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ABSTRACT 

State of the art research in ensuring transport infrastructure 

resilience focuses on adopting a network perspective. 

However, there is no comprehensive, widespread method 

for evaluating connectivity and proposing alternative 

routes to improve it. Presented herein is a framework that: 

assesses road network connectivity, using a “closeness” 

measure and focusing on routes passing by the vulnerable 

asset of bridges; and proposes the development of optimal 

alternative routes, using a genetic algorithm. The results 

showed a significant improvement of network 

connectivity and the potential of the method to serve as the 

basis for updated transport infrastructure planning 

practices. 

INTRODUCTION 

Transport networks are a vital requirement of any 

country’s economic progress, which is associated with the 

accessible resources to the public and the effectiveness of 

their usage (Ivanova & Masarova, 2013). Transport 

networks serve human mobility and productivity 

contributing to public prosperity (Chan et al., 2010). 

Transport infrastructure assets constantly deteriorate over 

their lifetime. Their deterioration can be accelerated by 

heavy traffic or inadequate maintenance and eventually 

lead to failure. The failure may not be gradual but instant 

in case of extreme events appearance that can be classified 

into natural hazards (e.g. landslides droughts, wildfires, 

windstorms, floods) and man-made events (e.g. 

negligence, terrorism, accidents). Compared to their 

design estimations, most assets are exposed to more 

frequent and intense events due to climate change, while 

caring more traffic due to population growth (Yang & 

Frangopol, 2019). A transport infrastructure asset 

disruption can lead to catastrophic consequences not only 

on existing users, whose safety is threatened, but also on 

the society at large (Li et al., 2020). Specifically, an asset 

disruption affects network traffic flow and it can cause the 

isolation of an area from the main network. This can 

sequentially lead to the loss of access to critical services 

(e.g. hospitals, fire stations).  

Resilience is defined as the capability of a network to 

prepare for, absorb, recover from, and adjust to 

disturbances (Linkov et al., 2014). Transport resilience is 

the capability of the transport network to maintain its 

operational level of service or to re-establish itself to that 

service level in a specified timeframe, as defined by 

Freckleton et al. (2012). Another definition, set by Pant 

(2012), described transport resilience as the ability of the 

network to minimise operational loss. Reggiani et al., 

(2015) highlighted the positive correlation between 

transport network resilience and connectivity. Achieving 

transport network resilience and effective connectivity 

require management of existing infrastructure and 

planning for development of new infrastructure, if needed. 

Management of existing infrastructure includes asset 

monitoring, condition prediction and maintenance 

prioratisation. In practice, management and planning of 

transport infrastructure assets is conducted in different 

ways by decision-makers, who follow their organisations’ 

guidelines and attempt to effectively use their available 

budget (Hadjidemetriou et al., 2020a). Assets are assessed 

either manually by inspectors or automatically with the aid 

of sensors and novel monitoring technologies, which can 

be based on computer vision and artificial intelligence 

(Christodoulou et al., 2018; Hadjidemetriou et al., 2015; 

Zhu et al., 2020). Asset monitoring along their lifetime 

facilitates the development of predictive models, which in 

turn assist the development of maintenance prioritisation 

strategies (Dhada et al., 2020). In case a transpor network 

cannot serve traffic demand or in case of resilience 

improvement, new infrastructure is developed based on 

socio-economic and in some cases political criteria.  

Despite the clear purpose of each described step, 

current practices in infrastructure management and 

planning are characterised by major limitations and 

challenges. An asset failure affect its network since traffic 

needs to be served by alternative routes (Nakil et al., 

2015). However, maintenance prioritisation and 

infrastructure planning is not always conducted from a 

network perspective. Another limitation is the lack of a 

standardised strategy for evaluating the criticality of each 

asset within the network. Assets criticality varies 

significantly due to different amounts of traffic served and 

impact of failure.  

The current paper focuses on the asset of bridges in 

road networks due to their importance and high 

vulnereability and consecuently their association with 

network resilience. Bridges are mainly located at 
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intersections of roads, with their fialure significantly affect 

their network. In some cases bridges connect isolated areas 

with the rest of the network. Only in the U.S., there are 

over 600,000 bridges, from which 40% are over 50 years 

old and 9.1% are structurally deficient (ASCE, 2017). The 

sections that follow describe: the state of knowledge in a 

adopting a network perspective for transport infrastructure 

management and planning; the proposed methodology; the 

conducted case study; and finally the extracted 

conclusions. 

BACKGROUND 

Overcoming the challenge of managing bridges as parts of 

a transport network has attracted the interest of 

researchers. For instance, Orcesi & Cremona (2010) 

developed a maintenance prioratisation method based on 

the location of bridges within a network, visual condition 

evaluations  and stakeholders’ interests. In addition, 

Bocchini & Frangopol (2011) assessed the life-cycle 

performance of bridge networks based on the time-variant 

nature of bridge reliability due to elements degradation 

and complex network layouts. Another research work 

worth mentioning formulated a Markov chain model that 

examines the life-cycle of groups of bridges groups, 

considering deterioration, maintenance actions and 

failures (Bocchini et al., 2013). Hu et al. (2015) also 

considered bridges as part of a transport network to design 

their maintenance plan that aimed to minimise travel 

distance caused by bridge failures. Another related work 

designed a model for predictive group maintenance for 

multi-system multi-component networks, enabling various 

representations of dependences at the network and system 

levels (Liang & Parlikad, 2020). This model was applied 

to a network of bridges, constituted by multiple 

heterogeneous components, showing potential for a 

considerable reduction in maintenance costs 

(Hadjidemetriou et al., 2021; Hadjidemetriou et al., 

2020b). Yang & Frangopol (2020) estimated bridge failure 

probability for various scenarios and the traffic flow in the 

damaged network for each scenario. Another recent study, 

considering bridges as parts of a network, developed a 

risk-based model for   optimal adaptation management, in 

case of scour and climate change (Liu et al., 2020). Finally, 

Akiyama et al. (2020) identified problems and proposed 

solutions in the areas of  life-cycle risk analysis, resilience, 

design and management of both independent bridges and 

bridge networks. 

Besides maintenance, transportation authorities are 

also responsible for planning new infrastructure for 

improving their transport networks. Traditional examples 

of infrastructure planning methods include “scenario 

planning” and “cost-benefit analysis” (Malekpour et al., 

2015). State of the art research proposes adaptation and 

flexibility to respond to uncertainties, such as climate 

change, population growth and technology development. 

In this context, Sánchez-Silva (2019) firstly identified 

issues in existing processes of infrastructure design and 

management and secondly proposed a framework based on 

the ability of a network to change over time. Furthermore, 

Sadatsafavi et al. (2019) presented a scenario planning 

approach to recognise driving forces that influence 

transport infrastructure networks and explained how 

policy-makers can use these scenarios for assessing their 

plans and enhance network resilience.   

Adopting a network perspective in transport 

infrastructure management and planning implies an 

understanding of the different levels of criticality of nodes 

and links, composing the network. Bush et al. (2013) 

evaluated bridge criticality, assigning each bridge to one 

out of three possible levels. For every level, their 

framework provides assistance on the type of data needed, 

the required accuracy in data acquisition, the frequency of 

evaluation and the appropriate evaluation practices. 

Gauthier et al. (2018) used resilience stress testing and a 

dynamic mesoscopic simulator to rank road network links 

according to traffic and day-to-day disruptions. Moreover, 

García-Palomares et al. (2018) classified road sections of 

the Spanish high-capacity road network into five levels of 

criticality, using existing accessibility indicators. Lastly, 

Oh et al. (2013) evaluated the criticality of infrastructure 

systems based on their zone of influence, activity analysis 

and socioeconomic impact.   

Summarising, state of the art research in transport 

infrastructure management and planning highlights the 

importance of examining assets as elements of networks 

and of considering asset criticality within the network, 

when taking decisions. However, there is no 

comprehensive widespread method for assessing road 

network connectivity, considering the criticality of 

bridges, and proposing alternative routes to improve it. 

Given this, the current paper aims to develop a method that 

evaluates network connectivity and proposes the optimal 

development of new road sections to improve it.     

METHODOLOGY 

The methodology is divided into three main phases, 

termed spatial network extension, network connectivity 

evaluation, and optimal road sections selection.   

Spatial Network Extension 

The existing road network is analysed here as a complex 

network, with links corresponding to roads and nodes 

demonstrating bridges and municipalities. The existing 

road network is extended by adding all plausible new road 

sections (represented by dummy links). The addition of 

dummy links should meet the requirement of preserving 

the planarity condition. Thus, the dummy links do not 

cross with the existing links. Once the extended network 

is designed, network connectivity can be evaluated (in the 

following step) considering the existing network or a novel 

network, consisting of the existing road links and a set of 

dummy links (that represent the proposed new road 

sections).    



Network Connectivity Evaluation: ABA-closeness 

The network connectivity is evaluated by a variation of 

closeness centrality measure, termed ABA-closeness. 

Closeness centrality can approximate the distance between 

a node and the rest nodes of a network, and therefore the 

level of isolation of the examined node (Barthélemy, 2011; 

Crucitti et al., 2006).  ABA-closeness is based on calculat-

ing path distances, beginning from nodes belonging to a 

specific group of nodes, A (i.e. municipalities), passing by 

a second specified group, B (i.e. bridges), and finishing at 

a node that belongs to the initial group, A (i.e. municipal-

ities). As already explained, bridges were selected as the 

asset of interest for this case study due to their high vul-

nerability within a transport network. Similarly, the criti-

cality of other assets (represented by nodes or links) can 

be evaluated, along with the way they affect network con-

nectivity.   

In the current case study, assuming a graph representa-

tion of a road network, G = (V, E), where: E is a set of 

links (i.e. roads); V is a set of nodes (i.e. municipalities, 

VM, and  bridges, VB); and A is the adjacency matrix with 

elements aij = 1, in case of nodes i and j being connected, 

and aij = 0 otherwise. The “closeness” of a node is defined 

as the inverse of the average distance from all other nodes 

of the network. The lower the distance of a node to the rest 

nodes, the higher the node closeness value. The closeness 

herein is calculated by considering the geographical dis-

tance between municipalities in kilometres. This distance 

between the municipality-nodes i and j is noted by d(i,j), 

expressing the shortest-path between the two nodes. Equa-

tion (1) offers a general expression of closeness of node j, 

C(j),  serving as a foundation for further adaptation re-

quired to approach ABA-closeness. ABA-closeness is de-

fined through a classification of the nodes in V such that 

V=B∪M, where M is the set of municipality-nodes and B 

is the set of bridge-nodes. 

𝐶(𝑗) = (𝑛 − 1)/∑ 𝑑(𝑖, 𝑗)𝑖∈𝑉∖𝑖                    (1) 

where n is the number of nodes in the graph G; that is, the 

size of the set of nodes V. 

Optimal road sections selection 

After designing the spatial network extension and defining 

the way network connectivity is evaluated, the proposed 

method attempts to find the optimal combination of new 

potential links. A genetic algorithm (GA), as proposed by 

Holland (1992), is modified and applied to solve the 

optimisation problem of minimising ABA-closeness in the 

network extension, after adding a limited number of road-

links. A GA procedure begins with settling a set of 

solutions, named population. Each individual in a 

population is characterised by a set of parameter values 

that completely describe a solution. GAs are selected to 

solve the presented problem because they can solve 

problems with large solutions-space and they use a binary 

alphabet (i.e., 0 and 1) to form chromosomes. In our case, 

existing and new potential road sections are represented by 

1 and 0 respectively.  

The main steps of the GA are summarised in Figure 1. 

The initial population of solutions is randomly selected. 

This population will evolve over a number of generations 

until reaching an optimal (or close to optimal) solution. A 

maximum number of generations can be used as a stop 

criterion for the GA. Each generation evolves towards the 

optimisation of a fitness function computed globally and 

for which every individual of the population has an input. 

Based on their fitness values, individuals are selected from 

the population and recombined, producing offspring that 

comprises the next generation. This is the recombination 

operation, which is generally referred to as crossover 

because of the way that genetic material crosses over from 

one chromosome to another. The expected results from 

this methodology is a set of new roads to be developed so 

that the ABA-closeness measure is minimised, and hence 

improving the network resilience. The new roads are 

chosen among the exhaustive set of all new potential roads 

(i.e. dummy roads), designed at the first stage of the 

methodology. This selection is the result of the 

combination of up to k new built roads. Such a number k 

is chosen based on budget and/or physical or 

environmental constraints. 

 

 
Figure 1: Main steps of the GA 

 

CASE STUDY 

The proposed method for network connectivity evaluation 

and new road sections development proposal to improve 

connectivity and consequently resilience was applied to a 

real road network that includes 21 bridges. The selected 

network belongs to a wider transport network, and thus the 

results will be different if more road sections and bridges 

are considered. Therefore, the case study serves as an ex-

ample on how the proposed methodology can be applied 



to road networks. The data was processed in Python pro-

gramming language and environment, using NetworkX li-

brary and a tailored version of a GA specifically developed 

for this problem. The specifications of the PC used were 

as follows: Intel Xeon CPU E5-2680 v4, 2.40GHz, and 64 

GB RAM. The processing time of the presented case study 

was 2 minutes. The data has been provided by “Infraestru-

turas de Portugal” that is a state-owned company, manag-

ing the Portuguese roadway and railway infrastructure.  

Figure 2 shows the spatial location of the  bridges and 

municipalities of the area, along with the road sections 

connecting them. The spatial information provided by Fig-

ure 2 is the base for the formation of a complex network 

(Figure 3) that is used for the network connectivity evalu-

ation. Figure 3 preserves the geographic coordinates of the 

nodes (i.e. bridges and municipalities), along with the links 

(i.e. roads) length. The nodes illustrating municipalities in 

Figure 3 are weighted to be visually proportional to their 

population size. The same nodes are also labelled with the 

municipality names.  
 

 
Figure 2: Location of bridges and municipalities 

 

 

Figure 3: Formation of complex network, including existing 

and dummy road sections. 
 

All dummy road sections, illustrated with grey colour 

in Figure 3, provide alternatives that can improve connec-

tivity. However, decision-makers normally have budget 

constraints, and thus they can develop only a limited num-

ber of new road sections, if needed. The algorithm user can 

select the maximum number of new sections. We run the 

code twice, for a maximum number of newly developed 

sections of 5 and 3. The optimisation process maximises 

network connectivity by minimising ABA-closeness, as 

explained in the Methodology section, due to the addition 

of the novel sections, whose status changes from 0 to 1.     

The procedure for tuning the GA parameters was based 

on an exhaustive search of their optimal combination. This 

was feasible by a reduction of the solution space to a lim-

ited number of plausible choices for each parameter. The 

examined values for the maximum number of generations 

were equal to 100, 200 and 500 or until convergence (that 

appears when a solution does not improve after a sequence 

of consecutive iterations). The examined values for: the 

GA population size were equal to 30, 50 and 80; for the 

crossover percentage were equal to 0.6, 0.7 and 0.8; and 

for the mutation rate were equal to 0.01, 0.02 and 0.05. 

Based on these options, the GA was computed with n=100 

generations for a population encompassing 50 individuals. 

Each individual is a sequence of binary chromosomes and 

has a length equal to the number of dummy links. The 

crossover percentage was set to 0.8, and the mutation rate 

was set to 0.02. The objective/fitness function to be opti-

mised (i.e. minimised) is the ABA-closeness that consid-

ering the distance between municipalities in the road net-

work.There are up to 10,424,128 ways to select k = 5 new 

roads out of the 68 dummy, candidate roads. The results 

showed that the optimal road sections addition to the cur-

rent layout (Figure 4) are those connecting: Avelar and 

Aguda; Aguda and B.076; Figueiro dos Vinhos and B.074; 

Campelo and B.076; and Espinhal and B.078. 
 

Figure 4: Optimal selection of 5 new road sections to improve 

network connectivity  
 

ABA-closeness value of the existing network was 0.57, 

being decreased to a value of 0.31 thanks to the addition 



of the 5 new road sections. The proposed new links indi-

cate the need for adding alternative routes in the southwest 

area of the network to enhance connectivity and conse-

quently resilience. As it can be observed in Figure 4, two 

of the proposed road sections are crossed. Road intersec-

tions can include a roundabout, a beridge or traffic lights, 

significantly increasing the cost for improving network 

connectivity.  Thus, the algorithm was run for a second 

time with a maximum number of proposed roads of 3 to 

investigate how the connectivity can be improved with a 

lower-cost solution. This solution reduces ABA closeness 

measure from 0.57 to 0.35, without causing crossing be-

tween sections. The optimal road sections addition (Figure 

5) are those connecting: Avelar and Aguda; Aguda and 

B.076; as well as Campelo and B.076. 
 

 

Figure 5: Optimal selection of 3 new road sections to improve 

network connectivity  
 

CONCLUSIONS 

Transport infrastructure assets are exposed to increasingly 

frequent and intense extreme events due to climate change 

and serve more traffic than originally designed due to 

population growth. An asset failure can have catastrophic 

results to the transport network. It is critical for a transport 

network to have alternative routes, connecting 

municipalities, in case of an asset failure. Consequently, 

network connectivity is directly connected with resilience. 

The current paper examines routes connecting 

municipalities, passing by bridges, due to bridge 

importance and vulnerability within a transport network. 

The case study, examining road network connectivity, 

shows that the addition of a limited number of new road 

sections can provide alternative routes that improve 

connectivity. Additionally, it shows that even with a 

limited budget (e.g. proposing the addition of 3 new road 

sections instead of 5 in our case study) the connectivity is 

significantly enhanced.   

The development and use of ABA-closeness measure 

for the evaluation of network connectivity and the 

modification of the GA for proposing the optimal road 

sections to be developed for improving connectivity 

summarise the contribution of the current paper. The 

proposed framework can form the basis for transport 

networks connectivity evaluation, assisting decision-

makers in infrastructure planning. As a result of improving 

connectivity, network resilience will be improved and thus 

road network users will also be benefited. The impact of 

an asset failure to users will be reduced due to the decrease 

in traffic delays and associated costs.    

The proposed method has room for improvement and 

work is currently under way to further enrich it. The focus 

of the current paper is on routes connecting municipalities, 

passing by bridges. Future work aims to consider more 

links and nodes of a transport network. In addition, traffic 

served by nodes and links will be taken into account for 

criticality and connectivity evaluation. The method will 

also be adjusted so that the optimal proposal of novel roads 

development in terms of connectivity will consider their 

cost and the available budget. Future work also contains 

vulnerability analysis that will be based on the possibilities 

and impact of extreme events on transport networks. 

Lastly, the authors are in cooperation with transport asset 

owners for modifying, expanding, and testing this 

framework in real-life transport networks. 
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