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ITERATION OF FUNCTIONS AND CONTRACTIBILITY

OF ACYCLIC 2-COMPLEXES

Ian J. Leary

Abstract: We show that there can be no algorithm to decide whether infinite recur-
sively described acyclic aspherical 2-complexes are contractible. We construct such a

complex that is contractible if and only if the Collatz conjecture holds.
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1. Introduction

The existence of an algorithm to determine which finite 2-dimen-
sional simplicial complexes are contractible is a well-known open prob-
lem. There are good algorithms to compute the homology of a finite
complex, and so the problem quickly reduces to the case of acyclic com-
plexes, i.e., those having the same homology as a point. This problem
can be stated as a problem about finite presentations of groups: is there
an algorithm to decide which finite balanced presentations of perfect
groups are trivial? The problem was stated in this form and attributed
to Magnus in the first edition of the Kourovka notebook [5, 1.12], and
appears as problem (FP1) in [1]. A presentation is balanced if it has the
same numbers of generators and relators. The conditions that the group
be perfect and that the presentation be balanced are equivalent to the
corresponding 2-complex being acyclic.

If a finite presentation presents the trivial group, then a systematic
search will eventually find a proof of this fact. Thus there is a partial
algorithm that will verify that a finite simplicial complex (of any dimen-
sion) is contractible, but that will fail to halt in general.

In general, there is no algorithm to decide whether a finite presen-
tation describes the trivial group. This implies that there can be no
algorithm to decide whether a finite 2-dimensional simplicial complex is
simply-connected. However, this does not imply that there can be no
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algorithm to decide whether a finite 2-complex is contractible, because
all known families of problematic group presentations have many more
relators than generators. The corresponding presentation 2-complexes
cannot be contractible because they have non-trivial second homology.

We have nothing to say about this well-known problem, but instead
we consider an infinite analogue. In contrast to the finite case, there is no
algorithm for computing the homology of recursively described infinite
complexes. For example, it has been known since the work of Collatz
in the 1930’s that it is difficult to decide such questions as whether a
recursively described graph is connected [7]. (We will also justify this
assertion in Theorem 11 below.) For this reason we consider only acyclic
complexes. Here is our main result.

Theorem 1. There is no algorithm to decide whether an infinite, re-
cursively described, aspherical, acyclic presentation 2-complex is con-
tractible.

Moreover, there is no partial algorithm to find all the contractible
complexes in this class, and there is no partial algorithm to find all the
non-contractible complexes.

Usually decidability results in group theory rely on the existence of a
non-recursive, recursively enumerable set. Instead we rely on the dynam-
ics of functions on the set N+ of strictly positive integers. We associate a
2-complex P (f) to each f : N+ → N+ whose contractibility is controlled
by the orbits of f . For such a function f , define a group presentation P(f)
in which both the generators and relators are indexed by N+:

P(f) := 〈ai, i ∈ N+ : a−1f(i)aiaf(i) = a2i 〉.

Now let P (f) be the presentation 2-complex associated to P(f), so that
the 1- and 2-cells of P (f) are indexed by N+. Recall also that a forward
orbit for f is a subset of N+ of the form {i, f(i), f2(i), . . . } for some i ∈
N+.

Lemma 2. For each f , the 2-complex P (f) is both acyclic and aspher-
ical. The following are equivalent:

• P (f) is contractible.
• P(f) presents the trivial group.
• Every forward orbit of f is eventually periodic of period at most 3.

There is a striking corollary concerning the Collatz function. Recall
that the Collatz or hailstone function C : N+ → N+ is defined by

C(n) =

{
3n+ 1 for n odd,

n/2 for n even.
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The Collatz conjecture states that every forward orbit of C contains 1.

Corollary 3. P (C) is contractible if and only if the Collatz conjecture
holds.

This corollary follows easily from Lemma 2. The proof of Theorem 1
depends also on a result of Kurtz and Simon concerning the decidability
of properties of functions [6].

2. Proofs

The presentation 2-complex associated to a group presentation is a
CW-complex with one 0-cell, with 1-cells in bijective correspondence
with the generators, and 2-cells in bijective correspondence with the re-
lators. We shall assume that each relator is a cyclically reduced word
in the generators. The 1-skeleton of the 2-complex is a rose, whose fun-
damental group is naturally identified with the free group on the set of
generators in the given presentation. An element of this group describes
a based homotopy class of maps from the circle to the 1-skeleton. The re-
lator corresponding to a 2-cell is used in this way to describe its attaching
map. For details see [3, p. 50]. A presentation 2-complex is acyclic if it
has the same homology as a point, and is aspherical if its universal cover-
ing space is contractible, or equivalently if it is an Eilenberg–Mac Lane
space for the group presented. Some authors use the term ‘aspherical
presentation’ for a more general situation that arises when some of the
relators are proper powers [8]; this will not concern us.

There is an algorithm to pass from presentation 2-complexes as de-
scribed above to homotopy equivalent simplicial complexes. Each 2-cell
corresponding to a relator of length n should be viewed as an n-gon; the
second barycentric subdivision of the polygonal cell complex obtained in
this way is a simplicial complex. Each petal of the original 1-skeleton rose
is triangulated as the boundary of a square, and the 2-cell corresponding
to a relator of length n is built from 12n triangles.

Conversely, if K is a connected 2-dimensional simplicial complex and
T is a maximal tree in K, the quotient space K/T is naturally a CW-
complex with one 0-cell, and so it may be viewed as a presentation com-
plex, with generators corresponding to the edges of K − T and relators
corresponding to the 2-simplices of K. This process too is algorithmic,
given K and T , but when K is infinite there may be no algorithm to
find a maximal tree T .

The discussion in the two paragraphs above leads to the following
proposition.
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Proposition 4. The existence of an algorithm to decide contractibil-
ity for finite presentation 2-complexes is equivalent to the existence of
an algorithm to decide contractibility for finite 2-dimensional simplicial
complexes.

Proof: Follows from the discussion above, since there is an algorithm to
find a maximal tree inside a finite connected 2-dimensional simplicial
complex.

The discussion above also leads to a corollary to our main theorem.

Corollary 5. For the class of recursively defined acyclic aspherical 2-di-
mensional simplicial complexes, there is no partial algorithm to find all
contractible complexes in the class, and no partial algorithm to find all
non-contractible complexes.

Proof: Since there is an algorithmic way to pass from a recursively de-
scribed presentation 2-complex to a recursively defined 2-dimensional
simplicial complex, a partial algorithm of the type mentioned in the
statement of the corollary would contradict Theorem 1.

Two infinite families of finite group presentations will play a role in
our proofs, the families B(n) andH(n) given below. As above, we use the
notation B(n) and H(n) for the corresponding presentation 2-complexes.

B(n) := 〈a1, . . . , an+1 : a
ai+1

i = a2i 〉,

H(n) := 〈ai, i ∈ Z/n : a
ai+1

i = a2i 〉.
These presentations first appeared as steps in Higman’s construction

of an infinite finitely generated simple group [4]. To establish properties
of B(n), H(n), and of the complexes P (f), we will use two well-known
propositions.

Proposition 6. Let X, Y , and Z be Eilenberg–Mac Lane spaces for
the groups H, K, and L respectively, and let i : Z → X and j : Z → Y
be based maps such that the induced maps on fundamental groups are
injective: i∗ : L→ H and j∗ : L→ K.

(1) The double mapping cylinder or homotopy colimit

(X t Z × I t Y )/(z, 0) = i(z), (z, 1) = j(z)

is an Eilenberg–Mac Lane space for the free product with amalga-
mation H ∗L K = 〈H,K : i∗(l) = j∗(l), l ∈ L〉.

(2) If moreover X = Y so that K = H, then the homotopy colimit of
the smaller diagram with two arrows and just two spaces, (X tZ×
I)/(z, 0) = i(z), (z, 1) = j(z), is an Eilenberg–Mac Lane space for
the HNN-extension H∗L = 〈H, t : ti∗(l)t

−1 = j∗(l), l ∈ L〉.
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Proof: Both assertions are special cases of a theorem concerning arbi-
trary graphs of groups; see for example [3, 1.B.11], although note that
the directed graph used in [3, 1.B] is the barycentric subdivision (with
edges oriented from the larger edge midpoint to the vertex) of the graph
usually used to index a graph of groups.

Proposition 7. With hypotheses as in part (1) of Proposition 6, if in
addition the maps i : Z → X and j : Z → Y are isomorphisms from Z
to subcomplexes of X and Y , then the coproduct X t Y/i(z) = j(z) is
also an Eilenberg–Mac Lane space for H ∗L K.

Proof: The inclusion of a subcomplex in a CW-complex is a cofibration,
and hence the pair (X, i(Z)) is homotopy equivalent to the pair (Mi, Z),
where Mi denotes the mapping cylinder of i : Z → X and similarly
(X, j(Z)) is homotopy equivalent to the pair (Mj , Z). The claim follows.

Corollary 8. The presentation 2-complex B(n) for B(n) is aspheri-
cal, and each of the generators ai represents an element of its funda-
mental group, π1(B(n)), of infinite order. The presentation obtained by
adding the relation an+1 = 1 to B(n) presents the trivial group. The sub-
group of π1(B(n)) generated by a1 and an+1 is free of rank two provided
that n ≥ 2.

Proof: The group presented by B(1) is the Baumslag–Solitar group
BS(1, 2), which is an HNN-extension of the infinite cyclic group 〈a1〉 with
stable letter a2. The asphericity claim for n = 1 follows from part (2) of
Proposition 6. Given the relation a2 = 1, the relator in B(1) reduces to
a1 = a21, which immediately implies a1 = 1. This completes the proof
when n = 1.

All of the claims except the final one are proved by induction using
Proposition 7, since a complex isomorphic to B(n+ 1) can be obtained
by identifying the circle labelled an+1 in B(n) with the circle labelled a1
in a second copy of B(1).

For the final claim, note that the cyclic groups 〈a1〉 and 〈an+1〉
have trivial intersection inside π1(B(n)) for each n ≥ 1. It follows that
〈a1, an+2〉 is a free group by applying the Normal Form Theorem for free
products with amalgamation to the given decomposition of π1(B(n +
1)) [8, IV.2.6].

Corollary 9. The presentation 2-complex H(n) for H(n) is aspherical
for all n, and is contractible if and only if n ≤ 3. For n ≥ 4, each ai gen-
erates an infinite cyclic subgroup of π1(H(n)).



314 I. J. Leary

Proof: It can be checked readily with a computer algebra package that
H(n) presents the trivial group for n ≤ 3, or see [4, pp. 63–64] for a
direct proof. For n ≥ 4, the complex H(n) can be obtained from a copy
of B(n−2) and a copy of B(2) by identifying the 2-petalled rose labelled
by a1 and an−1 inside B(n − 2) with the 2-petalled rose labelled by a3
and a1 respectively inside B(2). The remaining claims concerning H(n)
now follow from Proposition 7 and Corollary 8.

We are now ready to start the proof of Lemma 2.

Proof: It is immediate that each P (f) is acyclic, and so we concentrate
on the homotopy groups. We view the 1- and 2-cells of P (f) as being
indexed by N+, so that the generator ai corresponds to the loop around
the ith edge, and the ith 2-cell is the 2-cell corresponding to the rela-
tion a−1f(i)aiaf(i) = a2i .

First, consider the case of the function f(i) := i + 1. In this case,
the 2-cells indexed by 1, . . . , n and the 1-cells indexed by 1, . . . , n +
1 form a subcomplex isomorphic to B(n), and the whole complex is
the ascending union of these subcomplexes. It follows that in this case
P (f) is aspherical as claimed. To see that P (f) is not contractible, let
r : N+ → Z/4 be the map defined by r(i) := [i] := i+ 4Z. This induces
a cellular map P (f)→ H(4) which is surjective on fundamental groups.
Since the subgroup 〈ar(i)〉 is infinite, so is the subgroup 〈ai〉 of the group
presented by P(f).

Now we move on to the general case. We fix a function f : N+ → N+,
and so we write P instead of P(f) and P in place of P (f), and prove
the claim by induction on certain subcomplexes of P . The boundary of
the 2-cell indexed by i ∈ N+ meets only the 1-cells ai, af(i), and the
0-cell. Hence if S ⊆ N+ is any subset such that f(S) ⊆ S, the cells
indexed by S (together with the 0-cell) form a subcomplex of P . Denote
this subcomplex by P (S). For each i ∈ N+, write F (i) for the forward
orbit of i: F (i) := {fn(i) : n ≥ 0}, and note that f(F (i)) ⊆ F (i).

As an inductive hypothesis, suppose that we have an f -closed sub-
set S ⊆ N+ so that P (S) is aspherical, and that P (S) satisfies two
other properties analogous to those claimed for P (f), as described be-
low. Firstly, we suppose that P (S) is contractible if and only if every
forward orbit of f |S is eventually periodic of period at most 3. Secondly,
we suppose that for each i ∈ S, the subgroup of π1(P (S)) generated
by ai is either infinite or trivial, and is trivial iff the forward orbit F (i)
is eventually periodic of period at most 3.

Let i be the least element of N+ − S. There are two main cases to
consider, depending on whether F (i) ∩ S is empty or non-empty.
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If F (i) ∩ S 6= ∅, let n be minimal so that fn(i) ∈ S. In this case,
P (F (i) ∪ S) is isomorphic to the union of P (S) and the subspace X
consisting of the 0-cell, the 1-cells indexed by {i, f(i), . . . , fn(i)}, and
the 2-cells indexed by the set {i, f(i), . . . , fn−1(i)}. The subspace X
is isomorphic to B(n). The intersection of P (S) and X is the circle
consisting of the 0-cell and the 1-cell indexed by fn(i). If the forward
orbit of i is eventually periodic of period at most 3, then so is the forward
orbit of fn(i), and so the circle indexed by fn(i) is contractible in P (S),
and attaching a copy of B(n) to this circle does not change the homotopy
type, so P (F (i) ∪ S) is homotopy equivalent to P (S). If on the other
hand the forward orbit of i is infinite, or eventually periodic of period
greater than 3, then the circle indexed by fn(i) represents an element of
infinite order in the fundamental groups of both P (S) and X ∼= B(n).
The inductive hypothesis passes to P (S ∪ F (i)) = P (S) ∪fn(i) X.

If F (i) ∩ S = ∅, then P (F (i) ∪ S) = P (F (i)) ∨ P (S), the 1-point
union of P (F (i)) and P (S), and π1(P (F (i) ∪ S) is just the free prod-
uct π1(P (F (i))) ∗ π1(P (S)). Thus our inductive hypothesis will hold
for F (i)∪S provided that we can show that it holds for F (i). This splits
into three further subcases. If F (i) is infinite, then P (F (i)) is isomorphic
to the complex discussed in the first paragraph, and the claims hold. If
f is periodic of period n when restricted to F (i), then P (F (i)) is iso-
morphic to the complex H(n), and the inductive hypotheses hold by
Corollary 9. If neither of these cases holds, we take an intermediate step
between S and S ∪F (i). Pick the least n > 0 so that there exists m > n
with fm(i) = fn(i), and let j := fn(i). We have that f is periodic
on F (j) and F (j) ∩ S = ∅, so by the cases already covered we deduce
that the inductive hypotheses hold for S′ := S ∪ F (j). Note also that
F (i)∩S′ = F (j) 6= ∅, so getting from S′ to S′ ∪F (i) = S ∪F (i) reduces
to the other main case considered in the previous paragraph.

Next we prove Corollary 3.

Proof: By Lemma 2, it suffices to show that any forward orbit of the Col-
latz function C that does not eventually join the periodic orbit 1, 4, 2, . . .
is either infinite or has eventual period greater than 3. So let n1, n2, . . . ,
nl, . . . be a periodic orbit of period l, and choose the starting point
so that n1 < ni for 2 ≤ i ≤ l. This implies that n1 is odd, and that
n2 = C(n1) = 3n1 + 1. Since 3n1 + 1 > 2n1, we see that C(n2) > n1

and so l > 2. If l = 3, it must be that C(C(n2)) = n1, and hence
3n1 + 1 = 4n1, which implies that n1 = 1.

A generalized Collatz function is a function g : N+ → N+ such that
there exists an integer m > 0 and rationals ai, bi for 0 ≤ i < m so that
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whenever x is congruent to i modulo m, g(x) = aix+ bi. In particular,
the function C can be written in this way for m = 2, a0 = 1/2, b0 = 0,
a1 = 3, b1 = 1. To prove Theorem 1, we quote a theorem of Kurtz and
Simon [6], that strengthens a well known result due to Conway [2, 7].
They define GCP to be the problem of deciding, for each generalized
Collatz function g, whether every forward orbit of g contains 1. They
show [6, Theorem 3] that GCP is Π0

2-complete; and hence in particular
there can be no partial algorithm that can identify either the generalized
Collatz functions that satisfy GCP or the ones that do not.

Given a function f : N+ → N+, we define a new function f̂ : N+ → N+

as follows. Firstly, let φ : N+ → N+×Z/4 be the function φ(n) = (b(n+
3)/4c, [n]), where as before we use [n] to denote the class n+ 4Z ∈ Z/4,
and bqc is the greatest integer less than or equal to q. Note that φ is a
bijection and that both φ and φ−1 are easily computable. Now define

f̃ : N+ × Z/4→ N+ × Z/4 by

f̃(m, [i]) :=

{
(f(m), [i+ 1]) for m 6= 1,

(1, [i]) for m = 1.

Finally, define f̂ := φ−1 ◦ f̃ ◦ φ.

Lemma 10. The following are equivalent, for any function f : N+ →
N+:

• Every forward orbit of f contains 1.

• Every forward orbit of f̂ is eventually periodic of period at most 3.

Proof: Since φ is a bijection, the dynamics of f̂ and f̃ are identical. It is

clear that for any i, x, the forward orbit of (x, [i]) under f̃ will be even-
tually constant (i.e., eventually periodic of period 1) if the forward orbit
of x under f contains 1. Similarly, if the forward orbit of x under f does

not contain 1, then for each n ≥ 0 we see that f̃n(x, [i]) = (fn(x), [i+n]),
and so the forward orbit of (x, [i]) will be either infinite or eventually
periodic of period divisible by 4.

We are now ready to prove Theorem 1.

Proof: Let g be an arbitrary generalized Collatz function, and consider
the question of whether P (ĝ) is contractible. By Lemma 2, this is equiv-
alent to the question of whether every forward orbit of ĝ is eventually
periodic of period at most three. By Lemma 10, this is equivalent to
the question of whether every forward orbit of g contains 1. But Kurtz
and Simon showed that this question is Π0

2-complete, which implies the
claim.
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3. Closing remarks

Similar but simpler techniques can be used to prove undecidability
results for the homology of infinite complexes, and we give two examples
below.

Theorem 11. There is no algorithm to decide whether a recursively
described graph is connected. Moreover, there is no partial algorithm to
find the connected ones, and no partial algorithm to find the disconnected
ones.

Proof: For a function f : N+ → N+, define a graph Γ(f) with vertex
and edge set indexed by N+, where the vertices of the edge ei are vi+1

and vf(i+1). This graph is connected if and only if every forward orbit
of f contains 1.

By the Kurtz–Simon theorem, the question of whether the graph Γ(g)
is connected, for g any generalized Collatz function, is Π0

2-complete,
which implies the claim.

A similar argument applies to the computation of the first homology
of recursively described 2-complexes, because the group with presenta-
tion Q(f) given by

Q(f) := 〈ai, i ∈ N+ : a1 = 1, ai+1 = af(i+1)〉
is free, and is trivial if and only if every forward orbit of f contains 1.

The top homology group (i.e., H1 for graphs or H2 for 2-complexes)
is different however:

Proposition 12. For each n, there is a partial algorithm that identi-
fies the recursively described n-dimensional complexes with non-zero nth
homology group.

Proof: Fix an integer parameter m > 0. Now compute the boundaries of
the first m of the n-cells, expressed as formal sums of (n− 1)-cells. Use
standard techniques of linear algebra to decide whether these m elements
are linearly dependent; if so, then Hn 6= 0. If not, increase m and repeat.

The functions that we have considered are of course far simpler than
arbitrary recursive functions. If g is either a generalized Collatz function

or g = f̂ for some generalized Collatz function f , then the sets g−1(i)
are of bounded size and can be easily computed. From this one sees
that the cellular cochain complexes for P (g), Q(g), and Γ(g) are also
recursively described, where Q(g) denotes the presentation 2-complex
for Q(g). The argument used in Proposition 12, when applied H0(Γ(g))
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for any g for which the cochain complex for Γ(g) is recursively described,
gives that there is a partial algorithm that will identify when Γ(g) has a
finite connected component.
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