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LOWER CENTRAL WORDS IN FINITE p-GROUPS

Iker de las Heras and Marta Morigi

Abstract: It is well known that the set of values of a lower central word in a group G

need not be a subgroup. For a fixed lower central word γr and for p ≥ 5, Guralnick
showed that if G is a finite p-group such that the verbal subgroup γr(G) is abelian

and 2-generator, then γr(G) consists only of γr-values. In this paper we extend this

result, showing that the assumption that γr(G) is abelian can be dropped. Moreover,
we show that the result remains true even if p=3. Finally, we prove that the analogous

result for pro-p groups is true.
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1. Introduction

A word w in k variables is an element of the free group Fk with
k generators. For any group G, this word can be seen as a map from the
Cartesian product of k copies of G to the group G itself by substituting
group elements for the variables. The image of this map is called the set
of w-values of G and is denoted by Gw. The subgroup generated by this
set is called the verbal subgroup of w in G and is denoted by w(G).

In this paper we will focus on the lower central words. These words
are defined recursively by the rule γ1(x1) = x1 and

γr(x1, . . . , xr) = [γr−1(x1, . . . , xr−1), xr]

for r ≥ 2. Thus, the verbal subgroup γr(G) of the word γr in a group G
coincides with the r-th term of the lower central series of G. In this
context, it is well known that the set of γr-values need not be a subgroup.
In other words, Gγr may be a proper subset of γr(G).

However, several families of groups have been found for which the
equality γr(G) = Gγr holds. The study of this property started with the
case r = 2, that is, when the word γr is the common commutator word
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and its verbal subgroup is just the derived subgroup of the group. One
of the main results in this case is the proof by Liebeck, O’Brien, Shalev,
and Tiep in [13] of the so-called Ore Conjecture, according to which
every finite simple group G satisfies the condition G′ = Gγ2 .

In the opposite direction, still in the case r = 2, the result is also true
for nilpotent groups with cyclic derived subgroup, as proved by Rodney
in [17]. If, instead, we drop the nilpotency assumption, the result fails to
hold. Namely, in [14], Macdonald provides some examples of groups G
with G′ cyclic and G′ 6= Gγ2 . For finite nilpotent groups or, equivalently,
for finite p-groups, Rodney addressed the simplest cases, showing that
G′ = Gγ2 if G′ is 3-generator and central or if G′ is elementary abelian of
rank 3 ([18]). Guralnick extended Rodney’s results proving that if G′ is
abelian, then G′ = Gγ2 whenever G′ can be generated by 2 elements ([8,
Theorem A]) or whenever G′ can be generated by 3 elements and p ≥ 5
([8, Theorem B]). In addition, Guralnick himself showed that the result
is no longer true if G′ is 3-generator and p = 2 or p = 3 ([8, Example 3.5
and Example 3.6]).

On this basis, G. A. Fernández-Alcober and the first author in [7]
and [5] improved Guralnick’s results, showing that the condition that G′

is abelian can be removed. Moreover, Macdonald ([15, Exercise 5, p. 78])
and Kappe and Morse ([11, Example 5.4]) had already shown that for
every prime p there exist finite p-groups with 4-generator abelian derived
subgroup such that G′ 6= Gγ2 . Therefore, for r = 2, the study of this
property for finite p-groups in terms of the number of generators of the
derived subgroup is already completed.

For the case r > 2, however, much less is known. The first results
were due to Dark and Newell in [4], where they generalized Macdonald’s
and Rodney’s results in [14] and [17] to lower central words. So far, the
main results in this context were proved by Guralnick: he showed in [9]
and [10] that ifG is a finite p-group, p ≥ 5, such that γr(G) is 2-generator
and abelian, then γr(G) = Gγr . In addition, he found an example of a
2-group such that γr(G) 6= Gγr , but the case p = 3 remained unknown.

The goal of this paper is to generalize again Guralnick’s result, show-
ing that the condition that γr(G) is abelian is not necessary. Moreover,
we prove that the result is also true if p = 3, closing in that way the gap
between the primes 2 and 5.

Theorem A. Let G be a finite p-group and let r ≥ 2. If γr(G) is cyclic
or if p is odd and γr(G) can be generated with 2 elements, then there
exist x1, . . . , xj−1, xj+1, . . . , xr ∈ G with 1 ≤ j ≤ r such that

γr(G) = {[x1, . . . , xj−1, g, xj+1, . . . , xr] | g ∈ G}.
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As in [7] and [5], we will also prove the analogous version of Theo-
rem A for pro-p groups. In the case of a pro-p-groupG, γr(G) denotes the
topological closure of the subgroup generated by the set of all γr-values.

Theorem B. Let G be a pro-p group and let r ≥ 2. If γr(G) is procyclic
or if p is odd and γr(G) can be topologically generated with 2 elements,
then there exist x1, . . . , xj−1, xj+1, . . . , xr ∈ G with 1 ≤ j ≤ r such that

γr(G) = {[x1, . . . , xj−1, g, xj+1, . . . , xr] | g ∈ G}.
Notation and organization. Let G be a group. If L is a normal sub-
group of G, then [L,1 G] = [L,G] denotes the subgroup generated by
all commutators [x, y] with x ∈ L and y ∈ G, and we define recursively
[L,n+1 G] = [[L,n G], G] for all n ≥ 1. If H ≤ G and x ∈ G, then we
set [x,H] = 〈[x, h] | h ∈ H〉. Moreover, Hn will denote the subgroup
generated by all n-th powers of elements of H. We denote the Frattini
subgroup of G by Φ(G) and if G is finitely generated, d(G) stands for
the minimum number of generators of G. Finally, if G is a topological
group, we write ClG(H) to refer to the topological closure of H in G and
we write H Eo G to denote that H is an open normal subgroup of G.

We start with some general preliminary results in Section 2 that will
be used frequently along the paper. Then we split the proof of Theorem A
into three sections, dealing separately with two different cases: first, in
Section 3 we prove the result when γr(G) is cyclic, and then, in Section 5
and Section 6 we prove it when d(γr(G)) = 2 and p is odd, making an
additional distinction on the position of a certain subgroup inside the
group. However, the proof for the non-cyclic case in Sections 5 and 6 will
require further preliminaries that will be developed in Section 4. Finally,
we prove Theorem B in Section 7.

2. Preliminaries

Throughout the paper we will use freely the following well-known
commutator identities (see, for instance, [16, 5.1.5]).

Lemma 2.1. Let x, y, z be elements of a group. Then

(i) [x, y] = [y, x]−1.

(ii) [xy, z] = [x, z]y[y, z], and [x, yz] = [x, z][x, y]z.

(iii) [x, y−1] = [y, x]y
−1

, and [x−1, y] = [y, x]x
−1

.

(iv) [x, y−1, z]y[y, z−1, x]z[z, x−1, y]x = 1 (the Hall–Witt Identity).

The next standard properties are consequences of the identities above
and for the reader convenience we collect them in a lemma that will be
often used without mentioning.
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Lemma 2.2. Let G be a group. Then

(i) If L and N are two normal subgroups of G and n ∈ N, then
[Ln, N ] ≤ [L,N ]n[L,N,L].

(ii) If L is a normal subgroup of G, then [L, γi(G)] ≤ [L,i G] for ev-
ery i ∈ N.

We will also use without mentioning the fact that if N ≤ L are two
normal subgroups of G such that [L : N | = p2, then [L,G,G] ≤ N , while

if L/N is cyclic, then [L,i G] ≤ LpiN for each i ∈ N.
The following lemma is essentially the well-known Hall–Petresco Iden-

tity (see [2, Appendix A.1]).

Lemma 2.3. Let x, y be elements of a group and let n ∈ N. Then for
each i = 2, . . . , n there exists ci ∈ γi(〈y, [x, y]〉) such that

[x, y]n = [x, yn]c
(n2)
2 c

(n3)
3 · · · c(

n
n)
n .

Outer commutator words, also known under the name of multilinear
commutator words, are words obtained by nesting commutators, but
using always different variables. More formally, the word w(x) = x in one
variable is an outer commutator word; if α and β are outer commutator
words involving different variables, then the word w = [α, β] is an outer
commutator, and all outer commutator words are obtained in this way.
Thus, lower central words are particular instances of outer commutator
words, and as Lemma 2.5 below shows, the verbal subgroup of such words
in finite p-groups is powerful whenever it can be generated by 2 elements
(a finite p-group is said to be powerful if Gp ≤ G′ for odd p or if G4 ≤ G′
for p = 2). Hence, the theory of powerful p-groups will be essential in
this paper. These groups are usually seen as a generalization of abelian
groups since they satisfy, among others, the following properties:

(i) Φ(G) = Gp. In particular, |G : Gp| = pd(G).

(ii) d(H) ≤ d(G) for every H ≤ G.

(iii) Gp = {gp | g ∈ G}.
(iv) If G = 〈x1, . . . , xn〉, then Gp = 〈xp1, . . . , xpn〉.
(v) The power map from Gp

i−1

/Gp
i

to Gp
i

/Gp
i+1

that sends gGp
i

to gpGp
i+1

is an epimorphism for every i ≥ 0.

Background in such groups can be found, for instance, in [6, Chapter 2]
or [12, Chapter 11].

In order to prove Lemma 2.5 we first need the following result, which
is a basic fact about finite p-groups.
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Lemma 2.4. Let G be a finite p-group and N , K normal subgroups
of G. If N ≤ KNp[N,G], then N ≤ K.

Proof: Factor out K and just note that if N is non-trivial, then Np[N,G]
is a proper subgroup of N , which is a contradiction.

Lemma 2.5. Let G be a finite p-group and w an outer commutator

word. If d(w(G))=2, then w(G)′≤w(G)p
2

. In particular, w(G) is pow-
erful.

Proof: By Theorem 1 of [3] the result is true if w is the commutator word,

so we assume w(G) ≤ γ3(G). In order to show that w(G)′ ≤ w(G)p
2

we

may assume that w(G)p
2

= 1, and by Lemma 2.4 we can also assume
[w(G)′, G] = (w(G)′)p = 1.

Since d(w(G))=2, we have |w(G) :Φ(w(G))|=p2, and so [w(G), G,G]≤
Φ(w(G)). Observe first that

[Φ(w(G)), w(G)] = [w(G)pw(G)′, w(G)] ≤ (w(G)′)p[w(G)′, w(G)] = 1,

so, in particular, Φ(w(G)) is abelian and Φ(w(G))p=(w(G)p)p(w(G)′)p=

w(G)p
2

= 1. Moreover,

[Φ(w(G)), G] = [w(G)pw(G)′, G] = [w(G)p, G][w(G)′, G]

≤ [w(G), G]p[w(G), G,w(G)].
(1)

We consider now two cases in turn: [w(G), G]≤Φ(w(G)) and [w(G), G] 6≤
Φ(w(G)).

If [w(G), G] ≤ Φ(w(G)), then by (1) we have

[Φ(w(G)), G] ≤ [w(G), G]p[w(G), G,w(G)]

≤ Φ(w(G))p[Φ(w(G)), w(G)] = 1.

Hence,

w(G)′ = [w(G), w(G)] ≤ [w(G), γ3(G)]

≤ [w(G), G,G,G] ≤ [Φ(w(G)), G] = 1,

as desired.
Suppose now [w(G), G] 6≤ Φ(w(G)). By (1), we have

[w(G), G,G,G,G] ≤ [Φ(w(G)), G,G]

≤ [[w(G), G]p[w(G), G,w(G)], G]

≤ [w(G), G,G]p[w(G), G,G,G,G,G]

≤ Φ(w(G))p[w(G), G,G,G,G,G]

= [w(G), G,G,G,G,G],
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so [w(G), G,G,G,G] = 1. In addition, the quotient group

w(G)/[w(G), G]Φ(w(G))

is cyclic. Hence,

w(G)′ = [w(G), [w(G), G]Φ(w(G))]

≤ [w(G), G,G,G,G] = 1,

and the proof is complete.

Therefore, as we will deal with 2-generator verbal subgroups, we will
always assume that γr(G) is powerful. Moreover, the next lemma, proved
in Lemma 2.2 of [7], shows that actually all the subgroups of γr(G) are
also powerful.

Lemma 2.6. Let G be a powerful p-group. If d(G) = 2, then every
subgroup H of G is also powerful.

The following result is a particular case of Lemma 3.1 of [5], where it
is proved more generally for potent p-groups.

Lemma 2.7. Let G be a powerful p-group with p ≥ 3. If N ≤ L are

two normal subgroups of G, then |N : Npi | ≤ |L : Lp
i | for all i ≥ 0. In

particular, |Lpi : Npi | ≤ |L : N |.

In order to prove Theorem A we will construct a series of subgroups
from γr(G) to 1 with the property that every element of each factor
group of two consecutive subgroups in the series can be written as a
γr-value in a suitable way. Lemma 2.10 below will then allow us to
go up in this series, proving that actually all the subgroups in the series
consist of γr-values until we reach γr(G). The key part of the proof is the
following lemma, which is a generalization to outer commutator words
of Lemma 2.1 in [1].

Lemma 2.8. Let G be a group and let w be an outer commutator
word in r variables. Let y1, . . . , yj−1, h, yj+1, . . . , yr∈G. Then there exist
h1, . . . , hr ∈ 〈h〉G such that for every g ∈ G,

w(y1, . . . , yj−1, gh, yj+1, . . . , yr)

= w(yh1
1 , . . . , y

hj−1

j−1 , g
hj , y

hj+1

j+1 , . . . , y
hr
r )w(y1, . . . , yj−1, h, yj+1, . . . , yr).

Proof: We proceed by induction on the number of variables appearing
in the outer commutator word w. If such number is 1, i.e. if w = x,
then the result is obvious. Hence, assume w = [α, β], where α and β
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are outer commutator words involving k and r− k variables with k < r,
respectively. Assume also that j > k, so that

w(y1, . . . , yj−1, gh, yj+1, . . . , yr)

= [α(y1, . . . , yk), β(yk+1, . . . , yj−1, gh, yj+1, . . . , yr)].

By induction, we have

β(yk+1, . . . , yj−1, gh, yj+1, . . . , yr)

=β(yh1

k+1, . . . , y
hj−1

j−1 , g
hj, y

hj+1

j+1 , . . . , y
hr
r )β(yk+1, . . . , yj−1, h, yj+1, . . . , yr),

where hk+1, . . . , hr ∈ 〈h〉G.

For simplicity, write z1 = β(yh1

k+1, . . . , y
hj−1

j−1 , g
hj , y

hj+1

j+1 , . . . , y
hr
r ), z2 =

β(yk+1, . . . , yj−1, h, yj+1, . . . , yr), and notice that

[α(y1, . . . , yk), z1z2] = [α(y1, . . . , yk), z2][α(y1, . . . , yk), z1]z2

= [α(y1, . . . , yk), z1]z
α(y1,...,yk)

2 [α(y1, . . . , yk), z2].

Since clearly z2 ∈ 〈h〉G, the result follows.
The case j ≤ k is similar.

The following result is an easy consequence of Lemma 2.8; it is also
proved in [19, Proposition 1.2.1].

Corollary 2.9. Let G be a group. Then, for every i = 1, . . . , n and for
every g, g1, . . . , gi−1, gi+1, . . . , gn ∈ G, h ∈ γs(G), we have

[g1, . . . , gi−1, gh, gi+1, . . . , gn]

≡ [g1, . . ., gi−1, g, gi+1, . . ., gn][g1, . . ., gi−1, h, gi+1, . . ., gn] (mod γn+s(G)).

In particular, if h ∈ G′, then

[g1, . . . , gi−1, gh, gi+1, . . . , gn]

≡ [g1, . . . , gi−1, g, gi+1, . . . , gn] (mod γn+1(G)).

Lemma 2.10. Let G be a group and w an outer commutator word on
r variables. Let N ≤ L ≤ G with N normal in G and suppose that for
some x1, . . . , xj−1, xj+1, . . . , xr ∈ G, the following two conditions hold:

(i) L ⊆
⋃
g∈GNw(y1, . . . , yj−1, g, yj+1, . . . , yr) for every yi ∈ xGi .

(ii) N ⊆ {w(y1, . . . , yj−1, g, yj+1, . . . , yr) | g ∈ G} for every yi ∈ xGi .

Then, L ⊆ {w(y1, . . . , yj−1, g, yj+1, . . . , yr) | g ∈ G} for every yi ∈ xGi .
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Proof: Take an arbitrary coset Nw(y1, . . . , yj−1, h, yj+1, . . . , yr) of N
in L, with yi ∈ xGi and h ∈ G. Take h1, . . . , hr as in Lemma 2.8 and
let z be an arbitrary element of N . By assumption, there exists u ∈ G
such that z = w(yh1

1 , . . . , y
hj−1

j−1 , u, y
hj+1

j+1 , . . . , y
hr
r ) and we may also as-

sume that u is of the form u = ghj with g ∈ G.
So, by Lemma 2.8 our arbitrary element zw(y1, . . . , yj−1, h, yj+1, . . . ,

yr) of the above coset can be written as

w(yh1
1 , . . . , y

hj−1

j−1 , g
hj , y

hj+1

j+1 , . . . , y
hr
r )w(y1, . . . , yj−1, h, yj+1, . . . , yr)

= w(y1, . . . , yj−1, gh, yj+1, . . . , yr),

as desired.

We end this section with the following three technical lemmas, which
will be basically used to introduce powers inside commutators in the
factor groups of the series of γr(G) mentioned before Lemma 2.8. In
particular, Lemma 2.13 will be especially useful to prove that these factor
groups consist only of some suitable γr-values.

Lemma 2.11. Let G be a finite p-group such that for some r ≥ 2 we
have d(γr(G)) ≤ 2 if p is odd or d(γr(G)) = 1 if p = 2. Then

[x1, . . . , xr]
pk ≡ [[x1, . . . , xj ]

pk , xj+1, . . . , xr] (mod γr(G)p
k+1

)

for every x1, . . . , xr∈G, k ≥ 0, and 2 ≤ j ≤ r. Moreover, if [x1, . . . , xi]∈
R for some normal subgroup R of G and 1 ≤ i ≤ j, then

[x1, . . . , xr]
pk ≡ [[x1, . . . , xj ]

pk , xj+1, . . . , xr] (mod [R,r−i G]p
k+1

).

Proof: The first assertion follows immediately from the second one. We
fix r, and we will prove by induction on r− j that the assertion holds for
all k. Thus, assume [x1, . . . , xi] ∈ R for some normal subgroup R of G
and some 1 ≤ i ≤ j. For r = j the result is clear, so assume j < r and

[x1, . . . , xr]
pk ≡ [[x1, . . . , xj+1]p

k

, xj+2, . . . , xr] (mod [R,r−i G]p
k+1

).

By the Hall–Petresco Identity, we have

[x1, . . . , xj+1]p
k

= [[x1, . . . , xj ]
pk , xj+1]c

(p
k

2 )
2 · · · cpk

with cn ∈ γn(〈[x1, . . . , xj+1], [x1, . . . , xj ]〉) for 2 ≤ n ≤ pk. Since j ≥ 2,
it follows that

cn ∈ [R,nj−i+1 G] ≤ [R,j−i+2(n−1)+1 G]
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for every n. Note that pk−(n−2)|
(
pk

n

)
if p is odd and pk−(n−1)|

(
pk

n

)
if p =

2. We denote with dse the smallest integer which is greater or equal to s.
So, if p is odd, we get

c
(p
k

n )
n ∈ [R,j−i+2(n−1)+1 G]dp

k−(n−2)e,

and if p = 2, we get

c
(2k

n )
n ∈ [R,j−i+2(n−1)+1 G]d2

k−(n−1)e.

Since d(γr(G)) ≤ 2, it follows by Lemma 2.5 that γr(G) is powerful.
By Lemma 2.6 we then obtain that for all m ≥ 0, [R,j−i G]p

m

is also

powerful and d([R,j−i G]p
m

) ≤ 2, so

|[R,j−i G]p
m

: [R,j−i G]p
m+1

| ≤ p2

for all m ≥ 0. This implies, in particular, that

[[R,j−i G]p
m

, G,G] ≤ [R,j−i G]p
m+1

,

for all m ≥ 0, and therefore,

[R,j−i+2(n−1)+1 G]dp
k−(n−2)e ≤ [R,j−i+1 G]p

k+1

.

Now, if p is odd, using the inductive hypothesis with k+ 1 in place of k,
we have

[[R,j−i+2(n−1)+1 G]dp
k−(n−2)e,r−j−1 G] ≤ [[R,j−i+1 G]p

k+1

],r−j−1 G]

≤ [R,r−i G]p
k+1

.

If p = 2, the result follows arguing in the same way, taking into
account the fact that, in this case, γr(G) is cyclic and hence

[[R,r−i G]2
m

, G] ≤ [R,r−i G]2
m+1

.

Lemma 2.12. Let G be a finite p-group such that for some r ≥ 2 we
have d(γr(G)) ≤ 2 if p is odd and d(γr(G)) = 1 if p = 2. Assume that
H and K are normal subgroups of G, with K generated by γj−1-values.
Then for every k ≥ 0 and for every j with 1 ≤ j ≤ r, we have

[K,Hpk,r−j G] ≤ [K,H,r−j G]p
k

.

Proof: We use induction on k. The case k = 0 is trivial, so assume k = 1
first, and suppose p ≥ 3 (if p = 2, the proof follows in the same way).
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As p divides
(
p
i

)
for 2 ≤ i < p and γ3(〈[K,H], H〉) ≤ [K,H,H,H], the

Hall–Petresco Identity yields

[K,Hp] ≤ [K,H]p[K,H,H,H].

Note that [K,H] is generated by elements of the type [x1, . . . , xj−1, xj ],
where x1, . . . , xj−1 ∈ G and xj ∈ H, so by Lemma 2.11, we have

[[K,H]p,r−j G] ≤ [K,H,r−j G]p.

On the other hand, γr(G) is powerful by Lemma 2.5. Thus, it follows
from Lemma 2.6 that

|[K,H,r−j G] : [K,H,r−j G]p| ≤ p2,

so we get

[K,H,H,H,r−j G] ≤ [[K,H,r−j G], G,G]

≤ [K,H,r−j G]p.

Hence,

[K,Hp,r−j G] ≤ [[K,H]p[K,H,H,H]],r−j G] ≤ [K,H,r−j G]p,

as desired.
Assume now k ≥ 2. Then, by induction,

[K,Hpk,r−j G] ≤ [K, (Hp)p
k−1

,r−j G]

≤ [K,Hp,r−j G]p
k−1

≤ ([K,H,r−j G]p)p
k−1

,

and since [K,H,r−j G] is powerful by Lemma 2.6, we have

([K,H,r−j G]p)p
k−1

= [K,H,r−j G]p
k

.

Lemma 2.13. Let G be a finite p-group and let N , L be normal sub-
groups of G such that γr(G)p ≤ N ≤ L ≤ γr(G) with r ≥ 2 and |L :
N |=p. Assume that there exist some j with 1 ≤ j ≤ r and x1, . . . , xj−1,
h, xj+1, . . . , xr ∈ G such that

L = 〈[x1, . . . , xj−1, h, xj+1, . . . , xr]〉N.

Let H be the normal closure of 〈h〉 in G and assume also that one of the
following conditions holds:

(i) p is odd, d(γr(G)) ≤ 2, and the subgroup

[γj(G), H,H,r−j G]

is central of exponent p modulo Np.
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(ii) p = 2, the subgroup γr(G) is cyclic, and

[x1, . . . , xj−1, h, xj+1, . . . , xr]
2

≡ [x1, . . . , xj−1, h
2, xj+1, . . . , xr] (mod N2).

Then

[x1, . . . , xj−1, h, xj+1, . . . , xr]
pk

≡ [x1, . . . , xj−1, h
pk , xj+1, . . . , xr] (mod Npk)

for every k ≥ 0. In particular,

Lp
k

= 〈[x1, . . . , xj−1, hp
k

, xj+1, . . . , xr]〉Npk .

Proof: We use induction on k. If k = 0, there is nothing to prove and,
if p = 2 and k = 1, then the result follows from the hypothesis. Thus,
assume k ≥ 1 if p is odd or k ≥ 2 if p = 2 and suppose, by induction,
that

[x1, . . . , xj−1, h, xj+1, . . . , xr]
pk−1

= [x1, . . . , xj−1, h
pk−1

, xj+1, . . . , xr]y

for some y ∈ Npk−1

.

Let u = [x1, . . . , xj−1, h
pk−1

, xj+1, . . . , xr] ∈ γr(G). Note that (uy)p =

upypc where c∈ [Npk−1

, γr(G)] ≤ [Npk−1

, G,G] ≤ (Npk−1

)p=Npk . Thus,

([x1, . . . , xj−1, h
pk−1

, xj+1, . . . , xr]y)p

≡ [x1, . . . , xj−1, h
pk−1

, xj+1, . . . , xr]
p (mod Npk).

Moreover, by Lemma 2.12, we have

[γj−1(G), Hpk−1

,r−j G]p
2

≤ [γj−1(G), H,r−j G]p
k+1

≤ γr(G)p
k+1

≤ Npk ,

so using Lemma 2.11 with R = [γj−1(G), Hpk−1

] we obtain

[x1, . . . , xj−1, h, xj+1, . . . , xr]
pk

≡ [x1, . . . , xj−1, h
pk−1

, xj+1, . . . , xr]
p

≡ [[x1, . . . , xj−1, h
pk−1

]p, xj+1, . . . , xr] (mod Npk).

Suppose now p is odd. We first prove that

(2) [γj−1(G), Hpk−1

, Hpk−1

,r−j G] is central of exponent p modulo Npk .
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If k = 1, the claim follows from the hypothesis, so we may assume
k ≥ 2. Recall that L, N , and [γj−1(G), H,H,r−j G] are powerful by
Lemmas 2.5 and 2.6. From Lemma 2.12 we then get

[γj−1(G), Hpk−1

, Hpk−1

,r−j+1 G] ≤ [γj−1(G), H,H,r−j+1 G]p
k−1

≤ (Np)p
k−1

≤ Npk

and

[γj−1(G), Hpk−1

, Hpk−1

,r−j G]p ≤ ([γj−1(G), H,H,r−j G]p
k−1

)p

≤ (Np)p
k−1

≤ Npk .

This proves (2).
By the Hall–Petresco Identity, since p ≥ 3, we get

[x1, . . . , xj−1, h
pk−1

]p = [x1, . . . , xj−1, h
pk ]zp2z3,

where zi ∈ γi(〈[x1, . . . , xj−1, Hpk−1

], Hpk−1〉) for i = 2, 3. Write

R = [γj−1(G), Hpk−1

, Hpk−1

],

so that z2 ∈ R and z3 ∈ [R,G].
On the one hand, by (2) we have

[z3, xj+1, . . . , xr] ∈ [R,r−j+1 G] ≤ Npk .

On the other hand, it follows from Lemma 2.12 with H = R and K =
G and from (2) that

[zp2 , xj+1, . . . , xr] ∈ [R,r−j G]p ≤ Npk .

Therefore,

[x1, . . . , xj−1, h, xj+1, . . . , xr]
pk

≡ [[x1, . . . , xj−1, h
pk ]zp2z3, xj+1, . . . , xr]

≡ [x1, . . . , xj−1, h
pk , xj+1, . . . , xr] (mod Npk)

as we wanted.
If p = 2, since γr(G) is cyclic, we have L = γr(G), N = γr(G)p,

and the inductive step easily follows from the Hall–Petresco Identity.
Namely,

[x1, . . . , xj−1, h
2k−1

]2 = [x1, . . . , xj−1, h
2k ]z2,

where z2 ∈ [γj−1(G), G2k−1

, G2k−1

]. By Lemma 2.12 we have

[γj−1(G), G2k−1

, G2k−1

,r−j G] ≤ γr+1(G)2
2k−2

≤ γr(G)2
k+1

= N2k ,

so the result follows as above.
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3. Proof of Theorem A when γr(G) is cyclic

Dark and Newell already proved Theorem A when γr(G) is cyclic
in [4], but we will give an alternative simpler proof in Theorem 3.4
below. In addition, we will also prove the case p = 2, which was omitted
in [4] since it was pointed out to be very technical. Moreover, even if
Theorem 3.4 can be modified so that it works for all primes, we will
prove the case in which p is odd separately in Theorem 3.3, since in this
case the proof turns out to be much shorter. First, however, we need the
following simple but very helpful lemma.

Lemma 3.1. Let N be a cyclic normal subgroup of a group G. Then
[N,G′] = 1.

Proof: SinceN is cyclic, the automorphism group Aut(N) ofN is abelian.
Hence, G/CG(N) is also abelian, which means that G′ ≤ CG(N).

We will also need the following result, which is Lemma 2.3 of [7].

Lemma 3.2. Let G be a group and let N ≤ L ≤ G, with N normal
in G. Suppose that for some x ∈ G the following two conditions hold:

(i) L/N ⊆ {N [x, g] | g ∈ G}.
(ii) N ⊆ {[x, g] | g ∈ G}.

Then L ⊆ {[x, g] | g ∈ G}.

Theorem 3.3. Let G be a finite p-group with p odd and γr(G) cyclic.
Then

γr(G) = {[g1, . . . , gr] | g1, . . . , gr ∈ G}.

Proof: Let γr(G) = 〈[x1, . . . , xr]〉 with x1, . . . , xr ∈ G. Then

γr(G)p
k

= 〈[x1, . . . , xr]p
k

〉
for every k ≥ 1. By the Hall–Petresco Identity, we have

[x1, . . . , xr]
pk = [x1, . . . , x

pk

r ]c
(p
k

2 )
2 · · · cpk

with ci ∈ γi(〈[x1, . . . , xr], xr〉). When i < pk, we have ci ∈ γr+i−1(G) ≤

γr(G)p
i−1

, and so c
(p
k

i )
i ∈ γr(G)p

k+1

since p ≥ 3. If i = pk, then cpk ∈
γr+pk−1(G) ≤ γr(G)p

pk−1 ≤ γr(G)p
k+1

. Therefore,

γr(G)p
k

= 〈[x1, . . . , xp
k

r ]〉

for every k ≥ 0. Moreover, since [x1, . . . , x
pk

r , G] ≤ γr(G)p
k+1

, we have

[x1, . . . , x
pk

r ]i ≡ [x1, . . . , x
ipk

r ] (mod γr(G)p
k+1

)

for every i ≥ 0, so the result follows from Lemma 3.2.
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Theorem 3.4. Let G be a finite 2-group with γr(G) cyclic. Then

γr(G) = {[g1, . . . , gr] | g1, . . . , gr ∈ G}.

Proof: Define C = CG(γr(G)/γr(G)4). Since γr(G) is cyclic, the quotient
group γr(G)/γr(G)4 has order 4, so that |G : C| ≤ 2. Let γr(G) =
〈[x1, . . . , xr]〉 with x1, . . . , xr ∈ G and let j be the maximum number such
that xj ∈ C. Assume, in addition, that [x1, . . . , xr] is, among all γr-values
which are generators of γr(G), the one with maximum j (observe that
j ≥ 2 since G′ = [G,C]).

For every i = 1, . . . , r consider an arbitrary element yi ∈ xGi , so that
yi = xi[xi, g] for some g ∈ G. Since γr+1(G) ≤ γr(G)2, it follows from
Corollary 2.9 that

[y1, . . . , yr] ≡ [x1, . . . , xr] (mod γr(G)2),

and since γr(G)2 = Φ(γr(G)), we have

γr(G) = 〈[y1, . . . , yr]〉.
Therefore,

γr(G)2
k

= 〈[y1, . . . , yr]2
k

〉
for every k ≥ 1. We claim that

[y1, . . . , yr]
2k ≡ [y1, . . . , y

2k

j , . . . , yr] (mod γr(G)2
k+1

)

for every yi ∈ xGi and k ≥ 1. Take k = 1 first. By Lemma 2.11 we have

[y1, . . . , yr]
2 ≡ [[y1, . . . , yj ]

2, yj+1, . . . , yr] (mod γr(G)4),

and observe that

[y1, . . . , y
2
j , . . . , yr] = [[y1, . . . , yj ]

2[y1, . . . , yj , yj ], yj+1, . . . , yr].

If
[y1, . . . , yj , yj , yj+1, . . . , yr] 6∈ γr(G)4,

then
γr+1(G) = γr(G)2 = 〈[y1, . . . , yj , yj , yj+1, . . . , yr]〉,

and so
γr(G) = 〈[y1, . . . , yj , yj , yj+1, . . . , yr−1]〉,

which contradicts the maximality of j in the choice of the gener-
ator [x1, . . . , xr].

Hence,
[y1, . . . , yj , yj , yj+1, . . . , yr] ∈ γr(G)4,

so that

[y1, . . . , yr]
2 ≡ [y1, . . . , y

2
j , . . . , yr] (mod γr(G)4).

The claim follows now from Lemma 2.13 with L = γr(G), N = γr(G)2.
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Now, we can conclude our proof. Let 2m be the order of γr(G). We
will prove by induction on m− k that

γr(G)2
k

⊆ {[g1, . . . , gr] | g1, . . . , gr ∈ G}.
The result is true when k = m, so assume k < m and

γr(G)2
k+1

⊆ {[g1, . . . , gr] | g1, . . . , gr ∈ G}.

We apply Lemma 2.10 with L = γr(G)2
k−1

and N = γr(G)2
k

. As

L = [y1, . . . , y
2k

j , . . . , yr]N ∪N ⊆
⋃
g∈G

γr(y1, . . . , yj−1, g, yj+1, . . . , yr)N

for every yi ∈ xGi , by Lemma 2.10 we get

γr(G)2
k

⊆ {[g1, . . . , gr] | g1, . . . , gr ∈ G}.
In particular, when k = 0 we obtain

γr(G) ⊆ {[g1, . . . , gr] | g1, . . . , gr ∈ G},
as we wanted.

Thus, combining Theorems 3.3 and 3.4 we get the result for all primes
when γr(G) is cyclic.

4. Preliminaries for the proof of Theorem A when
γr(G) is generated by 2 elements

We will use the following notation: if H, K are subgroups of a
group G, by U maxH K we mean that U is maximal among the proper
subgroups ofK which are normalized byH, while U maxK simply means
that U is a maximal subgroup of K.

The subgroups defined in Definitions 4.1 and 4.2 will be essential in
our proof.

Definition 4.1. Let G be a finite p-group and let U maxG γr(G) for
some r ≥ 2. We define

Dr(U) = Cγr−1(G)(G/U).

In other words, for x∈γr−1(G) we have x∈Dr(U) if and only if [x,G] ≤
U .

Definition 4.2. Let G be a finite p-group and let U maxγr−1(G) γr(G)
for some r ≥ 2. We define

Er(U) = CG(γr−1(G)/U).

In other words, x ∈ Er(U) if and only if [x, γr−1(G)] ≤ U .
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Remark 4.3. The subset E(U) may not be a subgroup of G if U is not
normal in G.

The significance of these subgroups becomes clear in the following
lemma.

Lemma 4.4. Let G be a finite p-group and let r ≥ 2. Then, for x ∈
γr−1(G), we have γr(G) = [x,G] if and only if

x 6∈ ∪{Dr(U) | U maxG γr(G)}.

Similarly, γr(G) = [γr−1(G), y] if and only if

y 6∈ ∪{Er(U) | U maxγr−1(G) γr(G)}.

Proof: The proof is essentially the same as the one of Lemma 2.9 of [7].
Let x ∈ γr−1(G). Since [x,G] is a normal subgroup of G, we have
[x,G] < γr(G) if and only if x ∈ Dr(U) for some U maxG γr(G), and
the first assertion follows. Similarly, since [γr−1(G), y] is normalized
by γr−1(G), we have [γr−1(G), y] < γr(G) if and only if y ∈ Er(U)
for some U maxγr−1(G) γr(G).

Lemma 4.5. Let G be a finite p-group with d(γr(G)) = 2 for some r ≥ 2.
Let U, V,W maxG γr(G) with V 6= W and R,S, T maxγr−1(G) γr(G) with
S 6= T . Then

(i) Dr(U) 6= γr−1(G) and Er(R) 6= G.

(ii) Dr(V ) ∩Dr(W ) ≤ Dr(U) and Er(S) ∩ Er(T ) ⊆ Er(R).

(iii) If U 6= R, then [Dr(U), Er(R)] ≤ γr(G)p.

Proof: (i) is obvious, since Dr(U) = γr−1(G) implies that γr(G) ≤ U
and similarly Er(R) = G implies that γr(G) ≤ R, and in both cases we
have a contradiction.

We now prove (ii). As d(γr(G)) = 2, the subgroup γr(G) is powerful
by Lemma 2.5, so γr(G)p = Φ(γr(G)). Hence, V ∩W ≤ γr(G)p ≤ U
and S ∩ T ≤ γr(G)p ≤ R. Then, the result follows from the fact that
x ∈ Dr(V )∩Dr(W ) if and only if [x,G] ≤ V ∩W and y ∈ Er(S)∩Er(T )
if and only if [y, γr−1(G)] ≤ S ∩ T .

(iii) is true because [Dr(U), Er(R)] ≤ U ∩R ≤ γr(G)p.

The following subgroup plays a fundamental role in [8], [7], and [5],
and so does in our proof.

Definition 4.6. Let G be a finite p-group. We define

Cr(G) = CG(γr(G)/γr(G)p).
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Lemma 4.7. Let G be a finite p-group with d(γr(G)) = 2 for some r ≥ 2.
Then

(i) |G : Cr(G)| ≤ p.
(ii) We have G = Cr(G) if and only if γr+1(G) ≤ γr(G)p. In this case,

all subgroups U such that γr(G)p < U < γr(G) are normal in G.
Otherwise, Cr(G) 6= G and there is only one normal subgroup U
of G such that γr(G)p < U < γr(G), namely U = γr+1(G)γr(G)p.

(iii) We have [γr(G)p
k

, Cr(G)] ≤ γr(G)p
k+1

for all k ≥ 0.

Proof: By Lemma 2.5 the subgroup γr(G) is powerful, so γr(G)/γr(G)p

is an elementary abelian p-group of rank 2. Now, (i) follows from the
fact that the quotient group G/Cr(G) embeds in a Sylow p-subgroup of
the automorphism group of γr(G)/γr(G)p.

To prove (ii), we may assume that γr(G)p = 1. There are precisely
p + 1 non-trivial proper subgroups of γr(G), all cyclic of order p, and
each of them is normal in G if and only if it is central. In addition, all
such subgroups are central if and only G = Cr(G), which is equivalent
to γr+1(G) = 1. If there exists a non central subgroup U of G with
1 6= U < γr(G), then the conjugacy class of U has size p, Cr(G) 6= G,
and γr+1(G) 6= 1 is the only non-trivial normal subgroup of G properly
contained in γr(G). This proves (ii).

The proof of (iii) is an easy induction on k. The base of the induction
is given by the definition of Cr(G), and if k > 0, then

[γr(G)p
k

, Cr(G)] ≤ [γr(G)p
k−1

, Cr(G)]p[γr(G)p
k−1

, Cr(G), γr(G)p
k−1

]

≤ γr(G)p
k+1

[γr(G)p
k

, γr(G)] ≤ γr(G)p
k+1

by using the inductive hypothesis and the fact that γr(G) is powerful.

In the case r = 2, i.e. when we deal with the common commutator
word, we will also need the next lemma, which is just Lemma 2.9 (i)
of [7].

Lemma 4.8. If G is a non-abelian finite p-group with d(G′) ≤ 2, then
for every U maxGG

′, we have D2(U) ≤ C2(G).

5. Proof of Theorem A when Cr(G) = G

In order to apply Lemma 2.13 we will first find in Lemma 5.1 suitable
generators for the verbal subgroup γr(G). Then, as mentioned before,
we will conclude by applying Lemma 2.10.
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Lemma 5.1. Let G be a finite p-group with d(γr(G)) = 2 for some r ≥
2. If Cr(G) = G, then there exist an integer j with 1 ≤ j ≤ r and
x1, . . . , xj−1, xj+1, . . . , xr ∈ G such that

γr(G) = 〈[y1, . . . , yj−1, g, yj+1, . . . , yr] | g ∈ G〉

for every yi ∈ xGi .

Proof: We may assume that Φ(γr(G)) = 1, so using Lemma 4.7 (ii)
we also have γr+1(G) ≤ γr(G)p = 1. Notice that it suffices to find an
integer j and x1, . . . , xj−1, xj+1, . . . , xr ∈ G such that

γr(G) = 〈[x1, . . . , xj−1, g, xj+1, . . . , xr] | g ∈ G〉,

since if yi ∈ xGi , then yi = xihi for some hi ∈ G′, so it follows from Corol-
lary 2.9 that [y1, . . . , yj−1, g, yj+1, . . . , yr]=[x1, . . . , xj−1, g, xj+1, . . . , xr].

We will proceed by induction on r. If r = 2, then the result is true
by the aforementioned Theorem A of [7].

Now, if there exists x ∈ Gγr−1 such that γr(G) = [x,G], then we are
done. Hence, suppose [x,G] < γr(G) for every x ∈ Gγr−1 . Observe that
all subgroups U such that γr(G)p ≤ U ≤ γr(G) are normal in G by
Lemma 4.7 (ii), so we have

U maxG γr(G) for every U max γr(G).

If

D =
∏

V max γr(G)

Dr(V ) < γr−1(G),

then we could choose a γr−1-value not belonging to D, which contradicts
Lemma 4.4. Therefore, assume∏

V max γr(G)

Dr(V ) = γr−1(G).

Thus, by (i) and (ii) of Lemma 4.5, there exists U max γr(G) such
that Dr(U) properly contains ∩{Dr(V ) | V max γr(G)}, and therefore
[Dr(U), G] = U . Now, by Lemma 4.5 (iii), we have [Dr(U), Er(V )] = 1
for all V 6= U , and so ∏

V max γr(G)
U 6=V

Er(V ) 6= G.
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Hence, as G can not be the union of two proper subgroups, we can choose

xr ∈ G \
(
Er(U) ∪

∏
V max γr(G)

U 6=V

Er(V )

)
,

and observe that by Lemma 4.4 we have

γr(G) = [γr−1(G), xr].

Define now Cxr = Cγr−1(G)(xr) and notice that Cxr is normal in G since

[Cxr , G, xr] ≤ [γr−1(G), G, xr] ≤ γr+1(G) = 1.

Thus, we consider the quotient groupG/Cxr . Since γr+1(G) = 1, the map

η : γr−1(G) −→ γr(G)

g 7−→ [g, xr]

is a group epimorphism whose kernel is Cxr , so

|γr−1(G/Cxr )| = p2.

Furthermore, since γr+1(G) = 1, we have Cr−1(G/Cxr ) = G/Cxr . By
inductive hypothesis, there exist an integer j with 1 ≤ j ≤ r − 1 and
x1, . . . , xj−1, xj+1, . . . , xr−1 ∈ G such that

γr−1(G) = 〈[x1, . . . , xj−1, g, xj+1, . . . , xr−1] | g ∈ G〉Cxr .
Finally,

γr(G) = [γr−1(G), xr]

= [〈[x1, . . . , xj−1, g, xj+1, . . . , xr−1] | g ∈ G〉Cxr , xr]
= 〈[x1, . . . , xj−1, g, xj+1, . . . , xr−1, xr] | g ∈ G〉,

and this concludes the proof.

Theorem 5.2. Let G be a finite p-group with p odd and d(γr(G)) = 2. If
Cr(G) = G, then there exist an integer j with 1 ≤ j ≤ r and x1, . . . , xj−1,
xj+1, . . . , xr ∈ G such that

γr(G) = {[x1, . . . , xj−1, g, xj+1, . . . , xr] | g ∈ G}.

Proof: By Lemma 5.1, there exist an integer j with 1 ≤ j ≤ r and
x1, . . . , xj−1, xj+1, . . . , xr ∈ G such that

γr(G) = 〈[y1, . . . , yj−1, g, yj+1, . . . , yr] | g ∈ G〉
for every yi ∈ xGi . Choose arbitrary yi ∈ xGi for all i. We have

γr(G) = 〈[y1, . . . , yj−1, g1, yj+1, . . . , yr], [y1, . . . , yj−1, g2, yj+1, . . . , yr]〉
for some g1, g2 ∈ G. Let

U = 〈[y1, . . . , yj−1, g2, yj+1, . . . , yr]〉γr(G)p,
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and notice that it is normal inG since Cr(G)=G. Observe that γr+1(G)≤
γr(G)p, and γr(G)p is central of exponent p modulo γr(G)p

2

by (iii) of
Lemma 4.7. Therefore, we apply Lemma 2.13 to both quotients

γr(G)/U and U/γr(G)p

and we get

γr(G)p
k

= 〈[y1, . . . , yj−1, gp
k

1 , yj+1, . . . , yr]〉Up
k

and

Up
k

= 〈[y1, . . . , yj−1, gp
k

2 , yj+1, . . . , yr]〉γr(G)p
k+1

for every k ≥ 0. Furthermore, as γr+1(G) ≤ γr(G)p, it follows from
Corollary 2.9 that

[y1, . . . , yj−1, g1, yj+1, . . . , yr]
s≡ [y1, . . . , yj−1, g

s
1, yj+1, . . . , yr] (mod U)

and

[y1, . . . , yj−1, g2, yj+1, . . . , yr]
s

≡ [y1, . . . , yj−1, g
s
2, yj+1, . . . , yr] (mod γr(G)p)

for each integer s. Thus, using Lemma 2.13 and the aforementioned
property (v) of powerful p-groups it can be easily proved that

[y1, . . . , yj−1, g
pk

1 , yj+1, . . . , yr]
s

≡ [y1, . . . , yj−1, g1, yj+1, . . . , yr]
spk

≡ ([y1, . . . , yj−1, g
s
1, yj+1, . . . , yr]u)p

k

≡ [y1, . . . , yj−1, g
spk

1 , yj+1, . . . , yr] (mod Up
k

),

where u ∈ U , and similarly

[y1, . . . , yj−1, g
pk

2 , yj+1, . . . , yr]
s

≡ [y1, . . . , yj−1, g
spk

2 , yj+1, . . . , yr] (mod γr(G)p
k+1

).

Hence, for each k ≥ 0 we have

γr(G)p
k

⊆
⋃
g∈G

γr(y1, . . . , yj−1, g, yj+1, . . . , yr)U
pk

for every yi ∈ xGi , and similarly

Up
k

⊆
⋃
g∈G

γr(y1, . . . , yj−1, g, yj+1, . . . , yr)γr(G)p
k+1

for every yi ∈ xGi .
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The result now follows by repeatedly applying Lemma 2.10 to the
subgroups of the series

1 = γr(G)p
s

≤ Up
s−1

≤ γr(G)p
s−1

≤ · · · ≤ γr(G)p
i

≤ Up
i−1

≤ · · · ≤ γr(G),

where ps is the exponent of γr(G).

6. Proof of Theorem A when Cr(G) 6= G

To end the proof of Theorem A, we need a further technical definition.

Definition 6.1. Let G be a finite p-group and let r ≥ 2. We define
Crr (G) = γr(G)p and

Cri (G) = Cγi(G)(G/C
r
i+1(G))

for all 2 ≤ i ≤ r − 1.

As in Section 5, we start finding suitable generators for γr(G).

Lemma 6.2. Let G be a finite p-group with d(γr(G)) = 2 for some r ≥ 2
and Cr(G) 6= G. Let U = γr+1(G)γr(G)p. Then, there exist an integer j
with 2 ≤ j ≤ r, x1, . . . , xj−1 ∈ G, and c ∈ Cr(G) such that

γr(G) = 〈[y1, . . . , yj−1, c, gj+1, . . . , gr]〉U
for every yk∈xGk with k = 1, . . . , j−1 and every gj+1, . . . , gr ∈ G\Cr(G).
Moreover, [γi(G), Cr(G)] ≤ Cri (G) for every j ≤ i ≤ r.

Proof: We proceed by induction on r. Suppose first r = 2 and take an
arbitrary x ∈ G\C2(G). Since C2(G) is maximal in G by Lemma 4.7 (i),
we have G = 〈x〉C2(G). Also, as D2(U) ≤ C2(G) by Lemma 4.8, we have
x 6∈ D2(U). Moreover, by Lemma 4.7 (ii), U is the unique subgroup such
that U maxG γr(G), so by Lemma 4.4 we have G = [x,G′]. Thus we get

G′ = [x,G] = [x, 〈x〉C2(G)] = [x,C2(G)].

In addition, [G′, C2(G)] ≤ (G′)p = C2
2 (G), as desired.

Take then r ≥ 3 and write C = Cr(G) for simplicity. We may assume
γr(G)p = Crr (G) = 1. Suppose first there exist x1, . . . , xr−1 ∈ G such
that γr(G) = [x1, . . . , xr−1, C]. Since [γr(G), C] = 1 and since xgi =
xi[xi, g] for every g ∈ G, it follows from Corollary 2.9 that

γr(G) = [y1, . . . , yr−1, C]

for all yi ∈ xGi . Hence, we may assume there is no such an element. In
other words, if x ∈ Gγr−1

, then [x,C] 6= γr(G). Note, however, that [x,C]
is normal in G since, as above, [x,C]g = [xg, C] = [x,C]. Since U is the
only non-trivial normal subgroup of G properly contained in γr(G), we
get [x,C] ≤ U for every γr−1-value x. Since γr−1(G) is generated by all
γr−1-values, we have [γr−1(G), C] ≤ U . This, in particular, implies that
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C ≤ Er(U), and since Er(U) 6= G by Lemma 4.5, we have C = Er(U).
Note that we have V maxγr−1(G) γr(G) for every V max γr(G) since

[γr(G), γr−1(G)] ≤ [γr(G), G′ ≤ [γr(G), G,G] = 1.

On the other hand, U = γr+1(G), so for every V max γr(G) with V 6= U
we have [γr(G), Er(V )] ≤ U ∩ V = 1, and then Er(V ) ≤ C. Therefore,

∪{Er(V ) | V max γr(G)} ⊆ C
and then, by Lemma 4.4, we get

γr(G) = [γr−1(G), g]

for every g ∈ G \ C.
As [γr(G), γr−1(G)] = 1, the map

ηg : γr−1(G) −→ γr(G)

x 7−→ [x, g]

is a group epimorphism for every g ∈ G \C whose kernel is Cγr−1(G)(g).
Choose an arbitrary g ∈ G \ C, write Cg = Cγr−1(G)(g) for simplicity,
and note that

[Cg, G] = [Cg, 〈g〉C] = [Cg, C] ≤ [γr−1(G), C] ≤ U ≤ Cg,
where the last equality holds since U≤Z(G). Thus, the subgroups Cg are
all normal inG, and we can consider the groupsG/Cg. Now, γr−1(G/Cg)=
γr−1(G)/Cg is isomorphic to γr(G), so it has order p2 and exponent p.
In addition γr(G) 6≤ Cg since otherwise [γr(G), g] = 1, which contradicts
the fact that g 6∈ C. Thus,

G/Cg 6= Cr−1(G/Cg).

Moreover, since [γr−1(G), C] ≤ U ≤ Cg, it follows that

Cr−1(G/Cg) = C/Cg

for all g ∈ G\C. By Lemma 4.7 (ii), there is only one normal subgroup R
of G with Cg < R < γr−1(G), so R = Cgγr(G).

We apply now the inductive hypothesis to all groups G/Cg. It follows
that for each g ∈ G \ C, there exist jg ≥ 1, x1,g, . . . , xjg−1,g ∈ G, and
cg ∈ C such that

γr−1(G) = 〈[y1,g, . . . , yjg−1,g, cg, gjg+1, . . . , gr−1]〉Cgγr(G)

for every yi,g ∈ xGi,g, i = 1, . . . , jg − 1, and every gjg+1, . . . , gr−1 ∈ G \C.
Moreover, if we define

Ci,g/Cg = Cr−1i (G/Cg),

then we have [γi(G), C] ≤ Ci,g for all jg ≤ i ≤ r − 1.
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Define now

U∗ = γr(G)
∏

g∈G\C

Cg,

which is, of course, normal in G.
We claim that U∗ = Cgγr(G) for all g ∈ G \ C. For that purpose,

fix g ∈ G \ C and take h ∈ G \ C arbitrary. Then CgCh is normal in G,
so either CgCh = γr−1(G) or Ch ≤ Cgγr(G). In the first case we would
have

γr(G) = [γr−1(G), h] = [ChCg, h] = [Cg, h] ≤ Cg,
which is a contradiction since [γr(G), g] 6= 1. Hence, Ch ≤ Cgγr(G), and
so Cgγr(G) = ChCgγr(G). Since this holds for all h ∈ G \ C, it follows
that Cgγr(G) = U∗, and the claim is proved.

Take now j = max{jg | g ∈ G\C}. Then, there exist x1, . . . , xj−1 ∈ G
and c ∈ C such that

γr−1(G) = 〈[y1, . . . , yj−1, c, gj+1, . . . , gr−1]〉U∗

for every yi ∈ xGi , i = 1, . . . , j − 1, and every gj+1, . . . , gr−1 ∈ G \ C.
Moreover, because of the choice of j, we have

[γi(G), C] ≤
⋂

g∈G\C

Ci,g

for all j ≤ i ≤ r − 1. Let us prove that⋂
g∈G\C

Ci,g ≤ Cri (G) for every i such that j ≤ i ≤ r − 1.

We proceed by induction on r − i. If r − i = 1, that is, if i = r − 1,
then Cr−1,g = Cg = Cγr−1(G)(g), and since G = 〈G \ C〉, it follows that⋂

g∈G\C

Cg = Cγr−1(G)(G) = Crr−1(G).

Assume now i ≤ r − 2. Then[ ⋂
g∈G\C

Ci,g, G

]
≤

⋂
g∈G\C

Ci+1,g ≤ Cri+1(G),

by the inductive hypothesis, and so⋂
g∈G\C

Ci,g ≤ Cri (G)

as claimed.
Since [γr(G), C] = 1 = Crr (G), we have [γi(G), C] ≤ Cri (G) for every i

such that j ≤ i ≤ r.
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Finally, take gr ∈ G \ C arbitrary. Observe that

[U∗, gr] = [Cgrγr(G), gr] = [γr(G), gr] = U,

where the last equality holds since 1 6= [γr(G), gr] ≤ γr+1(G). Hence,

γr(G) = [γr−1(G), gr]

= [〈[y1, . . . , yj−1, c, gj+1, . . . , gr−1]〉U∗, gr]
= [〈[y1, . . . , yj−1, c, gj+1, . . . , gr−1]〉, gr]U
= 〈[y1, . . . , yj−1, c, gj+1, . . . , gr]〉U,

and the proof is complete.

Theorem 6.3. Let G be a finite p-group with p odd and d(γr(G)) = 2 for
some r ≥ 2. If Cr(G) 6= G, then there exist an integer j with 1 ≤ j ≤ r
and x1, . . . , xj−1, xj+1, . . . , xr such that

γr(G) = {[x1, . . . , xj−1, c, xj+1, . . . , xr] | c ∈ Cr(G)}.

Proof: Let U = γr+1(G)γr(G)p and write C = Cr(G) for simplicity. By
Lemma 6.2, there exist an integer j with 1 ≤ j ≤ r and x1, . . . , xj−1 ∈ G,
c ∈ C, such that

γr(G) = 〈[y1, . . . , yj−1, c, gj+1, . . . , gr]〉U
for every yi ∈ xGi , i = 1, . . . , j−1, and every gj+1, . . . , gr ∈ G\C. More-
over, [γi(G), C] ≤ Cri (G) for every j ≤ i ≤ r.

Write x = [y1, . . . , yj−1]. It follows from the Hall–Witt Identity and
standard commutator calculus that

[x, c, gj+1] = [c, gj+1, x]−1[gj+1, x, c]
−1z

for some z ∈ γj+2(G). On the one hand, we have

[z, gj+2, . . . , gr] ∈ γr+1(G) ≤ U.
On the other hand,

[gj+1, x, c] ∈ [γj(G), C] ≤ Crj (G) ∩ γj+1(G),

and since [Cri (G), G] ≤ Cri+1(G) for every i ≤ r − 1, we have

[Crj (G) ∩ γj+1(G), gj+2, . . . , gr] ≤ Crr−1(G) ∩ γr(G) ≤ U,
where the last inequality holds since Crr−1(G)∩γr(G) is normal in G but
γr(G) 6≤ Crr−1(G). Thus,

[x, c, gj+1, . . . , gr] ≡ [x, [c, gj+1], gj+2, . . . , gr] (mod U),

so, in particular,

γr(G) = 〈[x, [c, gj+1], gj+2, . . . , gr]〉U.
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Take now gr+1 ∈ G \ C arbitrary. Since, clearly, we have [U, gr+1] ≤
γr(G)p, it follows that

U = 〈[x, [c, gj+1], gj+2, . . . , gr+1]〉γr(G)p.

Now observe that, on the one hand, we have

[γj−1(G), C, C,r−j G] ≤ [γj(G), C,r−j G]

≤ [Crj (G),r−j G]

≤ Crr (G) = γr(G)p,

which is central of exponent p modulo Up and, on the other hand, we
have

[γj−1(G), G′, G′,r−j G] ≤ γr+3(G) ≤ Up,
which is central of exponent p modulo γr(G)p

2

. Therefore, we can apply
Lemma 2.13 to both quotients

γr(G)/U and U/γr(G)p

and we conclude in the same way as in the proof of Theorem 5.2.

7. Proof of Theorem B

Now, we prove Theorem B using a similar idea as in Theorem B of [7]
and Theorem A′ and Theorem B′ of [5].

Proof of Theorem B: We first claim that there exists 1 ≤ j ≤ r such
that for every N Eo G there exist gN,1, . . . , gN,j−1, gN,j+1, . . . , gN,r ∈ G
such that

γr(G)N/N = {[gN,1, . . . , gN,j−1, g, gN,j+1, . . . , gN,r]N | g ∈ G}.
For every N Eo G, write jN for the smallest integer such that there exist
gN,1, . . . , gN,jN−1, gN,jN+1, . . . , gN,r ∈ G such that

γr(G)N/N = {[gN,1, . . . , gN,jN−1, g, gN,jN+1, . . . , gN,r]N | g ∈ G}.
Note that the existence of jN is guaranteed by Theorem A.

Let M be an open normal subgroup of G for which jM is maximal in
the set {jN | N Eo G}. We will prove that j = jM has the required prop-
erty. Indeed, take N Eo G arbitrary and consider the intersection N∩M ,
which is also open and normal in G. Now, as N ∩M ≤ M , we have
jM ≤ jN∩M and, by maximality, it follows that jM = jN∩M . Again,
since N ∩M ≤ N , we have

γr(G)N/N = {[gN,1, . . . , gN,jM−1, g, gN,jM+1, . . . , gN,r]N | g ∈ G},
and the claim is proved.
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Now, for every N Eo G, write

XN =
{

(g1, . . . , gj−1, gj+1, . . . , gr) ∈ G×
r−1· · · ×G |

γr(G)N/N = {[g1, . . . , gj−1, g, gj+1, . . . , gr]N | g ∈ G}
}
.

Clearly, the family {XN}NEoG has the finite intersection property, and

since G× r−1· · · ×G is compact,⋂
NEoG

XN 6= ∅.

Thus, if (g1, . . . , gj−1, gj+1, gr) belongs to this intersection, write

K(G) = {[g1, . . . , gj−1, g, gj+1, . . . , gr] | g ∈ G},
so that we have

γr(G)N/N = K(G)N/N

for all N Eo G.
Now, note that K(G) is closed in G, being the image of a continuous

function from G to G. Thus,

γr(G) =
⋂

NEoG

γr(G)N =
⋂

NEoG

K(G)N = ClG(K(G)) = K(G)

and the proof is complete.
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