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Process analysis of pluripotent stem cell differentiation to
megakaryocytes to make platelets applying European GMP
Moyra Lawrence 1,2, Amanda Evans1,2, Thomas Moreau1,2,3, Marta Bagnati4, Matthew Smart4, Enas Hassan4, Jahid Hasan4,
Monica Pianella4, Julie Kerby4 and Cedric Ghevaert 1,2✉

Quality, traceability and reproducibility are crucial factors in the reliable manufacture of cellular therapeutics, as part of the overall
framework of Good Manufacturing Practice (GMP). As more and more cellular therapeutics progress towards the clinic and research
protocols are adapted to comply with GMP standards, guidelines for safe and efficient adaptation have become increasingly
relevant. In this paper, we describe the process analysis of megakaryocyte manufacture from induced pluripotent stem cells with a
view to manufacturing in vitro platelets to European GMP for transfusion. This process analysis has allowed us an overview of the
entire manufacturing process, enabling us to pinpoint the cause and severity of critical risks. Risk mitigations were then proposed
for each risk, designed to be GMP compliant. These mitigations will be key in advancing this iPS-derived therapy towards the clinic
and have broad applicability to other iPS-derived cellular therapeutics, many of which are currently advancing towards GMP-
compliance. Taking these factors into account during protocol design could potentially save time and money, expediting the
advent of safe, novel therapeutics from stem cells.
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INTRODUCTION
Platelet transfusions and cross-matching
Platelets are 2–4 μm anucleate discoid cells in the bloodstream
which are responsible for clotting, wound healing, inflammation at
the site of injury and subsequent angiogenesis1. Thrombocytope-
nia is the lack of sufficient quantities of platelets and can result
from trauma, surgery, cancer treatment, or acquired or inherited
bone marrow failure2–4. Patients with thrombocytopenia are at risk
of haemorrhage. To prevent this, they are transfused with donor
platelets. Every year, 280,000 platelet units are transfused into
patients in the UK. Patients who have been exposed to
platelet alloantigens through transfusion or pregnancy can
develop immunity to these antigens, predominantly HLA Class I,
making matching platelet transfusions more challenging5–7.
Furthermore, platelets have a shelf life of only 5–7 days, meaning
that at times of restricted donor availability (holidays, natural
disasters, pandemics), platelet shortages can occur8.

Megakaryocytes: the mother cells for platelets
The cells which produce platelets are called megakaryocytes (MKs).
MKs are large, polyploid, multinucleated cells which differentiate
from haematopoietic stem cells in the bone marrow9–11. MKs make
up 0.01–0.03% of nucleated bone marrow cells12; however,
collectively they are estimated to produce 1–2 × 1011 platelets
daily13,14 with each MK estimated to produce up to 4000
platelets15. Therefore, if we could generate platelet-producing
MKs in vitro, we could rapidly generate platelet units for
transfusion into patients.
MKs are large and not very proliferative so isolating them in

meaningful numbers from the bone marrow is not technically
feasible. CD34+ HSCs can be isolated from cord blood and
initially these cells represented a promising source for MK

differentiation16–21. However, cords are quite small and variable
in CD34+ cell content. Adult peripheral blood generally provides
even fewer HSCs than cord blood21 and whereas these numbers
can be boosted by cytokine-mediated mobilisation of HSCs from
the bone marrow, this puts the donor at increased risk of stem and
progenitor exhaustion22,23. In addition, until recently, HSCs were
challenging to expand in vitro, making it difficult to produce large
numbers of HSCs as a starting material for MK differentiation24–26.

Induced pluripotent stem cells as a starting material for
cellular therapies
The advent of pluripotent stem cell culture provided an infinitely
expandable cell source from which to differentiate MKs. Human
embryonic stem cells (ESCs) can be efficiently and reproducibly
differentiated into MKs in vitro27–31. However, ESCs can potentially
pose significant ethical concerns in some parts of the world so
when induced pluripotent stem cells (iPSCs) were first generated
from human dermal fibroblasts, these became the starting
material of choice for many cell differentiation protocols32,33.
ESC differentiation protocols applied to iPSCs generated MKs very
successfully. The insight into the requirement for MYC during MK
progenitor generation34 initiated the differentiation of MKs from
iPSCs using viral transgenes35,36, a process called forward
programming. In parallel, work continued on cytokine-mediated
directed differentiation of MKs27,37 and as a result, many protocols
emerged which could generate MKs from iPSCs in vitro38,39.
iPSCs also represent a unique opportunity to generate platelets

with added benefits. iPSCs can be easily gene edited, allowing the
deletion of key immune signalling molecules or the addition of
desired molecules, for example angiogenic compounds or clotting
agents, to platelet granules. β2 microglobulin is crucial for the cell-
surface expression of MHC Class I. Depleting or deleting β2
microglobulin in iPSCs generates HLA Class I null platelets which
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could be transfused into any recipient, including those with
antibodies against HLA Class I alloantigens. β2 microglobulin had
previously been depleted using short hairpin RNA in CD34+ cord
blood derived HSCs40. The HSCs were then differentiated into MKs,
producing platelets40 which could evade immune destruction41.
This knockdown technology was applied to iPSCs to generate HLA
Class I reduced platelets42. Clustered regularly interspaced short
palindromic repeat-associated protein 9 (Cas9) was used to delete
β2 microglobulin in iPSCs, producing HLA Class I knockout
platelets39, which could evade recognition by human anti-HLA
antibodies in a mouse model43. Additionally, the absence of HLA
Class I was thought to pose a risk for platelet rejection due to
Natural Killer Cell activation. The authors infuse the mouse model
with human NKs and show no effect on HLA Class I knockout
platelet viability, demonstrating HLA Class I knockout platelets as a
viable clinical alternative for alloimmunised patient transfusion43.

Platelet production from MKs using bioreactors
To generate platelet units for transfusion, efficient methods are
required for platelet release from MKs generated in vitro. Many
systems have already been generated, including silk scaffolds
which mimic the bone marrow44,45, large paddles which generate
the turbulence necessary to induce platelet formation46, flow
chambers which bud platelets through a fenestrated membrane
into a second chamber47 and collagen sponges which trap MKs
and allow nascent platelets to flow through48. In vitro platelet
production remains less efficient than in vivo; however, these
systems can produce large numbers of mature, functional
platelets and as systems are refined, efficiencies are increasing.

The requirement for manufacturing standards
A patient’s quality of life and future health conditions could depend
on the therapeutics they receive today, thus there is an enormous
responsibility on the clinical therapeutic manufacturer to ensure
stability, safety, batch-to-batch consistency and reproducibility. In
order to do this, Good Manufacturing Practice (GMP) principles
were introduced and applied to the manufacturing process for
clinical products. To meet GMP standards, products must be of a
consistently high quality, be appropriate for their intended use and
meet the requirements of the marketing authorisation (MA) or
product specification49. In the UK, the Medicines and Healthcare
Products Regulatory Agency (MHRA) carries out inspections to
ensure manufacturing sites comply with GMP requirements, as set
out by the European Commission49,50. Manufacturers which pass
the inspection receive a GMP certificate49.
Platelets may be classified an Advanced Therapy Medicinal

Product (ATMP), as they are a “medicine for human use based on
genes, tissues or cells”51,52. In Europe, the iPSCs used as starting
material must be manufactured in compliance with the principles
of EU GMP and donation, procurement and testing must comply
with the EU Tissues and Cells Directive53,54 or the EU blood
directive55, as applicable. GMP principles should apply after the
donation of the cells, right through the manufacturing process56.
Viral and transmissible spongiform encephalopathy safety require-
ments apply during starting material qualification and early
production processes including reprogramming57,58. Freedom to
Operate is also a crucial element to consider when selecting iPSCs;
their origin, reprogramming method and the technologies used in
their modification and differentiation must all be taken into
account to inform the choice of line59. Clinical grade iPSC lines
need to demonstrate certain physical, chemical, and biological
properties that ensure quality and safety of the final product.
There is little agreement as to the specific assays used to measure
these critical quality attributes; however, generally properties for
consideration include identity, potency, viability, genetic fidelity
and stability, and microbiological sterility. The Global Alliance for
iPSC Therapies (GAiT) has published initial recommendations on

Critical Quality Attributes (CQAs) for clinical-grade iPSC lines with
discussion around relevant assays for elucidating each CQA60,61.
iPSC lines manufactured to GMP are in short supply, due to the
costs involved in their production62, further complicating the
patent landscape.
GMP applies to the entire process of manufacturing, with the

level of GMP requirements increasing from early to later steps in
product manufacture. There are no legal requirements for raw
materials to be manufactured to GMP. Although manufacturing
under a quality management system (QMS) can provide assurance
of the material quality, the therapy developer is ultimately
responsible for assessing the suitability of the chosen raw
materials for the intended use and the adequate level of QMS. It
is recommended the raw materials used are of pharmaceutical or
pharmacopeial grade. Where this is not possible, risk assessments
and the implementation of additional routine testing may be
required58,63. For biologically-derived raw materials this could
entail having a reliable test for biological activity. The therapy
developer must also ensure full traceability of the raw and starting
materials used for production. Traceability data must be retained
for a minimum of 30 years after the expiry date of the product or
for a longer period if provided in the marketing authorisation58.
Every step from material sourcing and qualification, through
product manufacture and storage to transport must be docu-
mented50,58. Documentation must include specifications, manu-
facturing formulae, processing and packaging instructions,
procedures, protocols, records, batch records, technical agree-
ments and certificates of analysis58,64. Product specification file
and batch documentation must be retained for one year after
batch expiry or 5 years after QP certification. For investigational
medicinal products, documentation must be kept for 5 years after
completion or formal discontinuation of the last clinical trial50,58. A
quality assurance system tracks manufacturing materials, ensuring
correct storage and adherence to protocols50,58. Qualified
personnel are responsible for the implementation of this system
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Fig. 1 Generating megakaryocytes from iPSCs. a Overview of the
Megakaryocyte Forward Programming protocol. iPSCs overexpres-
sing GATA1, TAL1 and FLI1 are differentiated in FGF2 and BMP4 for
3 days and then in SCF and TPO for 17 days to generate mature
CD41+CD42+ megakaryocytes (MKs). b Schematic of the inducible
cassette for GATA1, TAL1 and FLI1 expression in iPSCs and their
patterning into MKs. One cassette, containing rTTA, is inserted in the
ROSA26 locus while a second cassette containing the patterning
transcription factors is integrated into the AAVS1 locus. c Schematic
of HLA Class I knockout strategy, using paired Cas9 D10A nickases to
create a frameshift mutation in β2 microglobulin.
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on each manufacturing site and must have access to quality
control laboratories for analysis. Manufacturing must be per-
formed in an identical fashion for each batch and any variations to
the protocol need to be re-validated50. Any deviation from
standard practice during batch production must be approved by a
qualified person58. GMP compliant premises must separate sterile
from non-sterile workflow and clean areas must be compliant with
ISO 14644-1, have controlled and tested air quality and be

frequently monitored58. Systems used for manufacturing should
be closed, if possible, to minimise contamination risk, and all final
products must be sterility tested58. The final product must have
full traceability and be labelled accordingly50 and is held until the
release specification has been met58. Such release criteria begin
with sterility and testing to ensure patient safety, and progress to
include testing other quality attributes, such as potency. The batch
is also checked to make sure the raw materials and manufacturing

Simplified Process Flow Diagram (PFD) 

Seeding for 
differentiation

 (Day -1)

MK media 
addition

2x MK media 
addition

Harvest
(Day 10)

2x MK media 
addition

Flow cytometry

Pre-processing preparation

Coating culture 
vessels with 
vitronectin

Media 
preparation

Transfection 
reagent 

preparation

Top-up with 3x 
MK media

MK differentiation

Cas9 transfection of iPS cells

Inducible 
cassette 

transfection
(Day 0)

iPSC Thaw

Cell count

Cell harvest
(Day -1)

Cell seeding in 
MK media

MK medium 
addition

Cell count

Puromycin and 
neomycin 
selection
(Day 2-7)

Collection of 
individual 
resistant 
colonies

(Day 7)

Clone 
expansion

Genotyping

Homozygous 
clones thaw and 

expansion
MCB/WCB

iPS cells thawing, expansion and banking

iPSC Thaw
Frozen vial of 

iPS cells
iPSC Culture

(Day x)

Formulation 
and filling into 

cryovials

Freezing to 
-80 °C

Long term 
storage at

 -150 °C

Mesoderm media 
+CHIR99021 

Mesoderm 
media

iPS cells 
(gene edited)

Cell count

iPSC Harvest

iPSC Thaw
 (Day -x)

Cell expansion 
 (Day -x)

Thaw and cell bank 
characterisation

Thaw and cell bank 
characterisation

HLA knockout

Flow cytometry, 
sequencing, 

endonuclease 
assay

Bank HLA 
knockout iPSC

Karyotyping, 
whole genome 

sequencing

Thaw

Intermediate 
cell banking

Frozen vial of 
iPS cells

Cryopreservation
(Day 20)

Mesoderm 
media

MK collection
(Day 20)

Flow cytometry

 
Fig. 2 Process flow diagram of the megakaryocyte forward programming protocol. The days of the protocol on which each step takes
place are indicated.
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procedures correspond to the protocols. Batch release is carried
out by the qualified person and the details registered. In general,
three consecutive batches must be manufactured to validate the
process58.

Results of process adaptation
In order to produce platelets from iPSCs for transfusion, we first
need to adapt the protocol to meet GMP requirements. This paper
focuses on the first part of the process; the differentiation of iPSCs
to mature MKs. In the laboratory, we have designed a reproducible
and efficient method for producing mature MKs from iPSCs, using
three patterning transcription factors and only two cytokine
combinations (Fig. 1a)36. Within 20 days, the culture becomes a
pure culture of mature MKs, capable of producing functional
platelets which can contribute to thrombus formation36. We have
repurposed a previously described integrated transgene
approach65 where the 3 patterning transcription factors are
inserted into the AAVS1 safe harbour locus and the reverse
tetracycline transactivator (rtTA) is stably inserted into the ROSA26
locus (Fig. 1b). Both these safe harbour loci have been used
extensively in mouse and human cells and are consistently and
robustly expressed without compromising survival66. Dual anti-
biotic selection enables the quick and easy selection of dually
targeted clones65. Upon the addition of doxycycline, the
transcription factors are expressed and begin patterning the iPSCs

to MKs67,68. Working with iPSCs has also allowed us to take
advantage of the Cas9 system to knock out β2 microglobulin
using two guide RNAs and Cas9 nickase D10A protein (Fig. 1c)69.
We had previously carried out several years’ work transferring

the protocol from reagents intended for research use only to
reagents manufactured under GMP or a suitable QMS, achieving
similar MK production efficiencies by calculated substitution. We
then employed Cell and Gene Therapy Catapult to carry out
process mapping, working from detailed protocols for each stage
of the process. The resulting process diagram (Fig. 2) shows the
high level overview of the process and is divided into 4 sections:

1. Pre-processing preparation
2. iPSC thawing, expansion and banking
3. Cas9 transfection of iPSCs (HLA knockout and inducible

cassette transfection)
4. MK differentiation

The last three sections are connected by key cell banking steps:
first the banking of unedited iPSCs and then the generation of
master and working cell banks of HLA Class I knockout, inducible
iPSCs. Batch sequence diagrams were then generated of the entire
process (Supplementary Fig. 1), involving:

1. HLA knockout
2. Inducible cassette transfection
3. MK differentiation

Fig. 3 Failure mode and effect analysis. a Segregation of identified risks by processing step and Risk Priority Code (RPC). Risks were scored as
(L) Low risk, RPN < 40 and Severity < 3, (MH) Medium to High risk, Severity ≥3 or RPN ≥ 40 and ≤75 or (HC) High to Critical risk, RPN ≥ 75.
b Segregation of identified risks by Risk Priority Code (RPC) score and ease of implementation for proposed mitigation strategies. Risks were
scored as in A. Ease of implementation was scored as follows: (1) Documentation/Training/Just do it/Purchase kit. Does not change RPC and/or
does not improve, (3) Experimentation/Vendor contact/Technical Agreement/Changes to BMR. Reduces RPC from MH to L and/or results in
some improvement in manufacturability, (5) Long-term development/Extensive experimentation/Machining/User-defined kit/Changes to
regulatory submissions. Reduces RPC from HC to MH or L and/or results in significant improvement in manufacturability. c FMEA Priority
Number (PN) Grid Map. This chart plots the priority number associated with each identified risk in relation to the ease of implementation and
process benefit of its associated mitigation strategy. In turn this provides an initial insight into those activities that should be given high,
medium or low priority with respect to developing the prioritisation plan.
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The first analysis we can perform using this information is
Failure Mode and Effect Analysis (FMEA). FMEA pinpointed
114 specific risks across the entire process and these risks are
shown in Fig. 3a, coloured by risk prioritisation. We then analysed
how difficult these risks were to mitigate: 14% could be addressed
through straightforward activities (updating documentation,
purchasing off-the-shelf alternative products, the development
and implementation of training packages). 75% could be
mitigated with a medium level of effort (experimental activities
to test the impact of process changes or building knowledge
around the design space of specific unit operations). The
remaining 11% of risk mitigation strategies were considered
challenging to implement and mostly concerned differentiation
process scaling.
In order to establish a prioritisation plan, the ease of mitigation

was then compared to the benefit of mitigation to the process
(Fig. 3b). Risks were then plotted on a priority grid of process
benefit versus ease of implementation (Fig. 3c, Supplementary Fig.
2). For each number in the priority grid, the process step and
potential failure mode were detailed. Those labelled “Immediate
Action” should be the first to be addressed. Ishikawa diagrams
enabled the identification of the cause of each risk (Supplemen-
tary Fig. 3). A detailed plan was then devised for each risk
(Supplementary Fig. 2) and taking into account the current
controls in place for each risk, further controls were designed and
their ease of implementation and process benefit were scored.
This analysis will be essential in risk prioritisation, allowing us to

mitigate the most critical risks with the largest impact on the
process first.
As well as its quality and efficacy, the cost of a product is crucial

in determining its success. To analyse this, a costing model was
created using the assumptions detailed in Tables 1 and 2 and built
to include use of a GMP facility, staff costs and variable costs. First
of all, reagent costs were plotted (Fig. 4a). Most costs come from
cytokines manufactured to GMP. Work is currently taking place to
optimise media exchange so as to promote maximal differentia-
tion with minimal input cytokines, so this work may help reduce
cost. Following this, facility costs were calculated per batch
(consisting of a single platelet unit). This totalled more than
£39,000, split by percentage in Fig. 4b. In order to decrease these
costs, throughput could be increased, making it tempting to
automate at least some of the process to save hands-on time for
GMP operators and tissue culture hood occupancy, which are key
limiting factors for production. Assuming currently modelled
manual production can be increased to 500 doses in year one, the
cost of producing a single platelet unit totals £149,571. The
production costs of in vitro platelets would of course preclude
adoption by any healthcare system. However, driving down costs
by process optimisation will inevitably make production more
economically viable. In addition, these platelet units hold promise
as targeted therapeutic delivery vehicles when derived from gene
edited iPSCs. If they could deliver costly therapies in a targeted
way, abrogating the need for systemic delivery, they could be a
commercially competitive alternative to current therapies.

Process diagnostics recommendations: prioritisation plan
All the information, when combined, then allowed the synthesis of
a plan in order of priority. Three areas were highlighted, in
decreasing order of importance. All of these are widely applicable
to the manufacturing of other cell therapies from iPSCs and other
stem cells, thus we believe them to be of critical relevance to
others continuing process transfer to GMP.

DEFINITION OF THE CELL BANKS
The Master Cell Bank (MCB) is the starting cell bank, and the
Working Cell Bank (WCB) is made by thawing a subset of the MCB
for further expansion or processing. Both MCB and WCB must be
fully qualified. The MCB could consist of either HLA knockout,
inducible iPSCs or mature MKs. If the iPSCs are defined as the MCB,
the entire manufacturing process from iPSC to platelet needs to
be validated and the MKs characterised as a process intermediate.
Conversely, if the MKs are defined as the MCB, formal validation of
the upstream process may not be required once it is demon-
strated to be fit for purpose. Each frozen aliquot of MKs, however,
should suffice to produce at least a whole platelet unit, and given
the current optimised freezing density, the volumes needed
would be untenable for most freezing systems. In addition, the
MCB would need to be frequently regenerated, posing manu-
facturing constraints for cell bank re-qualification and
comparability.

Table 1. Process assumptions.

Process assumptions Annotations &
calculations

Value

Target doses per year Dose/yr 5000

Platelets per patient Dose 2.4 × 1011

Process efficiency η 50%

Doses per batch D/B 1

Platelets per batch P/B 4.8 × 1011

Platelets per Megakaryocyte (MK) P/MK 100

MK per batch MK/D= (P/B)/(P/MK) 4.8 × 109

IPSC seeding density/cm2 SDiPSC 1.2 × 104

Fold expansion (MK per iPSC) FE 75

IPSC required per batch for
differentiation

iPSCt0= (MK/D)/FE 6.4 × 107

Surface area required for
differentiation (cm2)

SAdiff= iPSCt0/SDiPSC 5.33 × 103

Vessel format 6-well plate

Vessel surface area (cm2) SAv 57

Number of vessels start of MK diff Nvt0 ≈ SAdiff/SAv 94

Operators at start Ot0 ≈Nvt0/36 3

Number of isolators at start ISOt0 ≈Ot0/2 2

Number of vessels at day 12 of
MK diff

Nvt12= 2Nvt0 188

Operators at day 12 of MK diff Ot0 ≈Nvt12/36 6

Number of isolators at day 12 of
MK diff

ISOt12 ≈Ot12/2 3

Number of vessels at day 16 of
MK diff

Nvt16= 2Nvt12 376

Operators start at day 16 of
MK diff

Ot16 ≈Nvt12/36 11

Number of isolators at day 16 of
MK diff

ISOt16 ≈Ot16/2 6

Table 2. Model assumptions.

Model assumptions Assumption

Hours of operation per day 16 h (2 × 8-hour shifts)

Manufacturing days per year 320

Batch success rate 100%

Ownership strategy Rental

Air grade B
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PROCESS AUTOMATION
Currently, the process is open, from which 65% of the process
risks stem. Medium exchange, cell passaging and counting are
done manually, posing risks for variability and subsequent batch
failure. To address this, automated systems should be imple-
mented. 78% of high risks can be eliminated by implementing
automated liquid handling or bioreactor technology and a
further 14% by automated cell counting. Bioreactor technology
will also be key to reducing culture volume and reliance on 6 well
plates. One Quantum® hollow fibre system, for example, could
produce an entire platelet unit at current cell densities.
Furthermore, optimising both platelet production from MKs
and MK production from iPSCs holds enormous potential for
increasing output with the same inputs and this work is already
underway in the lab48,68.

QUALITY CONTROL OF PROCESS INTERMEDIATES
Our current quality control (QC) measures are based on best
research practice and entail:

● Cell counting using a haemocytometer and flow cytometer
● Visual observations of the cultures to assess sterility,

confluency and cell differentiation
● Flow cytometry for CD235a, CD42a and CD41a markers
● Targeted sequencing, T7 nuclease assay and flow cytometry

for HLA ABC to verify the efficiency of HLA knockout and
select homozygous clones

● 7-step PCR approach to verify inducible cassette integration
● Whole genome sequencing and karyotyping of the final

iPSC bank.

These QC checks conform to research community standards for
gene editing and iPSC and MK culture; however, manufacturing

Fig. 4 Cost of materials and facility costs of manufacture. a Breakdown of the reagents and consumables having the most significant
contribution to the cost of reagents (CoRs). BMP4 Bone Morphogenic Protein 4, E6 and E8: iPSC media, SCF Stem Cell Factor, TPO
Thrombopoietin. b Fixed cost break down after year 5 after production ramps up to meet consistent yearly dose requirement.
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processes demand more stringent QC. As a result of process and
FMEA analyses, the following additions were designed:
1) QC control points should be introduced early in the MK

differentiation process in order to identify failing cultures before
Day 10.
2) Sterility and mycoplasma checks should be performed

regularly on batches.
3) MKs should be regularly tested for metabolic or cell surface

markers which correlate to platelet production efficiency, allowing
batch failure prediction before MKs are added to the bioreactor for
platelet release.
4) Residual undifferentiated iPSCs also pose a risk to the final

product. Given the length of the process, it is unlikely that iPSCs
remain undifferentiated throughout; however, tumorigenicity
assays and culture under conditions promoting pluripotency
should be performed on the final product to exclude the
possibility.
5) Equipment use needs to be completely reconsidered when

transiting to GMP. Wet ice poses a transfer and contamination risk
and likewise, aspirators are incompatible with the controlled
airflow required in GMP facilities. These process steps should thus
be replaced with GMP-compliant equivalents. Time to thaw or use
reagents is again rarely considered in the research lab, but its
specification could be crucial to batch success in a GMP process.
Similarly, the definition of room temperature and how long
various reagents take to equilibrate to room temperature must be
noted and incorporated into protocols.
All of these considerations apply broadly to many other iPSC-

derived cellular therapeutics and scientists designing other GMP
protocols could benefit hugely from factoring them early into
process designs.

CONCLUSIONS
Process mapping and analysis of the entire differentiation protocol
from iPSC to MK has provided us with an insight into how MK
differentiation should be optimised for manufacturing, identified
the riskiest steps for batch failure and enabled risk prioritisation.
This analysis has also provided us with an estimation of the cost of
each manufacturing batch, as well as important considerations for
scaling up and automation. As with many research processes
which are adapted to meet GMP requirements, there are several
over-arching themes which this analysis highlights.
First of all, the identification of reagents manufactured under a

suitable QMS should be one of the first steps taken in the transit
towards the clinic. “GMP equivalents” are difficult to find for many
reagents intended for research use only and time spent in process
optimisation at this stage saves costly process revalidation once
the process has been transferred to a GMP facility. Second, scale
and cost must be considered carefully when embarking on
production of a product for the clinic. Production cost, demand for
the product and the cost of current alternatives need to be
factored into any analysis to provide a product with the best
chance of commercial success. Third, operator scheduling plays a
huge role in the cost and scale of any manufacturing process. Both
operator time and equipment time make manual operations
costly and risky. Processes should be transited to closed processes
and automation should be considered as an avenue to reducing
staffing costs, minimising equipment use and maximising the
parallel production of batches. Fourth, it is crucial to seek
regulatory advice early, to avoid optimising processes which will
not pass basic regulatory controls. Researchers also benefit from
seeking expert advice on process definition and the risks involved
with even well-defined laboratory processes. “GMP equivalents”
do not exist for all equipment designed for research use only and
many protocols involve steps which are too poorly defined for
GMP manufacturing. Thus, expert advice is warranted to create

streamlined and safe manufacturing protocols which comply with
GMP standards.
Thus, in conclusion, this work has enabled us to gain an

overview of the entire manufacturing process from iPSC to MK, the
risks involved at each stage and actions which should be taken to
mitigate these risks, reduce costs and increase production
efficiency. This analysis is widely applicable to cell therapy
manufacture from iPSCs and many of the process alterations
detailed in this work should be applied as other processes move
towards the clinic. Good Manufacturing Practice allows us to
generate safe products at scale, minimising risk to the patient and
allowing clinical trials of new treatments and prophylactics.
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