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Diffusiophoresis in complex and confined fluids

Simón Ramírez Hinestrosa
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Moving fluids at the micro- and nano-scales requires a different approach compared to the
traditional methods based on pressure gradients. The increase of surface/volume ratio as the
length of the systems decreases the efficiency of the latter. The use of thermodynamic forces
such as electric fields, chemical potential and temperature gradients is crucial for effective
transport when the local perturbation of the fluid at the interfaces becomes relevant. The
specific case of chemical potential gradients in fast-moving components of a solution driving
the movement of colloids, polymers and other moieties is known as diffusiophoresis. In this
thesis, we study diffusiophoresis using a combination of theory and computer simulations.
We use non-equilibrium thermodynamics, starting from the entropy production to build our
theoretical framework aiming to discuss some subtleties present in previous works. As the
first case of study, we perform non-equilibrium molecular dynamics to analyse the movement
of a very large colloid using the Derjaguin-Anderson approximation, reducing the problem
to a diffusio-osmotic flow. In the simulations, we drive the system out of equilibrium by
applying microscopic representations of the chemical potential gradient that are compatible
with periodic boundary conditions. We then report the first applications of such a method to
a colloidal system and compare it with simulations where explicit concentration gradients
are imposed. Our approach is more convenient as we decouple diffusiophoresis from strong
advective effects. We find a non-monotonic relation between the diffusiophoretic mobility of
the colloid and the strength of the interaction with the solution. Finally, we report a numerical
study of polymer diffusiophoresis, finding that the existing theory for solid particles is not
accurate for polymer coils. Moreover, we observe that the hydrodynamic flow through the
polymer is less screened than for pressure-driven flows.
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Chapter 1

Introduction

“There’s plenty of room at the bottom.”

Richard P. Feynman

Moving fluids at the macro-scale is intuitive and regular in our daily life. Pressure
gradients drive water through pipes and lift aircrafts. With the advent of nanotechnology,
the ability to design new materials has increased immensely. The miniaturisation and
exquisite control in the manufacturing of widely available micro and nano-fluidic devices
open up a new horizon in science. It also brings new challenges, as the reduction in scale
increases the surface area to volume ratio considerably in such systems. Under those
conditions, pressure gradients are not efficient anymore, and thermal fluctuations together
with other phenomena ignored at the macro-scale become dominant. Additional to the
practical challenges, Navier-Stokes predictions break down at the interface between the
liquid and a solid surface. The answer to solving the problems also resides at the interface.
This small region is where phoretic motion originates and drives the movement of the
entire system. Etymologically, phoresis stems from the Greek "to bear" or "to carry". The
carrying forces include temperature gradients (thermophoresis), concentration gradients
(diffusiophoresis) or electric fields (electrophoresis). In the case of diffusiophoresis, the
concentration gradients of the various fast-moving components of a solution carry larger,
slower objects, such as colloids and polymers. The enhanced transport of the large particles
could be up to two orders of magnitude faster than their self-diffusion [1].
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Introduction

1.1 A brief history of phoresis

Thermophoresis was first described by Tyndall in 1870 [2] when he was measuring how dust
particles distributed close to surfaces. He noticed that there were dark spots in the scattered
light from heated areas. Almost a decade later, Maxwell [3] and Reynolds [4] studied the
transpiration of gases through porous plates due to an external temperature gradient and
the anisotropies in the pressure distributions caused by those temperature gradients. Since
then, thermophoresis has been widely studied due to its importance in industrial applications
such as vapour deposition, aerosols and micro-contamination control [5]. Moreover, many
applications are related to thermophoresis in liquids and the transport of colloids [6].

The earliest report on electro-osmosis dates back to 1807, with the pioneering work
by Reuss [7]. His experimental setup consisted of two reservoirs filled with water and
separated by a porous barrier. When he applied an electric current through the system,
he observed water flow from the anode to the cathode. Electrophoresis was observed as
early as the 1740s [8]. It was not until the early 1920s, with the works of Svedberg and his
collaborators, that electrophoretic applications started. In those days, little was known about
the detailed chemical composition of proteins but Svedberg was convinced that proteins were
polydisperse [9]. In 1923, Svedberg & Jette were studying egg albumin with a technique
called "cataphoresis" [10]. This method was later improved by Scott & Svedberg [11], making
it possible to measure protein mobilities and finally, Svedberg & Tiselius [12] optimised
the optical detection of the method. Years later, Tiselius published a more accessible [13]
compendium that attracted wide attention. Tiselius received the Nobel prize in Chemistry in
1948 for his work on electrophoresis, which allowed him to separate materials once believed
to be homogeneous.

Turning our attention to diffusiophoresis, the first systematic study of this phenomenon
was published by Derjarguin in 1947 [14]. Almost four decades later, Anderson & Prieve
[15, 16] investigated the diffusiophoresis of colloidal particles in detail, both experimentally
and theoretically.

1.2 Applications

Diffusiophoresis is not used as extensively as electrophoresis. A possible reason is its late
identification and the fact that it is not entirely understood. Only in the last decade, the conse-
quences of diffusiophoresis for a wide variety of applications have started to emerge [17, 18].
From the origin of life [19] to solving long-standing laundry detergency problems [20],
phoresis has a wide range of applications, moving fluids, DNA, proteins and colloids through

2



1.3 Motivation

pores and small channels due to the reduction of the dissipation phenomena [21]. One of the
first commercial applications of diffusiophoresis was in the formation of rubber gloves and
the deposition of paint films onto steel surface [16], highlighting the importance of this mech-
anism in drying films [22, 23]. Nowadays, lab on a chip, devices at the forefront of science,
rely strongly on this transport phenomenon [24–26]. Furthermore, in energy storage and
desalinisation processes, there is a growing interest in applications harnessing concentration
gradients to drive fluid flows [27, 18]. This is because, among all different phoretic mecha-
nisms, diffusiophoresis has the advantage that it does not require an active internal energy
input [28]. There are applications in autonomous motion [29–32], micro-nanomotors [33],
micro-turbines [34]. Solute gradients enhance particle transport into and out of dead-end
pores [35, 20] and are used for separation and focusing of particles [28, 36–40]. In addition
to the important role in microfluidics applications, phoresis is crucial in chemotaxis, the
movement of living cells by the gradient of chemical agents [16]. Diffusiophoresis drives
the transport of crucial compounds inside the cell using ATP/ADP gradients [41] and can be
used for enhanced drug delivery strategies [42]

1.3 Motivation

Despite the advantages and applications mentioned above, studying diffusiophoresis remains
a challenging task. A better understanding of the phenomenology at the microscopic scale
is crucial, as the equations governing hydrodynamics break down for small scales close to
interfaces [43, 44]. On the one hand, the standard theoretical descriptions are based on a
continuum approach, in which the solvent is treated as a uniform continuum and the solutes
are described by a concentration profile obeying the Smoluchowski equation in the presence
of an external field. On the other hand, in experiments, it is hard to precisely control all
the parameters involved in the process and gain knowledge of the dynamics at the interface.
Therefore, simulations offer a valuable tool to predict mobility coefficients and unveil the
underlying processes not captured by other means. Strictly speaking, diffusiophoresis is
caused by a gradient in electrochemical potential. It involves two types of thermodynamic
forces: the chemical potential gradients due to the different species in the solution and the
local electric field due to the different mobilities of the ions. One further advantage of
theoretical and numerical approaches is that the effect of charges can be neglected without
losing generality [45]. Lastly, the disagreement between authors on theoretical aspects, a lack
of unified definitions and the simple systems analysed suggest that diffusiophoresis requires
further research.

3
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1.4 Thesis outline

This work aims to build a clear and unified theoretical ground to describe diffusio-osmosis
and diffusiophoresis. Regarding simulations, the complexity of the applications will increase,
proceeding from planar surfaces to polymers, giving the necessary technical details at each
step. In Chapter 2, we introduce the concepts of diffusio-osmosis and diffusiophoresis,
creating a link between them and describing their microscopic origins. We present the
fundamental theory to understand phoresis and describe the main algorithms used to examine
them. Our focus is on Non-Equilibrium Molecular Dynamics (NEMD) and the different
approaches to include thermodynamic forces compatible with periodic boundary conditions.
In Chapter 3, we explore diffusio-osmosis extending the results available in the literature and
carefully making connections to the theory. We explore the relevant parameters in Derjaguin-
Anderson theory and compute them using equilibrium molecular dynamics. In Chapter 4,
we study Anderson’s theory to describe the diffusiophoresis of spherical particles. We take
a novel approach to simulate colloidal diffusiophoresis that is a natural extension from the
techniques used in diffusio-osmosis. In Chapter 5, we focus on polymer diffusiophoresis
exploring the limitations in the theoretical descriptions to describe non-spherical particles
with fluctuating shape and an intrinsically fuzzy surface. Finally, we conclude with a
summary and future outlook in Chapter 6.

4



Chapter 2

Theoretical Background

“Ludwig Boltzmann, who spent much of

his life studying statistical mechanics,

died in 1906, by his own hand. Paul

Ehrenfest, carrying on the work, died

similarly in 1933. Now its our turn to

study statistical mechanics.”

David L. Goodstein

2.1 From osmosis to phoresis

Before starting the discussion, it is worth pointing out that in the literature, concentration and
chemical potential gradients are taken as equivalent driving forces for diffusion. The former
is not a thermodynamic force and should not be used. For instance, in an ideal solution, when
the connection between the concentration and chemical potential gradient is straightforward,
the driving force senses the gradient in the logarithm of the concentration rather than its
distribution. Moreover, the Fickian approach, common in continuum-based formulations,
exposes another conceptual problem, the assumption that cross-terms in the diffusivity matrix
can be neglected [46, 47]. In this chapter, we introduce a non-equilibrium thermodynamic
approach, in which the chemical potential gradient, or a linear combination of thermodynamic
forces, unambiguously drives the dynamics of a system. We also discuss how the chemical
potential gradients in a mixture are connected and that Onsager’s reciprocity is fulfilled.

5



Theoretical Background

2.1.1 Thermodynamic description

It is useful to employ equilibrium thermodynamics as a first attempt to describe diffusio-
phoresis. In Fig. 2.1, we show a colloid of radius a immersed in a binary solution with solutes
and solvents. There is a gradient of chemical potential in the solutes —µs. Let µs,1 be the
chemical potential in one side of the system and µs,2 on the other side such that µs,2 > µs,1.
Finally, let us suppose that the solute interacts preferentially with the colloid.

a
<latexit sha1_base64="uIKUdjvDltn2IUk76k3LOzNfYjc=">AAAB/HicbVDLSsNAFL2pr1pfVZdugkVwVZIq6LLoxmUL9gFtKJPpTTt0MgkzEyGE+gNu9Q/ciVv/xR/wO5y2WdjWAxcO59zLvff4MWdKO863VdjY3NreKe6W9vYPDo/KxydtFSWSYotGPJJdnyjkTGBLM82xG0skoc+x40/uZ37nCaVikXjUaYxeSEaCBYwSbaQmGZQrTtWZw14nbk4qkKMxKP/0hxFNQhSacqJUz3Vi7WVEakY5Tkv9RGFM6ISMsGeoICEqL5sfOrUvjDK0g0iaEtqeq38nMhIqlYa+6QyJHqtVbyb+5/USHdx6GRNxolHQxaIg4baO7NnX9pBJpJqnhhAqmbnVpmMiCdUmm6Ut8ThVjKqpCcZdjWGdtGtV96paa15X6nd5REU4g3O4BBduoA4P0IAWUEB4gVd4s56td+vD+ly0Fqx85hSWYH39AhnZldE=</latexit>

�µs
<latexit sha1_base64="tpGsFofMLUNSXHb2PuBIyau6OiU=">AAACB3icbVDLSsNAFJ34rPVVdelmsAiuSlIFXRbduKxgH5CEMplM2qHzCDMTIYR+gB/gVj/Bnbj1M/wCf8Npm4VtPXDhcM693HtPlDKqjet+O2vrG5tb25Wd6u7e/sFh7ei4q2WmMOlgyaTqR0gTRgXpGGoY6aeKIB4x0ovGd1O/90SUplI8mjwlIUdDQROKkbGSHwwVimHAs4Ee1Opuw50BrhKvJHVQoj2o/QSxxBknwmCGtPY9NzVhgZShmJFJNcg0SREeoyHxLRWIEx0Ws5Mn8NwqMUyksiUMnKl/JwrEtc55ZDs5MiO97E3F/zw/M8lNWFCRZoYIPF+UZAwaCaf/w5gqgg3LLUFYUXsrxCOkEDY2pYUt6SjXFOtJ1SbjLeewSrrNhnfZaD5c1Vu3ZUYVcArOwAXwwDVogXvQBh2AgQQv4BW8Oc/Ou/PhfM5b15xy5gQswPn6BThPmg4=</latexit>

µ1
s

<latexit sha1_base64="zR2he8Zb26XzuTH/+ez/YxowOEo=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAcka5idzCZDZmaXmVlhWXL0A7zqJ3gTr36IX+BvOEn2YBILGoqqbrq7gpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Hbqt5+o0iySDyaNqS/wULKQEWys1O6JpK8fvX654lbdGdAq8XJSgRyNfvmnN4hIIqg0hGOtu54bGz/DyjDC6aTUSzSNMRnjIe1aKrGg2s9m507QmVUGKIyULWnQTP07kWGhdSoC2ymwGellbyr+53UTE177GZNxYqgk80VhwpGJ0PR3NGCKEsNTSzBRzN6KyAgrTIxNaGFLPEo1I3pSssl4yzmsklat6l1Ua/eXlfpNnlERTuAUzsGDK6jDHTSgCQTG8AKv8OY8O+/Oh/M5by04+cwxLMD5+gUhB5hb</latexit>

µ2
s

<latexit sha1_base64="20EJblLRkVqouN6LRuVA9BEsbQk=">AAACA3icbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BLx4jmAcka5idzCZDZmaXmVlhWXL0A7zqJ3gTr36IX+BvOEn2YBILGoqqbrq7gpgzbVz32ymsrW9sbhW3Szu7e/sH5cOjlo4SRWiTRDxSnQBrypmkTcMMp51YUSwCTtvB+Hbqt5+o0iySDyaNqS/wULKQEWys1O6JpK8fa/1yxa26M6BV4uWkAjka/fJPbxCRRFBpCMdadz03Nn6GlWGE00mpl2gaYzLGQ9q1VGJBtZ/Nzp2gM6sMUBgpW9Kgmfp3IsNC61QEtlNgM9LL3lT8z+smJrz2MybjxFBJ5ovChCMToenvaMAUJYanlmCimL0VkRFWmBib0MKWeJRqRvSkZJPxlnNYJa1a1buo1u4vK/WbPKMinMApnIMHV1CHO2hAEwiM4QVe4c15dt6dD+dz3lpw8pljWIDz9QsioJhc</latexit>

Fig. 2.1 Spherical colloid with radius a in a binary solution of solute and solvent. There is a
solute chemical potential gradient —µs between the two extremes at µs,1 and µs,2.

Since the solute is adsorbed at the surface of the colloid, we can express the change in
free energy DG between regions 1 and 2 as

DG = 4pa
2(g2 � g1) , (2.1)

where g is the interfacial tension. As µs,2 > µs,1 then g2 < g1 and the particle tends
to move spontaneously towards the region with higher solute concentration. This can be
generalised for a case where the concentration changes continuously with the position,

—G = 4pa
2
✓

∂g
∂ µs

◆
—µs . (2.2)

Although this approach predicts that the colloidal particle should move, there is no way to
quantify its speed. In chapter 4, we will use non-equilibrium thermodynamics to estimate the
diffusiophoretic velocity in this system. For now, we will introduce another useful result from
thermodynamics, the Gibbs-Duhem equation. It helps to understand how diffusiophoresis
converts the chemical energy into mechanical energy of colloids moving through the fluids;

6



2.1 From osmosis to phoresis

it does so by producing a local electric field or pressure gradient [17]. Let us suppose a
system with n species, each species i composed of Ni particles with chemical potential µi. All
the particles are kept in a volume V at pressure P, temperature T and entropy S. Therefore
Gibbs-Duhem is given by

V dP�S dT =
n

Â
i=1

Ni dµi . (2.3)

Using this relation, we see that, for instance, in a binary system at constant pressure
and temperature, a gradient in the chemical potential of a single species directly induces a
gradient in the other component. Moreover, if there is an isothermal process for a solution
close to a surface, there is a local pressure gradient depending on the chemical potential
gradients (see Chapter 3).

2.1.2 The boundary layer approximation

We just gave a thermodynamic description of diffusiophoresis without taking into account
the specific microscopic details of the problem. As an example, the presence of the colloid
perturbs the neighbouring fluid creating a heterogeneous region close to its surface known
as the diffuse layer. Let us investigate this in more detail, in the case of the colloid radius
a being much larger than the diffuse layer thickness L. Derjaguin used this approximation
[14], the boundary layer approximation, to separate the problem into two regions: one inside
and the other one outside the diffuse layer. Thanks to the scale separation, the dynamics
can be studied inside the diffusive layer. In this approximation, the diffusiophoretic problem
reduces to a fluid subject to a gradient of chemical potential flowing above a flat surface as
shown in Fig. 2.2. Therefore, the study focuses on the diffusio-osmosis, i.e the movement of
a fluid influenced by a chemical potential gradient in contact with a solid surface. To connect
the two scales, Derjaguin argues that the diffusiophoretic velocity of the particle is given by
vdp = �v

B, where v
B is the velocity of the fluid in the bulk, i.e. the limiting value far from

the surface in the boundary layer approximation.
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Fig. 2.2 Diffusio-osmosis can be seen as diffusiophoresis under the boundary layer approx-
imation. Rather than focusing on the movement of the colloidal particle, we focus on the
fluid flow on its surface. In this case, a � L, this reduces the analysis to a fluid flow on top
of a flat plate, known as Derjaguin’s approximation.

2.1.3 Microscopic origin

In Fig. 2.3, we show a flat solid wall and a binary solution composed of solutes s and solvents
f . Each species interacts with the wall differently, with solutes being adsorbed preferentially
at the solid surface. The adsorption creates an excess of solutes in the diffuse layer. Moreover,
if there is a chemical potential gradient on the solutes ———µs, then they move following the
thermodynamic force �———µs. As a result of the excess at the interface, the solute movement
drives the solution flow. All this takes place within the diffuse layer, beyond which the fluid
moves force-free; thus we observe the typical plug-like flow [27, 48].

Not only chemical potential gradients give rise to osmosis (phoresis). There are other
quantities, such as electric potential and temperature, whose gradients, known as thermo-

dynamic forces (see Sec. 2.2), drive the motion in a system. Each one of them having an
“excess" quantity associated. Therefore, we also have electro- and thermo-osmosis(phoresis)
originating from an excess of charges or enthalpy at the interface respectively (see Fig. 2.4).
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Fig. 2.3 The preferential interaction of the solutes with a solid surface creates an excess
of this species at the interface. The thermodynamic force �———µs drives the solute motion
creating a net flux due to the excess at the interface, defining the flow of the whole system.
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Fig. 2.4 Electro-, diffusio- and thermo-osmosis(phoresis) are interfacial phenomena origi-
nated by the excess of certain quantities that couple to the different thermodynamic forces.
The excess quantities are the charge, solutes (or any species) and enthalpy, which are associ-
ated with the electric field, chemical potential gradient or temperature gradients respectively.
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2.1.4 Diffusiophoresis in electrolytes

The fluid in which the colloidal particle is moving can be composed of uncharged or charged
solute particles. In the former, van der Waals interactions between the colloid and the solutes
drive the phoretic motion. In the latter, solutes ionise close to the surface of the particle
creating an electrical double layer and the entire effect could be divided into two processes
as shown in Fig. 2.5: chemiphoresis represented by the concentration gradient ———C and
electrophoresis, due to the in-situ electric field E. In chemiphoresis, the counterions, which
have an opposite charge to the surface, are adsorbed, whereas the co-ions are repelled by the
particle surface. This binary solute system has two non-electrolyte type contributions each
coming from co-ions and counterions concentration gradients. Finally, the electrophoretic
effect results from the charged constituents that induce an electric field due to their different
diffusional motion [28, 49].

Fig. 2.5 Electrolyte diffusiophoresis diagram showing the two effects that give rise to the
phenomenon. Chemiphoresis caused by the gradient of concentration in the solute ions.
Electrophoresis due to the local electric field caused by the different mobilities of co-ions
and counter ions [17].

It can be shown that the electric field is given by [50]

E =
kBT

Ze
b —C

C
, (2.4)

where Z is the valence of the constituent ions of the solute, e is the proton charge, and C is
the ionic concentration. b is the diffusivity difference factor which depends on the diffusion
coefficient of the ions. Therefore we observe that depending on the nature of the salt, the
diffusiophoretic velocity vdp can be enhanced or decreased.
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2.2 Linear Non-Equilibrium Thermodynamics

Consider a bulk fluid in equilibrium, the variation of any state variable creates a perturba-
tion of the system that generates a transitory response trying to bring it back into the most
favourable configuration, minimising the free energy. This induces a net flux of energy, mass
or momentum in the system. There are several ways to generate these fluxes. Applying an
external force results in a net motion of the center of mass of the system. Such external
forces can be pressure gradients or gravitational fields. There are other gradients or ther-

modynamic "forces"
1 (Prigogine [51] coined the term affinities for thermodynamic forces

such as temperature, electric fields or chemical potentials, which do not have a net effect on
the centre of mass in the bulk of a system. The thermodynamic forces are responsible for
the thermo-, electro- and diffusio-osmosis (phoresis) respectively. In this section, we will
introduce these concepts in the framework of non-equilibrium thermodynamics.

2.2.1 Entropy production

In the thermodynamics of irreversible processes, we assume a Local Thermal Equilibrium
(LTE). This means that we can divide the entire spatial domain into sufficiently small sub-
domains or control volumes, where equilibrium still holds (i.e local thermodynamic relations
are valid [52]). The total entropy S in a volume V is given by:

S(t) =
Z

V

drsV (r, t) . (2.5)

where sV (r, t) entropy per unit volume or entropy density. We expressed the entropy density
conservation as

∂ sV

∂ t
+——— ···JsV

= ss , (2.6)

where JsV
is the entropy flux. The local entropy production ss is generated by gradients

in state variables, which are related to all the irreversible phenomena, such as the viscous
interaction, heat conduction, diffusion and chemical reactions [53]. The rate of change due
to the exchange of entropy with neighbouring regions is given by ——— ···JsV

.
Using Gibbs equation, we can express,

1In general, thermodynamic forces do not have the units of force. Rather, they are derived from the basic
thermodynamic relation dS = (1/T )dE � (P/T )dV + Â(µi/T )dNi. The basic thermodynamic "forces" are
the gradients of 1/T , P/T and µi/T and they are conjugate to heat, volume or particle fluxes. However, in
applications, we often transform both forces and conjugate fluxes. The fluxes caused by thermodynamic forces
counteract the driving forces and, in the process, result in entropy production.
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T dsV = dq�
n

Â
i

µi dci , (2.7)

where ci is the concentration of the species i and q is the heat per volume. Assuming LTE,
therefore requiring that the spatial coordinates remain constant, we get

T
∂ sV

∂ t
=

∂q

∂ t
�

n

Â
i

µi

∂ci

∂ t
. (2.8)

Similarly, we can express conservation equations for q and ci:

∂q

∂ t
+— ·Jq = 0 , (2.9)

∂ci

∂ t
+— ·Ji = si =

r

Â
j

gi jJ j , (2.10)

where si is the local production of component i per volume due to the chemical reactions
r. It can be expressed in terms of the coefficients gi j for the reaction j and Jj is the
chemical reaction rate of reaction j. Jq and Ji are the fluxes of heat and particles of species i

respectively. Using the results in Eq.(2.8) together with Eqs. (2.6), (2.9) and (2.10) we obtain
that the local entropy generation is

ss = Jq ·—
✓

1
T

◆
+

n

Â
i

Ji ·—
⇣µi

T

⌘
� 1

T

r

Â
j

A jJj , (2.11)

where we defined the chemical affinity as A j = �Ân

i
gi jµi.

Eq.(2.11) holds for electrolytes replacing the chemical potential by the electrochemical
potential. In general, we can express the entropy production as,

ss = Â
a

JaXa , (2.12)

where a runs over all the irreversible phenomena present in the system, Ja is the flux of the
quantity a and Xa is the associated thermodynamic force.

Very often, one combination of fluxes and thermodynamic forces is more convenient than
others. Different authors express the same irreversible phenomena with different equivalent
representations. Therefore, one can define new fluxes Jb , and consequently thermodynamic
forces Xb , such that the entropy generation remains invariant [51], this is:

ss = Â
a

JaXa = Â
b

J0
b X0

b . (2.13)
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Furthermore, Onsager introduced an explicit way to express the linear dependence of the
thermodynamic flows on the thermodynamic forces. These phenomenological laws are only
valid close to equilibrium, i.e. in the linear regime where thermodynamic forces are small
[54]. A few examples of these phenomenological laws are Fourier’s, Fick’s, and Ohm’s laws.
Hence, in a general manner,

Ja = Â
d

Mad Xd . (2.14)

where Mad are phenomenological transport coefficients such as the thermal conductivity,
diffusion coefficient, etc. The off-diagonal coefficients describe the coupling between the
fluxes and are known as coupling coefficients or cross coefficients [52]. Notice that, by using
Onsager’s reciprocity theorem [53], there is an explicit relation between the phenomenologi-
cal coefficients given by Mad = Mda , which offers a route to measuring transport coefficients
while using different thermodynamic forces.

Elucidating the transformations in Eq. (2.13), we can express the new fluxes as a linear
combination of the old ones J0 = A ·J and similarly with the forces X0 = B ·X. Hence, we
can transform the matrix of phenomenological coefficients M as

M0 = A ·M ·B�1 . (2.15)

2.3 Modelling across the scales

In a typical diffusiophoretic system, there is a broad hierarchy of scales as shown in Fig. 2.6.
Ranging from the atomic scale, relevant for the solvents, solutes and the interface, to the
hundreds of micrometres of a typical channel in microfluidics experiments [55]. While
modelling, if we start from the bottom at the molecular scale, soon the problem becomes
untraceable. The limited times produced with very expensive computations, will not be able
to reproduce experimental observations. If we decide to coarse-grain the events near the
interface and use a vague knowledge from the microscale to pose some boundary conditions
for a continuum theory, we will miss the microscopic details and a clear understanding of the
origin of phoresis.
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Fig. 2.6 Typical Length scales in a diffusiophoresis experimental setup. The channel length
Lsys, colloidal particle radius a and solute typical radius rs (estimated from the diffusivity)
[55]. We assume water as solvent with radius r f and the typical diffuse layer thickness
L [16].

2.3.1 Continuum media

The continuum approach or the hydrodynamic limit arises when proper time and length scale
separation is performed, averaging fast microscopic variables. As a result of this process,
the large number of degrees of freedom, such as individual particles positions and velocities,
reduce to a set of equations that depend solely on a few variables such as the velocity field,
pressure, temperature and density. During this averaging process, a detailed description of
the physical process is lost and is absorbed in the phenomenological parameters [33]. The
hydrodynamic limit can be pushed to lower scales by a phenomenological extrapolation of
the results to shorter wavelengths and higher frequencies [56]. This extension turns out to be
valuable in the description of bulk properties. However, the hydrodynamic limit breaks down
faster for interfaces, due to the inhomogeneity of the fluid close to the surface.

Governing equations

Theoretical approaches on diffusiophoresis treat the solution solvent-solute as a Newtonian
fluid, into which a macroscopic particle is dispersed, and then make use of well-established
non-equilibrium thermodynamics and continuum hydrodynamics treatments to work out
the effect of solute gradients on the phoretic motion of the particle. Before going into the
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details, it is necessary to introduce the governing equations of fluid dynamics, which emerge
naturally from the conservation of mass, momentum and energy.

The continuity equation in the context of fluid dynamics refers to the mass conservation
in the system that is expressed as follows (see Eq.(2.10)),

∂r
∂ t

+——— ···v = 0 , (2.16)

where r is the mass density of the fluid and v fluid velocity.
If there is an incompressible fluid, then we obtain ——— ···v = 0, which implies that if we try

to deform a volume of fluid, it will reshape, but the volume will not vary. Moreover, if the
fluid is transporting several i species, we express the continuity equation for the concentration
of species i as:

∂ci

∂ t
+——— ··· (civ)�Di—2

ci = 0 , (2.17)

where we suppose that the total flux Ji of species i has two components, diffusive and
advective. The diffusive flux can be expressed by using Fick’s law Jdiff

i
= Di———ci with Di the

diffusion constant of species i. The advective term expresses the coupling of the concentration
with the fluid velocity field and it is given by Jconv

i
= vci. Imposing momentum conservation,

we can derive the Navier-Stokes (NS) equation

r


∂v
∂ t

+v ·———v
�

= ——— ···P+Fext , (2.18)

with P being the stress tensor or the momentum flux density tensor [57], given by

P = h [———v+(———v)T � 2
3

I(——— ···v)]+ [z (——— ···v)�P]I , (2.19)

where P is the pressure, h is the shear viscosity, z is known as the bulk viscosity or
volume viscosity that is related to the dissipation of energy occurring when there is an
expansion or contraction of the fluid. The term 2

3I(——— ···v) was introduced to make the shear
viscosity dependence traceless, this term could also be added to the dilatation term at the end
z (——— ···v)I. For low Reynolds numbers, the non-linear term v ·———v can be neglected and NS
becomes linear [58].

For transport in microfluidics systems, in addition to having small inertial terms compared
to the typical viscous contributions (i.e. low Reynolds numbers). We can assume that the
fluids are incompressible fluids. Hence, we can simplify the stress tensor,
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P = �pI+h [—v+(—v)T ] . (2.20)

Therefore, Eq.(2.18) reduces to the Stokes equation,

r ∂v
∂ t

= ——— ···P+Fext . (2.21)

If we are dealing with Brownian time scales or stationary processes, the time derivative
may be neglected and Stokes equation together with the incompressible mass conservation
assumption are called creeping flow equations [58]. The main advantage of a continuum-
medium approach is that it describes the phenomenology at time and length scales of typical
microfluidic experiments. For instance, Montenegro-Johnson et al. [59] exploit the interfacial
nature of diffusiophoresis to solve Stokes equations using the boundary element method.
Since no quantities in the bulk are required to compute the velocity of phoretic particles, the
method is fast compared to other numerical methods. In another application, Ault et al. [35]
study the injection and withdrawal dynamics of colloidal particles into dead-end channels
by using solute gradients. They simultaneously solve the (transient)diffusion-advection
equations for solutes and colloids. The results are used to fit experimental data [25], thus
obtaining the mobility and the time-dependent particle distributions with excellent agreement.
Once the mobility is estimated, the zeta potential of both walls and particles can be inferred.

2.3.2 The mesoscopic scale: bridging between scales

Derjaguin’s pioneer work and the subsequent theoretical improvements based on the same
approach [14, 16, 60–63] use a continuum treatment of diffusiophoresis, where the solvent
is treated as a continuum and only the concentration distribution of the solutes is included
explicitly. This approach allows the inclusion of some microscopic details, such as the
inhomogeneous distribution of solutes at the interface and its effective interaction with the
object of interest. We will discuss these theoretical developments at length in the next
chapters.

Concerning simulation methods, as we mentioned before, the biggest challenge in phore-
sis is to create a bridge for the length- and time-scale gaps between the solution and the
particle undergoing phoresis. It would be ideal to perform full molecular dynamics to
solve the complete set of equations of motions, although it is not feasible to reach the time
scales required to study the wide range of practical applications. At the other extreme,
we have continuum dynamics, with NS showing their successful and efficient approach to
solve macroscopic problems, but lacking the detail of the microscopic approach, as thermal
fluctuations which strongly influence the dynamics at the molecular level. From the need
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of an intermediate scale, mesoscale models arise such as Dissipative Particle Dynamics
(DPD) [64], Stochastic Rotation Dynamics (SRD) (also known as Multiparticle collision
dynamics (MPC) [65]) or Lattice Boltzmann Method (LBM) [66]. These techniques capture
the essential features of the solvent. They offer alternative ways of solving the NS equations,
expressed as local conservative laws of mass, momentum and energy with some additional
aspects of the microscopic detail [67]. However, they require explicit boundary conditions
for the velocity of the solvent at the particle surface. Such conditions are slip and non-slip
boundaries modelled as specular reflections or bounce back operations respectively. These
two conditions are not enough to account for the velocity enhancement at the interface that
can be “up to two orders of magnitude" [68].

There have been some attempts to model diffusiophoresis using MPC, mainly consisting
of a moving object in a binary solution. One way of including the interfacial effect is
by creating explicit gradients and having a hybrid MD-MPC [29, 31, 34], such that the
interactions between the different species of solution particles and the body subject to
phoresis are included. Another alternative is to modify the boundary conditions, including a
new phoretically osmotic boundary condition [69], which gives solution particles either a slip
or a non-slip boundary condition, depending on the species. This produces an unbalanced
tangential force at the boundary which drives the phoretic motion. In this framework,
the strength of the diffusiophoretic effect is tuned by changing the fluid-particle boundary
potential interaction range.

2.3.3 Microscopic

The hydrodynamics of fluid films thicker than 10 � 20 atomic sizes can be described by
following a continuum approach using a slip boundary condition [70]. However, in order
to estimate the magnitude of the velocity at the boundary, or slip velocity v

B, a deeper
understanding of the interfacial region is required. This inhomogeneous region is where the
phoretic transport occurs and the hydrodynamic limit breaks down. Furthermore, the surface
effects occur at much larger scales than the bulk deviations from continuum expectations [33].

To model the diffusiophoretic movement from a microscopic perspective we can use
classical Molecular Dynamics (MD). This technique allows for a detailed study of the
interactions in the diffusive layer by using a deterministic approach. Thus, the equations of
motion for all the particles in the system are integrated by using schemes such as Verlet or
Leapfrog [71], which are time reversible and have a unitary evolution in phase space. We
refer to classical MD as we are not calculating the interaction between particles starting
from their electronic structure. Instead, we use van der Waals type interactions and we can
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include Coulombic effects to deal with electrolytes. To summarise, the entire idea behind
MD is to sample microscopic quantities every certain threshold to avoid correlation between
measurements and then use statistical mechanics to create a link between the microscopic
degrees of freedom and the thermodynamic/hydrodynamic properties. In the next section,
we discuss the details of MD simulations in diffusio-osmosis(phoresis).

There are some applications on microscopic simulations using an explicit solvent to
study diffusio-osmosis(phoresis). An early attempt to investigate diffusio-osmosis using
MD simulations was performed by Adjari & Bocquet [68]. The authors modelled a binary
solution interacting with a solid wall and measured the diffusio-osmotic transport coefficients
indirectly by applying a pressure gradient and measuring the solute excess flux. More
recently, a small number of authors revisited the same type of system using both equilibrium
and non-equilibrium MD [27, 72, 48, 73]. Finally, applications on diffusiophoresis have
focused on colloids [62, 74] and short polymers [75].

2.4 Molecular Dynamics

In this section, we describe the essence of the existing MD algorithms to study diffusio-
osmosis(phoresis). As these phenomena are inherently out of equilibrium, the main focus
will be on Non-Equilibrium Molecular Dynamics (NEMD). In what follows, we employ
the most common integration algorithms, thermostats and some auxiliary techniques as
Monte Carlo (MC) that will be mentioned regularly and are extensible described elsewhere
[76, 77, 71, 44].

2.4.1 Equilibrium Molecular Dynamics

Although phoresis occurs in systems out of equilibrium, it is still possible to estimate
transport coefficients using linear response theory (see Appendix B). Yoshida et al. [27]
followed by Mangaud et al. [73] utilised this approach to estimate diffusio-osmotic mobilities
by computing Green-Kubo relations. Furthermore, as this approach is limited to close-
to-equilibrium systems, they were able to show that the transport matrix is symmetrical,
following Onsager’s reciprocity.

EMD is also used for the analytical estimations of mobilities based on continuum theories.
These estimations depend on equilibrium quantities, such as the concentration distribution of
species at the interface. Therefore, short EMD runs are sufficient to compute the theoretical
expressions and this will be discussed in each one of the applications in the following
chapters.
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2.4.2 Non-Equilibrium Molecular Dynamics

The underlying idea of NEMD is to try to reproduce as close as possible what happens in
real experiments under the influence of thermodynamic forces. This is, applying a driving
force that keeps the system out of equilibrium to measure the resultant flux. In the context of
diffusion simulations, there are three techniques used to simulate concentration gradients.
The first one, Gradient Relaxation Molecular Dynamics (GRMD) [78], consists in creating
two independent simulation boxes, parent boxes, at different concentrations using MC
followed by additional NVT-MD equilibration steps. The parent boxes are then joined to
create a parent cell with a step concentration distribution along the x-axis (see Fig. 2.7) that
equilibrates while the transient concentration distribution is sampled to find the diffusivities.
This technique is not suitable for our purpose because the transient nature of the gradient
does not allow gathering enough statistics to sample the quantities of interest.

Fig. 2.7 Schematic representation of the Gradient Relaxation MD box [78]. The parent cell is
formed by two independently equilibrated boxes with different homogeneous concentrations.
The concentration profiles at t = 0 and a (transient) concentration distribution at a later time
t = t

0 are shown at the bottom.

The additional two methods are called Boundary-Driven (BD-NEMD) and External-Field
(EF-NEMD) or Field-Driven (FD-NEMD) and they will be discussed in more detail below.
In short, BD-NEMD is more intuitive and close to real experiments. It consists of creating
two separated reservoirs in the simulation box where quantities as energy, momentum or
concentrations are fixed but with different values for each reservoir. The gradient in one
of the specific quantities induces a flux that brings the system to a non-equilibrium steady
state. FD-NEMD can be seen as a small portion of the BD-NEMD simulation box in which
there is an homogeneous distribution of the state variable. The lack of an explicit gradient
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is compensated by applying an external force on each particle that mimics the influence of
the thermodynamic force. In Fig. 2.8, we show the connection between BD-NEMD and
FD-NEMD simulations of bulk diffusion.
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Fig. 2.8 Bulk diffusion in an ideal binary solution at constant temperature and pressure. We
show a BD-NEMD simulation box with source and sink regions where we impose a high
and a low concentration of red particles, respectively. The FD-NEMD box can be assumed
as a new simulation box in the same thermodynamic state as a small region in LTE from
the BD-NEMD simulation. As the new box has a homogeneous concentration, a force
representing the effect the chemical potential gradient is applied to each particle.

Boundary-Driven Non-equilibrium Molecular Dynamics

Probably, the most intuitive way of imposing a chemical potential gradient in a simulation is
to explicitly create two reservoirs in the simulations separated by a transport region as shown
in Fig. 2.8. The condition, in this case, the concentrations at the boundary of the transport
region, define the flux within, thus the name "boundary-driven". The first simulations of
systems experiencing chemical potential gradients in the context of diffusion were developed
almost simultaneously by Heffelfinger and van Swol [79] and MacElroy [80]. The former
authors called the method Dual Control Volume Grand Canonical Molecular Dynamics
(DCV-GCMD), as it consists of two grand canonical MC (GCMC) control volumes or
reservoirs embedded in an MD-NVT simulation box. The GCMC serves to keep the desired
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concentration in the reservoirs. The molecules flow between the two control volumes, from
the source at high concentration to the sink at a lower concentration. Replenishing the
particles in the reservoirs at the right rate generates a steady-state flux of particles. This
step is critical, as it may give incorrect results if the MC/MD frequency is not large enough
[79, 81, 82]. The tuning depends on the size of the reservoirs, the distance between them and
the number of GCMC insertion/deletion attempted per MC step.

In principle, BD-NEDM represents what happens in real experiments and is inherently
inhomogeneous. This is ideal to simulate microscopic inhomogeneous systems such as the
flow through nanoscopic films [83]. However, in practice, the method has many disadvantages.
As discussed before, it is difficult to tune the parameters to set up the initial concentration
profile. Moreover, the use of GCMC implies that the velocity of the inserted particles must
be known a priori and the method will fail for fluid mixtures with large size ratio [83]. The
magnitude of the gradient can lead to simulations occurring outside the linear response regime
[81]. Finally, the simulations are expensive as they must explicitly include the reservoirs, and
there is an overhead associated with the MC insertion/deletions.

Field-Driven Non-Equilibrium Molecular Dynamics

Simulations using FD-NEMD require the introduction of mechanical constraints on each
particle, an external field mimicking the effect of a thermodynamic force. In general, this
synthetic constraint has no clear physical interpretation, but its mechanical nature facilitates
the simulation [84] .

This approach has been applied in many contexts [85], with the body force coupling
to particle variables such as the mass or the charge [44]. In the case of diffusion, Mag-
inn et al. [78] performed colour field NEMD, in which particles are assigned colour charges
according to their chemical identity. In this way, they replaced the chemical potential gradient
by an equal (but opposite) colour force.

In practice, when the synthetic field is applied through the simulation, the particles obey
modified equations of motion [83], generating a steady flux in a system without an explicit
gradient. As the forces do not depend on the position, the simulation remains homogeneous
in the direction of the gradient and is therefore compatible with periodic boundary conditions
and less prone to finite size-effects. It is worth pointing out that special care is required as
the external force inevitably produces heat. Hence, suitable thermostats as the Gaussian
isokinetic [86] or Nosé-Hoover [87] are used, both giving identical steady-state predictions
of material properties [44]. These thermostats also solve a common problem that arises when
large fields are applied, namely the string-phase separation [85] or the traffic lanes effect
[88]. This non-equilibrium phase separation arises because there is a free energy advantage
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to partially separate the system to reduce the effective friction between molecules of different
species.

Arya et al. [81] highlight that “this method has not been widely used, perhaps because
the equivalence of such a homogeneous external forcing function that drives diffusion and
an actual chemical potential gradient has not been formally demonstrated". Subsequently,
Yoshida et al. [27] demonstrated based on linear response theory that this is indeed the
case and that the Onsager reciprocity relations for phoretic transport follow if the imposed
gradients are replaced with a constant colour-force field (see Sec. 3.2.3).

There is another method to determine the microscopic forces acting on the individual
particles based on the stress tensor. This method was first introduced by Han et al. [45] and
then applied in simulations of diffusio-osmosis and Marangoni effect by Liu et al. [48, 72].
Also, in thermo-osmosis by Ganti et al. [89]. The method allows the computation of the
force per fluid volume from the gradient of the microscopic pressure tensor at a position z

from a solid wall as:

fV (z) = �∂P
xx(z)
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B
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B
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∂x
, (2.22)
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i
is the concentration of species i in the bulk. Using centred finite differences and
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Therefore, instead of computing the stress gradient from NEMD, two independent
equilibrium simulations at different concentrations are required to measure the pressures in
Eq. (2.23).

This method seemed promising, however, there is a subtlety worth considering: the
definition of the microscopic stress tensor is not unique, as the only restriction on it is
——— ···P = 0. This generates different estimates for the force and ultimately different velocities.

To summarise, the advantages that FD-NEMD offers over BD-NEMD are that it allows
the simulation of moving objects inside a chemical potential gradient under periodic boundary
conditions and a homogeneous simulation box compatible with LTE. The simulations require
fewer computational resources, as their system sizes are considerably smaller, and there is no
overhead caused by MC movements. Once the diffusive layer equilibrates, the imposition of
chemical potential gradients requires the modification of an input parameter rather than the
re-definition of the reservoirs in BD-NEMD. The latter feature allows for the examination of
both linear and non-linear responses.
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Chapter 3

Diffusio-osmosis

"God made the bulk; surfaces were

invented by the devil."

Wolfgang Pauli

3.1 Introduction

As described in Chapter 2, concentration gradients in bulk fluid cannot cause fluid flow.
However, a gradient in the chemical potential of the various components in a fluid mixture can
cause a net hydrodynamic flow in the presence of an interface that interacts differently with
the different species in the solution. Such a flow, induced by chemical-potential gradients, is
known as diffusio-osmosis. We can describe the theory of diffusio-osmotic flow in a mixture
of uncharged species. This discussion is easily extended to an electrolyte solution, as the
forces acting on charges can be accounted for by adding electrostatic potential energies to
the chemical potentials [45], i.e. by replacing the chemical potential by the electrochemical
potential. The analogies between both phenomena were discussed in the pioneering work of
Derjaguin [90], who stressed the analogy between solute and charge excess, and between
chemical potential gradients and electric fields.

Several numerical studies on diffusio-osmosis have been conducted in recent years,
from computations of the transport coefficients using the Green-Kubo formalism in EMD
simulations [68, 27, 73], to attempts to relate the microscopic forces to stress gradients [48].

The present chapter introduces most of the concepts used and extended in this thesis.
The text is organised in the two following sections: Sec 3.2 presents a framework to study
diffusio-osmosis/phoresis starting from Non-Equilibrium Thermodynamics. We introduce the
relevant quantities associated with the excess of species at the interface and find a connection
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between the transport coefficients using Onsager’s formalism. In Sec 3.3, we present a
benchmark simulation that we use, in order to highlight certain subtleties that are often
glossed over in the literature.

3.2 Theory

3.2.1 Diffusio-osmotic entropy generation

To illustrate the theoretical description of diffusio-osmosis we consider a n-component fluid
in contact with a solid surface, as shown in Fig. 3.1. The only thermodynamic forces acting
on the system are the chemical potential gradients of each species i, ———µi. Usually, the fluid
can be divided into two regions: the bulk, where the fluid can be considered homogeneous,
and the vicinity of the (solid-liquid) interface, where the concentration of the different species
at a distance z from the interface, ci(z), differs from its bulk value. This heterogeneity decays
as the distance from the surface increases until the bulk concentration is reached. We aim to
find an expression for the entropy production for this system, as the entropy production is the
crucial quantity required to define a consistent set of fluxes and thermodynamic forces in the
context of Onsager’s theory (see Sec 2.2).
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Fig. 3.1 A diffusio-osmotic system composed of a n-component solution (only two are shown)
and a solid surface. The fluid is divided into two regions: bulk, where the concentration of
the fluid c(x,z) is independent of z, and the interface, where the fluid is heterogeneous, even
in the absence of imposed concentration gradients. We consider the case that the gradient of
the chemical potential (———µi) is along the x-direction. A typical z-dependent density profile
(c(xw ,z)) of the fluid at a position xw is shown in the right-hand panel of the figure.
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3.2 Theory

We start from the expression for the entropy production (Eq. (2.11)) with no temperature
gradient nor chemical reactions,

F = T ss =
N

Â
i=1

Ji · (�———µi) . (3.1)

Here F is the dissipation function as defined by Lord Rayleigh. It has units of energy density
per unit of time, as it represents the dissipation of energy by an irreversible process in a
control volume [91]. The gradient in the chemical potential can be expressed as

———µi ⌘ (———µi)P,T +

✓
∂ µi

∂P

◆

c j,T
—P , (3.2)

where c j indicates that the derivative is evaluated at constant concentration of the additional
n�1 species with j 6= i. Additionally, we know that

✓
∂ µi

∂P

◆

c j,T
= ni , (3.3)

with ni being the partial molar volume of species i. Therefore, we can formulate the
dissipation function as

F =

 
n

Â
i=1

Jini

!
· (�———P)+

n

Â
i=1

Ji · (�———µi)P,T . (3.4)

The total volume flux in the system Q is defined as

Q ⌘
n

Â
i=1

niJi , (3.5)

which is the average volume flow velocity in the system. We can then express the dissipation
function as

F = Q · (�———P)+
n

Â
i=1

Ji · (�———µi)P,T . (3.6)

From an experimental point of view, the expression in Eq. (3.6) is useful as it separates the
fluid flow from the diffusive fluxes (that are Galilei-invariant). At this point we can use the
Gibbs-Duhem relation,

V dP =
n

Â
i=1

Ni dµi , (3.7)

where Ni is the number of particles of species n. We can rewrite Eq. (3.7) as:

25



Diffusio-osmosis

———P =
n

Â
i=1

ci ———µi . (3.8)

Eq. (3.8) establishes a general relation between the thermodynamic forces in the system,
but we have not made a distinction between bulk and interfacial region yet. If we choose
(———µi)P,T in Eq. (3.6) as the independent driving forces then ———P is fixed. Conversely, if we
use ———P as a driving force, then one of the (———µi)P,T is linearly dependent on the others. For
instance, we can express the solvent chemical potential (———µ f )P,T using Gibbs-Duhem in the
bulk as,

(———µ f )P,T = �
n�1

Â
i=1

c
B

i

c
B

f

(———µi)P,T . (3.9)

Note that the pressure that is held constant in Eq. (3.9) should be the bulk pressure [53, 52],
and the concentrations must be in the bulk. When the pressure in the bulk fluid is constant,
the presence of chemical potential gradients can still cause a pressure gradient at an interface.

We can now write the dissipation function, which depends on n�1 chemical-potential
gradients and on the pressure gradient as:

F = Q · (�———P)+
n�1

Â
i=1

 
Ji �

c
B

i

c
B

f

J f

!
· (�———µi)P,T . (3.10)

In what follows, we restrict the analysis to a two component system, with solvent f and
solute s. The dissipation function then becomes

F = Q · (�———P)+J0
s
· (�———µi)P,T , (3.11)

where we have defined the excess flux of solute as

J0
s
= Js � c

B
s

c
B

f

J f . (3.12)

Finally, we can write the transport matrix connecting the fluxes with the thermodynamic
forces,

"
Q
J0

s

#
=

"
MQQ MQJ

MJQ MJJ

#"
�———P/T

�———µs/T

#
(3.13)

By including the factor 1/T in the thermodynamic forces, we can cast the entropy production
in a simple bi-linear form in fluxes and thermodynamic forces. Such form is needed to derive
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3.2 Theory

the Onsager reciprocity relations for the transport coefficients Mab . In practice, the factor
1/T is often absorbed in the transport coefficients - but it would be unwise to do so if the
symmetry property of the transport matrix is made explicit.

3.2.2 Local Thermodynamic Equilibrium and the Derjaguin-Anderson
theory for diffusio-osmosis

Again, we consider the system in Fig. 3.1. The mixture is at a constant temperature and,
we assume a chemical potential gradient of species i in the x-direction. If the bulk fluid
is incompressible, the speed of sound is “infinite". Hence, the density/pressure equilibrate
instantaneously in the bulk. Moreover, the rate of the spontaneous decay of chemical potential
gradients over a distance ` scales as `2/Di (Di denotes the diffusion coefficient of species i).
As a consequence, chemical potential differences across the boundary layers equilibrate very
quickly compared to the time scale of the diffusio-osmotic flow. Therefore, we can employ
LTE, assuming that the system is in equilibrium in the z-direction, even though a chemical
potential gradient can be maintained along the x-direction. Hence, we can write the relation
between the thermodynamic forces in the bulk from Eq.(3.8) as:

∂P
B
xx

∂x
= 0 =

n

Â
i=1

c
B

i

✓
∂ µi

∂x

◆
, (3.14)

where Pxx refers to a component of the pressure tensor parallel to the surface. At the interface,
the density profile ci(z) depends on z. The fact that µ = µexc(z) + kBT lnci(z) is constant
across the diffusive boundary layer (and for a fixed x) implies that the excess chemical
potential µexc will, in general, depend on the distance z from the wall.

At a point z within the diffusive boundary layer we can write,

∂Pxx(z)

∂x
=

n

Â
i=1

[ci(z)� c
B

i
]

✓
∂ µi

∂x

◆
. (3.15)

It is important to stress that mechanical forces in liquids can only be caused by body
forces such as gravity or by pressure gradients [89]. The reason why chemical potential
gradients near a surface cause fluid flow is that they induce a pressure gradient near a wall. It
is the pressure gradient in Eq. (3.15) which moves the fluid.

As the chemical potential µ is constant, we can relate the concentrations in the bulk
(z ! •) and close to the surface as

ci(z)e
b (µexc

i
(z)) = c

B

i
e

b (µexc
i

(•)) , (3.16)
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thus, we can rewrite Eq.(3.15),

∂Pxx(z)

∂x
=

n

Â
i=1

c
B

i
[e�bDµexc

i
(z) �1]

✓
∂ µi

∂x

◆
. (3.17)

where Dµi(z)exc = µexc
i

(z)� µexc
i

(•) is the excess chemical potential due to the presence
of the interface. We can now combine Eq. (3.17) with the Stokes equation in Eq. (2.18) to
estimate the flow velocity in the x direction:

h(z)
∂ 2

vx(z)

∂ z2 =
∂Pxx(z)

∂x
. (3.18)

Assuming a constant viscosity h , we get

vx(z) = � 1
h

Z
z

0
dz

0
Z •

z0
dz

00
n

Â
i=1

c
B

i
[e�bDµexc

i
(z) �1]

✓
∂ µi

∂x

◆
. (3.19)

Using non-slip boundary conditions, and exploiting the fact that outside the diffuse layer,
the velocity does not vary, we obtain the bulk velocity of the fluid vB,

vx(z ! •) = v
B

x
= � 1

h

Z •

0
dzz

n

Â
i=1

c
B

i
[e�bDµexc

i
(z) �1]

✓
∂ µi

∂x

◆
(3.20)

Notice that in fluid dynamics, the slip velocity is usually defined as the velocity at the
interface where the boundary condition is imposed. However, in the present case, using a
local continuum description, the slip velocity v

B
x

is the fluid velocity in the bulk just outside
the diffuse layer.

In the following part of this section, we will show how Derjaguin-Anderson’s description
of diffusio-osmosis [14, 92] can be written as a special case of Eq. (3.20). For an ideal
solution in the bulk, we have that

∂ µi

∂x
=

kBT

c
B

i

∂c
B

i

∂x
. (3.21)

Thus, we can write Eq. (3.20) as,

v
B

x
= �kBT

h

Z •

0
dzz

n

Â
i=1

[e�bDµexc
i

(z) �1]

✓
∂c

B

i

∂x

◆
. (3.22)

Moreover, we restrict the analysis to a very dilute solution of discrete solute molecules s

in a continuum liquid phase (solvent f ),

v
B

x
⇡ �kBT

h

Z •

0
dzz[e�bf(z) �1]

✓
∂c

B
s

∂x

◆
, (3.23)
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where we neglected the solvent contribution as e
�bDµexc

i
(z) µ 1/c

B

i
and c

B
s

⌧ c
B

f
. Addi-

tionally, we defined f(z) ⌘ Dµexc
i

(z). In Derjaguin-Anderson theory f(z) is the potential
mean-field felt by the solutes at a distance z from the solid surface. This potential does not
only include the direct effect of the surface on the solutes, it also accounts for the interaction
with the solvent and other solutes. Therefore, f(z) only vanishes at the bulk region, where
the presence of the interface does not perturb the fluid anymore.

The original Derjaguin-Anderson theory did not consider the atomistic nature of the liquid
mixture. The use of a continuum description of the solvent in this approach is not surprising,
as no reliable theory of dense liquids existed at the time and as there were no simulation
data. However, at present, we can use molecular simulations (MD/MC) to compute all the
parameters in Eq. (3.20).

The applicability of the framework described in this section might be questioned for thin
boundary layers of the order of 10Å [33]. Nevertheless, as was discussed in Sec. 2.1.1, a
thermodynamic picture arrives at the qualitatively correct prediction that a solute gradient
along an interface, be it flat or curved, can induce fluid flow.

The interaction of the fluid particles with the wall may create layering at the interface, as
shown in Fig. 3.1. To quantify whether the net effect of this layering is an accumulation or
depletion of particles near the surface, we use Gibbs’s definition of the surface excess for
particles of species i as (see [16]):

Gi =
Z •

0
[ci(z)� c

B

i
]dz . (3.24)

Gi is positive if there is net adsorption of particles on the wall, and negative in the case of
depletion at the interface. Next, we relate the so-called solute adsorption-length Ki to the
zeroth moment of the excess-concentration profile:

Ki =
Z •

0

✓
ci(z)� c

B

i

cB
s

◆
dz . (3.25)

Ki can be interpreted as the thickness (positive or negative) of a layer of bulk solution
that would contain the same net number of adsorbed or depleted particles. Ki is obtained
experimentally by equilibrium adsorption studies and it could be as large as 1 µm [16], or
much larger near a wetting transition.

A second measure of the adsorption/depletion layer is given by xi (a length squared). xi

is related to the first moment of the excess concentration:

xi ⌘
Z •

0

�
ci(z)� c

B

i

�

c
B

i

zdz . (3.26)
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Derjaguin defined the characteristic extension of the diffuse adsorption layer as
p

xi [93],
and Anderson defined the characteristic length L

⇤
i

1:

L
⇤
i
⌘ xi

Ki

. (3.27)

Using the above definitions, we can rewrite the diffusio-osmotic velocity in Eq. (3.23)

v
B = � a

bh
KsL

⇤
s
, (3.28)

where a is the concentration gradient of solutes in the bulk. Note that even when there is
strong net adsorption of solutes (large Ks), L

⇤
s

may be small, zero, or even of the opposite
sign, depending on (cs(z)�c

B
s
). In other words, diffusio-osmotic flow is least sensitive to the

excess concentration closest to the wall. This effect becomes even more pronounced when
there is strong adsorption on the wall, leading to a local increase in the viscosity.

3.2.3 Transport coefficients

To compute the transport coefficients Mad (see Sec. 2.2.1) using FD-NEMD, we need to
represent the thermodynamic forces as fictitious mechanical forces that can be incorporated
in the Hamiltonian of the system and can act on the particles in the fluid. In this section, we
employ linear response theory to show that such an approach is valid and fulfills Onsager’s
symmetry relations.

We consider a system with N interacting particles satisfying Hamiltonian equations of
motion:

ṙi =
pi

mi

, (3.29)

ṗi = Fi +Fext , (3.30)

where Fi is the force exerted by all the other particles on particle i and Fext is the mechanical
equivalent of the thermodynamic force. The Hamiltonian can be written as

H = H0 +Hext . (3.31)

For the diffusio-osmotic case, we now represent all chemical potential gradients by equivalent
forces Fµ

i
on every particle of species i. Note that (in a periodic system) these forces cannot

be viewed as the gradient of a potential. To satisfy the condition of mechanical equilibrium
1Anderson’s definition can give unphysical results when Ki ! 0, while xi 6=0.
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in the bulk, if we apply a microscopic force Fµ
s on the solutes, we also need to exert an

equivalent force on the solvent particles Fµ
f
, such that:

FB

ext = 0 = Fµ
s N

B

s
+(NB �N

B

s
)Fµ

f
, (3.32)

where N
B and N

B
s

are the total number of particles and the number of solute particles in the
bulk. Eq. (3.32) is the mechanical equivalent of the Gibbs-Duhem equation.

Expressing everything in terms of the external force on the solutes

FB

ext =


N

B

s
� N

B
s

NB �NB
s

(NB �N
B

s
)

�
Fµ

s = 0 . (3.33)

The Hamiltonian coupling of the particles to the external driving forces is

Hext =

"

ÂB

i2s

xi �
N

B
s

NB �NB
s

ÂB

i2 f

xi

#
·Fµ

s . (3.34)

It is worth pointing out that all the sums in Eq. (3.34) are in the bulk B. Next, we consider
a system confined in a slit. The total volume of the fluid W includes an interfacial region.
The previous expression is still valid, giving rise to the diffusio-osmotic flow, as now there is
a non-vanishing contribution from the externally applied forces Fext

Hext =

"

ÂW

i2s

xi �
N

B
s

NB �NB
s

ÂW

i2 f

xi

#
·Fµ

s . (3.35)

From linear response theory (see Appendix B), we can compute the response of a given
observable B to an external perturbation of the form DH = A(xi)F0 = Hext as

< B >= LABF0 =


1

kBT

Z •

0
< B(t)Ȧ(0) > dt

�
F0 . (3.36)

Focusing on the non-diagonal terms of the transport matrix on Eq. (3.13), when a
chemical potential gradient is applied, the observable we want to measure is the total flux of
the particles Q

B = QW =
1

NW ÂW

i2all
ẋi . (3.37)
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It is convenient to write the variable that couples to the external field as

Ȧ = ÂW

i2s

ẋi �
N

B
s

NB �NB
s

ÂW

i2 f

ẋi

= V
W

 
1

V W ÂW

i2s

ẋi �
c

B
s

c
B

f

1
V W ÂW

i2 f

ẋi

!

= V
W

 
JW

s
� c

B
s

c
B

f

JW
f

!
.

Finally, using Eq. (3.36) we can express the total volume flux as

QW =< QW > =

"
V

W

kBT

Z •

0
< QW(t)(JW

s
� c

B
s

c
B

f

JW
f
)(0) > dt

#
Fµ

s

= MQJ

Fµ
s

T
.

(3.38)

Hence, using transport equations in Eq.(3.13), we can establish the connection between the
thermodynamic force and its microscopic counterpart as

———µs = �Fµ
s . (3.39)

Eq. (3.39) is general (i.e. it is valid for arbitrary forces). However, the Green-Kubo
expression in Eq. (3.36) is only valid in the linear regime. Moreover, the expression for
the entropy production (Eq. (3.13)) assumes that the fluxes are linear functions of the
thermodynamic forces.

Let us focus on the excess of solutes J0
s

and transform it into an equivalent flux appearing
in the literature [27, 73].

J0W
s

= JW
s

� c
B
s

c
B

f

JW
f

=

 
c

B

c
B

f
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B
s

c
B

f
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JW

s
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B
s

c
B

f

JW
f

(3.40)

=
c

B

c
B

f

JW
s

� c
B
s

c
B

f

c
W QW (3.41)

=
c

B

c
B

f

⇣
JW

s
�f B

s
c

W QW
⌘

(3.42)

=
N

B

NB �NB
s

⇣
JW

s
� c

⇤
s

QW
⌘

. (3.43)
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Where f B
s

= N
B
s
/N

B is the molar fraction of solutes in the bulk and c
⇤
s
= f B

s
c . Replacing

the excess flux from Eq. (3.43) in the entropy production from Eq. (3.11) we obtain the
following transport matrix

"
Q

Js � c
⇤
s

Q

#
=

"
M

0
QQ

M
0
QJ

M
0
JQ

M
0
JJ

#"
�———P/T

�———µ 0
s
/T

#
(3.44)

with

———µ 0
s
=

N
B

NB �NB
s

———µs . (3.45)

If we replace the transformed flux in Eq. (3.43) back into Eq. (3.38) we get the new
connection between the microscopic forces and their thermodynamic counterpart;

QW = M
0
QJ

N
B

NB �NB
s

Fµ
s = M

0
QJ

(�———µ 0
s
) , (3.46)

recovering the result in Eq. (3.39). This expression differs from the result reported by
Yoshida et al. [27]:

———µs ⌘ � N
B

NB �NB
s

Fµ,Y
s (3.47)

where Fµ,Y
s is the microscopic force applied in their simulations. However, the difference is

due to a somewhat unfortunate definition of the chemical potential gradient of the solutes.
The expression used in ref [27] underestimates the effect of the thermodynamic force ———µs

by a factor equal to the molar fraction of solvents in the bulk f B

f
= N

B

f
/N

B. Therefore, this
approximation is only valid in the limit of infinite dilution.

We can show using Eq. (2.15) the relations between the transport coefficients in Eq. (3.13)
and Eq. (3.44):

MQQ = M
0
QQ

(3.48)

MQJ =
N

B

NB �NB
s

M
0
QJ

(3.49)

MJQ =
N

B

NB �NB
s

M
0
JQ

(3.50)

MJJ =

✓
N

B

NB �NB
s

◆2

M
0
JJ

. (3.51)

We focus now on the additional off-diagonal term MJQ of the transport matrix. It connects
the excess solute flux with a pressure gradient. A pressure gradient exerts a force on a volume
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of fluid rather than on individual particles. As a first approximation, one might tend to
connect the thermodynamic force acting on the system to the microscopic force as

FP = �———P/c
W . (3.52)

This is a common choice (see e.g [94, 95, 27, 44, 73]) which applies a constant force to
all the particles in the system. Therefore, rather than describing a pressure gradient yields
a gravitational-like field. If the fluid density is heterogeneous, as is the case for a slit, the
constant force creates a pressure gradient dependent on the position from the walls.

In what follows, we consider a small volume w at a distance zw from the wall. We obtain
that the Hamiltonian coupling to the external force is

Hext(w) = Âw

i2all
xi ·FP(w) , (3.53)

therefore A(w) = Âw
i2s xi.

The variable that couples to the external field FP(w) is given by

Ȧ(w) = Âw

i2s
ẋi

= V
w

 
1

Nw Âw

i2s
ẋi

!
N

w

V w

= V
wQw

c(w) .

Finally, using Eq. (3.36) we can express the excess solute flux as:
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� c
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B
s

c
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f

JW
f
)(t)(QW)(0) > dt

#
cFP

=
MJQ

T
cFP . (3.54)

By comparing Eq. (3.54) with Eq. (3.13) the microscopic force representing the pressure
gradient is given by,

FP(z) = � ———P

c(z)
. (3.55)
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Finally, the expressions for the transport coefficients in Eq. (3.38) and Eq. (3.54) are
equivalent, as the correlation functions are symmetric in time. Thus, MJQ = MQJ , fulfilling
Onsager’s reciprocal relations.

3.3 Simulations

3.3.1 Benchmark

We use the system described by Yoshida et al. [27] as a benchmark to study the basic concepts
on diffusio-osmosis. We performed the simulations using LAMMPS [96]. Particles interact
via a 12-6 Lennard-Jones potential (LJ) VLJ(r) = 4eLJ

i j
[(sLJ

i j
/r)12 � (sLJ

i j
/r)6] shifted and

truncated at r = rcut, such that

VT S(r) =

8
<

:
VLJ(r)�VLJ(rcut), if r  rcut

0, otherwise.
(3.56)

The indices i and j denote the particle types in our simulations: solutes (s), solvents ( f )
and wall (w). We assume that in the bulk the solute and solvent behave as an ideal mixture.
Therefore, we choose the same Lennard-Jones interaction for the particle pairs ss, s f , f f with
eLJ

i j
= e0 and sLJ

i j
= s0. We also use these same parameters for the wall-solvent interaction

w f . The wall-solute interaction strength eLJ
ws

and sLJ
ws

were varied to control the degree of
solute adsorption or depletion around the colloidal particle. For all interactions, rc = 2.5s0.
In what follows, we use the mass m0 of all the particles (s, f and w) as our unit of mass and
we set our unit of energy equal to e0, whilst our unit of length is equal to s0, all other units
are subsequently expressed in term of these basic units. As a result, forces are expressed in
units e0/s0, and our unit of time is t ⌘ s0

p
m0/e0.

The system is as shown in Fig. 3.2. The initial dimensions of the simulation box are
(17s0,17s0,35s0) with 7424 solution particles. The average concentration of solutes in
the whole volume of c̄s = 0.15. The box is periodic in the x and y directions. In the z

direction, there is a solid wall at the bottom and a reflective surface at the top. The reflective
boundary inverts the momentum in the direction perpendicular to the surface and places back
the atoms with mirrored positions when they go outside the boundary during the position
update. Meanwhile, the lower wall is made of one layer of immobile solid atoms arranged
in a face-centred cubic (FCC) (100) lattice with a constant

p
2s0. The interaction of the

solutes with the wall is (esw,sLJ
sw

) = (1.5,1.5). We used a Nosé-Hoover thermostat [87] to
fix kBT/e0 = 1.0 for all the simulations.
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Fig. 3.2 Simulation box used for NEMD simulations. There are periodic boundary conditions
in x and y. In the z direction, there is solid wall at the bottom and a reflective surface at the
top.

To initialise the system, we performed 105 NVT MD steps, using a time step Dt = 0.002t .
Additionally, 5⇥105 steps were required to impose Ps3

0 /e0 = 1.0 as described in [97, 98];
this was achieved by applying an external force on the lower wall atoms. During this process,
we sampled the height in the z-direction. For all the subsequent simulations, the height was
fixed at the average value.

After equilibrating and barostating, we sampled the density distribution for all the species
during 3 ⇥ 106 steps (see Fig. 3.3). The initial peak of the solvents near the wall is due
to the higher excluded volume by the solutes which leave space for the smaller solvent
particles to come closer to the wall. The migration of solutes towards the interface during the
equilibration decreases their concentration in the bulk, therefore it is expected that c

B
s

< c̄.
This effect is negligible for the system size and the relatively weak ews. Fig. 3.3 also shows
some density oscillations due to the reflecting boundary. These oscillations pose no problem,
as this region is excluded from all the following measurements.
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Fig. 3.3 Density distribution per species sampled every Dz = 0.25s0. The first peak in the
solvents appears before the solutes as sw f < sws.

Field-Driven Non-Equilibrium Molecular Dynamics

There are two ways of imposing microscopic forces for diffusio-osmosis using FD-NEMD.
On the one hand, we can apply a force on each particle depending on their species [27]. On
the other hand, using the equilibrium density distribution for each species, we can compute
the average force applied at a given distance z from the wall as [48],

Fµ
ave(z) =

[cs(z)Fµ
s + c f (z)Fµ

f
]

c(z)
(3.57)

where the force on the solutes Fµ
s is given by Eq. (3.39) and the force on the solvents Fµ

f

is determined by imposing mechanical equilibrium in the bulk Eq. (3.32). Both approaches
should give the same flow profiles if the spatial binning used to measure the concentration
distributions in Eq. (3.57) is the same as the one used to sample the velocity profiles.
Furthermore, Liu et al. [48] showed that the flow profile using Eq. (3.57) are in good
agreement with results obtained applying an explicit chemical potential gradient. It worth
noticing that the application of Fµ

ave(z) will not reproduce the correct diffusive fluxes. It gives
the right force per unite volume but not per species.

In this chapter, we will use Eq. (3.57) to apply the microscopic forces. The force
distribution on the solution is shown in Fig. 3.4.

37



Diffusio-osmosis
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Fig. 3.4 Force applied as a function of the distance from the wall for diffusio-osmotic
simulations with ———µs = 1. Notice that the magnitude of the gradient is for plotting purposes
only.

Similarly, for pressure-driven simulations, we can apply a force distribution given by
Eq. (3.55) and shown in Fig. 3.5.
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z[�]
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101

102
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F
P

Fig. 3.5 Force applied as a function of the distance from the wall for pressure-driven sim-
ulations with —P = 1.Notice that the magnitude of the gradient is for plotting purposes
only.
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We performed 108 steps of FD-NEMD. We applied the computed force distributions and
measured the velocity profiles in the fluid. Results in Fig. 3.6 show the diffusio-osmotic
velocity profile for ———µs = �0.125. We observe the plug-flow profile characteristic of diffusio-
osmosis. At the interface, there is a steep increase in velocity due to the excess of solutes.
Notice that all the flow profiles are non-monotonic in z and exhibit a peak before settling
down to the bulk velocity. This peak has also been observed in previous studies [27, 48]. This
overshoot can be (partially) described using Eq. (3.19) (see also Fig. 3.12). Nevertheless,
note that a constant viscosity was assumed. A possible explanation for this non-monotonic
behaviour is that the effect of the excess of concentration at the interface is not balanced
locally, but globally, as discussed by Marbach et al. [63]. Therefore, the overshoot takes
place before the effect of the non-constant (non-local) viscosity compensates the effect.

0 10 20 30
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0.00

0.01

0.02

v x
(z

)
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Solvent

Fluid

0.5 1.0 1.5
0.00

0.01

0.02

Fig. 3.6 Velocity profiles per species for diffusio-osmotic flow for ———µs = �0.125. The
sampling bin sizes are Dz = 0.25s0 and Dz = 0.10s0 for the insert.

Finally, in Fig. 3.7 we show the concentration distribution for equilibrium simulations
and the largest chemical potential gradient applied in our FD-NEMD simulations. It shows
that the density distribution remains unperturbed in the direction perpendicular to the wall.
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Fig. 3.7 Density profiles from EMD and FD-NEMD using a gradient of chemical potentials
in the solutes of ———µs = �0.125. The binning spacing for the density sampling is Dz = 0.1s0.

Theoretical predictions

In order to use the theoretical expressions (Eq. (3.19) or Eq. (3.23)) for the slip velocity,
we need to compute the concentration distribution ci(z) of all species i as a function of the
distance z from the wall, and the viscosity h of the solution. The former is obtained from
EMD simulations, and relatively short runs are required as the equilibration in the z-direction
is fast. In the simplest theoretical description, the viscosity is assumed to be independent of
z, and equal to its bulk value: h(z) = hB. Assuming that h is independent of z is a strong
assumption, as we know that the concentration changes and the fluid shows layering near the
wall, which affects the local viscosity. hB can be obtained by several methods as described
in Appendix C.

One particularity of our benchmark system is that solvents and solutes have different sLJ .
This fact is important as both species have different accessible volumes in the system, in
particular close to the wall. Todd et al. [94] identified the problem of defining the average
particle density in a WCA-fluid [99] confined between two solid walls and concluded that
the definition of the available width to the fluid atoms will always have some degree of
arbitrariness. Let us try to define the minimum approach distance d

min
i

for particles of species
i to the wall. d

min
i

is system-specific and depends not only on the interaction between the
particles but also in the lattice, orientation and, in general, the structure of the wall.
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Fig. 3.8 Detail of the density profiles close to the solid wall. The density sampling bin size is
Dz = 0.1sLJ

0 .

In Fig. 3.8 we show the density distribution for each species close to the wall. As a first
approximation, we can define d

min
i

as the distance from the wall below which no particles
of species i are found. We obtain d

min
f

= 0.55 and d
min
s

= 1.15 for the solvents and solutes
respectively. A second choice would be to perform NEMD simulations and measure the flow
profile for a Poiseuille flow (see Fig. 3.9) or a diffusio-osmotic flow (see Fig. 3.6). In the
NEMD cases, we can compute the position of the maximum distance from the wall, below
which the velocity of the fluid is zero. For the present system, the two approaches produce the
same results. However, the two approaches are not equivalent. In the case of diffusio-osmosis,
what drives the flow is the movement of the excess species within the interface. Therefore, if
there is extremely strong adsorption of such species at the wall, they could have negligible
mobility and do not contribute to diffusio-osmosis. In such a case, the first approximation
based solely on the density distributions does not agree with a mobility-based estimate.
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Fig. 3.9 Velocity profiles per species for pressure-driven flow for ———P = �0.00063. The
sampling bin sizes are 0.25Dz = s0 and 0.1Dz = s0 for the insert.

All relevant parameters in the theory of diffusio-osmosis, such as G, K, L
⇤, depend on

moments of the concentration distributions (see Sec. 3.2.2). The integrals in the definition of
these parameters are evaluated from the surface (z0 = 0) to the bulk (z ! •). Nevertheless, in
practice, due to the volume exclusion, z0 is not easily defined. To elaborate on the importance
of the definition of z0, let us focus on the most critical parameter, L

⇤, which depends on the
first moment of the concentration distribution. In Fig. 3.10, we show the different values
for the integrand Ix in Eq. (3.26) as the lower limit for the integration z0 is varied. The
results show that it is crucial to define z0 properly, as theoretical estimates of the velocity
vary significantly with the choice of this parameter. The different estimates for the velocity
using different z0 are shown in Fig. 3.11.
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Fig. 3.10 Integrand in Eq. (3.26) for the solutes with a concentration distribution sampled
every Dz = 0.25s0. z0 takes 3 different values: the position of the wall z0 = 0, z0 = d

min
f

=

0.55 and z0 = d
min
s

= 1.15. Notice that the integrands were translated accordingly such that
their maximum values coincide.
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Fig. 3.11 Theoretical prediction of the velocity contribution from the solutes in Eq. (3.19)
for different low integration limits z0. The solute density distribution was sampled every
Dz = 0.25sLJ

0 .
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Using our LTE approach, we extended the Derjaguin-Anderson theory of diffusio-osmosis
taking into account all species in the solution. Therefore, we can determine the contribution
from the different species to the velocity in Eq. (3.19). In Fig. 3.12, both solvents and solutes
contributions have the same sign. The reason is that, although their gradients have opposite
gradients, the additional term in Eq. (3.19) compensates, so the net contribution is positive.
In this case, it is straightforward to estimate the sign of the diffusio-osmotic velocity a priori,
using our thermodynamic picture (see Sec. 2.1.1). However, Eq. (3.19) can also deal with
situations where there is a multi-component solution with competing interactions between
the species and the surface.

0 5 10 15 20
z[�]

0.00

0.01

0.02

v x
(z

)

Solute

Solvent

Fluid

Fig. 3.12 Theoretical predictions of the Individual and total contributions to diffusio-osmotic
velocity in Eq. (3.19), with z0 = d

min
i

.

In Fig. 3.13 we compare the results of our FD-NEMD simulations applying two different
magnitudes of the microscopic forces on the solutes. One, given by Eq. (3.39). The other
is the force used by Yoshida et al. [27]. Despite having applied the same ———µs, in the latter,
the connection between the microscopic force and the chemical potential has a pre-factor, as
shown in Eq. (3.47). This pre-factor reduces the contribution from the thermodynamic force,
resulting in a smaller diffusio-osmotic velocity.
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Fig. 3.13 Diffusio-osmotic flow profile for ———µs = �0.125. The NEMD results applying the
force reported by Yoshida et al. (see Eq. (3.47)) are shown in blue dots and the results using
Eq. (3.39) are shown in red dots .

Fig. 3.14 shows the velocity profiles for different values of the gradient of the chemical
potential ———µs. The characteristic plug flow profile is present, and the bulk velocity scales
linearly with the thermodynamic force. We also show the theoretical predictions from our
generalisation of the Derjaguin-Anderson theory (see Eq. (3.19)). It is worth pointing out that
the theoretical results were derived using Stokes equations, assuming a constant viscosity.
However, neither Stokes predictions nor a constant viscosity should be assumed at the typical
scales of the diffuse layer [43, 100]. Bitsatis et al. [101] proposed a simple way to obtain a
position-dependent viscosity using a local average density model (LADM). In their model,
the strongly inhomogeneous density close to a solid wall is replaced by averages over a
typical molecular diameter. The local viscosity would penalise the contributions from the
excess close to the wall, reducing the theoretical estimate of the velocity. The idea of a local
viscosity seems promising at first sight, but for fluids at small scales, the reality is that the
transport coefficients become non-local [102]. We did not compute the local approximations
to the viscosity to try to improve the theoretical predictions, as our main focus was to explore
the NEMD simulations.
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Fig. 3.14 Diffusio-osmotic velocity profile for different chemical potential gradients. The
simulation results are shown in circles. The theoretical results using Eq. (3.19) are in dot-lines.
The velocity sampling bin size is 0.25sLJ
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Fig. 3.15 Total volume flux Q vs the chemical potential gradient ———µs. The slope of the linear
fit gives the transport coefficient MQS.
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Having computed the velocities for all the species we can estimate the total volume flow
Q defined by Eq. (3.37). In Fig. 3.15 we plot the results for different ———µs. We obtain that the
transport coefficient from MQS = 0.159±0.004 (see Eq. (3.13)), which could be transformed
into the coefficient M

0
QS

= 0.126±0.003 by using Eq.(3.48). Our estimate agrees with the
results reported by Yoshida et al. [27] M

0
QS

= 0.120 ± 0.005. It is important to highlight
here that the prefactor in the microscopic force used by Yoshida et al. does not influence
their results for the transport coefficients, as in their simulations they employ the correct
thermodynamic force ———µ 0

s
for the representation of the transport matrix in Eq. (3.44).

3.3.2 Moving along a concentration gradient

In Sec. 2.4.2, we described two non-equilibrium methods to simulate diffusio-osmosis,
namely FD-NEMD and BD-NEMD. In experimental situations [103, 36, 25, 104], diffusio-
osmosis(phoresis) is generated by imposing a concentration gradient along a channel, slit or
microfluidic device. Therefore, it would be reasonable to consider BD-NEMD to simulate
more realistic systems. Unfortunately, in addition to the drawbacks mentioned in Sec. 2.4.2,
imposing an explicit gradient makes it challenging to study diffusio-osmosis, as convective
effects influence the system as will be described in Chapter 4. In this section, we study
how the properties of the system and the flow change along a concentration gradient using
FD-NEMD instead. For the simulations, we used the same system as described for the
benchmark. The only difference being that we set sLJ

sw
= 1.0.

We performed EMD simulations and measured the concentration distribution for each
species. In Fig. 3.16, the Gibbs surface excess G (see Eq. (3.24)) is plotted for both species.
The results show that G is not a constant quantity along the gradient; in fact, it is non-
monotonic. On the one hand, for low concentrations, the excess of particles of species i at
the interface should go to zero when there are no particles in the system. On the other hand,
for high concentrations, the interface saturates, causing a reduction in G that should reach a
limiting value depending on the structure of the solid wall, interaction, etc.

Next, we performed FD-NEMD imposing a solute concentration gradient ———c
b
s
= 0.017

which was included in the microscopic force by using Eq.(3.21). Fig. 3.17 shows the diffusio-
osmotic velocities compared with the theoretical predictions for different solute/solvent ratios.
The diffusio-osmotic velocity decays as the concentration of solutes increases in the bulk.
The reason for this behaviour is that the driving force is the chemical potential gradient and
not the concentration gradient.
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3.4 Conclusions

We have assumed local thermodynamic equilibrium to derive a theoretical expression for the
diffusio-osmotic velocity of a multi-component system. In our general approach, we take into
account all the species in the solution, including the solvent. In our formalism, the chemical
potential gradient, and not the concentration gradient, appears as the thermodynamic force
driving the process. We show that the Derjaguin-Anderson expression for the diffusio-
osmotic velocity follows as a special case from our results when considering an ideal-dilute
solution.

We used non-equilibrium thermodynamics to find the entropy production associated
with diffusiophoresis. This procedure allowed us to further connect the thermodynamic and
microscopic forces for a representation involving pressure and chemical potential gradients.
The derivation allowed us to identify subtleties which are not pointed out or discussed
elsewhere and are crucial for the understanding of phoretic motion. Furthermore, our
simulations on a benchmark system allowed us to investigate additional details related to the
microscopic forces applied in the FD-NEMD scheme and the estimates using the theoretical
expressions. Finally, we performed a set of simulations of the diffusio-osmotic flow along
a constant concentration gradient. The results show a clear difference in the flow velocity
between the high and low concentration regions, which is expected from the logarithmic
sensing of the concentration distributions in diffusio-osmosis.
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Chapter 4

Colloidal diffusiophoresis

"If I could remember the names of these

particles, I would have been a botanist.

I will therefore restrict myself to a small

fraction of the particles in order to keep

the discussion simple. Probably the

proton, the neutron, and the electron are

familiar to all of you — you may even

own some."

Enrico Fermi

4.1 Introduction

The same mechanism that causes diffusio-osmosis drives the motion of a colloid, polymer, or
other mesoscopic moieties. Derjaguin, for instance, did not analyse the explicit-movement
of particles. Instead, considering the radius of curvature sufficiently large, he focused on
the fluid flow along a flat surface and obtained the particle velocity from the slip velocity.
It is reasonable to use Derjaguin’s approximation [14, 93] if the mesoscopic particle (say
a colloid) is very large compared to the characteristic length scale on which adsorption
or depletion occurs. However, Derjaguin’s approach is likely to fail if the particles that
are subject to phoresis are no longer large compared to the range of adsorption/depletion.
Anderson et al. [15] obtained a more general estimate of the diffusiophoretic velocity by
including the effect of the particle radius a. The results express the velocity in a series in
expansion in L/a. The leading is identical to the boundary layer approximation, with L being
the diffuse layer thickness.
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In this chapter, we study the phoretic motion of a colloidal particle. In Sec. 4.2, we present
Anderson’s extension to the theory of diffusiophoresis. We describe the main assumptions
and emphasise on the physical parameters that can be obtained from simulations. Later, in
Sec. 4.3, we use the methods described in Sec. 2.4.2 to simulate a single colloidal particle.

4.2 Theory

When a colloidal particle is placed in a solution with a concentration gradient, for instance
in solutes, the concentration field is disturbed. The reason is that the solution rearranges by
the sole presence of the colloid (volume exclusion) and by any additional interaction. The
colloid will move either, following the gradient in solutes or the opposite direction. The
direction will depend on the interaction between the colloid and the species in the solution.
Anderson et al. [15] developed a quantitative theory to describe the diffusiophoretic mobility
of the colloid. They solved the conservation equations for the solution both at the vicinity
and far away from the particle. In this section, we illustrate the key arguments in their theory.
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Fig. 4.1 Colloidal particle with radius a moving along a concentration gradient ———c
B
s

with
velocity vvvc. The position of the colloidal centre with respect to a laboratory frame is given by
r0 and the position of a solute measure from the colloid centre is given by r. q is the angle
between vvvc and r0.

We consider a colloid in a solution with uncharged solute molecules dissolved in it. The
solutes interact with the colloid through steric repulsion as well as dipole and van der walls
forces. The solute concentration far from the colloid is c

B
s
(r), i.e the unperturbed concen-

tration field that would exist in the absence of the colloid. There is a solute concentration
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gradient across the system with magnitude a =
��———c

B
s
(r0)

��, at the position of the centre of the
colloid r0. For low Reynolds numbers, the fluid motion is described by Stoke’s equations

——— ··· vvv = 0, (4.1)

h———2
vvv�———P� cs———f = 0, (4.2)

Where f is the mean-field felt by the solutes due to interaction with the colloid and the
surrounding solvent, as described in Sec. 3.2.2. vvv is the velocity of the fluid relative to the
colloid and fulfils the no-slip boundary condition at the surface of the colloid;

vvv = 0 for rrr = a . (4.3)

The additional condition is that the velocity at infinity is given by;

vvv = �vvvc for rrr ! • . (4.4)

The mass conservation equations for the solutes expressed in a reference frame centred
and moving with the colloid are given by:

∂cs

∂ t
+——— ··· JJJs = 0, (4.5)

JJJs = �Ds———cs � Ds

kBT
cs———f + vvvcs, (4.6)

where cs is the solute concentration, JJJs is the solute flux and Ds is the diffusion coefficient
of the solute particles in the bulk.

As the colloid migrates, its environment changes. Thus, the local concentration and
velocity change, as discussed in Sec. 3.3.2. In this analysis, we assume that the migration
speed is slow. This assumption has two implications: the first one that the Peclet number is
very small

Pe
FD =

avc

Ds

⌧ 1 , (4.7)

here FD is used as this Peclet number also applies to our FD-NEMD simulations (see
Sec. 4.3.2).

Also, a quasi-steady state is achieved. The reason is that the relaxation time for a change
in concentration c

B
s
/(vca) is longer than the time it takes to the solutes to relax around the

colloid a
2/Ds, thus
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aa
cB

s
(r0)

. 1; . (4.8)

Therefore, Eq. (4.5) becomes time independent and the convective term in Eq. (4.6) can
be neglected, leading to:

———2
cs +

——— ··· (cs———f)

kBT
= 0 . (4.9)

The boundary conditions are such that there is no solute flux through the colloid surface
and that the unperturbed concentration field far from the colloid is given by:

c
B

s
v c

B

s
(r0)+ rrr ·———cs for rrr ! • . (4.10)

After neglecting convection, Eq. (4.9) can be decoupled from the equations describing
the solution flow Eqs. (4.1) and (4.2). The axisymmetric solution cs(r,q) is obtained by
using a matching asymptomatic expansion in l ⌘ L/a, considering two different regions of
the problem. An inner region close to the colloid, with thickness L, where all interactions
(direct and indirect1) between solute molecules and the colloid happen. The outer region is
where f(r) and its derivatives are zero. Once the concentration field is known, the equations
for the solution are solved. The body force depending on q is included via the concentration
field in the term cs———f in Eq. (4.2). As in the concentration case, the system can be divided
into two regions to solve the flow equations. The net force acting on the body, plus the
solution contained within the inner region, is zero. There is one side of the colloid which
is exposed to a higher solute concentration which generates a streaming flow towards the
lower concentration. From momentum conservation, the solute flow generates the opposite
effect on the colloid, which moves following the concentration gradient (for the case of
solute adsorption). The phoretic velocity vvvc is computed by using the perturbed axisymmetric
concentration around the colloid matching the solutions in the inner and outer regions,
obtaining:

vc = v0


1� (K +H)

L
l +O(l 2)

�
. (4.11)

In this approximation, the first term corresponds to the Derjaguin limit L ⌧ a:

v0 =
a

bh
L

⇤
K, (4.12)

1As mentioned in Sec. 3.2.2 f only vanishes at the bulk, even if the range of solute-colloid is shorter.
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where b = 1/(kBT ), h is the shear viscosity and f is the potential of mean force experienced
by solutes at a distance y = r �a from the surface of the colloid. K, L

⇤ were introduced in
Sec. 3.2.2. The new term H appearing in Eq. (4.11) is proportional to the second moment of
the excess solute distribution,

H =

Z •

0

1
2

y
2[cs(y)� c

B

s
]dy

Z •

0
y[cs(y)� c

B

s
]dy

. (4.13)

The correction terms in Eq. (4.11) account for the effect of the curvature of the particle.
The above equations apply in the case where there is no hydrodynamic slip on the surface of
the colloid (for the inner region solution). However, if solute particles are strongly adsorbed
to the colloid, they become immobile, and the result is that the surface of no-slip, and hence
the effective colloidal radius, increases.

The importance of Anderson’s solution from the perspective of a theoretical and numerical
simulation is twofold: first, it depends on the unperturbed concentration distribution around
the colloid. Therefore, a quantity that is easy to compute using results from EMD. Second, it
explicitly contains physical parameters such as the Gibbs surface excess and the moments of
the concentration distribution; thus providing knowledge of the diffuse layer’s structure.

The solution presented above was later improved by Anderson & Prieve [16] to include
convective transport on the solutes (see also [61, 105]). Anderson & Prieve [60] also studied
the diffusiophoresis of a colloidal particle in a solution with strongly adsorbing solutes.
More recently, Marbach et al. [63] reported the local force balance between the viscous
and the forces due to the excess concentration around the colloid. Finally, there is a natural
extension to self-propelled particles, first addressed by Golestanian et al. [106, 107] and
later by Sharifi-Mood et al. [62], where they included catalytic reactions at the surface of the
colloid.

4.2.1 Marangoni effect and diffusiophoresis

So far, we have described a solid particle or surface in a solution with a chemical potential
gradient in solutes. Here, we offer a brief description of what occurs at a liquid-liquid
interface and the connection with diffusiophoresis. In what follows, we make the same
assumptions as in Sec. 3.2.2 to derive Derjaguin-Anderson expression (see Eq. (3.23)),
namely, we suppose an ideal solution in the bulk and low solute concentration. The Marangoni
effect is the flow caused by a thermal or concentration gradient parallel to a liquid-liquid
interface. For a spherical bubble, Young et al. [108] estimated the velocity under the thermal
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Marangoni effect. Young’s estimates can also describe the solutal Marangoni effect [16, 109],
predicting a velocity

vM =
a

3hd +2h

✓
� ∂g

∂cB
s

◆

T

———c
B

s
(4.14)

where a is the radius of the droplet; hd and h are the viscosities of the fluid inside and outside
the droplet. g is the interfacial tension. The result depends on the interface tension gradient,
with the forward pole (in the direction of the gradient) subject to a lower tension than the
rear pole. This gradient in tension drives the movement of the droplet towards the region
with a higher number of solutes. Notice that if h ! • the velocity in Eq. (4.14) is zero.
Ruckerstein [110] proposed that for a liquid-liquid interface diffusiophoresis also contributes
to the movement, and Anderson & Prieve [15] further developed this idea, demonstrating
that the velocity for a “drop" is given by

v0 =

✓
a+3(hd/h)L⇤

3(hd/h)+2

◆
kBT

h
K|———c

B

s
| . (4.15)

In the limit of a � L ⇠ L
⇤, for a liquid droplet (hd/h ! 1), we recover Eq. (4.14) by

using Gibbs adsorption equation
✓

∂g
∂cB

s

◆

T

= �kBT

cB
s

G = �kBT K . (4.16)

Therefore, the velocity does not depend on the interfacial structure and is proportional
to the radius, which confirms Young’s results. When the viscosity hd ! •, we recover the
expression in Eq. (4.12).

4.3 Simulations

Conceptually, the most straightforward way of simulating diffusiophoresis would be to carry
out NEMD with an imposed concentration gradient, following a procedure similar to Hef-
felfinger & Van Swol [79] and Thompson & Heffelfinger [83](see Sec. 2.4.2). Nonetheless,
there are several drawbacks associated with this approach for modelling diffusiophoresis,
the most significant one being that periodic boundary conditions are incompatible with the
existence of constant concentration gradients, as advection deforms the concentration profiles
[74, 75]. However, in analogy with simulations of systems in a homogeneous electrical field,
as we did for diffusio-osmosis, we can replace the gradient of a chemical potential by an
equivalent constant force per particle. Such a force is compatible with periodic boundary
conditions [27, 48].
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4.3 Simulations

In this section, we perform both BD-NEMD and FD-NEMD for a colloidal particle.
In the former, we impose an explicit concentration gradient, and in the later, we apply a
microscopic force equivalent to the chemical potential gradient.

4.3.1 Boundary-Driven Non-Equilibrium Molecular Dynamics

For our BD-NEMD, we used a double control volume semi-grand canonical algorithm DCV-
SGCMC2. The box size is (51.30 x 20.52 x 30.78) (in units of s0). A colloid was fixed in the
centre of the simulation box (see Fig. 4.2) by placing a single Lennard-Jones particle with
scs = sc f = 3.23 s0, where the subscript c denotes the colloid. The concentration gradient
was created by using two reservoirs of particles. The source region at c

B
s

= 0.6s�3
0 and the

sink at c
B
s

= 0.15s�3
0 . The difference in concentration between the reservoirs is equivalent

to —µs ⇠ 0.06. The imposed concentration gradient is linear when there is no preferential
interaction between the colloid and the solutes ecs = 1.0 (see Fig 4.3). Finally, it is worth
pointing out that the particle identity swap does not create a fluid density gradient in the bulk,
as we suppose an ideal solution.

So
ur
ce

Si
nk

Fig. 4.2 Dual control volume simulation box used for the boundary-driven non-equilibrium
simulations. In both control volumes, the concentration for each particle species was fixed,
with the sink and source indicating the low and high solute concentration regions respectively.
The distance between the reservoirs is Dx

ss = 12xl and the length of the control volumes in
the x direction is Dcv

x
= 3xl , where xl = 51/3s0.

2In Sec. 2.4.2 we described the method with a grad-canonical ensemble (DCV-GCMC). However, here
we use a semi-grand canonical ensemble (see [77]). This approach is more efficient as particles are not
inserted/removed, but their identities are swapped.

57



Colloidal diffusiophoresis

We performed the simulations using LAMMPS [96], with a 12-6 LJ potential as described
in Sec. 3.3.1. The indices i and j in Eq. (3.56) denote the particle types in our simulations:
solutes (s), solvents ( f ) and colloid (c). We assume that solutes and solvents behave as an
ideal mixture in the bulk. Therefore, we choose the same Lennard-Jones interaction for the
particle pairs ss, s f , f f with eLJ

i j
= e0 and sLJ

i j
= s0. We also apply these same parameters

for the colloid-solvent interaction cs. The colloid-solute interaction strength eLJ
cs

was varied
to control the degree of solute adsorption or depletion around the colloidal particle. For
simplicity, we kept sLJ

cs
equal to s0. We initialised the system with a solute/solvent ratio

c
B
s
/c

B

f
= 1 and an average solution density in the box of c̄ = 0.75e�3

0 . We swapped particle
identity in the reservoirs every 20 time steps, with a time step of Dt = 0.05t . We let the
system equilibrate for 107 steps. By doing this, we achieve both an equilibration of solutes
around the colloid and the desired concentration gradient between the control volumes. The
equations of motion were integrated using a velocity-Verlet algorithm, and we kept the
temperature of the system at kBT/e0 = 1.0 using a Nosé-Hoover thermostat [87]. After the
equilibration, we ran 107 production steps to sample the flow velocity around the colloid and
the concentration distribution for each species.

Results

In Fig. 4.3 we show the solute concentration profiles for different colloid-solute interactions
ecs. As soon as phoresis starts, i.e. for eLJ

cs
6= 0, the concentration gradient becomes non-linear

due to advection. As a result, the local concentration gradient at the location of the colloid
decreases (see also [74]). In the BD-NEMD simulation, the colloidal particle is fixed with
respect to the two reservoirs. This setup resembles more the conditions of a diffusio-osmotic
experiment. In fact, similar concentration profiles were observed by Lee et al. [111] when
studying the diffusio-osmotic flow caused by solute gradients in nanochannels.

We can show that the concentration distribution becomes exponential. We consider the
colloidal particle fixed in our simulation box and a steady velocity field vvv in the fluid. We
can express the flux of species i as a sum of a purely diffusive flow and the convective
contribution,

JJJi = �Di———c
B

i
+ vvvc

B

i
. (4.17)

In order to have steady flow, the concentration has to be

ci(x) = consta e
(v/Di)x + constb , (4.18)

with Ds/v = 1/k being a characteristic length of the system. consta and constb are given by
the boundary conditions at the source and sink regions of the system (see Fig. 4.2).
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Fig. 4.3 Solute concentration profile for a constant concentration gradient. We show the
results for difference phoretic flow velocities, corresponding to several values of ecs. We
measure the concentration profiles at a lateral distance of at least 10s from the colloid, where
the colloid does not directly perturb the concentration profile. The shaded region represents
the x position of the colloid, which we show to emphasize the asymmetry in the concentration
distribution created by the advection.

If we restrict the analysis to the solutes and set cs(0) = c
sink
s

and cs(Dx
ss) = c

source
s

, with
Dx

ss being the distance between the control volumes, we have:

c
B

s
(x) = c

sink
s

+
e

kx �1
ekDxss �1

Dc
B

s
, (4.19)

with Dc
B
s

= c
source
s

� c
sink
s

. We can define the Péclet number for the BD-NEMD simulations
as Pe

BD = kDx
ss = vDx

ss/Ds. In Fig. 4.4 we show Pe
BD for the different interactions ecs. Even

for the smallest non-zero phoretic flow Pe
BD is not negligible, therefore convection plays

an important role. Khair [105] showed that the particle velocity decreases monotonically
with increasing Pe (we discuss below that this is the case if we compare with FD-NEMD)
and that the concentration distribution around the colloid becomes fore-aft asymmetrical.
Anderson [16] argues that the reduction of speed by convective effects is created by the
additional pressure over the front hemisphere of the colloid (q = 0) which opposes it to move
forward. Wei et al. [74] found that solutes near q = 0 or q = p have less mobility than
those close to q ±p/2 therefore, the stagnant excess of solutes interacting with the colloid is
what causes the phoretic slowdown.
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0 1 2 3 4 5
�cs

�2

�1

0

1

2

3

P
eB

D

Fig. 4.4 Péclet number Pe
BD for the diffusiophoretic flow with several colloid-solute in-

teraction strengths ecs. Note that, even for the smallest non-zero phoretic flow velocities
Pe

BD > 1.

4.3.2 Field-Driven Non-Equilibrium Molecular Dynamics

For our FD-NEMD we used a simulation box (20.52 x 20.52 x 30.78) (in units of s0).
Snapshot of both the FD-NEMD and the BD-NEMD are shown in Fig. 4.5.

(a) (b)

Fig. 4.5 Simulation boxes for (a) the explicit (BD-NEMD) and (b) the implicit gradient
systems (FD-NEMD).
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Note that the deformation of the concentration profile in Fig. 4.5(b) FD-NEMD is barely
visible. This observation illustrates the advantage of using colour forces rather than explicit
gradients. In contrast, in Fig. 4.5(a) BD-NEMD, the colloid is not in the centre of the
concentration profile (if it were, it would be at the red-blue boundary).

Initialisation

The initial system was created following the same procedure as in the BD-NEMD simulations.
To equilibrate, in this case, we imposed semi-grand canonical swap moves between s and
f in the entire box. We attempted to swap 104 particle identities every 10 steps for the first
105, reaching an equilibrium distribution of solutes around the colloid and an equimolar
solution in the bulk. This equilibration step is crucial as our aim to carry out simulations
under conditions where the composition of the bulk fluid was kept fixed, even as we varied
the colloid-solute interaction ecs. In Fig. 4.6, we show the equilibrium distributions for each
species in specific cases of depletion and adsorptions of solutes around the colloid.
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Fig. 4.6 Concentration radial distributions around a colloid. (a) when there is depletion of
solutes, ecs = 0.5 (b) for strong adsorption, ems = 5.0. Notice that there is an equimolar
binary solution in the bulk. The profiles were computed using bins with Dr = 0.2. The
vertical dashed line represents r = scs.

Based on the results in Fig. 4.6 we can define a bulk region where the concentration of
solutes and solvents is constant. This region is shown in Fig. 4.7 and its relevance will be
discussed below.
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Fig. 4.7 Simulation box showing solutes (red), solvents (blue) and colloid (orange). The bulk
regions are shown inside black boxes. They are localised at |z� zc| � 10, where the centre of
the colloid is at zc. We assume that the solute and solvent concentrations unperturbed by the
presence of the colloid in the bulk.

Results

As discussed previously, we represent the chemical potential gradients by equivalent external
forces that are compatible with the periodic boundary conditions. They are such that a) there
is no net force on the bulk solution away from the colloid and b) there is no net force on the
system as a whole. These two conditions imply that there is only one independent force that
can be defined in the system. In the present case, we chose to fix the force on the solutes F

µ
s .

We set it by using the parameters in the BD-NEMD simulation box at the position where
the concentration ratio c

B
s
/c

B

f
= 1 (assuming a linear concentration distribution). Therefore,

F
µ

s = 0.06e0/s0.
Having specified the force on the solutes, the force on the solvent particles Fµ

f
follows

from mechanical equilibrium in the bulk:

Fµ
s N

B

s
+Fµ

f
N

B

f
= 0, (4.20)

N
B
s

, N
B

f
denote the number of solutes and solvent in the bulk region. Once the forces in the

bulk are specified, we obtain the phoretic force on the colloid Fµ
c by imposing mechanical

equilibrium in the whole system,
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Fµ
c

= �(Fµ
s Ns +Fµ

f
Nf ), (4.21)

Ns, Nf refer to the number of solutes and solvents in the whole system. This equation
expresses the fact that there can be no net external force on the fluid: if there were, the
system would accelerate without bound, as there are no walls or other momentum sinks in
the system. Eq. (4.21) establishes a connection between all chemical potential gradients (or
the corresponding microscopic forces), which must be balanced throughout the system as the
phoretic flow cannot cause bulk flow.

In practice, during the FD-NEMD simulations, we need to ensure that the bulk region
remains unperturbed by the colloid. We did this in two different ways: we let the colloid
move free, translating the coordinates of all the particles in the system such that the colloid
is always in the centre of the box. Alternatively, we can constrain the colloid to the centre
of the system and measure the flow around it. In Fig. 4.8, we show a comparison between
the two approaches, concluding that both give equivalent results. It worth noticing that the
velocity is non-monotonic. The reason is that initially, ecs increases the excess of solutes
around the colloid, which, in turn, increases the phoretic velocity as expected in the linear
regime. However, for large ecs, the closest solutes to the colloid are tightly bound and lose
their mobility. Hence, they stop contributing to the flow around the colloid. We will study in
more detail this non-monotonic behaviour of the velocity(mobility) in Sec 5.2.4.

Due to the finite size of the bulk, there are inevitably fluctuations in the composition
of this domain. These variations would lead to unphysical velocity fluctuations in the bulk
(unphysical because in the thermodynamic limit this effect goes away), creating noise in
the observed phoretic flow velocity. To suppress this effect, we could either adjust the
composition in the bulk domain at every time step or recompute the forces on the solvents
Fµ

f
) such that the external force on the bulk domain is always rigorously equal to zero (this

also adjusts the force on the colloid Fµ
c ). We opted for the latter approach as particle swaps

would affect the stability of the MD simulations.
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Fig. 4.8 The phoretic velocity of the colloid v
x
c

with several colloid-solute interaction strengths
ecs. The red line shows the results when the colloid moves freely, and v

x
c

is the velocity of the
colloid relative to the bulk fluid. In blue, we show the results when the colloid position is
fixed, and v

x
c

is minus the velocity of the fluid flow in the bulk.

Comparison with theoretical predictions

Using Eq. (4.11) to predict the diffusio-phoretic velocity requires the definition of the
colloidal radius a. This radius indicates the position of the surface from where we perform
the integration of the excess distribution moments. This position is critical for the theoretical
calculations and even more with the curvature correction terms, as they depend on the higher
moments of the distributions. As a first approximation, we can define a = scs. Additionally,
we can include the effect of the solute-colloid interaction to a certain level by using the
hydrodynamic radius RH defined by the Stokes-Einstein relation:

RH ⌘ kbT

zcphDc

, (4.22)

where zc = 4 for slip-boundary condition and zc = 6 for non-slip boundary conditions. The
viscosity h and the diffusion coefficient of the colloid Dc are computed as described in
Appendix B. In Fig. 4.9 we show that the diffusion coefficient decreases as the ecs increases.
The reason for this behaviour is that the effective hydrodynamic radius of the colloid grows
as it drags more solutes with it when the adsorption increases. The diffusion coefficient
reaches a plateau for large ecs when increasing the interaction strength does not modify the
number of solutes influenced by the presence of the colloid anymore.
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Fig. 4.9 Colloid diffusion coefficient Dc for solute adsorption at the surface ecs � 1.

In Fig. 4.10 we show the estimates of the diffusiophoretic velocity using different colloidal
radius a for the theoretical expression in the Eq. (4.11).

1 2 3 4 5
�cs

�0.04

�0.02

0.00

0.02

0.04

0.06

vx c

Theory a = �cs

Theory a = Rslip
H

Theory a = Rnon-slip
H

FD-NEMD

Fig. 4.10 Phoretic velocity of the colloid v
x
c

with several colloid-solute interaction strengths
ecs. The curves show the results obtained with FD-NEMD simulations compared to theo-
retical estimates with different values for a. The hydrodynamic radius RH was obtained by
assuming Stokes-Einstein (Eq. (4.22)) with both slip and non-slip condition.

The results show how sensitive the theoretical prediction is to the parameter choice,
stressing the importance of the NEMD calculations. We see that the estimates using the
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hydrodynamic radius with both slip or non-slip boundary conditions fail. The slip boundary
condition over-estimates the radius once ecs increases, penalising the integrals of the moments
of the concentrations distributions (see Fig. 4.6). The non-slip boundary condition fails for
large ecs as the curvature correction term becomes larger than v0 in Eq. (4.11).
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Fig. 4.11 Phoretic velocity v
x
c

for several colloid-solute interaction strengths ecs. We compare
the results for an explicit concentration gradient (BD-NEMD), FD-NEMD and theoretical
predictions with a = scs.

Finally, in Fig. 4.11 we show the results obtained using the BD-NEMD and FD-NEMD,
together with the theoretical predictions a = scs.

The results show that the BD-NEMD method is only suitable for small phoretic effects.
Whereas, FD-NEMD simulations make it possible to suppress most advective effects on
diffusiophoresis. The reason is that in the former Pe

BD = Dx
ss

vc/Ds, and in the latter Pe
FD =

avc/Ds with Dx
ss/a ⇠ O(10) for our simulations. Sharifi et al. [112] tried to overcome

this limitation by enforcing the concentration profiles to be linear, but at the expense of
introducing (unphysical) sources/sinks of solute particles throughout the simulation box as
show in Fig. 4.12.
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Fig. 4.12 Solute number Ns in the simulation box by Sharifi et al. [112]. The simulation box
is divided into eight sub-volumes along the concentration gradient direction. The imposed
distribution (in continuous lines) is maintained by swapping particle identities on each
subsystem. The target concentration is shown in dashed lines.

4.4 Conclusions

We performed molecular dynamics simulation on the diffusiophoresis of colloids in a fluid
mixture under the influence of a concentration gradient of solutes. We used two NEMD
approaches: first, we imposed an explicit concentration gradient by using two reservoirs in
the simulation box. Second, we extended the FD-NEMD method to non-planar geometries
for the first time [74, 75]. We find large distortions of the concentration profile due to
the fluid flow (Pe

BD > 1). These advective effects diminish for small gradients when the
signal-to-noise ratio becomes poor. As a result, the comparison between simulation with
explicit gradients and with colour forces is only fair. The difficulty in performing simulations
with real concentration gradients illustrates the advantage of the FD-NEMD technique. Using
colour forces, we obtained similar results by either keeping the colloid fixed or moving
freely. Hence, this technique allows for simulating moving objects compatible with periodic
boundary conditions. Finally, our results reveal a non-monotonic relation between the
diffusiophoretic velocity and the interaction strength between the colloid and the solute.
The findings imply that, in the strong interaction regime, phoretic mobility decreases with
increasing colloid-solute interaction strength. We will investigate this effect in detail in the
following chapter.
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Chapter 5

Polymer diffusiophoresis

“It is nice to know that the computer

understands the problem. But I would

like to understand it too.”

Eugene Wigner

5.1 Introduction

In previous chapters, we studied diffusio-osmosis under Derjaguin approximation [14, 93].
For small colloids, this theory was not valid, as we could not describe the colloid-fluid
interface as locally flat since its radius was relatively short compared to the diffuse layer
thickness. Therefore, we introduced Anderson’s extension to include curvature effects for the
diffusiophoresis of spherical particles in Sec. 4.2. There is yet another situation where the
Derjaguin-Anderson approach is questionable, namely in the case of particles without a well-
defined surface. One particularly notable example is the case of polymer diffusiophoresis:
molecules that have a fluctuating shape and an intrinsically fuzzy surface. One manifestation
of this fuzziness is the fact that the magnitude of the Kirkwood approximation for the
hydrodynamic radius RH of a long self-avoiding polymer is about 63% of the radius of
gyration Rg [113]. This difference implies that there is a density inhomogeneity in a self-
avoiding polymer, which allows penetration of hydrodynamic flow fields and solutes into
its outer “fuzzy ” layer. Therefore, it is difficult to describe a polymer as a solid sphere
surrounded with fluid, and Derjaguin-Anderson approach is questionable. The lack of
predictive power of the colloidal approximation was pointed out previously by experiments
with l -DNA by Palacci et al. [36, 37].
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An additional factor rendering polymer diffusiophoresis difficult is that, unlike in the
case of colloids, it cannot be assume that the size of polymers subject to diffusiophoresis is
independent of the polymer-solute interaction.

In this chapter, we report MD simulations of diffusiophoretic transport of short polymers.
Specifically, we apply NEMD simulations using a microscopic force acting on each species
and examine the effect of interaction parameters between the monomer and the solute on the
induced diffusiophoretic velocity of the polymer. Our simulations reveal, as in the case of
colloids, a non-monotonic dependence of the phoretic mobility Mps on ems, the interaction
strength between the monomers and solute. We have investigated the influence of the size
of the polymer on its diffusiophoretic mobility. We found a weak polymer-size dependence
of mobility. We compare these findings with the corresponding theoretical predictions for a
colloidal particle.

5.2 Simulation

We performed non-equilibrium Molecular Dynamics (NEMD) simulations using LAMMPS
[96]. In most simulations, particles interact via a 12-6 Lennard-Jones potential (LJ) as
described in Sec. 3.3.1

f
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Fig. 5.1 The system is made of solvents f , solutes s and monomers m. The interaction
between consecutive monomers is given by a FENE potential. We tune the interaction
between monomers and solutes eLJ

ms
to control diffusiophoresis.
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The indices i and j in Eq. (3.56) denote the particle types in our simulations: solutes
(s), solvents ( f ) and monomers (m) (see Fig 5.1). To keep the model as simple as possible,
we assume that in the bulk the solute and solvent behave as an ideal mixture. We therefore
choose the same Lennard-Jones interaction for the particle pairs ss, s f , f f with eLJ

i j
= e0

and sLJ

i j
= s0. We use these same parameters also for the monomer-solvent interaction

ms. The monomer-solute interaction strength eLJ
ms

was varied to control the degree of solute
adsorption or depletion around the polymer. Yet, we kept sLJ

ms
equal to s0. For the monomer-

monomer interaction, we use a purely repulsive Weeks-Chandler-Andersen potential [99],
i.e. a Lennard-Jones potential truncated and shifted at the minimum of the LJ potential,
rc = 21/6s0. For all other interactions, rc = 2.5s0. Finally, neighbouring monomers were
connected by a finite extensible nonlinear elastic (FENE) anharmonic potential UFENE(r),
[114, 115]

UFENE(r) = �
kR

2
0

2
ln

"
1�

✓
r

R0

◆2
#

, (5.1)

with k = 7e0/s2
0 and R0 = 2s0. In what follows, we use the mass m0 of all the particles (s, f

and m) as our unit of mass and we set our unit of energy equal to e0, whilst our unit of length
is equal to s0, all other units are subsequently expressed in term of these basic units. As a
result, forces are expressed in units e0/s0, and our unit of time is t ⌘ s0

p
m0/e0.

5.2.1 Equilibration

We studied the diffusiophoresis of a single polymer chain composed of 30 monomers,
Nm = 30, suspended in an equimolar ideal mixture of solute and solvent molecules. The
initial simulation box dimensions were (20 x 20 x 30) (in units of s0) and the number of
fluid particles was 8748. After equilibration, chemical potential gradients were applied along
the x-axis. We distinguished two types of domains in the simulation box: one periodically
repeated domain with width 20s0 in the z-direction centred around the polymer’s centre of
mass in the z-coordinate. The remainder of the system (a domain with width 10s0), contains
only bulk fluid (see Fig. 5.2). The system is periodically repeated in each direction
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Fig. 5.2 Simulation box showing solutes (red), solvents (blue) and monomers (orange). The
bulk regions are shown inside black boxes. In the bulk, the solute and solvent concentrations
are assumed to be unperturbed by the presence of the polymer.

In Fig. 5.3, we show the concentration distribution measured from the centre of mass
of the polymer in the radial direction for ems = 1.5. The results show that for r > 7s0, the
solution is unperturbed by the presence of the polymer.
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Fig. 5.3 Concentration of solvent, solute, and solution as a function of radial coordinate from
the centre of mass of the polymer for ems = 1.5.
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Our goal was to carry out simulations under conditions where the composition of the
bulk fluid was kept fixed, even as we varied the monomer-solute interaction. Moreover,
we prepared all systems at the same hydrostatic pressure. Therefore, we performed NPT
simulations using a Nosé-Hoover thermostat/barostat [87]. The equations of motion were
integrated using a velocity-Verlet algorithm with a time step t = 0.005t . After the relaxation
of the initial configuration, the box was allowed to fluctuate in the y direction, fixing
kBT/e0 = 1.0 and Ps3

0 /e0 = 1.0 for 2⇥104 steps.
During the NPT equilibration, fixing the bulk concentration of the liquid requires a

precise protocol, in particular in cases where the solute binds strongly to the polymer. In
our simulations, we accelerated the equilibration of the solute adsorption on the polymer by
attempting to swap solvent and solute molecules 104 times for every MD step throughout the
simulation box. Simultaneously, we exchanged solutes and solvents in the bulk, to ensure
that adsorption on the polymer would not deplete the solute concentration in the bulk. To
this end, we swapped solutes and solvents in the bulk every 200 steps such that the bulk
solute concentration remained fixed at c

B
s

⇡ 0.376. It is worth pointing out that particle swaps
occurred only during the equilibration.

5.2.2 Field-Driven Non-Equilibrium Molecular Dynamics

Once the system is at a pre-determined pressure and bulk composition, we study the effect
of chemical potential gradients on the phoretic motion of the polymer in NVT simulations.
These forces are such that there is no net force on the system as a whole, and there is no
net force on the bulk solution away from the polymer. These two conditions imply that
there is only one independent force to be defined in the system. In the present case, we
fixed the force on the solutes Fµ

s , which was varied between 0 and 0.1 e0/s0 for different
runs. During all the FD-NEMD simulations, we employed a dynamical definition of the
bulk and polymer domains, such that the z-coordinate of the centre of mass of the polymer
is always in the middle of the polymer domain. We also constrained the polymer position
to the centre of the box by using two different methods, and the results were equivalent
(see Sec. D.1)). This procedure ensures that the “bulk” region remains unperturbed by the
polymer. Having specified the force on the solute, the force on the solvent particles Fµ

f

follows from mechanical equilibrium in the bulk in Eq. (5.3) (see Fig. 5.2):

Fµ
s N

B

s
+Fµ

f
N

B

f
= 0, (5.2)
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where N
B
s

, N
B

f
denote the number of solutes and solvent in the bulk region. Once the forces

in the bulk have been specified, the phoretic force on the polymer Fµ
p is obtained by imposing

force balance on the system as a whole

Fµ
p

= �(Fµ
s Ns +Fµ

f
Nf ), (5.3)

In simulations, it is convenient to work with a force per monomer, rather than a force on
the centre-of-mass of the polymer: Fm = Fµ

p/Nm, where Nm denotes the number of beads in
the polymer. Eq. (5.3) establishes a connection between all chemical potential gradients (or
the corresponding microscopic forces), which must be balanced throughout the system as the
phoretic flow cannot cause bulk flow.

5.2.3 Phoretic velocity

In Fig. 5.4, the polymer velocities in the direction of the gradient v
x
p

are plotted for three
different pairs of LJ parameters. When there is adsorption of solutes around the polymer
(eLJ

ms
= 1.5), the polymer follows the gradient, migrating towards regions where the solute

concentration is higher. Conversely, when there is depletion (eLJ
ms

= 0.5) the polymer will
move in the opposite direction. As a null check, we also performed simulations for the
case where the eLJ

ms
= eLJ

m f
. In that case, there should be no phoresis, as is indeed found

in the data shown in Fig. 5.4. The inversion of the velocity depending on the sign of the
monomer-solute interaction is expected on the basis of irreversible thermodynamics [16]
and has previously been observed in simulations of for nano-dimers, using hybrid molecular
dynamics-multiparticle collision (MD-MPC) dynamics [29, 31].

The figure also shows that our simulations appear to be in the linear regime, as the
magnitude of the phoretic velocity increases linearly with the strength of the applied field.
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Fig. 5.4 Polymer velocities in the direction of the gradient for different LJ interactions
(eLJ

ms
,sLJ

ms
) vs the force applied on the solute particles.

5.2.4 Mobility dependence on the interaction

The mobility Mps of a polymer moving under the influence of a gradient in the solute chemical
potential is defined through:

vx

p
= Mps—xµs. (5.4)

We can compute Mps as a function of the polymer-solute interaction strength from the slope
of the v

x
p

vs. —xµs plots, such as the ones shown in Fig. 5.4. This procedure allows us to
obtain Mps as a function of the monomer-solute interaction strength eLJ

ms
. We stress that whilst

we determine Mps by varying —xµs, we keep the bulk composition of the mixture fixed (as
well as the temperature and the pressure). The resulting relation between eLJ

ms
and Mps is

shown in Fig. 5.5. As expected, Mps is linear in eLJ
ms

when eLJ
ms

/eLJ

m f
is close to one. However,

as the monomer-solute interaction gets stronger, Mps saturates, and subsequently decays with
increasing eLJ

ms
.

The observed decrease of Mps for large values of eLJ
ms

suggests that when solute parti-
cles bind strongly to the polymer, they become effectively immobilised and hence cannot
contribute to the diffusio-osmotic flow through and around the polymer. This argument
would suggest that the diffusiophoretic velocity vanishes as eLJ

ms
becomes much larger than
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the thermal energy. However, this does not seem to be the case: rather Mps seems to level
off at a small but finite value. This suggests that not all fluid particles involved in the
phoretic transport are tightly bound to the polymer. One obvious explanation could be that
the LJ potential we use is sufficiently long-ranged to interact with solute particles that are
in the second-neighbour shell around the monomeric units of the polymer. To test whether
this is the case, we repeated the simulations with a shorter-ranged generalised LJ potential
(GLJ)[116] (see Appendix A). In the insert of Fig. 5.5 this narrower potential (rc = 1.6) is
shown compared with the standard truncated and shifted LJ potential with rc = 2.5. In our
simulations, we only used the GLJ potential for monomer-solute interactions. For all other
interactions, we still used the standard LJ potential.
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�ms
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0.0
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M
ps

[�
/m
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LJ

1.0 1.5 2.0 2.5
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�1

0

1

V
(r

)

Fig. 5.5 Mobilities for different LJ interaction energies (ems) using LJ and GLJ. The dashed
line represents the theoretical estimation for eLJ = 8.0 (See Fig. 5.6a) using Eq. (5.5) and
Kirkwood’s estimation for the hydrodynamic radius a = R

K

H
. All the simulations were

performed keeping the thermodynamic conditions in the bulk constant (T ,P, c
B
s

). The insert
the LJ potential for rc = 2.5, eLJ = 1 is in blue and sLJ = 1 and a GLJ potential in red,
showing the narrow range of the monomer-solvent interaction.

Fig. 5.5 shows a comparison of the results obtained with the LJ and the GLJ potentials.
Even with the short-ranged monomer-solute interaction for which next-nearest neighbour
interactions are excluded, Mps still does not decay to zero at large eLJ

ms
. This limiting behaviour

suggests that the phoretic force is not just probing the excess of solute particles that are
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5.2 Simulation

directly interacting with the polymer, but also the density modulation of solutes (and solvent)
that is due to the longer-ranged structuring of the mixture around the polymer coil. In Fig. 5.6,
we show an extreme case (eLJ

ms
= 8.0) where the polymer has collapsed (see Appendix D.3)

and particles within a hydrodynamic radius RH from the centre of mass do not contribute to
phoresis as they are tightly bound. In contrast, particles in the structured liquid layer further
away from the centre of the polymer (r > RH) are mobile and can therefore contribute to the
diffusio-osmotic flow
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Fig. 5.6 Distribution of solutes, solvents and the total solution measured from the centre of
mass of the polymer for (a) LJ, (b) GLJ. The vertical line represents the hydrodynamic radius
RH of the polymer, in both cases, ems = 8.0. Mobile particles in the heterogeneous region
outside the collapsed polymer coil contribute to the diffusio-osmotic flow in a similar way
for both ranges of interaction.

5.2.5 Scaling of the phoretic mobility with the length of the polymer

For colloidal particles with a radius much larger than the range of the colloid solute interaction,
the diffusiophoretic mobility is independent of the colloidal radius [15]. Often the diffusion of
a polymer in a fluid is described as that of a colloid with an equivalent “hydrodynamic radius”
RH , one might assume that the diffusiophoretic mobility of a sufficiently large polymer is
also size-independent. To our knowledge, this size independence has not been tested in
simulations. However, experiments by Rauch and Köhler [117] showed that thermophoretic
mobility of polymers varies with the molecular weight Mw for short polymers (fewer than
10 monomers), but very little for longer polymers (10-100 monomers). In the case of
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diffusiophoresis of polymers in a salt-water solution, Mcafee & Annunziata [118] found that
the diffusiophoretic mobility increases with the size of the polymer1.

To our knowledge, there are no theoretical predictions for the diffusiophoretic mobility
of polymers. Therefore, as a first approximation, we choose to use a colloidal particle
model to estimate the velocity. The strong assumption that the polymer coil behaves as a
hard-sphere has been used since Kirkwood [119]. Later we discuss the consequences of such
approximation.

As discussed in the previous chapter (see Sec. 4.2), Anderson [15] derived an expression
for the diffusiophoretic mobility of colloids in the case where the interfacial layer thickness L

is smaller, but not much smaller than the radius a of the colloid. Introducing the small param-
eter l ⌘ L/a, Anderson derived the following asymptotic expression for the diffusiophoretic
velocity v of a colloidal particle:

v = v0


1� (K +H)

L
l +O(l 2)

�
. (5.5)

It is worth mentioning that the corrections terms in Eq. (5.5) account for the effect of
the curvature of the particle. All the above equations apply to the case where there is no
hydrodynamic slip on the surface of the colloid. However, if solute particles are strongly
adsorbed to the colloid, they become immobile. As a result, the surface of no-slip, and hence
the effective colloidal radius, increases. Eq. (5.5) was derived assuming no-slip boundary
conditions to solve the Navier-Stokes equation. Ajdari and Bocquet [68] showed that a
correction due to the hydrodynamic slip captures the transport enhancement at interfaces.
Including the amplification factor due to the surface slip, for moderate adsorption or depletion
of solutes, the corrected diffusiophoretic velocity v

0 reduces to:

v
0 = v

✓
1+

b

L

◆
. (5.6)

where b is the hydrodynamic slip length.
To investigate the dependence of the phoretic motion on the number of monomers of the

chain Nm, simulations were performed for a range of Nm from 5 to 60. As our polymers are
fully flexible (but self-avoiding), a chain of 60 beads corresponds to a medium-sized polymer.
The simulation box was scaled accordingly with the Flory exponent for a polymer in a good
solvent n ⇡ 0.6, thus ensuring that the chain could not overlap with its periodic images. All
the NEMD simulations were carried out for 108 time steps.

1Shin et al. [55] showed that in a dead-end channel larger colloidal particles travel farther than smaller
particles
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Fig. 5.7 Diffusiophoretic mobility Mps of a polymer vs the number of monomers in the
polymer Nm. The results eLJ

ms
= 1.5 are shown in red and in blue for eLJ

ms
= 0.5. The

simulations results are represented as dots and the theoretical predictions (Eq. (5.5), including
the amplification due to the hydrodynamic slip), are shown as squares. The insert shows the
theoretical predictions without slip correction. In the theoretical calculations a = RH , where
RH is the hydrodynamic radius estimated, for the specific interaction ems and thermodynamic
conditions, using Stokes-Einstein relation (Eq. (4.22))

In Fig. 5.7, the simulation results are shown together with theoretical predictions replacing
the polymer by an equivalent hard sphere with a radius a = RH given by Stokes-Einstein
relation in Eq. (4.22) (comparison with the Kirkwood approximation for RH [119] are
shown in Appendix D.4), where h denotes the viscosity of the solution in the bulk, which
was computed independently, using the Green-Kubo expression relating h to the stress
autocorrelation function, in an equilibrium simulation of the bulk fluid. The diffusion
coefficient D was also computed from equilibrium simulations considering the different
interactions ems. For the details on the calculations for h and D see Appendix B.

Fig. 5.7 shows that the diffusiophoretic mobility of the polymer increases with Nm. The
large quantitative differences between the simulations and the theoretical approximations for
a colloid with the same hydrodynamic radius are to be expected: First of all, the assumption
that the polymer coil behaves as a hard-sphere with a = RH is rather drastic. To be more
precise, this approximation (which was also used by Kirkwood [119]) assumes that the liquid
molecules within the coil region move together, such that the whole assembly moves as a
rigid sphere (see e.g. [120]). This might be a good approximation for the diffusion of long
polymer coils, but in the case of phoresis, it is unrealistic to assume that no solute/solvent
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can be transported through the polymer at distances less than RH . The second (but related)
questionable approximation is that RH defines the surface of the equivalent colloid in the
integrals in the parameters of Eq. (5.5). As a consequence, the contribution of any excess
solute at a distance less than RH from the polymer centre is ignored. As is clear from Fig. 5.6
this assumption is incorrect and likely to underestimate the real diffusiophoretic flow, since
Fig. 5.8b shows that there can be considerable solute advection for r < RH .

Our simulations suggest that better theoretical models for polymer diffusiophoresis are
required. In Fig. 5.8 we show the velocity field for a polymer with Nm = 30 for two cases:
when it is subjected to a body force Fig. 5.8a and under the influence of diffusiophoresis
Fig. 5.8b. As is obvious from the figure, in both cases there is fluid motion within the
polymer at distances less than RH from its centre of mass. However, there is an important
difference between the flows inside the polymer for the pressure-driven and phoretically
driven flows: strong hydrodynamic screening is found in the case of a pressure gradient
while for diffusiophoresis, screening seems to be effectively absent. Notice that the density
profile is somewhat asymmetric due to the advection produced by the pressure-driven flow.
Shin et al. reported evidence for a similar absence of hydrodynamic screening in a dense
plug of colloidal particles moving under the influence of diffusiophoresis [40]. Shin et

al. argued that the difference in screening in the case of phoretic flow, as opposed to the
flow due to body forces or pressure gradients, could be attributed to the difference in the
range of the hydrodynamic flow fields. The flow decays as ((⇠ 1/r) for body-forces and
pressure-driven flow. Meanwhile, phoretically induced flows decay as(⇠ 1/r

3) [16, 92, 105].
A signature of the rapid decay was noticed in a finite-size analysis. We observed that the
diffusiophoretic velocity did not change with the increase of the box size (see Appendix D.2).
Moreover, the fast decay in the phoretically induced flow implies that there is no effective
hydrodynamic interaction between distant monomers in large polymers. This might explain
the small variation in the mobilities for large Ns in Fig. 5.7.
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Fig. 5.8 Flow around a polymer coil. (a) when a body force is applied, hydrodynamic
screening perturbs the streamlines at the vicinity of the polymer. (b) for diffusiophoresis the
hydrodynamic screening seems not to perturb the flow profile near the polymer. The velocity
field is measured in a coordinate system moving with the centre of mass of the polymer. The
black semicircle shows the equivalent colloid and the contours show the solute concentration,
for both cases ems = 1.5. The measurements were taken inside a cylinder with an axis along
the direction of the applied force, with the axis passing through the centre of mass of the
polymer. The contours show the solute concentration cs.
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5.3 Conclusions

We have performed molecular dynamics simulation on the diffusiophoresis of polymers
in a fluid mixture under the influence of a concentration gradient of solutes. We used the
FD-NEMD method, where the effect of an explicit concentration gradient in the system by
imposing equivalent microscopic forces on the solute, solvent and monomers. This approach
allows us to use periodic boundary conditions and facilitates a systematic investigation of
diffusiophoresis. We find, as in our previous case study, a non-monotonic relation between
diffusiophoretic mobility and monomer-solute interaction. We rationalise that this behaviour
is due to two main reasons: first, as in the colloidal case, solutes that are tightly bound do not
contribute to phoresis. Second, the conformation of the polymer changes as the interaction
with solutes varies. Furthermore, we have demonstrated that the diffusiophoretic mobility of
a (short) polymer cannot be explained in terms of a model that assumes it as a solid spherical
particle. Finally, we found an ineffective hydrodynamic flow screening inside a polymer
moving due to diffusiophoresis. This result differs from what is observed in the case of a
polymer moving through a fluid under the influence of an external force.
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Chapter 6

General Conclusion and Outlook

"Physics is like sex: sure, it may give

some practical results, but that’s not

why we do it."

Richard P. Feynman

In this thesis, we investigated diffusio-osmosis as well as diffusiophoresis using a mi-
croscopic approach. We first briefly presented the available theoretical and computational
methods to study these phenomena employing both EMD and NEMD. Our first case study
was the diffusio-osmotic flow in a simple planar geometry, where we propose an alternative
route to derive a theoretical estimate for the flow velocity. Our expression is based on the
LTE approach. We include the contributions to diffusio-osmosis from all the species in a
multi-component solution. In particular, we take into account the solvent particles. This
discrete treatment of the solvent is a crucial difference with respect to previous works based
on continuum frameworks. Furthermore, we show that we can recover Derjaguin-Anderson’s
results for the limiting case when there is an ideal-dilute solution in the bulk.

We presented a systematic derivation of the entropy production for transport driven by
chemical potential gradients using non-equilibrium thermodynamics. This starting point was
crucial to construct a consistent set of thermodynamic forces and fluxes. As simple as this
seems, the lack of this initial step could have caused erroneous interpretations in previous
works. We used a representation with pressure gradients and chemical potential gradients for
the solutes as thermodynamic forces. Once we defined the transport matrix, we employed
linear response theory to find the Green-Kubo expressions for the diffusio-osmotic transport
coefficients, demonstrating that Onsager’s reciprocity was fulfilled. We then established the
connection between micro- and thermodynamic forces. Afterwards, we used the microscopic
forces to perform FD-NEMD on a benchmark system. Referring back to the simulation
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results, we quantified the theoretical estimations based on the different species in the solution.
For future research projects, it would be interesting to extend the simulations to systems
with more than two components in order to test the limitations of our theoretical model and
perhaps exploring some alternatives to the assumption of constant viscosity.

After building a solid theoretical background and validating our numerical simulations,
we extended the application of FD-NEMD to study non-planar geometries such as colloids
and polymers. In the case of colloids, we examined spherical particles under the influence of
solutes in a binary solution. We performed simulations using two non-equilibrium techniques.
We first imposed the explicit thermodynamic force driving the phoretic motion. Alternatively,
we used the microscopic representation of the chemical potential gradient. Our findings
show that the FD-NEMD method is more advantageous than BD-NEMD, mainly because it
allows studying phoretic transport minimising the effects of advection. Our results proved a
non-monotonic dependence of the velocity with the interaction strength between the colloid
and the solutes. This behaviour shed light on the way that the mobility of solution in the
nearest layers to the colloidal particle takes place. For moderate interactions, the excess of
solutes increases the fluid flow around the colloidal particles. Conversely, when the solutes
interact so strongly that they form an immobile layer around the colloid, there is a decay in
their mobility and therefore their contribution to phoretic motion.

As a final case study, we explored the diffusiophoresis of a short polymer coil. The results
showed the same monotonic relation between mobility and monomer-solute interaction. A
further investigation, employing a generalised LJ potential, revealed that there is remnant
transport at high interactions caused by the moving liquid layers beyond the range of direct
interaction with the colloid. Moreover, we found that the theoretical predictions formulated
for colloidal particles are not able to describe polymer diffusiophoresis. The lack of a defined
surface in the case of the polymers makes it problematic to establish a reference point for
the theoretical calculation. To compensate for the limitations in the theoretical estimates, we
added a slip amplification factor in order to account for the missing elements in the derivation.
Finally, we observed that there is a penetration of hydrodynamic flow fields and solutes into
the polymer coil, in the case of phoretic motion. These flow patterns are different from what
is observed for a polymer moving under the influence of a body force or a pressure-driven
flow. The reason for the difference is that diffusiophoresis originates in the diffuse layer and
the flow perturbations are restricted to this same region. Meanwhile, pressure-driven flows
are characterised by a slow decay of the hydrodynamic perturbation.

In future work, we plan to use the experience from this thesis to simulate more challenging
systems. In particular, we would like to focus on a porous medium constituted by random
obstacles. In such a system, there is no clear separation between the diffuse layer and bulk.
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This lack of differentiation poses a practical problem, as the definition of the microscopic
forces in our simulations relied on the mechanical balance in the bulk. Furthermore, a
formulation of the entropy production where the pressure gradient appears as one of the
thermodynamic forces will not be convenient. For such an inhomogeneous system, the
connection between the pressure gradient and an equivalent mechanical constraint on the
particles using FD-NEMD is not possible. Lastly, non of the theories described in this work
would allow studying this porous system. Perhaps an approach inspired by macro-transport
processes might be useful.
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Appendix A

Generalised Lennard-Jones (GLJ)
potential

A.1 The need for a new short range potential

The Lennard-Jones 12-6 potential was proposed to describe noble gases like argon [121].
It Includes a dispersive London force that decays as 1/r

�6 for long distances, which made
it convenient for analytical calculations. The potential became widely used for molecular
simulations due to the success in predicting experimental argon data [122, 123]. Later,
it turned out that a fortuitous cancellation of error was the cause of the a priori accurate
results [124]. For numerical purposes, the infinite range of the LJ potential needs to be
truncated for MC simulations and additionally shifted for MD to avoid discontinuities in the
force. There are several ways of truncating the potential, and the choices of cutoff radius
are "infinite". This situation brings confusion, and special care is required to reproduce and
compare results from different sources.

Wang et al. [116]1 proposed a class of LJ-like potentials with a finite range by construc-
tion, vanishing quadratically at the cutoff distance. Thus, avoiding the ambiguities mentioned
before. The general form of the potential is

f(r) = ea
✓hs

r

i2µ
�1

◆✓h
rc

r

i2µ
�1

◆2n
, (A.1)

with

a = 2n
⇣

rc

s

⌘2µ


1+2n
2n [(rc/s)2µ �1]

�2n+1
(A.2)

1This potential will be available in LAMMPS for the next stable release.
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rmin = rc


1+2n

1+2n(rc/s)2n

�1/2n
(A.3)

The simplest case is n = µ = 1, and little is gained with higher values of µ and n . In-
creasing n make higher derivatives of the potential continuous at rc at a higher computational
expense. The advantage and simplicity of this potential come as rc is defined unambiguously.

A.2 Thermodynamic and transport properties

The wide use of the Lennard-Jones potential might be because many properties of this model
have been studied extensively. Therefore, we computed the thermodynamic quantities for the
different phases of GLJ potential and used a multivariate polynomial fit on our numerical data.
To describe the procedure, here we focus on the liquid phase, but an equivalent development
for the solid phase is straightforward [116]. Our starting point is the excess Helmholtz
free energy Aexc(N,V,T ), or more precisely bAexc/V = braexc, where b ⌘ 1/kBT , and
aexc ⌘ Aexc/N.

We assume that braexc can be expanded in a two variables polynomial, namely the
density r and b ,

bra
L

exc =
nmax

Â
n=nmin

mmax

Â
m=mmin

a
L

n,mrnb m . (A.4)

we know from thermodynamics that

reexc =

✓
∂braexc

∂b

◆

r
. (A.5)

hence,

re
L

exc =
nmax

Â
n=nmin

mmax

Â
m=mmin

a
L

n,mmrnb m�1 (A.6)

Using again Eq. (A.4) and the following thermodynamic relation,

bPexc = �
✓

braexc �r
✓

∂braexc

∂r

◆

T

◆
, (A.7)

we obtain the polynomial expansion for the excess pressure P
L
exc

bP
L

exc(r,b ) =
nmax

Â
n=nmin

mmax

Â
m=mmin

(n�1)aL

n,mrnb m . (A.8)
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A.2 Thermodynamic and transport properties

From Eqs. (A.4), (A.6) and (A.8) we notice that we can describe the relevant thermody-
namic quantities using a single set of fitting parameters a

L
n,m for the liquid phase. Therefore,

to find a
L
n,m we perform a minimisation of c2 given by

c2 = Â
a

Â
i

⇣
Ân0,m0 ca

n0,m0rn
0

i
b m

0
i

�Xa(ri,bi)
⌘2

s2
a(ri,bi)

, (A.9)

where the index a is such that Xa represents the thermodynamic quantities bP
L
exc or

re
L
exc with error estimates given by sa(ri,bi). Comparing Eq. (A.9) with (A.6) and (A.8)

we define m
0, n

0, c
a
n0,m0 and sa(ri,bi).

In Fig. A.1 we show the simulation results together with the estimations using the fitting.
We used nmin = 2 (because at low densities, the excess pressure scales as r2), nmax = 8,
mmin = �3 and mmax = 2.
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Fig. A.1 Simulation and fitting results for the liquid phase with rc = 2.0. (a) shows the energy
and (b) the excess pressure, both as a function of the density rho and the inverse temperature
b .

Once we have estimated the fitting coefficients, we can also predict the excess chemical
potential using,

b µexc =

✓
∂braexc

∂r

◆

T

. (A.10)

Therfore, the same set of fitting coefficients a
L
n,m allows predicting the excess chemical

potential as follows

b µexc =
nmax

Â
n=nmin

mmax

Â
m=mmin

a
L

n,mnrn�1b m . (A.11)
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Finally, we used Green-Kubo expressions (see Sec. 3.2.3) to compute the diffusivity,
viscosity and thermal conductivity. We performed the same multivariate fitting strategy for
each one of the transport coefficients. For instance, the viscosity:

h =
nmax

Â
n=nmin

mmax

Â
m=mmin

a
(h)
n,mrnb m . (A.12)

In Fig. A.2 we show the simulation results together with the estimations using the fitting
with nmin = 0, nmax = 6, mmin = 0 and mmax = 6.
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Fig. A.2 Simulation and fitting results for the viscosity of a liquid phase with particles
interacting with parameters n = 1, µ = 1 and rc = 2.0.
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Appendix B

Green-Kubo formalism

It can be shown that the response of a system to a small perturbation is described in terms of
time correlations of microscopic observables in equilibrium. Therefore, only the knowledge
of the effect of the thermal fluctuations is enough to describe the response to any small
perturbation. This approach is known as the linear response theory. In this section, we
discuss the standard procedure to compute transport coefficients that can be found in more
detail elsewhere [56].

Suppose that the Hamiltonian of a system is described by

H = H0 +DH , (B.1)

where H0 is the Hamiltonian of the unperturbed system and DH is the perturbation by
an external field F weakly coupled to the system. If we have a monochromatic field, with
frequency w , the perturbation can be written as

DH = �AF exp{�iwt} , (B.2)

where A is in general a function of the positions pN and momenta qN of the N particles
in the system. The change in the observed variable B up to linear terms in DH is given by

hDB(t)i =
1

kBT

Z •

0
hB(t)Ȧ(0)iF exp

�
�iw(t � t

0)
 

dt
0 . (B.3)

We can define the transport coefficients Mi j in the hydrodynamic limit (w ! 0) as [97]:

MBA =
1

kBT

Z •

0
hB(t)Ȧ(0)i . (B.4)

For a system with microscopic invariance under time reversal transformations we have
that hB(t)Ȧ(0)i = hA(t)Ḃ(0)i, thus MBA = MAB, fulfilling Onsager’s reciprocal relations.
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Green-Kubo formalism

Equations as Eq. B.4 are know as Green-Kubo relations. These relations connect transport
coefficients with the time correlations of the fluctuating microscopic variables in thermal
equilibrium. Two examples that are relevant for the present work are the diffusivity D and
the shear viscosity h .

The diffusivity or self-diffusion constant D in d dimensions can be expressed in terms of
the velocity autocorrelation function,

D =
1
d

Z •

0
d t hv(t) ·v(0)i =

Z •

0
d t

⌦
v

i(t)vi(0)
↵

. (B.5)

Alternatively, the diffusivity can be expressed in terms of the mean-squared displacement
(MSD) hDr2i as,

D =
1

2d

∂ hDr2i
∂ t

. (B.6)

The Green-Kubo relation for the shear viscosity h is given by:

h =
1

V kBT

Z •

0
d t hPxy(t)Pxy(0)i . (B.7)

with the xy component of the microscopic stress tensor given by the Virial expression [77]

Pxy =
N

Â
i=1

 
miv

x

i
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i
+

1
2 Â

j 6=i

xi j fy(ri j)

!
, (B.8)

with the first term representing the kinetic contribution to the stress tensor and the second
term is the potential contribution that depends on the distance between the particles xi j and
the force due to their interaction fy(ri j).
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Appendix C

Measuring the viscosity

The shear viscosity h measures the momentum transfer of a fluid in a direction perpendicular
to the flow. There are several approaches to compute this quantity -or any transport coeffi-
cients, using both equilibrium and non-equilibrium molecular dynamics. Meier et al. [125]
discuss in detail the different procedures to determine h for a Lennard-Jones fluid. In this
section, we illustrate two methods: one based on the Green-Kubo (GK) relations in Sec. 3.2.3
and the other on the well-know Poiseulle flow.

The first approach is purely based on equilibrium simulations and uses Eq. (B.7) to
compute the viscosity. We measure the microscopic stress tensor using the virial expression
in Eq. (B.8) and compute the stress autocorrelation function (SACF). As the fluid is isotropic,
we improve the statistics using the average of the SACF from all the off-diagonal and diagonal
terms of the stress-tensor [126]. In Fig. C.2 we compare our results with an empirical law for
the viscosity [127].
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Fig. C.1 Reduced shear viscosity h⇤ for different reduced temperatures T
⇤. The points with

error bars show the results for the estimations using the GK relation in Eq. (B.7). The red
line is the prediction for the viscosity using an empirical law [127].

For the systems treated in the main text, we cannot use the empirical law for the viscosity
by Meyer, as we use a shorter cutoff radius rc = 2.5s . Therefore, we need to compute
explicitly the GK relation (see Eq. (B.7)) to obtain the shear viscosity. In the case of diffusio-
osmosis, as we have an ideal binary solution in the bulk, we can assume a single component
LJ system at kBT/e = 1, Ps3/e = 1. The system was thermostated and barostated for
2⇥105 time steps of 0.005t0. During the barostaing process, the simulation box was allowed
to fluctuate in the z direction, i.e in the direction perpendicular to the walls. After that, we
fixed the length of the simulation box in the z direction Lz, to the average value sampled
during the barostating. We ran NVT simulations sampling all the independent components
of the stress-tensor for 106 steps and computed the SACF (see Fig. C.1). We performed 10
independent runs. For each one, we evaluated the GK relation for different upper integration
times t

⇤. In Fig. C.3 we show the evolution for one of the runs. Averaging the results from
the independent runs, we find that the shear viscosity is h⇤ = 1.57(2).
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Fig. C.2 Stress autocorrelation function for the three out of diagonal terms xy, xz, yz and the
average ("Total"). Results are plotted in a log scale to emphasise the fast decay. The vertical
line indicates the upper limit for the integral shown in Eq. (B.7).
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Fig. C.3 The evolution of h⇤ for different upper integration limits t
⇤. We show the results for

one of the independent runs. The value of h⇤ at t
⇤ = 10 is used as reference.

The second approach to compute the shear viscosity from NEMD was proposed by Todd
et al. [94]. It consists of a planar Poiseuille flow simulated by applying a gravitational-like
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force on all the particles in the fluid. The equation describing the hydrodynamics of the
system is given by:

r(r, t)dv(r, t)
dt

= �——— ···P+r(r, t)Fe . (C.1)

Assuming a steady flow, Newtonian viscosity and homogeneous fluid density r , we find
that,

vx(z) =
r̄F

e

2h

✓
z

2 �
L

2
z

4

◆
, (C.2)

where r̄ is the average density in the bulk region, as defined in the main text.
Notice that the assumption of a homogeneous density in a confined liquid between solid

walls is not valid at the interface (see discussion in Sec. 3.2.3). However, since we are
interested in the shear viscosity in the bulk, we can assume that the density is constant. In
Fig. C.4 we show the flow profiles for various F

e. We fitted the velocity profiles far from the
walls by using Eq. (C.2). The average value for the viscosity is h = 1.53(3). This result is in
agreement with the estimates obtained using GK.
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Fig. C.4 Flow profiles for different applied forces Fe. The fitting using Eq. C.2 is performed
only in the bulk region where z 2 [10,25]
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Appendix D

Additional results for polymer
diffusiophoresis

The results in this section were performed using the same system as described in the polymer
diffusiophoresis chapter with c

B
s

⇡ 0.15.

D.1 Fixed or free polymer

In the main text, we employed a dynamical definition of the bulk and the polymer domain.
The definition was such that the z-coordinate of the centre of mass of the polymer coincides
with the middle of the box. This procedure ensures that the bulk region remains unperturbed
by the polymer. Another way of performing the FD-NEMD simulations on diffusiophoresis
is to constrain the polymer to the centre of the simulation box. Thus, no redefinition of the
coordinates is required. We achieved this in two different ways: first, we assign an infinite

mass to a central monomer; second, we impose a zero-force constraint on the same monomer.
In the latter, the monomer still exerts a force on all the other particles. In Fig. D.1, we show
the results of these two methods compared with those obtained with the procedure described
in the main text.

97



Additional results for polymer diffusiophoresis

0.02 0.04 0.06 0.08 0.10
Fµ

s = ��xµs[�/�]

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

|v
x dp

|[�
/�

]

Force

Free

Mass

Fig. D.1 Diffusiophoretic velocity vdp for ems = 1.5 using three different methods: “Free"
described in the main text, “Mass" assigning an infinite mass to one of the central monomers
and “Force" constraining the central monomer to be force-free. In the first case, we measured
the velocity of the centre-of-mass of the polymer. In the other two approaches, we measured
the flow in the bulk.

D.2 Finite-size effects

Our original simulation box consisted of a cubic region of side Lc with additional bulk regions
of cross-section Lc ⇥ Lc, and a total height of Lz = 10. To analyse the finite-size effect on
our simulations, we changed L and measured v

x

dp for the methods described in Sec. D.1.
The results in Fig. D.2 show no clear size effect. These results differ from pressure-driven
flow estimations by Hasimoto [128] (later improved by Sangani et al. [129]), who found
that the drag force for a periodic array of spheres increases with the volume fraction due
to the hydrodynamic interaction between the different elements in the array. The lack of a
clear size effect on the v

x

dp suggests that, in the case of diffusiophoresis, the fast decay in
the perturbation of the flow restricted to the diffuse layer has no effect far from the polymer.
Moreover, Khair [105] predicts that for very low Pe, two identical spheres undergoing
diffusiophoresis translate with the same velocity as isolated spheres.
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Fig. D.2 Diffusiophoretic velocity vdp for different box side Lc, ems = 1.5 and a force on
the solutes F

µ
s = 0.15. We report 3 different methods: “Free" described in the main text,

“Mass" assigning an infinite mass to one of the central monomers and “Force" constraining
the central monomer to be force-free.

D.3 Conformational changes

In Fig. D.3, we show the evolution of the different pair correlation functions for all the species.
The results show that as the interaction between the monomers and the solutes ems increases,
the monomers tend to be surrounded only by solutes. The polymer undergoes conformational
changes, going from an extended polymer for small |ems|, typical for a polymer in a good
solvent, to a collapsed globular shape when |ems| increases. The evolution of the radius of
gyration Rg in Fig. D.4 corroborates the observations.
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(a) ems = 0.5 (b) ems = 1.0
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Fig. D.3 Pair-correlation distributions gi j with the indexes i, j running over p,s, f , the
monomers, solutes and solvent respectively. The small inserts show simulation snapshots
with typical polymer configurations.
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Fig. D.4 Radius of gyration Rg for a short polymer (Nm = 30) at different ems.
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D.4 Mobility vs N (Kirkwood approximation)

D.4 Mobility vs N (Kirkwood approximation)

In Fig. D.5, the simulation results are shown together with theoretical predictions replacing
the polymer by an equivalent hard sphere with a radius a = RH . The hydrodynamic radius
RH is given by Kirkwood’s approximation [119].
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Fig. D.5 Diffusiophoretic mobility Mps of a polymer vs the number of monomers in the
polymer Nm. The results are shown in red for eLJ

ms
= 1.5 and blue for eLJ

ms
= 0.5. The

simulations results are presented as dots and the theoretical predictions using Anderson’s
prediction [15], including the correction due to the hydrodynamic slip [68], are shown
as squares. The insert shows the theoretical predictions without the correction for the
hydrodynamic slip.
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