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Abstract
Aim: Soil microbes are essential for maintenance of life- supporting ecosystem 
services, but projections of how these microbes will be affected by global change 
scenarios are lacking. Therefore, our aim was to provide projections of future soil 
microbial distribution using several scenarios of global change.
Location: Global.
Time period: 1950– 2090.
Major taxa studied: Bacteria and fungi.
Methods: We used a global database of soil microbial communities across six conti-
nents to estimate past and future trends of the soil microbiome. To do so, we used 
structural equation models to include the direct and indirect effects of changes in 
climate and land use in our predictions, using current climate (temperature and pre-
cipitation) and land- use projections between 1950 and 2090.
Results: Local bacterial richness will increase in all scenarios of change in climate 
and land use considered, although this increase will be followed by a generalized 
community homogenization process affecting > 85% of terrestrial ecosystems. 
Changes in the relative abundance of functional genes associated with the increases 
in bacterial richness are also expected. Based on an ecological cluster analysis, our 
results suggest that phylotypes such as Geodermatophilus spp. (typical desert bac-
teria), Mycobacterium sp. (which are known to include important human pathogens), 
Streptomyces mirabilis (major producers of antibiotic resistance genes) or potential 
fungal soil- borne plant pathogens belonging to Ascomycota fungi (Venturia spp., 
Devriesia spp.) will become more abundant in their communities.
Main conclusions: Our results provide evidence that climate change has a stronger 
influence on soil microbial communities than change in land use (often including de-
forestation and agricultural expansion), although most of the effects of climate are 
indirect, through other environmental variables (e.g., changes in soil pH). The same 
was found for microbial functions such as the prevalence of phosphate transport 
genes. We provide reliable predictions about the changes in the global distribution of 
microbial communities, showing an increase in alpha diversity and a homogenization 
of soil microbial communities in the Anthropocene.
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1  | INTRODUC TION

Global assessments continue to provide strong evidence that hu-
mans are causing unprecedented loss of biodiversity (Díaz et al., 
2019). However, existing information is strongly biased towards a 
few groups of vertebrates and plants (Díaz et al., 2019; Eisenhauer 
et al., 2019), and much less is known about the potential changes 
in belowground communities under global change scenarios. With 
hundreds of thousands of taxa per gram of soil, bacteria and fungi 
are the most diverse groups of soil- dwelling organisms across the 
globe (Delgado- Baquerizo & Eldridge, 2019; Maron et al., 2018; 
Tedersoo et al., 2014). Soil microbial communities are largely an 
unseen majority, which conducts a wide range of ecosystem func-
tions (Delgado- Baquerizo & Eldridge, 2019; Maron et al., 2018; 
Tedersoo et al., 2014) (e.g., decomposition, pathogenesis, nu-
trient cycling; Fierer et al., 2012; Schwarz et al., 2017; Stürmer 
et al., 2018), with implications for human well- being (e.g., human 
health, food production; Wall et al., 2015) and ecosystem sustain-
ability (Bahram et al., 2018; Tedersoo et al., 2014). Recent stud-
ies have provided crucial advances in the ecological preferences 
and biogeographical patterns of soil microbial communities glob-
ally (Bahram et al., 2018; Delgado- Baquerizo & Eldridge, 2019; 
Delgado- Baquerizo, Oliverio, et al., 2018; Ramirez et al., 2019). 
Such efforts have culminated in the first global (Bahram 
et al., 2018; Delgado- Baquerizo, Oliverio, et al., 2018; Tedersoo 
et al., 2014; van den Hoogen et al., 2019) and national (Karimi, 
Prévost- Bouré, et al., 2018) atlases for soil communities, whereas 
atlases for plants and other organisms have been available for 
decades (Tedersoo et al., 2014). Unlike the situation for plants, 
birds or mammals (Di Marco et al., 2019; Newbold et al., 2015; 
Powers & Jetz, 2019), only recently have we started to understand 
how drivers of global change affect soil microbial communities 
(Delgado- Baquerizo & Eldridge, 2019), which is a crucial step to-
wards forecasting their fate accurately in an increasingly human- 
dominated world.

Biodiversity projections have advanced our knowledge of 
the potential changes in biodiversity under scenarios of future 
global change and enable decision- makers to adjust policies in line 
with potential future outcomes (Di Marco et al., 2019; Dornelas 
et al., 2014; Newbold et al., 2015; Thuiller et al., 2019). However, 
most of these efforts have focused on aboveground commu-
nities, with little being done to understand the response of the 
global soil microbiome to contrasting scenarios of global change 
(Eisenhauer et al., 2019). Forecasted increases in aridity and tem-
perature (Huang et al., 2017) will result in important changes in 
the major ecological drivers controlling belowground communi-
ties (e.g., reductions in plant cover and increases in pH; Slessarev 
et al., 2016). Such changes can, in theory, influence the trajectories 

of soil biodiversity and promote or reduce entire groups of soil 
taxa in future scenarios of global change (Delgado- Baquerizo & 
Eldridge, 2019; Fierer, 2017; Tedersoo et al., 2014). Increasing our 
knowledge about the future trajectories of soil biodiversity could 
be of great utility for land managers and decision- makers seek-
ing to understand the sensitivity of soil biodiversity and ecosys-
tem functions to global change and how this could affect society 
(Delgado- Baquerizo et al., 2020). Therefore, the aim of the pres-
ent study was to produce the first integrated assessment of future 
projections for global bacterial communities under different sce-
narios of climate and land- use change.

2  | METHODS

2.1 | Data collection and site characteristics

We used a global dataset (compiled from Delgado- Baquerizo, 
Oliverio, et al., 2018; Egidi et al., 2019) containing information on 
amplicon sequencing for bacteria (16S ribosomal RNA) and fungi [ri-
bosomal internal transcribed spacer region (ITS)] for 231 locations 
world- wide. These sites include a wide range of ecosystem types and 
climatic regions across 18 countries and six continents. The mean 
annual precipitation and temperature in these locations ranged from 
67 to 3,085 mm and from −11.4 to 26.5 ºC, respectively. Soil sample 
collection took place between 2003 and 2015. At each site, a com-
posite soil sample (top c. 7.5 cm depth) was collected under the most 
common vegetation. For all soil samples, the pH, texture and total 
organic carbon (soil C) concentration were measured using standard 
laboratory methods (Anderson & Ingram, 1993; Kettler et al., 2001). 
In brief, soil pH ranged from 4.04 to 9.21, soil C from .23 to 34.77%, 
and fine texture fraction (percentage clay + percentage silt) from 
1.40 to 92.00%.

We obtained information on the mean annual temperature and 
precipitation for all sampling locations from the WorldClim data-
base (www.world clim.org), which has a 1 km resolution (Hijmans 
et al., 2005), and elevation data from the Global Multi- resolution 
Terrain Elevation Data 2010 (GMTED2010). We used an estimation 
of the fractional amount of green vegetation (hereafter, “vegetation 
cover”) as a proxy for plant coverage and plant primary productivity 
(Filipponi et al., 2018). This index provides a measure of the percent-
age of soil covered by green vegetation across Earth's landscapes 
for a given composite period. Vegetation cover data were obtained 
from MODIS moderate- resolution images (Filipponi et al., 2018). We 
calculated the monthly average value for this variable for the period 
between 2001 and 2015 (c. 1 km resolution) to match the period of 
time for which these data are available and until the soil sampling 
was conducted.

K E Y W O R D S

biodiversity projections, ecosystem functions, future of nature, soil bacteria, soil governance, 
soil macroecology
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2.2 | Mapping and prediction datasets

For the temporal analyses, we used temporally explicit datasets 
coming from the Inter- Sectoral Impact Model Intercomparison 
Project (ISIMIP) (Hempel et al., 2013) and the Land- Use Model 
Intercomparison Project (LUMIP) (Lawrence et al., 2016) activities 
from the Intergovernmental Panel for Climate Change (IPCC), re-
spectively. This selection followed the protocol laid out by Kim et al. 
(2018).

In terms of climate datasets, we used a bias- corrected his-
torical and future (for three Representative Concentration 
Pathways: RCP2.6, RCP6.0 and RCP8.5) ISMIP2a dataset (Hempel 
et al., 2013) with forcing data of the IPSL- CM5A- LR Earth System 
Model (Dufresne et al., 2013). The monthly means of the daily 
temperatures (mean, minimum and maximum) and daily total pre-
cipitation > 1 mm were calculated for the available time period. 
For the purpose of this study, we selected the projection period 
between 1950 and 2100, in line with Kim et al. (2018). To avoid 
outliers and to make this dataset as comparable as possible with 
the original model- fitting datasets, we calculated 20- year clima-
tologies using a moving window centred in each year step, result-
ing in a projection period between 1950 and 2090. The dataset 
created was used as climate input for all model runs. For each 
shared socio- economic pathway (SSP) × RCP combination, we 
used two different general circulation models (GCMs; gfdl- esm2m 
and noresm1- m) (Dufresne et al., 2013).

In the case of the land- use projections, we built on the data-
set provided by the land- use Harmonized v.2.0 project (http://luh.
umd.edu/) (Hurtt et al., 2011). This dataset was produced in the 
context of the World Climate Research Program Coupled Model 
Intercomparison Project 6 (CMIP6) (O’Neill et al., 2014; Popp 
et al., 2017; Riahi et al., 2017) and contains a harmonized set of land- 
use scenarios that are consistent between historical reconstructions 
and future projections. These modelled projections reproduce annual 
land- use reconstructions for historical land- use forcing (covering the 
period from 850 to 2015) and for different integrated assessment 
models (IAMs) and SSPs (from 2015 to 2100) at 0.25° resolution. 
These pathways represent a range of plausible futures based on dif-
ferent socio- economic challenges for mitigation of climate change 
(low in SSP1 and SSP4; high in SSP5) and potential challenges for 
adaptation (low in SSP1 and SSP5; high in SSP4). Full descriptions 
of the scenarios are given by Popp et al. (2017). We selected the 
combinations SSP1 × RCP2.6 (high climate- change mitigation and 
adaptation, with expected low CO2 concentrations; sustainabil-
ity pathway), SSP4 × RCP6.0 (high climate- change mitigation, with 
challenges for adaptation and expected high CO2 concentrations; 
inequality pathway) and SSP5 × RCP8.5 (low climate- change miti-
gation, with high adaptation and expected high CO2 concentrations; 
fossil- fuelled development pathway). The land- use projections were 
harmonized for CMIP6 using an updated version of the land- use har-
monization methodology (Hurtt et al., 2011), which was developed 
and used widely to support future biodiversity projections (Newbold 
et al., 2015; Powers & Jetz, 2019).

2.3 | Correlation network and identification of 
dominant microbial phylotypes

We used correlation network analyses to identify ecological clus-
ters formed by bacteria and taxa belonging to three major groups 
of fungi (mycorrhizal fungi, saprobes and pathogens) strongly co- 
occurring with each other. We included only relatively common taxa 
in our network analyses (present in > 25% of locations). A total of 
1,916 phylotypes were included in our correlation network. To build 
the co- occurrence network, we first calculated pairwise Spearman's 
rank correlations (ρ) between all common phylotypes. We focused 
exclusively on positive correlations, because they provide informa-
tion on microbial phylotypes that might respond in a similar man-
ner to environmental conditions and they are expected to co- occur 
with each other. We considered a co- occurrence to be robust if the 
Spearman's correlation coefficient (ρ) was > .65 and p < .00001 
(Barberán et al., 2012). This network was visualized with the inter-
active platform Gephi (Bastian et al., 2009). Finally, we used default 
parameters from the interactive platform Gephi to identify ecologi-
cal clusters of soil bacterial and fungal taxa strongly co- occurring 
with each other (Bastian et al., 2009). We then computed the relative 
abundance of each ecological cluster by averaging the standardized 
relative abundances (ranging from zero to one) of the taxa that be-
long to each ecological cluster. By standardizing our data, we ruled 
out any effect of comparing the diversity from different soil groups 
(i.e., bacteria and three groups of fungi).

2.4 | Functional predictions

We calculated functional predictions based on the representative 
genomes from our database (Ortiz- Álvarez et al., 2018). We used 
this representative genomes approach for the estimation of genomic 
and metabolic potential and obtained functional gene information 
from the Kyoto Encyclopedia of Genes and Genomes database 
(www.genome.jp/kegg/) using the Integrated Microbial Genomes & 
Microbiomes (IMG/M) system (https://img.jgi.doe.gov). We included 
in our analyses only those genomes that matched > 97% of a refer-
ence genome and were more than c. 90% complete. In our study, 
this information is used as a proof of concept; however, given the 
nature of our data, further studies are encouraged to confirm our 
observations based on alternative functional predictions. We cal-
culated weighted communities, combining the functional data and 
the relative abundance matrix of genomic matches. We assessed the 
relative amount of genes associated with: (a) high- efficiency inor-
ganic phosphate (P) transport (averaged standardized abundance of 
K02036, K02037 and K02038; pstA, pstB and pstC; hereafter, “phos-
phate transport genes”) associated with the capability of micro-
bial communities to take up and mobilize inorganic phosphate [the 
abundance of this group of genes in our database is negatively cor-
related with total soil P (ρ = −.228; p < .001; n = 231) and positively 
correlated with the activity of phosphatase measured in a subset of 
our soil samples (ρ = .294; p = .011; n = 74)]; (b) enzyme activities 

http://luh.umd.edu/
http://luh.umd.edu/
http://www.genome.jp/kegg/
https://img.jgi.doe.gov
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(averaged standardized abundance of K01176, K01183, K01187, 
K01188 and K01205; alpha- amylase, chitinase, alpha- glucosidase, 
beta- glucosidase and alpha- N- acetylglucosaminidase genes); (c) 
carbon fixation [averaged standardized abundance of genes prkB, 
K00855 and rbcS, K01602; this group of genes was positively re-
lated to the relative abundance of soil organic carbon (ρ = .273; 
p < .001; n = 231)]; and (d) nitrogen fixation (averaged standardized 
abundance of genes anfG, K00531; nifD, K02586;, glnA, K01915; 
and nifK, K02591). This group of genes was positively related to the 
concentrations of soil total nitrogen (N) (ρ = .241; p > .001; n = 231).

2.5 | Development of a meta- model of the global 
soil microbiome

Structural equation models use multiple structural equations to 
depict and model multivariate relationships (Grace, 2006). These 
can be used to represent and test indirect (cf. mediation) and di-
rect relationships, partial contributions of correlated explanatory 
variables, and alternative hypotheses (Eisenhauer et al., 2015). This 
methodological approach has made its way into several scientific 
fields, including ecology, being used to understand complex systems 
and/or mechanistic relationships (Eisenhauer et al., 2015; Grace 
et al., 2016). The construction of a structural equation model de-
pends on what is known or suspected about the variables describ-
ing the system being studied (Eisenhauer et al., 2015; Grace, 2008; 
Grace et al., 2016). Although for many soil organisms (e.g., pro-
tists, mites and Collembola) information may be lacking (Cameron 
et al., 2018), today there is an extensive pool of literature inform-
ing the drivers and range of conditions that favour the soil micro-
biome (Bahram et al., 2018; Delgado- Baquerizo & Eldridge, 2019; 
Delgado- Baquerizo, Reith, et al., 2018; Griffiths et al., 2016; Maestre 
et al., 2015; Ramirez et al., 2018; Tedersoo et al., 2014). We used 
this knowledge to develop and justify a meta- model describing the 
global relationships associated with the soil microbiome (Supporting 
Information Appendix S1). Attention was given to the potential di-
rect and indirect effects of different drivers to account for mediator 
effects (Grace et al., 2012), particularly in the case of soil- driven ef-
fects, climate regulation and the impact of land use on the soil micro-
biome (Jansson & Hofmockel, 2020). For our final model, vegetation 
type, elevation, latitude, precipitation, temperature, soil carbon con-
tent and texture were selected as independent variables (i.e., predic-
tors). Moreover, pH, the percentage of green vegetation (owing to 
their importance to determine general patterns) and the different 
diversity (i.e., bacterial richness and community dissimilarity) and 
functional (i.e., phosphate transport genes) indicators were treated 
as response variables and, thus, used for prediction (Supporting 
Information Appendix S1).

Once established, the assumptions of the meta- model were 
initially verified using a variance partitioning of the dataset to en-
sure that they depicted the main variance explained (Supporting 
Information Appendix S2). Variance partitioning was also used ini-
tially to preselect the biodiversity groups, functions and indicators 

that could be used in the proceeding analysis. For this, an initial 
cut- off value of 40% variance explained was used as a preselection 
value. From this analysis, we selected bacterial richness, community 
dissimilarity, the relative abundance of phosphate transport genes 
and the ecological clusters formed from the correlation network 
analysis previously described.

2.6 | Model fit and structural equation modelling

Following the overall model description (Supporting Information 
Appendix S1), the initial variable pool was tested for normality and 
linearity, and selected variables were transformed accordingly (e.g., 
pH, elevation and texture were log10- transformed). The initial tests 
validated the assumptions of linearity across the different models 
although, in the case of the ecological clusters, our interpretation 
of these should be taken more conservatively. After the initial diag-
nostics, we proceeded with the fitting of four different structural 
equation models (i.e., for bacterial richness, community dissimilar-
ity, phosphate transport genes and the ecological clusters). Before 
performing a model fit, we did a conditional independence test to 
account for possible missing links within the structural equation 
model formulation. To do this, we applied both the dagitty and 
piecewise packages in R (Lefcheck, 2016; Textor et al., 2016), and 
all potential missing links were identified and evaluated. We used 
the lavaan package to obtain a global estimation for the different 
structural equation models and used robust maximum likelihood pa-
rameter estimates (MLM) to account for potential bias in the input 
data and obtain the path coefficients of each model (Rosseel, 2012). 
The model fitting was done with independent variables meas-
ured in the field to avoid potential circularity associated with the 
use of modelled environmental data to fit causal relationships (see 
Supporting Information Appendix S1). We also took into account the 
potential influence of the available number of samples for modelling 
(Supporting Information Appendix S3).

A full description of the resulting structural equation models 
and their fit measures can be found in the Supporting Information 
(Appendix S3). Given that pH was found to have a strong effect on 
the distribution and temporal evolution of the soil microbiome, we 
performed an extra analysis to illustrate the determinants of pH 
using a second dataset (Batjes et al., 2017; Orgiazzi et al., 2018). A 
full description of the dataset and the subsequent analysis is given in 
the Supporting Information (Appendix S5).

2.7 | Predictions in space and time

Using the parameter estimates obtained from the structural equa-
tion model fitting, we formulated two linear equations to predict the 
values of percentage vegetation and pH. Both the equations and the 
unstandardized coefficients are given in the Supporting Information 
(Appendix S3). In a similar way, we set up linear equations for bac-
terial richness, community dissimilarity, abundance of phosphate 
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transport genes and each ecological cluster. We used the predicted 
values for percentage vegetation and pH in the overall prediction 
model to account for the indirect effects of climate and land- use 
change on the soil microbiome. The model runs were calculated 
with a yearly time step according to the available climate and veg-
etation data. All temporal changes (both backcasting and forecast-
ing predictions) were calculated using 2015 as a baseline to which 
all predictions were compared. Although other microbial attributes 
were included in this global database (Delgado- Baquerizo, Oliverio, 
et al., 2018), we excluded them from further analyses, because our 
environmental models did not predict > 40% of their variance (for 
a detailed explanation of the methods, see Supporting Information 
Appendix S1 and S2).

In order to assess the accuracy of these predictions, we de-
termined how much the parameter space of the predictors of the 
original dataset differed from the ones used to make predictions. 
For this, we used the Mahalanobis distance of any multidimensional 
point (here considering the seven dimensions given by the seven ex-
ogenous variables) to the centre of the known distribution (calcu-
lated based on the 231 data points from the original dataset) and the 
distance of any multidimensional point to the convex hull formed by 
the 231 data points used to estimate the model. Further explana-
tion of the method used can be found in the Supporting Information 
(Appendix S4).

2.8 | Accuracy of projections and 
distribution of outliers

One of the difficulties of predicting response variables is the extrap-
olation of results to areas where the environmental conditions of 
the initial dataset (used to estimate the structural equation models) 
are not covered. Attempting to use predictive equations to estimate 

areas that differ considerably from the original dataset can lead to 
unreliable predictions (Brooks et al., 1988). Although this is still a 
current topic of research interest in multidimensional statistical 
analysis (Ebert et al., 2014), we propose to use the Mahalanobis dis-
tance to identify outliers with regard to the centre of the observed 
distribution given by the 231 points present in our dataset.

The Mahalanobis distance of a point to a dataset of points in mul-
tidimensional space is calculated using the vector of means of the 
dataset and its covariance matrix (Figure 1). This distance is often 
used to detect outliers in point cloud distributions that are assumed 
to follow a multivariate normal distribution (Jackson & Chen, 2004; 
Rousseeuw & van Zomeren, 1990). When each of the variables is 
normally distributed, the Mahalanobis distance follows a chi- square 
distribution with d degrees of freedom, where d is the dimension of 
the multidimensional space (d = 7 in our case). To inform the quality 
of our predictions, we computed the Mahalanobis distance of each 
input point to the dataset of 231 points. The Supporting Information 
(Appendix S4, Figure S4- 1) uses a colour gradient to indicate the 
quantile of the chi- square distribution with seven degrees of free-
dom that each point belongs to (Mallavan et al., 2010). Although this 
distance is an informative measure of how close a new data point is 
to the distribution of points used to estimate the model, we used a 
second measure to assess whether a new data point is an extrapola-
tion or an interpolation. We used the resulting outlier identification 
to mask our outputs and provide more reliable predictions.

2.9 | Independent validation

We used data from an independent global survey (Delgado- 
Baquerizo et al., 2019) that includes 80 locations across the globe to 
validate further the spatial distributions of bacterial richness across 
samples. This dataset includes soils from contrasting vegetation 

F I G U R E  1   Quantiles of the chi- square distribution with seven degrees of freedom calculated for the conditions in 2015 based on the 
Mahalanobis multidimensional distance (corresponding to the seven dimensions determined by the exogenous variables). Using this method, 
we can determine that 60.6% of the terrestrial systems fall under the .975 quantile, with the rest being considered as outliers to the original 
distribution of 231 data points [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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(forests, grasslands and shrublands) and climates (arid, temperate, 
tropical and continental) from five continents and eight countries. 
Note that any comparisons between this independent dataset and 
our dataset need to be considered carefully, given methodological 
differences in the primer sets used (here 16S 341F/805R vs. 16S 
515F/806R). Soils are comparable in terms of sampling design and 
soil depth. We calculated bacterial richness and community dissimi-
larity using a similar approach as for the 16S 341F/805R data (for 
further details, see Appendix S1).

3  | RESULTS AND DISCUSSION

We estimated the distribution of multiple components of the soil 
microbiome, providing global projections for soil organisms in the 
Anthropocene similar to those existing for plant and aboveground 
animals (Newbold et al., 2015; Powers & Jetz, 2019). Within these, 
we found soil pH and vegetation cover to be the major direct eco-
logical predictors of the distribution of the soil microbiome, particu-
larly for bacterial richness and community dissimilarity (Supporting 
Information Appendix S3; Figure S3- 1). The spatial distribution of 
both bacterial richness and the ecological clusters follows the ones 
obtained in current literature using different methods and datasets 

(Figure 2; Bahram et al., 2018; Delgado- Baquerizo & Eldridge, 2019; 
Delgado- Baquerizo, Oliverio, et al., 2018; Ramirez et al., 2018). 
Our results also show that globally, community dissimilarity is 
negatively correlated with bacterial richness (Spearman's ρ = .904, 
p < .001). This suggests that the low local bacterial richness shown 
in several regions of the globe (Delgado- Baquerizo & Eldridge, 2019; 
Delgado- Baquerizo, Oliverio, et al., 2018) (e.g., in the tropics or in 
high latitudes) might be related to higher local differentiation; that is, 
although locally we are predicting lower (alpha) diversity, the com-
positions of these communities are expected to be highly differenti-
ated from each other, resulting in higher regional (gamma) diversity 
(Figure 2).

Using the spatial predictions for current time and cross- validating 
them with this new dataset, we obtained significant positive correla-
tions for bacterial richness (Spearman's ρ = .236, p = .035, n = 80) 
and community dissimilarity ((Spearman's ρ = .241, p = .031, n = 80). 
Given the completely different methods associated with each inde-
pendent dataset [training (Delgado- Baquerizo, Oliverio, et al., 2018) 
and validation (Delgado- Baquerizo et al., 2019)], the relationships 
found provide further support for the validity of our approach to 
estimate and predict the global soil microbiome. Nevertheless, given 
the spatial and temporal resolution of our predictions, our models 
and maps should be used only to explore broad patterns and trends 

F I G U R E  2   Global distribution of: (a) bacterial richness, (b) community dissimilarity, and (c– f) the ecological clusters A (c), B (d), C (e) and 
D (f). All maps are for the baseline of 2015 and are classified using a quantile distribution. Colours correspond to each of the quantiles, from 
low (first quantile) to high (fourth quantile) values [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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of the soil microbiome and not for fine- scale (pixel- level) analyses, 
given the lower reliability of predictions in some regions (Figure 1).

In terms of the ecological clusters, cluster A defines a highly di-
verse ecological cluster composed of both fungi and bacteria and is 
associated with areas with high temperature variation, low precipita-
tion and alkaline soils with low carbon concentrations. It is prevalent 
mostly in drylands, including deserts, and mountain grasslands and 
shrublands in Africa, Central Asia, Australia and South America. This 
ecological cluster is mainly affected positively by vegetation struc-
ture and pH, whereas latitude and vegetation cover correspond to 
the main negative effects (see Supporting Information Appendix S3, 
Table S3- 3). Cluster B, which includes 10 bacterial taxonomic groups 
(see Supporting Information Appendix S2, Figure S2- 2), occupies a 
similar spatial range to cluster A, although it extends further north, 
including mediterranean and some temperate to dry systems with 
low vegetation cover and high pH. Cluster A has a higher prevalence 
in South America, whereas cluster B expands further, to Central and 

North America. The latter is mainly affected (positively) by pH, cli-
mate (directly by temperature and indirectly by precipitation) and 
latitude, with vegetation cover having the only negative effect.

In comparison to the previous two clusters, the ecological clus-
ters C and D are related mainly to more humid regions. Cluster D re-
flects the lowest diversity of the four clusters (six taxonomic groups 
of bacteria) and is concentrated mainly in temperate forests and 
grasslands. This cluster is characterized by having positive effects 
from both pH and vegetation cover, which makes it more preva-
lent in areas with higher vegetation cover combined with more al-
kaline soils. At the same time, it shows negative effects from both 
temperature and vegetation structure (see Supporting Information 
Appendix S3). Finally, cluster C is associated mainly with soils with 
lower pH, with climate and land use having only indirect effects. 
Overall, cluster C is distributed across humid systems with low pH 
and high vegetation cover. The overall model fit for bacterial rich-
ness returned an R2 of .449 (p = .666, rmsea (root mean square 

F I G U R E  3   Global projections of the soil microbiome show large- scale anthropogenic homogenization. Relative changes (gains and losses) 
in the historical patterns (a,b) and future projections [scenario agreement (2015– 2090); e,f] for bacterial richness (left) and community 
dissimilarity of bacteria (right). (c,d) Projection lines correspond to the global median value with interquartile range (IQR) for the historical 
(1910– 2015; in grey) and future projections (IQR bars for each scenario). For the shared socio- economic pathways (SSP), SSP5 corresponds 
to a fossil- fuelled development scenario, SSP4 to an inequality scenario and SSP1 to a sustainability scenario (Supporting Information 
Appendix S4). All projections represent combined land- use and climate effects [Colour figure can be viewed at wileyonlinelibrary.com]
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error of approximation) = .000, cfi (comparative fit index) = 1.000). 
In the case of community dissimilarity this was .702 (p = .581, 
rmsea = .000, cfi = 1.000) and for phosphate transport genes .541 
(p = .299, rmsea = .046, cfi = .996). Finally, for the ecological clusters 
we obtained an R2 for A, B, C and D of .677, .681, .666 and .416, 
respectively (p = .148, rmsea = .046, cfi = .996; for further infor-
mation, see Supporting Information Appendix S3, Tables S3- 1 and 
S3- 2).

Our projections indicate major changes in bacterial diversity 
and a global- scale homogenization process for the soil microbiome. 
Overall, we found that the local richness of bacteria will increase in 
future conditions [especially for scenarios SSP4 (regional inequality) 
and SSP5 (fossil- fuelled development)]. This increase of bacterial 
richness with land- use intensification is in line with other studies 
carried out at national scales (Karimi, Terrat, et al., 2018). However, 
the community composition of bacteria is expected to undergo a 
strong and generalized global homogenization processes (i.e., a de-
crease in community dissimilarity, with local communities becoming 
more similar to each other) affecting > 85% of terrestrial ecosystems 
assessed (Figure 3; Supporting Information Appendix S4, Figure S4- 
2). This homogenization trend is consistent with previous studies 
warning about a rapid global homogenization of marine and abo-
veground biodiversity (Dornelas et al., 2014; Magurran et al., 2015).

Future ecosystems are, therefore, expected to share a larger 
number of bacterial phylotypes at the local scale, making several 
bacterial taxa potentially more abundant in soil communities under 
global change scenarios (Karimi, Terrat, et al., 2018). This result con-
trasts with the often- reported negative associations between global 
change drivers and the local biodiversity of aboveground commu-
nities (e.g., plants and mammals; Di Marco et al., 2019; Newbold 
et al., 2015; Powers & Jetz, 2019). Despite enhanced local bacterial 
richness, future communities will be based on a more homogeneous 
species pool in the majority of terrestrial systems, reducing the dis-
similarity of bacterial communities across locations (Figure 3d). The 
observed bacterial richness and community dissimilarity trends were 
associated with increases in soil pH linked to important shifts in pre-
cipitation and temperature, and reductions in vegetation cover that 
are negatively associated with soil pH. Such environmental dynamics 
will select for species that benefit from higher soil pH.

These changes in soil biodiversity might also result in im-
portant changes in soil ecosystem functions (Bardgett & van der 
Putten, 2014) related to the spread of specific functional genes 
(Delgado- Baquerizo et al., 2020). The lower bacterial dissimilarity 
across locations, in addition to the often- reported strong link be-
tween microbial taxonomic and functional community composition 
(Allison & Martiny, 2008; Fierer et al., 2012, 2013; Torsvik & Øvreås, 
2002), suggest that cross- site functional redundancy might increase 
in the near future, assuming that the links between functionality and 
taxonomy remain constant through time. Thus, similar bacterial taxa 
with similar functional capabilities will live in soils across the globe, 
reducing specialization and, potentially, the capacity of ecosystems 
to adapt to new environmental realities. Nevertheless, we acknowl-
edge that the assumption of constant functional links might be 

flawed given that, while microbial communities change, their func-
tional links might also result in adaptations to the new climatic and 
land- use conditions. Although this aspect deserves further study, we 
also observed combined gains in bacterial richness and community 
dissimilarity in 7.3% of the globe, considering historical trends (green 
areas in Supporting Information Appendix S4, Figure S4- 4c). These 
areas result from less dramatic change in land cover and more posi-
tive effects coming from climate change that resulted in net gains for 
bacterial richness and a predicted gain in community dissimilarity. 
Therefore, the microbial communities in these areas are expected to 
become more unique from their counterparts.

Although limited in functional scope, our projections also show 
changes in the relative abundance of functional genes associated 
with the increases in bacterial richness. For example, our global pro-
jections support an increase in the relative abundance of phosphate 
transport genes (positively associated with activity of phosphatase) 
in many regions across the globe, particularly after 1970 with an in-
crease in land- cover change, especially deforestation (Supporting 
Information Appendix S4, Figure S4- 5). Such an increase in the 
abundance of genes associated with phosphate transport indicates a 
larger capacity to mobilize and take up soil phosphorus, which is one 
of the most important factors limiting plant and microbial produc-
tion (Peñuelas et al., 2013). Our initial statistical threshold to exclude 
variables from being predicted (see Section 2.5) limits our ability to 
go further in the description of future functional consequences. 
Nevertheless, these first insights into shifts in microbial community 
composition call for further work on the functional consequences of 
changes in the soil microbiome under global change scenarios.

Our projections further provide evidence for the existence of 
microbial taxa that will prevail under global change scenarios. These 
results are based on the relative abundance of ecological clusters 
of co- occurring bacterial and fungal taxa within a global correla-
tion network (for a description of these clusters, see Supporting 
Information Appendix S2; for a list of taxa included in each cluster, 
see Supporting Information Appendix S8). We found two main eco-
logical clusters that we predict to have important gains (cluster B) or 
losses (cluster C) under current and, even more so, future conditions 
(Figure 2a,b). The expected reductions in the relative abundance of 
cluster C will lead to a decrease in one of the most dominant taxa 
found in soil (Bradyrhizobium spp.) and in functionally important taxa, 
such as Methylocystaceae (including methanotrophs), both of which 
are known to prefer low- pH environments (Delgado- Baquerizo, 
Oliverio, et al., 2018).

In contrast to clusters B and C, the trends of the relative abun-
dance of clusters A and D changed relative to the past (1910– 2015) 
from losses to substantial increases (cluster A; the most diverse 
cluster; Supporting Information Appendix S2) or from gains to de-
creases (cluster D; the least diverse cluster; Supporting Information 
Appendix S2) under global change scenarios (Figure 2b,c). Our pro-
jections also indicate that the trends identified for the historical 
period will become more abrupt in the future, resulting in stronger 
shifts in community composition towards communities driven by an 
expansion of drylands (clusters A and B). These future communities 
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tend to be less specialized and to aggregate a wider group of more 
common microbial taxa. In fact, the relative losses projected for the 
communities associated with more humid environments (cluster C) 
show generalized losses independently of the scenario considered, 
with exception of Southeast Asia.

These results suggest that taxa included in cluster A will become 
more common in the future. This cluster includes phylotypes such as 
Geodermatophilus spp. (typical desert bacteria; Delgado- Baquerizo, 
Oliverio, et al., 2018), Mycobacterium spp. (which are known to in-
clude important human pathogens; Delgado- Baquerizo et al., 2020), 
Streptomyces mirabilis (major producers of antibiotic resistance 
genes) or potential fungal soil- borne plant pathogens belonging 
to Ascomycota fungi (Venturia spp. and Devriesia spp.). Our results 

also indicate that the relative abundance of cluster D might have 
important local reductions (with a high model agreement across all 
scenarios; Figure 4c), which include consistent declines in particular 
bacterial taxa (e.g., family Gaiellaceae). For most of the taxa included 
in this cluster, we do not even know their genus, which makes it dif-
ficult to evaluate the potential consequences of such a reduction 
in their relative abundance. Although, in this analysis, we did not 
consider the relationships between biodiversity and the magnitude 
or combination of multiple soil ecosystem functions, this projected 
community shift is expected to have strong effects on the multi-
functionality of soils across the globe, with potential implications 
for human health and wellbeing (Evans & Wallenstein, 2014; Kardol 
et al., 2010).

F I G U R E  4   Projected changes in ecological clusters (including both bacteria and fungi) show divergent trends when considering past 
and future conditions. (a) Distinction between clusters with relative net gains in relative abundance and clusters with relative losses. Only 
clusters with the largest net changes are represented within each pixel. (b) Future projections of the different ecological clusters according 
to the three shared socio- economic pathways considered. (c) Scenario agreement (2015– 2090) in terms of gains and losses for clusters A 
and D. For the shared socio- economic pathways (SSPs), SSP5 corresponds to a fossil- fuelled development scenario, SSP4 to an inequality 
scenario and SSP1 to a sustainability scenario (Supporting Information Appendix S4). All projections represent combined land- use and 
climate effects [Colour figure can be viewed at wileyonlinelibrary.com]
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4  | CONCLUSIONS AND IMPLIC ATIONS

Using structural equation models, we were able to differentiate be-
tween the potential interactions between climate (e.g., increases in 
temperature) and land- use effects (e.g., changes from forest to grass-
lands) on the soil microbiome. We also assessed how these two driv-
ers affect the soil microbiome, both directly and indirectly, through 
changes in vegetation cover and pH. Across the different scenarios 
considered, we found that climate change has a greater effect than 
land- use intensification on both bacterial richness and community 
dissimilarity. In the case of bacterial richness, these changes reflect 
only the indirect effects of climate change (Supporting Information 
Appendix S3). The increase in local bacterial species richness results 
only from the direct and indirect effects of land use and climate. 
However, other factors, such as competitive exclusion or effects of 
microhabitat, could prevent some of the species from co- existing, in-
troducing a potential overestimation in the “increase” trends of local 
species richness.

For some scenarios (for SSP1, see Supporting Information 
Appendix S4), the trend obtained from the projections changed from 
positive (in the case of bacterial richness) to negative and vice versa, 
when considering only land use as opposed to both drivers of global 
change (land use and climate change). Such an effect is likely to be 
associated with the indirect effects of climate and land- use change 
on vegetation cover (e.g. vegetation cover decreases owing to de-
forestation and increases in aridity) and pH (e.g., pH increases owing 
to an increase in temperature and decrease in precipitation). These 
results suggest that although researchers often focus on changes 
between types of land use when assessing impacts on soil communi-
ties, at a macroecological scale the trends associated with these mi-
crobial communities are mostly driven indirectly by climate (because 
most changes occur by indirect effects through vegetation cover 
and pH). Therefore, models not considering the indirect effects of 
global change drivers might be ineffective in predicting changes in 
the soil microbiome (Singh et al., 2010).

Our results provide global projections for belowground com-
munities under global change scenarios and forecast major changes 
in microbial diversity (local increases in bacterial diversity and a 
global homogenization of the soil microbiome) driven by changes 
in climate and land use. These findings contrast with current global 
projections of aboveground biodiversity declines, but they do not 
necessarily provide a more positive view of the future of nature. 
Although increases in local microbial diversity might seem positive, 
these hide strong reductions in community complexity (Kortz & 
Magurran, 2019) in the majority of terrestrial systems, with impli-
cations for ecosystem functioning. This belowground trend is now 
mostly missing from policy documents and nature conservation as-
sessments, which diminishes the capacity of policy- makers to make 
informed decisions about the future of soil ecosystems. Our global 
projections of the soil microbiome provide a baseline for future 
discussion on the importance, trajectories and conservation needs 
of soil organisms. While informing the biodiversity decline debate, 
by showing the spatial and temporal trends of an important group 

of soil organisms, our results also contribute to closing important 
gaps identified in current global assessments and conventions (e.g., 
IPCC, IPBES and UNCCD) and lay the foundation for inclusion of soil 
organisms in future assessments of the response of ecosystem to 
drivers of global change.
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