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ABSTRACT
Background  Rare protein-truncating variants (PTVs) 
in partner and localiser of BRCA2 (PALB2) confer 
increased risk to breast cancer, but relatively few studies 
have reported the prevalence in South-East Asian 
populations. Here, we describe the prevalence of rare 
variants in PALB2 in a population-based study of 7840 
breast cancer cases and 7928 healthy Chinese, Malay 
and Indian women from Malaysia and Singapore, and 
describe the functional impact of germline missense 
variants identified in this population.
Methods  Mutation testing was performed on germline 
DNA (n=15 768) using targeted sequencing panels. The 
functional impact of missense variants was tested in 
mouse embryonic stem cell based functional assays.
Results  PTVs in PALB2 were found in 0.73% of breast 
cancer patients and 0.14% of healthy individuals 
(OR=5.44; 95% CI 2.85 to 10.39, p<0.0001). In 
contrast, rare missense variants in PALB2 were not 
associated with increased risk of breast cancer. Whereas 
PTVs were associated with later stage of presentation 
and higher-grade tumours, no significant association was 
observed with missense variants in PALB2. However, two 
novel rare missense variants (p.L1027R and p.G1043V) 
produced unstable proteins and resulted in a decrease 
in homologous recombination-mediated repair of DNA 
double-strand breaks.
Conclusion  Despite genetic and lifestyle differences 
between Asian and other populations, the population 
prevalence of PALB2 PTVs and associated relative risk of 
breast cancer, are similar to those reported in European 
populations.

INTRODUCTION
PALB2 (partner and localiser of BRCA2) plays a 
vital role in maintenance of genome integrity and 
repair of DNA double-strand breaks via a homol-
ogous recombination (HR) pathway, by localising 
BRCA2 to the sites of DNA damage and serving as 
a linker between BRCA1 and BRCA2.1 2 Bi-allelic 

(homozygous) germline truncating mutations in 
PALB2 result in Fanconi anaemia,3 whereas mono-
allelic (heterozygous) truncating mutations predis-
pose individuals to breast, ovarian and pancreatic 
cancers.4 5

Protein-truncating variants (PTVs) in PALB2 have 
been shown to be associated with fivefold to seven-
fold increase in risk to breast cancer in women of 
European and Asian descent.5–8 However, less is 
known about missense variants, especially variants 
found in understudied populations. Notably, unlike 
BRCA1 and BRCA2 where there have been exten-
sive efforts to characterise the functional impact 
of missense variants, including using saturation 
genome editing approaches, multiplex homology 
directed repair assays and validated transcriptional 
assays,9–12 there have been fewer reports on the 
functional characterisation of missense variants in 
PALB2.13–17

In this study, we report the prevalence of rare 
variants in PALB2 in 7840 patients with breast 
cancer and 7928 healthy controls from Malaysia 
and Singapore, and contrast the clinicopatholog-
ical features of PALB2 variant carriers with those 
of BRCA1 and BRCA2 carriers, and non-carriers. 
We report the functional characterisation of rare 
missense variants by performing functional analyses 
in mouse embryonic stem (mES) cells.

METHODS
Study subjects
The study participants were women recruited in the 
Malaysian Breast Cancer Genetic Study (MyBrCa) 
18 and the Singapore Breast Cancer Cohort Study 
(SGBCC). Cases were recruited from two hospitals 
in Malaysia (recruitment started in 2002 in the first 
hospital and extended to the second hospital in 
2012) and six hospitals in Singapore (recruitment 
started in 2010 in the first hospital and extended 
to additional five hospitals by 2016). Prevalent and 
incident breast cancer cases, both invasive and non-
invasive, were included.
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In MyBrCa, controls were healthy women between ages 40 
years and 74 years, with no personal history of breast cancer, 
recruited through a subsidised opportunistic mammography 
screening programme that was initiated in the same two hospi-
tals where cases were recruited. The Singaporean controls were 
unaffected individuals from the Singapore Population Health 
Studies (National University Health System, 2016) and the 
Singapore Multi-Ethnic Cohort,19 and individually matched by 
ethnicity and age ±5 years to the SGBCC cases.

Clinical data were retrieved from hospital records: Her2 
scores of 0 and 1+ were considered ‘negative’, those with 2+ 
by immunohistochemistry (IHC) and amplification by fluores-
cence in situ hybridisation/silver in situ hybridisation or 3+ by 
IHC alone were considered ‘positive’. In MyBrCa, family history 
of all cancers was collected and in SGBCC, only information 
on first degree family history of breast or ovarian cancer was 
collected.

Participants donated a blood or saliva sample that was 
processed and stored, completed a questionnaire that included 
information on lifestyle risk factors for breast cancer, and 
provided written informed consent.

Sequencing and bioinformatics analysis
Germline DNA of cases and controls were sequenced in two 
batches, using targeted sequencing panels that target the coding 
regions and exon-intron boundaries of known and suspected 
breast cancer susceptibility genes, respectively, which included 
PALB2, BRCA1 and BRCA2 genes.7 8 20 Target enrichment were 
performed using the Fluidgm Access Array system (n=5090) 
or the Fluidgm Juno system (n=11 342) and sequenced on 
Illumina HiSeq 2500 or HiSeq 4000. Specifically, the 11 342 
samples analysed on the Fluidgm Juno system were described in 
Dorling et al.8 As PALB2 is a relatively rare breast cancer gene, 
we have combined both analyses in this paper and further char-
acterised the role of missense variants in this population, which 
has previously not been reported. Library preparations were 
performed according to manufacturer’s protocols as described 
previously.7 8 20 In total, germline DNA from 8205 breast cancer 
patients and 8227 controls were analysed by panel sequencing. 
After excluding samples that failed sequencing quality control, 
7840 cases and 7928 controls were included for subsequent 
analyses (online supplemental table 1).

Analysis of sequencing data was performed as described 
previously.8 20 Briefly, raw sequence data were demultiplexed 
and aligned to the human reference genome, hg19 using BWA-
MEM.21 22 Variant calling was performed using VarDict.23 Anal-
yses were restricted to putative PTVs and rare missense variants. 
All frameshift, stop-gain (nonsense) and consensus splice site 
variants were considered as PTVs unless reported otherwise by 
the Evidence-based Network for the Interpretation of Germline 
Mutant Alleles consortium.24 25 Rare missense variants were 
defined as having a minor allelic frequency <0.1% present in 
gnomAD. All PTVs and rare missense variants annotated by 
the align-GVGD (http://​agvgd.​iarc.​fr) in silico tool as likely 
pathogenic (C15–C65) were validated by Sanger sequencing. 
NM_024675.3 was used as the reference sequence for PALB2 
variants.

Functional analysis of rare germline PALB2 missense variants
Functional analysis on PALB2 missense variants was performed 
using several methods as previously described.15 First, the HR 
reporter assay was performed in Trp53KO/Palb2KO mES cells 
which were complemented with human PALB2 variants (or an 

empty vector, Ev). Two days after transfection of an I-Scel and 
mCherry coexpression vector,26 GFP expression was measured 
using fluorescence-activated cell sorting (FACS). A proliferation-
based PARP inhibitor (PARPi; Selleckchem S1060) sensitivity 
assay was performed using Trp53KO/Palb2KO mES cells for five 
PALB2 missense variants that exhibited the largest defect in 
DR-GFP assays. Cells were exposed to various concentrations of 
PARPi for 2 days. Thereafter, cells were incubated for one more 
day in drug-free media, after which viability was measured using 
FACS (using only forward scatter and side scatter). Expression of 
all PALB2 variants was examined by western blot analysis. Two 
different primary rabbit polyclonal antibodies directed against 
the N-terminus of human PALB2 (1:1000, kindly provided by 
Cell Signalling Technology prior to commercialisation) were 
used. Wild type human PALB2 and Ev were used as controls on 
the blot while tubulin (Sigma, T6199 clone DM1A) was used as 
loading control. Lastly, RT-qPCR was performed for a selected 
panel of PALB2 variants. Briefly, RNA was isolated using Trizol 
(ThermoFisher, 15596026) and DNAse (Promega, M6101). 
Subsequently, reverse transcriptase (ThermoFisher, 12328019) 
reactions were performed as previously described.15 GoTaq qPCR 
Master mix (Promega, A6002) and the following qPCR primers 
directed at the human PALB2 cDNA or the mouse control gene 
Pim1 were used; human PALB2-Fw— 5’-​GATT​ACAA​GGAT​
GACG​ACGA​TAAG​ATGGAC-3’, human PALB2-Rv—5’-​CCTT​
TTCA​AGAA​TGCT​AATT​TCTC​CTTT​AACT​TTTCC-3’, mouse 
Pim1-exon4-Fw—5’-​GCGG​CGAA​ATCA​AACT​CATCGAC-3’ 
and mouse Pim1-exon5-Rv—5’-​GTAG​CGAT​GGTA​GCGA​
ATCC​ACTCTGG-3’.

For protein stability and degradation assays, cells were treated 
with 100 µg/mL cycloheximide (Sigma, C7698-1G) for up to 
3 hours, or 0.5 or 3 µM MG-132 (Selleckchem, S2619) for 24 
hours, after which western blot samples were collected and anal-
ysed. Quantification of EGFP-PALB2 subcellular localisation was 
based on transient expression in HeLa cells that were fixed using 
4% formaldehyde and permeabilised using Triton X-100. Cells 
were immunostained with anti-GFP and DAPI prior to immu-
nofluorescence analysis and quantification (based on ~25 cells 
per condition per replicate). All the aforementioned experiments 
were conducted in duplicate and average values and SEM were 
calculated to generate the respective plots.

Statistical analysis
Multivariable logistic regression was used to determine the asso-
ciation of pathogenic and missense variants with breast cancer 
risk, adjusting for age, batch of germline panel sequencing and 
country. Rare missense variants were further subcategorised 
based on domain and functional prediction scores using five 
in silico tools (align-GVGD, REVEL, VEST4, ClinPred and 
CADD). The clinicopathological characteristics of mutation 
carriers and non-carriers were compared using χ2 test or Fisher’s 
exact test, where appropriate, for categorical variables and t-test 
for continuous variables. Statistical analyses were performed 
using R V.3.6.1.

RESULTS
Germline PTVs and rare missense variants
A total of 57 (0.73%) cases and 11 (0.14%) healthy controls 
carried a pathogenic, protein-truncating, PALB2 variant 
(OR=5.44, p<0.001; figure  1, table  1A). The estimated OR 
was, however, lower than for BRCA1 (OR=10.68, p<0.001) 
or BRCA2 (OR=15.61, p<0.001) PTVs. PTVs were distributed 
along the entire coding region of the gene (table 1A). Of the 34 
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unique PALB2 PTVs identified, five were identified in at least 
four individuals in our study: p.E3X, c. 211+1G>A, p.K346fs, 
p.V870X and p.E990X. These represented 44% of all PALB2 
PTV carriers. Notably, 24% (8/34) of the variants have not 
been reported in any of the public databases including ClinVar, 
gnomAD and LOVD (table 1A).

We identified 422 carriers of PALB2 rare missense variants in 
cases and 454 carriers in healthy women (OR=0.96, p=0.602) 
(figure  1). No associations were observed when analysis was 
restricted to variants with higher scores using any of the five 
in silico tools tested (figure 1). There was also no evidence of 
an association with risk for variants specifically in the WD40 
domain. These results contrast with those for BRCA1, where there 
is an overall association with breast cancer risk for rare missense 
variants (OR=1.29, p=0.001), an effect that is driven by rare 
missense variants in the RING and BRCT domains (OR=3.18, 
p<0.001). In addition, for BRCA1 the risk was higher for vari-
ants with Align-GVGD C15–C65 scores (OR=5.59, p<0.001; 
figure  1). In PALB2, the frequency of Align-GVGD C15–C65 
was slightly, but not significantly higher in cases than controls 

(35 carriers in cases and 29 carriers in controls). The 18 unique 
missense variants in this category were all located in functional 
domains or motifs. Five variants were recurrent and present in 
at least four individuals: p.G401R, p.P405A, p.S896F, p.T993M 
and p.T1012I represented 70% of all PALB2 rare missense 
variant carriers (with AGVGD scores of C15 and above) in this 
cohort. Notably, 39% (7/18) of the variants were novel and have 
not been reported previously in public databases (table 1B).

Characteristics of germline carriers of PALB2, BRCA1 and 
BRCA2 PTVs and missense variants
In our study, 57 (0.73%), 99 (1.26%) and 161 (2.05%) patients 
with breast cancer had germline PTVs in PALB2, BRCA1 and 
BRCA2, respectively (table  2); none had pathogenic variants 
in more than one gene. The distribution of age at diagnosis in 
PALB2 was similar to that in non-carriers (mean age at diagnosis 
51.3 years vs 52.5 years). This contrasts with BRCA1 and BRCA2, 
where the carrier cases occurred at a young age (mean 44.1 years 
and 47.3 years, respectively). A family history of breast cancer 

Figure 1  Association of protein-truncating variants (PTVs) and rare missense variants in PALB2 (A), BRCA1 (B) and BRCA2 (C) with breast cancer risk. 
Missense variants were evaluated as a group for those located in functional domains and for those predicted to be likely pathogenic by in silico algorithms. 
WD40 (WD40 repeat domain), RING-BRCT (RING finger domain and BRCA1 C terminus), DBD (DNA binding domain), Align-GVGD (AGVGD), variants with 
score >C15, REVEL (score >0.5), VEST4 (p<0.05), ClinPred (score >0.5), CADD (score >20). PALB2, partner and localiser of BRCA2.
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Table 1  List of PALB2 variants identified

A.Protein-truncating variants (PTVs)

No Type of mutation cDNA change AA change Domain Cases Controls Total Previously reported

1 Nons c.7G>T p.E3X  �  5 0 5 Yes

2 SS c.48+2T>G –  �  0 1 1 Yes

3 Nons c.73A>T p.K25X CC 1 0 1 Yes

4 SS c.109–1G>A –  �  1 0 1 No

5 SS c.109-2A>G -   �  1 0 1 Yes

6 SS c.211+1G>A –  �  4 3 7 Yes

7 FS delins c.336_337delinsA p.P113fs  �  3 0 3 No

8 FS del c.426_428delinsCC p.K142fs  �  1 0 1 No

9 Nons c.751C>T p.Q251X  �  0 1 1 Yes

10 Fs del c.839del p.N280fs  �  1 0 1 Yes

11 FS ins c.886dup p.M296fs  �  0 1 1 Yes

12 Fs del c.1037_1041del p.K346fs  �  4 0 4 Yes

13 Nons c.1042C>T p.Q348X  �  1 0 1 Yes

14 Fs del c.1050_1053del p.T351fs  �  2 0 2 Yes

15 Fs del c.1056_1057del p.K353fs  �  1 0 1 Yes

16 FS del c.1059del p.K353fs  �  3 0 3 Yes

17 FS del c.1133del p.P378fs  �  1 0 1 No

18 FS ins c.1158dup p.S387fs  �  1 0 1 No

19 Nons c.1543A>T p.K515X  �  1 0 1 No

20 FS del c.1592del p.L531X  �  0 1 1 Yes

21 FS del c.1783del p.D595fs MBD 1 0 1 Yes

22 Fs del c.1976_1977del p.L659fs  �  1 0 1 No

23 Nons c.2012T>G p.L671X  �  1 0 1 Yes

24 Fs del c.2167_2168del p.M723fs  �  3 0 3 Yes

25 Nons c.2257C>T p.R753X  �  1 0 1 Yes

26 Nons c.2336C>G p.S779X  �  1 0 1 Yes

27 FS del c.2607del p.V870X WD40 3 1 4 Yes

28 FS ins c.2760dup p.Q921fs WD40 1 0 1 Yes

29 Nons c.2968G>T p.E990X WD40 8 2 10 Yes

30 SS c.3114–1G>A –  �  1 1 2 Yes

31 FS del c.3143del p.K1048fs WD40 1 0 1 Yes

32 Nons c.3166C>T p.Q1056X WD40 1 0 1 Yes

33 Nons c.3256C>T p.R1086X WD40 1 0 1 Yes

34 FS del c.3543del p.F1181fs WD40 2 0 2 No

 �   �  Total  �  57 11 68  �

B.Rare missense variants*

No AGVGD score cDNA change AA change Domain Cases Ctrls Total Previously reported

1 C25 c.25C>G p.L9V CC 1 0 1 No

2 C65 c.109C>T p.R37C CC 1 2 3 Yes

3 C25 c.110G>A p.R37H CC 1 0 1 Yes

4 C15 c.116A>T p.Q39L CC 1 0 1 Yes

5 C65 c.1201G>C p.G401R ChAM 1 3 4 No

6 C25 c.1213C>G p.P405A ChAM 5 5 10 Yes

7 C65 c.1226A>G p.Y409C ChAM 1 1 2 Yes

8 C15 c.1255T>C p.C419R ChAM 2 1 3 No

9 C65 c.1843C>T p.P615S MBD 0 1 1 Yes

10 C15 c.2687C>T p.S896F WD40 4 0 4 No

11 C15 c.2978C>T p.T993M WD40 4 1 5 Yes

12 C15 c.3035C>T p.T1012I WD40 9 13 22 Yes

13 C35 c.3080T>G p.L1027R WD40 1 0 1 No

14 C25 c.3107T>C p.V1036A WD40 2 0 2 Yes

15 C65 c.3128G>T p.G1043V WD40 1 0 1 No

16 C15 c.3132A>T p.Q1044H WD40 0 1 1 Yes

17 C15 c.3506C>G p.S1169C WD40 0 1 1 Yes

18 C15 c.3549_3552delinsTTTG p.H1184L WD40 1 0 1 No

 �   �   � Total 35 29 64  �

Reference sequence: NM_024675.3.
*, variants with AGVGD scores of C15 and above; CC, coiled-coil; PALB2, partner and localiser of BRCA2.
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was more common in PALB2 carriers than in non-carriers, but 
not significantly so. There was no association with personal or 
family history of pancreatic cancer, or family history of male 
breast cancer, where information was available (data not shown).

Notably, there was no significant difference in the crude prev-
alence of PALB2 carriers among Chinese, Malay and Indian 
patients (0.7%, 1.0% and 0.6%, respectively), but there was a 
higher prevalence of BRCA1 and BRCA2 variants in Malay and 

Indian patients compared with Chinese patients (2.2% and 2.0% 
compared with 1.0% for BRCA1, and 3.1% and 2.9% compared 
with 1.8% for BRCA2). There was no significant association with 
ER or HER2 status, but an association with PR-negative disease 
was of borderline significance (table 2, figure 2). We observed 
a higher prevalence of PALB2 carriers in the Malaysian cohort, 
but this was not statistically significant after adjustment for stage 
and grade in the multivariable analysis. Similarly, there was a 

Table 2  Clinical and demographic characteristics of carriers with protein-truncating variants

Variable
PALB2 carriers
(n=57)

BRCA1 carriers
(n=99)

BRCA2 carriers
(n=161)

Non-carriers
(n=7523) P value* P value† P value‡

Age at diagnosis (mean±SD) 51.3±10.7 44.1±10.8 47.3±10.5 52.5±10.7 0.414 <0.001 <0.001

Age distribution (years) 0.612 <0.001 <0.001

 � <30 2 (3.5) 7 (7.1) 4 (2.5) 101 (1.4)

 � 30–39 6 (10.5) 30 (30.0) 35 (21.9) 672 (9.0)

 � 40–49 16 (28.1) 34 (34.7) 59 (36.9) 2260 (30.2)

 � 50–59 18 (31.6) 17 (17.3) 40 (25.0) 2538 (33.9)

 � >60 15 (26.3) 10 (10.2) 22 (13.8) 1907 (25.5)

Ethnicity 0.728 0.003 0.021

 � Chinese 41 (73.2) 59 (59.6) 104 (64.6) 5696 (75.8)

 � Malay 11 (19.6) 25 (25.3) 36 (22.4) 1088 (14.5)

 � Indian 4 (7.1) 14 (14.1) 20 (12.4) 651 (8.7)

 � Other 0 (0.0) 1 (1.0) 1 (0.6) 79 (1.1)

Family history of breast cancer, first deg 0.087 <0.001 <0.001

 � Yes 13 (22.8) 38 (38.8) 47 (29.4) 1071 (14.4)

 � No 44 (77.2) 60 (61.2) 113 (70.6) 6344 (85.6)

Family history of ovarian cancer, first deg 0.551 <0.001 0.029

 � Yes 1 (2.1) 13 (14.9) 7 (4.8) 108 (1.6)

 � No 47 (97.9) 74 (85.1) 138 (95.2) 6463 (98.4)

Bilaterality 0.500 0.001 0.008

 � Yes 3 (5.4) 12 (12.2) 14 (8.8) 306 (4.1)

 � No 53 (94.6) 86 (87.8) 145 (91.2) 7169 (95.9)

Tumour stage 0.002 0.228 0.005

 � Stage 0 0 (0.0) 5 (6.7) 6 (4.7) 698 (11.2)

 � Stage I 6 (15.0) 19 (25.3) 30 (23.6) 1965 (31.6)

 � Stage II 22 (55.0) 30 (40.0) 54 (42.5) 2338 (37.6)

 � Stage III 11 (27.5) 18 (24.0) 27 (21.3) 966 (15.5)

 � Stage IV 1 (2.5) 3 (4.0) 10 (7.9) 248 (4.0)

Tumour grade 0.045 <0.001 <0.001

 � Low 2 (4.2) 2 (2.6) 3 (2.2) 950 (14.8)

 � Intermediate 20 (41.7) 19 (24.4) 65 (47.8) 2847 (44.3)

 � High 26 (54.2) 57 (73.1) 68 (50.0) 2623 (40.9)

ER status 0.278 <0.001 0.412

 � Positive 34 (65.4) 21 (24.1) 104 (72.7) 4833 (72.3)

 � Negative 18 (34.6) 66 (75.9) 39 (27.3) 1854 (27.7)

PR status 0.055 <0.001 0.328

 � Positive 25 (50.0) 19 (22.6) 84 (60.9) 4117 (63.7)

 � Negative 25 (50.0) 65 (77.4) 54 (39.1) 2350 (36.3)

HER2 status 0.630 0.001 <0.001

 � Positive 12 (26.1) 11 (13.9) 19 (16.2) 1695 (30.7)

 � Negative 34 (73.9) 68 (86.1) 98 (83.8) 3820 (69.3)

Triple negative breast cancer 0.266 <0.001 0.029

 � Yes 8 (17.8) 49 (64.5) 24 (20.9) 677 (12.6)

 � No 37 (82.2) 27 (35.5) 91 (79.1) 4688 (87.4)

Study 0.006 0.014 0.023

 � MyBrCa 35 (61.4) 55 (55.6) 84 (52.2) 3249 (43.2)

 � SGBCC 22 (38.6) 44 (44.4) 77 (47.8) 4274 (56.8)

*PALB2 mutation carriers versus non-carriers.
†BRCA1 mutation carriers versus non-carriers.
‡BRCA2 mutation carriers versus non-carriers.
MyBrCa, Malaysian Breast Cancer Genetic Study; PALB2, partner and localiser of BRCA2; SGBCC, Singapore Breast Cancer Cohort Study.
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higher prevalence of BRCA1 and BRCA2 carriers in the Malay-
sian cohort, but this was not statistically significant after adjust-
ment for age and ethnicity in the multivariable analysis.

There were 35 (0.45%), 31 (0.40%) and 85 (1.08%) patients 
with breast cancer with a likely pathogenic missense variant in 
PALB2, BRCA1 and BRCA2, respectively, as predicted by the 
Align-GVGD algorithm. Like PTV carriers, BRCA1 rare missense 
carriers were more likely to develop breast cancer at a signifi-
cantly younger age when compared with the non-carriers (47.5 
years old vs 52.5 years old). However, there was no significant 
difference in age of diagnosis in carriers of PALB2 rare missense 
variants compared with non-carriers (table 3).

We examined the distribution of breast cancer subtypes of 
carriers of rare missense variants by IHC assessment and found 
that, similar to carriers of pathogenic variants in BRCA1, carriers 
of rare missense variants in BRCA1 appear to be more likely to 
develop high grade tumours and triple negative subtype (table 3, 
figure 2). By contrast, there was no significant difference in the 
distribution of breast cancer subtypes in carriers of rare missense 
variants in PALB2 compared with non-carriers (figure 2).

Functional characterisation of PALB2 rare missense variants
As computational approaches for predicting the effects of 
missense variants often produce conflicting results,10 15 16 we 
evaluated the functional impact of the missense variants in our 
previously published mES cell-based functional assay.15 Briefly, 
mES cells in which Palb2 has been deleted using CRISPR-Cas9 
technology were complemented with human PALB2 cDNA, 
with or without PALB2 variant, through stable integration at the 

Rosa26 locus.15 By using the well-established DR-GFP reporter,27 
which was integrated at the Pim1 locus, HR was measured to 
evaluate the functional impact of variants in PALB2.15 In this 
study we evaluated 18 missense variants (with AGVGD score of 
≥C15) as listed in table 1B and two other variants (p.A38G and 
p.A38V) with AGVGD score of C0 were included for comparison 
purposes. Of the 20 missense variants tested, 2 variants (p.R37C 
and p.R37H) exhibited moderate HR activity (50%–60%). Our 
data on p.R37C contrast those of a previous study,16 showing 
that that this variant is fully functional. Complementation by 
transient overexpression of PALB2 cDNA carrying this variant, 
versus complementation by stable integration, may explain this 
difference as discussed previously.28 Our data are generally in 
agreement with previous studies showing that p.R37H exhibits a 
moderate impact on HR, although HR rates are slightly variable 
between the different studies.14–17 An impaired PALB2-BRCA1 
interaction likely explains this defect, as well as the reduced 
recruitment of p.R37H to sites of DNA damage induced by laser 
micro-irradiation.15

Interestingly, two other PALB2 missense variants (p.L1027R 
and p.G1043V) exhibited a >80% reduction in HR (figure 3A), 
indicating that they are similarly damaging as truncating PALB2 
variants.15 As HR defects have been associated with sensitivity to 
PARPis,29 we evaluated the effect of five PALB2 missense vari-
ants that exhibited the largest defect in HR in DR-GFP assays, 
using a cellular proliferation assay. We found that p.R37H and 
p.A38V did not have a major impact on PARP sensitivity, whereas 
p.L1027R and p.G1043V displayed strong sensitivity to PARP 
inhibition (figure 3B). Consistently, western blot analysis for all 

Figure 2  Distribution of breast cancer subtypes by immunohistochemistry (IHC): the stacked bar chart compares the distribution of tumour subtypes with 
germline alterations (protein-truncating variant (PTV) or missense (MS) variants with AGVGD scores of C15 and above) in PALB2 with BRCA1, BRCA2 and 
tumours with no alterations that arise from non-carriers. The horizontal dotted line indicates the proportion of ER negative breast cancer among the non-
carriers. PALB2, partner and localiser of BRCA2.
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20 missense variants showed weak expression for p.L1027R and 
p.G1043V in comparison to that of wild type PALB2 (figure 3C), 
suggesting that these two variants negatively affect PALB2 protein 
levels. mRNA analysis subsequently showed that the transcript 
levels of several variants, including p.L1027R and p.G1043V, 
were similar to that of the wild type complemented condition, 
suggesting that the weak expression of p.L1027R and p.G1043V 
is likely due to protein instability (figure 3D). To examine this 

further, we performed cycloheximide chase experiments to halt 
protein synthesis and assess PALB2 protein levels over time. 
While wild type PALB2 protein levels remained stable over a 
3-hour time span after cycloheximide treatment, both p.L1027R 
and p.G1043V showed marked reductions in protein levels 
compared with the 0-hour time point (figure  3E). These data 
provide evidence that p.L1027R and p.G1043V impair PALB2 
protein function through protein instability. Treatment with the 

Table 3  Clinical and demographic characteristics of carriers with rare missense variants

Variable
PALB2 carriers
(n=35)

BRCA1 carriers
(n=31)

BRCA2 carriers
(n=85)

Non-carriers*
(n=7372) P value† P value‡ P value§

Age at diagnosis (mean±SD) 51.9±10.6 47.5±10.8 51.7±11.7 52.5±10.7 0.748 0.009 0.460

Age distribution (years) 0.705 0.086 0.273

 � <30 0 (0.0) 0 (0.0) 2 (2.4) 99 (1.4)

 � 30–39 5 (14.7) 7 (23.3) 9 (10.6) 651 (8.9)

 � 40–49 9 (26.5) 11 (36.7) 29 (34.1) 2211 (30.2)

 � 50–59 10 (29.4) 9 (30.0) 20 (23.5) 2499 (34.1)

 � >60 10 (29.4) 3 (10.0) 25 (29.4) 1869 (25.5)

Ethnicity 0.807 0.002 0.003

 � Chinese 27 (77.1) 17 (54.8) 55 (64.7) 5597 (76)

 � Malay 4 (11.4) 13 (41.9) 11 (12.9) 1060 (14.4)

 � Indian 4 (11.4) 1 (3.2) 17 (20.0) 629 (8.5)

 � Other 0 (0.0) 0 (0.0) 2 (2.4) 77 (1.0)

Family history of breast cancer, first deg 0.467 0.797 0.351

 � Yes 3 (8.8) 5 (16.1) 15 (17.9) 1048 (14.4)

 � No 31 (91.2) 26 (83.9) 69 (82.1) 6218 (85.6)

Family history of ovarian cancer, first deg 1.000 0.079 0.638

 � Yes 0 (0.0) 2 (7.1) 0 (0.0) 106 (1.6)

 � No 28 (100.0) 26 (92.9) 77 (100.0) 6332 (98.4)

Bilaterality 1.000 1.000 1.000

 � Yes 1 (2.9) 1 (3.2) 3 (3.6) 301 (4.1)

 � No 34 (97.1) 30 (96.8) 80 (96.4) 7025 (95.9)

Tumour stage 0.684 0.450 0.569

 � Stage 0 2 (7.1) 0 (0) 4 (5.7) 692 (11.4)

 � Stage I 11 (39.3) 8 (36.4) 23 (32.9) 1923 (31.6)

 � Stage II 12 (42.9) 10 (45.5) 28 (40.0) 2288 (37.5)

 � Stage III 2 (7.1) 3 (13.6) 11 (15.7) 950 (15.6)

 � Stage IV 1 (3.6) 1 (4.5) 4 (5.7) 242 (4.0)

Tumour grade 0.855 0.010 0.252

 � Low 5 (16.1) 3 (11.5) 5 (7.8) 937 (14.9)

 � Intermediate 15 (48.4) 5 (19.2) 29 (45.3) 2798 (44.4)

 � High 11 (35.5) 18 (69.2) 30 (46.9) 2564 (40.7)

ER status 1.000 0.168 1.000

 � Positive 23 (74.2) 14 (58.3) 57 (72.2) 4739 (72.3)

 � Negative 8 (25.8) 10 (41.7) 22 (27.8) 1814 (27.7)

PR status 0.575 0.829 0.546

 � Positive 18 (58.1) 14 (60.9) 45 (60.0) 4040 (63.7)

 � Negative 13 (41.9) 9 (39.1) 30 (40.0) 2298 (36.3)

HER2 status 0.229 0.610 0.424

 � Positive 12 (41.4) 4 (22.2) 17 (25.4) 1662 (30.8)

 � Negative 17 (58.6) 14 (77.8) 50 (74.6) 3739 (69.2)

Triple negative breast cancer 1.000 0.017 0.053

 � Yes 3 (8.6) 7 (22.6) 13 (15.3) 654 (8.9)

 � No 32 (91.4) 24 (77.4) 72 (84.7) 6716 (91.1)

Study 0.712 0.093 0.463

 � MyBrCa 14 (40.0) 18 (58.1) 40 (47.1) 3177 (43.1)

 � SGBCC 21 (60.0) 13 (41.9) 45 (52.9) 4195 (56.9)

*Non-carriers: Do not carry either protein-truncating or rare missense variants (with AGVGD scores of C15 and above) in three genes.
†PALB2 mutation carriers versus non-carriers.
‡BRCA1 mutation carriers versus non-carriers.
§BRCA2 mutation carriers versus non-carriers.
MyBrCa, Malaysian Breast Cancer Genetic Study; PALB2, partner and localiser of BRCA2; SGBCC, Singapore Breast Cancer Cohort Study.



8 Ng PS, et al. J Med Genet 2021;0:1–11. doi:10.1136/jmedgenet-2020-107471

Cancer genetics

proteasome inhibitor MG-132 further showed that PALB2, with 
or without the p.L1027R or p.G1043V variant, is subjected to 
proteasome-dependent degradation (figure 3F). Most likely as a 
result of protein instability and subsequent proteasomal degra-
dation in the cytoplasm, both the p.L1027R and p.G1043V vari-
ants mislocalised in the cytoplasm (figure 3G). These data are 
concordant with previous localisation data for PALB2 variants 
in the WD40 domain, such as p.I944N and p.T1030I, which 

have also been reported to be unstable and mislocalise in the 
cytoplasm,15–17 thereby impacting HR. However, given that 
several proteins involved in HR, including BRCA2 and RNF168, 
interact with PALB2’s WD40 domain,1 2 30 we cannot exclude 
the possibility that these variants also impact HR by affecting the 
interaction between PALB2 and these proteins.

Overall, the defects for p.L1027R and p.G1043V in HR 
and PARPi sensitivity are similar to those observed for the Ev 

Figure 3  Functional analysis of PALB2 rare missense variants. (A) HR assay (DR-GFP) in Trp53KO/PALB2KO mouse embryonic stem (mES) cells 
complemented with human PALB2 variants (or an empty vector, Ev). Normalised values are plotted with the wild type (WT) condition set to 100% (absolute 
HR efficiencies for cells expressing WT PALB2 were in the range ~7%–10% (adapted from Boonen et al15). (B) Proliferation-based PARP inhibitor (PARPi) 
sensitivity assay using mES cells expressing the indicated PALB2 variants (or an empty vector, Ev). The bar graph showed the relative viability/resistance to 
0.5 µM PARPi treatment, for all five variants. (C) Western blot analysis for the expression of all PALB2 variants analysed. (D) RT-qPCR analysis of selected 
PALB2 variants. Primers specific for human PALB2 cDNA and the mouse PIM1 control locus were used. Tubulin is a loading control. (E) Western blot analysis 
of PALB2 protein abundance for the indicated variants in the absence of cycloheximide (CHX) and after the indicated time of incubation in the presence of 
100 µg/mL CHX. Tubulin is a loading control. Asterisk indicates an aspecific band. (F) Western blot analysis of PALB2 protein abundance for the indicated 
variants after 24-hour incubation with the indicated concentrations of MG-132. Tubulin is a loading control. Asterisk indicates an aspecific band. (G) 
Immunofluorescence analysis and quantification for the nucleocytoplasmic distribution of EGFP-PALB2, with or without the indicated variants, following 
transient expression in HeLa cells. For all bar plots, data represent the mean percentages (±SEM) of the parameter under investigation, with values relative 
to WT, which was set at 100% (ie, GFP-positive cells (A), viability/resistance (B) and mRNA (D) from at least two independent experiments). Variants/
conditions are categorised by colour as either WT (black), VUS (blue) or Ev (grey). Ev1–2 refer to Ev controls from two different replicates. Variants with low 
expression levels are indicated by *. HR, homologous recombination; PALB2, partner and localiser of BRCA2.
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conditions and compare to those previously reported for PALB2 
truncating variants,15 suggesting they may be similarly patho-
genic. Interestingly, the pedigree of the PALB2 p.L1027R carrier 
showed that the proband and her maternal aunt were affected by 
breast cancer at <50 years, and the PALB2 p.G1043V proband 
was affected by breast cancer at 55 years. Unfortunately, relatives 
were not available for predictive testing.

DISCUSSION
Our study confirms that PALB2 pathogenic variants are asso-
ciated with an increased breast cancer risk in the South-East 
Asian population. The estimated prevalence of PTVs (0.73% 
of patients with breast cancer and 0.14% of controls) is similar 
to that in European populations,7 and the estimated OR is also 
similar to that seen in European populations (OR=4.69 and 
5.3).6 7 However, because the population incidence rates are 
lower in most populations in South-East Asian than in Western 
European populations, the absolute risks of PALB2 carriers are 
expected to be lower.

To the best of our knowledge, this is the largest study on 
prevalence of germline PALB2 variants in a population-based 
study in South-East Asia. Two case-only studies in the Chinese 
population, comprising 2769 and 8085 patients with breast 
cancer, respectively,31 32 a case-control study of 7051 patients 
with breast cancer and 11 241 healthy individuals of the Japa-
nese population,33 and a study of 16 501 breast cancer cases 
and 5890 healthy Chinese controls34 have previously been 
reported. The prevalence of PALB2 pathogenic variants in 
our study is consistent with these other Asian studies, which 
in aggregate reported an average prevalence of 0.74% (range 
0.4%–0.97%).

While PTVs in PALB2 are known to predispose to breast, 
ovarian and pancreatic cancers, the functional impact of 
missense variants remains poorly characterised. We found no 
evidence that rare missense variants, in aggregate, were asso-
ciated with an increased risk of breast cancer. In addition, we 
found that none of the in silico measures identified groups of 
variants which were associated with risk. However, we identi-
fied two rare PALB2 missense variants, both located in WD40 
(the critical C-terminus functional domain of PALB2) which 
were unstable and deficient in HR. Three recent studies on 
the functional analyses of PALB2 missense variants revealed 
that up to 19 deleterious missense variants could abrogate 
the function of the PALB2 gene, particularly at the coiled-coil 
(CC) and the WD40 domains.15–17 While deleterious variants 
located in the CC domain have been shown to impair the 
interaction with BRCA1, deleterious variants located in the 
WD40 domain often affect protein stability. The identification 
of two new damaging variants (p. L1027R and p.G1043V) in 
our study, adds on to the growing lists of PALB2 variants that 
could be clinically relevant. Interestingly, the affected carriers 
with the PALB2 p.L1027R variants developed early onset 
breast cancer, suggesting association with breast cancer risk.

This study has some limitations. The Malaysian healthy 
controls were recruited from women attending opportunistic 
screening, so there may be enrichment for individuals with 
higher risk of cancer; indeed 12% of healthy controls reported 
family history of breast and ovarian cancers, suggesting that 
this may lead to an underestimate of the risks associated with 
PALB2 germline alterations. Some mutations, including large 
genomic rearrangements and splice variants beyond consensus 
splice sites, may be missed by the germline amplicon-based 
panel sequencing method used. However, in PALB2, large 

genomic rearrangements appear to be low relative to small 
indels or single base substitutions, with most reports failing to 
identify any such variants.35–38 It should be noted that for all 
20 PALB2 missense VUS, potential effects on splicing were not 
examined. Complementation with a bacterial artificial chro-
mosome containing the full-length human gene for PALB2, 
as has recently been shown for BRCA2,39 may allow for the 
inclusion of splice effects in the future. In addition, despite 
the size of the study, the number of variants is still low and 
the confidence limits on the risk estimates are large. In partic-
ular, although a clear association with ER-negative and triple-
negative breast cancer has been observed in European studies, 
this was not found in our analysis, perhaps because of limited 
sample size.

In conclusion, this study has demonstrated that PALB2 PTVs 
confer a significant breast cancer risk in the South-East Asian popu-
lation and that a small proportion of rare missense variants results 
in loss of function of PALB2, which may similarly increase breast 
cancer risk. These results add to the growing body of evidence of 
the clinical management of PALB2 carriers.
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