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SUMMABILITY IN A MONOMIAL FOR SOME

CLASSES OF SINGULARLY PERTURBED PARTIAL

DIFFERENTIAL EQUATIONS

Sergio A. Carrillo

Abstract: The aim of this paper is to continue the study of asymptotic expansions

and summability in a monomial in any number of variables, as introduced in [3, 15].

In particular, we characterize these expansions in terms of bounded derivatives and
we develop Tauberian theorems for the summability processes involved. Furthermore,

we develop and apply the Borel–Laplace analysis in this framework to prove the

monomial summability of solutions of a specific class of singularly perturbed PDEs.
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1. Introduction

The theory of asymptotic expansions in one complex variable is a
well established and widely used branch of Analysis. It provides the ad-
equate setting to treat solutions of analytic problems at singular points
and opens naturally a way to study (Borel) summability of formal so-
lutions, for instance, power series or exponential series. It finds its ap-
plications in some classes of ordinary and partial differential equations,
analytic classification of formal objects, and some other classes of func-
tional equations. In this framework we have at our disposal two main
tools to approach such problems: the Ramis–Sibuya theorem and the
Borel–Laplace analysis.

There are different notions of asymptotic expansions in several vari-
ables available in the literature. We can mention Majima’s strong as-
ymptotic expansions which allows us to work with each variable inde-
pendently, although the problem of identifying singular directions for
summability persists; see e.g., [18]. In the Gevrey case this notion can
also be approached through a Borel–Laplace analysis. Let us mention
that in [10] this has been used as a regularization process to prove the
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existence and “summability” of solutions for classes of nonlinear evolu-
tion partial differential equations.

On the other hand, monomial asymptotic expansions and monomial
summability lie in between the theory of one variable and the one of
Majima. The concept emerged naturally in several problems, including
the study of certain systems of differential equations by H. Majima and
W. Wasow, and in the analytic classification of resonant singularities of
holomorphic foliations in two variables given by J. Martinet and J.-P. Ra-
mis; see [15, Introduction] for more details. Later, these notions were
formalized and developed systematically in [3] for the case of two vari-
ables, and then in [15] for higher dimensions. Furthermore, they were
applied successfully to doubly singular ordinary differential equations,
i.e., that are both singularly perturbed and exhibit an irregular singular
point; see equation (33). In particular, the monomial involved identifies
singular directions for summability of the formal solution, and thus helps
to find large domains where actual holomorphic solutions of the problem
exist.

In simple terms and leaving technical details for later, monomial
summability formalizes the idea of studying summability – Borel, k-
Borel, or k-summability defined using Gevrey asymptotic expansions –

of formal power series f̂(x1, . . . , xd) but with respect to a variable t =
xα1

1 · · ·x
αd
d , for some positive integers αj . In other words, the source

of the divergence of f̂ can be treated by putting f̂(x1, . . . , xd) = ĝ(xα1
1 · · ·

xαdd )(x1, . . . , xd), where ĝ(t) is a formal power series in t with coefficients
holomorphic functions in x1, . . . , xd in a certain Banach space. Then,

the summability of f̂ is addressed as the summability of ĝ(t) with re-

spect to t. In this way, if g(t) is a sum for ĝ(t), we associate to f̂ the

sum f(x1, . . . , xd) = g(xα1
1 · · ·x

αd
d )(x1, . . . , xd) which will represent f̂

asymptotically in adequate domains. This approach provides a way to
understand more intricate divergence phenomena which are inaccessible
when considering each variable xj separately.

Our goal in this paper is to follow the sketch we present in Section 2 on
the theory of asymptotic expansions in one variable to provide analogous
results for the monomial case. The main theoretical results we obtain
here are: a characterization of having a monomial asymptotic expansion
in terms of bounded derivatives (Theorem 3.8), equivalent methods to
establish monomial summability based on integral transformations with-
out passing to the variable t (Theorem 4.10), and Tauberian theorems
comparing such summability processes (Theorem 5.5).

For the two-dimensional case the last two issues were treated in [5, 6].
The key idea was to weigh the variables adequately to obtain integral
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transformations, as the ones introduced in [2], and then to have at hand
a direct Borel–Laplace analysis. One of the improvements we obtain here
is that some of the weights can be zero. At first look, it might seem that
the zero weighted variables act as regular parameters. The main differ-
ence with the parametric case is that the domains where the asymptotic
expansions take place also depend on them. In fact, the summability
methods involved are incompatible (Theorem 5.8).

As an application, we establish in Theorem 6.1 the xαεα
′
-1-summa-

bility of the unique formal power series solution of the partial differential
equation

(1) xαεα
′
(
µ1x1

∂y

∂x1
+ · · ·+ µnxn

∂y

∂xn

)
= G(x, ε,y),

where x= (x1, . . . , xn), ε= (ε1, . . . , εm) are complex variables, α= (α1,
. . . , αn), α′ = (α′1, . . . , α

′
m) are tuples of positive integers, (µ1, . . . , µn)

is, up to a non-zero multiple scalar, an n-tuple of positive real numbers,
G is a CN -valued holomorphic function in a neighborhood of the origin,
and ∂G

∂y (0, 0,0) is an invertible matrix. In this way, we have generalized

the results in [3, 6] corresponding to the case n = m = 1 by using
directly the appropriate Borel–Laplace analysis.

Asymptotic expansions and summability have been recently general-
ized by J. Mozo and R. Schäfke in [15] from monomials to germs of an-
alytic functions. Integral transformations for the corresponding summa-
bility methods are still not available and it is an interesting problem to
determine whether it is possible to extend our results to that setting.
It is worth mentioning that after our current results, we have recently
extended these Tauberian theorems for k-summability with respect to
analytic germs; see [7].

The plan for the paper is as follows: in Sections 2 and 3 we recall the
basic results on asymptotic expansions and summability in one variable
and for monomials, respectively. Section 4 is devoted to introduce and
develop integral transformations to characterize monomial summability,
and then in Section 5 these tools are applied to prove Tauberian theorems
for these summability methods. Finally, Section 6 contains the proof
of the monomial summability of the formal solution of the singularly
perturbed partial differential equation mentioned above.

Acknowledgments. I want to thank Professors Jorge Mozo-Fernández,
Reinhard Schäfke, and Armin Rainer for fruitful discussions. I also want
to thank Universidad de Valladolid (Spain) for the hospitality during my
visits while preparing this article.
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2. Asymptotics and summability in one variable

We start by introducing some notation: Let N denote the set of nat-
ural numbers including 0 and N+ = N \ {0}. Domains in the complex
plane C where holomorphic maps admit an asymptotic expansion are
sectors with vertex at some fixed point, e.g., the origin. In this paper
we denote them by S = S(θ, b − a, r) = V (a, b, r) = {x ∈ C : 0 < |x| <
r, a < arg(x) < b} emphasizing on its bisecting direction θ = (b + a)/2,
opening b − a > 0, and radius r > 0. For unbounded sectors we simply
write S = S(θ, b−a). For subsectors S′ = S(θ′, b′−a′, r′), a < a′ < b′ < b,
0 < r′ < r, we write S′ b S. We also denote by Dr the disc of radius r
centered at the origin.

Let (E, ‖ · ‖) be a complex Banach space. In most applications E
is Cd, for some d ≥ 1, or a suitable space of functions. We will use the
notation C(U,E) (resp. O(U,E), Ob(U,E)) for the space of continuous
(resp. holomorphic, holomorphic and bounded) E-valued maps defined
on an open set U ⊆ Cd. If E = C, we will simply write O(U). We
also denote by E[[x]] (resp. E{x}) the space of formal (resp. convergent)
power series in the variable x with coefficients in E.

Consider f ∈ O(S,E) and assume it has f̂ =
∑∞
n=0 anx

n ∈ E[[x]] as

asymptotic expansion at the origin on S (denoted by f ∼ f̂ on S), i.e.,
for each S′ b S and N ∈ N, there exists CN (S′) > 0 such that

(2)

∥∥∥∥f(x)−
N−1∑
n=0

anx
n

∥∥∥∥ ≤ CN (S′)|x|N on S′.

To check that f ∼ f̂ on S, it is actually sufficient to have inequality (2)
only for the values N = Mp, where p ∈ N+ is fixed. The asymptotic

expansion also holds if instead of the partial sums of f̂ we consider a
sequence (fN )N∈N ⊂ Ob(DR, E) satisfying that for each S′ b S and N ∈
N, there are constants AN (S′) > 0 such that

‖f(x)− fN (x)‖ ≤ AN (S′)|x|N on S′ ∩DR.

The series f̂ is completely determined by f since an=limS′3x→0
f(n)(x)
n!

for any S′ b S. The series f̂ is also given by the limit of the Taylor series
at the origin of the fn, in the m-topology of E[[x]], m = (x). On the
other hand, a map has an asymptotic expansion on S if and only if it
has bounded derivatives of all orders on every S′ b S, a fact that follows
by using Taylor’s formula.
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When no restrictions on the coefficients CN (S′) or on the sector S

are imposed, the map f 7→ f̂ is not injective. In applications to differ-
ential equations the types of asymptotic expansions that appear are of

s-Gevrey kind (denoted by f ∼s f̂ on S), for some s > 0. This means
that we can choose Cn(S′) = C(S′)A(S′)nn!s, for some C(S′), A(S′) > 0
independent of n. It follows from (2) that ‖an‖ ≤ Cn(S′) for all n ∈ N.

Then, in the s-Gevrey case, we conclude that f̂ is an s-Gevrey series.
The space of such series will be denoted by E[[x]]s. The cornerstone to
define k-summability is Watson’s lemma: if f ∼s 0 on S(θ, b− a, r) and
b− a > sπ, then f ≡ 0.

Given f̂ ∈ E[[x]], k > 0, and a direction θ ∈ R, we say that:

(1) The series f̂ is k-summable on S = S(θ, b − a, r) with sum f ∈
O(S,E) if b − a > π/k and f ∼1/k f̂ on S. We also say that f̂ is
k-summable in direction θ. The corresponding space of such series
is denoted by E{x}1/k,θ.

(2) The series f̂ is k-summable if it is k-summable in all directions,
except possibly for a finite number of them modulo 2π (the singular
directions). The corresponding space is denoted by E{x}1/k.

Due to Watson’s lemma, the k-sum of a k-summable series is unique.
We have at our disposal integral transformations to compute these sums.
Among the kernels of order k for moment summability, see e.g., [1, Sec-
tion 6.5], it is common to consider:

(1) The k-Borel transform, defined by Bkf(ξ) = k
2πi

∫
γ
f(x)e(ξ/x)k dx

xk+1 ,

where f ∈ Ob(S,E), S = S(θ, π/k+2ε, R0), 0 < 2ε < π/k, and γ is
the boundary, oriented positively, of a subsector of S of opening

larger than π/k. Its formal counterpart B̂k acts on monomials by

the formula B̂k(xλ)(ξ) = ξλ−k

Γ(λ/k) , λ ∈ C.

(2) The k-Laplace transform in direction θ, defined by Lk,θ(g)(x) =∫ eiθ∞
0

g(ξ)e−(ξ/x)k dξk, where g is continuous and has exponential
growth of order at most k on the domain of integration. If g is
defined on an unbounded sector, we obtain a map Lk(g) through
analytic continuation by moving θ.

Using these transformations, and due to their compatibility with

asymptotic expansions, a 1/k-Gevrey series f̂ =
∑∞
n=0 anx

n is called

k-Borel summable in direction θ if B̂k
(
f̂ −

∑
n≤k anxn

)
can be analyti-

cally continued, say as ϕ, to an unbounded sector S′ containing θ, and
having exponential growth of order at most k in S′, i.e., we can find

constants L,M > 0 such that ‖ϕ(ξ)‖ ≤ LeM |ξ|
k

for all ξ ∈ S′. The
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k-Borel sum of f̂ is defined by f(x) =
∑
n≤k anx

n+Lk(ϕ)(x). It is well-

known that a power series f̂ ∈ E[[x]] is k-Borel summable in direction θ
if and only if it is k-summable in direction θ and both sums coincide; see
e.g., [16]. This equivalence is useful also to prove Tauberian theorems
for k-summability. In particular, we know that if a series is k-summable
for two different values of the parameter k, then it is convergent.

The Borel–Laplace analysis has been applied as a regularization pro-
cess in differential equations to prove the summability of formal solutions
in generic situations. It exploits the isomorphism between the following
structures

(3) (E[[x]]1/k,+,×, xk+1 d/dx)
B̂k−−→ (ξ−kE{ξ},+, ∗k, kξk(·)),

where × denotes the usual product and ∗k stands for the k-convolution

product. For holomorphic maps, it is given by (f ∗kg)(ξ)=ξk
∫ 1

0
f(ξτ1/k)

g(ξ(1− τ)1/k) dτ . For more morphisms of this nature see, e.g., [13].

3. Asymptotic expansions in a monomial

In this section we recall the concepts of asymptotic expansions and
k-summability in a monomial, and their main properties. In particular,
we prove Theorem 3.8 that characterizes maps admitting a monomial
asymptotic expansion in terms of bounds on their derivatives.

We introduce the remaining notation we will use along the text. For
a fixed d ∈ N+, we will write [1, d] for the set {1, 2, . . . , d}, e1, . . . , ed will
denote the canonical basis of Cd, σd = {(t1, . . . , td) ∈ Rd>0 : t1+· · ·+td =
1} will be the standard d-simplex they generate, and σd will denote its
topological closure. We will also write 〈λ,µ〉 = λ1µ1 + · · ·+ λdµd for all
λ,µ ∈ Cd.

We use complex coordinates x=(x1, . . . , xd)∈Cd. If β=(β1, . . . , βd) ∈
Nd and s=(s1, . . . , sd)∈Rd≥0, we use the multi-index notation |β| = β1+

· · ·+βd, β!s=β1!s1 · · ·βd!sd , xβ=xβ1

1 · · ·x
βd
d , and ∂β

∂xβ
=∂|β|/∂xβ1

1 · · · ∂x
βd
d .

If J ⊆ [1, d], we denote by Jc = {i ∈ [1, d] : i 6∈ J} its complement, #J its
cardinal, and we write NJ = {(βj)j∈J | βj ∈ N, j ∈ J}, xJ = (xj)j∈J ,

βJ = (βj)j∈J , and x
βJ
J =

∏
j∈J x

βj
j . Along the text we work with

the partial order on Nd defined by β ≤ α if and only if βj ≤ αj for
all j ∈ [1, d]. We will also write β < α if βj < αj for all j ∈ [1, d]. Note
that β 6≤ α if and only if there is j ∈ [1, d] such that βj > αj .

Given a complex Banach space (E, ‖ · ‖), E[[x]] (resp. E{x}) will
denote the space of formal (resp. convergent) power series in the vari-
ables x with coefficients in E. If s ∈ Rd≥0, we denote by E[[x]]s the space
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of s-Gevrey series in the variable x, i.e.,
∑
β∈Nd aβx

β is s-Gevrey if there

exist constants C,A > 0 such that ‖aβ‖ ≤ CA|β|β!s for all β ∈ Nd.
Given any f̂ =

∑
β∈Nd aβx

β ∈ E[[x]], we can write f̂ uniquely for

every nonempty subset J ( [1, d] as

(4) f̂ =
∑
βJ∈NJ

f̂J,βJ (xJc)x
βJ
J , f̂J,βJ (xJc) =

∑
βJc∈NJ

c

aβJ∪Jcx
βJc
Jc .

Furthermore, if α ∈ (N+)d is given and we consider the monomial xα,

f̂ can be also written uniquely as

(5) f̂ =

∞∑
n=0

f̂α,n(x)xnα, f̂α,n =
∑
α 6≤β

anα+βx
β.

To ensure that each f̂α,n = fα,n gives rise to a holomorphic map,
defined in a common polydisc at the origin for all n ∈ N, it is necessary

and sufficient that f̂ ∈ Ô′d(E) :=
⋃
r>0 Ô′d(r, E), where Ô′d(r, E) :=⋂d

j=1Ob(Dd−1
r , E)[[xj ]]. If this is the case, then f̂J,βJ = fJ,βJ ∈ E{xJc}

for all βJ ∈ NJ and J ( [1, d], and they are defined in a common
polydisc at the origin. Besides fα,n ∈ Eα :=

⋃
r>0 Eαr , where Eαr is

the space of holomorphic maps g ∈ Ob(Dd
r , E) such that ∂βg

∂xβ
(0) = 0

for all α ≤ β. Also, each Eαr becomes a Banach space with the norm
‖g‖r := sup|x1|,...,|xd|≤r ‖g(x)‖.

For any f̂ ∈ Ô′d(E) and γ ∈ Nd, we will use the notation

Appγ(f̂)(x) :=
∑
γ 6≤β

aβx
β ∈ E{x}

for the formal approximate of f̂ of order γ. In particular, if γ = Nα,
we have

(6) AppNα(f̂)(x) =

N−1∑
n=0

fα,n(x)xnα.

Remark 3.1. For further use, we remark the following bounds on facto-
rials. First, it is elementary to show that

(7) n!k ≤ (kn)! ≤ kknn!k, n, k ∈ N+.

Let us fix α∈(N+)d and consider γ∈Nd\{0}. If N=min1≤j≤dbγj/αjc =
bγl/αlc, where b·c denotes the floor function, then N ≤ γl/αl < N +
1 and N ≤ γj/αj for all j = 1, . . . , d. Then, using (7), the second
inequality shows that N !αj ≤ (αjN)! ≤ γj !. Also, the first inequality
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shows that γl!
1/αl ≤ (αl(N + 1))!1/αl ≤ αN+1

l (N + 1)! ≤ |α|N+12NN ! =

|α|(2|α|)NN ! ≤ |α|(2|α|)|γ|N !, since N ≤ |γ|. In conclusion,

|α|−1(2|α|)−|γ| min
1≤j≤d

γj !
1/αj ≤ N ! ≤ min

1≤j≤d
γj !

1/αj .

Analogously, if we consider N = max1≤j≤dbγj/αjc + 1 = bγm/αmc + 1
instead, now we have γj/αj < N ≤ γm/αm+1 for all j = 1, . . . , d. Then
N !αm ≤ (αmN)! ≤ (γm + αm)! ≤ 2γm+αmγm!αm!. Using that N ≤ 2|γ|
and αm!1/αm ≤ αm ≤ |α|, we can conclude as before that

|α|−2|γ| max
1≤j≤d

γj !
1/αj ≤ N ! ≤ |α|22|γ| max

1≤j≤d
γj !

1/αj .

For each α ∈ (N+)d, we consider the map T̂α : Ô′d(E)→ Eα[[t]] given

by T̂α(f̂) =
∑∞
n=0 fα,nt

n, by using decomposition (5). We will say f̂ is an

s-Gevrey series in the monomial xα if for some r > 0, T̂α(f̂) ∈ Eαr [[t]],
and it is an s-Gevrey series in t, i.e., there are constants B,D > 0
such that ‖fα,n‖r ≤ DBnn!s for all n ∈ N. The space of s-Gevrey
series in xα will be denoted by E[[x]]αs . Their elements admit another
characterization, for which we need the following:

Lemma 3.2. The following assertions are verified for a series f̂ =∑
aβx

β ∈ E[[x]]:

(1) f̂ ∈ E[[x]]αs if and only if there are constants C,A > 0 satisfying

‖aβ‖ ≤ CA|β|min{β1!s/α1 , . . . , βd!
s/αd}, β ∈ Nd.

(2) If f̂ ∈ E[[x]]α
′

s , then T̂α(f̂) is a max1≤j≤d{αj/α′j}s-Gevrey series,
in some Eαr .

Proof: (1) Assume there are constants B,D > 0 such that ‖fα,n‖r ≤
DBnn!s for all n ∈ N. Given γ ∈ Nd, let N = min1≤j≤dbγj/αjc. Thus
γ = Nα + β with βl < αl, for some l. Then, by Cauchy’s inequalities,
we see that

‖aγ‖ = ‖aNα+β‖ =

∥∥∥∥ 1

β!

∂βfα,N
∂xβ

(0)

∥∥∥∥ ≤ DBN

r|β|
N !s,

which yields one implication with the aid of Remark 3.1. The converse
follows by the same argument as in (2) below.
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(2) If ‖aβ‖ ≤ CA|β|min1≤j≤d{βj !s/α
′
j}, for all β ∈ Nd, we can directly

estimate the growth of fα,n by means of equation (5): if |x| < r and
rA < 1, we obtain

‖fα,n(x)‖ =

∥∥∥∥∑
α 6≤γ

anα+γx
γ

∥∥∥∥
≤

d∑
j=1

αj−1∑
βj=0

∑
γ∈Nd,γj=βj

CAn|α|+|γ|r|γ| min
1≤l≤d

(nαl + γl)!
s/α′l

≤ CAn|α|

(1− rA)d−1

d∑
j=1

αj−1∑
βj=0

(nαj + βj)!
s/α′j (rA)βj .

If we write s′ = max1≤j≤d{αj/α′j}s, by using inequalities (7), we find
that

(nαj + βj)!
s/α′j ≤ (αj(n+ 1))!s/α

′
j

≤ ααj(n+1)
j (n+ 1)!sαj/α

′
j ≤ ααj(n+1)

j (n+ 1)!s
′
,

for all n ∈ N. Then it is clear that we can find constants K,M > 0 such
that ‖fα,n(x)‖ ≤ KMnn!s

′
for all |x| < r and all n ∈ N, as we wanted

to show.

The previous lemma implies that E[[x]]MαMs = E[[x]]αs for all M ∈ N+.

It also shows that f̂ ∈ E{x} if and only if T̂α(f̂) ∈ Eαr {t} for some r > 0,
by taking s = 0. Moreover, Lemma 3.2 (1) shows that

(8) E[[x]]αs =

d⋂
j=1

E[[x]] s
αj
ej ⊆ E[[x]]s,

for any s in the convex hull of {s/α1e1, . . . , s/αded}. This inclusion
follows from the first inequality in

(9) min{a1, . . . , ad} ≤ at11 · · · a
td
d ≤ max{a1, . . . , ad},

valid for any a1, . . . , ad > 0 and (t1, . . . , td) ∈ σd.
In the analytic setting, we use sectors in the monomial xα, i.e., sets

of the form

Πα=Πα(a, b, r)={x ∈ Cd : a < arg(xα) < b, 0 < |xj |αj < r, j ∈ [1, d]}.
Here any convenient branch of arg may be used. The number r > 0
denotes the radius, b − a > 0 the opening, and θ = (b + a)/2 the
bisecting direction of the monomial sector. We will also use the nota-
tion Πα(a, b, r) = Sα(θ, b − a, r) = Sα. In the case r = +∞ we will
simply write Πα(a, b) = Sα(θ, b − a), and we will refer to it as an un-
bounded sector. The definition of subsector in a monomial is clear.
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Remark 3.3. Given two monomial sectors Π′α = Πα(a′, b′, r) ⊂ Π′′α =
Πα(a′′, b′′, r), we can always cover the first one by polysectors, i.e., Carte-
sian products of sectors, of constant opening contained in the second one.
In particular, we can check that Π′α ⊂ U ⊂ Π′′α, where U is given by

U =
⋃

µ1,...,µd−1∈R

d−1∏
j=1

V

(
µj , µj +

b′ − a′

(d− 1)αj
, r1/αj

)

× V

(
a′′ −

∑d−1
k=1 αkµk
αd

,
b′′ − (b′ − a′)−

∑d−1
k=1 αkµk

αd
, r1/αd

)
.

Indeed, if x0 = (x1,0, . . . , xd,0) ∈ Π′α, then x0 belongs, for instance,
to the polysector with µj given by

µj = arg(xj,0)− φ

αj
,

max

{
0,

arg(xα0 )− b′′ + b′ − a′

d− 1

}
< φ < min

{
b′ − a′

d− 1
,

arg(xα0 )− a′′

d− 1

}
.

If f ∈ Ob(Πα, E), Πα = Πα(a, b, r), then we can construct an opera-
tor Tα(f)ρ : V → Eαρ , where V = V (a, b, ρd) and 0 < ρ < r, as it is done
in the formal case, such that

Tα(f)ρ(x
α)(x) = f(x).

We recall this construction by following [15]. We start with the case α =
1 := (1, . . . , 1). Define the map g(t, x2, . . . , xd) := f

(
t

x2···xd , x2, . . . , xd
)

for |x2|, . . . , |xd| < r and |t|/r < |x2 · · ·xd|. The map g admits a Laurent
series expansion in this domain, g(t, x2, . . . , xd) =

∑
m∈Zd−1 gm(t)x′m,

where gm ∈ O(V,E).
If m ∈ Zd−1, we use the notation µ(m) = min{0,m2, . . . ,md} ≤ 0,

and φ : Zd−1 →Md for the bijection φ(m) = (−µ(m),m2 − µ(m), . . . ,
md − µ(m)), where Md ⊂ Nd is the set of all (n1, . . . , nd) ∈ Nd such
that at least one of the nj vanishes. Then, by definition,

T1(f)ρ(t)(x) :=
∑
m∈Zd

tµ(m)gm(t)xφ(m).

With these considerations, we guarantee that all the exponents in x are
non-negative. To check that this expression is well-defined and satisfies
what it is required, note that since f is bounded, say by some constant C,
Cauchy’s inequalities yield ‖gm(t)‖ ≤ Cr−m2

2 · · · r−mdd . If ml = µ(m),
choose rj = r for all j 6= l and rl such that r2 · · · rd = |t|/r, to deduce
that

‖gm(t)‖ ≤ C|t|−µ(m)rdµ(m)−(m2+···+md).
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Thus each tµ(m)gm(t) is holomorphic and bounded on V . It is also clear
that xφ(m) ∈ E1ρ , since φ(m) ∈ Md, and then the map defined through
the previous series also belongs to the same space.

More generally, if there is a functionK : (0, rd)→R such that ‖f(x)‖ ≤
K(|x1 · · ·xd|), x ∈ Π1, then ‖tµ(m)gm(t)‖ ≤ K(|t|)rdµ(m)−(m2+···+md).
Thus T1(f)ρ(t)(x) is bounded by

K(|t|)
∑

m∈Zd−1

(
1

r
x

)φ(m)

= K(|t|)
∑
n∈Md

(
1

r
x

)n
≤ K(|t|)∏d

j=1

(
1− |xj |r

) .
We conclude that

(10) ‖T1(f)ρ(t)(x)‖ ≤ K(|t|)∏d
j=1

(
1− |xj |r

) , t∈V (a, b, ρd), x∈Π1(a, b, r).

In the general case, for an arbitrary monomial xα, we can write

(11) f(x) =
∑

0≤β<α

xβfβ(xα1
1 , . . . , xαdd ),

with fβ ∈ O(Π1(a, b, r), E). In fact, if for each j, ωj is a αj-th primitive
root of unity, then

(12) xβfβ(xα1
1 , . . . , xαdd )=

1

α1 · · ·αd
×
∑

0≤δ<α

ω−δ1β1

1 · · ·ω−δdβdd f(ωδ11 x1, . . . , ω
δd
d xd).

Then, we define

(13) Tα(f)ρ(t)(x) :=
∑

0≤β<α

xβT1(fβ)ρ(t)(x
α1
1 , . . . , xαdd ).

To see that Tα(f)ρ is well-defined and thus holomorphic, we can actu-
ally show that if f satisfies ‖f(x)‖ ≤ K(|xα|) on Πα, for some function
K : (0, rd)→ R, then

(14) ‖Tα(f)ρ(t)(x)‖ ≤ Rα(|x1|α1 , . . . , |xd|αd , r)
K(|t|)
|t|

,

for t ∈ V (a, b, ρd), x ∈ Πα(a, b, r), where

Rα(ρ1, . . . , ρd, r) :=
rd∏d

j=1

(
1−

(ρj
r

)1/αj) , 0 ≤ ρ1, . . . , ρd < r.

Indeed, by using equation (12) we get

‖xαfβ(xα1
1 , . . . , xαdd )‖ ≤ |x1|α1−β1 · · · |xd|αd−βdK(|xα|).
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In the variables uj = x
αj
j these inequalities take the form

‖fβ(u)‖ ≤ r1−β1/α1 · · · r1−βd/αdK(|u1 · · ·ud|)
|u1 · · ·ud|

.

We can thus apply inequality (10) to each summand in (13) to finally
obtain

‖Tα(f)ρ(t)(x)‖ ≤
∑

0≤β<α

(
|x1|
r1/α1

)β1

· · ·
(
|xd|
r1/αd

)βd rdK(|t|)∏d
j=1

(
1− |xj |

αj

r

)
|t|
.

Then (14) follows by noticing that |xj |αj < ρ < r, and also from the

identity
∑

0≤β<α a
β1

1 · · · a
βd
d =

(1−aα1
1 )···(1−aαdd )

(1−a1)···(1−ad) .

In the case d = 2 and α = 1 = (1, 1), if f ∈ O(Π1(a, b, r)), the
previous construction consists of writing f(t/x2, x2) =

∑
m∈Z fm(t)xm2 ,

as a Laurent series on |t|/r < |x2| < r and setting

T1(f)ρ(t)(x1, x2) =

∞∑
m=0

f−m(t)

tm
xm1 +

∞∑
m=1

fm(t)xm2 .

As an application of this construction we can prove the following
proposition on the dependence and growing of a holomorphic map in a
monomial. There is also an interesting approach in [14] for the case of
entire functions with polynomial bounds.

Proposition 3.4. Let d ≥ 2 and f ∈ O(Πα, E) be holomorphic, where
Πα = Πα(a, b). If ‖f(x)‖ ≤ K(|xα|) on Πα, for some function K :
(0,+∞) → (0,+∞), then there is g ∈ O(V,E), V = V (a, b), such that
f(x) = g(xα).

Proof: We proceed by induction on d. The case d = 2 is proved in [6],
but we repeat the proof here for the sake of completeness. First, note
that we can assume g.c.d.(α1, α2) = 1 by changing K adequately. Given
α = (α1, α2) and f ∈ O(Πα, E), we write f as in equation (11), and
if fβ1,β2(t/u2, u2) =

∑
m∈Z fβ1,β2,m(t)um2 for |t|/r < |u2| < r, equa-

tion (12) shows that ‖fβ1,β2
(u1, u2)‖ ≤ |u1|−β1/α1 |u2|−β2/α2K(|u1u2|),

(u1, u2) ∈ Π1. Using Cauchy’s formulas we obtain

‖fβ1,β2,m(t)‖ ≤ |t|
−β1/α1K(|t|)

rm+β2/α2−β1/α1
,

‖fβ1,β2,−m(t)‖ ≤ |t|
m−β2/α2K(|t|)

rm+β1/α1−β2/α2
, m ∈ N, 0 ≤ βj < αj , j = 1, 2.
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If m ≥ 1, the exponents of r in the previous inequalities are positive.
Since r was arbitrary, we can take r → +∞ and conclude that fβ1,β2.m ≡
0. If m = 0 and (β1, β2) 6= (0, 0), by considering one of the preceding
inequalities, according to β2/α2 > β1/α1 or β2/α2 < β1/α1, the same
conclusion follows. Thus f(x1, x2) = f0,0,0(xα1

1 xα2
2 ).

Now assume that the result is valid for some d and let us prove it
for d+1. To simplify notations we name our coordinates (x, z) ∈ Cd×C
and (α, p) ∈ (N+)d × N+. If we decompose f as

f(x, z) =

p−1∑
j=0

zjfj(x, z
p), fj ∈ O(Πα,1, E),

the bounds for f show that ‖fj(x, ζ)‖ ≤ |ζ|−j/pK(|xαζ|), j = 0, . . . , p−
1. For a fixed ζ ∈ C∗ let us write Πζ

α = {x ∈ (C∗)d : a < arg(xα) +
arg(ζ) < b} and V ζ = {ξ ∈ C∗ : a < arg(ξ) + arg(ζ) < b}. Applying the
induction hypothesis to each fj(·, ζ) ∈ O(Πζ

α, E), we can conclude that
there are maps gj(·, ζ) ∈ O(V ζ , E) such that fj(x, ζ) = gj(x

α, ζ).
We can now define gj on Π(1,1) =Π(1,1)(a, b) in such a way that gj ∈

O(Π(1,1), E). Indeed, if (ξ, ζ) ∈ Π(1,1), then ξ ∈ V ζ and gj(ξ, ζ) is already
defined. To show that gj is holomorphic, by using Hartog’s theorem (see
e.g., [19, p. 28]) it is sufficient to show that gj is holomorphic at any point
(ξ0, ζ0) ∈ Π(1,1) with respect to each of the variables. It only remains to

prove this for the second one: choosing x0 ∈ Πζ0
α such that xα0 = ξ0,

we know that gj(ξ0, ζ0) = fj(x
α
0 , ζ0), that depends holomorphically on

the second variable. The functions gj satisfy ‖gj(ξ, ζ)‖ ≤ |ζ|−j/pK(|ξζ|)
for (ξ, ζ) ∈ Π(1,1). The same argument used in the case d = 2 shows
that gj ≡ 0 for j 6= 0 and g0(ξ, ζ) = g0,0(ξζ) for some g0,0 ∈ O(V,E). In
conclusion, f(x, z) = g0,0(xαzp) as we wanted to show. The induction
principle allows us to conclude the proof.

Definition 3.5. Let f ∈ O(Πα, E), Πα = Πα(a, b, r) and f̂ ∈ Ô′d(E)

be given. We will say that f has f̂ as asymptotic expansion at the

origin in xα (denoted by f ∼α f̂ on Πα) if there is 0 < r′ ≤ r

such that T̂α(f̂) =
∑
fα,nt

n ∈ Eαr′ [[t]], and for every proper subsec-
tor Π′α = Πα(a′, b′, ρ), 0 < ρ < r′, and N ∈ N, there exists CN (Π′α) > 0
such that

(15)

∥∥∥∥f(x)−
N−1∑
n=0

fα,n(x)xnα
∥∥∥∥ ≤ CN (Π′α)|xNα| on Π′α.

The asymptotic expansion is said to be of s-Gevrey type (denoted

by f ∼αs f̂ on Πα) if it is possible to choose Cn(Π′α) = C(Π′α)A(Π′α)nn!s,
for some C(Π′α), A(Π′α) > 0 independent of n.
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From the very definition of f ∼α f̂ =
∑
aβx

β on Πα we can deduce,
by using (15) for N = 1, that

(16) a0 = lim
Π′α3x→0

f(x), fJ,0J (xJc)= lim
xJ→0
x∈Π′α

f(x), J( [1, d], Π′α⊂Πα.

Monomial asymptotic expansions can be reduced to the case of one

variable by using the operators Tα and T̂α. Indeed, direct estimates

using (14) show that if f ∈ O(Πα(a, b, r), E) and f̂ ∈ Ô′d(r′, E), r′ ≤ r,

then f ∼α f̂ on Πα(a, b, r) if and only if for every 0 < ρ < r′, Tα(f)ρ ∼
T̂α(f̂) on V (a, b, ρd). The same statement is valid in the Gevrey case,

and in this case it follows that f̂ ∈ E[[x]]αs ; see [15, Proposition 3.11]
for details.

Another characterization of monomial asymptotic expansions is ob-
tained by approximating by holomorphic functions.

Proposition 3.6. Let f ∈O(Πα, E), Πα=Πα(a, b, r), and f̂ ∈Ô′d(r′, E),
r′ ≤ r, be given. The following assertions are equivalent:

(1) f ∼α f̂ on Πα.

(2) There is R>0 and a sequence (FN )N∈N⊂Ob(Dd
R, E), F0 = 0, such

that for each subsector Π′α of Πα and N ∈ N, there is AN (Π′α) > 0
such that

(17) ‖f(x)− FN (x)‖ ≤ AN (Π′α)|xNα| on Π′α ∩Dd
R.

If s > 0, f ∼αs f̂ on Πα if and only if inequality (17) is satisfied with
An(Π′α) = C(Π′α)A(Π′α)nn!s for some C(Π′α), A(Π′α) > 0 independent
of n, and there are B,D > 0 such that ‖Fn‖R ≤ DBnn!s for all n ∈ N.

In any case, f̂ is given by the limit of the Taylor series at the origin of
the Fn, in the m-topology of E[[x]], m = (x).

Proof: If f ∼α f̂ on Πα and T̂α(f̂)(t) =
∑
fα,nt

n, then FN (x) =∑
n<N fα,n(x)xnα satisfies the requirements. Conversely, suppose we

have such a sequence (FN )N∈N. Note that each Tα(FN )R is holomor-

phic on DR and has T̂α(FN ) as Taylor series at the origin. Let gN+1 =
Tα(FN )R. Applying inequalities (14) for N + 1 to inequality (17) with
K(u) = uN+1, it follows that

‖Tα(f)ρ′(t)− gN+1‖ρ′ ≤ Rα(ρ′, . . . , ρ′, ρ)AN+1(Π′α)|t|N ,
in the corresponding sector, where 0 < |t| < ρ′ < min{ρ,R}. Thus

we obtain that Tα(f)ρ′ has T̂α(f̂) as asymptotic expansion. But T̂α(f̂)

is given by the limit of the series T̂α(FN ) in the m-topology of Eαr [[t]],
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m = (t), thus f ∼α f̂ on Πα as we wanted to show. The s-Gevrey case
also follows since the sequence (gN+1)N∈N has bounds of s-Gevrey type
if the sequence (FN )N∈N does.

These characterizations allow us to prove that monomial asymptotic
expansions are stable under sums, products, and partial derivatives. In

particular, it follows from the relations (16) that if f ∼α f̂ on Πα, then

aβ = lim
Π′α3x→0

1

β!

∂βf

∂xβ
(x),

fJ,βJ (xJc) = lim
xJ→0
x∈Π′α

1

βJ !

∂βJ f

∂x
βJ
J

(x), β ∈ Nd, J ( [1, d].

(18)

In particular, f̂ is completely determined by f .

Remark 3.7. Assume that f ∼αs f̂ =
∑
aβx

β on Πα, and take D,B > 0

such that ‖aβ‖ ≤ DB|β|min1≤j≤d{βj !s/αj} for all β ∈ Nd. We can also

consider how f̂ approximates f for any index γ, other than Nα as in Def-
inition 3.5. Indeed, given γ ∈ Nd, if we considerN = max1≤j≤dbγj/αjc+
1, then 0 ≤ Nα − γ. Thus, we find that in any subsector Π′α of ra-
dius ρ < min1≤j≤d 1/Bαj ,

‖f(x)−Appγ(f̂)(x)‖ ≤ CANN !s|xNα|+‖AppNα(f̂)(x)−Appγ(f̂)(x)‖,

but the second term is bounded by∑
Nα−γ 6≤δ

‖aγ+δ‖|xγ+δ|

≤ DB|γ||xγ |
d∑
j=1

Nαj−γj−1∑
βj=0

∑
δ∈Nd, δj=βj

B|δ||xδ| min
1≤l≤d

(γl + δl)!
s/αl

≤ DB|γ|
[

d∑
j=1

Nαj−γj−1∑
βj=0

(γj + βj)!
s/αj∏

k 6=j(1−Bρ1/αk)

]
|xγ |.

Since (γj + βj)! < (αjN)!, by taking into account Remark 3.1 we can
conclude that

‖f(x)−Appγ(f̂)(x)‖ ≤ C̃Ã|γ|
(

max
1≤j≤d

γj !
s/αj

)
|xγ |,

for adequate constants C̃, Ã > 0 depending only on Π′α.
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We can finally give a new, but expected, characterization of monomial
asymptotic expansions in terms of bounded derivatives. We follow the
proof of Proposition 3 in [11].

Theorem 3.8. Let f ∈O(Πα,E), Πα=Πα(a, b, r), and f̂ ∈Ô′d(r′, E), r′≤
r. Then f∼αf̂ on Πα if and only if for each Π′α⊂Πα, supx∈Π′α

∥∥ 1
β!
∂βf
∂xβ

(x)
∥∥

is finite for all β ∈ Nd. More precisely, if s > 0, the following assertions
are equivalent:

(1) f ∼αs f̂ on Πα.

(2) For each Π′α ⊂ Πα, there are constants C,A > 0 such that

sup
x∈Π′α

∥∥∥∥ 1

(Nα)!

∂Nαf

∂xNα
(x)

∥∥∥∥ ≤ CANN !s, N ∈ N.

(3) For each Π′α ⊂ Πα, there are constants C,A > 0 such that

sup
x∈Π′α

∥∥∥∥ 1

β!

∂βf

∂xβ
(x)

∥∥∥∥ ≤ CA|β|max{β1!s/α1 , . . . , βd!
s/αd}, β ∈ Nd.

Proof: We only consider the statement for the s-Gevrey case. It is clear
that (3) implies (2). To prove that (2) implies (1), we use Taylor’s formula
and equations (6) and (18) to write∥∥∥∥f(x)−

N−1∑
n=0

fα,n(x)xnα
∥∥∥∥ = ‖f(x)−AppNα(f̂)(x)‖

=

∥∥∥∥∫ x1

0

· · ·
∫ xd

0

(x1 − w1)Nα1−1

(Nα1 − 1)!
· · · (xd − wd)

Nαd−1

(Nαd − 1)!

∂Nαf

∂xNα
(w) dw

∥∥∥∥
≤ sup
w∈Π′α

∥∥∥∥ 1

(Nα)!

∂Nαf

∂xNα
(w)

∥∥∥∥ |xNα| ≤ CANN !s|xNα|,

and then we can conclude the desired bounds. Note that the paths
of integration are the segments wj = ρjxj , 0 < ρj ≤ 1, and w =
(ρ1x1, . . . , ρdxd) ∈ Π′α if x ∈ Π′α.

Finally, to show that (1) implies (3), take x ∈ Π′α ⊂ Π′′α ⊂ Πα, where
Π′α = Π′α(a′, b′, ρ) and Π′′α = Πα(a′′, b′′, ρ). Using Remark 3.3, we can

find a polysector P =
∏d
j=1 Vj , with Vj of opening (b′−a′)/(d−1)αj for

j = 1, . . . , d−1, and b′′−a′′− (b′−a′) for j = d, such that x ∈ P ⊂ Π′′α.
Note that these openings are independent of the point x ∈ Π′α. Thus
we can find numbers σ1, . . . , σd > 0 depending only on Π′α and Π′′α such
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that the circles Cj given by |wj − xj | = σj |xj | are contained in Vj for
all j = 1, . . . , d. Using Cauchy’s formula and Remark 3.7 we find that∥∥∥∥ 1

β!

∂βf

∂xβ
(x)

∥∥∥∥ =

∥∥∥∥ 1

β!

∂β

∂xβ
(f −Appβ(f̂))(x)

∥∥∥∥
=

∥∥∥∥∥ 1

(2πi)d

∫
C1

· · ·
∫
Cd

f(w)−Appβ(f̂)(w)

(w1 − x1)β1+1 · · · (wd − xd)βd+1
dwd · · · dw1

∥∥∥∥∥
≤
(
σ1 + 1

σ1

)β1+1

· · ·
(
σd + 1

σd

)βd+1

C̃(Π′′α)Ã(Π′′α)|β| · max
1≤j≤d

βj !
s/αj ,

for some constants C̃(Π′′α), Ã(Π′′α) > 0 independent of β. Then (3) fol-
lows.

Remark 3.9. The previous theorem shows that if f ∼α f̂ ∈ O′d(E)

on Πα, then f also has f̂ as strong asymptotic expansion in Majima’s
sense, i.e., f is strongly asymptotically developable as x → 0 in any

polysector properly contained in Πα. Moreover, if f ∼αs f̂ on Πα,
then the strong asymptotic expansion is (s/α1, . . . , s/αd)-Gevrey, since
max1≤j≤d βj !

s/αj ≤ β1!s/α1 · · ·βd!s/αd ; see, e.g., [11, Definition 3].

When we fix some of the variables in the monomial asymptotic expan-
sion of a map, the expansion still holds in the remaining variables. We
state this result when we only fix one variable. The proof is an immediate
consequence of Proposition 3.6.

Proposition 3.10. Consider f ∈ O(Π(α,p), E), Π(α,p) = Π(α,p)(a, b, r),

and f̂ ∈ Ô′d+1(E) such that f ∼(α,p)
s f̂ on Π(α,p). Then there is r′ > 0

such that, for all z0 ∈ Dr′ , we have f(x, z0) ∼αs f̂(x, z0) on Πα(a′, b′, r′),
a′ = a− arg(zp0), b′ = b− arg(zp0).

We can characterize maps with null s-Gevrey asymptotic expansion in
a monomial: f ∼αs 0 on Πα if and only if for every subsector Π′α ⊂ Πα,
there are constants C,A > 0 such that

‖f(x)‖ ≤ C exp(−A/|xα|1/s), x ∈ Π′α.

In this framework Watson’s lemma also holds: if f ∼αs 0̂ on Πα(a, b, r)
and b− a > sπ, then f ≡ 0. As in the case of one variable it is natural
to consider the following definition.

Definition 3.11. Let f̂ ∈ Ô′d(E), k > 0, and θ ∈ R be a direction.
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(1) The series f̂ is called xα-k-summable on Sα = Sα(θ, b− a, r) with

sum f ∈ O(Sα, E) if b−a > π/k and f ∼α1/k f̂ on Sα. We also say

that f̂ is xα-k-summable in direction θ. The space of xα-k-sum-
mable series in direction θ will be denoted by E{x}α1/k,θ.

(2) The series f̂ is called xα-k-summable if it is xα-k-summable in
all directions, except possibly for a finite number of them mod-
ulo 2π (the singular directions). The corresponding space is de-
noted by E{x}α1/k.

Note that both E{x}α1/k,θ and E{x}α1/k are vector spaces, stable by

partial derivatives, and they inherit naturally a structure of algebra when
E is a Banach algebra.

Remark 3.12. Given α ∈ (N+)d, we note that formulas (11) and (12)

can also be applied to formal power series. In particular, f̂ ∈ Ô′d(E) and

f̂(x) =
∑

0≤β<α x
βf̂β(xα1

1 , . . . , xαdd ), and it is straightforward to show

that f̂ is xα-k-summable in direction θ if and only if f̂β is z1-k-sum-
mable in direction θ, for all 0 ≤ β < α, where 1 = (1, . . . , 1) and
z = (z1, . . . , zd) = (xα1

1 , . . . , xαdd ).

4. Borel–Laplace analysis for monomial summability

The goal of this section is to generalize the Borel and Laplace trans-
formations for monomial asymptotic expansions contained in [6] to any
number of variables, and develop their main properties. We will prove
that monomial summability is equivalent to Borel-summability in this
framework. It is worth to remark that, in contrast with the approach
in [6], we have improved these results, since now we can allow some of
the weights we use to be zero. This will be crucial in the application we
present in Section 6.

From now on, if c ∈ Rd≥0, we will write Jc := {j ∈ [1, d] : cj 6= 0} for
the set of indices where c has nonzero entries.

Definition 4.1. Consider α ∈ (N+)d, k > 0, and s ∈ σd. The xα-k-
s-Borel transform of a map f is defined by the formula

Bλ(f)(ξ) =
(ξ
kαJs
Js

)−1

2πi

∫
γ

f(ξ1u
− s1
α1k , . . . , ξdu

− sd
αdk )eu du,

where γ denotes a Hankel path as we will explain below. Along this
section we will write

(19) λ =

(
s1

α1k
, . . . ,

sd
αdk

)
, λ′ =

(
α1k

s1
, . . . ,

αdk

sd

)
.
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If sj = 0 for some j, we interpret the jth entry of λ′ as 0, and the
variable xj remains unchanged. In this situation, to avoid cumbersome
notation, we call it ξj nevertheless. This convention will be used further
on without explicit mention. Note that the factor outside the integral
only includes the variables ξj such that sj 6= 0. The ambient space Cd
with coordinates ξ will be referred to as the ξ-Borel plane.

Since we admit that some weights can be zero, it is necessary to
consider monomial sectors where some of the variables are bounded.
Thus if f ∈ Ob(Sα, E), Sα = Sα(θ, π/k + 2ε, R0), 0 < 2ε < π/k, then
Bλ(f) will be defined and holomorphic on

Ssα(θ, 2ε, R0) := Sα(θ, 2ε) ∩ {ξ ∈ Cd : |ξj |αj < R0, j 6∈ Js}.
We will use the same notation for these sectors, for every c ∈ Rd≥0

other than s. Note that if all entries of s are different from zero, then
Ssα(θ, 2ε, R0) is simply Sα(θ, 2ε).

If ξ ∈ Ssα(θ, 2ε′, R0), 0 < ε′ < ε, we take γ oriented positively and
given by the arc of a circle centered at 0 and radius

R > max
j∈Js

(|ξj |αj/R0)
k
sj ,

with endpoints in the directions −π/2−k(ε−ε′) and π/2+k(ε−ε′), and
the half-lines with those directions from this arc to ∞. If u goes along
this path, the integrand is evaluated on Sα and the integral converges
absolutely, since f is bounded and the exponential term tends to 0 on
those directions. The result is independent of ε′ and R due to Cauchy’s
theorem.

Using Hankel’s formula for the Gamma function, we obtain the for-
mula

Bλ(xµ)(ξ) =
ξµξ

−kαJs
Js

Γ(〈µ, λ〉)
, µ ∈ Cd,

and thus B̂λ, the formal xα-k-s-Borel transform, can be defined for
formal power series term by term.

By looking at the derivative with respect to u of the integrand defin-
ing Bλ, it is natural to consider the vector field Xλ and its flow φλz (at
time z) given by

Xλ :=
x
kαJs
Js

k

(
s1

α1
x1

∂

∂x1
+ · · ·+ sd

αd
xd

∂

∂xd

)
,

ϕλz (x) =

d∑
j=1

xj

(1− zxkαJsJs
)sj/αjk

ej .
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If f ∈ Ob(Sα, E) is as before, it follows that

(20)
Bλ(Xλ(f))(ξ) = ξ

kαJs
Js
Bλ(f)(ξ),

Bλ(f ◦ φλz )(ξ) := exp(zξ
kαJs
Js

)Bλ(f)(ξ).

Both formulas are naturally related since the first one is the lineariza-
tion of the second one at z = 0. In the variable t = xα, the vector fieldXλ
reduces to tk+1

k
∂
∂t , and the first formula is just the one contained in the

isomorphism (3).
We will say that f has exponential growth of order at most c ∈ Rd≥0

on Scα(θ, b−a,R) if for every subsector Scα(θ′, b′−a′, R′) (a < a′ < b′ < b,
R′ < R) there are constants C,M > 0 such that

(21) ‖f(ξ)‖ ≤ C exp(MRc(ξ)), Rc(ξ) := max
j∈Jc
|ξj |cj ,

on Scα(θ′, b′ − a′, R′). Note we can also work with the term
∑
j∈Jc |ξj |

cj

in this bound, since Rc(ξ) ≤
∑
j∈Jc |ξj |

cj ≤ dRc(ξ).

If f is holomorphic on {ξ ∈ Cd : |ξj | < rj , j 6∈ Jc} for some fixed
rj > 0 (resp. entire if c ∈ Rd>0), and

∑
β∈Nd aβx

β is its Taylor se-

ries at the origin, condition (21) is equivalent to the existence of con-
stants D,B1, . . . , Bd > 0 such that

‖aβ‖ ≤
DBβ1

1 · · ·B
βd
d

Γ
(
1 +

∑
j∈Jc

βj
cj

) for all β ∈ Nd.

This statement is standard and it can be deduced from Cauchy’s integral
formulas for the coefficients, Stirling’s formula, and the inequalities

(22) Γ(1 +a)Γ(1 + b) ≤ Γ(1 +a+ b) ≤ 2a+bΓ(1 +a)Γ(1 + b), a, b > 0,

satisfied by the Gamma function.

Remark 4.2. Consider f̂ ∈ Ô′d(E), with T̂α(f̂) =
∑
fα,nt

n and λ as

in (19). If we write ϕ̂λ = B̂λ
(
f̂−

∑
kαJs 6≤βJs

aβx
β
)

and T̂α(ξ
kαJs
Js

ϕ̂λ) =∑
ϕα,nτ

n, then

(23) ϕα,n(ξ) =
∑

α 6≤β, kαJs≤βJs

anα+β

Γ
(
n
k + 〈β,λ〉

)ξβ.
If n ≥ k, then kαl ≤ nαl ≤ nαl + βl for all l. In particular, the con-
dition kαJs ≤ βJs in the previous sum is satisfied and we can con-

clude that fα,n and ϕα,n are related by the formula ξ
−kαJs
Js

ξnαϕα,n =

Bλ(xnαfα,n), n ≥ k. Since we can find ρ > 0 such that fα,n ∈ O(Dd
ρ, E),
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for all n ∈ N, we see that the ϕα,n are holomorphic maps on {ξ ∈ Cd :
|ξj | < ρ, j 6∈ Js}, and a direct estimate using expansion (23) shows that
they satisfy bounds of the type

‖ϕα,n(ξ)‖ ≤ L‖fα,n‖ρ
Γ
(
1 + n

k

) exp(MRλ′(ξ)),

where L,M > 0 are some constants independent of n but depending
on ρ.

The behavior of the Borel transform with respect to monomial as-
ymptotic expansions is presented in the next proposition. It is based on
estimates included in [18] for the Borel transform in several variables.

Proposition 4.3. Assume f ∼αs f̂ on Sα(θ, π/k + 2ε, R0), where 0 <

2ε < π/k and f̂ =
∑
kαJs≤βJs

aβx
β. If s > 0, s ∈ σd, and λ, λ′ are

given by (19), the following statements are verified:

(1) If g=Bλ(f) and ĝ= B̂λ(f̂), then ξ
kαJs
Js

g∼αs′ ξ
kαJs
Js

ĝ on Ssα(θ, 2ε, R0),

where s′ = max
{
s− 1

k , 0
}

.
(2) For every unbounded subsector S′′α of Ssα(θ, 2ε, R0) there are B,D,

M > 0 such that∥∥∥∥g(ξ)−
N−1∑
n=0

gα,n(ξ)ξnα
∥∥∥∥

≤ DBNΓ(1 +Ns′)|ξNα||ξ−kαJsJs
| exp(MRλ′(ξ)) on S′′α,

where T̂α(ξ
kαJs
Js

ĝ) =
∑

(ξ
kαJs
Js

gα,n)tn. If N = 0, this inequality

means that ξ
kαJs
Js

g has exponential growth of order at most λ′

on Ssα(θ, 2ε, R0).

Proof: It is sufficient to prove (2). Thus, we have to establish those
bounds for sectors of the form S′α = Ssα(θ, 2ε′, R0) with 0 < ε′ < ε. The
proof relies on choosing adequately the radius of the arc of the path γ
in the definition. Write γ = γ1 + γ2 − γ3, where γ1, γ3 denote the half-
lines and γ2 denotes the circular part, parameterized by γ2(φ) = Reiφ,
|φ| ≤ π/2 + k(ε′′ − ε′)/2, where 0 < ε′ < ε′′ < ε and R will be chosen

so that (ξ1u
− s1
α1k , . . . , ξdu

− sd
αdk ) ∈ Sα = Sα(θ, π/k + 2ε′′, R0/2) for all u

on γ and ξ ∈ S′α.

We may assume that T̂α(f̂) =
∑
fα,nt

n, with fα,n ∈ Ob(Dd
R0
, E)

by reducing R0 if necessary. By hypothesis, inequality (15) holds with
CN = CANΓ(1 + Ns) on Sα. Setting a = sin

(
k
2 (ε′′ − ε′)

)
> 0, taking
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R > 1 to be chosen, and by using the relation between fα,n and gα,n
explained in Remark 4.2, a direct estimate shows that∥∥∥∥g(ξ)−

N−1∑
n=0

gα,n(ξ)ξnα
∥∥∥∥

≤ C

a
ANΓ(1 +Ns)

|ξNα||ξ−kαJsJs
|

RN/k−1

(
e−aR

R
+ eR

)
≤ 2C

a
ANΓ(1 +Ns)|ξNα||ξ−kαJsJs

| eR

RN/k−1
on S′α,

(24)

for all N ∈ N. For N = 0 we are denoting C = supx∈Sα ‖f(x)‖ (note
that f is bounded here, as we have reduced the radius and the opening
of the sector).

To prove (2) we divide our sector in two parts. First of all, con-
sider ξ ∈ Sα(θ, 2ε′, r), with r > R0/2 fixed. In this case choose R ≥
maxj∈Js(2r/R0)k/sj > 1. Since it is enough to establish the bounds for
large N we can suppose N is large enough and take R = N/k. Then the
bound follows using Stirling’s formula, since asymptotically

eR

RN/k−1
=

N/keN/k

(N/k)N/k
∼
√

2π(N/k)3/2

Γ(1 +N/k)
,

and also because Γ(1+Ns) ≤ 2sNΓ(1+N/k)Γ(1+N(s−1/k)) if s ≥ 1/k,
due to the second inequality in (22).

Now, we establish the bound in the complementary region, i.e., for
ξ ∈ S′α \ Sα(θ, 2ε′, r). For each j ∈ Js, choose Rj < R0/2 and let

us take R = R(ξ) = maxj∈Js(|ξj |αj/Rj)k/sj > 1. Note that R(ξ) ≤∑
j∈Js(|ξj |

αj/Rj)
k/sj and

|ξ
αJs
Js
|k∏

j∈Js R
k
j

≤ R(ξ) (second inequality of (9)).

Then we can bound (24) by

2C

a
ANΓ(1 +Ns)|ξNαJ

c
s

Jcs
|
∏
j∈Js

RN−kj exp((|ξj |αj/Rj)k/sj ).

Let M = maxj∈Js(4/R0)k/sj > 0. For each j ∈ Js, we consider two

cases: choose Rj= |ξj |αj/(sjN/k)sj/k < R0/2 as long as this inequality
holds. Then

RN−kj exp((|ξj |αj/Rj)k/sj ) = |ξj |(N−k)αj

(
sjN

k

)sj esjN/k

(sjN/k)sjN/k
.
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In the second case, choose Rj = R0/4 < R0/2 ≤ |ξj |αj/(sjN/k)sj/k and
then

RN−kj exp((|ξj |αj/Rj)k/sj ) < |ξj |(N−k)αj

(
sjN

k

)sj exp(M |ξj |αjk/sj )
(sjN/k)sjN/k

.

In both cases, we conclude that

RN−kj exp((|ξj |αj/Rj)k/sj )

≤ |ξj |(N−k)αj

(
sjN

k

)sj esjN/k

(sjN/k)sjN/k
exp(M |ξj |αjk/sj ).

Using Stirling’s formula we conclude that there are constants L,K > 0
such that∥∥∥∥g(ξ)−

N−1∑
n=0

gα,n(ξ)ξnα
∥∥∥∥

≤ LKN Γ(1 +Ns)∏
j∈Js Γ

(
1 +

sjN
k

) |ξNα| |ξ−kαJsJs
| exp(MRλ′(ξ)),

on S′α \Sα(θ, 2ε′, r). Finally, we can use the second inequality in (22) to
conclude the proof.

Now we move to the study of the Laplace transform, which will turn
out be the inverse of the Borel transformation introduced above.

Definition 4.4. Consider α ∈ (N+)d, k > 0, and s ∈ σd. The xα-k-
s-Laplace transform in direction φ, |φ| < π/2, of a map f is defined by
the formula

Lλ,φ(f)(x) = x
kαJs
Js

∫ eiφ∞

0

f(x1u
s1
α1k , . . . , xdu

sd
αdk )e−u du.

As in the case of Bλ, if sj = 0 for some j, the variable ξj is not affected
by the transformation, although we will still call it xj .

If the map f ∈ O(Sα, E), Sα = Sα(θ, b− a), had exponential growth

of order k in the monomial ξα, i.e., ‖f(ξ)‖ ≤ C exp(M |ξkα|) on Sα, then
by Proposition 3.4 f would be a map depending only on ξα. Instead, in
view of Proposition 4.3 we assume that f is defined and has exponential
growth of order at most λ′ on Ssα(θ, b − a,R). If f satisfies (21) with
c = λ′, then Lλ,φ(f) converges if x satisfies

a−φ/k < arg(xα) < b−φ/k, MRλ′(x) < cosφ, |xj |αj < R, j 6∈ Js.
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The domain in Cd defined by these conditions will be denoted by Dsα(θ−
φ/k, b − a;M,R), indicating its bisecting direction (b + a)/2 − φ/k =
θ − φ/k and opening b− a. We will also denote

Dsα(θ, b− a+ π/k;M,R) :=
⋃

|φ|<π/2

Dsα(θ − φ/k, b− a;M,R),

with bisecting direction θ and opening b − a + π/k. Note that given
a−π/2k < a′ < b′ < b+π/2k, there is r > 0 such that Ssα(θ′, b′−a′, r) ⊂
Dsα(θ, b− a+ π/k;M,R).

It follows that Lλ,φ(f) is holomorphic on Dsα(θ − φ/k, b − a;M,R).
Furthermore, if we change direction φ by φ′, we obtain an analytic con-
tinuation of Lλ,φ(f) when |φ′−φ| < k(b−a), a fact that follows directly
from Cauchy’s theorem. This process leads to a holomorphic map Lλ(f)
defined on Dsα(θ, b− a+ π/k;M,R).

An adequate choice of the path γ in the definition of Bλ, a limiting pro-
cess and the residue theorem, as it is done for the case of one variable (see
e.g. [1, Theorem 24, p. 82]) show that if f ∈ Ob(Ssα(θ, π/k+ 2ε, R0), E),
0 < 2ε < π/k, then

LλBλ(f) = f on the intersection of their domains.

The operator Lλ is also injective as the usual Laplace transform.
Thus, if g is of exponential growth of order at most λ′, then

BλLλ(g) = g on the intersection of their domains.

We then define L̂λ, the formal xα-k-s-Laplace transform, as the in-

verse of B̂λ. When we write a series as a series in a monomial, it is
natural to ask what is the relation between its Laplace transform and
the transform of its components. That is the content of the next remark.

Remark 4.5. Let f̂ =
∑
β∈Nd aβξ

βξ
−kαJs
Js

be a formal power series and

T̂α(ξ
kαJs
Js

f̂) =
∑
fα,nτ

n. A necessary and sufficient condition for L̂λ(f̂)

to be convergent is that ξ
kαJs
Js

f̂ defines a holomorphic map f of expo-

nential growth of order at most λ′ on {ξ ∈ Cd : |ξj | < rj , j 6∈ Js} for
some rj > 0 (resp. on Cd if s has all nonzero entries). Then Lλ(f) is

holomorphic in a polydisc at the origin and L̂λ(f̂) is its Taylor series.
Now assume that there are constants s,B,D,M > 0 such that the

family of maps fα,n are holomorphic and satisfy the bounds

‖fα,n(ξ)‖≤DBnΓ(1 + ns) exp(MRλ′(ξ)) on {ξ∈Cd : |ξj |<rj , j 6∈ Js}.

In particular, ξ
kαJs
Js

f̂ ∈ E[[ξ]]αs . Then all the maps Lλ(ξ
−kαJs
Js

fα,n) are
holomorphic in a common polydisc centered at the origin. Furthermore,
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if we write T̂α(L̂λ(f̂)) =
∑
hα,nt

n, then fα,n and hα,n are related by

the formula hα,nx
nα = Lλ(ξ

−kαJs
Js

ξnαfα,n). A direct estimate shows
that

‖hα,n(x)‖ ≤ DBnΓ(1 + ns)Γ(n/k)(cosφ−MRλ′(x))−1,

if MRλ′(x) < cosφ. Since Γ(n/k) ≤ nΓ(n/k) = kΓ(1 + n/k), an appli-

cation of the first inequality in (22) leads us to conclude that L̂λ(f̂) ∈
E[[x]]αs+1/k.

The next technical proposition explains the behavior of the Laplace
transform with respect to monomial asymptotic expansions. The hy-
potheses, although restrictive, are natural when compared to Proposi-
tion 4.3.

Proposition 4.6. Consider s ∈ σd, f ∈ O(Ssα, E), Ssα = Ssα(θ, b−a,R),

ξ
kαJs
Js

f̂ ∈ Ô′d(E) with T̂α(ξ
kαJs
Js

f̂) =
∑
fα,nt

n, and s ≥ 0. Assume that:

(1) There are constants B,D,K > 0 and 0 < r < R such that fα,n are
holomorphic and satisfy bounds of the type

‖fα,n(ξ)‖≤DBnΓ(1 + ns) exp(KRλ′(ξ)) on {ξ∈Cd | |ξj |αj <r, j 6∈Js}.
(2) For every unbounded subsector S′α of Ssα there are constants C,A,

M > 0 such that∥∥∥∥ξkαJsJs
f(ξ)−

N−1∑
n=0

fα,n(ξ)ξnα
∥∥∥∥≤CANΓ(1+Ns)|ξNα|exp(MRλ′(ξ)) on S′α,

for all N ∈ N. In particular, ξ
kαJs
Js

f ∼αs ξ
kαJs
Js

f̂ on Ssα.

Then, Lλ(f) ∼αs′ L̂λ(f̂) on any sector in xα contained in Dsα(θ, b− a+
π/k;M,R), where s′ = s+ 1/k.

Proof: If N = 0, assertion (2) means that f has exponential growth of

order at most λ′ on Ssα. Write h = Lλ(f) and T̂α(L̂λ(f̂)) =
∑
hα,nt

n as
in Remark 4.5. For a fixed |φ| < π/2, it is enough to prove the estimates
for subsectors S′′α contained in Dsα(θ−φ/k, b−a;M, r). We can find δ > 0
small enough such that MRλ′(x) < cosφ − δ on S′′α. Now, let S′α be a

subsector of Ssα such that (x1u
s1
α1k , . . . , xdu

sd
αdk ) ∈ S′α if x ∈ S′′α and u is

on the half-line from 0 to ∞ in direction φ. Applying the hypothesis (2)
for S′α we see that∥∥∥∥h(x)−

N−1∑
n=0

hα,n(x)xnα
∥∥∥∥ ≤ CAN

δN/k
Γ(1 +Ns)Γ(N/k)|xNα| on S′′α,

as we wanted to show.
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Finally, we introduce a convolution product that shares similar prop-
erties with the classical one. Indeed, the xα-k-s-convolution between f
and g, s ∈ σd, is defined by

(f ∗λ g)(x) = x
kαJs
Js

∫ 1

0

f(x1τ
s1
α1k , . . . , xdτ

sd
αdk )

× g(x1(1− τ)
s1
α1k , . . . , xd(1− τ)

sd
αdk ) dτ,

where λ is given by (19). As an example we can compute, with the aid
of the Beta function, the convolution between two monomials

xµ

Γ(〈µ,λ〉+ 1)
∗λ

xη

Γ(〈η,λ〉+ 1)
=

xµ+ηx
kαJs
Js

Γ(〈µ+ η,λ〉+ 2)
,

a formula valid for µ,η ∈ Cd with entries of positive real part.
If f and g have exponential growth of order at most λ′ (resp. they

belong to Ob(Sα, E)), then the same is valid for f ∗λ g and

(25) Lλ(f ∗λ g) = Lλ(f)Lλ(g) (resp. Bλ(fg) = Bλ(f) ∗λ Bλ(g)),

as in the classical case. This shows in particular that ∗λ is a bilinear,
commutative, and associative binary operation, which is distributive over
addition.

Remark 4.7. In analogy with the isomorphism explained in (3), for each
α ∈ (N+)d, k > 0, and s ∈ σd, we have the following monomorphism
between the structures

(E[[x]]α1/k,+,×, Xλ)
B̂λ
↪−−→ (ξ−kαE{ξ},+, ∗λ, ξkα(·)),

by taking into account (8) for the image, and also (20) and (25).

Remark 4.8. We remark that all transformations introduced here reduce
to their counterparts in one variable for maps depending only on the
corresponding monomial.

At this point we are ready to define the summation methods based
on the above Borel and Laplace transforms. We will see that they turn
out to be equivalent to monomial summability.

Definition 4.9. Consider α ∈ (N+)d, k > 0, s ∈ σd, and let λ, λ′ be

given by (19). We will say that f̂ =
∑
β∈Nd aβx

β ∈ E[[x]]α1/k is xα-k-s-

Borel summable in direction θ if ϕ̂s = B̂λ(f̂ −
∑
kαJs 6≤βJs

aβx
β) can be

analytically continued, say as ϕs, to a domain of the form Ssα(θ, 2ε, R)
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and having exponential growth of order at most λ′ there. In this case,

the xα-k-s-Borel sum of f̂ in direction θ is defined by

f(x) =
∑

kαJs 6≤βJs

aβx
β + Lλ(ϕs)(x).

Note that the terms we have removed from f̂ give an analytic map at

the origin since f̂ ∈ Ô′d(E). Another way to avoid the use of power series

with non-integer exponents is to consider B̂λ(x
kαJs
Js

f̂), attempt analytic

continuation with adequate exponential growth, and multiply by x
−kαJs
Js

the corresponding Laplace transformation. We have not followed this
equivalent approach since the introduction of such factor does not adapt
well for the non-linear terms in the PDEs we consider in Section 6.

Theorem 4.10. The following statements are equivalent for a series

f̂ ∈ E[[x]]α1/k:

(1) f̂ ∈ E{x}α1/k,θ, i.e., f̂ is xα-k-summable in direction θ.

(2) There is s ∈ σd such that f̂ is xα-k-s-Borel summable in direc-
tion θ.

(3) For all s ∈ σd, f̂ is xα-k-s-Borel summable in direction θ.

In all cases the corresponding sums coincide.

Proof: We may restrict out attention to the case f̂=
∑
kαJs≤βJs

aβx
β. To

show that (1) implies (3), assume f̂ ∈E{x}α1/k,θ and let f ∈O(Sα(θ, π/k+

2ε, R0), E) be its xα-k-sum in direction θ. For a fixed s ∈ σd and λ as

usual, set ϕs = Bλ(f) and ϕ̂s = B̂λ(f̂), convergent in some Dd
r . We can

apply Proposition 4.3 to s = 1/k to conclude that ξ
kαJs
Js

ϕs ∼α0 ξ
kαJs
Js

ϕ̂s
on Ssα(θ, 2ε, R0). These two properties imply that ϕs coincides with
the sum of ϕ̂s on Sα(d, 2ε) ∩ Dd

r . In other words, ϕ̂s can be analyt-
ically continued and having exponential growth of order at most λ′

on Ssα(θ, 2ε, R0). Therefore, f̂ is xα-k-s-Borel summable in direction θ.

Since Bλ and Lλ are inverses of each other, the xα-k-s-Borel sum of f̂
is f .

The implication (3) to (2) is clear. Assuming (2), fix s∈σd such that f̂
is xα-k-s-Borel summable in direction θ, and let ϕs∈O(Ssα(θ, 2ε, R0), E)

and ϕ̂s be as in Definition 4.9. Also write T̂α(ξ
kαJs
Js

ϕ̂s) =
∑
ϕα,nτ

n.
Then we can find constants B,D > 0 such that

(26)
‖ξkαJsJs

ϕs(ξ)‖ ≤ D exp(MRλ′(ξ)),

‖ϕα,n(ξ)‖ ≤ DBn exp(MRλ′(ξ)),
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the first on Ssα(d, 2ε′, R′), 0 < ε′ < ε, 0 < R′ < R0, by our hypothesis,
and the second on {ξ ∈ Cd : |ξj |αj < ρ, j 6∈ Js} for some 0 < ρ, by using
Remark 4.2. We may assume R0 < ρ by reducing R0 if necessary.

To apply Proposition 4.6 we have to show that there are constants C,
A > 0 such that, for all N ∈ N, we have

(27)

∥∥∥∥ξkαJsJs
ϕs(ξ)−

N−1∑
n=0

ϕα,n(ξ)ξnα
∥∥∥∥ ≤ CAN |ξNα| exp(MRλ′(ξ))

on Ssα(θ, 2ε′, R′).

Since ξ
kαJs
Js

ϕ̂s is the convergent Taylor series of ξ
kαJs
Js

ϕs at the origin,
then (27) is satisfied for all |ξ1|, . . . , |ξd| ≤ R for some R > 0. Due to (26),
the series of maps

∑
ϕα,n(ξ)ξnα converges absolutely in compact subsets

of {ξ ∈ Cd : B|ξα| < 1} and therefore, ξ
kαJs
Js

ϕs can be analytically

continued on this domain through this series. Thus, if B|ξα| < 1/2,
inequality (27) is also satisfied. On the other hand, using again (26), the
left hand side of (27) is bounded by(

D +

N−1∑
n=0

DBn|ξnα|
)

exp(MRλ′(ξ)) on Ssα(θ, 2ε′, R′).

If 1/2 ≤ B|ξα| ≤ 2, the previous term is bounded by D2NeMRλ′ (ξ) ≤
D(4B)N |ξNα|eMRλ′ (ξ). If B|ξα| > 2, we can bound it by(

D +D
BN |ξNα| − 1

B|ξα| − 1

)
eMRλ′ (ξ) < DBN |ξNα|eMRλ′ (ξ),

and thus (27) is valid in all cases with C, A large enough. By ap-
plying Proposition 4.6 to ϕs, ϕ̂s, and s = 0, we conclude that f =

Lλ(ϕs) ∼α1/k L̂λ(ϕ̂s) = f̂ on Dsα(θ, 2ε + π/k;M,R0). In conclusion, f̂

is xα-k-summable in direction θ and its sum can be found through the
xα-k-s-Laplace transform of ϕs.

As an immediate corollary we can relate monomial summability for
different powers of a monomial. The proof follows from Theorem 4.10,
by noticing that λ =

(
s1

(Nα1) kN
, . . . , sd

(Nαd) kN

)
for all N ∈ N+.

Corollary 4.11. Consider α∈(N+)d, k>0, and θ∈R. Then E{x}α1/k,θ=

E{x}NαN/k,Nθ and E{x}α1/k = E{x}NαN/k for all N ∈ N+.
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5. Tauberian properties for monomial summability

The goal of this section is to recover Tauberian theorems for mono-
mial summability. For instance, the relation between different levels of
summability for distinct monomials, and the comparison of summabil-
ity in one variable with holomorphic coefficients in the remaining ones.
The main tool we use to treat these situations are blow-ups with cen-
ters of codimesion two. We also establish the behavior of Borel–Laplace
transformations under these blow-ups.

In one variable we have the following two statements that provide
Tauberian properties for k-summability; see e.g., [1, Section 6.4].

Theorem 5.1. The following statements are true for 0 < k < l:

(1) If f̂ ∈ E{x}1/k has no singular directions, then it is convergent.
(2) E[[x]]1/l ∩ E{x}1/k = E{x}1/l ∩ E{x}1/k = E{x}.

Our goal is to extend this theorem for monomial summability. We

know that a series f̂ is xα-k-summable in some direction θ if and only

if there exists r = rθ > 0 such that T̂α(f̂) is k-summable in direction θ
in Eαrθ in the classical sense. Unfortunately, rθ might tend to 0 when θ

tends to a singular direction. Therefore, xα-k-summability of a series f̂

does not imply that T̂α(f̂) is k-summable in Eαr for some fixed r > 0.
For a counterexample, see [3, Section 6]. However, we still can recover
Theorem 5.1. We start with the following proposition.

Proposition 5.2. If f̂ ∈ E{x}α1/k has no singular directions, then it is
convergent.

Proof: Let us fix s ∈ σd and write f̂ =
∑
β∈Nd aβx

β. We use xα-k-s-
Borel summability as explained below Definition 4.9, thus we consider

ϕλ = B̂λ(xkαf̂). If f̂ has no singular directions for xα-k-summability,
Theorem 4.10 shows that for each direction θ ∈ [0, 2π], there are con-
stants δθ, Cθ,Mθ > 0 such that ‖ϕλ(ξ)‖≤Cθ exp(MθRλ′(ξ)) for all ξ ∈
Sα(θ, 2δθ). Since the interval [0, 2π] is compact, we can choose a finite
number of directions θ1, . . . , θn such that [0, 2π] ⊆

⋃n
j=1(θj−δθj , θj+δθj ).

Then, the sectors Sα(θj , 2δθj ), j = 1, . . . , n, cover Cd \ {x1 · · ·xd = 0},
and if we write C = max1≤j≤n Cθj and M = max1≤j≤nMθj , we find
that

‖ϕλ(ξ)‖ ≤ C exp(MRλ′(ξ)) for all ξ ∈ Cd \ {x1 · · ·xd = 0}.
Applying Cauchy’s estimates we see that

‖aβ‖
Γ
(
1 +

∑d
j=1

βjsj
αjk

) ≤ C d∏
j=1

eMR
αjk/sj
j

R
βj
j

for all Rj > 0.
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Since the map x 7→ exp(Mxl)/xn, l > 0, n ∈ N, attains a minimum at

x = (n/Ml)1/l, if we choose Rj = (βjsj/Mαjk)
sj
αjk , j = 1, . . . , d, we

conclude that

‖aβ‖ ≤ C
d∏
j=1

[(
2dMeαjk

βjsj

)βjsj/αjk
Γ

(
1 +

βjsj
αjk

)]
.

Note we have used inequality (22) repeatedly. An application of Stirling’s
formula in each factor leads to the existence of constants A,K > 0 such

that ‖aβ‖ ≤ KA|β| for all β ∈ Nd, i.e., f̂ is a convergent power series.

To generalize Theorem 5.1 (2), we consider the monomial transforma-
tions

πij(x1, . . . , xd) = (x1, . . . , xixj︸︷︷︸
jth entry

, . . . , xd),

where i, j = 1, . . . , d, i 6= j. Note that the maps πij , πji correspond to
the usual charts of the blow-up with the center of codimension two given
by {xi = xj = 0}. At the formal level we need the following lemma,
whose proof is identical as the one of Lemma 3.6 in [5].

Lemma 5.3. Let f̂ ∈ E[[x]] be a formal power series. Then the following
assertions are true:

(1) f̂ ∈ E{x} if and only if f̂ ◦ πij ∈ E{x} for some i, j = 1, . . . , d.

(2) f̂ ∈ E[[x]]αs if and only if there are i, j = 1, . . . , d, i 6= j, such that

f̂ ◦ πij ∈ E[[x]]
α+αjei
s and f̂ ◦ πji ∈ E[[x]]

α+αiej
s .

To establish Lemma 5.3 (2) for summability we will use the following
interesting relation between the monomial Borel and Laplace transfor-
mations and the blow-up maps πij . Fix α∈ (N+)d, k>0, and s ∈ σd. If
for some indices i 6= j we have sjαi ≥ siαj (si = 0 if sj = 0), then s′ =
(s′1, . . . , s

′
d) ∈ σd, where s′l=sl if l 6= i, j, s′i = si+

αj
αi
si, and s′j = sj−αjαi si.

Furthermore, if λ =
(
s1
α1k

, . . . , sd
αdk

)
, then λ − si

αik
ej =

( s′1
α′1k

, . . . ,
s′d
α′dk

)
,

where α′ = α+ αjei, and the xα-k-s-Borel (resp. Laplace) and xα
′
-k-

s′-Borel (resp. Laplace) transformations are related by the formulas

Bλ(f) ◦ πij(ξ) = Bλ− si
αik

ej
(f ◦ πij)(ξ),(28)

Lλ(f) ◦ πij(ξ) = Lλ− si
αik

ej
(f ◦ πij)(ξ),(29)

whenever the functions are defined. The same relations hold for their
formal counterparts.

The next theorem corresponds to Theorem 7.24 in [15] for monomial
summability. Although our approach follows the Borel–Laplace analysis
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developed in the previous section, the idea of the proof is based on the
same arguments.

Theorem 5.4. f̂ ∈ E{x}α1/k,θ if and only if there exist i 6= j such that

f̂ ◦ πij ∈ E{x}
α+αjei
1/k,θ and f̂ ◦ πji ∈ E{x}

α+αiej
1/k,θ .

Proof: Using Proposition 3.6 we see that if (fN )N∈N is a family of
bounded analytic functions that provide the monomial asymptotic ex-
pansion of f , then (fN ◦ πij)N∈N will provide the asymptotic expansion
of f ◦ πij , i, j = 1, . . . , d, i 6= j.

Conversely, it is enough to do the proof for the case α = 1 =
(1, 1, . . . , 1); see Remark 3.12. To fix ideas, we take i = 1, j = 2. It is

also not restrictive to assume that f̂ =
∑
k≤β1,β2

aβx
β. Applying Theo-

rem 4.10, we know by hypothesis that f̂ ◦ π12 is x1+e1 -k-e1-summable

and f̂ ◦ π21 is x1+e2 -k-e2-summable, both in direction θ. This means
that we can find ε > 0 and R0 < 1 such that the maps

ϕ1(ξ) = B̂ 1
2ke1

(f̂ ◦ π12), ϕ2(ξ) = B̂ 1
2ke2

(f̂ ◦ π21),

can be analytically continued to the domains Se11+e1
(θ, 2ε, R0) and

Se21+e2
(θ, 2ε, R0), and furthermore there are constants C,M > 0 such

that

(30) ‖ϕ1(ξ)‖ ≤ C exp(M |ξ1|2k), ‖ϕ2(ξ)‖ ≤ C exp(M |ξ2|2k),

on their respective domains.

We will prove that f̂ ∈ E{x}11/k,θ by showing that f̂ is x1-k-s-sum-

mable in direction θ, where s = 1
2 (e1 +e2). In this case, λ and λ′ in (19)

are given by λ = 1
2k (e1 + e2) and λ′ = 2k(e1 + e2). We know that

ϕ = B̂λ(f̂) is analytic in a polydisk at the origin. By reducing R0 if
necessary, we assume that ϕ ∈ O(Dd

R0
, E).

To finish the proof we show that ϕ can be analytically continued to
Ss1(θ, 2ε, R0) with exponential growth at most λ′. First of all, we use
formulas (28) to write

B̂λ(f̂)(ξ1, ξ1ξ2, ξ
′′) = B̂ 1

2ke1
(f̂ ◦ π12)(ξ),

B̂λ(f̂)(ξ1ξ2, ξ2, ξ
′′) = B̂ 1

2ke2
(f̂ ◦ π21)(ξ),

where ξ = (ξ1, ξ2, ξ
′′). Then, we can extend ϕ by the rules

(31) ϕ(ξ) =

{
ϕ1(ξ1, ξ2/ξ1, ξ

′′), if |ξ2| < R0|ξ1|,
ϕ2(ξ1/ξ2, ξ2, ξ

′′), if |ξ1| < R0|ξ2|,

as long as ξ satisfies |arg(ξ1) − θ| < ε, |ξj | < R0, j 6= 1, 2, and 1/R0 <
|ξ2/ξ1| or |ξ2/ξ1| < R0. Note that ϕ has exponential growth at most λ′ in
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this domain due to the inequalities in (30). Finally, to remove the restric-
tions on the norms of ξ1, ξ2, we use Cauchy’s integral formula. To simplify
notation, we use the auxiliary variable w = ξ3 · · · ξd (the case d = 2 does
not require w or ξ′′ above). Since we are working with the monomial ξ1,
we also introduce the variable τ = ξ1 = ξ1ξ2w. Then we define the map

(32) G(ξ1, τ, ξ
′′) =

1

2πi

(∫
|ζ|=R

−
∫
|ζ|=r

)
ϕ
(
ζ, τ/wζ , w

)
ζ − ξ1

dζ,

where ϕ is given by (31). Thus, we require that R−1
0 r2 < |τ/w| < R0R

2

and 0 < r < R. Note that the integral is independent of r and R as
long as these constraints are satisfied. We will check that G defines an
holomorphic map on Ω = C∗ × S(θ, 2ε) × (Dd−2

R0
\ {w = 0}) = C∗ ×

Ω1. Then G will provide the required extension to Ss1(θ, 2ε, R0), since
G(ξ1, ξ

1, ξ′′) = ϕ(ξ) if R−1
0 r2 < |ξ1ξ2| < R0R

2 and r < |ξ1| < R, due to
Cauchy’s integral formula.

To prove the holomorphy of G, consider U ⊆ K ⊆ C∗ and U1 ⊆
K1 ⊆ Ω1 where U , U1 are open and K, K1 are compact. Write L1 =
inf(τ,ξ′′)∈K1

|τ/w| and L2 = sup(τ,ξ′′)∈K1
|τ/w|, both finite positive num-

bers, since τ and w do not vanish on Ω1. Then choose 0 < r < R such that
r2 < R0L1 < R−1

0 L2 < R2 (recall that R0 < 1) and r < infξ1∈K |ξ1| ≤
supξ1∈K |ξ1| < R. Then G is defined at all points of U × U1 and it is
clearly holomorphic there.

Finally, we need to show that the extension of ϕ has exponential
growth of order at most λ′ on Ss1(θ, 2ε, R0) for ξ1, ξ2 such that R0 ≤
|ξ2/ξ1| ≤ R−1

0 . By calculating the values of ϕ in (32) for |ζ| = R using ϕ1

and for |ζ| = r using ϕ2 instead, we can employ the inequalities in (30)
to find

‖ϕ(ξ)‖ = ‖G(ξ1, ξ
1, ξ′′)‖ ≤ CR exp(MR2k)

dist(ξ1, ∂DR)
+
Cr exp(M |τ/rw|2k)

dist(ξ1, ∂Dr)
.

Since τ/w = ξ1ξ2, by taking R2 = 4|ξ1ξ2|/R0 and r2 = R0|ξ1ξ2|/4, we
conclude that

‖ϕ(ξ)‖ ≤
(

R

|R− |ξ1||
+

r

|r − |ξ1||

)
C exp(M(4/R0)k|ξ1ξ2|k).

Note that the denominators do not vanish and are uniformly bounded
due to the restriction R0 ≤ |ξ2/ξ1| ≤ R−1

0 . The conclusion now follows
by noting that |ξ1ξ2|k ≤ max{|ξ1|2k, |ξ2|2k}.

We are ready to state and prove the third main result so far, com-
paring summable series in different monomials. This result was obtained
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in [5]. Although the content is correct, the proof given there is based
on the false statement discussed above Proposition 5.2. This is repaired
here.

Theorem 5.5. Consider α,α′ ∈ (N+)d and k, k′ > 0. The following
statements hold:

(1) If f̂ ∈ E{x}α1/k and T̂α(f̂) is an s-Gevrey series with some s < 1/k,

then f̂ is convergent. In particular, if max1≤j≤d{αj/α′j} < k′/k,

then E{x}α1/k ∩ E[[x]]α
′

1/k′ = E{x}.
(2) E{x}α1/k ∩ E{x}

α′

1/k′ = E{x} except in the case kα = k′α′, where

E{x}α1/k = E{x}α′1/k′ .

Proof: (1) The proof of the first statement is based on the proof of

Theorem 3.8.2 in [17]. We write T̂α(f̂)(t) =
∑∞
n=0 fα,nt

n, with fα,n ∈
Eαr , and use the k-Borel transform g of T̂α(f̂) in the form g(x, ξ) =∑∞
n=0

fα,n(x)
Γ(1+n/k)ξ

n. Since T̂α(f̂) is s-Gevrey with some s < 1/k, we find

constants K,A > 0 such that

‖fα,n(x)‖
Γ(1 + n/k)

≤ KAnn!−1/µ for all x ∈ Dd
r , n ∈ N, 1/µ := 1/k − s.

This implies that g defines a holomorphic function on Dd
r × C and we

can find constants L,B > 0 such that

‖g(x, ξ)‖ ≤ L exp(B|ξ|µ) for all (x, ξ) ∈ Dd
r × C.

We now show that f̂ has no singular directions for xα-k-summability.
Thus, it is convergent due to Proposition 5.2. Indeed, arguing by contra-

diction, we assume θ is a singular direction of f̂ . We choose 0 < δ < π
2µ

such that T̂α(f̂) is k-Borel-summable in the directions θ± = θ ± δ, in
some Eαr′ , 0 < r′ < r. Then, there exist 0 < ρ < r′ and M,C > 0 such
that g satisfies

‖g(x, ξ)‖ ≤M exp(C|ξ|k) for all x ∈ Dd
ρ, arg(ξ) = θ±.

We can use the Phragmén–Lindelöf principle (see e.g. [1, Theorem 70,
p. 235]) to show that g also has exponential growth of order k on the sec-
tor S(θ, 2δ). Indeed, consider the map h(x, ξ)=g(x, ξ) exp(−D(ξe−iθ)k),
where D cos(kδ) = C. By using the previous bounds, it follows that
‖h(x, ξ)‖ ≤ M if arg(ξ) = θ± and ‖h(x, ξ)‖ ≤ L exp(B|ξ|µ) if arg(ξ) ∈
[θ−, θ+] for all x ∈ Dd

ρ. Since the opening of S(θ, 2δ) is smaller than π/µ,
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the Phragmén–Lindelöf principle yields that h is bounded on the full

sector. Thus we can find constants M̃, C̃ > 0 such that

‖g(x, ξ)‖ ≤ M̃ exp(C̃|ξ|k) for all (x, ξ) ∈ Dd
ρ × S(θ, 2δ).

This means that T̂α(f̂) is k-Borel-summable in direction θ in Eαρ . Thus,

f̂ is xα-k-summable in direction θ, which contradicts the assumption.
The second statement in (1) follows from the first one, since Lem-

ma 3.2 (2) implies that if f̂ ∈ E[[x]]α
′

1/k′, then the series T̂α(f̂) is

max1≤j≤d{αj/α′j}/ k′-Gevrey in some Eαr .

(2) Consider f̂ ∈ E{x}α1/k∩E{x}
α′

1/k′ . If αj/α
′
j is independent of j, write

this positive rational number as a/b, with g.c.d.(a, b) = 1. Then αj =
mja, α′j = mjb, for some mj ∈ N+ and, by applying Corollary 4.11,

we have E{x}α1/k = E{x}m1/ak and E{x}α′1/k′ = E{x}m1/bk′ where m =

(m1, . . . ,md). Then, this case follows from (1). Furthermore, the cases
max1≤j≤d{αj/α′j} < k′/k and k′/k < min1≤j≤d{αj/α′j} also follow
from (1).

Finally, the case min1≤j≤d αj/α
′
j ≤ k′/k ≤ max1≤j≤d αj/α

′
j can be

reduced to the previous situations by using monomial transformations.
To fix ideas, assume that α1/α

′
1 ≤ α2/α

′
2 ≤ · · · ≤ αd/α

′
d and α1/α

′
1 <

k′/k. If j0 is the smallest index such that k′/k ≤ αj0/α
′
j0

, for each

j0 ≤ j ≤ d choose Nj ∈ N+ such that

kαj − k′α′j
k′α′1 − kα1

< Nj .

Theorem 5.4 shows that

f̂1 = f̂ ◦πNdd1 ◦ · · · ◦π
Nj0
j01 ∈ E{x}

α+α1
∑d
j=j0

Njej

1/k ∩E{x}
α′+α′1

∑d
j=j0

Njej

1/k′ ,

but the new monomials satisfy

max
1≤i<j0
j0≤j≤d

{αi/α′i, (Njα1 + αj)/(Njα
′
1 + α′j)} < k′/k.

Thus f̂1 is convergent, and by Lemma 5.3 (1) so is f̂ .

The same idea of proof can be generalized to construct series which
are not xα-k-summable for any xα or k > 0. The following theorem is
a version of [5, Theorem 3.9], which is incorrect as it is stated there.
What is actually proved there, by induction on n, is the following.

Theorem 5.6. Consider α1, . . . ,αn ∈ (N+)d and k1, . . . , kn > 0. For

each j = 1, . . . , n, take a series f̂j ∈ E{x}αj1/kj
. If kiαi 6= kjαj, for

all i 6= j and f̂1 + · · ·+ f̂n = 0, then f̂j ∈ E{x} for all j = 1, . . . , n.
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Given f̂ ∈ O′d(E), we can also consider the case where f̂ is k-summable
in a monomial in some variables with coefficients which are holomorphic
maps in the remaining ones and compare the summability phenomena we
have at our disposal. As a matter of fact, in this situation the methods
are again incompatible and the proofs can be reduced to Theorem 5.5
using monomial transformations. The key statement is the following.

Proposition 5.7. Let J ( [1, d] be non-empty, n = #J , and let f̂ ∈
Ob(Dd−n

R , E){xJ}αJ1/k,θ with xαJJ -k-sum f in direction θ. Then f̂ ◦ πij ∈

Ob(Dd−n
R′ , E){xJ}αJ1/k,θ if j 6∈J , and f̂◦πij ∈Ob(Dd−n−1

R′ , E){xJ∪{i}}
α′J∪{i}
1/k,θ

if j ∈ J , where x
α′J∪{i}
J∪{i} = x

αj
i x

αJ
J for small 0 < R′ ≤ R. In both cases

the corresponding sum is given by f ◦ πi,j.

Proof: Let f̂ =
∑
βJ∈NJ

fJ,βJ (xJc)x
βJ
J as in equation (4), where fJ,βJ ∈

Ob(Dd−n
R , E) and T̂αJ (f̂)=

∑∞
n=0fαJ ,n(x)xnαJJ . If f ∼αJ1/k f̂ on SαJ (θ, b−

a, r), b − a > π/k, for every subsector S′αJ of SαJ we can find con-
stants C,A > 0 such that for every N ∈ N we have∥∥∥∥f(x)−

N−1∑
n=0

fαJ ,n(x)xnαJJ

∥∥∥∥ ≤ CANN !
1
k |xNαJJ |

on {x ∈ Cd | xJ ∈ S′αJ ,xJc ∈ D
d−n
R }.

Note that xαJJ ◦πi,j=xαJJ if j 6∈J and xαJJ ◦πi,j=x
αj
i x

αJ
J if j ∈ J . Then

both statements follow with the aid of Proposition 3.6 by replacing x
by πij(x) in the previous inequality as long as we choose the radii r,

R small enough such that πij(x) ∈ {x ∈ Cd : xJ ∈ S′αJ , xJc ∈ D
d−n
R }.

Theorem 5.8. Let I, J ⊆ [1, d] be non-empty sets, n = #J , m = #I,
and consider αJ ∈ (N+)m, α′I ∈ (N+)n, and k, k′ > 0. Then

Ob(Dd−n
R , E){xJ}αJ1/k ∩ Ob(D

d−m
R , E){xI}

α′I
1/k′ = E{x},

except in the case J = I and kαJ = k′α′I , where the spaces coincide.

Proof: We divide the proof into several cases. First, if J=I the result fol-
lows from Theorem 5.5 applied to the spaceOb(Dd−m

R , E) (resp. E if m =
d). Second, assume J ( I. Changing the order of coordinates if necessary

we can assume J = {1, . . . , n} and I = {1, . . . ,m}. Then f̂1 = f̂ ◦πm,1 ◦
· · · ◦ πn+1,1 is xαJJ (xn+1 · · ·xm)α1 -k-summable and x

α′I
I (xn+1 · · ·xm)β1-

k′-summable, both with coefficients in Ob(Dd−m
R , E) (resp. E if m = d).
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We can apply the previous case to conclude that f̂1 and thus f̂ are con-
vergent since α1/(α

′
m + α′1) = α1/α

′
1 implies α′m = 0, which is not the

case. Finally, we can assume there are j0 ∈ J \ I and i0 ∈ I \ J , and we
consider the series

f̂2 = f̂ ◦ ◦
∏
i∈I\J πij0 ◦ ◦

∏
j∈J\I πji0 .

Here ◦
∏

denotes the composition product, which in this case is inde-
pendent of the order because the monomial transformations involved

commute since j0 6= i0. Then f̂2 is x
α′I
I

(∏
j∈J\I xj

)α′i0 -k′-summable

and xαJJ
(∏

i∈I\J xi ·
∏
j∈J\I xj

)αj0 -k-summable with coefficients in

Ob(Dd−#(I∪J)
R , E) (resp. E if J ∪ I = [1, d]). Since the i0-components

(resp. j0-components) of these monomials are α′i0 and αj0 (resp. α′i0
and 2αj0) respectively, then αj0/α

′
i0
6= 2αj0/α

′
i0

, and therefore f̂2 and f̂
are convergent as we wanted to prove.

Having this result at hand it is possible to formulate and prove a state-
ment similar to the one in Theorem 5.6. This provides more examples of
series that cannot be summed with the methods we have studied along
this work. In fact, this has been done recently in [7] in the more general
setting of k-summability in analytic germs and we refer the reader to
this work for a complete proof of these facts.

6. Monomial summability of a family of singular
perturbed PDEs

Summability in a monomial is useful to study formal solutions of
doubly singular equations, i.e., singularly perturbed ordinary differential
equations of the form

(33) εqxp+1 ∂y

∂x
= F (x, ε,y),

where p, q ∈ N+ and F is a CN -valued holomorphic map in some neigh-
borhood of (0, 0,0) ∈ C×C×CN . If ∂F

∂y (0, 0,0) is an invertible matrix,

this system has a unique formal power series solution and it is xpεq-
1-summable; see [3, Theorem 5.2]. The technique employed to prove this
result in the case p = q = 1 is to apply the change of variables t = xε to
obtain an equation involving t and ε. The new equation is then solved
on large sectors and the differences of such solutions, in their common
domains, are studied in order to apply Ramis–Sibuya’s theorem. The
general case follows after rank reduction.
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The goal of this section is to generalize the previous result by es-
tablishing the xαεα

′
-1-summability of the unique formal power series

solution of the singularly perturbed partial differential equation (1) ex-
plained in the introduction. By hypothesis, the n-tuple µ = (µ1, . . . , µn)
has entries positive real numbers, up to a non-zero multiple scalar. Then,
dividing equation (1) by 〈µ,α〉, it is sufficient to study the singularly
perturbed partial differential equation

(34) εα
′
Xλ(y)(x, ε)=εα

′
xα
(
s1

α1
x1

∂y

∂x1
+ · · ·+ sn

αn
xn

∂y

∂xn

)
=F (x, ε,y),

where x = (x1, . . . , xn), ε = (ε1, . . . , εm) are tuples of complex variables,
α = (α1, . . . , αn), α′ = (α′1, . . . , α

′
m) are tuples of positive integers, λ =(

s1
α1
, . . . , snαn

)
where the sj/αj = µj/〈µ,α〉 > 0 satisfy s1 + · · ·+ sn = 1,

F = 〈µ,α〉−1G is a CN -valued holomorphic map in some neighborhood
of (0,0,0) ∈ Cn×Cm×CN , and A0 := ∂F

∂y (0,0,0) is an invertible matrix.

We will apply directly the Borel–Laplace analysis developed in Sec-
tion 4, based on the methods of one variable; see e.g., [9]. The existence
of the unique formal solution is a straightforward result. To determine
the Gevrey type of this solution we can use a variant of Nagumo norms,
as the ones used in [4]. For the summability, we will study the convo-
lution equation obtained from (34) after applying the adequate Borel
transformation. After introducing suitable spaces of analytic functions
and norms, we will solve the convolution equation using the Banach
fixed-point theorem.

Theorem 6.1. Consider the singularly perturbed partial differential
equation (1). If G(0,0,0) = 0 and B0 = ∂G

∂y (0,0,0) is an invertible ma-

trix, then (1) has a unique formal power series solution ŷ ∈ C[[x, ε]]N

and it is xαεα
′
-1-summable, with possible singular directions determined

by the equation

det
(
〈µ,α〉ξαηα

′
IN −B0

)
= 0,

in the (ξ,η)-Borel space. Here IN denotes the identity matrix of size N .

Proof: We divide the proof into four main steps: existence and Gevrey
type of the formal solution, establishment of the associated convolution
equation, introduction of adequate Banach algebras and their properties,
and finally the application of the fixed point theorem.

1. The formal solution. We will consider the norms |y| = max1≤j≤N |yj |
on CN and |A| = max1≤i≤N

∑N
j=1 |Aij | on CN×N , where the notation

should be clear from context.
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Let us write

F (x, ε,y) = c(x, ε) +A(x, ε)y +
∑
|I|≥2

AI(x, ε)y
I ,

as a power series in y, where c, AI ∈ Ob(Dn
r ×Dm

R ,CN ), A ∈ Ob(Dn
r ×

Dm
R ,CN×N ) for all I = (i1, . . . , iN ) ∈ NN and yI = yi11 · · · y

iN
N . We

also write c(x, ε) =
∑
β∈Nn cβ(ε)xβ =

∑
β′∈Nm cβ′(x)εβ

′
as a conver-

gent power series in x (resp. in ε) with coefficients cβ ∈ Ob(Dm
R ,CN )

(resp. cβ′ ∈ Ob(Dn
r ,CN )). Since F is holomorphic we can find con-

stants K, δ > 0 such that

(35) ‖AI‖r,R := sup
(x,ε)∈Dnr×DmR

|AI(x, ε)| ≤ Kδ|I|.

The notation ‖ · ‖r,R will be also used for matrix valued functions.
To find the formal solution set ŷ=

∑
β∈Nn yβ(ε)xβ. Since F (0,0,0)=

0 and A0 is invertible we can apply the implicit function theorem to find
a unique y0(ε) ∈ Ob(Dm

R ,CN ), y0(0) = 0 (with R small enough) solving
the equation F (0, ε,y0(ε)) = 0. To determine the higher order terms we
use the recurrence

〈λ,β −α〉εα
′
yβ−α(ε) = cβ(ε) +A(0, ε)yβ(ε) + known terms,

obtained by inserting ŷ in the differential equation and equating the
coefficient of xβ. Since A(0,0) = A0 is invertible, we may assume (by
reducing R again if necessary) that A(0, ε) is invertible for all ε ∈ Dm

R .
Thus this recurrence determines yβ uniquely, and the uniqueness of ŷ
follows.

Similar computations as for the classical irregular singularities for
ODEs show that ŷ is a 1-Gevrey series in xα. To determine the Gevrey
order in ε, we use the following variant of the Nagumo norms for higher
dimensions: if f ∈ O(Dn

r ×Dm
R ) and l ∈ N, we define

‖f‖l := sup
(x,ε)∈Dnr×DmR

|f(x, ε)|(r − |x1|)l · · · (r − |xn|)l.

They satisfy the majorant inequalities

‖f+g‖l≤‖f‖l+‖g‖l, ‖fg‖l+k≤‖f‖l‖g‖k,
∥∥∥∥ ∂f∂xj

∥∥∥∥
l+1

≤e(l+1)rn−1‖f‖l,

for all l, k ∈ N, j = 1, . . . , n. The proof of the last inequality can be
done in the same way as it is proved in [4] for the Nagumo norms intro-
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duced there. Then, applying the usual majorant series technique to the
recurrence PDEs

xα
n∑
j=1

sj
αj
xj

∂

∂xj
(yβ′−α′) = cβ′(x) +A(x,0)yβ′(x) + known terms,

obtained by replacing ŷ =
∑
β′∈Nm yβ′(x)εβ

′
into (34), we may conclude

that ŷ is also 1-Gevrey in εα
′
. Here we have also reduced r (if necessary)

to guarantee that A(x,0) is invertible for all x ∈ Dn
r .

2. The convolution equation. To simplify notation we will write B̂ =

B̂(λ,0) and ∗ = ∗(λ,0), where (λ,0) ∈ Rn>0×Rm. Also set s = (s1, . . . , sn)
which by hypothesis belongs to σn.

Applying B to (34) we obtain a convolution equation, that written as
a fixed point equation, is given by

(ξαηα
′
IN −A0)Y =B(c)+(B(A−A(0,η))) ∗ Y +(A(0,η)−A0)Y

+
∑
|I|≥2

B(AI −AI(0,η)) ∗ Y ∗I

+
∑
|I|≥2

AI(0,η)Y ∗I ,

(36)

in the (ξ,η)-Borel plane. Here we write Y ∗I = Y ∗i11 ∗ · · · ∗ Y ∗iNN and

Y
∗ij
j = Yj ∗ · · · ∗ Yj , ij times.

Under the holomorphic change of variables w = y −
∑
α 6<β yβ(ε)xβ,

we may assume that c(x, ε) =
∑
β>α cβ(ε)xβ, B(c) is holomorphic at

the origin, and B(c)(0,η) = 0, and so we will do it from now on.
Equation (36) has a unique analytic solution at the origin given by Y =

B(ŷ). To solve (36) in larger domains, we ask ξαηα
′
IN − A0 to be in-

vertible. Let ν1 = |ν1|eiθ1 , . . . , νN = |νN |eiθN be the eigenvalues of A0

repeated according to their multiplicity, all different from zero by hy-
pothesis. We will work on domains contained in

Ω := {(ξ,η) ∈ Cn × Cm : ξαηα
′
6= νj for all j = 1, . . . , N}.

3. Some focusing spaces. Consider

S := Sr,R′ = S
(s,0)
(α,α′)(θ, 2ε, R

′) ∪ (Dn
r ×DR′1/α

′
1
× · · · ×D

R′1/α
′
m

),

where θ 6= θj for all j = 1, . . . , N , ε > 0 is chosen small such that S ⊂ Ω,

and R′ < Rα
′
j for all j = 1, . . . ,m, to ensure that S ⊂ Cn ×Dm

R . Note
that S contains a polydisc around the origin.
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If µ > 0, we introduce the spaces of holomorphic maps

ANµ (S) := {f = (f1, . . . , fN ) ∈ O(S,CN ) : f(0, ·) = 0,

‖f‖N,µ := max
1≤j≤N

‖fj‖µ < +∞},

‖f‖µ := ‖f‖1,µ = M0 sup
(ξ,η)∈S

|f(ξ,η)|(1 +R(ξ)2)e−µR(ξ), f ∈ O(S).

Here R(ξ) = max1≤j≤n |ξj |αj/sj and M0 = sups>0 s(1 + s2)I(s) ≈ 3.76,
where

I(s) :=

∫ 1

0

dτ

(1 + s2τ2)(1 + s2(1− τ)2)
=

2(ln(1 + s2) + s arctan(s))

s2(4 + s2)
.

This family of norms is an adaptation for monomials of the norms
introduced in [9, Definition 4.1] for one variable, useful to treat non-
linear partial PDEs; see e.g., [12]. We refer to [10] for similar norms in
higher dimensions.

One particular feature is that

AN (S) :=
⋃
µ>0

ANµ (S)

constitutes a focusing space [8, p. 14]. In our case this means each
(ANµ (S), ‖·‖N,µ) is a Banach space, and if any f satisfies ‖f‖N,µ0

< +∞,
then ‖f‖N,µ → 0 as µ→ +∞. This, and some other properties we need
are described in the following three technical lemmas.

Lemma 6.2. Let µ > 0, R, and S be as before. The following statements
hold:

(1) If Q ∈ Ob(Dm
R ,CN ), then

‖fQ‖N,µ ≤ ‖Q‖r,R‖f‖µ, f ∈ A1
µ(S).

(2) (A1
µ(S), ∗, ‖ · ‖µ) is a Banach algebra. More precisely, if f, g ∈

A1
µ(S), then f ∗ g ∈ A1

µ(S) and

‖f ∗ g‖µ ≤ ‖f‖µ‖g‖µ.

(3) If 0 < µ0 < µ and f ∈ ANµ0
(S), then f ∈ ANµ (S) and ‖f‖N,µ → 0

as µ→ +∞.

Proof: The inequality in (1) is an immediate consequence of the defini-
tion. To prove (2) note that f ∗ g is clearly analytic on S as long as f
and g are analytic there. To establish the desired bound, we use that
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R(ξ1τ
α1/s1 , . . . , ξdτ

αn/sn) = τR(ξ), for all τ > 0, |ξα| ≤ R(ξ) (second
inequality in (9)), and also the definition of M0 to get

|(f∗g)(ξ,η)| ≤ |ξα|e
µR(ξ)

M2
0

‖f‖µ‖g‖µI(R(ξ)) ≤ eµR(ξ)

M0(1 +R(ξ)2)
‖f‖µ‖g‖µ.

To prove (3), it is sufficient to do it for N = 1. If f ∈ A1
µ0

(S) and
µ0 < µ, then it follows from the definition that ‖f‖µ ≤ ‖f‖µ0 . To show
that ‖f‖µ → 0 as µ → +∞, let ε > 0. We can find ρ > 0 small enough

such that |(1+R(ξ)2)f(ξ,η)| ≤ ε/2M0 if (ξ,η) ∈ D, D = Dn
ρ×DR′1/α

′
1
×

· · · ×D
R′1/α

′
m

, since f(0,η) = 0. Then

M0 sup
(ξ,η)∈D

|f(ξ,η)|(1 +R(ξ)2)e−µR(ξ) ≤ ε

2
.

If (ξ,η) ∈ S \D, then R(ξ) ≥ ρ′ = min1≤j≤n ρ
sj/αj > 0 and

M0 sup
(ξ,η)∈S\D

|f(ξ,η)|(1 +R(ξ)2)e−µR(ξ) ≤ e−ρ
′(µ−µ0)‖f‖µ0 .

Taking a large µ such that e−ρ
′(µ−µ0)‖f‖µ0

< ε/2, we obtain ‖f‖µ < ε.
This proves the claim.

Lemma 6.3. Let P ∈ Ob(Dn
r ×Dm

R ,CN ) be a map such that P (0, ε) = 0
for all ε ∈ Dm

R . Then for any 0 < ρ < r we have

‖f ∗ B(P )‖N,µ ≤ Cµ,ρ‖P‖ρ,R‖f‖µ, f ∈ A1
µ(S),

where a := min1≤j≤n sj/αj, Cµ,ρ := 3((1 − 2/µaρ)−n − 1), and µ >

max{4
√

2, (2/ρ)1/a}. The same inequality is valid for P ∈ Ob(Dn
r ×

Dm
R ,CN×N ) and f ∈ ANµ (S).

Proof: Let us write P (x, ε) =
∑
β∈Nn\{0} Pβ(ε)xβ as a convergent power

series at the origin with coefficients inOb(Dm
R ,CN ) and also B(P )(ξ,η) =∑

β∈Nn\{0}
Pβ(η)

Γ(〈β,λ〉)ξ
β−α.

If β 6= 0, we have that

|ξβ−α ∗ f(ξ,η)| ≤ |ξβ|e
µR(ξ)

M0
‖f‖µ

∫ 1

0

τ 〈β,λ〉−1e−µR(ξ)τ

1 +R(ξ)2(1− τ)2
dτ.

To properly bound this integral expression we split it from 0 to 1/2 and
from 1/2 to 1. In the first case, the integral is bounded by∫ 1/2

0

τ 〈β,λ〉−1e−µR(ξ)τ

1 +R(ξ)2/4
dτ ≤ 4

1 +R(ξ)2

Γ(〈β,λ〉)
(µR(ξ))〈β,λ〉

,
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where we have used the integral representation of the Gamma function,
which is possible since 〈β,λ〉 > 0. In the second case, the integral is
bounded by∫ 1

1/2

τ 〈β,λ〉−1e−µR(ξ)τ dτ ≤ e−µR(ξ)/4

∫ 1

1/2

τ 〈β,λ〉−1e−µR(ξ)τ/2 dτ

≤
(

2

µR(ξ)

)〈β,λ〉
Γ(〈β,λ〉)e−µR(ξ)/4

≤
(

2

µR(ξ)

)〈β,λ〉
Γ(〈β,λ〉)

1 + µ2/32R(ξ)2

≤
(

2

µR(ξ)

)〈β,λ〉
Γ(〈β,λ〉)
1 +R(ξ)2

,

as long as µ2/32 > 1. Now, if µ > 1, by using the definition of a,

a|β| ≤ 〈β,λ〉 ≤ |β|, the fact that |ξβ| ≤ R(ξ)〈β,λ〉, and 4 + 2|β| ≤ 3 ·2|β|
for |β| ≥ 1, we can conclude that

|ξβ−α ∗ f(ξ,η)| ≤ 3 · 2|β|Γ(〈β,λ〉)
µa|β|

eµR(ξ)

M0(1 +R(ξ)2)
‖f‖µ.

By Cauchy’s inequalities, if 0 < ρ < r, then |Pβ(η)| ≤ ρ−|β|‖P‖ρ,R
for any η ∈ Dm

R . Therefore

|f ∗ B(P )(ξ,η)| ≤
(∑
β 6=0

3 · 2|β|‖P‖ρ,R
(µaρ)|β|

)
eµR(ξ)

M0(1 +R(ξ)2)
‖f‖µ

= ((1− 2/µaρ)−n − 1)
3‖P‖ρ,ReµR(ξ)

M0(1 +R(ξ)2)
‖f‖µ,

as long as µa > 2/ρ. This estimate allows us to conclude the proof.

Lemma 6.4. For all N ∈ N+, I = (i1, . . . , iN ) ∈ NN , and Y ,h ∈
ANµ (S), we have

‖(Y + h)∗I − Y ∗I‖µ ≤ |I|(‖Y ‖N,µ + ‖h‖N,µ)|I|−1‖h‖N,µ.

The proof can be done by induction on I; see e.g., [8, p. 19].

4. The application of the fixed point theorem. Let M = M(Sr,R′) >

0 such that |(ξαηα′IN − A0)−1| < M on Sr,R′ . Fix 0 < ρ < r and
using the continuity of A(0, ·) take 0 < ρ′ ≤ R′ small enough such that
‖A(0, ·)−A0‖ρ,ρ′ < 1/4M .

We consider the operator H given by solving Y in equation (36).
Recall that K, δ > 0 in (35) are determined by F and are fixed. Let
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µ0 > 0 be such that B(c) ∈ ANµ0
(Sρ,ρ′) (which exists by Step 2). If µ ≥

max{µ0, 4
√

2, (2/ρ)1/a} and ‖Y ‖N,µ < 1/δ, it follows using Lemmas 6.2,

6.3, and the fact that ‖Y ∗I‖µ ≤ ‖Y ‖|I|N,µ (Lemma 6.2 (2)) that

M−1‖H(Y )‖N,µ ≤ ‖B(c)‖N,µ
+ (Cµ,ρ‖A−A(0, ·)‖ρ,ρ′ + ‖A(0, ·)−A0‖ρ,ρ′)‖Y ‖N,µ
+K(2Cµ,ρ + 1)((1− δ‖Y ‖N,µ)−N − 1).

We may conclude that H maps
⋃
µ≥µ0

Bµ(1/2δ) to AN (Sρ,ρ′), where

Bµ(1/2δ) is the ball

Bµ(1/2δ) = {Y ∈ ANµ (Sρ,ρ′) | ‖Y ‖N,µ ≤ 1/2δ}.

Now choose 0 < ε < 1/δ such that (1− δε)−N−1 − 1 < (2KδNM)−1.
Using Lemma 6.4 we can conclude that if ‖Y ‖N,µ + ‖h‖N,µ ≤ ε, then

M−1‖H(Y + h)−H(Y )‖N,µ
≤ (Cµ,ρ‖A−A(0, ·)‖ρ,ρ′ + ‖A(0, ·)−A0‖ρ,ρ′)‖h‖N,µ

+KδN(2Cµ,ρ + 1)((1− δ(‖Y ‖N,µ + ‖h‖N,µ))−N−1 − 1)‖h‖N,µ
≤ (Cµ,ρ‖A−A(0, ·)‖ρ,ρ′ + (4M)−1 + Cµ,ρM

−1 + (2M)−1)‖h‖N,µ,

where we have used the identity
∑
|I|≥2 |I|τ |I|−1 = N((1− τ)−N−1− 1),

valid for all |τ | < 1. In conclusion, we have obtained the inequality

‖H(Y +h)−H(Y )‖N,µ≤
(
Cµ,ρM‖A−A(0, ·)‖ρ,ρ′ + Cµ,ρ +

3

4

)
‖h‖N,µ.

Since ρ has been fixed and Cµ,ρ → 0 as µ → +∞, taking µ ≥ µ0 large
enough, we conclude that H is eventually a contraction, say

‖H(Y + h)−H(Y )‖N,µ ≤
7

8
‖h‖N,µ.

If we also take µ large such that ‖B(c)‖N,µ < ε/8M (Lemma 6.2 (3)),
then ‖H(0)‖N,µ < ε/8 and the previous inequality shows that H maps
the ball Bµ(ε) to itself and, being a contraction, it has a unique fixed
point Y 0 ∈ O(S,CN ).

Since S contains a neighborhood of the origin and equation (36)
has B(ŷ) as unique analytic solution there, then it coincides with the
Taylor series expansion of Y 0 at the origin. This means that B(ŷ)
can be analytically continued to S with exponential growth of order
at most (α1/s1, . . . , αn/sn,0) there. Since this can be done for all θ, up

to θ1, . . . , θN , we conclude that ŷ is xαεα
′
-1-summable. Thus the possi-

ble singular directions of ŷ for xαεα
′
-1-summability are determined by

the equation det(ξαηα
′
IN −A0) = 0.
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Corollary 6.5. Assuming the same hypotheses of the previous theo-
rem, consider the vector field X = xα

(
µ1x1

∂
∂x1

+ · · · + µnxn
∂
∂xn

)
. If

b1, . . . , bl−1 ∈ C, the system of singularly perturbed PDEs

εlα
′
X l(y) + bl−1ε

(l−1)α′X l−1(y) + · · ·+ b1ε
α′X(y) = G(x, ε,y)

has a unique formal solution ŷ ∈ C[[x, ε]]N and it is xαεα
′
-1-summable.

Proof: Dividing the given PDE by 〈µ,α〉l, it is enough to prove the
statement for the equation

εlα
′
X l
λ(y) + al−1ε

(l−1)α′X l−1
λ (y) + · · ·+ a1ε

α′Xλ(y) = F (x, ε,y),

where aj = 〈µ,α〉j−lbj , F = 〈µ,α〉−lG, and λ =
(
s1
α1
, . . . , snαn

)
and

sj/αj = µj/〈µ,α〉 > 0 are as before. If we put (y0,y1 . . . ,yl−1) =

(y, εα
′
Xλ(y), . . . , ε(l−1)α′X l−1

λ (y)), the result now follows by applying
Theorem 6.1 to the corresponding system of PDEs of size lN given by

εα
′
Xλ(y0,y1 . . . ,yl−1)=(y1, . . . ,yl−1,F (x, ε,y0)−a1y0−· · ·−al−1yl−1).

In this case, the possible singular directions in t = ξαηα
′

are deter-
mined by the arguments of the solutions of tl+al−1t

l−1 + · · ·+a1t = νj ,

j = 1, . . . , N , where ν1, . . . , νN are the eigenvalues of A0 = ∂F
∂y (0,0,0).

Note that zero is not a solution of these polynomials since A0 is invert-
ible.
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darrera versió rebuda el 16 de juliol de 2020.

http://dx.doi.org/10.1215/S0012-7094-98-09311-5
https://doi.org/10.1002/1097-0312(200009)53:9<1092::AID-CPA2>3.0.CO;2-Z
https://doi.org/10.1002/1097-0312(200009)53:9<1092::AID-CPA2>3.0.CO;2-Z
http://dx.doi.org/10.1016/j.anihpc.2006.07.002
http://dx.doi.org/10.1016/j.anihpc.2006.07.002
http://dx.doi.org/10.1016/S1631-073X(03)00023-2
https://doi.org/10.1007/s41980-019-00316-1
https://doi.org/10.1007/s41980-019-00316-1
http://dx.doi.org/10.5565/PUBLMAT6311901
http://dx.doi.org/10.5565/PUBLMAT6311901
http://dx.doi.org/10.1007/3-540-09996-4_38
http://dx.doi.org/10.3233/ASY-1989-2104

	1. Introduction
	2. Asymptotics and summability in one variable
	3. Asymptotic expansions in a monomial
	4. Borel–Laplace analysis for monomial summability
	5. Tauberian properties for monomial summability
	6. Monomial summability of a family of singular perturbed PDEs
	References



