relative shift in features.
The relative shift is defined in formula 7.6 and evaluates how large
the difference between feature values in original (RForiginal) and
SNR-influenced (RF−160mAs) images is if compared to the interquartile
range in the feature distribution (IQR0.75−0.25(RForiginal)):
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Figure 7.6: Formula 4

7.3 RESULTS
7.3.1 Radiomic feature correctability

We calculated the correctability score (CS) for each radiomic feature –
92 scores in total. If the CS of a radiomic feature is close or less than
one, the intrinsic reproducibility variance is equal to the scanner SNR-
caused variation; that makes the feature uncorrectable. Therefore, we
chose for the correctability threshold of CS>2, meaning that the cor-
rectable scanner SNR variance is 2 times higher than the intrinsic re-
producibility in a radiomic feature. Based on this threshold criterion,
we selected 62 features for further analysis. The upper panel of figure
7.7 shows CS for each selected radiomic feature as the step blue line.

7.3.2 Correction evaluation

To assess whether the exposure dependence could be corrected
with our model we calculated the evaluation score (ES). All 62
selected with the CS>2 threshold criterion radiomic features showed
significant (ES versus 1 Wilcoxon signed-rank test p<0.01) reduction
in standard deviation (averaged across the ROIs) using our additive
model. Forty-seven out of 62 radiomic features showed significant (ES
versus 2 Wilcoxon test p<0.05) at least 2 times standard deviation
reduction. In summary, the upper panel boxplot (figure 7.7) describes
ES distribution across 62 radiomic features and 17 ROIs. We evaluated
how different materials react on the scanner noise by calculating 17
ROIs’ ES for each radiomic feature and placed the scores in lower
panel of figure 7.7. Interestingly, ROIs 9 and 15 (low density plugs,
< -600 HU) have low correctability, on the other hand, ROIs 2 and 8
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Figure 7.7: Correctability (2) and Evaluation (3) scores for the selected 62 ra-
diomic features and 17 ROIs. The color bar represents the evaluation score
(ES): the darker, the larger reduction in standard deviation was obtained.
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(28 and -45 HU mean density respectively) have good correctability.
These results show that different materials react differently on scanner
SNR in radiomic features: some materials are more dependent on
scanner SNR than others are.

7.3.3 Clinical relevance of the phantom

In our study, we used phantom measurements to simulate and char-
acterize the acquisition of radiomic features for clinical scans. Figure
7.8 shows how large the relative shift (4) in radiomic features is while
applying Poisson noise of the magnitude equivalent of -160mAs scan-
ner SNR reduction. For example, relative shift of 10% means that -160
mAs reduction in a patient scan causes feature value to change 10%
relative to the feature distribution width in the patient cohort. In addi-
tion, we evaluated overlap between the clinical and phantom sets in 4
normalized feature distributions (supplementary figure B1). We found
that the distributions have clear overlap; therefore, phantom radiomics
are at least partly relevant for clinical scans. We systematically investi-
gated the dependence of radiomic feature values on scanner SNR using
a commercial phantom and a patient cohort of lung cancer patients.
The phantom measurements were obtained using a standard clinical
protocol, where the SNR was varied by changing exposure settings
from 30 to 460 mAs. We showed that many radiomic features form a
trend with the scanner SNR, making the value of the feature not only
dependent on the tumor, but also on a specific scanner setting. To rem-
edy this effect, we developed a method to correct the radiomic features
for scanner SNR.
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Figure 7.8: Relative shift (4) in radiomic features (in ascending order) versus
feature names while applying Poisson noise (equivalent to decreasing scan-
ner SNR, mAs) in the images of the NSCLC cohort.
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7.4 DISCUSSION

7.4.1 Radiomics correctability

We used correctability score (CS) to separate radiomic features which
are biased and correctable in terms of scanner SNR from those that
are not. Although Spearman correlation is a reliable criterion for trend
detection, it does not include the intrinsic repeatability of the measure-
ment. For instance, the statistical radiomic feature ‘Energy’ (supple-
mentary C) has a high Spearman correlation with scanner SNR, but the
feature’s correctable trend variance is smaller than its intrinsic repeata-
bility making correction not effective. Therefore, we defined CS that
assesses both intrinsic repeatability and correctable trend variance. Of
the 92 features considered, 62 show a CS>2, indicating that they have
a dependence on scanner SNR that dominates the repeatability. Note
that stability for different exposure settings (CS<1) does not mean a
radiomic feature is stable for other scanner settings (image reconstruc-
tion kernel, voxel spacing, etc).

7.4.2 Correction model

Given that there is a trend of the feature value with exposure, we hy-
pothesize that it is possible to correct for the variation. We chose an
additive quadratic regression model and used X-ray tube exposure as
the predictor. Adding more variables (e.g. uncorrected feature values
and/or its intersection term with exposure) might benefit the correc-
tion for some features where additive terms cannot explain trends for
different ROIs perfectly. For instance, for the feature glrlm GreyLevel-
Variance (see supplementary C), the correction seems to depend on the
density of the plug, suggesting that a model incorporating the expo-
sure and the mean HU as predictors could improve the correction sig-
nificantly. We did not pursue developing more complicated correction
models in this paper since our main goal was give a proof of princi-
ple regarding correctability, and since other issues such as overfitting
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must be considered when making the model more complex. Supple-
mentary C shows the scanner SNR correction in all the 92 features and
intraclass correlation coefficients before and after correction for the 62
selected features.

7.4.3 Clinical relevance of the phantom and correction model

In using phantom measurements to study scanner dependence of clini-
cal scans, it is paramount that the phantom (material) is representative
for the patient case [7]. We compared the distribution of radiomic fea-
tures in a clinical cohort with the distribution in a phantom. Ideally,
the distribution of the features in both phantom and patient cohorts
should be identical for all features. Firstly, as has been described be-
fore, a part of the ‘texture’ features are dependent on the shape or the
size of the ROI [12]. Comparing the distribution of these is not relevant
since we use artificial (cylindrical) regions, therefore only features in-
sensitive to volume or shape could be used. Some typical examples
of these features are given in the supplementary data (supplementary
B). Overlap is present in for almost all features. This suggests that
the properties of the phantom captured by the radiomic features are
at least partly relevant for the patient cohort. Future work is needed
to develop plugs that are identical to patient material, although a per-
fect match with the patient cohort for all features is unrealistic [7]. As
a second method to test the applicability in the clinical situation, we
simulated for each patient scan what the effect would have been if
the scan was made with lower exposure. For this we applied Pois-
son noise to images, where the quantitative relation between the noise
amplitude and the exposure was derived from the phantom scans. We
found that scanner SNR results in change of the radiomics values for
the clinical scans (figure 7.8). For a large part of the patients/features,
a moderate change in the exposure resulted in more than 10% change
of the radiomic feature compared to the width of the distribution of
the whole cohort. When using the radiomic features as an input for
a personalized outcome prediction, this will clearly affect the value of
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the prediction for individual patients. Fave et al also investigated the
effect of noise in patient CT’s on radiomic features by adding noise to
the scans. Their findings is in line with ours, namely that the effect
is significant, leading to the conclusion that scanning with a range of
patient dose should be avoided [3]. Our finding is however in contrast
with the conclusion of Mackin et al. [7]. Their measurements were
done using the Credence Cartridge Radiomics phantom, and reached
the conclusion that SNR of the scan was not likely to be of significant
influence since for the rubber insert (which was taken to be most rep-
resentative for tumor tissue) the effect of the changing tube current
was small. Their argument is that the addition of the noise to the scan
negligible due to the tumor inhomogeneity. However, the added noise
simulations by Fave et al. and us show that for the patient scans in-
volved (in both cases NSCLC patients) the noise indeed affects feature
values significantly.

7.5 CONCLUSION
We found that 62 out of 92 radiomic features strongly depend on
scanner SNR. Due to this dependence, non-tumor related variation is
added to the features’ values, seriously limiting the use of radiomics
in clinical applications. We showed that a simple additive model
effectively corrects the undesired variation for 47 out of 62 features.
By comparing a NSCLC cohort with the phantom set, we showed that
variation in scanner SNR is a reality in a typical clinical cohort, and
thus is an actual problem in using radiomics for prediction modeling
and personalized medicine.
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Matthieu Perrot, and Édouard Duchesnay. Scikit-learn: Ma-
chine learning in python. Journal of Machine Learning Research,
12(85):2825–2830, 2011.

[9] E. Sala, E. Mema, Y. Himoto, H. Veeraraghavan, J.D. Brenton,
A. Snyder, B. Weigelt, and H.A. Vargas. Unravelling tumour
heterogeneity using next-generation imaging: radiomics, radio-
genomics, and habitat imaging. Clinical Radiology, 72(1):3–10, jan
2017.

240



[10] Muhammad Shafiq-ul Hassan, Geoffrey G. Zhang, Dylan C.
Hunt, Kujtim Latifi, Ghanim Ullah, Robert J. Gillies, and Ed-
uardo G. Moros. Accounting for reconstruction kernel-induced
variability in CT radiomic features using noise power spectra.
Journal of Medical Imaging, 5(01):1, December 2017.

[11] Joost J.M. van Griethuysen, Andriy Fedorov, Chintan Parmar,
Ahmed Hosny, Nicole Aucoin, Vivek Narayan, Regina G.H.
Beets-Tan, Jean-Christophe Fillion-Robin, Steve Pieper, and
Hugo J.W.L. Aerts. Computational Radiomics System to Decode
the Radiographic Phenotype. Cancer Research, 77(21):e104–e107,
November 2017.

[12] Mattea L. Welch, Chris McIntosh, Benjamin Haibe-Kains,
Michael F. Milosevic, Leonard Wee, Andre Dekker, Shao Hui
Huang, Thomas G. Purdie, Brian O’Sullivan, Hugo J.W.L. Aerts,
and David A. Jaffray. Vulnerabilities of radiomic signature de-
velopment: The need for safeguards. Radiotherapy and Oncology,
November 2018.

[13] Alex Zwanenburg, Stefan Leger, Martin Vallières, Steffen Löck,
and for the Image Biomarker Standardisation Initiative. Image
biomarker standardisation initiative. arXiv:1612.07003 [cs], De-
cember 2016. arXiv: 1612.07003.

241





8
Machine learning helps identifying

volume-confounding effects in
radiomics

Adapted from: ”Machine learning helps identifying volume-
confounding effects in radiomics”. A Traverso, M Kazmierski, I
Zhovannik, M Welch, L Wee, D Jaffray, A Dekker, A Hope. Physica
Medica 71, 24-30. (2020).

243



Chapter 8. Machine learning helps identifying volume-confounding
effects in radiomics

Abstract
Highlighting the risk of biases in radiomics-based models will help
improve their quality and increase usage as decision support systems
in the clinic. In this study we use machine learning-based methods to
identify the presence of volume-confounding effects in radiomics fea-
tures. 841 radiomics features were extracted from two retrospective
publicly available datasets of lung and head neck cancers using open
source software. Unsupervised hierarchical clustering and principal
component analysis (PCA) identified relations between radiomics and
clinical outcomes (overall survival). Bootstrapping techniques with lo-
gistic regression verified features’ prognostic power and robustness.
Over 80% of the features had large pairwise correlations. Nearly 30%
of the features presented strong correlations with tumour volume. Us-
ing volume-independent features for clustering and PCA did not al-
low risk stratification of patients. Clinical predictors outperformed ra-
diomics features in bootstrapping and logistic regression. The adop-
tion of safeguards in radiomics is imperative to improve the quality of
radiomics studies. We proposed machine learning (ML) – based meth-
ods for robust radiomics signatures development.
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8.1 INTRODUCTION

Radiomics, the automated extraction of quantitative descriptors from
medical images, has demonstrated promising prognostic and predic-
tive results for overall survival [7], distant metastases [9] and cancer
biology [16]. After an initial phase of enthusiasm related to the in-
troduction of this technology in the medical domain, investigation of
the weakness and drawbacks of the new methodology always follows.
These discussions are constructive and represent part of the scientific
process to mature a technology, especially if it is meant to be clini-
cally applicable. In the radiomics scenario, recent publications warned
about the presence of biases and potential risks that could be associ-
ated with radiomics-based models. In Chalkidou et al. [3], the au-
thors pointed out that the usage of an elevated number of features
combined with arbitrary feature selection cut-offs, might produce the
undesired problem of multicollinearity, which leads to model over-
fitting, often related to false discovery rates. The problem is that all
radiomics computational packages compute hundreds to thousands
of radiomics features, which often do not differ in their definitions,
but are the same formulas computed by perturbing the original im-
age with digital filters. This hyperspace of correlated features is usu-
ally much larger than the outcomes of interest, leading to models that
are prone to overfitting and exposed to false positive associations [3].
Moreover, some radiomics features embed in their definition hidden
confounding factors, which drive their prognostic/predictive power,
but it is not immediately understood by inspecting the mathematical
definitions of the features. A recent paper showed the presence of a
strong volume-confounding effect in some radiomics signatures based
on texture or statistical features [8]. The authors showed the random-
ization of grey level values still produced radiomics features able to
have strong predictive power. This paper was the first one to intro-
duce the concept of “safeguards” in radiomics studies. Understanding
and evaluating the correlations between radiomic features and clini-
cal prognostic variables is fundamental to evaluate the added value of
imaging features compared to the previously mentioned factors. In a
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recent study [4], the authors investigated the complementary nature
of heterogeneity quantified by imaging features and tumour volume
in FDG-PET from multi-site cancers. They showed that volume and
imaging features were both independent prognostic factors for Non-
small Cell Lung Cancers (NSCLC) for volumes above 10 cm(3), with
complementary information increasing substantially for larger tumour
volumes. However, when smaller volumes were considered as in oe-
sophageal cancers, the complementary value was degraded because of
the presence of smaller volumes. Again, another study in FDG-PET [2],
but for cervical cancers investigated the effect of e small tumour vol-
umes on studies of intertumoral heterogeneity of tracer uptake. The
authors used a computer simulation to isolate the effects of tumour
volume on the image local entropy. They concluded that inclusion
of tumour volumes below 45 cm(3) can profoundly bias comparisons
of intra-tumoral uptake heterogeneity metrics. From the cited stud-
ies, to fully exploit the complementary prognostic/predictive power
of imaging features it is imperative to benchmark them with respect
for example to tumour volume. In fact, additional prognostic factors
should be added to an existing model, since the introduction of redun-
dant information could be dangerously prone to overfitting. By taking
the previous studies as support, in this paper we intent to provide the
radiomics community with a machine-learning based framework to
evaluate complimentary role of imaging features when benchmarking
with other prognostic factors, such as for example tumour volume. We
investigated how machine learning techniques can be used to discover
the presence of volume-confounded features, effectively applying ra-
diomics safeguards. Machine learning methods are often used in the
form of supervised methods, where classifiers are trained to learn as-
sociations between radiomics features and outcomes (labels). Large
efforts have been dedicated to tuning classifiers, but there is no guar-
antee that biases will be uncovered. On the contrary, unsupervised
methods do not look at labels and only utilize the original radiomics
features. These methods are very popular in genomics studies, but not
often used in radiomics studies. In this work we show how a combina-
tion of unsupervised and supervised methods can be used to introduce

246



safeguards to radiomics studies.

8.2 METHODS

8.2.1 Datasets

We used two retrospective public data sets for the analysis:

• Lung1: 421 NSCLC (Non-Small Cell Lung Cancer) patients
treated with concurrent chemo-radiotherapy. Computed
Tomography (CT) scans of the patients and manually delineated
contours of the primary Gross Tumor Volume (GTV) in
form of DICOM and RTSTRUCT files were available. The
dataset is available for download at the XNAT repository
(https://xnat.bmia.nl) and on the TCIA archive. The
dataset is the same used in Aerts et al. [1].

• HN1: 132 CT scans of oropharynx and larynx squamous cell
carcinoma patients treated with concurrent chemo-radiotherapy
and manually delineated contours of the primary gross tumour
volume (GTV) in form of DICOM and RTSTRUCT files were
available. The dataset is available for download at the XNAT
repository (https://xnat.bmia.nl) and the TCIA. The
dataset is the same used in Aerts et al. [1] Additionally, clinical
variables including: TNM, AJCC staging information, age, sex,
as well as overall survival (OS) with a 3-year follow up were
available.

8.2.2 Radiomic features extraction

We used the open source software PyRadiomics v2.2.0 [12] to extract
imaging features from each GTV. Pyrex (Link here), an extension of
PyRadiomics was used to handle DICOM RTSTRUCT files as input,
by generating a binary segmentation mask from the contour data [10].
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For LUNG1 and HN1 datasets we used extraction parameters sug-
gested in Aerts et al. [1]. A detailed description of the computational
settings is provided in the Supplementary material. To further evalu-
ate the impact in the results of the aggregation method of texture fea-
tures, we compared the default “3Daverage” with the other most com-
monly used “3Dmerging” method. Following features classes were ex-
tracted: statistical first order (FO), shape metrics (SM), texture features
(TA) including Gray Level Co-occurrence Matrix (GLCM), Gray Level
Run Length Matrix (GLRLM), Gray Level Size Zone Matrix (GLSZM),
Neighbouring Gray Tone Difference Matrix (NGTDM), Gray Level De-
pendence Matrix (GLDM), wavelet features (WF) for all of the above
features excluding shape, computed using all combinations of apply-
ing either a High or Low pass filter in each of the three dimensions.
In total, we extracted 841 features from each image volume (18 FO,
13 SM, 23 GLCM, 16 GLRLM, 16 GLSZM, 14 GLDM, 5 NGTDM, and
736 WF). The shape feature volume of each GTV was approximated by
multiplying the number of voxels in the region of interest (ROI) by the
volume of one voxel.

8.2.3 Elimination of redundant features

Pairwise feature inter-dependencies were evaluated using the Spear-
man rank correlation coefficient (ρ) The ρ metric does not assume any
a priori functional dependence for the data (contrary, for example, to
the Pearson coefficient) and therefore it is able to catch complex func-
tional dependencies between features. The redundant features (with
|ρ| ≥ t, where t is a chosen threshold value) were eliminated by ran-
domly dropping one of the two features. Thresholds from 0 to 1 with
a 0.05 increment step were used.

8.2.4 Cluster analysis

We used hierarchical clustering to discover groups of patients with
similar radiomics signatures. The optimal number of clusters (k) was
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determined using the consensus clustering method [13]. Briefly, clus-
tering is repeated multiple times for different values of k using random
sub-samples of the data. The value of k resulting in the most stable
clusters (i.e. least change in cluster assignment for each observation
across samples) is selected. We compared the distributions of clinical
variables and GTV volume between clusters. In addition, we com-
puted the Kaplan-Meier estimator of overall survival in each cluster.
The log-rank test is a standard procedure to assess the statistical signifi-
cance of difference between survival function estimates (with p-values
corrected for multiple comparisons, using the FDR (False discovery
rate) correction method (Benjamini-Hochberg procedure)[13].

8.2.5 Principal component analysis (PCA)

Principal component analysis (PCA) is an unsupervised method aim-
ing to discover the sources of variance in the data. PCA identifies the
directions of largest variability in the original dataset (called princi-
pal components). PCA is useful to determine if there is a confounding
factor intrinsically present in the computed features, which is driving
the variance in the data. The principal components are linear combi-
nations of features and are ordered by the amount of total variance
they explain. Thus, the first principal component represents the pre-
dominant pattern in the data and its strength is captured by explained
variance. PCA can be used to identify latent variables sources of vari-
ability not observed directly but nevertheless captured by the features.
For example, if a suspected confounding variable is highly correlated
with the first principal component, it is likely to be the true source of
variation.

8.2.6 Feature selection and modelling

To investigate the predictive value of volume-independent (ρ ≤ 0.1)
imaging features, we used them in combination with clinical variables
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(age, T, N, M stages, AJCC stage and tumour volume) in a binary lo-
gistic regression. We applied the model to two-year overall survival
prediction. To determine the relative importance of features, as well
as the stability to perturbations in the input, we applied a bootstrap-
based method as detailed in [6]. Briefly, the model is refit on multi-
ple bootstrap re-samples of the data and the order in which a feature
is important for a model is obtained using Recursive Feature Elimi-
nation (RFE). The importance of each feature, as well as correlations
between features, can be identified easily by visualizing the resam-
pling results. Furthermore, the overall importance of each feature can
be identified by aggregating the results across bootstrap resamples.
Bootstrap-based variable selection analysis increases the reliability of
reported models. All the statistical analysis was performed in Python
v3.7.5 using the statistical package scikit-learn v0.21.3. Statistical sig-
nificance was set at p < 0.05. The workflow is briefly summarized
in Table 8.1 (further commented in the discussion section) and it is
composed by the following sequential steps that were adopted in this
study: 1) evaluation of pairwise correlations between tumour volume
using Spearman rank analysis and drop highly correlated features; 2)
use the reduced list to perform hierarchical clustering and evaluating
distribution of clinical variables (or confounding factors) in the clus-
ters. Use PCA to select components that explain the largest percent-
age of variance, but still evaluating correlations between components
and confounding factors; 3) to address sample biases use bootstrap
techniques with RFE (Recursive Feature Elimination) and force in the
model the presence of clinical prognostic factors. Build the final signa-
ture by selecting the most selected features.
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Figure 8.1: Suggested workflow for radiomics signature developments that
incorporates safeguards.

8.3 RESULTS
8.3.1 Feature correlations

Pairwise Spearman correlation between features revealed a high level
of inter-dependence in the NSCLC dataset, with over 80% correlating
with at least one other feature at |ρ| ≥ 0.9 (Fig. 8.2). Furthermore,
nearly 30% showed correlation with tumour volume greater than 0.75
(Fig 8.2) . A similar correlation was observed in the HN1 dataset.
Supplementary Table S1 lists all the radiomic features that presented
a Spearman correlation |ρ| ≥0.8 with GTV.

8.3.2 Clustering and PCA analysis

Using all the feature set, the patients could be stratified into two
groups with significantly different survival times (log-rank P <
10–6, Fig. 8.3a). The difference in tumour volume distribution
between clusters was highly significant (permutation P < .001,
Fig. 8.3a). Removing features moderately correlated with volume
(with Spearman |ρ| > 0.6) still allowed for cluster separation by
OS (P < 10–6, Fig. 8.3b); however, the volume difference between
clusters remained highly significant (P < .001, Fig. 8.3b). Using
only volume-independent features (|ρ| < 0.1) the groups could not
be separated by survival (P = .8, Fig. 8.3c) or tumour volume (P
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Figure 8.2: Proportion of correlated features as a function of Spearman rank
correlation threshold. (a) shows the proportion of features with pairwise cor-
relation greater than the threshold value in the lung dataset. Percentage of
features correlated with volume at a given threshold is shown in (c). The
results were similar in HN1 (b, d).
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Figure 8.3: Kaplan-Meier OS estimates and volume distributions for each
cluster identified in the NSCLC dataset. (a) all original and wavelet features,
(b) features moderately correlated with volume (defined as Spearman |ρ| <
0.6 with volume), (c) features not correlated with volume (|ρ| < 0.1), d) GTV
signature.

= .9, Fig. 8.3c). Groups could be separated by survival using as
only input feature the computed GTV (log-rank P < 10–6) with no
statistically significant differences between the full signature and GTV
signature as shown in Fig. 8.3d. As per this experiment it is possible
to appreciate a degradation of performances when slowly removing
features that are highly correlated with tumour volume, finally
reaching a point (|ρ| < 0.1) where only volume independent features
are left, but no stratification is possible. The first principal component
(PC) extracted from all feature signature correlated with volume
(Spearman ρ = 0.78, Fig. 8.4a). The first 2 PCs explained over 50% of
the total variance, reflecting the large number of volume-correlated
features. The latent volume effect was still present when moderately
(|ρ| < 0.6) correlated features were used (correlation with volume:
ρ = - 0.37 for PC 1 and ρ = 0.79 for PC 2, Fig. 8.4b), explaining the
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significance between-cluster differences in tumour volume. Finally,
there was no volume-dominant effect in features independent ( |ρ| <
0.1) from volume (ρ = 0.01 for PC 1 and ρ = 0.05 for PC 2, Fig. 8.4c).
Due to a smaller number of cases in the HN1 dataset, only one cluster
could be reliably identified. In PCA, we found a dominant volume
effect in full signatures (ρ = -0.91, Fig. 8.4a right) similarly to the
NSCLC dataset. Crucially, the effect was present even in moderately
correlated features (correlation with volume: ρ = -0.52 for PC 1 and
ρ = -0.58 for PC 2, 8.4b right). Again, the effect was not present in
non-correlated features 150 (ρ = -0.05 for PC 1 and ρ = 0.03 for PC 2,
Fig. 8.4c right).

8.3.3 Feature selection and modelling

Fig. 8.5 shows the order of selection in each bootstrap dataset (1000
replications in total) alongside the frequency of each feature entering
the model first. In Lung1, volume enters the model first in most re-
sampling iterations (84%), followed by T stage (which carries partially
overlapping, but not identical information) and M stage (both 10%). In
HN1, it is worth noting that the number of volume-independent fea-
tures is larger. The most frequently selected feature is the overall stage
(44%), followed by N stage and tumour volume (17% and 15% respec-
tively). This reflects the higher importance of nodal involvement in
head and neck squamous carcinomas for OS. Interestingly, one imag-
ing feature (GLDM-Gray Level Variance, correlation with volume 0.1)
entered the model as first almost as frequently as volume (14%), in-
dicating potentially complementary information. It is worth noting
that our aim was not to create the optimal model, but rather to inves-
tigate the robustness of feature predictive performance. Results and
conclusions remained unchanged when considering texture features
computed with the “3Dmerging” aggregation approach.
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Figure 8.4: Principal component analysis of (a) full feature signatures, (b) fea-
tures moderately correlated with volume ( |ρ|< 0.6), (c) volume-independent
features (|ρ| < 0.1) in lung and head and neck datasets. The data is shown
projected on the first 2 principal components and the proportion of variance
explained by each component is indicated. Colours correspond to tumour
volume. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)
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Figure 8.5: Bootstrap-based evaluation of predictive power and stability of
imaging and clinical features. (a) and (c) show the order of each feature enter-
ing the model across 1000 resampling iterations in Lung1 and HN1, respec-
tively. The height of the bar is inversely proportional to the order of selection
(therefore, filled bar indicates higher importance). (b) and (d) show the fre-
quency of each feature entering the model first in both datasets.
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8.4 DISCUSSION

The evaluation of radiomics features multicollinearity and their bench-
mark with respect to accepted clinical prognostic factors is a needed
safeguard. Our results show that radiomics features present strong
inter-correlations, where texture features (TA) are usually more cor-
related between each other than first order (FO) features. Applying
a wavelet filter augmented this problem, increasing therefore the di-
mensionality of problem to be solved and leading to a situation prone
to overfitting. Besides feature-feature correlations, a large percentage
of radiomics features showed marked dependencies with tumour vol-
ume: 50% of total features had ρ volume > |0.6|, independently from
the anatomical site considered (Fig. 8.2c and d). Again, TA features
showed higher correlations with tumour volume than FO features.
Three of highly correlated features were confirmed to be affected by
strong volume correlations also in [15]. In HN1, texture features had
slightly lower correlations with tumour volume than in Lung1. Apply-
ing filtering decomposition of the original image did not eliminate the
volume-effect. Our results confirmed that was no statistically signif-
icant difference of volume correlations between original and filtered
features. Therefore, the usage of image filtering should carefully be
adopted and justified to avoid an increase in the dimensionality of the
features space to be reduced, without bringing any new information.
Tumour volume is a well-established and benchmarked prognostic fac-
tor for lung and head and neck cancers [5][11]. Therefore, correctly
identifying if a feature or a combination of feature (e.g. signature)
prognostic power is driven by a volume-confounded effect is funda-
mental to avoid spurious conclusions. With this evidence in mind we
want again to clarify that the goal of our manuscript was not to dis-
courage the community from building radiomics models and discard
this effort since other predictors exist, but it was to provide this com-
munity with machine learning methods that could help achieving a
good trade-off between explicability, transparency, parsimony, accu-
racy, and overfitting. Driver to reaching this trade-off, but still achiev-
ing good and robust performances is to identify the important explana-
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tory variables. Unfortunately, the majority of radiomics features come
as complicated mathematical formulas, where identifying a direct and
immediate dependence to tumour volume is far from trivial. In addi-
tion, two single features might not present strong dependencies to tu-
mour volume, but their combination could. In this study we showed
how machine learning can be used to address the above-mentioned is-
sue. Compared to the traditional radiomics workflow, we collocated
machine learning at the top of the process, as a powerful instrument
for exploratory analysis and acts as a safeguard against unanticipated
cross-correlation with known prognostic features. The unsupervised
methods of clustering and PCA present the following advantages: a)
searching for patterns in the data without assuming any a-priori distri-
bution or condition (i.e. without looking at the ‘labels’); b) providing
an intuitive way to retain pertinent information in the analysis and
verify the main driver of it. When we cluster patients using all the
radiomics features, the separation in terms of overall survival was sta-
tistically significant. However, the main reason of splitting can be at-
tributed to strong volume differences between the clusters (Fig. 8.3).
When we drop features correlated with tumour volume using a cut-off
of 0.6, it was still possible to separate the two clusters in terms of OS,
but with worse statistic. However, the clusters still had a predominant
volume difference (Fig. 8.3). Finally, when considering only volume-
independent features (|ρ| ≤ 0.1) there was not significant splitting and
no statistically significant difference between tumour volumes in the
clusters. The results confirm that most of the radiomics features, when
combined, led to spurious associations with tumour volume. Further-
more, volume-independent features alone did not allow stratification
of patients into bad and good prognosis groups.

To further prove that the volume-latent effect is present independently
from the unsupervised algorithm chosen, we repeated the PCA analy-
sis but using the tSNE (t-distributed Stochastic Neighbouring Entities)
[14]. It is another well known visualization method for high dimen-
sional data, but compared to PCA, it uses a probabilistic approach. In
our study, these two techniques were used as complimentary to fur-
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ther verify the found results. In fact, the same volume-latent effect
was confirmed (figures available in the Supplementary material) also
with tSNE. Finally, we showed how bootstrap methods can be com-
bined with supervised machine learning to evaluate feature signifi-
cance. Furthermore, since bootstrap methods consider different sub-
samples of the original datasets, the risk of spurious associations, due
to sample effects, is reduced. It is then possible to rank features ac-
cording to their importance for the model by Recursive Feature Elim-
ination. If a feature is important and has high prognostic value, it
will often be selected, despite the chosen sample. A recent submitted
publication to this journal related to radiomics-based model in head
and neck cancers [15], showed that combining radiomics and clinical
predictors did not lead to an elevate increase of performances. Sim-
ilar results are found in our analysis also for the lung dataset: when
considering only volume-independent features, tumour volume and
t-stage outperformed each of the imaging features (Fig. 8.5a and b).
In HN1 one radiomics feature was selected as often as other tradi-
tional clinical factors, but still the most frequent feature was nodal,
showing that information outside the GTV (e.g. nodal involvement)
plays a strong role in head and neck cancers. It is important to no-
tice that it was out of this paper’s scope to build the best model for
predicting OS. Rather the aim was to provide the radiomics commu-
nity with a method to benchmark radiomics predictors with accepted
clinical factors and evaluate their stability with respect to a particu-
lar splitting of the datasets. We provide safeguarding recommenda-
tions for signature developments in radiomics studies that build upon
Welch et al. [15]: a) unsupervised learning methods (e.g. clustering
and PCA) are preferable for exploratory analysis and dimensionality
reduction with respect to traditional univariate and multivariate analy-
sis; b) bootstrapping of radiomics predictors with accepted clinical fac-
tors provides a method to benchmark radiomics features and check the
stability with respect to different sample sizes. Table 8.1 summarizes
a list of radiomics safeguards with suggestions of machine learning-
based methodology for their applications. While the results presented
in this study remain valid only for the investigated clinical outcome
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(2-year OS), for the imaging modality (CT) and for the anatomical sites
of lung and head and neck, the workflow presented in Table 8.1 can be
extended as standard methodology for radiomic studies. We encour-
age the radiomic community to consider using unsupervised meth-
ods and the benchmarking of radiomic features with bootstrap tech-
niques in their studies. Additional proven evidence of results found
in this paper (e.g. degradation/contamination of prognostic power
as a function of GTV/ feature dependencies) will help improving the
quality of radiomic studies as well as re-thinking the definitions/role
of some radiomic features. Finally, it is worth mentioning some lim-
itations of this study: a) due to limited availability we focused only
on OS; b) the bootstrap modelling was limited only to logistic regres-
sion, but it could have extended also to other classifiers; c) the stated
conclusions only apply to the studied anatomical sites (lung and head
and neck) and for non CE (Contrast Enhanced) CT. The same conclu-
sions might not be valid when different modalities are considered (e.g.
PET/CECT/MR) or applied to other anatomical sites, posing the ur-
gent need to validate and share our methods with the radiomics com-
munity. Future works include addressing points a) and b) as well as
considering volume-correction methods for improving signature de-
velopments in radiomics. We are planning to release the code as open
source to incentive the community to adopt the presented methodol-
ogy as benchmark for their studies.

8.5 CONCLUSION
In available datasets, volume confounds common radiomics analysis
approaches. Volume, or other parameters which confound analysis,
should be recognized during any radiomics workflow and dedicated
safeguards should be built into analysis pipelines to identify
and mitigate these risks. Our study showed that by only using
volume-independent features it was not possible to cluster patients in
different survival groups.
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Chapter 9. User-controlled pipelines for feature integration and head
and neck radiation therapy outcome predictions

Abstract
Precision cancer medicine is dependent on accurate prediction of dis-
ease and treatment outcome, requiring integration of clinical, imaging
and interventional knowledge. User controlled pipelines are capable
of feature integration with varied levels of human interaction. In this
work we present two pipelines designed to combine clinical, radiomic
(quantified imaging), and RTx-omic (quantified radiation therapy (RT)
plan) information for prediction of locoregional failure (LRF) in head
and neck cancer (HN). Pipelines were designed to extract information
and model patient outcomes based on clinical features, computed to-
mography (CT) imaging, and planned RT dose volumes. We predict
HN LRF using: 1) a highly user-driven pipeline that leverages modular
design and machine learning for feature extraction and model devel-
opment; and 2) a pipeline with minimal user input that utilizes deep
learning convolutional neural networks to extract and combine CT
imaging, RT dose and clinical features for model development. Clini-
cal features with logistic regression in our highly user-driven pipeline
had the highest precision recall area under the curve (PR-AUC) of 0.66
(0.33–0.93), where a PR-AUC = 0.11 is considered random. Our work
demonstrates the potential to aggregate features from multiple special-
ties for conditional-outcome predictions using pipelines with varied
levels of human interaction. Most importantly, our results provide in-
sights into the importance of data curation and quality, as well as user,
data and methodology bias awareness as it pertains to result interpre-
tation in user controlled pipelines.
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9.1 INTRODUCTION

Prognostics are an important part of cancer care [15] [12] that
estimates the risk of an individual’s outcome based on multiple
variables (e.g. tumour, patient and environmental). It aids in
treatment decisions and differs from aetiological research where
the goal is to explain whether an outcome can be attributed to a
specific risk factor [33]. In addition to the traditional prognostic
factors mentioned above, integration of treatment information to
form a treatment specific-conditional prognosis is highly beneficial.
We define treatment specific-conditional prognosis as the prediction
of a treatment’s effect, if administered as intended, on the patient’s
outcome [6]. The volume and variety of features available for
inclusion in these types of predictions is expanding rapidly. This
is in part the result of a hypothesis in cancer management that by
analysing an extensive set of features that encompass the nuances
of disease processes and treatments that we can achieve “Precision
Medicine” [41][50][11]. Features can vary from highly cited and
tested measurements designed to probe and describe the nuances
of both a patient and corresponding disease [7][49][27][30], to more
experimental imaging, tissue and treatment features that describe
the activity of tumours before and during treatment [21]. These
features can even include those generated through automation
that explore disease outcome correlations with image signal values
(i.e. radiomics) [47][14][48]. Quantified interventional features
have the potential to be combined with these features for a truly
comprehensive view of a patient’s treatment-influenced course of
disease. In head and neck (HN) radiation therapy (RT) it is known
that the dose fractionation and quality of an RT plan can impact
overall and locoregional failure (LRF) free survival [35][4][40].
Dose volume histograms (DVH) are calculated to evaluate a RT
plan based on RT dose delivered to volumes of tissue [43][29].
Metrics calculated using the DVHs are known predictors of both
toxicity and outcome [19], but lack spatial dose information that is
indicative of a patient’s disease and surrounding intrinsic anatomical
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variations. Recent research quantifying spatial dose distributions
for patients has found utility in toxicity prediction [22][32] and
may similarly benefit treatment-specific conditional prognosis
outcome prediction. However, as the number of prognostic factors
that we consider increases, our methods for knowledge integration
must change. The agglomeration of diverse features represents
a movement towards precision medicine, but also the utilization
of big data in cancer care [41][50][34]. Approaches and pipelines
for big data feature integration would provide flexible solutions
that could drive data exploration and clinical decision support
systems forward; an idea that was demonstrated by Mobadersany et
al. [31] who combined deep learning and traditional user defined
features. Additionally, these ‘big machines’ can be thought of as
user-controlled pipelines requiring a spectrum of user interaction
and assurance while evaluating intermediate by products and tuning
various operating parameters. In this work, we build two generalized
feature integration pipelines for cancer treatment specific conditional
prognosis; one of which is a highly user-driven process, while the
other is substantially automated. Both pipelines leverage clinical,
radiomic, and interventional features extracted from personalized RT
plans (henceforth referred to as RTx-omic features). As a proof of
concept, we applied our pipelines to a HN dataset to determine how
the conditional-prognostic performance of clinical features may be
impacted by RTx-omic and radiomic features during LRF prediction,
and whether conclusions could be drawn regarding the influence of
user bias on user-controlled pipelines.

9.2 METHODS

Our methods are designed to build and explore two pipelines for pa-
tient information integration and outcome prediction: 1) A machine
learning pipeline that is inherently user-driven. Features are explic-
itly defined and informed by prior-knowledge, and classification mod-
els are finalized as a separate step in the pipeline; 2) a deep learning
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pipeline that is more automated and allows spontaneous emergent fea-
tures to be learned by the machine, while simultaneously developing a
classifier. Both pipelines explored the impact of clinical, radiomic and
RTx-omic features on outcome predictions. In this study we use LRF
prediction at three years in HN cancer as our case study. Predictions
are performed using different modelling methods, each of which has
specific benefits to our research question. This section details the data
curation, and pipelines used for our analysis.

9.2.1 Data curation and preparation

We used a single dataset from the Princess Margaret Cancer Centre
with institutional research board approval. The dataset contained
planning computed tomography (CT) DICOM images, DICOM RT
Structures, DICOM RT Dose, and clinical variables for 190 patients.
Gross tumour volumes (GTV) in the DICOM RT Structure file
were contoured by radiation oncologists (experience levels ranging
between 5 and 30 years) for intensity modulated radiation therapy
(IMRT) treatment based on clinical-radiological evidence of disease
extent. Often during contouring, simulation magnetic resonance
imaging (MRI) was fused with the planning CT to aid in target
delineation. Additionally, HN Radiation Oncology Quality Assurance
Rounds occurred weekly for the opportunity to peer-review RT
target volumes, including the GTV and clinical target volumes
(CTV). Additional patient details can be found in Table 1 of the
Supplementary Material. The inclusion criteria for this study was
an oropharynx disease site, squamous cell carcinoma pathology, 70
Gy prescribed dose in 35 fractions to the primary GTV, and full
delivery of prescribed dose. Application of inclusion criteria reduced
our dataset from 190 patients to 160 patients with 18 LRF events at
three years. This resulted in an imbalanced dataset with an event
rate of 11%; a challenging problem for most modelling methods, but
one we believe can be modelled using appropriate disease, image
and treatment descriptors. Furthermore, for our highly user driven
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pipeline (hence forth referred to as Machine Learning Pipeline and
described below), only patients who did not have dental artifacts
(DA) were included. This was to safeguard our radiomic features
against spurious image signals [48] and reduced the dataset further
to 64 patients with 7 LRF events. For our more automated pipeline
(hence forth referred to as the Deep Learning Pipeline and described
below) all 160 curated patients were used with the assumption that
the convolutional neural network (CNN) would learn to distinguish
between important and irrelevant machine generated features
regardless of the DA status of the image.

9.2.2 Machine learning pipeline

Our Machine Learning Pipeline (MLP) (Fig. 9.1) was designed to allow
a researcher to have control over all aspects of feature definition, fea-
ture space reduction, and model building, and validation. This is typ-
ical of the traditional clinical modelling or radiomics pipelines where
features are defined based on prior knowledge of the disease, or hand-
engineered and extracted from images.

9.2.3 Patient-specific features

The complexity of a patient’s disease generates a variety of charac-
teristics that may be of benefit when determining a treatment specific
conditional-prognosis. In our MLP we aim to describe the disease us-
ing a variety of features that are known predictors of HN patient LRF
(clinical features), as well as more exploratory features quantifying a
patient’s planning CT signal (radiomic features) and their personal-
ized RT treatment plan designed based on their intrinsic anatomical
variants (RTx-omics features). Following is a description of the fea-
tures found in the different feature classes. It should be noted that due
to the small number of events found in our dataset that our MLP suf-
fers from the ‘curse of dimensionality’ – this is mitigated using feature
space reduction which is described as a later step.
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Figure 9.1: Machine Learning Pipeline for generalized feature analysis and
outcome prediction in HN patients. Step 1: application of inclusion and ex-
clusion criteria; Step 2: extraction of generalized features – clinical, radiomic
and RTx-omic; Step 3: random sampling of patients into training and valida-
tion datasets; Step 4: feature grouping based on goal of determining added
benefit of radiomic and RTx-omic features; Step 5: reduction of feature set
based on spearman rank values calculated within a specific feature grouping;
Step 6: tuning, fitting and validating of three different modelling techniques;
Step 7: calculation of PR-AUC based on model prediction of patient outcome
across 100 iterations of Steps 3–6.
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9.2.4 Clinical features

Clinical features for our patients were collected from the Princess
Margaret Cancer Center HN Anthology. Patient Age, smoking status,
drinking status, disease subsite, T stage, N stage, overall stage, and
p16 status were included as clinical features.

9.2.5 Radiomic features

PyRadiomics 2.0 [46] was used to extract radiomic features (n = 99)
that quantified the planning CT (in Hounsfield Units, HU) within a
patient’s GTV. Images were resampled to an isotropic pixel size of 1
mm using BSpline interpolation, and a bin width of 25 was used for
texture feature calculation [51]. All features from the first order statis-
tics (n = 18), shape (n = 12) and texture (GLCM (n = 23), GLSZM (n
= 16), GLDM (n = 14) and GLRLM (n = 16)) classes were extracted.
For details on feature equations please see the extensive PyRadiomics
documentation.

9.2.6 RTx-omic features

RTx-omic features were extracted using PyRadiomics 2.0 and a custom
PyRadiomics module designed to quantify relationships between two
ROIs. First order statistical features were extracted from the planned
dose volume, where the voxels represent planned RT dose (Gy), in-
stead of HU as was quantified with the radiomic features. These fea-
tures were extracted from the GTV, CTV70 (clinical target volume at 70
Gy), CTV56 (elective clinical target volume at 56 Gy) and isocontours
at 95 and 100% of 70, 63 and 56 Gy, which were generated by thresh-
olding the planned dose volume. Shape features for the isocontours
and CTV70 were also calculated. Tumour coverage was quantified us-
ing the custom PyRadiomics module. The module was developed to
calculate the Euclidean distance between two ROI edges and centres,
as well as Dice and Jaccard metrics, and volume differences. These
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metrics were calculated to compare all isocontours against CTV70 and
CTV56. RTx-omic features were defined in collaboration with a medi-
cal physicist, radiation therapist and radiation oncologist.

9.2.7 Ensemble LRF prediction and validation

We explored the impact of radiomic, RTx-omic and clinical feature
groups on prediction of LRF at three years using a multi-step process
that explored a variety of modelling methods.

9.2.8 Data splitting and feature grouping

Our dataset was split into 75% training and 25% testing sets. The
data was randomly sampled and stratified to ensure equal distribu-
tion of LRF events in each set; this resulted in the training and testing
sets containing 5-6 and 1-2 patients, respectively. Feature groups were
combined to explore the added predictive value of radiomic and RTx-
omic features on accepted clinical factors. This resulted in the follow-
ing combinations of features 1) clinical, 2) radiomic and RTx-omic; and
3) clinical, radiomic and RTx-omic. (Step 4 in Fig. 9.1).

9.2.9 Feature space reduction

Each of the three training set feature groupings underwent feature
space reduction to decrease the number of correlated features and the
chances of overfitting to the training data. Feature space reduction
involved calculating the Spearman rank value for each feature against
all other features in the feature group of interest. If the Spearman
rank value between two features was greater than or equal to
0.3 the features were considered correlated and one of them was
dropped/removed. Clinical features were never dropped, since the
goal was to determine added value above accepted clinical features,
features correlated to volume were dropped first, and if two features
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still remained, the feature that was correlated to the most number of
other features was dropped (Step 5 in Fig. 9.1).

9.2.10 Model tuning, fitting and validation

After feature space reduction, model tuning, fitting and validation was
performed using the training dataset. Three different modeling tech-
niques available in Python’s Scikit Learn package [38] were explored:
a) logistic regression with recursive feature elimination (LOG) [39] – a
highly interpretable method of modeling widely accepted in the clini-
cal environment; b) random forest (RF) [20] – a more complex method
aggregating multiple decision trees together to reduce bias and vari-
ance; c) isolation forest (IF) [28] – an ensemble of isolation trees de-
signed to detect data anomalies, such as an LRF event in our dataset.
Tuning parameters and methods can be found in our Supplementary
Materials. After tuning based on the feature grouping of interest, a
LOG, RF and IF model were fit to the training data for the same fea-
ture group of interest. The fit and tuned LOG, RF and IF models were
used to predict the probability of a testing patient experiencing an LRF
event, which was saved in an array (Step 6 in Fig. 9.1). Steps 3–6
of Fig. 9.1, Data Splitting and Feature Grouping, Feature Space Re-
duction, and Model Tuning, Fitting and Validation, were repeated 100
times for different splits of the data.

9.2.11 Ensemble prediction

After fitting 100 models for each of the feature groupings, and each of
the modelling types, we performed an ensemble prediction of treat-
ment specific conditional-prognosis for HN patient LRF at three years.
Each combination of feature grouping and modelling method had an
array where a row represented a patient and a column represented
one of the 100 iterations. The average probability of a patient experi-
encing an LRF event across the 100 iterations was taken to be that pa-
tient’s probability of experiencing an LRF event. The precision recall
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area under the curve (PR-AUC) (described below) for a given feature
grouping and modelling method was calculated on the average patient
LRF event probability. Confidence intervals (CI)were calculated using
bootstrapping.

9.2.12 Deep learning pipeline

In our Deep Learning Pipeline (DLP) a deep learning network was
utilized to minimize user influence (Fig. 9.2). This gave the system
control over what features to extract and how to combine them in the
most beneficial way for LRF prediction. Three deep learning networks
(DLNs) were trained: 1) Clinical, 2) Radiomic + RTx-omic, and 3) Clin-
ical + Radiomic + RTx-omic. Patient image, RTDose and contour vol-
umes were used in models 2 and 3.

9.2.13 Data encoding, generation and pre-processing

Clinical data encoding

The categorical clinical features (i.e. smoking status, drinking status,
disease subsite, T stage, N stage, overall stage, and p16 status) were
one-hot-encoded using the function “OneHotEncoder” from Python’s
scikit-learn 0.22 package [38] to obtain binary categorizations that are
easier for the machine to interpret. Age is a continuous variable and
remained unaltered.

Contour volume generation

The three-dimensional (3D) contour volumes were generated by com-
bining each patient’s GTV, CTV56 and CTV70 into a single volume,
where the intersection of all three regions of interest was denoted by a
1, the intersection of CTV56 and CTV70 was denoted by a 2, and the
remaining portion of CTV56 was denoted by a 3.
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Figure 9.2: Deep Learning Pipeline for generalized feature analysis and out-
come prediction in HN patients. a) the features, pre-processing, and linear
layers used for our Clinical network. n in the fully connected layer is 8. b)
the data, pre-processing steps and CNN layers for our Radiomic + RTxomic
network. n in the fully connected layer is 16384. The final network described
is the Clinical + Radiomic + RTx-omic network which combines both a) and
b). In this network, n in the fully connected layer is 16392.
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Image, dose and contour pre-processing

The 3D image, dose and contour volumes were processed prior to us-
age in CNN training or testing using a multistep procedure:

• Voxels in the CT image, RTDose volume and contour volume
were interpolated to isotropic 1 mm3 sizes. SimpleITK’s linear
resampling image filter was used for the CT image and RTDose,
and a nearest neighbour resampling filter was used for the con-
tour volume. This reduced variability in the images and there-
fore improved processing by the CNN.

• The CT image and RTDose volume were normalized based
on the mean and standard deviation of the population CT
and RTDose volumes, respectively. Normalization ensures
similar data distributions, allowing for fast convergence during
network training.

• CT Images, RTDose volumes and contour volumes were resized
to a grid size of 1283. Resizing was performed using the open-
source scikit-image library [45], which preserves the image’s HU
distribution. The aspect ratio of the volumes were maintained
by padding each of the volumes to a uniform size based on the
largest dimension in the 3D volume.

• Two types of data augmentation were performed to introduce
randomness to the training data and minimize the chances of
overfitting. 1) Flipping of the volumes in the lateral direction.
2) affine transformations with rotations between -16 and + 16 de-
grees, translation in vertical and horizontal directions by 15% or
the volumes width and height, and scaling by factors between
0.85 and 1.25. Each of the two different data augmentation types
had a mutually exclusive chance of occurring of 60%.
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9.2.14 CNN architecture and training

We used the open-source python library, PyTorch [23], to train our
deep learning networks. A virtual machine from VMware, Inc. with
10 Intel Xeon CPU E5-2690 processors and a NVIDIA Tesla K40m GPU
was used for training and testing. Ten-fold stratified cross validation
was performed using the 160 curated patients and 18 LRF events.

• Clinical DLN: Utilized only the clinical features described above
(Fig. 9.2a). The one hot encoded feature representations, along
with the unaltered age feature were pushed through a two lin-
ear neural network layers with weighted optimization to account
for class imbalance. The first layer underwent scaled exponential
linear units (SELU) activation [25], the output of the second lay-
ers was used as input to a single fully connected layer. Outcomes
were predicted using softmax classification.

• Radiomic + RTx-omic DLN: Used the patient image, RTDose
and associated contour volume in a three-dimensional,
three-channel, four-layer CNN (Fig. 9.2b). The outputs of all
layers, except the final layer, underwent batch normalization,
rectified linear unit functioning (ReLU) activation and max
pooling [25]. The output of the final layer of the CNN
underwent average pooling followed by a fully connected
layer and softmax classification. The first CNN layer had
convolutional kernel sizes of 5 with a padding of 2; the
remaining layers used a size of 3 and padding of 1. Weighted
optimization was used to account for imbalanced class
distributions.

• Clinical + Radiomic + RTxomic DLN: A combination of the two
previously described networks (Fig. 9.2 a and b). The output of
the final linear layer from Clinical and the output from the final
CNN layer from Radiomic + RTxomic are combined in the fully
connected layer prior to softmax classification. Weighted opti-
mization was used to account for imbalanced class distributions.
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9.2.15 Scoring metric

In order to take into account the large class imbalance found in our
dataset, the area under the PR-AUC was used for performance evalu-
ation. PR-AUCs are more sensitive to class imbalances, and therefore
provide a better metric of evaluation for our study compared to the
more commonly used receiver operator characteristic curves [42]. Pre-
cision is the ratio of the number of true positives divided by the sum
of true positives and false positives. Recall is the ratio of the number
of true positives divided by the sum of true positives and false. When
determining whether a PR-AUC is better than random the balance of
classes must be considered. This is achieved by determining the prob-
ability of randomly guessing a positive event, given by the number of
positive events divided by the sum of the positive and negative events,
which is equivalent to the event rate of the dataset. For our dataset, a
PR-AUC of 0.11 is considered random performance. PR-AUCs were
calculated for our work using Python’s Sci-kit learn library [38]. For
additional comparison, the PR-AUC of univariate GTV volume was
calculated, a known prognostic factor for HN cancer [8].

9.3 RESULTS

PR-AUC values above 0.11 are considered to have better than random
performance. Our MLP with clinical features and LOG modelling had
the overall highest PR-AUC for LRF prediction at three years of 0.66
(0.33–0.93). RF modelling performed best with clinical features only
(PR-AUC = 0.61 (0.25–0.96)), and IF also performed best when utilizing
only clinical features (PR-AUC = 0.42 (0.18–0.75)). Our DLP performed
best with only clinical features as well (0.38(0.23–0.54)). PR-AUC val-
ues for all modelling methods and feature combinations can be found
in Table 9.3. All of the above mentioned models and feature groups
performed better than our univariate GTV volume predictor, which
had a PR-AUC of 0.21. Table 9.4 presents the number of features that
were retained after feature set reduction and model fitting in our MLP.
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Figure 9.3: PR-AUC and corresponding confidence intervals (CI) for both
pipelines.

Figure 9.4: The number of features remaining after feature set reduction (FSR)
and model fitting for the user-driven pipelines. The average number of fea-
tures and standard deviations are presented.

The number of features was averaged across all 100 fittings for each of
the feature groupings and modelling methods. It can be seen that all
clinical features are retained after feature set reduction in the clinical
feature grouping, as is expected based on the design of the feature set
reduction method. Additionally, radiomic and RTx-omic features are
known to correlate to clinical and volume features; therefore, more fea-
tures were retained in the radiomic + RTxomic model than the clinical
+ radiomic + RTxomic model.

9.4 DISCUSSION
The ability to conditionally prognosticate a cancer patient’s outcome
based on their treatment is foundational to making personalized can-
cer medicine a reality. To accommodate existing and rapidly emerging
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patient and treatment information, processes are required to integrate
the variety of disease features available, including RTx-omic features
that precisely quantify the treatment. Our work presents two user
controlled pipelines where clinical features with LOG had the high-
est PR-AUC when predicting LRF at three years for HN cancer pa-
tients. More importantly, our results provide insight pertaining to the
development of user-controlled pipelines for outcome prediction. In
particular, the importance of curation, and user, data and methodol-
ogy bias awareness as it pertains to result interpretation. The clinical
features selected for this study provided the highest PR-AUC for HN
LRF prediction at three years when combined with LOG modelling in
our highly bespoke user driven pipeline. Although a promising result,
large CIs indicate that subsampling was important and too few LRF
events were present in our data. Additionally, the large CIs prevent
us from definitively stating one model is better than another. Both of
these observations suggest that a larger dataset may have resulted in
a different final observation. These results are not to say that imaging
and RT treatment features do not provide additional information im-
portant to the prediction of LRF, only that with the current data and
our current features they do not draw immediate conclusions. When
utilizing imaging and RT treatment information only, our DLP per-
formed better than all three MLP modelling methods. This result may
indicate that the machine was able to detect and extract features that
were not seen and more informative than the hand-engineered/user-
knowledge-informed features present in our MLP. Additionally, in our
DLP, the Radiomic + RTx-omic DLN had comparable performance to
the Clinical DLN (0.36 (0.17–0.54) vs. 0.38 (0.23–0.54), respectively, p-
value = 0.97). This indicates that information could be extracted from
images and RT treatment plans that is useful for conditional prognos-
tics; we just have yet to obtain enough data to strengthen this signal.
Future work may also be able to utilize larger resampling grids to re-
tain more imaging and treatment details, providing more nuanced in-
formation to the machine. Despite this promise, LOG prediction with
clinical features still performed better than both of these networks, and
could be due to the breadth of knowledge included in the curation of
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clinical feature definition [36][5][44] therefore requiring less compli-
cated modelling techniques. Additionally, the DLP had more consis-
tent PR-AUCs and smaller CIs across all feature combinations when
compared to MLP modelling methods. This may be affected by differ-
ences in training/validation data, but it also seems to indicate that by
using a less user-driven approach we are able to obtain more consis-
tent information out of all data types when using our defined topology.
These observations also lead the authors to suggest that various mod-
elling methods, feature selection techniques, topology configurations,
and levels of human interaction are tested during model development
to determine the optimal performance for a given research question.
This type of testing has been performed by other groups when utiliz-
ing radiomic features for outcome prediction [26][37] and would en-
sure that the best results for that given research question are achieved.
Predictions utilizing quantitative image analysis and pattern recog-
nition has been an area of study for close to two decades [16], [17].
Recent utilization of these methods in cancer prognostics with hand-
engineered features has found promising results, particularly in HN
cancer [24][10][1][3]. Deep learning is also being researched for its util-
ity in this area [31]. In a recent study by Diamant et al. [9]., it was
determined that deep learning methods were capable of identifying
traditional radiomic features, in addition to newly generated features,
that were beneficial in HN outcome prediction. Although the above
mentioned work is promising, a recent study by Ger et al. [13] found
that consistent associations between radiomic features and outcome in
HN patients could not be found, even when utilizing large datasets
(n ¿ 600) with standardized imaging practices. Obtaining large, high
quality clinical datasets that are applicable to a given research ques-
tion is challenging, as was seen in this study. However, if a strong
biomarker or feature is embedded in the data and driving the out-
come of interest it should be apparent, regardless of the dataset size,
which has a stronger impact on the CIs than the overall performance
[18]. When developing predictive models, it is understood that more
data is often preferred. Larger datasets improve statistical analysis of
the model and have a higher chance of containing heterogeneities that
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models may encounter during clinical usage. More importantly, small
datasets have increased potential for false positive and false negative
errors [2] that are detrimental to health care resources and patient out-
comes, respectively. The authors believe that the largest limitation for
this study was the number of LRF events. The event rate for LRF was
small, and in combination with our dataset size, this left very few ex-
amples to learn from during training. To account for the imbalance
we used upsampling in our MLP and weighted optimization in our
DLP; however the large CIs indicate the importance of subsampling
in our study and the need for larger more diverse data. Addition-
ally, utilization of uniform and high quality plans developed using the
same planning criteria may have negatively impacted the final conclu-
sions. Namely, it is possible that treatments were consistent enough
that it was not possible to observe any LRF causing variations. Despite
this, we were able to demonstrate the importance of benchmarking
prognostic automated information generation pipelines against clin-
ical variables which already achieve good predictions [48]. Another
important limitation to the utilization of automated pipelines and data
analysis is that imposed by the operator/human. Human knowledge
is at the core of each step of an automated pipeline: data curation and
collection, data pre-processing, feature definition – either through ex-
plicit definition or definition of a deep learning topology, feature se-
lection, and model tuning, fitting and validation. Curation of the data
in our study was guided by expert knowledge of clinical staff, as was
definition of our RTx-omic features. Feature selection and modelling
relied on prior author knowledge and experience. All of these steps
will ultimately be biased by whomever is performing the experiments,
which can be both a good and bad characteristic of the study. Un-
til we are able to explore all permutations of potential features and
machine learning methodologies within large datasets it is not pos-
sible to make definitive statements about the impact that automated
pipelines will have on cancer care prognostics. By not fully under-
standing the risks associated with applied methods, we are likely to
obtain unstable and misinformed results. From a user-driven pipeline
perspective, some researchers [26][37] have done an excellent job of
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publishing their results as a function of feature selection and modelling
method performance. These types of publications are a good starting
point when designing an experiment. However, researchers are urged
to accurately publish all of their methods, not just the ones that had
the best results. Additionally, it is important to understand the risk
of data contamination that occurs in these studies. It is not common
practice to have a true “Hold-Out” dataset [60], and therefore caution
is warranted whenever interpreting the out of sample error rate, value
and impact of a publications results. By exploring the rationale behind
various steps of our processes we had important learnings regarding
inherent biases present in current user-controlled pipelines; particu-
larly when working with small datasets that contain only a few event
of interest examples. There is a desire in this field to move towards
the ‘Big Machine’ paradigm as a way to handle big data and provide
a way to analyse and integrate the large and diverse data pools found
within healthcare in a consistent and interoperable way. The processes
that we have presented in this paper could be considered the ‘little ma-
chine’, a proprietary example of how the big machine would be oper-
ated. However, much larger and diverse datasets are needed to make
true progress.
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[45] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-
Iglesias, François Boulogne, Joshua D. Warner, Neil Yager, Em-
manuelle Gouillart, Tony Yu, and scikit-image contributors.
scikit-image: image processing in Python. PeerJ, 2:e453, 2014.

[46] Joost J.M. van Griethuysen, Andriy Fedorov, Chintan Parmar,
Ahmed Hosny, Nicole Aucoin, Vivek Narayan, Regina G.H.
Beets-Tan, Jean-Christophe Fillion-Robin, Steve Pieper, and
Hugo J.W.L. Aerts. Computational Radiomics System to Decode
the Radiographic Phenotype. Cancer Research, 77(21):e104–e107,
November 2017.

[47] Mattea L Welch and David A Jaffray. radiomics: the new world
or another road to el dorado?, 2017.

[48] Mattea L. Welch, Chris McIntosh, Benjamin Haibe-Kains,
Michael F. Milosevic, Leonard Wee, Andre Dekker, Shao Hui
Huang, Thomas G. Purdie, Brian O’Sullivan, Hugo J.W.L. Aerts,
and David A. Jaffray. Vulnerabilities of radiomic signature de-
velopment: The need for safeguards. Radiotherapy and Oncology,
November 2018.

[49] Kim Wopken, Hendrik P Bijl, and Johannes A Langendijk. Prog-
nostic factors for tube feeding dependence after curative (chemo-)
radiation in head and neck cancer: a systematic review of litera-
ture. Radiotherapy and Oncology, 126(1):56–67, 2018.

[50] Po-Yen Wu, Chih-Wen Cheng, Chanchala D Kaddi, Janani Venu-
gopalan, Ryan Hoffman, and May D Wang. –omic and electronic
health record big data analytics for precision medicine. IEEE
Transactions on Biomedical Engineering, 64(2):263–273, 2016.

[51] Alex Zwanenburg, Stefan Leger, Martin Vallières, Steffen Löck,
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Chapter 10. The radiation oncology ontology (ROO): Publishing
linked data in radiation oncology using semantic web and ontology
techniques

Abstract
Personalized medicine is expected to yield improved health outcomes.
Data mining over massive volumes of patients’ clinical data is an ap-
pealing, low-cost and non-invasive approach toward personalization.
Machine learning algorithms could be trained over clinical “big data”
to build prediction models for personalized therapy. To reach this goal,
a scalable “big data” architecture for the medical domain becomes es-
sential, based on data standardization to transform clinical data into
FAIR (Findable, Accessible, Interoperable and Reusable) data. Using
Ontologies and Semantic Web technologies, we attempt to reach men-
tioned goal. We developed an ontology to be used in the field of radia-
tion oncology to map clinical data from relational databases. We com-
bined ontology with semantic Web techniques to publish mapped data
and easily query them using SPARQL. The Radiation Oncology Ontol-
ogy (ROO) contains 1,183 classes and 211 properties between classes
to represent clinical data (and their relationships) in the radiation on-
cology domain following FAIR principles. We combined the ontology
with Semantic Web technologies showing how to efficiently. When
clinical FAIR data sources are combined (linked data) using mentioned
technologies, new relationships between entities are created and dis-
covered, representing a dynamic body of knowledge that is continu-
ously accessible and increasing.
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10.1 INTRODUCTION

10.1.1 Motivation

Data-driven medicine has the potential to yield improved health out-
comes [2] and is an integral component of value-based healthcare [5].
One of the biggest challenges for data driven medicine is to access and
analyse clinical data with machine learning techniques to predict clini-
cal outcomes combining all available information. Subsequently, these
developed machine learning techniques can be used to build decision
support systems for clinicians. The current obstacle to be addressed
is the availability of outcome information (e.g., tumour control and
treatment-related toxicity) that must be provided to “train” the ma-
chine learning models. Many models have been built based on data
from clinical trials. However, clinical trials recruit only a small part of
the presenting cases, therefore questions about applicability to under-
represented patient subgroups persist. In contrast, clinical data de-
rived from routine care are known to have data quality issues (e.g.,
a high rate of missing values). To overcome the potential sensitiv-
ity to missing values as well as to provide sufficient training samples
for machine learning, a scalable “big data” architecture for the med-
ical domain becomes essential. For such a scalable architecture, data
standardization is imperative. In particular, clinical data should be
transformed following FAIR (Findable, Accessible, Interoperable, and
Reusable) principles [19]. To make healthcare data FAIR, Ontologies
and Semantic Web technologies play a key role, and hence will address
the issue of semantic interoperability. In [1], the authors exploited the
possibility to use ontological technologies to enable semantic interop-
erability with data coming from multicentre postgenomics clinical tri-
als. In [16], the authors focused on applying Semantic Web technolo-
gies to the medical imaging domain, developing an ontology for med-
ical image annotations. In [17], the authors investigated the possibility
to use Semantic Web technology to store and represent metadata from
DICOM image files. Both the studies showed the potential of ontolo-
gies technologies in allowing medical data interoperability. However,
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the usage of ontologies and Semantic Web technologies applied to the
field of radiation oncology are limited. In [14], the authors converted
clinical data of prostate cancer patients from a local database using a
dedicated ontology, but they did not exploit the possibility to merge
different datasets from different diseases combining different ontolo-
gies. In [13], the authors stressed the concept of standardization of
collected data (in rectal cancer) using ontological techniques to allow
machine learning algorithms to build clinical prediction models. In
addition, they strongly suggested using Semantic Web technologies
in order to allow data sharing while respecting the privacy protec-
tion of individual patients. Finally, ontologies and Semantic Web tech-
niques represent the required infrastructure for distributed learning [9]
compared to traditional centralized learning approach, in distributed
learning clinical data do not leave the hospital, but after being trans-
formed into FAIR, they are queried during the training of the model,
while the model is “learned” from different centres. Conversely, when
looking at the radiation oncology domain, we could not find any study
aiming at: (a) developing and validating a broader ontology to be used
in the radiation oncology domain; (b) combining ontology and Seman-
tic Web techniques to transform different clinical databases into FAIR
and linked data. The role of the ROO is to provide a detailed and
broad coverage of main concepts used in the radiation oncology do-
main such as: classification of neoplasms, patients’ demographic char-
acteristics; as well as clinical information like tumour’s classification
or treatment. The ontology is strongly focused on re-using published
ontologies and/or terminologies. The added value of the ROO is to re-
used published ontologies/terminologies by defining new predicates,
which establish relations between imported concepts. Combining dif-
ferent terminologies and expanding relationships between them is the
path to guarantee the largest coverage. The ROO allows transforming
unstructured clinical data from following FAIR principles. In particu-
lar, data will become:

• Findable (F): each data entity and their properties (F2), translated
into universally concept via the ROO will have a globally unique
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identifier (F1) and will be indexed on the Web (F3). Metadata will
include specification of the data identifier (F4).

• Accessible (A): data will be retrievable by means of RDF triples
and queryable using a universal language (A1). A permanent
de-centralized storage point will be permanently available (A2),
even when the original database could not be anymore.

• Interoperable (I): data are represented by universally adopted
RDF language (I1). Queries rely on concept from imported on-
tologies/vocabularies that follow FAIR principles (I2).

• Reusable (R): several attributes specific data properties and the
relations between different concepts via ROO predicates (R1). In
this paper, we: (a) developed a broad ontology to cover the do-
main of radiation oncology; (b) combined ontology and semantic
web techniques to transform clinical data from different discon-
nected databases into FAIR and linked data, allowing the discov-
ery of new relationships.

10.1.2 Terminologies, vocabularies and ontologies

Before going into the details of ontologies’ structure and properties,
we provide the reader with some fundamentals regarding: terminolo-
gies, thesauri, vocabularies, and ontologies. Usually, a terminological
system is an umbrella terms including the notions of: terminologies,
thesauri, vocabularies, and ontologies [3]. Complexity increases from
terminologies to ontologies:

• Terminology: a list of term referring to concept within a partic-
ular domain. For example, in the radiation oncology domain,
concepts such as “patient” or “disease”. The terminology can be
seen as a list of concepts, but without providing any definition or
introducing any structures/relations between the terms.

• Thesauri: a thesauri is a terminology, where concepts are indexed
according to a certain rule (usually alphabetically). Example of
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a thesauri is the International Classification of Diseases (ICD),
which includes generic-related diagnostic terms (terminology),
order alphabetically (thesauri).

• Vocabulary: in a vocabulary, indexed concepts are accompanied
by a definition.

Conversely, an ontology is an explicit formal specification of the
terms in the domain and relations among them11 expressed in
machine-readable language; therefore, they can be processed
automatically. An ontology adds more complexity than a dictionary,
since it explicitly defines the relationship, i.e., predicates, between
unique entities. Classes (i.e., concepts), subclasses, and predicates
between concepts represent an ontology. Inference rules (also called
automated reasoning) in ontologies supply further knowledge, since
(new) relationships between concepts, which can be discovered,
since not formally defined a priori. An ontology is commonly used
to model consensus in understanding a domain between different
partners (e.g., different medical centers). Major advantages of
ontologies are: (a) sharing common understanding; (b) re-using of
domain knowledge, analyzing domain knowledge, and (c) inferring
new knowledge starting from relationship between defined concepts.
The standard for developing ontologies is the Web Ontology
Language (OWL) as recommended by the W3C (World Wide Web
Consortium) to represent ontologies [7][12].

10.1.3 Semantic web technologies

Semantic Web is not a separate Web, but an extension of the current
one, in which computers primarily interpret the data instead of
humans. The current web provides rich-media content (e.g., written
text, images, video’s,) which is not easy to interpret for computers.
In the Semantic Web extension, the information is represented in
well-defined structures and semantics in order to enable automated
processing of the contents by computers [11]. Hence, it can function
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as a computer representation of already available web content,
next to the human-readable web content. For the Semantic Web to
function, computers must have access to structured collections of
information. The basic building blocks are therefore provided by the
Resource Description Framework (RDF) and the “SPARQL Protocol
And RDF Query Language” (shorthand: SPARQL). Both RDF and
SPARQL build on the existing web components of URIs and HTTP.
URIs are the links to the actual resources, and can be represented
as URLs (e.g., ”http://mydomain.com/rdf/patient/12345”). These
URIs are used to represent nodes (resources) and arcs (predicates)
in the RDF graph. HTTP is used to publish RDF information on
the web or to perform SPARQL queries on RDF stores. These RDF
stores (also called SPARQL endpoints) are webpages which can be
queried using the HTTP protocol. Most of these stores/endpoints also
have human-readable web interfaces. By using RDF as a universal
graph data structure, the Semantic Web relies on ontologies to give
domain-specific structure and interpretation to the represented
data. In these ontologies, hierarchies of concepts can be defined,
as well as relationships between certain concepts; all written in
RDF. It is a common practice to add human-readable attributes to
the URIs, as it enables the creation of human-readable views on
an RDF endpoint. By creating instances of concepts defined in the
ontology, users can create graphs of data for representing real-life
concepts (e.g., “ http://mydomain.com/rdf/patient/12345 rdf:type
http://mydomain.com/ontology/patient”) where the resource 12345
is an instance of the class patient). In addition, ontologies can describe
inferencing rules which are interpretable by inferencing-enabled RDF
stores. In these stores, it is possible to query or show the inferenced
information, which is not hard-coded (or materialized) in the RDF
store. Hence, updating inferencing rules in the ontology would enable
users to query or show additional information without updating the
RDF store itself. This allows to uncover additional relationships in
the actual data, and accommodates searches on different levels of
data (e.g., patients are persons; therefore, searching for persons will
include all patients in the database).
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10.2 MATERIAL AND METHODS

10.2.1 Clinical database

We used a clinical database of oncological patients with a diagnosed
rectal cancer from the THUNDER trial [18]. The goal of the trial was
to develop a prediction model of rectal tumor response after chemo-
radiotherapy that might be helpful in individualizing treatment strate-
gies, i.e., selecting patients who need less invasive surgery or another
radiotherapy strategy instead of resection. The database includes 80
patients and contains a diverse range of information, combining demo-
graphic and clinical outcomes. Due to its heterogeneous nature, it rep-
resents a good validation for the ROO. The ROO was applied to con-
vert each values in the database, mapping them through the concepts
available in the ontology. Relations between individuals were mapped
using a graph structure. The graph output was then transformed into
RDF triples, published on a dedicated endpoint and queryable, in line
with FAIR principles.

10.2.2 Radiation oncology ontology (ROO) development

We developed a radiation oncology ontology (ROO).
The ontology was designed using the editor tool Protégé
[15] and publically published at the NCBO BioPortal
(https://bioportal.bioontology.org/ontologies/ROO).
The ROO adheres to the Ontology Web Language (OWL) 2 Query Lan-
guage (QL) profile (http://www.w3.org/TR/owl2-profiles/).
The ontology provides basic concepts, relationships, and
properties/attributes for radiation oncology. The ontology was built
following this procedure: (a) we identified variables of interest by
collecting concepts and their definitions within the ontology using
different datasets coming from several institutions belonging to
the Euro CAT projects [4] . Due to its multicenter nature, we could
allow a broad coverage for different diseases with the aim of making
the ontology as much detailed as possible; (b) we published and
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make publicly available on BioPortal several versions of the ontology
during its development. This choice allowed users downloading,
using and testing our ontology. In addition, a dedicated section on
GitHub permitted users highlighting inconsistencies and/or requiring
enhancements. In this way, our ontology became a dynamic body
of knowledge with the aim of guaranteeing the broadest possible
coverage for the radiation oncology domain. The high-level structure
of the ROO is based on the Unified Medical Language System
(UMLS) Semantic Network by the Semantic Types (classes) ontology
(http://bioportal.bioontology.org/ontologies/STY/
?p=summary) and the assertion of the Semantic Relations (properties)
as specified by the UMLS (https://uts.nlm.nih.gov/). The
ROO re-uses as much as possible entities from other ontologies
such as the National Cancer Institute (NCIT) Thesaurus or the
International Classification of Disease (ICD) ontologies. The ROO
makes only use of ontologies published at NCBO’s BioPortal and
provided without any restrictions. Common re-used ontologies were:
NCIT (National Cancer Institute Thesaurus); Units of Measurement
Ontology (UO); Foundational Model of Anatomy (FMA); Semantic
Types Ontology (STY); Semantic DICOM Ontology (SEDI), and
International Classification of Diseases, Version 10 (ICD10). The
ROO uses the original Unique Resource Identifiers (URIs) for these
imported entities: an example is the concept of lung cancer that is
inherited using the concept code C34 from the ICD ontology.

10.2.3 Ontology validation

Mapping between database schemas and ontology

One of the most important test to validate the ontology is guaranteeing
that every element in a clinical relational database and its properties
can be fully mapped with respectively the concepts and predicates in
the ontology. The basic idea of the mapping process is linking each
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Figure 10.1: Overview of the ROO structure and the relational database. The
hierarchical structure of the ROO is presented in the rectangle a. Hierarchical
Relationships (“is subclass of”) between classes, are expressed by dotted ar-
rows. Mapping is performed to columns and values in a relational database
(rectangle b).

component (row, columns, and values) of the database to its corre-
sponding component (concept, property, relationship) of the ROO. The
preliminary step is to identify a correspondence between the columns
in the relational database and the ontology entities. A sketch represen-
tation of the mapping procedure is shown in Fig. 10.1. At the top, the
hierarchical structure of the ROO is presented in the rectangle A. Hier-
archical Relationships (“is subclass of”) between classes, are expressed
by dotted arrows. These relationships between more general classes
(parents) and more specific classes (children) represent the ontology
backbone since they allow properties inheritance. ROO concepts are
expressed inside blue squares. Relationships between concepts (pred-
icates) are expressed with arrows: they connect classes between each
other. For example, patient and gender classes are connected by the
property “has gender”. A sample table of one of the datasets is shown
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in the rectangle B. This table contains information about patient de-
mographics (e.g., sex, age) as well as diagnosis (e.g., survival, tumor
staging). The mappings are built between the table columns and the
concepts in the ROO (shown as bold dotted double-headed arrows in
the figure). For example, the column “Gen” is mapped to the con-
cept gender (ncit:C17357) in the ROO. The link between a patient and
the sex is made by the property “has gender”. Several languages and
software tools are available to perform the mapping procedure from
relational databases to RDF triples [8]. We performed the mapping
between the clinical data and the ontology using the D2RQ mapping
language. D2RQ mapping language is a declarative language for map-
ping relational database schemas to RDF vocabularies and OWL on-
tologies. The language is read and interpreted by the D2RQ platform,
which is written in Java and open-source available. We decided to use
D2RQ because it represents one of the most common tools for database
transformation from relational database to network structures [20]. In
addition, the language is modular, easily allowing to link entities from
the database to concepts and properties in ROO. The mapping defines
a virtual RDF graph that contains instructions how to connect and map
the information from the relational database. This is similar to the con-
cept of views in SQL databases, except that the virtual data structure
is an RDF graph instead of a virtual relational table. The mapping
file, written in turtle (.ttl) syntax, contains the mapping between the
database schema and the concepts defined in the ontology. The turtle
syntax is the format for expressing data as RDF triples, then queryable
using a dedicated language. An example of the mapping file is shown
in Fig. 10.2. The mappings between table columns and their corre-
sponding concepts are created using the command d2r:ClassMap. The
mapping between the table columns to their corresponding properties
is performed by using the command d2rq:PropertyBridge. In addition,
in the mapping script each entity is associated with a Unique Resource
Identifier (URI) to facilitate publishing on the Semantic Web and data
linking. In the example, the entity patient is mapped to the concept
C16960 from the NCIT. The bridge between a patient and his/her gen-
der is mapped through the predicate 100018 (“has gender”) from the
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Figure 10.2: Example of the D2RQ mapping script. The first block (patient ta-
ble) defines the mapping for each patient ID. The “ClassMap”property in a
D2RQ script defines a mapping between a header in the relational database
and the corresponding concept in the ontology. A “Property Bridge” is used
in a D2RQ script to express relations between different concepts. In the ex-
ample above, the “Property Bridge” has˙gender is used to link the patient
concept to his/her gender.

ROO.

Publishing and querying data on the semantic web

The mapped data, transformed into URIs, are then stored in a RDF
store, which is web-enabled (HTTP) and can be queried using
SPARQL. Making these RDF stores web-enabled means that it is
available internally or externally on a specific network, in the same
way as webpages are. This does not per definition means that data
are publically available, only that existing web techniques are used
to represent semantically interoperable data. In our work, we used
Blazegraph (www.blazegraph.com) as our RDF store (or SPARQL
endpoint).
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10.3 RESULTS

10.3.1 Radiation oncology ontology (ROO)

The ROO contains 1,183 classes, with an average number of four chil-
dren per class; two classes have more than 25 children. The classes
cover the most common concepts in radiation oncology, including can-
cer diseases, cancer-staging systems, and oncology treatments. Besides
the classes, 211 predicates are introduced to express relationships be-
tween different classes. We divided the properties into five big cate-
gories: (a) conceptually related to; (b) functionally related to; (c) phys-
ically related to: (d) spatially related; and (e) temporally related to.
Examples of mentioned categories are respectively: (a) diagnosed by;
(b) has result; (c) connected to; (d) has location: (e) follows. All en-
tities and predicates in the ROO have a URI, which can be resolv-
able as a link since hosted on www.cancerdata.org. A web RDF
viewer allows the users inspecting a concept by typing on an inter-
net browser the address www.cancerdata.org/roo/[URI], where
URI is the URI of the ontology entity. For example, the user will type
www.cancerdata.org/roo/100287 for the predicate “has patho-
logical stage”. In addition, the users are able to transverse the full tree
of the ontology through the Web RDF viewer. The latest version of the
ontology has been published on BioPortal, totally Open Source and
available for the user to download. The ROO is available is the most
common format, including OWL, which can be opened by the users
using the software Protégé’.

10.3.2 Ontology validation

Mapping between database schemas and ontologies

A wiki page on how to perform the mapping be-
tween relational database schemas and the ontol-
ogy is publically available on the GitHub (https:
//github.com/jvsoest/Data-Integration-Tutorial/
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wiki/conversionClinicalData). The users can follow the guide
to convert part of the Thunder dataset into RDF triples with the ROO
using the example scripts provided.

Query formulation

After having mapped the data, it is possible to query them using
SPARQL language. Users could query the data without having any
prior knowledge of the relational database, since SPARQL queries
are based on universal concepts defined by the ontology. Following
the example in the Wiki ( https://github.com/jvsoest/
Data-Integration-Tutorial/wiki/queryClinicalData),
let us suppose we want to search all the patients with rectal
cancer and retrieve following information: age at diagnosis,
ECOG (Eastern Cooperative Oncology Group) performance
status score, clinical TNM stage, pathological TNM status, and
prescribed dose in Gray. The example query is available at https:
//github.com/jvsoest/Data-Integration-Tutorial/
blob/master/queries/queryClinicalData.sparql and it
is shown in Fig. 10.3(a). The system returns all the patients and
displays the results in the SPARQL result window on the web
browser. Each object shown is associated with an URI, universally and
unambiguously defining it when published on the Web. Furthermore,
all triple patterns to find a certain variable are grouped in curly
brackets. This creates the opportunity to make some variables
optional or to specify some filters. For example, we could have
asked for patients with an age at diagnosis below a certain value,
by modifying the original query with a filter [highlighted in blue
in Fig. 10.3(b)]. Finally, this example query can be used directly
in programming languages/statistical languages to request valid
data matrices. For example, in R using the SPARQL package, or in
any other language using a representational state transfer (REST)
interfacing package. Results from query shown in Fig. 10.3, where
compared with data available in the original database to verify the
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Figure 10.3: (a) On the left, example query without any filter; (b) on the right,
example query introducing a filter on the diagnosis age. The query is written
using the SPARQL language. Lines 1 to 5 are used to import the required
ontologies. The query starts from line 7 (select query) asking for following
information: patients gender, age at diagnosis, tumor T and N stages, overall
health status, and prescribed dose. Then, each variable is queried in different
blocks by making use of ROO concepts and predicates.
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correctness of the mapping. Data comparison and visualization
were performed and no differences were found when comparing the
information available in the database with respect to the one available
as SPARQL queries. The advantage with respect to a standard excel
file, is that RDF data could be queried without any knowledge of
the original data structures, by mean of SPARQL queries based on
universal concepts defined by the ROO.

10.3.3 Combining different databases: linked data

One of the biggest benefits of Semantic Web and ontology technologies
is the possibility to query different databases and make connections
within them. For example, in radiation oncology it can be interest-
ing for clinicians to investigate some properties (e.g., survival) of pa-
tients: (a) with a certain disease AND (b) treated according to a prede-
termined protocol AND (c) associating the publications of the clinical
trial related to the protocol. Performing such a query using traditional
relational databases is a real issue, since it not only requires combin-
ing different databases, but also a prior knowledge of their schemas.
We solved the problem using ontologies and Semantic Web technolo-
gies.

Query formulation

In particular, we made use of Bio2RDF: an open-source project that
uses Semantic Web technologies to build and provide the largest
network of linked data for the life sciences. It contains among
others the RDF versions of ClinicalTrials.gov and PubMed. In our
query, the first part is equal to the query provided in the previous
section. This query retrieves the patients available in the RDF
store, and characteristics of these patients (e.g., age, gender, ECOG
performance status), their disease (e.g., tumor classification), and
the prescribed treatment. Based on this information, we linked
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the patients to matching treatment protocols, as we defined the
protocols and linked them to the correct ClinicalTrials.gov entry
in Bio2RDF. Afterwards, the query contains a section to query the
ClinicalTrials.gov linked data representation from Bio2RDF, and a
URL generation for a PubMed query. To link the clinical information
to public ClinicalTrials.gov (CTgov) information, we used the
prescribed treatment variable (containing a unique URL) which was
available on both internal (clinical) data, and the Bio2RDF CTgov
linked data. From the CTgov linked data, we queried in which trials
the same treatment protocol URLs were used. From this relation,
we could retrieve information regarding the specific clinical trials,
such as the CTgov identifier, the time period when the trial was
conducted, which institutes were involved, and trial contact persons.
Based on the CTgov identifier, we generated a link to the related
manuscripts which have been indexed in PubMed. The full query
to run this linked data example is available at https://gist.
github.com/jvsoest/eb015abfb0efd5c669fd36915ce2487d.
For example purposes, this query can be executed at
http://sparql.cancerdata.org/.

10.4 DISCUSSION

10.4.1 Rationale for the ROO

Patients’ demographics and clinical information are important for ra-
diation oncology prediction/modeling studies. In particular, it is of
interest of the radiation oncology community to explore the maximum
amount of available clinical data to improve semantic interoperability
during patient referral, and for models aiming at predicting outcomes
such as overall survival or toxicities after a treatment. To reach this
goal, data integration from different sources (internal/external rela-
tional databases) becomes a key factor, since most of the data are usu-
ally located in different relational databases. Since relational databases
can present different structures, querying them to access information

309

https://gist.github.com/jvsoest/eb015abfb0efd5c669fd36915ce2487d
https://gist.github.com/jvsoest/eb015abfb0efd5c669fd36915ce2487d
http://sparql.cancerdata.org/


Chapter 10. The radiation oncology ontology (ROO): Publishing
linked data in radiation oncology using semantic web and ontology
techniques

without having a prior knowledge of the structures becomes a real is-
sue. To tackle this issue, there is the need to transform clinical data
following FAIR principles. Ontologies and Semantic Web technologies
could represent the right choice to achieve this goal. We developed the
Radiation Oncology Ontology (ROO) with the aim to provide an ontol-
ogy of use within the radiation oncology field to be used to transform
clinical data following FAIR principles.

10.4.2 Advantages of ontologies and semantic web data
integration compared to relational databases

As presented in previous sections, the ROO has been used to transform
clinical traditional database schemas into graph databases relying on
ontologies. There are some differences between graph and database
schemas. First, ontologies represent a domain on knowledge. Con-
versely, database schemas are conceived for (and linked to) particular
applications, making their structures very diversified and difficult to
be made interoperable. In fact, only users knowing the schemas struc-
ture (usually the owner of the data) can easily access them. On the
contrary, ontologies transform data into universally concepts that can
be queried by the users using SPARQL, without knowing the struc-
tures of the data themselves. In fact, data are transformed on univer-
sal concepts defined by the ontology itself, and available using URIs
(and URLs). The usage of ontologies adds to transforming data from
database schemas into FAIR data. An ontology, combined with Se-
mantic Web technologies, is a stable conceptual interface on top of the
relational database system. In fact, it can be scaled for data integration
among multiple domains. Individual database schemas are mapped
to the concepts of the ontology and it is relatively easy to integrate
new database systems (when mapped/converted into Semantic Web
data). The only modification required would be to update the map-
ping file. Overall, ontologies increase the semantic interoperability of
already available data sources. This outcome has a direct impact on
several clinical applications. In particular, it represents the underlying
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infrastructure for developing multicenter prediction models for clin-
ical outcomes in radiation oncology. In fact, if every medical center
transformed their data into FAIR through the ontology, data analytics
can be performed on a broader dataset reducing possibilities of over-
fitting. Ontologies and Semantic Web technologies will provide the
infrastructure to query in an easy way the data needed by the model.
Data will not need to leave the hospital, since being now FAIR, will be
queried using SPARQL during the model training/validation. This ap-
plication, known as distributed learning has been recently presented in
literature as a promising application in radiation oncology [4][10][6].
In addition, Semantic Web and ontologies allow connecting different
databases. In fact, data are transformed into universal concepts con-
nected between each other: linked data. New relationships between
entities are created and discovered, representing a dynamic body of
knowledge that is continuously accessible and increasing. In the exam-
ples we showed in the result section, we successfully integrated data
coming from different sources: clinical databases, clinical trials bank,
and scientific literature databases to answer questions of clinical inter-
est. Finally, semantic databases (e.g., a collection of RDF records) have
all the advantages from relational databases, but could provide the
possibility of artificial intelligence to query and analyze the data, since
these have been transformed into machine-readable records. Recently,
we faced a transition from relational databases to semantic databases.
The reason is that, semantic databases utilize an expanding semantic
model that readily incorporates new varieties of data sources and more
easily adjusts to changed requirements as they arise. Subsequently,
linking disparate datasets is far easier in a semantic graph setting. In
addition, semantic graphs allow to discover hidden relationships be-
tween underlying data. In fact, the granular nature of semantics allows
to determine relationships between different elements.
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10.4.3 Dynamic body of knowledge

We decided to put the ontology publically available on BioPortal, so
that users could test and validate it with the aim of (a) developing a
dynamic and growing body of knowledge; (b) guaranteeing the broad-
est coverage for the radiation oncology data domain. In addition, the
latest version of the ROO is published on the GitHub: users are able to
insert enhancements and open issues, making the ontology develop-
ment a collaborative process.

10.4.4 Limitations

In this work, we explored the ontology-based data integration with
data from rectal cancer databases. We were able to map all the en-
tities present in the databases with concept and properties from the
ROO ontology. However, the ROO should be tested also on larger
databases, other diseases and routine clinical data to check if all the
main information could be covered. In addition, this work lacks of the
system evaluation. Further investigations on evaluating the system
performance need to be considered such as comparing the query time
between SPARQL and traditional databases.

10.4.5 Future developments

The first future development is to extend the ROO to guarantee a par-
ticular a broader coverage for an extensive use in the radiation oncol-
ogy field. In particular, we would like to expand our ontology with:

• Detailed concepts for mapping radiation oncology annotations
including organ at risks, nodals.

• Detailed concepts for mapping treatment-related concepts and
properties such as Dose Volume histograms (DVH).
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The second future development wants to expand the number of users.
In this sense, we will continue proposing the ontology as underly-
ing architecture for advance modeling applications such as distributed
learning. In addition, we will try to use the ROO combined with other
ontologies under development to combine and link: DICOM informa-
tion, clinical data and quantitative features computed on patients’ im-
ages and variables.

10.5 CONCLUSION
We successfully demonstrated that is possible to convert clinical data
following FAIR principles using the combination of ontologies and Se-
mantic Web technologies. We developed a broad Radiation Oncology
Ontology that can be used in the domain of radiation oncology for data
integration. In addition, we showed how Semantic Web technologies
based on developed ontologies allows to efficiently and easily query
data from different (relational database) sources without knowing a
priori their structures. This outcome opens the possibility to use on-
tologies and Semantic Web technologies to further produce and ana-
lyze linked data in radiation oncology.
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Musen. Protégé-2000: an open-source ontology-development and
knowledge-acquisition environment. In AMIA... Annual Sympo-
sium proceedings. AMIA Symposium, pages 953–953, 2003.

[16] Daniel L Rubin, Cesar Rodriguez, Priyanka Shah, and Chris
Beaulieu. ipad: Semantic annotation and markup of radiologi-
cal images. In AMIA annual symposium proceedings, volume 2008,
page 626. American Medical Informatics Association, 2008.

[17] Johan Van Soest, Tim Lustberg, Detlef Grittner, M. Scott Marshall,
Lucas Persoon, Bas Nijsten, Peter Feltens, and Andre Dekker. To-
wards a semantic PACS: Using Semantic Web technology to rep-
resent imaging data. Studies in Health Technology and Informatics,
205:166–170, 2014.

[18] Ruud G. P. M. van Stiphout, Vincenzo Valentini, Jeroen Bui-
jsen, Guido Lammering, Elisa Meldolesi, Johan van Soest, Lucia
Leccisotti, Alessandro Giordano, Maria A. Gambacorta, Andre

317



Bibliography

Dekker, and Philippe Lambin. Nomogram predicting response
after chemoradiotherapy in rectal cancer using sequential PETCT
imaging: a multicentric prospective study with external valida-
tion. Radiotherapy and Oncology: Journal of the European Society
for Therapeutic Radiology and Oncology, 113(2):215–222, November
2014.

[19] Mark D. Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg,
Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg,
Jan-Willem Boiten, Luiz Bonino da Silva Santos, Philip E. Bourne,
Jildau Bouwman, Anthony J. Brookes, Tim Clark, Mercè Crosas,
Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo,
Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J.G. Gray,
Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap Heringa, Pe-
ter A.C ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost
Kok, Scott J. Lusher, Maryann E. Martone, Albert Mons, Abel L.
Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene
van Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sen-
gstag, Ted Slater, George Strawn, Morris A. Swertz, Mark Thomp-
son, Johan van der Lei, Erik van Mulligen, Jan Velterop, An-
dra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun
Zhao, and Barend Mons. The FAIR Guiding Principles for scien-
tific data management and stewardship. Scientific Data, 3:160018,
March 2016.

[20] Arda Yunianta, Omar Mohammed Barukab, Norazah Yusof,
Nataniel Dengen, Haviluddin Haviluddin, and Mohd Shahizan
Othman. Semantic data mapping technology to solve semantic
data problem on heterogeneity aspect. 2017.

318



11
The Radiomics Ontology (RO):
standardizing radiomic studies

following FAIR principles

Adapted from: ”The Radiomics Ontology (RO): standardizing ra-
diomic studies following FAIR principles”. A Traverso, M Vallières,
A Zwanenburg, J van Soest, L Wee, J Seuntjens, M Hatt, O Morin, and
A Dekker. Under review on Medical physics.

319



Chapter 11. The Radiomics Ontology (RO): standardizing radiomic
studies following FAIR principles

Abstract

The lack of adequate and standardized reporting strategy from
radiomic computations strongly impact the transparency and
reproducibility of radiomic studies. There is the need to transform
radiomic data and metadata from individual experiments to adhere
to FAIR (Findable Accessible Interoperable Reusable) principles
in order to enable interoperability between different radiomic
studies. Using ontologies and semantic web technologies, we
attempt to reach the goal of allowing unambiguous description of
radiomics features, extending beyond a purely lexical definition of
individual features. The metadata allows us to capture the essential
conditions under which a feature is extracted, that thereafter affects
its reproducibility. We developed an ontology to be used in the
field of radiomics to standardize and improve the reporting of
data and metadata from radiomic computations. We combined the
ontology with semantic web data standards and publish a subset of
radiomic data with associated rich metadata from different radiomics
packages, then we show that they are easily queried and compared
using an appropriate query language (SPARQL). The Radiomics
Ontology (RO) contains 458 classes, of which 187 are definitions of
radiomic features. Besides classes, the RO has 76 object properties
(predicates) that are used to fully document the whole spectrum of
radiomic computations, from imaging pre/post processing to feature
descriptions and computational details. We showed how to efficiently
and easily integrate data and metadata from different radiomic
packages, and then query these without a priori knowledge of the
specific radiomics package outputs. The sharing of radiomic data
containing rich metadata associated to their computational settings
as web data objects now supports their use as FAIR data. This has
the potential to accelerate the reproducibility and transparency of
radiomic experiments and is a natural complement to the IBSI (Image
Biomarker Standardization Initiative).
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11.1 INTRODUCTION

11.1.1 Motivation

Radiomics, the automated extraction of quantitative information from
medical images, has been deeply investigated for outcome predictions
in, amongst others, oncology [1][2][4]. Unfortunately, only a small per-
centage of radiomic-based models are used in the clinic as decision
support systems [18]. One of the reasons behind this discrepancy lies
in the lack of reproducibility and generalizability of radiomic studies.
The lack of reproducibility is strongly correlated with a lack of an ade-
quate and satisfactory way of reporting radiomic studies. Most of the
studies report only raw radiomic feature values but they omit the nec-
essary computational steps that led to these values. The IBSI (Image
Biomarker Standardization Initiative) is a multi-institutional effort to
standardize radiomic feature definitions and their computations [19].
In their comprehensive document, they summarize the workflow of
radiomic computations, therefore it includes not only the definitions
of the most common radiomic features, but process steps that lead to
these features such as image post-processing / pre-processing and al-
gorithms used to tune the features’ extraction. In a recent review, the
authors pointed out how all the above computational steps potentially
affect features’ reproducibility [15]. By reporting only raw feature val-
ues, it becomes impossible for other users to fully reproduce and val-
idate a radiomic experiment. However, a key to generalizability and
usability of radiomic lies in being able to easily and extensively repro-
duce and validate these models in different institutions. Poor or insuf-
ficient quality of reporting limits this usability. Furthermore, an opti-
mal configuration for radiomic features extraction might be modality
or image pre-processing dependent, showing the need to provide data-
driven evidence of computational settings to be preferred for a specific
problem Again, the current inability to reach this stand in the way of
adequate reporting strategy that enables interoperability. When devel-
oping a standardized radiomic reporting strategy, two points need to
be taken into consideration: a) the number of computational radiomic
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packages is growing; b) the features reported in studies should be in-
terpretable by other researchers, without any prior knowledge of par-
ticular nomenclatures associated to features or computational details.
To address the first point, a reporting solution must not limit the user
to any one a particular computational package, but it should be inter-
exchangeable for any package that might be used, even in-house and
self-developed packages. For the second point, it is necessary to bind
the solution with the concept of FAIR (Findable Accessible Interoper-
able Reusable) data management principles [17]. With this approach,
data (radiomic feature values and their human readable labels) and
associated metadata (describing in detail the computational settings
used to derive the values) in a radiomics study becomes accessible and
interoperable for everyone. The technologies to enable FAIR-ness for
radiomic studies are open access ontologies and semantic web data ob-
jects. They have already been extensively used to standardize multi-
source clinical data in radiation oncology [14], but have not yet been
applied for the standardization of radiomic computations. A first proof
of concept study showing the power of ontologies in privacy preserv-
ing computational infrastructures was recently presented [12]. In this
work: a) we present the RO (Radiomics Ontology) for reporting ra-
diomic computations as FAIR-compliant data and metadata; b) we dis-
cuss use cases and applications of the RO.

11.1.2 Background: ontologies and semantic web techniques

In this section we offer the reader basic concepts related to ontologies
and sharing data on the semantic web. An ontology is the formal
specification of terms within a domain and their relations presented
as machine-readable format [6], meant to be processed and mined au-
tomatically. Compared to vocabularies and terminologies [13], ontolo-
gies present more complexity via adding relationships, i.e. predicates,
between unique entities. An ontology is formed by classes (i.e. con-
cepts), subclasses, and predicates. Major advantages of ontologies are
a) sharing common understanding of fundamental concepts related to
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a field; b) inferring new knowledge starting from relations between
the entities. The semantic web is an extension of the familiar web of
http “pages” and web applications, where information is made avail-
able in specifically well-defined structures with metadata, so that it
can be processed by machines [3]. The basic building blocks of the se-
mantic web are the Resource Description Framework (RDF) and the
“SPARQL Protocol And RDF Query Language’ (shorthand: SPARQL)
[10]. Databases transformed thorough the ontologies are published as
RDF graph data structures on a dedicate SPARQL endpoint (i.e. RDF
store) and can be queried using a web interface. By using RDF as a
universal graph data structure, the semantic web relies on ontologies
to give domain-specific structure and interpretation to the represented
data. In addition, ontologies can describe inferencing rules which are
interpretable by inferencing-enabled RDF stores. From any arbitrary
number of remote and federated RDF stores, it is thus possible to query
or show the inferenced relationships, which is not hard-coded (. ma-
terialized) in the RDF store. Hence, updating inferencing rules in the
ontology would enable users to query or show additional information
without updating the RDF store itself.

11.2 MATERIAL AND METHODS

11.2.1 Design of the radiomics ontology

We developed the radiomics ontology (RO). The ontology was de-
signed using the editor tool Protégé (https://protege.stanford.edu/)
and publicly published in at the NCBO BioPortal
(https://bioportal.bioontology.org/ontologies/RO)
repository. The RO adheres to the Ontology Web Language (OWL)
2 Query Language (QL) profile [5]. The ontology provides an
extensive coverage of the radiomics computational workflow as
described in detail within the IBSI reference manual [19]. Not only
radiomics features are described, but also the main computational
settings that apply to radiomics computations. The ontology was
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built following this procedure a) variables of interests were identified
looking at the IBSI reference document; b) main concepts of the
ontologies were created for each of the sections in the IBSI manual.
The radiomic features top class contains all the features described
by the IBSI and found in all the most common available radiomics
software. In addition, non-IBSI standardized features (available
for example from the open source package Pyradiomics [16]) are
mapped; c) the ontology was made available on BioPortal and GitHub
(https://github.com/albytrav/RadiomicsOntologyIBSI)
during its development phase so that radiomics users could verify
and testing its level of coverage; c) the coverage of the ontology was
considered satisfying when all the possible values / entities derived
from the IBSI radiomic workflow were covered.

11.2.2 Template table for structured reporting and conversion
to RDF

We developed a set of template tables to facilitate the standardization
of the reporting of radiomic studies. The template tables are required
not to limit a user to adopt a particular software for producing RDF
triples. The template tables reflect the structure of the IBSI workflow,
allowing a broad coverage of all the computational steps as described
in the document. A total of 24 tables has been defined. In addition, de-
tailed instruction for filling the table are provided. The template tables
represent the input for the conversion to RDF triples via the radiomics
ontology and are used to validate the ontology. The basic mapping
procedure from template tables to RDF triples is to link each entity
(row, column, values) of the table to its corresponding entity (class,
property) in the RO. In Figure 11.1 we present a sketch of the con-
version procedure between the template table “RadiomicsFeature.csv’
and the ontology. The basic mapping procedure from template tables
to RDF triples is to link each entity (row, column, values) of the table to
its corresponding entity (class, property) in the RO. Several languages
and software are available to perform the mapping procedure. Based
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Figure 11.1: Overview of the template table structure and mapping with the
RO. The hierarchical structure of the RO is presented in the rectangle B. Hi-
erarchical Relationships (“is subclass of”) between classes, are expressed by
dotted arrows. Mapping is performed to columns and values in a relational
database (rectangle a). In this case the mapping between the radiomic fea-
ture morphological volume, the corresponding unit and the calculation run
space is shown as example. Similar procedure is adopted for all the tables
and mapped concept are linked between each other using their URIs.
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on our previous experience, we used the mapping language D2RQ
(http://d2rq.org/). D2RQ is a declarative language allows map-
ping between relational databases to RDF vocabularies and OWL on-
tologies. We decided to opt for D2RQ since an open source software.
The D2RQ mapping scripts are saved in turtle syntax (.ttl) and present
a modular structure, easily allowing the map of different tables at the
same time. One mapping script for each template database table was
created.

11.2.3 Radiomic features as FAIR endpoint via the Semantic
Web

At the end of the mapping procedure, the mapped data are uploaded
and store into an RDF store, which is a public server (HTTP connec-
tion enabled) and can be queried using SPARQL language. In our
experiment, we used both Blazegraph (www.blazegraph.com) and
GraphDB (http://graphdb.ontotext.com/) as our RDF stores.
They both work as public servers, but also as local storage.

11.2.4 Dataset and radiomic packages used

For testing the ontology, we used two different open source radiomic
packages a) Pyradiomics, an open source python-based software
developed at Harvard Medical School (Boston, USA) [16], and b) a
Matlab-based software developed at McGill University, (Montreal,
Canada) https://github.com/mvallieres/radiomics.
The two software packages allow the customization of radiomic
computations, but standard defaults are different. Two users inde-
pendently extracted radiomic features from primary lung tumours
with different delineations from 22 CT scans from the NSCLC-
Radiomics-Interobserver1 as per the data available at the TCIA
archive (https://doi.org/10.7937/tcia.2019.cwvlpd26).
This dataset represents a good candidate for testing the ontology,
since for example the presence of multiple delineations requires

326

http://d2rq.org/
www.blazegraph.com
http://graphdb.ontotext.com/
https://github.com/mvallieres/radiomics
https://doi.org/10.7937/tcia.2019.cwvlpd26


Figure 11.2: Sketch of the used workflow. A) Two users using two indepen-
dent radiomic packages extract radiomic features from a common dataset.
Details of the computation might different between the packages. B) The
computation data and metadata are stored as .csv files using the IBSI-
compliant template tables. C) Using the developed workflow, tables are
stored in templated SQL databases. D) These tables are transformed into RDF
triples using D2RQ scripts. The triples can be visualized locally on uploaded
on a public server using for example Blazegraph or GraphDB. E) Each user
can access the triples from the other one without prior knowledge of original
labels as original output of the radiomic software.

the metadata related to segmentations to be associated to radiomic
feature values. Their computations were then stored accordingly to
the template tables and then the user converted them as RDF triples.
Finally, they uploaded the data in a public SPARQL endpoint, for
comparison. Figure 11.2 summarizes the adopted workflow.

11.3 RESULTS

To facilitate the replication of this experiment, as well as to dissemi-
nate and share with the community our developments, the workflow
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is available at the following GitHub link (https://github.com/
albytrav/RadiomicsOntologyIBSI).

11.3.1 Radiomics ontology

The RO contains 458 classes. The class with the largest number of chil-
dren is RadiomicsFeature (www.radiomics.org/RO/72TO), which
contains 187 definitions of radiomics features. Besides classes, the RO
has 76 object properties (predicates) that are used to create the rela-
tionships between the different classes. All the entities and predicates
have a URI, which is resolvable as a link hosted on www.radiomics.
org/RO/. A web RDF viewer allows the inspection of a concept by
typing its URI. Users can transverse the whole ontology tree through
the Web RDF viewer. The RO is available in the most common for-
mats, including .owl on https://bioportal.bioontology.org/
ontologies/RO (bioportal) , which can be downloaded by the users
with the software Protégé.

11.3.2 Template tables

Template tables were associated with instructions for the users on how
to fill them. The central table is called “FeatureTable.csv” and it con-
tains radiomic features with values and units. This table is then linked
to: “ImageSpaceTable.csv”; “CalculationRunTable.csv”; “FeaturePa-
rameterSpaceTable.csv”. The nested structure covers the whole spec-
trum of radiomic computations.

11.3.3 Mapping and comparison

Query example 1: Two users want to compare “all the radiomic fea-
tures that have millimetre cubic as the unit”, so that this query will
return the radiomic features related to volume. The query example
is available in the supplementary material, the results in Figure 11.3a.
Here, without any prior knowledge of the original labels from the two
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different software, it is possible to retrieve different categories of fea-
tures with a particular property (unit in this case). From figure 11.3a it
is possible to see that the user using Pyradiomics only computed one
type of volume, while the user using the Matlab radiomic toolbox has
different volumes (volume; approximate volume). Query example 2:
Two users want to compare “how many morphological features are
computed by the two software”. For this query, we used one of the
most useful properties of an ontology: inference (or automated rea-
soning). The idea is that properties embedded within the ontology can
be used to query data, without that information being explicitly being
uploaded as RDF triples. In this case it is not necessary to query for
all the single classes corresponding to morphological features. We just
queried for the top class of the RO “Morphological (HCUG)” and this
automatically return all the subclasses (features) belonging to that cat-
egory. The query example is shown in the supplementary material, the
results in Figure 11.3b. Again, it is possible to see that Pyradiomics has
less morphological features than the Matlab software. Query example
3: The two users want to compare “differences about their software”.
In this query we asked for the name of the radiomic package, the in-
stitution that developed it, and the programming language. The query
example is shown in the supplementary material, the results in Fig-
ure 3c. As expected, the main difference between the two software is
the programming language: python vs Matlab. Query example 4: We
want to query “the volume of the tumour of the patients and some ad-
ditional information such as gender and tumour T stage. This query
is meant to show how the RO integrates with other ontologies such as
the ROO (Radiation Oncology Ontology). It is an example of “linked
data”, where radiomic data (features) can be easily combined with clin-
ical data. The query example is shown in the supplementary material,
the results in Figure 11.3c.
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Figure 11.3: A) Results of query 1: all the radiomic features with unit millime-
tre cubic are retrieved. While Pyradiomics software only computes one type
of morphological volume; the IBSI compliant software has an additional vol-
ume feature (approximate volume). Multiple values of volume are present for
the patients, since as expected, radiomic features were extracted from multi-
ple delineations B) Results of query 2: using the inference property of the
ontology it is possible with few lines of code to retrieve all the radiomic fea-
tures belonging to a particular class (morphological in this case). Results of
query 3: properties about the two different radiomic packages are retrieved;
Results of query 4: clinical data and radiomic data are combined.
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11.4 DISCUSSION
We developed the radiomic ontology and we validated using a pub-
licly available dataset with radiomic features computed using two dif-
ferent radiomic computational packages. The two users were indepen-
dently able to compare data and metadata associated to their computa-
tions, without prior knowledge of the original labels of the software.

11.4.1 Rationale of this study

Radiomics is a rapidly developing field of study over recent years. Sev-
eral open and closed source computational packages are now available
such as LifeX [8], PyRadiomics [16], RaCaT [9]. Some of them allow
full customization of feature extraction at different levels, such as for
example the inclusion of different pre-processing techniques (filtering,
resampling) to increase signal fidelity. The immense variety of hand-
crafted radiomics features makes it possible to mine for the optimal
combination of features ie signature, to accurately predict an outcome
class. However, such proliferation of possible features and feature pro-
cessing settings has brought forward the need of standardization and
harmonization especially for the problem of replication and valida-
tion [7]. Interoperability between radiomic computational packages re-
mains a significant issue to this day: not only the feature nomenclature
is different, but all the steps of the computations are still not always
reported. When reported, they are expressed using non-standardized
nomenclatures and format. All of the above makes it difficult for other
users to reproduce and validate a radiomic experiment. In an earlier
review, we pointed out the general unsatisfactory level of reporting in
radiomic studies, which made impossible the conduction of any meta-
analysis between different studies and was limiting consensus [15].
The IBSI initiative has committed itself to provide standards and rec-
ommendations for radiomic computations, together with extensively
describing all the possible steps involved in a radiomic study. Guide-
lines and suggestions for reporting are identified in the last part of
the document; but no final consensus has yet been proposed at time
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of writing of this article. This work should be identified as natural
complement of the IBSI effort, building upon their standardized global
terminology and definitions, then by providing tools and methodolo-
gies for enhanced reporting of radiomic analyses with significantly en-
riched metadata. First, we provided a set of template tables, which
can be used to cover the radiomic workflow. The template tables do
not force a user to adopt radiomic software able to directly produce
RDF triples [11]. Each radiomic software can be used to produce stan-
dardized output in the form of template tables and then the users can
use our pipeline to produce RDF triples. The proposed workflow can
be ported into other systems that can import structured reports and
convert to RDF through an ontological schema. Only relying on tables
would have limited the power of cross-correlating and comparing dif-
ferent radiomics computations. This is mainly due to the static nature
of tables and relational databases. Therefore, we developed a dedi-
cated radiomics ontology and mapped the above-mentioned schemas
into RDF triples. Finally, this strategy allows the production of data
and metadata from radiomic computations as FAIR-compliant, open-
ing the door for more transparent and reproducible radiomics. For
example, the proposed workflow can be used to investigate the pre-
dictive / prognostic power of texture features by comparing different
computational settings or different software. In fact, texture features
are prone to changes as soon as different settings to compute texture
matrices are applied (e.g. different quantization algorithms). The op-
timal configuration for a specific problem can only be investigated by
comparing multiple computation scenarios and / or software. This
requires interoperability, which is guarantee by our ontology. It is im-
portant noticing that the proposed schema is not rigid, but each user
can build a graph, based on the radiomics ontology, according to the
needs.

332



11.4.2 Rationale for the radiomics ontology and semantic web

As presented in the previous sections, the RO was used to convert
flat tables into graph data. The main difference between ontologies
and relational databases is that ontologies represent a dynamic body
of knowledge, by creating relations between entities through predi-
cates. Conversely, relational databases are difficult to make interoper-
able. Only the owner of the database, as creator of the schema struc-
tures can access the information. Ontologies techniques transform data
into relationships between universal concepts defined by unique iden-
tifiers (URIs), that can be queried without any prior knowledge of the
original structure. The RO combined with semantic web technologies
represents a powerful tool to allow integration and comparison of ra-
diomics studies performed by multiple institutions. In fact, the results
of the radiomics analysis, transformed using the RO and published on
the Semantic Web, can be queried and compared between each other.
As per ontology development, not only features values can be queried,
but all the details related to the computation. In our results for exam-
ple (query 3), we showed how it is possible to extract properties re-
lated to the radiomic software package. The combination of RO and
semantic web can be used as reference framework for features’ bench-
marking by the IBSI. Each user, owner of a different radiomic software,
can upload on the semantic web the results of its computation on a
common, standardized set. These results can then be queried and dif-
ferences in features values or software implementation can be inves-
tigated. Different open source libraries allow directly querying, stor-
ing and analysing RDF data such as “rdflib” for Python (https://
rdflib.readthedocs.io/en/stable/) or the SPARQL wrapper
for R (https://cran.r-project.org/web/packages/SPARQL).
Our wiki is regularly updated with tutorials and examples to reach the
broadest community as possible. Finally, the ontology has the flexi-
bility to integrate with other ontologies. In our results (query4), we
showed the integration between the RO and the ROO (Radiation On-
cology Ontology). This example showed the integration of radiomic
data and metadata (RO) with clinical data (ROO). A similar concept
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was proposed in our recent publication, where an original radiomic
study was reproduced using a privacy-preserving distributed learning
infrastructure [12].

11.4.3 Limitations and future work

The radiomics ontology is a dynamic body of knowledge, which is
meant to be updated with the same pace as new radiomics features are
added or new computational packages are made available. We tested
the ontology using two different software packages and one dataset.
However, the ontology should be tested by as many different institu-
tions as possible. Accordingly, the ontology is shared on GitHub mak-
ing it a collaborative project. A second limitation regards the optimiza-
tion of conversion from relational databases to RDF triples. We use
D2RQ as mapping language, however different new languages have
been proposed by the literature. It was out of topic of this prelimi-
nary proof-of concept to evaluate different mapping strategies, but it
is in the plans to align our tools with the best and fastest mapping lan-
guages.

11.5 CONCLUSIONS
We developed a dedicated radiomics ontology to harmonize and im-
prove quality of reporting in radiomic computations. The combina-
tion of our ontology and semantic web introduces FAIR principles to
radiomic computations, for enabling transparency and reproducibil-
ity.
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Chapter 12. FAIR-compliant clinical, radiomics and DICOM
metadata of RIDER, Interobserver, Lung1 and Head-Neck1 TCIA
collections

Abstract

One of the most frequently cited radiomics investigations showed
that features automatically extracted from routine clinical images
could be used in prognostic modelling. These images have been
made publicly accessible via The Cancer Imaging Archive (TCIA).
There have been numerous requests for additional explanatory
metadata on the following datasets — RIDER, Interobserver,
Lung1, and Head–Neck1. To support repeatability, reproducibility,
generalizability, and transparency in radiomics research, we publish
the subjects’ clinical data, extracted radiomics features, and digital
imaging and communications in medicine (DICOM) headers of these
four datasets with descriptive metadata, in order to be more compliant
with findable, accessible, interoperable, and reusable (FAIR) data
management principles. Overall survival time intervals were
updated using a national citizens registry after internal ethics board
approval. Spatial offsets of the primary gross tumour volume (GTV)
regions of interest (ROIs) associated with the Lung1 CT series were
improved on the TCIA. GTV radiomics features were extracted using
the open-source Ontology-Guided Radiomics Analysis Workflow
(O-RAW). We reshaped the output of O-RAW to map features and
extraction settings to the latest version of Radiomics Ontology,
so as to be consistent with the Image Biomarker Standardization
Initiative (IBSI). Digital imaging and communications in medicine
metadata was extracted using a research version of Semantic DICOM
(SOHARD, GmbH, Fuerth; Germany). Subjects’ clinical data were
described with metadata using the Radiation Oncology Ontology. All
of the above were published in Resource Descriptor Format (RDF),
that is, triples. Example SPARQL queries are shared with the reader
to use on the online triples archive, which are intended to illustrate
how to exploit this data submission. The accumulated RDF data are
publicly accessible through a SPARQL endpoint where the triples are
archived. The endpoint is remotely queried through a graph database
web application at http://sparql.cancerdata.org. SPARQL queries are
intrinsically federated, such that we can efficiently cross-reference
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clinical, DICOM, and radiomics data within a single query, while
being agnostic to the original data format and coding system. The
federated queries work in the same way even if the RDF data were
partitioned across multiple servers and dispersed physical locations.
The public availability of these data resources is intended to support
radiomics features replication, repeatability, and reproducibility
studies by the academic community. The example SPARQL queries
may be freely used and modified by readers depending on their
research question. Data interoperability and reusability are supported
by referencing existing public ontologies. The RDF data are readily
findable and accessible through the aforementioned link. Scripts used
to create the RDF are made available at a code repository linked to this
submission: https://gitlab.com/UM-CDS/FAIR-compliant_
clinical_radiomics_and_DICOM_metadata
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12.1 INTRODUCTION

Clinical radiological imaging, such as computed tomography (CT), is
a mainstay modality for diagnosis, screening, intervention planning,
and follow-up for cancer patients worldwide [6]. Radiomics refers
to high-throughput automated characterization of the tumour
phenotype by analysing quantitative features derived from a
radiological image [8]. Aerts et al. showed that CT radiomics features
by themselves could contain information that is potentially prognostic
of overall survival in non small cell lung (NSCLC) and head-and-neck
(HN) cancer [3]. The radiomics hypothesis is that computationally
derived features extract more information than can be processed by an
unaided human eye, and therefore offers up new image biomarkers
to speed up the research of personalized medicine. Radiomics has
the potential to be a highly cost-effective option for retrospective
observational clinical studies, since it can process routinely collected
clinical radiological images residing in institutional archives. There
remain significant challenges in regards to developing generalizable
models that are based on reproducible and repeatable radiomics
signatures [10][28][27][14]. Recent studies have suggested that
harmonization of radiomics features across multiple institutions and
different scanner parameters may be needed to realize its full potential
[20] [23][11][29]. Computed tomography images for some frequently
cited studies [3][30] in the digital imaging and communications in
medicine (DICOM) format, have been made available via The Cancer
Imaging Archive (TCIA)[30][4][24][2][1]. The DICOM standard
incorporates metadata about image acquisition settings and it extends
to regions of interest (ROIs) delineations (i.e., radiotherapy structure
set, or RTSTRUCT), but many non radiology researchers remain
unfamiliar with this conjoined data-metadata format. Pixel data only
formats such as Neuroimaging Informatics Technology Initiative
(NIfTI) and Nearly Raw Raster Data (NRRD) may be more intuitive
for direct computation, but these have been stripped of imaging
metadata. Imaging metadata is the essential context to understand
why radiomics features from different scanners may or may not be
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reproducible [31][13][15][7]. Software libraries are available that easily
change from DICOM to NIfTI/NRRD [12] but in keeping with FAIR
(Findable, Accessible, Interoperable, and Reusable) data stewardship
principles [26], the imaging metadata needs to be preserved in such a
way that links to the source images and post acquisition analyses will
be retained. A similar argument holds for patients’ clinical metadata
and extracted radiomics features. Publishing tables of values as
open access data does not by itself comply with FAIR principles,
because there may be no metadata that richly describe what the
data fields are, what its contents signify, and how it relates to other
data. The point of FAIR principles is not only humans should grasp
enough context about the data to use it meaningfully, but that the data
must be made amenable for machine algorithms to automatically
search and process, even on a massive global scale. Consider an
example specific to radiomics. For a given feature, it is essential
to describe how this feature is uniquely defined, which radiomics
software (and version) was used to extract it, and what (if any) digital
image pre-processing had been applied prior to extraction. Semantic
ontologies [9] were developed in order to add descriptive metadata
and hierarchical relationships on top of the data. Ontologies make
explicit the formal meaning of concepts within its proscribed domain
and the essential relationships between its set of concepts. The present
work reuses the Radiation Oncology Ontology (ROO) [19], Semantic
DICOM ontology (SeDI) [22], and the radiomics ontology (RO)
(https://bioportal.bioontology.org/ontologies/RO).
These ontologies themselves reuse existing terminologies
and thesauri, such as the image biomarker standardization
initiative (IBSI) [32], National Cancer Institute Thesaurus (NCIT)
(https://bioportal.bioontology.org/ontologies/NCIT),
the units of measurement ontology (UO) (https:
//bioportal.bioontology.org/ontologies/UO),and
the DICOM data dictionary (http://dicom.nema.org/medical/
dicom/current/output/html/part06.html), to identify its
concepts.
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Other advantages of ontologies include knowledge representation and
the support for automated logical inferencing. A hierarchical struc-
ture is abstracted as directed acyclic graphs, wherein concepts and re-
lationships are represented as vertices and edges of the graph, respec-
tively. Any graph, regardless of complexity, can be written out in full
as a series of machine-readable sentences consisting of strictly three
pieces; subject (start vertex) — predicate (edge) — object (end vertex).
Such “triples” are the basis of the resource descriptor format (RDF)
that is a type of universal data storage format on the World Wide Web.
Machine-based data mining and inferencing tasks are thus feasible in
a highly efficient manner, being simplified to a “pattern matching”
problem. The objective of this open data submission is to stimulate
studies into repeatability, reproducibility, replication, and reusability
of radiomics features from multiple datasets. The core collection being
made publicly available here consists of (a) improvements to the four
clinical imaging datasets described in the seminal radiomics publica-
tion by Aerts et al. [3] (b) extracted radiomics features described in line
with IBSI recommendations [33] and (c) updates to the subject clinical
data associated with the aforementioned image collections.

12.2 ACQUISITION AND VALIDATION METHODS

12.2.1 Description of the dataset

The metadata published in this submission links to four image
collections, available under a Creative Commons license
(Attribution-NonCommercial Unported; CC BY-NC 3.012), in DICOM
format on TCIA and has been previously investigated by Aerts et al.
[3]. These collections are described in detail elsewhere. In each of
these collections, primary Gross Tumour Volumes (GTVs) had been
delineated by experienced radiation oncologists; ROIs are included in
the TCIA collections as RTSTRUCT and SEGMENTATION objects. In
the original TCIA submission, some ROIs were vertically displaced
due to the how treatment couch offsets were being reported by legacy
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Figure 12.1: Representation of the conversion of the clinical data, digital
imaging, and communications in medicine headers and radiomics features
to resource descriptor format (RDF). The procedures are outlined in the text
sections. The RDF triples can be queried from a publicly accessible endpoint
using the SPARQL language.

radiotherapy treatment planning software – these have now been
corrected. Clinical data have been extracted from patients’ electronic
medical records and, where applicable, survival intervals from
commencement of radiotherapy treatment till date of death or loss to
follow-up were updated using a national registry after internal review
board approval. The clinical data have been made available with the
imaging collections on TCIA.

12.2.2 Data format and usage notes

The workflow of the conversion of clinical data, DICOM metadata, and
radiomics features to RDF triples is represented in Fig. 12.1.

346



12.2.3 Clinical metadata as RDF

Clinical tables (in CSV format) from TCIA were imported
as standard relational databases (e.g., in PostGreSQL)
(https://www.postgresql.org/) and then converted into
RDF triples using a serializing scripting language such as R2RML
(https://www.w3.org/ns/r2rml). R2RML allows the expression
of an arbitrary relational database as an equivalent graph data
object using a suitable target ontology (in this case, the ROO) which
can be controlled by specifying a mapping file. The values of, and
relationships between, the clinical data concepts were mapped onto a
graph structure. A visual representation of an example ROO graph
has been given by Traverso et al. [19]. The graph was exported as RDF
triples and archived on a publicly query-able SPARQL endpoint. The
mapping files used for the RDF triples acquisition in this particular
data submission are made available for the reader on a public GitLab
repository (https://gitlab.com/UM-CDS/FAIR-compliant_
clinical_radiomics_and_DICOM_metadata).

12.2.4 DICOM metadata as RDF

The DICOM headers present in the abovementioned TCIA image
collections were processed into graph objects using SeDI as the
target ontology. A research-only version of the Semantic DICOM
conversion service of SOHARD GmbH (Fuerth, Germany) was
used to automatically extract the headers from DICOM files and
subsequently export these as RDF triples to the same aforementioned
SPARQL endpoint. This semantic representation of imaging metadata
supports cross-referenced queries of DICOM tags against radiomics
features for use in repeatability and reproducibility studies [22].

12.2.5 Radiomics metadata as RDF

The radiomics feature values of the primary GTV in the
abovementioned image collections were extracted using the
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Ontology-Guided Radiomics Analysis Workflow (O-RAW) [17] a
PyRadiomics [21] — based FAIR-ification tool. Acquisition of the
radiomics RDF triples required a two-stage process. The results of a
radiomics extraction software application (in our case O-RAW, but
the same holds for other software) must first be transferred into a
set of inter-related tables needed for the IBSI. For this submission,
we prepared a python script to fill these tables more efficiently;
this is provided as an example for the reader on the repository
(https://gitlab.com/UM-CDS/FAIR-compliant_clinical_
radiomics_and_DICOM_metadata). Details of radiomics ontology
development and its integration with the IBSI exceed the scope of this
data article, but will be covered in detail in a separate publication.
Radiomics RDF triples were saved to the same aforementioned
SPARQL endpoint.

12.2.6 SPARQL public endpoint

The SPARQL query language is used to interrogate the clinical,
DICOM, and radiomics triples that are archived in RDF as a publicly
accessible internet resource referred to by the Universal Resource
Locator (URL), (http://sparql.cancerdata.org/). The RDF
triples are maintained in a persistent online graph database through
a Blazegraph (https://blazegraph.com/) software application,
which also supplies a user interface through which remote SPARQL
queries may be entered. A public query may be executed as follows:
after accessing the above URL, the Namespaces tab is selected and
Nat Com Collections final database is set to use. Queries may then be
typed by hand or copy-pasted in the Query tab.

12.2.7 Example SPARQL queries

The first hypothetical example we consider is a researcher who wishes
to get the data for a univariate model for overall survival in the Lung1
collection, such as Welch et al. [25], using a single radiomics feature
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Figure 12.2: Example of a SPARQL query for matching a radiomics feature
called “Fmorph.vol” in the IBSI terminology to the overall survival status and
survival time of the patients in the LUNG1 collection. Purely for illustrative
purposes, we limited the rows of output to 10. The result of the query is
shown in Fig. 12.3.

that is known by its IBSI text label “Fmorph.vol.” We have setup the
example query in Box 12.2. In brief, a SPARQL query consists of:

• Shorthand prefixes for namespaces referring to data, schema,
syntax, and ontologies that are needed;

• SELECT and FILTER commands that allow us to shape the con-
tents to be returned; and,

• a sequence of pattern matching rules that allow us to link patients
to radiomics features and overall survival outcome.

The contents of Box 1 may be copied and pasted into the query window
of Blazegraph (http://sparql.cancerdata.org/#query). Note
that a patient study identifier links both the radiomics and clinical
triples, such that we can query into both domains and cross-reference
them within a single SPARQL query. The result of this example query
that is limited (for display purposes) to ten subjects can be seen in Fig.
12.3. As another purely radiomics-based example, we may examine
if distinct radiomics intensity discretization algorithms had been used
during the extraction of a radiomics feature. If one were to execute the
example query in Box 2, it would be seen that the specific radiomics
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Figure 12.3: The result of ten patients’ cases of the example query given in Box
1. We can see the research study IDs of patients from the public The Cancer
Imaging Archive collections, the value of a radiomics feature, the value of
the survival time, and the vital status of each patient. Additionally, we have
displayed the units of the radiomics feature (if any, in this case it is cubic
millimetres) and the survival time (days).
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feature labelled as RO:Y1RO40 had been computed with 12 unique
feature extraction settings, but only three discretization settings were
used, all of which employed a fixed bin size (FBS) method. In our fi-
nal example, we bring elements of the previous examples together into
a single SPARQL query that cross-references DICOM, radiomics, and
clinical follow-up. In the example provided in Box 3, we index the
imaging modality (CT) with its Series Instance UID and Slice Thick-
ness to the subset of morphological (ROI-dependent) radiomics fea-
tures that were computed for the Lung1 dataset, along with the corre-
sponding survival time and survival status.
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Figure 12.4: Example of a SPARQL query for examining the different inten-
sity discretization algorithm (i.e., histogram binning) for textural radiomics
feature for a single arbitrarily selected subject in the Head–Neck1 collection.
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Figure 12.5: Example of a SPARQL query for directly cross-referencing DI-
COM headers, radiomics features, and survival outcome into a single query.
The result of the query is shown in Fig. 12.6.
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Figure 12.6: A partial snapshot of the example query given in Box 3. Given
as a result of the query are: the subject research ID, the computed tomog-
raphy series instance unique identifier (UID), the imaging modality and the
slice thickness. Each of these are associated with 13 distinct morphological
feature concepts (in column featureObj) and the numerical value of each ra-
diomics feature (in column Fvalue). The digital imaging and communications
in medicine and radiomics data are cross-referenced to the vital status and
survival time interval as per the example in Box 1.
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12.3 DISCUSSION

12.3.1 Advantage of using ontologies and storing data on the
World Wide Web

Patients’ data and specifically demographics or clinical details play
a crucial role in prediction modelling studies. Transparent and
reproducible radiomics research requires availability of data and
metadata associated with a particular study. In the case of prediction
modelling, these tend to be source images and the clinical outcomes,
for example, survival status and survival time interval. One of the
ways to render data FAIR and easily available to be queried remotely
over well-established World Wide Web technology is to archive
them as RDF data on a persistent online SPARQL endpoint. This
requires existing domain ontologies in order to unambiguously define
concepts, and relationships between concepts, by mapping them to
standardized terminology. The use of publicly defined ontologies
and machine-readable lexicons overcome the potential barriers of
human language understanding and unknown data encodings. The
ontologies further apply some level of knowledge representation that
follows in the tracks of human logic and inferencing, such that we can
use machine-based queries to discover and process data, without
having to first develop extensive knowledge of the relational database
structure of the original data. Lastly, we were able to exploit the
intrinsically federated pattern matching nature of SPARQL queries to
show how to efficiently cross-reference data from across the clinical,
DICOM header, and radiomics domains.

12.3.2 Potential applications

By making this data available on the SPARQL endpoint, we offer
a version of the combined DICOM data, clinical information, and
radiomics features in a manner that is in closer alignment with FAIR
data principles. In this way, we hope to facilitate the investigation
of radiomics reproducibility research across different institutions,

355



Chapter 12. FAIR-compliant clinical, radiomics and DICOM
metadata of RIDER, Interobserver, Lung1 and Head-Neck1 TCIA
collections

each of which may speak different human languages, use different
imaging protocols, and extract radiomics features in subtly different
ways. The queries demonstrated here work in the same way even
if these RDF data had been partitioned over multiple databases,
irrespective of its geographical location. As has been shown in
other publications, the proposed methodology here can be used
prospectively for exchanging radiomics prediction models for
training or validation, in accordance with a paradigm known as
distributed (or equivalently, federated) machine learning [18][5][16].
We have provided examples of SPARQL queries, primarily as a form
of guidance notes on how to use this data submission. We would
encourage the academic community to adjust them according to
their own questions and potentially utilize this methodology for
multicentre studies. Radiomics researchers that derive immediate
benefit from this open resource could be data scientists and medical
physicists with some database query experience. Publishing this as a
semantic web resource allows real-time queries and answers about
the data. This follows an overall trend toward a growing amount of
linked open data with on-demand access. Online SPARQL tutorials
are available: (https://www.w3.org/2009/Talks/0615-qbe/),
(https://jena.apache.org/tutorials/sparql.html),
(http://www.ontobee.org/tutorial/sparql). We anticipate
that the aforementioned audience could build user-friendly search
interfaces on top of this resource, so as to make it more easily used
by others with less programming experience. The reusability of the
datasets is strongly supported by the usage of publicly available
ontologies, such that the reader is able to look up the ontologies
online to search for concepts of interest to them. We have also shared
mapping files and RDF conversion scripts on a public code repository,
that can also be reused in future.
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12.3.3 Limitations of the present submission

One of the major and potentially time-consuming tasks on the way to
publishing the RDF data is the mapping of data fields and data values.
We have tried to streamline the process in the current submission by
preparing mapping files as templates and, wherever possible, using
scripting to control serialization applications such as R2RML. How-
ever, it is acknowledged that there is no single universally “correct”
mapping to a given target ontology. It is likely that persons working
independently could apply the same ontologies but produce quite dif-
ferent (and potentially incompatible) knowledge representations. In
the analogy of graphs, there is no single unique graph to represent a
given dataset; it is possible to derive many different such graphs that
are still logically plausible. In semantic data circles, this is well-known
as the “open-world” paradigm that is commonly expressed as “anyone
can say anything about anything.” The solution of such a problem is
not up to any one piece of investigation nor any one data scientist. As
with all conventions and normative standards in healthcare, conver-
gence gradually emerges over time through numerous cycles of usage,
refinement, and dissemination. Our methodology and RDF database
are therefore not static, so it is intended to be improved and refined
together with developing methodology over time.

12.3.4 Possibilities for future development

The question of comparing and then reconciling different data graphs
is an ongoing and active line of research in data science. These so-
called shape expressions do not fall within the present scope of sub-
mission, but could lead to promising opportunities for improvement.
This potentially makes it possible to query data graphs independently
of the norms assumed by its publisher. There is also strong research ac-
tivity toward stricter standardization of data collection and top-down
imposition of knowledge representation. Unlike the approach used in
this work, where we the first had the data and then cast it toward a
target ontology, the top-down approach requires data elements and a
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data structure to be rigidly defined first of all before the data are col-
lected. This would be very useful for mapping prospective data, but it
is less clear how such rigid standards should be applied to legacy data
and retrospective studies. Research is currently in progress toward a
modular mapping process, where mappings for generic information
that is common for many disease types (e.g., patient demographics)
can be rigidly defined and reused often. At the opposite end, highly
study-specific mappings may need to be more dynamic or performed
on an ad hoc basis. Modular and piece-wise reusable mappings for
closely related disease types may significantly reduce the overall RDF
preparation time, however, at time of writing such a modular process
was not yet ready.

12.4 CONCLUSIONS
We have updated and improved four imaging datasets on TCIA. We
converted and published clinical data, radiomics features and DICOM
headers as online RDF from these four datasets using ontologies and
standard web technology. These RDF triples are stored in a public
endpoint giving an opportunity to the radiomics community to query
these datasets using the SPARQL language. We have demonstrated the
realizability of this approach of making the combined data available
as FAIR data, in order to incentivize multicentre research into repro-
ducibility of radiomics features across multiple datasets.
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Ingrid Dillo, Olivier Dumon, Scott Edmunds, Chris T. Evelo,
Richard Finkers, Alejandra Gonzalez-Beltran, Alasdair J.G. Gray,
Paul Groth, Carole Goble, Jeffrey S. Grethe, Jaap Heringa, Pe-
ter A.C ’t Hoen, Rob Hooft, Tobias Kuhn, Ruben Kok, Joost
Kok, Scott J. Lusher, Maryann E. Martone, Albert Mons, Abel L.
Packer, Bengt Persson, Philippe Rocca-Serra, Marco Roos, Rene
van Schaik, Susanna-Assunta Sansone, Erik Schultes, Thierry Sen-
gstag, Ted Slater, George Strawn, Morris A. Swertz, Mark Thomp-
son, Johan van der Lei, Erik van Mulligen, Jan Velterop, An-
dra Waagmeester, Peter Wittenburg, Katherine Wolstencroft, Jun
Zhao, and Barend Mons. The FAIR Guiding Principles for scien-
tific data management and stewardship. Scientific Data, 3:160018,
March 2016.

[27] Jia Wu, Khin Khin Tha, Lei Xing, and Ruijiang Li. Radiomics and
radiogenomics for precision radiotherapy. Journal of Radiation Re-
search, 59(suppl 1):i25–i31, March 2018.

[28] Bin Yang, Lili Guo, Guangming Lu, Wenli Shan, Lizhen Duan,
and Shaofeng Duan. Radiomic signature: a non-invasive
biomarker for discriminating invasive and non-invasive cases of
lung adenocarcinoma. Cancer management and research, 11:7825,
2019.

[29] Stephen S F Yip and Hugo J W L Aerts. Applications and limi-
tations of radiomics. Physics in Medicine and Biology, 61(13):R150–
R166, July 2016.

363



Bibliography

[30] Binsheng Zhao, M Kris, and L Schwartz. Data from rider lung ct.
the cancer imaging archive, 2015.

[31] Ivan Zhovannik, Johan Bussink, Alberto Traverso, Zhenwei Shi,
Petros Kalendralis, Leonard Wee, Andre Dekker, Rianne Fijten,
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berger, Sung Min Ha, Mathieu Hatt, Fabian Isensee, Philippe
Lambin, Stefan Leger, Ralph T.H. Leijenaar, Jacopo Lenkow-
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Chapter 13. Distributed radiomics as a signature validation study
using the Personal Health Train infrastructure

Abstract
Prediction modelling with radiomics is a rapidly developing research
topic that requires access to vast amounts of imaging data. Methods
that work on decentralized data are urgently needed, because of
concerns about patient privacy. Previously published computed
tomography medical image sets with gross tumour volume (GTV)
outlines for non-small cell lung cancer have been updated with
extended follow-up. In a previous study, these were referred
to as Lung1 (n=421) and Lung2 (n=221). The Lung1 dataset is
made publicly accessible via The Cancer Imaging Archive (TCIA;
https://www.cancerimagingarchive.net). We performed
a decentralized multi-centre study to develop a radiomic signature
(hereafter “ZS2019”) in one institution and validated the performance
in an independent institution, without the need for data exchange
and compared this to an analysis where all data was centralized.
The performance of ZS2019 for 2-year overall survival validated
in distributed radiomics was not statistically different from the
centralized validation (AUC 0.61 vs 0.61; p=0.52). Although slightly
different in terms of data and methods, no statistically significant
difference in performance was observed between the new signature
and previous work (c-index 0.58 vs 0.65; p=0.37). Our objective was
not the development of a new signature with the best performance,
but to suggest an approach for distributed radiomics. Therefore,
we used a similar method as an earlier study. We foresee that the
Lung1 dataset can be further re-used for testing radiomic models and
investigating feature reproducibility.
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13.1 INTRODUCTION

Images from radiological examinations are presently one of the largest
underutilized resources in healthcare “big data” [18]. Radiomics refers
to computerized extraction of quantitative image metrics, known as
“features”. In 2014, Aerts et al. [2] showed that radiological features
from Computed Tomography (CT) scans might encode additional
information about phenotypic differences between tumours that
lie beyond the grasp of the unaided human eye. The hypothesis
is that multifactorial prediction models incorporating selected
radiomic features may better inform individually personalized
treatment strategies [8][13][14]. Radiomic data have now been
investigated in CT [5][21][10], magnetic resonance imaging (MRI)
[19][27] and positron emission tomography (PET) [15][7]. The
availability of commercial and open source software for radiomic
feature extraction has made this line of inquiry accessible to a large
number of investigators [3][23][29][20]. However, multi-institutional
development and validation of radiomic-assisted prediction models
is slowed down due to privacy concerns about sharing of individual
patients’ medical images. Significant efforts are under way to
make image sets used in radiomic investigations openly accessible
via centralized repositories such as The Cancer Imaging Archive
(TCIA; https://www.cancerimagingarchive.net)[4], however,
many data owners remain cautious about sharing individual
patient images publicly online. A privacy-preserving distributed
learning infrastructure based on World Wide Web Consortium
“Semantic Web” data sharing standards [28], known as Personal
Health Train (PHT; https://vimeo.com/143245835)[24]
has been successfully used to develop and validate models on
non-image clinical data [12][11]. To extend the PHT approach to
radiomics, we first need to publish our radiomic features in a
manner that is Findable, Accessible, Interoperable and Re-useable
(FAIR)[25]. We have developed a pragmatic and extensible Radiomics
Ontology (RO) that is publicly accessible via NCBO BioPortal
(https://bioportal.bioontology.org/ontologies/RO).
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With the RO, we can describe over 430 class objects and 60 predicates
between objects to publish radiomic features (with some relationships
and dependencies) according to Semantic Web standards. The class
objects include unique feature identifiers that are aligned with
the Image Biomarker Standardization Initiative (IBSI) [30]. In this
article, we show that the PHT infrastructure supports exchange of
cross-institutional radiomic-based clinical data without material
transfer of individual-level patient clinical data or images. Our
primary objective was to show that external validation of a radiomic
signature can be done with entirely decentralized data. The specific
use case was to learn a radiomic signature “ZS2019” for non-small cell
lung cancer (NSCLC) overall survival at one institution and validate it
at a remote institution in a distributed fashion. We included two of
the NSCLC subject cohorts used by Aerts et al. [2], however, with
independently reviewed annotations (tumour delineations) and
extended follow-up times for overall survival. We did not select new
radiomic features, and instead used the four features corresponding
to those described previously in the original publication, but using
a different software implementation (see materials and methods).
The first of these datasets (hereafter referred to as “Lung1”) [1] was
generated at Maastricht University, which was used exclusively
for model training, thus obtaining coefficients for a four-feature
signature in ZS2019. The second of these datasets (hereafter “Lung2”)
was generated at Radboud University remains in a private hospital
collection that could not be shared publicly for privacy reasons;
Lung2 was used exclusively for model validation.

13.2 RESULTS

Cohort summary information was exchanged through private
discussion between the collaborating investigators, prior to
performing this study. This was to confirm that general characteristics
were comparable between the updated cohorts. This is shown
in Table 13.1. None of the information contained in Table 1 was
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used in the model. There was a slightly higher proportion of
patients with metastatic disease in Lung2 (10% vs 1%) compared to
Lung1. The most common histology types in Lung1 were large-cell
and squamous-cell carcinomas, whereas adenocarcinoma and
squamous-cell carcinoma were most common in Lung2. The median
follow-up time, the median survival time and the overall 2-year
survival rate were similar in both cohorts. We evaluated ZS2019
for 2-year overall survival using multivariable logistic regression.
The area under the receiver operating characteristic curve (AUC)
discrimination metric was 0.61 (95% confidence interval: 0.54 to
0.69) in the Lung2 validation cohort. Distributed learning code for
Cox regression in MATLAB (MATLAB 2016a, Mathworks, Natick
MA, USA) was deployed via the PHT infrastructure connecting
MAASTRO Clinic and Radboudumc. We retrieved anonymous
event timepoints and thus compiled Kaplan-Meier curves for overall
survival in each of the training and validation cohorts (in Fig.
13.2). Within each cohort, the subjects were stratified into two risk
groups, based on the median of the risk score distribution in Lung1.
Stratification of survival curves by ZS2019 in the validation cohort
was quantified via a Harrell Concordance Index (HCI) of 0.58, and a
95% confidence interval from 0.51 to 0.65. The discrimination was
statistically significantly different from random (p¡0.0001) based
on a bootstrapped Wilcoxon estimation. We performed the same
bootstrapped Wilcoxon estimation between the mean HCI of model
ZS2019 (0.58) and the HCI previously published by Aerts et al. (0.65)
[2], and found no evidence of significant divergence (p=0.37). We
confirmed that the same ZS2019 result was obtained when trained
centrally on Lung1 and validated in Lung2. The analysis is given
in a Python v3.6 JuPyter notebook that is made publicly available
(https://gitlab.com/UM-CDS/distributedradiomics). The
central data approach yielded a HCI of 0.58 with a 95% confidence
interval estimated by bootstrap sampling to be 0.53 to 0.64.
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Figure 13.1: The clinical case-comparison for the training cohort (Lung1) and
the validation cohort (Lung2). The abbreviations are: (GTV) is Gross Tumour
Volume delineated on the radiotherapy treatment planning computed tomog-
raphy image, (Clinical T) is the tumour staging, (Clinical N) is the node stag-
ing and (Clinical M) is the metastasis staging, respectively, according to the
TNM tumour classification system.
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Figure 13.2: The performance of radiomic signature ZS2019 according to
Kaplan-Meier survival analysis. The signature was developed in Lung1
(MAASTRO; black line) and then distributedly validated in Lung2 (Rad-
boudumc; red line). The upper and lower survival curves were split accord-
ing to the median of the Cox regression linear predictor from the Lung1 data,
and applied to both Lung1 and Lung2 data. The Harrell concordance index
in the test cohort was 0.58, the log-rank test yielded a p-value of 0.09 and the
Wilcoxon test gave p-value<0.0001.
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13.3 DISCUSSION

In this paper, a model (ZS2019) derived from radiomic features
and overall survival locally within one institution was able to be
exchanged inter-operably with an external institution, without
mandating any transfer of either images, feature values or clinical
outcomes at the individual subject level. This is an essential and
unique contribution to radiomic investigations, because we hereby
demonstrate the concept for carrying out multi-centre radiomic
studies with fully decentralized data. The results obtained with
decentralized data were the same as if all the data had been
brought into the same location. However, the unique advantage
of our approach is that no one party needs to risk breaking patient
confidentiality by exposing the original data to another party.
Each institutional data owner retains complete control over their
privacy-sensitive patient data, and decides what they wish to
share for a collaborative project. We foresee that public access
to the updated Lung1 dataset, accessible together with open
source radiomics software code, encourages re-use of the data for
validating models, investigating radiomic feature generalizability
and deep-learning for image analysis. To learn effectively across
institutions, it is essential that the investigation should be led by
clinical experts. Our approach does not bypass the need for human
experts to communicate extensively before commencing a study, in
order to establish consensus on: (i) what is the clinical question to be
addressed, (ii) relevant inclusion and exclusion criteria, (iii) which
datasets are appropriate for answering the question and (iv) how
to define the radiomic features and outcome concepts. With respect
to handling errors and discrepancies for a distributed radiomics
study, it is essential that each data owner takes responsibility for
curation and quality assurance of the data, such that it conforms to
the agreed consensus. Where errors are detected, it is only the owners
of the data that are able to review, contextualize and correct their
own data. In this study, both sites used the same feature extraction
software, PyRadiomics. We retained the step of attaching metadata
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to the features using the Radiomics Ontology so that, in future, sites
might be able to use different software but can still understand
each other because features having the same metadata labels from
this ontology will be unambiguously defined as being semantically
identical. Besides applying an ontology, this also requires the different
Radiomics feature extraction software to use the (exact) same feature
calculation method. The approach of making data FAIR using
semantic ontologies has the benefit of allowing each data owner
to keep their own native language and annotation conventions in
the original data. No syntactic harmonization of the data below
the level of the FAIR station needs to be enforced, and no data
code-books need to be exchanged. The only prerequisite here is
that partnering institutions must follow their consensus agreement
to label the comparable outcomes and equivalent radiomic features
with the same unique identifier from the same domain ontology. To
develop ZS2019, we attempted to follow, as closely as possible, the
approach adopted in the original publication. The HCI and AUC
results we reported above were built using radiomic features that
might not be optimal for the updated datasets, because we chose to
use the four features with names corresponding to those described
previously in the supplementary material of the prior study [2].
Development of an optimal radiomic signature for NSCLC overall
survival would require a detailed re-examination of features and
feature selection in the updated datasets, which is not the primary
objective of the present study. The PHT approach utilises existing
data to answer key questions in personalised healthcare, preventive
medicine and value-based healthcare. PHT is one of a number of
innovative approaches (DataSHIELD28 and WebDISCO29) where
the research question is coded as machine-learning algorithms
sent to wherever data may reside, instead of centralising all of the
data at one location. This is achieved by (i) creating FAIR data
stations, (ii) creating “trains” containing the research question as
a machine-learning algorithm and (iii) establishing “tracks” to
regulate the trains and securely transmit them to data stations. The
PHT is thus a “privacy-by-design” architecture, since it enables
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controlled access to heterogeneous data sources for clinical research.
This respects data protection and personal privacy regulations, and
requires active engagement of data owners in the process. We used
Semantic Web standards to make radiomic features and outcome
data available as FAIR stations in keeping with our trains metaphor.
This included locally storing radiomic features and outcome states
in Resource Description Format (RDF), and allowing semantic
interoperability using a combination of the Radiomics Ontology and
Radiation Oncology Ontology. The benefit of Semantic Web is to make
distributed learning possible even if the underlying implementation
of data extraction and storage differs between sites. The RDF standard
makes it unnecessary to first know the internal structural organization
of a remote database in order to successfully execute a local data
retrieval query. Furthermore, as the diversity and complexity of the
data within the FAIR stations increases in the future, an RDF triple
store approach is sufficiently flexible to describe arbitrarily complex
concepts without the need to redesign the database. Use of the
Varian Learning Portal (VLP; Varian Medical Systems, Palo Alto,
USA) was of benefit for distributed radiomics, because the software
had already implemented the essential technical overheads (logging,
messaging and internet security) required for such distributed
studies. This included underlying legal agreements between the
parties and Varian, that makes distributed radiomics more scalable
since one does need to revisit these common aspects above for each
project. The VLP system had no effect on the mathematical results of
our study because it was purely a way for us to securely transmit
learning algorithms and trained models. Alternatives to VLP such as
DataSHIELD (http://www.datashield.ac.uk)[26], WebDisco
(https://omictools.com/webdisco-tool)[17] and ppDLI
(https://distributedlearning.ai/blog) may also be used
for distributed radiomics. The differences between the present study
and the original study may be traced to: (i) the original Matlab code is
commercial confidential and not available to the authors, so we used
PyRadiomics developed by van Griethuysen et al. [23] as a practical
alternative and (ii) we tried our best to replicate the original method
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using the documented steps in the original manuscript, but we also
improved the survival follow-up such that many right-censored
events were now confirmed deaths.

13.4 CONCLUSION

This study demonstrates the proof of concept for multi-centre dis-
tributed radiomics investigation without exchanging individual-level
data or medical images using the PHT infrastructure. The results
showed that the proposed decentralized approach achieved the
identical results as the fully centralized approach. Moreover, we
performed a radiomics study where data was stored in the FAIR
station at the institute rather than publishing as open-source. Finally,
the work of this study may be used as the basis for other types of
radiomics studies such as binary classification or regression, not only
limiting to survival analysis.

13.5 METHODS

13.5.1 Patients

Subjects in this replication study were from the same cohorts of
non-small cell lung cancer (NSCLC) patients previously treated
with (chemo-)radiotherapy at MAASTRO Clinic (MAASTRO) and
Radboud University Medical Centre (Radboudumc). These were
previously labelled by Aerts et al. [2] as cohorts “Lung1” and
“Lung2”, respectively, and the same nomenclature is followed in this
study. The Lung1 cohort (n=421) was used only for fitting of model
coefficients, and Lung2 (n=221) was exclusively used for external
validation.
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13.5.2 Tumour delineations

Radiotherapy treatment planning DICOM CT images and physician-
delineated primary NSCLC tumours as RT structure sets were used.
From 422 available, 34 cases were found to have a reference frame
translation between the image and delineation due to incorrect cod-
ing of the treatment couch height offset in the planning system; these
have been rectified for the TCIA collection. Only 1 patient was post-
operative radiotherapy, so this case was excluded from any further
analysis, leading to 421 eligible cases in Lung1 for model training. In
the Lung2 cohort, there were initially 267 subjects available. A check
against delineation criteria found 221 eligible primary tumours for ra-
diomic analysis. The other 46 patients had either gross tumour vol-
umes including lymph nodes, or were cases with neoadjuvant treat-
ment or had no primary tumour in the list of structures.

13.5.3 Outcomes

Updated follow-up intervals in early 2018 with recent dates of death
were obtained with ethics board permission from the Dutch citizens
registry. As expected, the number of registered deaths in Lung1 and
Lung2 had increased significantly since the original publication. The
time intervals from date of first radiotherapy fraction to date of either
registered death or last known survival were updated in both Lung1
and Lung2.

13.5.4 Data processing

The study steps are shown schematically in Fig. 13.3 for MAASTRO
and Radboudumc. The core of the radiomic feature extraction
process utilizes free and open-source PyRadiomics [2] (v1.3)
libraries. Software wrapper extensions collectively known as
O-RAW (https://gitlab.com/UM-CDS/o-raw) were used
to convert DICOM objects into numerical arrays as inputs for
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Figure 13.3: A schematic diagram explaining the primary methodology for
survival analysis used in this study. Details have been provided in the text.
Briefly, radiomics features were extracted locally by each institution and then
labelled with the radiomics ontology. We then trained a Cox regression model
on Lung1 (MAASTRO) and then validated on Lung2 (Radboudumc) by dis-
tributing the learning algorithm through the Varian Learning Portal (VLP).
Only the event coordinates required to plot a Kaplan-Meier survival curve
was returned to MAASTRO, without any identifiable patient-level data.

PyRadiomics; these were based on the SimpleITK (v1.0.1) toolkit
[16]. The original MATLAB scripts used by Aerts et al. were not
accessible to the current authors. The open source PyRadiomics
was developed independently of this MATLAB code, and was
based on the original study from Aerts et al. The PyRadiomics
community has documented and standardized the feature calculation
formulae (https://pyradiomics.readthedocs.io). The
image pre-processing methodology was the same as in the original
publication2; an extraction intensity bin width was set at 25
Hounsfield Units with no image resampling and no image intensity
normalization. The coif1 wavelet package from the pywavelets library
(v0.5.2, https://github.com/PyWavelets/pywt) was used to
generate wavelet features with a starting bin edge of 0. All of these
settings are the default in PyRadiomics. For the development of
ZS2019 we did not select new radiomic features, and instead used the
four features with names corresponding to those described previously
in the supplementary material [2] that accompanied the original
publication:

• Energy from the intensity histogram feature class, which esti-
mates the overall density of the region of interest,
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• Compactness from the morphological feature class, which
describes the volume of the object relative to that of a perfect
sphere,

• Grey level run-length matrix (GLRLM) non-uniformity from the
textural feature class, which is a measure of intensity heterogene-
ity averaged over 13 different directions in a 3D matrix of values,
and

• Wavelet-filtered (HLH) GLRLM non-uniformity, which was the
same as (iii) after applying a wavelet decomposition filter over
the original image.

In our work, the feature “compactness” had been deprecated in PyRa-
diomics, so we derived the mathematical equivalent of compactness
by taking the cube of the shape feature “sphericity” (see formulae in
Table A of Supplementary Materials).

13.5.5 Semantic web ontologies

Semantic Web technologies and ontologies play a key role
in distributed learning by enabling semantic interoperability
between data from multi-centres. In this study, radiomic features
and clinical data were defined by a Radiomics Ontology v1.3
(https://bioportal.bioontology.org/ontologies/RO)
and a Radiation Oncology Ontology [22], respectively. We elected to
use the published open access Radiomics Ontology, that identifies
radiomic features via a globally persistent unique identifier and
allows us to attach important dependencies, such as digital image
pre-processing steps, directly to each given feature. Though radiomic
features definitions have been defined by previous investigators, our
contention is that human-readable labels alone may not always be
easily extensible to define dependencies such as software versions,
image pre-processing steps and mathematical implementation of
the feature. For example, to avoid conflation between features
labelled “entropy”, the IBSI distinguishes between Intensity
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Histogram Entropy (unique ID=TLU2) and the textural feature
Joint Entropy (unique ID=TU9B). The Radiomic Ontology allows
extensible and adaptable declaration of radiomic feature provenance
by publishing it as a data graph object. Therefore, independent
researchers (in the aforementioned example) who have computed
Joint Entropy may use the SPARQL federated query language
(https://www.w3.org/TR/rdf-sparql-query) on feature
graphs to also probe for similarities in imaging setting, pre-processing
methods, and suchlike. We hypothesise that the data graph based
approach is more scalable than pairwise cross-referencing of multiple
dictionaries of feature definitions.

13.5.6 Distributed approach

The VLP distributed learning architecture has been described in deep
detail elsewhere [12][11][6]. In brief, VLP consists of (i) a global
web-based clinical learning environment that spans across any
number of participating institutes for a given learning project, and
(ii) a local connector application that runs exclusively inside the IT
firewall of each institute. The former coordinates access permission,
asynchronous messaging, web security and site privacy protocols
across the learning network, while the latter hosts a local FAIR data
repository. Radiomic feature values were hosted in the respective
VLP local connector application (v2.0.1) as RDF. Authenticated
and verified (e.g. encrypted digital signature) machine learning
packages are distributed via the global part of VLP, then picked up
and executed on the RDF data via the local connector part. Only the
statistical summary result of the computation, not any identifiable
patient data, is thereafter passed back to the instigator via the global
VLP part. Any process that had executed within local firewalls remain
permanently quarantined from the global part.
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13.5.7 Model training

The Lung1 radiomic feature values were log-transformed and then
scaled to z-scores. A multivariable Cox proportional hazards model
for overall survival (with removal of right censored subjects not
yet deceased) was then fitted using all of the available subjects in
the training cohort. The median risk score in the training cohort
was recorded and thus used to stratify the training population into
two risk groups. The fitted Cox model coefficients, the median
risk score and the z-score transformations from the training cohort
were packaged as self-contained validation application, which
was then transmitted via VLP to Radboudumc. At Radboudumc,
the application queried the local RDF repository for the radiomic
features, then applied the same log-transform of raw feature values
and the same z-score scaling as had been executed on Lung1. For each
available validation subject in Lung2, the risk score was computed
and stratified according to the median risk score of Lung1. A flat table
of individual timepoints and death/censor events was sent back via
VLP to MAASTRO.

13.5.8 Cox model evaluation

Anonymous timepoints for Kaplan-Meier survival curves were
retrieved over the PHT infrastructure. Risk scores were stratified into
two strata according to the median value in the Lung1 population. A
Harrell concordance index (HCI) [9] implemented using the python
lifelines package (v0.14.4) was used to quantify discrimination
performance using the retrieved timepoints. The log-rank method
[34] was used to calculate a chi-squared test statistic and p-value
for the significance of the discrimination. To assess if the survival
model had any value beyond random discrimination (null hypothesis:
c-index=0.5), we used a two-sided Wilcoxon test with a bootstrap
approach on 100 repeated sub-samples of 100 patients per repetition
from Lung2.

380



13.5.9 2-year overall survival

A multivariable logistic regression model for 2-year overall survival
was developed on Lung1 then validated on Lung2 using the aforemen-
tioned four features. The area under the curve of the receiver operat-
ing characteristic was used to assess the discrimination. The bootstrap
method (1000 times) was used to estimate a 95% confidence interval
around the mean AUC.
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Chapter 14. From multisource data to clinical decision aids in
radiation oncology: the need for a clinical data science community

Abstract
Big data are no longer an obstacle; now, by using artificial intelligence
(AI), previously undiscovered knowledge can be found in massive
data collections. The radiation oncology clinic daily produces a large
amount of multisource data and metadata during its routine clinical
and research activities. These data involve multiple stakeholders and
users. Because of a lack of interoperability, most of these data remain
unused, and powerful insights that could improve patient care are
lost. Changing the paradigm by introducing powerful AI analytics
and a common vision for empowering big data in radiation oncology
is imperative. However, this can only be achieved by creating a
clinical data science community in radiation oncology. In this work,
we present why such a community is needed to translate multisource
data into clinical decision aids.
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14.1 INTRODUCTION

14.1.1 The clinic as a learning health care system

Many large commercial enterprises are redirecting their business ap-
proaches to exploit the new knowledge they can gain from the data
they collect daily. This strategy arose from the need to mine a large
amount of diverse data, often unstructured and coming from multi-
ple sources: so-called “big data.” Whereas initially big data seemed to
present an obstacle, now it is becoming more evident that leveraging
massive data collections using novel techniques can reveal previously
undiscovered knowledge [25][17]. These techniques include analytic
methods spanning from traditional statistics and hypothesis testing
to more advanced algorithms inspired by machine learning (ML), a
branch of artificial intelligence (AI), in which powerful computational
systems augment our brain’s learning capacity by employing complex
mathematical algorithms to reveal patterns in data, mainly for the pur-
pose of generating new knowledge [6][31]. AI is not a new concept
in oncology. Recent reviews described two major applications of AI
in the medical field: automation and decisions’ augmentation[2][27].
The former includes applications such as auto contouring of both or-
gans at risk (OAR)s and target volumes; the latter covers the whole
spectrum of decision support systems. However, by comparing ap-
plications in the enterprise domain, AI is often referred to as “data
analytics”. In this view, two powerful applications of AI in medicine
are often forgotten, namely the ability of AI to retrieve data belonging
to multiple sources and spread across different locations. Most of the
big-companies’ data analytics include powerful tool that can collect
data from multiple sources, such as for example social media or health
wearables. This part of AI is very useful, because of the intrinsic na-
ture of multisource data: they are sparse and unstructured. The second
powerful aspect of AI is that, after having retrieved multisource data,
automated QA can be performed. This aspect of AI is often forgot-
ten, but in radiation oncology data quality is fundamental for applying
AI in the clinic. After automated QA, which starts from unstructured
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data (often referred to as “veracity” of big data), data are transformed
into a network of knowledge, the so-called “linked-data”, resulting in
new knowledge. We believe this broader view of AI is key to a new
era in our healthcare systems. Translating this new learning paradigm
into radiation oncology will improve the classification of disease and
reveal new ways to improve cancer treatment and predict patients’
clinical events. Unfortunately, the radiation oncology community lags
far behind in the adoption of big data approaches for providing the
patient-centered, individualized care often referred to as personalized
medicine [48]. With the term radiation oncology community, we do
not only refer to radiation oncologists, but the extensive community
concerned with treating cancer patients with radiotherapy. The treat-
ment is rarely only consisting of radiotherapy but is often multimodal
and consisting of radiotherapy in combination with chemotherapy, im-
munotherapy and/or surgery involving multiple professionals such as
radiologists, pathologists, surgeons, medical physicists, and medical-
and radiation oncologists. While the community agrees that the fu-
ture of medicine as a whole and radiation oncology in particular is
in learning health care systems, where data are transformed into new
knowledge as part of clinical routine, there remain gaps in our ability
to rapidly learn from data generated in the clinic during the course of
patient care [2]. By definition a learning health care system is a system
that has been designed to generate and apply the best evidence gen-
erated from a collaborative effort among patients and care providers.”
The central point of a learning healthcare system is that knowledge
discovery becomes a natural outgrowth of patient care. A learning
healthcare system is meant to push forward evidence-based medicine
by: a) fast translation from knowledge produced in clinical research to
clinical practice; (b) empowerment of a shared responsibility culture
between the different stakeholders involved in the clinic; and (c) fa-
cilitating engagement of patients and doctors for evidence production
and dissemination[14]. In radiation oncology, we still mainly learn by
narrowing and simplifying our research questions, in the process often
moving them far from the complexity of real-world clinical practice.
For example, most support for clinical decisions comes from clinical
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trial data. On one hand, clinical trials can provide high-quality data,
but on the other hand, they have several major drawbacks: a) their
exclusion of patients with complex cases that do not fit their strict in-
clusion criteria; b) their narrow focus on just one research question or a
limited number of questions that often determine the choice of collect-
ing specific variables; c) their high cost; d) the long time required to
recruit sufficient patients to reach statistically significant results; and
e) their infrequent exploration of how combinations of several factors
might influence patients’ outcomes. Conversely, patients produce a
vast amount of data, from diagnosis to treatment and follow-ups. Only
a small percentage of this data is actively used to produce new insights
that can push our clinical practice and lessons learnt from clinical tri-
als towards personalized medicine. In this view, big data empowered
with AI is not a strategy to substitute randomized clinical trials, but
rather a strategy to augment the knowledge from clinical trials. For ex-
ample, AI can be used to explore multisource big data to better stratify
patients and optimize clinical trials enrollment by defining group of
patients for which the introduction of a new treatment is more likely
to be found beneficial. Finally, by leveraging multisource big data a
large spectrum of prognostic as well as confounding factors can be
examined. This data integrates and considerably expand the original
collections from randomized clinical trials. A recent communitarian
effort is being carrying on boosting the efficacy of RCTs. This effort
foresees the possibility to increase the “pragmaticism” of RCTs. A de-
tailed review [23] pointed out the prominent role of AI in supporting
this translation. By combining the expertise brought by clinical data
scientists and medical doctors it is possible to use robust, validated
and well understood AI tools to improve trial success rates starting
from trial design and preparation (e.g. a better recruitment strategy) to
execution.” A recent investigation providing updating guidelines for
more “pragmatic” RCTs, the SPIRIT-AI [53], is supporting the above-
mentioned transition and it is currently adopted in recent clinical trial
protocols that included AI-driven intervention. These guidelines were
needed considering the increasing number of RCTs making use of AI
tools. It is important to highlight how specific attention and dedicated
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methodologies need to be adopted when performing casual inferenc-
ing from both randomized clinical trials and multisource data [55]. The
same issues that exist for casual inferencing from observational stud-
ies, such as the presence of confounding factors, sampling selection
and cross-population biases also exist for inferencing from aggregated
data (e.g. multisource data). A recent study [3] recommended the ex-
tension of parametric causal inferencing mathematical models specifi-
cally developed for clinical trials to non-parametric models specifically
developed for aggregated data. The authors claimed that this method-
ology cannot be separated from the AI analytical tools used to process
that data. This is indeed a key point, which need to be combined with
the need of improving data quality (see coming statements) for robust
casual inferencing. The fuel of a learning health care system in radia-
tion oncology is the data that are generated every day in the clinic. This
requires us to reimagine the clinic as a source of big data. Currently,
most of the big data generated in the clinic are wasted as a source of
research because we have been unable to equip the clinic with big an-
alytics. Nevertheless, we cannot support a learning paradigm in ra-
diation oncology solely by borrowing technologies from other fields,
such as business enterprises. The path towards a learning health care
system in radiation oncology needs to pass several milestones, which
are summarized in Figure 14.1. All these milestones represent shifts in
our concept of traditional clinical medicine. These milestones are:

• M1: Understanding the clinic as a source of big data: Where do
the data come from and why are the data “big?” Data are not only
produced directly by daily routine clinical activities, but also in-
directly, for example when researchers process clinical data. This
produces a combination of data and metadata, which are logi-
cally connected but might be sparse, even within the same insti-
tution. Combining and reunifying these data is the largest chal-
lenge to be tackled.

• M2: Identifying data types and involved stakeholders. The gen-
eration of multisource big data involves different professions and
users. It is fundamental to identify not only the users and stake-
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Figure 14.1: Overview of the milestones for moving the clinic towards a learn-
ing health care system. Five milestones have been identified. Milestones 1
and 2 involve developing a deep understanding of clinical data as a source of
big data and metadata and the need to involve stakeholders and users and to
address issues that limit data interoperability. M3 introduces robust and col-
laborative AI-driven analytics for the development of clinical decision aids.
M4 introduces a new clinical data science community for radiation oncol-
ogy to harmonize existing initiatives and define a code of conduct. M5 intro-
duces a patient-centered view and decision-making processes for the learning
health care system.
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holders of these data but also the major constraints that limit the
interoperability of these data. Interoperability and data house-
keeping are the keys for boosting data quality. High-quality data
will have a strong impact on the robustness and integrity of our
data-driven clinical decisions.

• M3: Defining which data analytics can be used to extract unique
insights from multisource data. After we learn how to correctly
retrieve, curate, mine, and combine multisource big data, it is
possible to use AI as the engine to burn the data fuel. However,
use of AI per se does not guarantee success. Strong transparency
and robust methodology will enable meaningful applications of
AI to discover new knowledge in the data. This methodology
should comprise both analytics for verifying data quality, as well
as methods for tackling the issues related to causal inferencing
from aggregated data.

• M4: Defining working statements and a code of conduct to
rapidly translate data analytics into the clinic as decision aids.
To fill the gap between AI developments and their translation
into the clinic as decision aids, a global effort to involve all the
professional figures, stakeholders, and users identified at M2 is
needed. This effort requires the creation of a clinical data science
community in radiation oncology. Such a community would not
replace previous efforts or already-existing focused work and
task groups, but instead act as a harmonizer by defining a code
of conduct and a shared vision.

• M5: A patient-centered learning health care system. The brand-
new learning health care system has to be made patient-centered
by a) developing AI analytics to include patient perspective data;
b) improving the expandability of AI analytics, and c) using de-
cision aids in combination with shared decision making.
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14.1.2 Multisource data, data types, and stakeholders (M1 and
M2)

The clinic is a source of big data. Common data types include medi-
cal images, electronic health records (EHRs), and patient-reported out-
comes [59]. However, the clinic also indirectly produces metadata as-
sociated with traditional data types from the algorithms that process
data. Examples are quantitative imaging biomarkers and radiomic
data (large amounts of features extracted from medical images and an-
alyzed using data characterization algorithms), which generate predic-
tive or prognostic factors from source data. In Table 14.1, we summa-
rize the main types of these highly variable multisource data and pro-
vide descriptions of the commonly available formats, the data owners,
stakeholders, and users, and issues with or barriers to interoperability
of the data.

14.1.3 AI to empower multisource data (M3)

One of the largest issues faced when dealing with multisource big
data is that the ability to process these data is beyond our human
brain capacity. However, recent developments in AI algorithms have
emerged as attractive and much-needed tools to empower multisource
data analysis. AI and ML have created opportunities to build pow-
erful computational facilities and a surge in data sharing, data col-
lection, and advanced data mining algorithms. The use of ML algo-
rithms in radiation oncology is rapidly growing; their main applica-
tions are quality assurance, organ segmentation, treatment planning,
image guidance, motion tracking, and treatment response modeling.
However, radiation oncology has not yet fully exploited the enormous
potential of AI for analyzing multisource data that integrate variables
from time-dependent sources, such as sequential quantitative imaging
or genetic biomarkers. These developments could change the classi-
cal paradigms for radiotherapy by automating and optimizing clinical
processes and quality control to provide decision support for person-
alized patient care, for instance by altering radiotherapy prescriptions
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Figure 14.2: Summary of the main data types available for multisource data
analysis. Abbreviations: EHR, electronic health record; PET, positron emis-
sion tomography; CT, computed tomography; CBCT, cone beam computed
tomography; MRI, magnetic resonance imaging; TPS, treatment planning
system.
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and fractionation schedules. Hence, AI-based analysis of multisource
data could dramatically change the way radiotherapy is approached
and will likely play a central role in the future development of per-
sonalized, precision medicine. Despite the great potential of AI, the
current situation in radiation oncology is that only a small percentage
of the data collected is used for decision-making in the clinic owing to
several obstacles that hinder the sharing, processing, and deployment
of data in the clinic. By throwing these data in the “trash,” we risk los-
ing unique insights that could radically change our clinical practice.
We need to realize that human capabilities are not sufficient to process
big clinical data and that clinicians need the help of AI to fully translate
the large amounts of data collected in the clinic into decision-making
about routine clinical practice. Artificial intelligence in clinical care is
recently being recognized as a medical device by the FDA, with appli-
cations spanning from medical imaging analysis, clinical decision aids
and tools to optimize patient care[28][24]. These applications not only
apply to the USA, but similar evidence is seen in Europe and Asia.
The FDA has developed a complete product lifecycle for AI applica-
tions, like what was conceived for medical devices[8]. A nice example
of combining big data with AI is presented in the study by Mayo et al,
where a decision support system is used to improve dose delivery to
spare health tissues [38].

14.1.4 A patient-centered clinical data science community in
radiation oncology (M4 and M5)

The key to success at achieving the above-mentioned milestones is the
creation of a new community: one focused on clinical data science in
radiation oncology. Because multiple stakeholders are involved, the
problems of big data cannot be solved by only one professional disci-
pline; instead, they will require a joint effort bringing together broad,
multidisciplinary expertise and including clinicians, medical physi-
cists, data scientists, biologists, patients, and other stakeholders. How-
ever, instead of proposing an independent community, we recommend

401



Chapter 14. From multisource data to clinical decision aids in
radiation oncology: the need for a clinical data science community

building upon already-existing working groups and task groups that
touch these professional roles. To coordinate these communities and
working groups and to speed the realization of a learning health care
system, we propose the development of a collection of statements and
a code of conduct. Finally, we underline the importance of introduc-
ing tools that enable not only the collection and elaboration of data
reporting patients’ perspectives, but also a synergy between clinicians,
decision aids, and patients.

14.1.5 Vision and statements

With this position paper, we offer a basis for shifting the current
paradigm in radiation oncology towards the clinic as a learning health
care system. In the subsequent sections of the paper, we will elaborate
on five supporting statements that are fundamental to reach the above
milestones. For each statement, we have identified already-existing
activities, efforts, or smaller communities that will be our main
interlocutors in coordinating these efforts within the community. An
overview of the statements is provided in Figure 14.3.

Statement 1: FAIR principles for data management plans

Over the past ten decades, numerous patient registries and databases
have been established worldwide. However, few people know of their
existence, let alone how to access the information in them. This lack of
exposure and accessibility limits the power and, hence, the potential
benefits of ML/AI tools, since a model’s performance directly corre-
lated with the amount of information it learns (trains) on, as seen in
Statement 4. The need to improve the infrastructures that support the
use and reuse of all these pieces of information (multisource data) in
their respective silos is therefore paramount. To lay the groundwork
for accomplishing this, a diverse group of stakeholders—both private
and academic—jointly designed a set of principles referred to as the
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Figure 14.3: Overview of the vision of the community, the milestones and the
code of conduct statements.
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FAIR data principles [65]. The FAIR principles urge that all data sets
should be FAIR: findable, accessible, interoperable, and reusable, while
respecting data privacy and patient confidentiality principles. The goal
is to improve data (re)use by providing detailed metadata descriptions
that are readable to both humans and machines, thereby making data
findable, accessible, and interoperable. Therefore, for multisource data
to work as intended, all data sources must adhere to the FAIR Guid-
ing Principles and respect data privacy and confidentiality. With the
dawn of this new, data-centric era, data can be regarded as the new
oil. Like crude oil, which differs in its physical and chemical charac-
teristics from region to region, data also differs from one source or for-
mat to another. Because multisource data stem from various sources
and are collected using various methods, information can be incom-
plete, inconsistent, biased, or imprecise. Therefore, in using multi-
source data, answers to the following five W-questions will facilitate
the transparency of the data-generation procedure:

• Who generated the data?

• Why were the data generated?

• When were the data generated?

• Where were the data generated?

• What generated the data?

The phrase ”you are what you eat” applies not only to humans but
to models as well. The data science implication of this axiom means
that when a model feeds (trains) on ”bad” data, the resulting model
is inevitably bad—in other words, less accurate—and the converse is
almost always true. Therefore, no matter how complicated a model
might be, it will never catch extra information in the data more effec-
tively than a simple, explainable model would. Ensuring the integrity
and quality of multisource data is even more essential if inferencing
is envisaged. In a multisource AI-driven radiotherapy system, clear
guidelines need to be laid out for data stewardship. The health care or-
ganization should incorporate metadata containing data provenance at
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the source, and proper data lineages should be maintained at all stages
of data management. Adopting health care standards that address
data stewardship at the source and enable an audit trail from data ac-
quisition to data curation will ensure better traceability for AI mod-
els. Finally, data must be interoperable. Data from one source should
be semantically as well as syntactically interpretable across different
systems. Health care data structure and exchange standards like HL7
FHIR, OHDSI OMOP, and XDS provide the means to structure data in
globally acknowledged and accepted formats. Use of clinical coding
terminology systems and vocabulary (WHO ICD, ICF, SNOMED CT,
LOINC, etc.) should be encouraged. The focus of adopting these stan-
dards should be to make the implementations of shared terminologies
and vocabularies as generic as possible while permitting specificity as
needed. In all cases, including those in which adoption of a health care
data exchange standard is not possible, data should be sufficiently sup-
ported by metadata.

Data quality and effects on AI applications

Data quality assurance is an essential exercise at all stages of data cu-
ration, although the definition of “quality” is context dependent and
adopting a single measure to gauge quality is challenging. The ele-
ments of data quality are accuracy, completeness, consistency, credi-
bility, and timeliness. By accuracy, we mean that the intended value
of the data is both correct and unambiguous. A very preliminary way
of ensuring accuracy at the source is by using validation rules at the
time of data acquisition. However, as data are shared across domains,
a validation rule can itself become inconsistent, thereby increasing the
chance of the data’s being inaccurate. Jack Olson, in his book Data
Quality: The Accuracy Dimension, argues that data can never be 100%
accurate [49]. This is because the content of data can be validated
against permissible values but not against the actual occurrence. He
gives the example of how the value “brown” for eye color can be a
valid entry but not an accurate one, simply because the person’s eye
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color may actually be blue. Thus, inaccuracy can create bias in AI
systems that may affect clinical outcomes. However, the very AI sys-
tems that demand quality data for better decision support may in fact
contribute to improving the quality of data at the source. While AI is
largely seen as a tool to extract value from data, it can also act as an
instrument to add value back to the data.

Statement 2: Standardization of methodologies

Standardization of radiomic algorithms

The lack of standardization in image processing methods and quanti-
tative radiomic feature extraction, as well as the lack of validated and
verifiable reference values, is hampering the clinical implementation
of quantitative radiomic imaging biomarkers [68][15]. A lack of stan-
dardized, consistent, clear, and sufficient detail in reporting radiomic
features, in addition to intrinsic issues with repeatability and repro-
ducibility [60], make radiomic findings difficult to reproduce [69] and
trust. Standardization of radiomic algorithms and image processing
pipelines is essential for the development of the field and should be
strongly encouraged. The approach proposed by the Image Biomarker
Standardization Initiative [70], which includes the standardization of a
set of 174 radiomic features, the definition of a general radiomics image
processing scheme, and the publication of imaging data sets and ref-
erence feature values (https://theibsi.github.io), is the most
advanced effort to date. It is expected to continue and to be widely
accepted and used in the future [20].

Standardization of image acquisition and phantoms

To be useful, quantitative imaging biomarkers must be both repeatable
and reproducible [46]. Radiomic features are affected by acquisition,
reconstruction, and image preprocessing settings [18][37][36][9][63].
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This applies to all imaging modalities. Standardization and harmo-
nization of imaging procedures are essential requirements for the de-
velopment of robust, repeatable, and valid imaging biomarkers. The
standardization of imaging protocols for all imaging modalities (com-
puted tomography [CT], magnetic resonance imaging, magnetic reso-
nance spectroscopy, single-photon emission CT, and positron emission
tomography) should be strongly encouraged within the same institu-
tion and across different institutions, as it would facilitate the inter-
operability of quantitative imaging biomarkers [22][13]. This would
be particularly important when assessing treatment or tumor response
on a large scale and as part of clinical trials [45]. The standardization of
imaging protocols should be accompanied by the development of new
phantoms specifically designed to address the challenge of providing
reproducible reference values for textural features [37].

Standardization of nomenclature within the radiation oncology
community

The adoption of a standard radiation oncology nomenclature would
enable and facilitate extraction and sharing of all types of data
from EHRs across different institutions, states, provinces, countries,
and continents. Such a standardized nomenclature would support
large international clinical trials, ease collaborations across borders,
and contribute to improvements in clinical practice and patient
care [41]. Moving forward, it is essential that new clinical trial
protocols use standardized nomenclatures for capturing their data.
The question remains which standard nomenclature should be
used. At present, the standardized nomenclature for radiotherapy
proposed by the American Association of Physicists in Medicine
(AAPM) Task Group (TG) 263 [39] seems to be the most likely
standard to become accepted and widely used. The Global Quality
Assurance of Radiation Therapy Clinical Trials Harmonization Group
(https://rtqaharmonization.org) has recently unified the
contouring of organs at risk by compiling, in line with AAPM TG 263
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and the American Society for Radiation Oncology (ASTRO), guidance
for delineation and a standard nomenclature for integration into
clinical trial protocol [41].

Statement 3: Privacy-preserving collaborative big data infrastructures

FAIR data principles ensure that data are syntactically and
semantically interoperable, thereby promoting seamless data sharing
among health care providers. While sharing patient-level data for
better decision making is important, protecting patient privacy is
essential. Ethical, legal, and societal issues regarding data sharing bar
hospitals and clinics from sharing data. When there is too little data
shared, ML and AI technologies starve themselves with little or no
data. However, if we cannot bring data to the algorithms, it is possible
to send algorithms to the data. Infrastructures built around these data
silos can connect and provide a way to send algorithms to the data
sources. While the data stays well protected within the jurisdiction of
the healthcare provider or the patient themselves, the algorithms via
the infrastructure can fetch results. This way privacy of patient data is
protected while at the same time, research is promoted. This section
explores big data infrastructures that enables privacy preserving
collaborative research. We talk about two types of infrastructure:
centralized collaborative big data infrastructures and federated
big data infrastructures. In centralized infrastructures, different
hospitals and healthcare providers enter a collaboration and upload
patient data to a secured centralized repository. Researchers can use
data from the repository either train their algorithms and perform
analysis. Additionally, the centralized repository can also provide a
compute environment where algorithms can be sent and computation
performed. A researcher initiating a data analysis process will have
no direct access to the data and can only retrieve the result of the
analysis. However, it is important to mention that the data will still
be located outside individual hospitals. As such, patient’s consent in
sharing data to a central repository and use for secondary purposes
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needs to be addressed properly. Another initiative, Informatics for
Integrating Biology and the Bedside (I2B2), aims to integrate data
from different biomedical disciplines and to deliver these data to
researchers. I2B2 provides tools and frameworks for merging and
linking genomic and biological data to clinical data in a health data
warehouse (https://i2b2.cchmc.org/) [12]. Similarly, the HMO
Cancer Research Network connects more than 11 million patient
records from 14 health care providers in a virtual data warehouse
(https://healthcaredelivery.cancer.gov/crn/). Federated
big data infrastructure emphasizes keeping the data at the source
while pushing the analytics to the source. Each hospital maintains a
local data repository to which researchers can send their algorithms
and from which they can fetch results. In a collaborative environment,
each hospital would act as an individual data provider, generating
sets of results that can then be aggregated to obtain global results.
An example is the Personal Health Train (PHT) [10]. PHT shifts
the focus from sharing data to sharing algorithms to the source of
the data, essentially within the jurisdictional environment of the
hospital. A researcher using the infrastructure is agnostic about the
data schema and distribution at the source and as such relies heavily
upon the FAIR data principles. Each hospital hosts a data station
containing FAIR data, and provides a computation environment
for the train (metaphor for package containing algorithms and data
retrieval query). PHT is platform independent and the researcher can
autonomously choose the technology for implementing the algorithm
(e.g., Python, R, Matlab, Java). The communication between the data
stations and researchers occurs through a secured and centralized
message broker. Study showed that PHT is scalable so that federated,
privacy-preserving analyses involving many thousands of patients
can be conducted [19][19][54][16]. Another example is DataSHIELD,
a collaborative and privacy-preserving data analysis environment
connecting multiple hospitals. This infrastructure enables researchers
to send algorithms to the data without having to retrieve data
locally. Unlike PHT, DataSHIELD sends algorithms packaged in the
R statistical programming environment to an Opal database hosted
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at each hospital. PCORnet is a network of several clinical research
institutes that supports pragmatic trials and comparative effectiveness
research across one or several of the participating institutes [42].
More recently, MedCO provided a privacy preserving federated data
analysis platform (https://medco.epfl.ch/). MedCO focusses
on keeping data at the source and provides multi-party homomorphic
encryption to all data sources, providing an additional layer of
security and privacy. OpenSAFELY initiative in the UK enables
trusted analysts to run large scale computation on pseudonymised
patient records inside environments managed by electronics health
records software company (https://opensafely.org). It is
important to mention that creating a collaborative environment
connecting many different hospitals and clinics while preserving
patient data privacy is a multifaceted challenge. Keeping data at the
source may not be sufficient when the amount of data is small. The
infrastructure needs to be adaptive, flexible, scalable, and secure.
It should be transparent to the patient and to society in general to
maintain trust. A balance between respecting privacy and creating
maximal societal benefits needs to be ensured. While the data need
to be FAIR, the analysis should be fair, accurate, confidential, and
transparent (FACT). Finally, it is important to acknowledge the
important role that legal and professional bodies have in ensuring
that there are appropriate legislative frameworks in place that public
and commercial stakeholders can adopt and follow. At the heart of
any centralized or federated multi-source data science initiative in
radiation oncology must therefore be full engagement with regional
data protection regulations such as those set out in the European
Union General Data Protection Regulations (GDPR), which are now
the cornerstone of data sharing initiatives in Europe.
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Statement 4: Involvement of clinicians in the data science community

The clinician is an essential member of the data science community

For decades, decisions in medicine have been based on clinical guide-
lines that are carefully developed and based on the highest-level ev-
idence from large randomized controlled trials. Recently, individual-
ized approaches to treatment have become an increasingly compelling
research area. This trend is particularly prominent in oncology, where
the discovery of new prognostic and predictive factors including vi-
ral infection, hypoxia signatures, driver mutations, and many others
has enabled more precise treatment selection to match the character-
istics of each patient and tumor [7]. However, greater personalization
makes generating level-1 evidence difficult, if not impossible, as the
number of matched patients in each subgroup decreases, ultimately
coming down to a single individual. Predictive modelling using AI
and multisource data offers a way to address this conundrum. The
multidisciplinary field of clinical ML attracts researchers from diverse
disciplines, including clinicians, computer scientists, medical physi-
cists, and biostatisticians. Unfortunately, these different research com-
munities often work in isolation, with separate jargon, specialized pub-
lications, and hermetic knowledge. Often, groups of scientists access
partial data but lack the full clinical context or a complete understand-
ing of the limitations of the data (e.g., embedded treatment effects)
because their expertise may not lie in the clinical domain. Thus, to
overcome these obstacles to the clinical implementation of AI tools,
close cooperation among specialties is mandatory. The role of clini-
cian is—and will remain—crucial to the clear definition of a relevant
clinical problem and the identification of appropriate prediction tar-
gets, e.g. biologically relevant mechanisms (hypoxia, gene expression)
or cancer- and treatment-specific outcomes like survival, relapse, and
treatment toxicity. Clinicians must be involved in both baseline data
review and model generation to detect garbage-in garbage-out situa-
tions arising from malformed or poorly designed models. Data sci-
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ence approaches often highlight previously known clinical factors that
are already used clinically to select patients for treatment, which can
confound the interpretation of outcomes data. AI models that detect
and latch onto novel details of individual patient cases are required
so that these approaches can supplement, rather than reiterate, cur-
rent clinical practice. Finally, and perhaps most importantly, clinicians
will be the end users of any deployed multisource-based ML tool; they
will be the ones to interpret the output of such tools to make responsi-
ble decisions about patient care and provide feedback to improve the
database. Most clinicians trust their own experience and intuitions de-
veloped over years of practice and might find it difficult to rely on a
model’s prediction, especially if they do not understand the reason-
ing behind it. Thus, close collaboration between algorithm developers
and clinicians is necessary to create models that clinicians can trust.
For example, many studies focus on the interpretability of data science
tools, the lack of which is one of the key obstacles to the wide clini-
cal adoption of predictive models. Ultimately, the clinician is a criti-
cal bridge between the patient and the treatment team. This bridge is
even more important as it allows patient preferences to be integrated
into the planning process and may in turn change the way the ML/AI
model is deployed. One example would be the development of mul-
tiple pareto-optimal treatment plans that integrate patient preferences
into the final decision-making to select the outcomes most valuable to
the patient. Furthermore, this integration stands to bring about a shift
in the training of medical professionals in radiotherapy; for example,
knowledge about how AI tools work and how to use them in personal-
ized medicine will replace skills in, for instance, delineation of organs
at risk [35][56].

The clinician should be involved in data generation and data curation

The constantly increasing power of computers has made collecting and
analyzing large amounts of data relatively easy and allows the build-
ing of searchable and expandable databases for research, modeling,
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and generation of new hypotheses. Often these data sets are used only
once and then discarded or kept internally by the originating institu-
tion, which limits the power and capabilities of ML/AI for using these
data sets. Therefore, the clinician must play a crucial role in designing
and maintaining dedicated databases for ML model training. Choos-
ing the relevant features for a clinical problem, considering the defined
outcomes, and identifying possible biases are all still in the domain
of clinical expertise [21]. For example, clinical decisions about radical
versus palliative approaches in localized advanced head and neck tu-
mors are to some extent affected by the clinician’s personal experience
of successful treatments. The data must be understood by the clinician
before any modeling can take place, and clinicians are more willing
to use models if the input features are aligned with evidence-based
practice [58]. An example of such a model based on data routinely
collected and updated every hour from electronic records of intensive
care unit patients has been described by Thorsen-Meyer et al. [57].
However, models should not only use patient characteristics known
to be important, but also uncover previously unknown associations.
Here again, the clinician can help distinguish a truly novel predictive
variable from biases, data set artefacts, or confounding factors. Addi-
tionally, clinicians can easily provide feedback in case of a false pre-
diction and follow up with a misidentified patient, especially in cases
with an unusual trajectory or medical history. To enable searchable
and expandable databases for modeling, research, and generation of
new hypotheses, all data sets must be shared (adhering to the FAIR
principles described above) and accessible for other institutions to use
for training, validation, or additional analysis. In this respect, several
approaches may help clinicians become more engaged in data collec-
tion and curation. The most important is integration of this process
into standard clinical workflows and standard operating procedures.
This will allow clinical data, treatment planning information, diagnos-
tic imaging, and outcomes to be seamlessly collected as part of clinical
practice. Such integrated data collection will incentivize physicians
to contribute high-quality data on all patients. Even simple synoptic
endpoint collection can provide a powerful backbone for large data set
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generation. When leveraged properly, rapid learning and automatic
data collection will be crucial for clinicians in this era of fast progress
in new therapeutics as well as technology and information overload.
Crucially, simple methods to share data safely are necessary. If such
methods are implemented properly, clinicians can derive visible bene-
fits from sharing their efforts, which will convince them to contribute
willingly. Examples of this could include simple quality assurance and
second opinions, rapid outcome estimates, speed up evaluation of new
technologies or automated workflow acceleration. Moreover, there is
evidence that publication where associated data are shared in accor-
dance with FAIR principles are cited more frequently [51], creating
an additional incentive for the clinicians. Publication with open FAIR
data available for readers should also be promoted as such by jour-
nal editors, meaning safe repositories have to be provided for authors.
Building a culture of data sharing, not only within research institu-
tions, but also hospitals and biotechnology companies is the most im-
portant challenge for the future. Policy makers will have an important
role to play in creating a global structured policy of data sharing. A
good example is the Final Report and Action Plan from the European
Commission’s Expert Group on FAIR data ”Turning FAIR into reality”,
which paves a way to build infrastructure, recognition of obstacles
and benefits and creates incentives for European research institutions
to participate in data sharing. General concept of transparency and
data sharing concerns also pharmaceutical companies, where process
of sharing data obtained in clinical trials is still in it’s infancy, mostly
due to lack of policies of data sharing. A step forward to change this
situation has been done by Miller et al who developed dedicated score
-The Good Pharma Scorecard - to monitor of transparency in process
of sponsored research and data sharing process. To have such policy
in place is very important for industry itself due to increasing pressure
of external stakeholders including patients and clinicians to speed up
gathering knowledge and evidence by transparent collection of data
[44]. Another initiative with potential to facilitate routine clinical data
collection and sharing is the Real World Data (RWD) framework devel-
oped and proposed by the US Food and Drug Administration. The aim
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is to collect post-approval data from electronic health records (EHR)
and other clinical data repositories to generate Real World Evidence
(RWE) of risk and benefits of currently approved products. Such ap-
proach promotes shared learning and encourages stakeholders to use
RWE in their research, as well as to use common data models, unified
terminology and data encoding for different sources. Clinicians are
crucial not only for defining clinical problems and relevant outcomes,
but also for the dynamic expansion and adaptation of databases, ac-
counting for biases and unusual patient trajectories. We cannot for-
get that all this work should be focused on individual patient benefits
but may also provide population-level benefits if resources are con-
strained. The clinician should be involved in all steps of model devel-
opment and deployment An increasing number of clinicians is inter-
ested in cooperating with AI/ML scientists [17]. However, others re-
main reluctant and do not yet trust AI models, preventing deployment
of these tools in the clinic [26]. One commonly stated reason for this
distrust is unsatisfactory predictive performance, especially of prog-
nostic models. However, what level of predictive accuracy is clinically
acceptable is unclear. Moreover, accurate prediction of complex end-
points like overall survival is very difficult, even for an experienced
clinician. A related question is how much better than a human a model
must perform to be considered useful, especially if the human baseline
is low. Many published models perform well for well-defined, simple
outcomes such as prediction of local control or extracapsular extension
in involved head and neck lymph nodes [11][30]. The most-used met-
ric to measure predictive performance on a binary classification task is
the area under the receiver operating characteristic curve. To generate
predictions for new data, a single operating point needs to be selected.
The standard approach is to give equal weights to specificity and sensi-
tivity, but in many real clinical situations the cost of error may vary and
may differently affect patients’ outcomes. For example, a model that
incorrectly suggests a patient will have a very high risk of toxicity may
deprive the patient of the possibility to receive curative therapy. Only
by knowing the holistic clinical picture can one decide how to define
the expected parameters of models, including the desired specificity
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and sensitivity of predictions. The role of the clinician in defining these
optimal operating points is crucial. Clinicians should also be involved
in the model review and development to prevent ‘blind alleys’ and
other problems. The accuracy of a model is said to be inversely pro-
portional to its explainability [34]. The trade-off between explainabil-
ity and accuracy is still an unsolved problem, as the best-performing
models based on deep learning are “black boxes”—synonymous with
a lack of transparency and understanding—and are the least explain-
able. The results of successful attempts to improve the explainabil-
ity of neural networks in health care were published by Yang [67].
However, even an explainable model may not be clinically applica-
ble/actionable if the output is not additive or meshed into existing
clinical approaches. It is vital that all models grow from and additively
expand to fit existing clinical knowledge. Rediscovering, for instance,
that a tumor’s size predicts patient outcomes can be avoided by incor-
porating clinical knowledge early in the problem domain and estab-
lishing target areas to enhance [62]. Hence, ideally, models should be
organically integrated with practice to provide continuous feedback,
allowing clinicians to monitor and understand their effects and limita-
tions. Any model, no matter how accurate and interpretable in the de-
velopment stage, needs to be thoroughly validated in a controlled trial
before clinicians can trust it. Validating AI models will require new
trial design, especially in terms of endpoints and evaluation criteria.
Nagendran et al found only two completed and published random-
ized controlled trials (RCTs), of AI algorithms in gastroenterology and
ophthalmology [47][33][61], while the FDA has approved more than
16 deep learning algorithms in ophthalmology, radiology and cardiol-
ogy. The most often used endpoint in such studies is the performance
of AI/ML tools on some metric (e.g. receiver operating characteris-
tic) versus human experts. However, ever if the AI outperforms hu-
man experts, it is not clear whether replacing the clinician’s experi-
ence by an automated algorithm translates into benefit for patients in
real-world use. Additionally, many clinical tasks have no well-defined
ground truth, making an objective, direct comparison difficult. End-
points such as performance of clinician supported by an algorithm, im-
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proved workflow efficiency or time and financial savings could better
reflect the real-world impact of clinical AI. Another challenge in model
validation is how to evaluate and update models under data distribu-
tion shift, for example when the treatment guidelines or patient pop-
ulation change. Policy changes, such as the regulatory framework for
AI/ML Software as a Medical Device recently proposed by the FDA,
can help build clinician trust in AI models by enforce transparency
and continuous performance monitoring as part of the approval pro-
cess. Good performance in a retrospective test set is not sufficient; for
example, a model can perform well in data from the institution where
it was developed in but fail when tested on data from a different hos-
pital, despite seemingly identical input data and targets. This can hap-
pen because of covariate shift—a change in the distribution of input
data between different institutions, such as different CT scanner mod-
els and protocols—and because of unobserved confounders that have
real impact on outcomes, like the quality of the health care system,
the provision of supportive care, and even the approach of individ-
ual clinician treating the patient. Continuously reporting model accu-
racy at each deployed institution with individual physicians’ feedback
will be critical to maintaining and monitoring models and will help to
ensure that physicians maintain confidence in the approach. To fully
take advantage of this opportunity, clinician involvement is necessary
at every step—from formulating the problem, through the selection of
appropriate input data and prediction targets, to model validation in
a prospective clinical trial. Data collection, curation and model devel-
opment will require both financial and human resources. Recent rapid
progress in AI has led to increased public interest and expectations of
many stakeholders, including patients, regulators and governments.
Resource allocation to AI research and implementation — both on cen-
tral level, like EC and local institutional boards — is therefore expected
to increase in the near future. Moreover, systemic solutions and infras-
tructure like automatic data collection, rapid learning systems, stan-
dardized format of collection, easy retrieval and seamless integration
with the clinical workflow will reduce the load on clinicians and make
the shift smooth and effective. To be trustworthy and actionable, the
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predictions need to be interpretable, although the balance between in-
terpretability and accuracy is still a subject of research. Interpretation
and prospective validation, with identification of biases and confound-
ing factors, preferably in a clinical trial, will increase clinician trust and
allow for deployment of ML tools in the clinic.

Statement 5: From AI to a patient-oriented view

Realizing AI’s potential in clinical practice calls for a patient-centered
perspective in the development, design, and implementation of AI
tools. First, AI tools must be oriented towards addressing clinical ques-
tions that matter to patients. Second, the output of AI tools must be
integrated into decision aids that present relevant clinical information
in a format that is clear, understandable, and actionable [42]. Finally,
AI-based model outputs must be explainable and be combinable with
patient preferences in a shared decision-making process. AI to enable
retrieving patient data Orienting AI towards the patient perspective in-
volves determining what is relevant to patients in clinical terms as well
as how they experience their condition. Certain aspects of these data
are routinely collected as patient-reported outcome measures (PROMs)
and stored in patients’ EHRs. It is unclear to what extent PROMs are
analyzed and used [4], particularly due to doctors’ lack of time, re-
sources, and expertise [64]. This presents an opportunity for AI/ML
techniques to harness and analyze EHR data and PROMs to identify
relationships between treatments and patient-relevant outcomes [32].
Aside from patient data stored in hospital records, increasing amounts
of data are also generated externally, as more patients, through use
of the internet, are taking an active role in managing their health de-
cisions. Consequently, the role of patient organizations is also shift-
ing from providing information to building platforms and online com-
munities in which patients can share experiences and knowledge that
go beyond the data captured in PROMs. For instance, the patient or-
ganization PatientsLikeMe, an online community that connects over
650,000 patients across nearly 3000 health conditions, is based on the
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principle of seeing the patient as a person rather than as a disease, and
accordingly collects data on patients’ definitions of health and out-
comes. PatientsLikeMe is actively involved in AI initiatives to gen-
erate insights from this vast and rich data source (https://www.
patientslikeme.com). Initiatives such as these can help target AI
tools to clinically relevant questions.

Clinical decision aids for doctors and patients

AI tools must be built into decision aids that support shared delib-
eration and decision-making processes between patients and doctors.
Decision aids provide a means to inform patients about their condi-
tions, reflect on their own values, and weigh their treatment options in
the context of their preferences. Poor design is one of the main factors
that hinders decision aid uptake [1]. Implementation of AI-enhanced
decision aids is more likely to succeed when development follows a
user-centered design process that takes into account end-users’ con-
texts, needs, goals, and decision-making [66]. We have previously
emphasized the importance of including doctors in the development
process, as well as the patient focus in determining relevant clinical
questions. Once developed, it is critical that decision aids be embed-
ded into the clinical workflow, for instance through integration into
the hospital’s EHR system, to minimize the amount of time and man-
ual work required in entering a patient’s data [70]. In addition, inte-
grating the decision aid into the clinical consultation itself can pave
the way for data-driven shared decision-making in which AI-based
recommendations are discussed in the context of the doctor’s clini-
cal knowledge/experience and the patient’s preferences. Bringing AI
into the consultation Traditional shared decision-making consists of a
two-way information exchange between doctors and patients; doctors
share their clinical expertise on the treatment options and their bene-
fits and risks, and patients share their values and preferences [5]. When
both sides understand each others’ perspectives, they can deliberate on
the available options from a common ground and make a choice that
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is rooted in the best clinical evidence as well as the patient’s individual
circumstances. The introduction of AI-based decision aids represents
a third angle from which treatment information can be personalized
according to the patient’s individual characteristics. The “black box”
nature of certain AI tools may make it challenging for the doctor to
articulate the reasoning behind a given diagnosis or treatment recom-
mendation [52], so the explainability of the AI tool is a crucial factor
in ensuring that decision-making does not shift back towards pater-
nalism [40]. This includes interpreting AI model outputs, such as risk
estimates or prognoses, and communicating them in a way that is un-
derstandable to patients [43]. Moreover, little is known about the pa-
tient perspective on receiving AI-supported care. Preliminary findings
from skin cancer screening suggest that patients are open to the poten-
tial of AI in improving care quality as long as it functions as decision
support rather than decision replacement [50] and the doctor-patient
dyad is maintained [67]. More research is needed to understand the
shift in roles and responsibilities that accompanies AI implementation
and how to use AI models to empower patients. In particular, the per-
spectives of social scientists and anthropologists are needed to bring
AI into alignment with human decision-making [29].

14.2 DISCUSSION

In this paper, we identified the barriers that are currently limiting the
adoption of big data analytics in the clinic toward the development of
a learning health care system. The main barrier is the ability to han-
dle the large amount of data and metadata produced in the clinic as
result of daily clinical and research activities. As we discussed, this
big data involves different stakeholders and users and presents signif-
icant interoperability issues. We therefore identified the need to ana-
lyze the major sources of multisource data and metadata and the limits
on their interoperability (milestones M1 and M2). We next discussed
how, when it becomes capable of fully connecting these sparse multi-
source data, AI will provide powerful analytics to develop data-driven
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clinical decision aids (milestone M3). However, because of the variety
of data types and stakeholders involved, multiple professionals need
to be involved and coordinated. For this reason, we presented the need
to define a clinical data science community in radiation oncology, to act
as harmonizer of the different professional figures with a common vi-
sion sustained by a code of conduct and working statements and with
a strong orientation toward patient-centered care (milestone M5). This
community will not be an independent actor, but will build upon al-
ready existing communities, efforts, and working groups. Clinicians
will have a prominent leading role both in determining the require-
ments of the technical developments and in continuously interfacing
with the more technical professionals. This is meant to guarantee that
technical developments are in line with unmet clinical needs. We en-
vision this community to be fully embedded within the major global
radiation oncology societies, such as ESTRO, ASTRO, CARO, AAPM,
EFOMP, RANZCR and FARO and to include patient societies such as
CRC and PatientsLikeMe. Our future activities will be to engage with
the above-mentioned societies to define working groups, as briefly de-
picted in Figure 14.4.
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Figure 14.4: Overview of the structure of the new data science community in
radiation oncology. In line with the presented milestones, five major working
groups are identified: FAIR principles group (M1); standardization group (M
2); AI applications and big data collaborative infrastructures group (M3); clin-
ical research and definition of unmet clinical needs group (M4); and patient-
centered decision aids and shared decision-making group (M5). The role of
each group is to coordinate with similar existing task forces and working
groups from European and American societies active in radiation oncology.
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Casà, Carlotta Masciocchi, Jacopo Lenkowicz, Francesco Cellini,
Nicola Dinapoli, Luigi Azario, Stefania Teodoli, Maria Antonietta
Gambacorta, Marco De Spirito, and Vincenzo Valentini. Delta ra-
diomics for rectal cancer response prediction with hybrid 0.35 T

424



magnetic resonance-guided radiotherapy (MRgRT): a hypothesis-
generating study for an innovative personalized medicine ap-
proach. La radiologia medica, 124(2):145–153, February 2019.

[12] Abdelali Boussadi and Eric Zapletal. A fast healthcare interoper-
ability resources (fhir) layer implemented over i2b2. BMC medical
informatics and decision making, 17(1):120, 2017.

[13] Luciano R. F. Branco, Rachel B. Ger, Dennis S. Mackin, Shouhao
Zhou, Laurence E. Court, and Rick R. Layman. Technical Note:
Proof of concept for radiomics-based quality assurance for com-
puted tomography. Journal of Applied Clinical Medical Physics,
20(11):199–205, November 2019.

[14] Andrius Budrionis and Johan Gustav Bellika. The Learning
Healthcare System: Where are we now? A systematic review.
Journal of Biomedical Informatics, 64:87–92, 2016.

[15] Irène Buvat and Fanny Orlhac. The Dark Side of Radiomics: On
the Paramount Importance of Publishing Negative Results. Jour-
nal of Nuclear Medicine, 60(11):1543–1544, November 2019.

[16] Ananya Choudhury, Johan van Soest, Stuti Nayak, and Andre
Dekker. Personal health train on fhir: A privacy preserving fed-
erated approach for analyzing fair data in healthcare. In Inter-
national Conference on Machine Learning, Image Processing, Network
Security and Data Sciences, pages 85–95. Springer, 2020.

[17] Davide Cirillo and Alfonso Valencia. Big data analytics for per-
sonalized medicine. Current Opinion in Biotechnology, 58:161–167,
August 2019.

[18] G. Collewet, M. Strzelecki, and F. Mariette. Influence of MRI ac-
quisition protocols and image intensity normalization methods
on texture classification. Magnetic Resonance Imaging, 22(1):81–91,
January 2004.

425



Bibliography

[19] Timo M. Deist, A. Jochems, Johan van Soest, Georgi Nalbantov,
Cary Oberije, Seán Walsh, Michael Eble, Paul Bulens, Philippe
Coucke, Wim Dries, Andre Dekker, and Philippe Lambin. In-
frastructure and distributed learning methodology for privacy-
preserving multi-centric rapid learning health care: euroCAT.
Clinical and Translational Radiation Oncology, 4:24–31, June 2017.

[20] Adrien Depeursinge, Vincent Andrearczyk, Philip Whybra, Joost
van Griethuysen, Henning Müller, Roger Schaer, Martin Vallières,
and Alex Zwanenburg. Standardised convolutional filtering
for radiomics. arXiv:2006.05470 [cs, eess], June 2020. arXiv:
2006.05470.

[21] Issam El Naqa, Dan Ruan, Gilmer Valdes, Andre Dekker, Todd
McNutt, Yaorong Ge, Q. Jackie Wu, Jung Hun Oh, Maria Thor,
Wade Smith, Arvind Rao, Clifton Fuller, Ying Xiao, Frank Manion,
Matthew Schipper, Charles Mayo, Jean M. Moran, and Randall
Ten Haken. Machine learning and modeling: Data, validation,
communication challenges. Medical Physics, 45(10):e834–e840, Oc-
tober 2018.

[22] Rachel B. Ger, Shouhao Zhou, Pai-Chun Melinda Chi, Hannah J.
Lee, Rick R. Layman, A. Kyle Jones, David L. Goff, Clifton D.
Fuller, Rebecca M. Howell, Heng Li, R. Jason Stafford, Laurence E.
Court, and Dennis S. Mackin. Comprehensive Investigation on
Controlling for CT Imaging Variabilities in Radiomics Studies.
Scientific Reports, 8(1):13047, December 2018.

[23] Stefan Harrer, Pratik Shah, Bhavna Antony, and Jianying Hu. Ar-
tificial Intelligence for Clinical Trial Design. Trends in Pharmaco-
logical Sciences, 40(8):577–591, 2019.

[24] Jianxing He, Sally L. Baxter, Jie Xu, Jiming Xu, Xingtao Zhou,
and Kang Zhang. The practical implementation of artificial in-
telligence technologies in medicine. Nature Medicine, 25(1):30–36,
January 2019.

426



[25] Ira S. Hofer, Eran Halperin, and Maxime Cannesson. Opening
the Black Box: Understanding the Science Behind Big Data and
Predictive Analytics. Anesthesia and Analgesia, 127(5):1139–1143,
2018.

[26] Andreas Holzinger, Georg Langs, Helmut Denk, Kurt Zatloukal,
and Heimo Müller. Causability and explainability of artificial in-
telligence in medicine. WIREs Data Mining and Knowledge Discov-
ery, 9(4), July 2019.

[27] Ahmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H.
Schwartz, and Hugo J. W. L. Aerts. Artificial intelligence in radi-
ology. Nature Reviews. Cancer, 18(8):500–510, 2018.

[28] Nicolas Houy and François Le Grand. Personalized oncology
with artificial intelligence: The case of temozolomide. Artificial
Intelligence in Medicine, 99:101693, August 2019.

[29] Geoffrey Irving and Amanda Askell. AI Safety Needs Social Sci-
entists. Distill, 4(2):10.23915/distill.00014, February 2019.

[30] Benjamin H. Kann, Daniel F. Hicks, Sam Payabvash, Amit Maha-
jan, Justin Du, Vishal Gupta, Henry S. Park, James B. Yu, Wen-
dell G. Yarbrough, Barbara A. Burtness, Zain A. Husain, and
Sanjay Aneja. Multi-Institutional Validation of Deep Learning
for Pretreatment Identification of Extranodal Extension in Head
and Neck Squamous Cell Carcinoma. Journal of Clinical Oncology,
38(12):1304–1311, April 2020.

[31] Harlan M. Krumholz. Big Data And New Knowledge In
Medicine: The Thinking, Training, And Tools Needed For A
Learning Health System. Health Affairs, 33(7):1163–1170, July
2014.

[32] Camillo Lamanna and Lauren Byrne. Should Artificial Intel-
ligence Augment Medical Decision Making? The Case for an
Autonomy Algorithm. AMA Journal of Ethics, 20(9):E902–910,
September 2018.

427



Bibliography

[33] Haotian Lin, Ruiyang Li, Zhenzhen Liu, Jingjing Chen, Yahan
Yang, Hui Chen, Zhuoling Lin, Weiyi Lai, Erping Long, Xiaohang
Wu, Duoru Lin, Yi Zhu, Chuan Chen, Dongxuan Wu, Tongyong
Yu, Qianzhong Cao, Xiaoyan Li, Jing Li, Wangting Li, Jinghui
Wang, Mingmin Yang, Huiling Hu, Li Zhang, Yang Yu, Xue-
lan Chen, Jianmin Hu, Ke Zhu, Shuhong Jiang, Yalin Huang,
Gang Tan, Jialing Huang, Xiaoming Lin, Xinyu Zhang, Lixia Luo,
Yuhua Liu, Xialin Liu, Bing Cheng, Danying Zheng, Mingxing
Wu, Weirong Chen, and Yizhi Liu. Diagnostic Efficacy and Thera-
peutic Decision-making Capacity of an Artificial Intelligence Plat-
form for Childhood Cataracts in Eye Clinics: A Multicentre Ran-
domized Controlled Trial. EClinicalMedicine, 9:52–59, March 2019.

[34] Yi Luo, Huan-Hsin Tseng, Sunan Cui, Lise Wei, Randall K.
Ten Haken, and Issam El Naqa. Balancing accuracy and inter-
pretability of machine learning approaches for radiation treat-
ment outcomes modeling. BJR|Open, 1(1):20190021, July 2019.

[35] Tim Lustberg, Johan van Soest, Mark Gooding, Devis Peressutti,
Paul Aljabar, Judith van der Stoep, Wouter van Elmpt, and An-
dre Dekker. Clinical evaluation of atlas and deep learning based
automatic contouring for lung cancer. Radiotherapy and Oncology,
126(2):312–317, February 2018.

[36] Dennis Mackin, Xenia Fave, Lifei Zhang, David Fried, Jinzhong
Yang, Brian Taylor, Edgardo Rodriguez-Rivera, Cristina Dodge,
Aaron Kyle Jones, and Laurence Court. Measuring Computed
Tomography Scanner Variability of Radiomics Features:. Inves-
tigative Radiology, 50(11):757–765, November 2015.

[37] Dennis Mackin, Rachel Ger, Cristina Dodge, Xenia Fave, Pai-
Chun Chi, Lifei Zhang, Jinzhong Yang, Steve Bache, Charles
Dodge, A. Kyle Jones, and Laurence Court. Effect of tube current
on computed tomography radiomic features. Scientific Reports,
8(1):2354, dec 2018.

428



[38] Charles S. Mayo, Michelle Mierzwa, Jean M. Moran, Martha M.
Matuszak, Joel Wilkie, Grace Sun, John Yao, Grant Weyburn, Car-
los J. Anderson, Dawn Owen, and Arvind Rao. Combination of
a Big Data Analytics Resource System With an Artificial Intelli-
gence Algorithm to Identify Clinically Actionable Radiation Dose
Thresholds for Dysphagia in Head and Neck Patients. Advances
in Radiation Oncology, page S2452109420300142, January 2020.

[39] Charles S. Mayo, Jean M. Moran, Walter Bosch, Ying Xiao, Todd
McNutt, Richard Popple, Jeff Michalski, Mary Feng, Lawrence B.
Marks, Clifton D. Fuller, Ellen Yorke, Jatinder Palta, Peter E.
Gabriel, Andrea Molineu, Martha M. Matuszak, Elizabeth Cov-
ington, Kathryn Masi, Susan L. Richardson, Timothy Ritter,
Tomasz Morgas, Stella Flampouri, Lakshmi Santanam, Joseph A.
Moore, Thomas G. Purdie, Robert C. Miller, Coen Hurkmans,
Judy Adams, Qing-Rong Jackie Wu, Colleen J. Fox, Ramon Al-
fredo Siochi, Norman L. Brown, Wilko Verbakel, Yves Ar-
chambault, Steven J. Chmura, Andre L. Dekker, Don G. Ea-
gle, Thomas J. Fitzgerald, Theodore Hong, Rishabh Kapoor,
Beth Lansing, Shruti Jolly, Mary E. Napolitano, James Percy,
Mark S. Rose, Salim Siddiqui, Christof Schadt, William E. Si-
mon, William L. Straube, Sara T. St. James, Kenneth Ulin, Sue S.
Yom, and Torunn I. Yock. American Association of Physicists
in Medicine Task Group 263: Standardizing Nomenclatures in
Radiation Oncology. International Journal of Radiation Oncol-
ogy*Biology*Physics, 100(4):1057–1066, March 2018.

[40] Rosalind J McDougall. Computer knows best? The need for
value-flexibility in medical AI. Journal of Medical Ethics, 45(3):156–
160, March 2019.

[41] Christos Melidis, Walther R. Bosch, Joanna Izewska, Elena Fi-
darova, Eduardo Zubizarreta, Kenneth Ulin, Satoshi Ishikura,
David Followill, James Galvin, Annette Haworth, Deidre Besui-
jen, Clark H. Clark, Elizabeth Miles, Edwin Aird, Damien C.
Weber, Coen W. Hurkmans, and Dirk Verellen. Global Harmo-

429



Bibliography

nization of Quality Assurance Naming Conventions in Radiation
Therapy Clinical Trials. International Journal of Radiation Oncol-
ogy*Biology*Physics, 90(5):1242–1249, December 2014.

[42] B. Middleton, D. F. Sittig, and A. Wright. Clinical Decision Sup-
port: a 25 Year Retrospective and a 25 Year Vision. Yearbook of
Medical Informatics, Suppl 1:S103–116, August 2016.

[43] D. Douglas Miller. The medical AI insurgency: what physicians
must know about data to practice with intelligent machines. npj
Digital Medicine, 2(1):62, December 2019.

[44] Jennifer Miller, Joseph S. Ross, Marc Wilenzick, and Michelle M.
Mello. Sharing of clinical trial data and results reporting practices
among large pharmaceutical companies: cross sectional descrip-
tive study and pilot of a tool to improve company practices. The
British Medical Journal, 366:l4217, 2019.

[45] Jean Moran, Andrea Molineu, Jon Kruse, Mark Oldham, Robert
Jeraj, James Galvin, Jatinder Palta, and Arthur Olch. Guidance
for the Physics Aspects of Clinical Trials. Technical report, AAPM,
January 2018.

[46] Olivier Morin, Martin Vallières, Arthur Jochems, Henry C.
Woodruff, Gilmer Valdes, Steve E. Braunstein, Joachim E. Wild-
berger, Javier E. Villanueva-Meyer, Vasant Kearney, Sue S. Yom,
Timothy D. Solberg, and Philippe Lambin. A Deep Look Into
the Future of Quantitative Imaging in Oncology: A Statement of
Working Principles and Proposal for Change. International Journal
of Radiation Oncology*Biology*Physics, 102(4):1074–1082, Novem-
ber 2018.

[47] Myura Nagendran, Yang Chen, Christopher A. Lovejoy, An-
thony C. Gordon, Matthieu Komorowski, Hugh Harvey, Eric J.
Topol, John P. A. Ioannidis, Gary S. Collins, and Mahiben
Maruthappu. Artificial intelligence versus clinicians: systematic

430



review of design, reporting standards, and claims of deep learn-
ing studies. The British Medical Journal, 368:m689, 2020.

[48] National Research Council (US) Committee on A Framework
for Developing a New Taxonomy of Disease. Toward Precision
Medicine: Building a Knowledge Network for Biomedical Research
and a New Taxonomy of Disease. The National Academies Collec-
tion: Reports funded by National Institutes of Health. National
Academies Press (US), Washington (DC), 2011.

[49] Jack E. Olson. Data quality: the accuracy dimension. Morgan Kauf-
mann, San Francisco, 2003.

[50] Christopher Pearce, Adam McLeod, Natalie Rinehart, Robin
Whyte, Elizabeth Deveny, and Marianne Shearer. Artificial intel-
ligence and the clinical world: a view from the front line. Medical
Journal of Australia, 210(S6), April 2019.

[51] Heather A. Piwowar, Roger S. Day, and Douglas B. Fridsma. Shar-
ing detailed research data is associated with increased citation
rate. PloS One, 2(3):e308, March 2007.

[52] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why
Should I Trust You?”: Explaining the Predictions of Any Classifier.
In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 1135–1144, San Fran-
cisco California USA, August 2016. ACM.

[53] Samantha Cruz Rivera, Xiaoxuan Liu, An-Wen Chan, Alastair K.
Denniston, Melanie J. Calvert, and SPIRIT-AI and CONSORT-AI
Working Group. Guidelines for clinical trial protocols for inter-
ventions involving artificial intelligence: the SPIRIT-AI Exten-
sion. The British Medical Journal, 370:m3210, 2020.

[54] Zhenwei Shi, Ivan Zhovannik, Alberto Traverso, Frank J. W. M.
Dankers, Timo M. Deist, Petros Kalendralis, René Monshouwer,
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Chapter 15. Discussion

15.1 Executive summary

In this thesis we have investigated the role of radiomics in RT, by fo-
cusing on presenting and tackling the issues that are limiting the trans-
lation of radiomics-derived models to the clinic as decision support
systems. Three main issues have been identified: lack of robustness
of radiomics with respect to image acquisition settings, pitfalls and
methodological issues in the use of machine learning in radiomic stud-
ies, and lack of standardization and a common infrastructure to enable
multi-centre radiomic studies. The first issue is deeply connected with
the concepts of radiomic reproducibility and repeatability. In chap-
ter 3, a systematic review of the major sources impacting radiomic re-
producibility and repeatability has been presented. Three major out-
comes arose from this study: A) radiomic feature classes present dif-
ferent grade of sensitivity to image acquisition settings, digital image
pre-processing, and contouring variability; B) the level of the investi-
gations is more mature in CT (Computed Tomography) than in MRI
(Magnetic Resonance Imaging), despite the fact that the latter imag-
ing modality offers better soft tissue contrast compared to the first
one and therefore might be more suitable to fully catch tumour biol-
ogy and heterogeneity, and C) poor quality of reporting of radiomic
studies mainly due to lack of standardization. Points A) and B) have
motivated the work presented in Chapters 3 and 4 where we inves-
tigated radiomic reproducibility in different MR sequences including
diffusion weighted imaging for rectal and cervix cancer patients. As
expected, similar results to CT studies were found in MRI. Scanners’
variability seems to have the largest impact on features’ reproducibil-
ity; different manufacturers’ models or differences in uniform mag-
netic field strength (1.5 vs 3T) being the major drivers of feature insta-
bility. This present us with a major problem, considering the desire
of having radiomic biomarkers that can be validated across multiple
hospitals without any degradation of their prognostic power. Also, in-
ter observer variability in contouring had a major impact in features’
stability especially for ADC (Apparent Diffusion Coefficient) maps of
rectal cancer patients. This evidence opens the debate whether auto-
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contouring might play a role in reducing disagreements on contours
and whether it might provide better radiomic stability. In chapter
3, we also showed how digital image pre-processing, while being a
common practice in the radiomic workflow, should be used with cau-
tion and only after it has been proved that such techniques can im-
prove the signal-to-noise ratio of radiomic features. In fact, according
to our investigation, tuning radiomic computations had a strong im-
pact on radiomic reproducibility, more marked for texture features,
which are meant to measure tumour heterogeneity. After these in-
vestigations, we provided a possible method to improve the stabil-
ity of radiomic features by normalizing them according to biological
ROIs present in the image. This was shown in Chapter 5, for ADC
maps of cervix cancer patients using a ROI drawn inside the blad-
der. We also developed a method which showed how, by isolating
known acquisition parameters that impact radiomic stability, it is pos-
sible to find the functional dependence of radiomic features to these
parameters and correct for them. This was applied in Chapter 6 for
the imaging parameter “radiation exposure”, thus closely related to
signal-to-noise ratio, in CT images of imaging phantoms. Unfortu-
nately, we did not have the availability of dedicated imaging phan-
toms for MR, but the presented methodology can be extended to MR.
Future work in the acquisition correction domain includes providing
corrections for radiomic features with respect to major sources of un-
certainties in MR, starting from the strength of the magnetic field. One
additional point that arose from the previously mentioned studies is
that many radiomic features embed strong mathematic dependencies
to tumour size (GTV) and their apparent large reproducibility and re-
peatability might be driven by this fact. GTV has been found to be one
of the most reproducible features in all the literature for CT, PET and
MRI. Furthermore, tumour size is a valid prognostic factor in almost
all cancer types at least for overall or disease-free survival as demon-
strated in Chapter 8. These hidden correlations are dangerous if not
investigated. They might lead us to think that a feature is measuring
a texture of the tumour (possibly related to a certain biological prop-
erty), while it could just be a “replication” of a traditional clinically
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accepted prognostic factor. The main take home message from the
first part of this thesis is that even before focusing on the predictive
or prognostic role of radiomic features, it is relevant to deeply inves-
tigate concepts like reproducibility and repeatability, which can have
a strong impact on the generalizability and validity of radiomic mod-
els. In addition to correlations with simple features such as volume,
radiomic features might present strong correlations with clinically ac-
cepted prognostic factors (e.g. HPV status for head and neck cancers).
Therefore, there is the need to re-think machine learning as tool to in-
vestigate these issues, rather than a “black-box” where some numbers
(i.e. radiomic features) are thrown in it and predictions are returned.
This was presented in the second part of this thesis, namely in chapters
7 and 8. In chapter 7 we posed strong focus on the “volume effect” in
radiomic studies. This problem was already raised in a previous pub-
lication, which called for the urgency of “safeguards” for radiomics.
With our study we showed how machine learning, and more specifi-
cally unsupervised methods, can be used to reveal confounding effects
in radiomics. We focused on tumour volume, but the presented frame-
work is not just for volume but other variables as well. While we fo-
cused only on CT imaging and head and neck and lung cancers, the
presented framework is strongly suggested for all the radiomic stud-
ies. In chapter 8 we expanded our previous work by highlighting the
importance of benchmarking radiomic models against accepted clini-
cal prognostic factors (above all TNM staging) and by comparing not
only traditional machine learning classifiers, but also fully automated
pipelines based on deep learning architectures. It is worth offering
guidance to interpret these results, to avoid frustration, especially from
users of radiomic models (i.e. clinicians). These investigations did not
aim at showing the non-utility of radiomics, but rather they offer a
change of paradigm to raise the bar of radiomic studies. Often, AI
pipelines are applied without cautions, finding correlations between
input data and outcomes of interest that might not be supported by
causality. This problem increases the risk of spurious associations and
false discoveries. While we recognize the growing trend of fully op-
timizing data and more specifically image analysis, we warrant cau-
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tions in a “black-box” approach. Therefore, in these chapters we re-
discovered the role of human intervention in computational pipelines
both for data QA as well as for methodological QA. One of the main
messages from the first two parts of this thesis is also that only by
performing multi-institutional studies we can provide more evidence
that a specific methodology works for a radiomic study. However, this
methodology might not be universal and unique and can be dependent
on the specific image modality or cancer types considered. Also, gen-
eralizability of radiomic models calls for performing a large number
of experiments among institutions as suggested by the TRIPOD state-
ment. Unfortunately, the lack of standardization and harmonization of
radiomics is a strong limiting factor. First, many radiomic computa-
tional packages are available and the number will increase. Recently,
several companies have started developing tools for automated quan-
titative image analysis. Most of these tools are protected by copyright
or patents and it is not possible to access all the details of the radiomic
computations and mining of the features. Each software has its own
standards both for naming conventions of features and settings used
to extract features. Stand-alone standards also exist for clinical data,
which are often used to correlate radiomic features with the outcomes
of interest. Finally, the well-known problems related to data sharing
do not allow to easily perform multi-centre radiomic studies. In chap-
ters 9-11 we presented the building blocks of a framework based on
distributed learning. These building blocks are based on ontologies
and semantic web techniques, which permit to introduce FAIR (Find-
able Accessible Interoperable Reusable) principles to radiomic studies
boosting transparency and generalizability. We presented the results
of these methodologies in chapter 12, where we were the first extend-
ing distributed learning to radiomic studies. We successfully showed
that distributed results cannot be distinguish from centralized ones.
We strongly believe this framework will allow faster and large cen-
tre radiomic studies. Finally, chapter 13 remarks again how radiomic
should not be thought as living a vacuum, but it should be part of a
larger effort lead by a clinical data science community, with a central
role of clinicians in leading and giving the directions of research.
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15.2 Limitations of this work

Several limitations of this work need to be highlighted. First, we
specifically focused on radiomics in CT and MR images. The reasons
behind this are two fold: A) CT was the first imaging modality
investigated in radiomic studies, and B) as we pointed out in chapter
3, the lack of evidence of radiomic studies in MR called for an
urgency of extending previously published literature for this imaging
modality, which might provide a better soft-tissue contrast compared
to CT and therefore more suitable for quantitative measurements of
textures. We did not investigate the role of radiomics in PET imaging.
Therefore, it remains open the debate whether the results available
in this work can be extended to this imaging modality. Nevertheless,
it seems that the results found for CT and MR are in line with
literature on PET studies. This evidence shows again the importance
of investigating a robust and agreed methodology to improve the
quality of radiomic studies. Finally, the frameworks proposed in
chapters 9-10-13 can be considered as independent from a specific
imaging modality, as they have to be perceived as safeguards or data
infrastructures to accelerate the deployment of radiomic models in
the clinic. Second, in this work we briefly touched upon deep learning
applications in radiomics. Conversely, deep learning has somewhat
stolen the scene in medical image analysis, with several applications
spanning from automation to modelling. In chapter 9 we proposed
an application of a CNN for prognostication of head and neck cancer
patients. While we agree that the network of this architecture is far
from being the latest available in the literature, it was out of topic of
that publication to provide the readers with a comprehensive analysis
of top performing CNN architectures for radiomics. Nevertheless,
we pointed out how using fully automated pipelines does not free
the radiomic community from adopting safeguards in their study. A
detailed comparison of hand crafted image analysis approaches with
fully automated pipelines as well as meticulous analysis of hidden
relations among radiomic and ”deep radiomic” features is needed.
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15.3 Future outlook

This thesis has contributed to raise awareness on some of the pitfalls
encountered in radiomics. It is worth to remark again that this thesis
does not give any judgement on the quality and role of radiomics in
radiation oncology. Conversely, the author of this thesis strongly be-
lieves that radiomics can be a powerful tool to augment the power of
decision making in patient care. Furthermore, radiomics has the power
to revitalize the vast amount of standard of care medical images, mainly
addressed for visual inspection or human tasks, but sadly put aside at
completion of these tasks. Therefore, radiomics has to be conceived
as a cost effective approach to introduce meaningful AI-driven applica-
tions in medical imaging to improve the RT workflow. Unfortunately,
the term Artificial in AI seems to have caused a general sense of moving
away from the responsibilities and role of humans in the development
of AI solutions. The advent of powerful fully automated data anal-
ysis pipelines can have the risk to augment this gap. Conversely, as
this thesis has shown, the quality of a radiomic model is mainly deter-
mined by a meticulous design of the whole radiomic workflow, from
data acquisition, to computations and modelling. A full control of all
the steps of this workflow as well as a consciousness of the possible
hidden factors leading to the risk of false discoveries is mandatory.
Finally, from my work performed in these last 4 years it emerged a
gap among the radiomic community and the clinical world. While a
large effort has been put in designing radiomic studies, we can debate
whether the same effort has been put to engage the clinical community.
It is still an open question whether a successful radiomic model will be
implemented in the clinic. There might be the risk that this model,
despite having high performances, might not be addressing a desired
change in clinical practice. What it is found to be statistically signifi-
cant not necessarily it will be clinically significant. There is the need to
re-think radiomics and more in general AI as not living in a vacuum of
being an academic exercise, but rather part of a common vision shared
among the different stakeholders that intervene in patient care in ra-
diation oncology: doctors, researchers, technicians, funding agencies,
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insurance companies, patients and the government. All these concepts
have been well described in chapter 14 of this thesis. To conclude, the
future of radiomics will be brighter only if we re-think radiomics, and
more in general AI and medical image analysis, as a community ef-
fort from a worldwide clinical data science community with the above-
mentioned stakeholders. The future of radiomics has to pass through
this paradigm shift, a necessarily radiomics renewal phase.
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Research impact and utilisation
summary

1 Societal impact

In this thesis, we analysed and proposed solutions to some major is-
sues currently limiting the application of AI to medical imaging in
radiation oncology. These issues are strongly impacting the possibil-
ity to translate research prototypes as decision support systems in the
clinic. Decision support systems bring a benefit not only to clinicians,
but also to patients. The ongoing challenge for radiation oncology is to
provide patients with the best possible treatment. The treatment strat-
egy must be as good as possible, boosting curative intent, while de-
creasing the risk of radiation-induced side effects and disease relapse.
When achieved, cancer patients will live longer and better. Many of
our treatment decisions are based on the evidence arising from ran-
domized clinical trials. While we recognize the importance of clinical
trials, we also highlight how the evidence from clinical trials should
be expanded with a “real life” evidence. It is a well-known problem
that strict requirements for trials’ accrual can lead to results that only
apply to a small population, which might not be representative of the
variety of patients walking into the clinic every day. In this thesis, I
present how AI applied to medical imaging is key to improve patient
care in the near future. I discuss how medical images are a source of
unique patient-centred data, which can reveal insights about our pa-
tients. I show and propose AI-driven techniques for automated image
analysis and biomarker discovery that can lead to the development
of robust decision support systems (DSSs). These DSSs redefine and
augment our clinicians’ prior knowledge because they consider unique
information based on the patient-level. Biomarkers are derived from
medical images, which contain fingerprints of patients’ anatomy and
tumours. By proposing a robust methodology for automated medical
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image analysis (i.e., radiomics), this thesis is contributing in the near
future to speed up the translation of image-derived biomarkers in the
clinic with the societal impact of supporting better decisions for the
treatment of cancer patients. While the work has been mainly devoted
to lung and head neck cancers, it is scalable to many other anatomical
sites and even diseases not necessarily related to cancer, since medical
images are the most frequent type of data acquired in a clinic.

2 Economic Impact

In the last years, radiation oncology has faced an “explosion” of treat-
ment options. Besides conventional radiation therapy and surgery, the
recent advances in biology have opened the path to therapies that in-
teract with our immune systems (immunotherapy) to suppress cancer
cells or by targeting specific molecular profiles of tumours (molecular
or targeted therapies). Even for more traditional therapies like surgery,
hardware advances such as robotics is improving our surgeons’ abil-
ities to be more precise and therefore, reduce post-surgery complica-
tions. For treatment with radiation, alternatives to conformal radio-
therapy are for example represented by proton/ion therapy, which
can improve radiation delivered to the targets, while reducing dam-
age to surrounding healthy tissues. Doctors are struggling to pick the
best option since sometimes there is not enough evidence that on a
patient-level one treatment should be preferred over another. An ad-
ditional problem also comes into the game: many of these techniques
are still very expensive. This problem connects to the optimization
of the health care system. In the Netherlands, healthcare is regulated
by health insurance providers. These providers will be willing to re-
imburse the above-mentioned treatment options, but only after show-
ing them the efficacy of these treatments on a large scale. Re-defining
the evaluation of the best treatment options for a patient is therefore
the key to improve cost-effectiveness. Using image derived biomark-
ers as an additional tool to support clinicians in finding the best treat-
ment option, as stated in this thesis, will, in the long term, boost cost-
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effectiveness. Using medical imaging to objectively quantify treatment
response, will reduce the risk of providing a treatment which could
have been stated to be beneficial at the time of planning, but could be-
come harmful with a strong impact not only of patients’ health, but
also on unnecessary costs. Even if it was out of scope for this the-
sis to perform a cost-effective analysis, the developments presented
in this work will have an economic impact on the long term. Finally,
the approaches presented in this thesis are directly applied to stan-
dard of care medical imaging modalities (e.g., PET/CT, MRI). Scans
that are acquired anyway in the radiotherapy workflow, therefore no
additional investment of money is required to gain more information
useful for care decisions.

3 Cultural Impact

This thesis tackles some of the problems related to the introduction of
AI to improve our ability to make better-informed decisions. When it
comes to the application of AI for the automation of time-consuming
tasks, we are more willing to accept that an autonomous artificially
intelligent “entity” can replace us. However, when it comes to be sup-
ported by AI in our decisions, we are more reluctant to accept this shift
in paradigm. I believe that two of the major causes behind these dis-
crepancies are: A) the poor performance of AI-based prognostic and
predictive models in radiotherapy, and B) the false myth that AI appli-
cations in radiotherapy are meant to replace the users, requiring only
negligible human interaction. With regard to the former, this thesis has
been devoted to investigating the issues that are causing the degrade
of radiomics-based models’ performances when validated on multiple
datasets. I have proposed methods that can support more transpar-
ent and robust developments of image-derived biomarkers and shown
how cautions are required when using AI, or more specifically ML and
DL, to draw conclusions. With regard to the latter, I have shown that
even in the presence of fully or semi-automated image analysis and
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modelling pipelines, a human interaction is required to verify the cor-
rectness of assumptions, as well as the benchmarking of newly discov-
ered biomarkers with traditionally accepted prognostic of predictive
factors in radiation oncology. Finally, in the last chapter of the thesis, I
have discussed solutions to improve the acceptance of AI in the clinic,
with a dedicated focus on the role of multiple stakeholders. This the-
sis is proposing the paradigm to re-shift human-centricity when using
AI. This will have a strong cultural impact, and, in my opinion, it will
boost the acceptance of AI.

4 Technological impact

This thesis did not per se developed a new hardware technology. Nev-
ertheless, it contains two promising potential technological products.
The first product is an image-analysis framework which consists of
multiple processing pipelines, image harmonization, extraction of im-
age derived biomarkers, quality assurance of these biomarkers and
modelling. This pipeline can easily be inserted in the clinical workflow
or within the clinical workstations. Potential users are scanner manu-
factures, as well as companies developing clinical workstations or AI
solutions. Second, in the third part of the thesis, a framework based on
a distributed learning solution for radiomics was presented. This data
infrastructure has the impact to alleviate the effort required to collect
and process data on a centralized repository. The technology is not lim-
ited to traditional machine learning algorithms, but it can be extended
to distributed deep learning. Overall, this technology has the impact
that even smaller centres, with availability of fewer data compared for
example to large institutions, will be able to perform large scale ex-
periments, with the benefit of training and validating algorithms on
data with an order of magnitude larger than the sample size simply
available in the single clinic. Finally, this thesis introduced the concept
of FAIR withing medical imaging studies. The re-think of radiomic
studies as FAIR-compliant experiments enriches the reproducibility of
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such experiments and enables inter-operability of multiple radiomic
computational packages.
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Summary

Medical imaging plays a key role in radiation oncology. Patients’ scans
are used for diagnosis and tumour staging, treatment planning, deliv-
ery and monitoring; and disease follow up. They offer a non-invasive
tool to extrapolate not only biological properties of the tumour, but
also the relations between cancer cells and surrounding tissues, which
are important for example to evaluate the risk of treatment-induced
toxicities. Unfortunately, we are still facing a sub-optimal use of med-
ical imaging. Radiological findings from medical images are mainly
analysed in a (semi)qualitative fashion using visual inspections. Med-
ical images are then discarded when a specific task is completed. In
recent years, the research community has started to re-think the role of
medical imaging, considering patients’ scans as a source of big data.
The hypothesis is that medical images contain quantitative informa-
tion that is invisible to the human eye, referred to as “radiomics”. The
availability of automated imaging processing pipelines, based on the
AI (Artificial Intelligence) branches of ML (Machine Learning) and DL
(Deep Learning), will allow to retrieve this information and use it to
develop non-invasive image-derived biomarkers. These biomarkers
represent a fingerprint of our patients, and when translated into DSSs
(Decision Support System) can move patient care towards personal-
ized treatment. After the rapid hype following the introduction of this
technology in radiation oncology, a bottleneck has been reached since
several issues limit the rapid translation of radiomics-derived models
in the clinic as DSSs. This thesis identifies and proposes solutions to
three of these major challenges: A) the lack of robustness of devel-
oped biomarkers; B) the absence of a robust methodology for ML in
radiomics, and C) privacy-related barriers that impede the validation
of developed biomarkers. The work poses a new paradigm to re-think
the role of AI in medical imaging, to open a new era for a radiomics-
renewal.
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