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Identifying degradation patterns of lithium ion
batteries from impedance spectroscopy using
machine learning
Yunwei Zhang 1,2,6, Qiaochu Tang2,3,4,6, Yao Zhang 5, Jiabin Wang2,3,4, Ulrich Stimming2,3,4,7✉ &

Alpha A. Lee1,2,7✉

Forecasting the state of health and remaining useful life of Li-ion batteries is an unsolved

challenge that limits technologies such as consumer electronics and electric vehicles. Here,

we build an accurate battery forecasting system by combining electrochemical impedance

spectroscopy (EIS)—a real-time, non-invasive and information-rich measurement that is

hitherto underused in battery diagnosis—with Gaussian process machine learning. Over

20,000 EIS spectra of commercial Li-ion batteries are collected at different states of health,

states of charge and temperatures—the largest dataset to our knowledge of its kind. Our

Gaussian process model takes the entire spectrum as input, without further feature engi-

neering, and automatically determines which spectral features predict degradation. Our

model accurately predicts the remaining useful life, even without complete knowledge of past

operating conditions of the battery. Our results demonstrate the value of EIS signals in

battery management systems.
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Li-ion batteries enable a wide variety of technologies that are
integral to modern life by virtue of their high energy and
power density1–4. However, a key stumbling block to

advancing those technologies is the unpredictability of battery
degradation: accurate prediction of battery state of health (SoH)
and remaining useful life (RUL) is needed to inform the user
whether a battery should be replaced and avoid unexpected
capacity fade. Moreover, battery prognosis is crucial to expanding
the recycling sector, enabling facilities to decide whether a battery
should be recycled as scrap metal or used for less demanding
“second-life” applications.

The conventional approach to battery forecasting relies on
modelling microscopic degradation mechanisms, such as the
growth of the solid-electrolyte interphase5,6, lithium plating7,8

and active material loss9,10. Although offering physical insights,
characterising and simulating every degradation mechanism is
unscalable. To overcome this challenge, recent literature focuses
on data-driven approaches11,12. The idea is to perform real-time,
non-invasive measurements on the battery, and use statistical
machine learning to relate those measurements to battery health
without modelling a physical mechanism. However, the challenge
of data-driven approaches is defining a set of physically infor-
mative inputs, and building a robust statistical model.

Features derived from the charging and discharging curve are
by far the most commonly used inputs because typical battery
management systems collect current–voltage data13–18. Com-
pared with the usual current–voltage data, electrochemical
impedance spectroscopy (EIS), which obtains the impedance over
a wide range of frequencies by measuring the current response to
a voltage perturbation or vice versa19–21, is known to contain rich
information on all materials properties, interfacial phenomena
and electrochemical reactions. This directly relates to possible
degradation inside the battery and is able to track the status of the
battery22. However, deploying EIS to predictive battery diagnosis
is hampered by the high dimensionality of the spectrum—EIS
records the real and imaginary part of the impedance over a
frequency range that spans multiple decades. Although qualitative
changes are apparent, it is challenging to pick out quantitative
features correlated with degradation. Existing approaches reduce
the spectrum into lower dimensional features: the spectrum is
either interpreted by fitting to an equivalent circuit model19,22–28

(recent work employed machine learning to aid the fit29)—the fit
is often non-unique and it is questionable whether a purely
electrical model can capture the physical, chemical and materials
properties and processes of a battery—or focusing only on
handpicked frequencies30–32.

Recent advances in machine learning show that one can feed
the entire dataset as input into the model without handpicking
features, and let the model select the most relevant variables.
Those models have been developed for degradation diagnosis,
such as using a Gaussian process model to predict the future
capacity33,34 and state of charge (SoC)17, and using a regularised
linear model to predict cycle life18. However, those models are all
developed with the charging and discharging curve as input. The
power of any model is circumscribed by the information content
of the inputs, and forecasting the late-stage behaviour of batteries
with data from early life—the most relevant problem—is still a
significant challenge.

In this paper, we show that gaussian process regression (GPR)
can accurately estimate the capacity and predict RUL using the
EIS spectrum, which are key indicators of the SoH of a battery.
We generate the largest dataset, to our knowledge, of EIS mea-
surements of commercial Li-ion batteries (LCO/graphite) over a
wide range of frequencies at different temperatures and SoC,
totalling over 20,000 EIS spectra. Moreover, our method can
estimate the capacity and RUL of batteries cycled at three con-
stant temperatures, at any point of its life, from a single impe-
dance measurement. Our model is more accurate than
conventional methods, which use features of the discharging
curve, and our results can be attributed back to the impedance
spectrum, providing information on which frequencies are the
most salient.

Results
Capacity estimation. We first consider a setting where the user
wants to estimate the capacity of a battery using the EIS of the
current cycle, with the knowledge of the temperature, which is
kept constant throughout, and the SoC (state I–IX shown in
Supplementary Fig. 1).

We train the EIS-Capacity GPR model on four cells cycled at
room temperature of 25 °C (marked as 25C01–25C04), and test it
on the other four cells (marked as 25C05–25C08). Figure 1 shows
that the model accurately estimates the capacity of the testing
cells. Figure 1a shows the result of 25C05 cell for the state V (15
min resting after fully charging); the results at other states are
similarly positive and shown in Supplementary Fig. 2. Out of all
the states of I–IX, the model is most accurate at electrochemically
stable states (i.e. the state V/IX, which is fully charged/discharged
after resting), where electrochemical measurements on cells are
more consistent. Figure 1b shows the measured capacity against
the estimated capacity of all four testing cells. We note that all
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Fig. 1 Estimating battery capacity. a Estimated (red curve) and measured (blue curve) capacity as a function of cycle number for the 25C05 cell. The
coefficient of determination (R2) of this model is shown on the left bottom. b The measured capacity against the estimated capacity of all four testing cells
cycled at 25 °C. The capacity is normalised against the starting capacity in each case. c ARD shows that the impedance at low frequency is most correlated
with degradation. The pink points correspond to the 120 frequencies in the range of 0.02 Hz–20 kHz. The GPR model assigns the largest weights to the 91st
and 100th features, corresponding to 17.80 and 2.16 Hz, respectively. The less relevant features have weights close to zero.
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testing cells are charged and discharged the same way as the
training cells; the ability of our model to estimate the cells cycled
at different operating charge/discharge rates needs to be
investigated by further experiments.

We next turn to understand the model by extracting salient
features in the EIS correlated with degradation: Fig. 1c shows the
automatic relevance determination (ARD) importance weights of
the EIS-Capacity GPR model. Interestingly, the model finds that
only two salient frequencies, out of the 120 possibilities in the
range of 0.02 Hz–20 kHz, are sufficient to estimate capacity; in
Supplementary Fig. 3, we show there is a strong linear change of
selected EIS features with cycle number in the Nyquist plot over
cycle number at 25 °C. The selected frequencies of 17.80 and 2.16
Hz are located in the low-frequency region, suggesting that it is
the change in the interfacial properties that underpins degrada-
tion for these batteries; this is consistent with the results obtained
in previous works35, but we demonstrate how a machine-learning
framework can aid the interpretation of high-dimensional
spectra. When implemented in a battery management system,
our EIS-based approach has the potential to enable end-users to
know the battery capacity without a full charge–discharge.

RUL prediction. One of the ultimate goals of a battery man-
agement system is to predict the RUL of a battery and to detect
possible hazardous conditions caused by battery aging or abuse.
Here, we build a model for RUL prediction from the EIS spec-
trum (EIS-RUL GPR model).

Figure 2 shows that the EIS-RUL GPR model accurately
predicts the RUL of all four testing cells cycled at 25 °C only from

EIS measurements at the current cycle, without requiring EIS
measurements from previous cycles. This result suggests that our
EIS-machine-learning technology has the potential to be
translated into a prototype battery management system.

To further understand the information contained in EIS
spectra relative to other electrical signals reported in the
literature, we benchmark our method against features extracted
from the discharging curve, following recent work18. We feed
those discharging curve features to the same machine-learning
method (GPR model) and using the same training-test split. We
observe that our method achieves a lower predictive error (cf.
Supplementary Table 1). This suggests that EIS provides
significantly richer information about battery health compared
to signals that are currently tracked in battery management
systems, and those EIS signals can be fruitfully exploited by our
GPR method.

Capacity estimation and RUL prediction at multiple tem-
peratures. In the context of battery recycling, the problem of
battery diagnosis is often more challenging because the historical
operating condition of the cell (e.g. temperature) varies all the
time. Although temperatures are measured with sensors within a
battery module or stack, actual temperatures may deviate con-
siderably due to large temperature gradients under operational
conditions. In this section, we explore a simpler toy problem:
rather than considering a variation of cycling temperature over
time, we ask the question whether the model can still predict
RUL, based on the EIS measured at the current cycle, without
knowledge of the cycling temperature except that it is constant
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Fig. 2 Predicting remaining useful life. The predicted RUL of 25C05–25C08 testing cells a–d cycled at 25 °C (shown as green curves). The end of life
(EoL) of these four testing cells is 150, 120, 30 and 38, respectively, which is defined as the cycle number when the capacity drops below its initial 80%.
The testing EIS spectra are collected at the state V (15min resting after fully charging). The shaded region indicates ±1 standard deviation. R2 is shown on
the right bottom in each panel.
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over cycles. We make a further simplification that the tempera-
ture is either 25, 35 or 45 °C. We combine the training data
acquired at three different temperatures (i.e. 25C01–25C04,
35C01 and 45C01 cells), and in effect forcing GPR to learn fea-
tures of the EIS that only depends on capacity but not tem-
perature. Figure 3a, b show that our multi-temperature model can
estimate capacity of the cells cycled at 35 and 45 °C.

To explore the change of the salient frequency with different
temperatures, we apply the ARD method to the EIS-Capacity
GPR models for 35 and 45 °C. Figure 3c, d show the ARD
importance weights of these two models. Similarly, each model
finds that only one salient frequency is sufficient to estimate
capacity. The selected frequency, 17.80 Hz, is located in the low-
frequency region, consistent with the observation discussed in the
previous section.

Following the same idea, we also built a multi-temperature
model for RUL prediction. Our EIS-RUL model is able to
accurately predict the RUL of cells cycled at three different
temperatures (Fig. 4).

Discussions
In this paper, we show that our GPR models accurately estimate
the capacity and predict the RUL using EIS spectra of cells with
different degradation patterns cycled at various temperatures but
under constant charge/discharge rates. Our method accurately
estimates the SoH and RUL of a testing battery cycled at the same
charging/discharging rate as the training cells, at any point of its
life, from a single impedance measurement, without the

knowledge of the cycling temperature as long as the future
operating temperature of a battery is close to its previous oper-
ating temperature. Predictions from our model can be attributed
back to the impedance spectra, yielding the observation that the
low-frequency region of the EIS spectrum is the most predictive.

Our work shows the potential value of signals from EIS in the
design of battery management systems. Moreover, we show that
GPR with an ARD kernel allows us to identify important features
amid many irrelevant ones from high-dimensional measure-
ments. An interesting future direction, stemming from this
observation, is that one might not need to perform a full sweep
over a broad range of frequencies to obtain signals relevant to
degradation. We anticipate that our observation about the value
of EIS and GPR can be extended to consider more challenging
and realistic settings, such as variations in cycling temperature
over time or variations in charge/discharge rate. However, a
significantly larger training set is required to cover the different
eventualities. We defer consideration of those aspects to
future work.

Methods
Data generation. The experiment is carried out by applying a continuous
charge–discharge cycle on 12 commercially available 45 mAh Eunicell LR2032 Li-
ion coin cells. The cell chemistry is LiCoO2/graphite. The cells are cycled in three
climate chambers set to 25 °C (25C01–25C08), 35 °C (35C01 and 35C02) and 45 °C
(45C01 and 45C02), respectively. Each cycle consists of a 1C-rate (45mA) CC–CV
(constant current–constant voltage) charge up to 4.2 V and a 2C-rate (90 mA) CC
(constant current) discharge down to 3 V. EIS is measured at nine different stages
of charging/discharging during every even-numbered cycle in the frequency range
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of 0.02 Hz–20 kHz with an excitation current of 5 mA, following a 15-min open
circuit at SoC 0% and SoC 100%. The various conditions of direct current (DC)
and relaxation are shown in Supplementary Fig. 1. The loss in capacity is deter-
mined after every odd-numbered cycle. EIS and capacity data is available in a
public repository.

We use 25C01–25C04, 35C01 and 45C01 cells as the training group, and the
others as the testing group. All cells underwent 30 cycles at room temperature of
25 °C before different temperatures were set. The battery is cycled until its end of
life (EoL), which is defined as when capacity drops below 80% of its initial value
after undergoing these 30 cycles. The capacity retention curves of all cells are
shown in Supplementary Fig. 4.

Gaussian process regression. To motivate the machine-learning framework, we
first consider the problem of estimating capacity from the EIS spectrum. This can
be formulated as a regression task: given a training set D ¼ fðxi; yiÞ; i ¼ 1; 2; :::; ng
consisting of n pairs of inputs xi and outputs yi, compute the predictive distribution
of the unknown observations y* at test indices x*. We define X ¼ ½x1; :::; xn�> and
Y ¼ ½y1; :::; yn�> . In our case the inputs xi= [Zre(ω1), Zre(ω2), ... Zre(ω60), ...
Zim(ω1), Zim(ω2), ... Zim(ω60)]T are the real (Zre) and imaginary (Zim) parts of
impedance spectra collected at 60 different frequencies (ωn, n= 1, 2, ..., 60) in the
range of 0.02 Hz–20 kHz at the current cycle, and the output yi is the capacity
corresponding to the EIS spectrum. The inputs are normalised using the mean and
standard deviation of the training data.

GPR performs non-parametric regression with Gaussian processes36: We
assume that yi= f(xi+ ϵi, where ϵi � Nð0; σ2Þ is an independent and identically
distributed Gaussian noise. The outputs f= (f(x1), f(x2) ⋯ f(xN)) are modelled as a
Gaussian random field f � Nð0;KÞ, where Kij= k(xi, xj) is the covariance kernel.
The kernel is a measure of how “close” the points xi and xj are. The joint
distribution of the training set {(xi, yi), i= 1, 2, . . ., n} and the predicted test output
(x*, y*) is

Y

y�

� �
¼ N 0;

KðX;XÞ þ σ2I KðX; x�Þ
Kðx�;XÞ Kðx�; x�Þ

� �� �
ð1Þ

Conditioning on the training set yields the predicted mean on x*

y� ¼ Kðx�;XÞðKðX;XÞ þ σ2IÞ�1
Y; ð2Þ

and its predicted variance

Δ2 ¼ Kðx�; x�Þ � Kðx�;XÞðKðX;XÞ þ σ2IÞ�1
KðX; x�Þ ð3Þ

which is a measure of uncertainty.
We implement the EIS-capacity GPR model using the Gaussian processes for

machine learning (GPML) toolbox37 with a zero mean function and a diagonal
squared exponential (SE) covariance function with ARD38

kARDSE ðxi; xjÞ ¼ σ2f exp � 1
2

Xd
m¼1

ðxim � xjmÞT ðxim � xjmÞ
σ2m

" #
ð4Þ

where σm represents the length scale for feature m, m= 1, 2, ..., d and σf is the signal
standard deviation; those hyperparameters are obtained by maximising the
marginal likelihood. The ARD covariance function allows the model to
downweight and prune irrelevant frequencies from the input by setting σm to be
large. We can interpret the resulting model to understand how important each
frequency is: We define the importance of the mth frequency as wm= exp(−σm),
with 0 <wm < 1. The relevant frequencies have large weight values and the
irrelevant frequencies have weights close to zero.

In the EIS-RUL GPR model, the input xi is the entire EIS spectra, the same as
the EIS-capacity GPR model, but the output yi is the RUL. We use a zero mean
function and a linear (LIN) covariance function

kLINðxi; xjÞ ¼
Xd
m¼1

xTimxjm ð5Þ

Although GPR has been used in the literature in the context of Li-ion
batteries17,33,34, we depart from those pioneering works by employing impedance
spectra as input, as well employing ARD to shed light on salient frequencies.

Data availability
Experimental data generated during the study is available in a public repository at https://
doi.org/10.5281/zenodo.3633835.

Code availability
The code is available from the GitHub link at https://github.com/YunweiZhang/ML-
identify-battery-degradation.
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