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ABSTRACT 23 

Listeners appear able to extract a residue pitch from high-frequency harmonics for 24 

which phase locking to the temporal fine structure is weak or absent. The present 25 

study investigated musical interval perception for high-frequency harmonic complex 26 

tones using the same stimuli as Lau, Mehta, and Oxenham [J. Neurosci. 37, 9013-27 

9021 (2017)]. Nine young musically trained listeners with especially good high-28 

frequency hearing adjusted various musical intervals using harmonic complex tones 29 

containing harmonics 6-10. The reference notes had fundamental frequencies (F0s) of 30 

280 or 1400 Hz. Interval matches were possible, albeit markedly worse, even when all 31 

harmonic frequencies were above the presumed limit of phase locking. Matches 32 

showed significantly larger systematic errors and higher variability and subjects 33 

required more trials to finish a match for the high than for the low F0. Additional 34 

absolute pitch judgements from one subject with absolute pitch, for complex tones 35 

containing harmonics 1-5 or 6-10 with a wide range of F0s, were perfect when the 36 

lowest frequency component was below about 7 kHz, but at least 50% of responses 37 

were incorrect when it was 8 kHz or higher. The results are discussed in terms of the 38 

possible effects of phase-locking information and familiarity with high-frequency 39 

stimuli on pitch. 40 

 41 

Key words: musical interval adjustment, absolute pitch, phase locking, tonotopic 42 

information.  43 

  44 
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I. INTRODUCTION 45 

It has been widely argued that the perception of tone chroma, and especially of 46 

musical intervals, depends at least partly on the use of information derived from the 47 

pattern of phase locking in the auditory nerve (Cariani and Delgutte, 1996; Meddis 48 

and O'Mard, 1997; de Cheveigné, 1998). If this is the case, then the ability to judge 49 

and match musical intervals should be markedly worse for complex tones whose 50 

frequency components fall at very high frequencies (≥8.4 kHz in the context of the 51 

present study), for which phase locking is weak or absent (Johnson, 1980; Palmer and 52 

Russell, 1986). The present study tested this prediction by assessing the ability of 53 

musically trained listeners to adjust the fundamental frequency (F0) of complex tones 54 

so that there was a specific musical interval between them, using complex tones with 55 

harmonics in two frequency regions; a low frequency region where phase locking is 56 

robust and a high frequency region where phase locking is usually assumed to be 57 

severely reduced or absent. Interval-adjustment tasks provide arguably the most 58 

demanding test of musical pitch perception and can provide information both on 59 

consistency and biases in pitch perception. 60 

The exact upper limit of phase locking in the auditory nerve (AN) in humans is 61 

unknown and consensus on this is currently lacking (Verschooten et al., 2019). Phase 62 

locking has generally been assumed to be weak or absent for frequencies above about 63 

4-5 kHz (Johnson, 1980; Palmer and Russell, 1986; Weiss and Rose, 1988). However, 64 

some studies have suggested that weak phase locking to temporal fine structure (TFS) 65 

might be available for frequencies up to about 7-8 or possibly even 10 kHz, with the 66 

usable limit depending, among other things, on the task used (Heinz et al., 2001; 67 

Moore and Sek, 2009; Kale and Heinz, 2012; Moore and Ernst, 2012). Others argue 68 

for a limit around 3.5-4.5 kHz in the AN, with a much lower limit of about 1.4 kHz as 69 
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the highest frequency usable by the central nervous system (Joris and Verschooten, 70 

2013; Verschooten et al., 2015; Verschooten et al., 2018). 71 

While the predominant view is that perception of musical pitch relies at least 72 

partly on the presence of phase locking in the AN, there is some evidence indicating 73 

that musical pitch might be perceived in the absence of phase locking. For pure-tone 74 

stimuli, Ward (1954) found that while most subjects were unable to adjust the 75 

frequency of one tone to be one octave higher than that of a reference tone when the 76 

reference frequency was above 2.7 kHz, two of his subjects were able to do so even 77 

when the reference frequency was 5 kHz, and thus the octave match was around 10 78 

kHz, where phase locking was assumed to be absent. However, subjects needed more 79 

time at these high frequencies than at the lower frequencies. Similarly, all three 80 

musically trained subjects of Burns and Feth (1983) were able to adjust various 81 

musical intervals for reference frequencies of 1 and 10 kHz. However, the within-82 

subject standard deviations (SDEVs) of the adjustments were about 3.5-5.5 times 83 

larger for the 10-kHz than for the 1-kHz reference tone. Thus, experiments with pure 84 

tones have indicated that, although musical pitch perception may be possible at very 85 

high frequencies, performance in pitch-related tasks is usually much worse than at 86 

lower frequencies, where phase locking is assumed to be strong.  87 

Reasonably good pitch perception has been observed in experiments using 88 

complex tones consisting of only high-frequency components but with a “missing 89 

fundamental” frequency that is much lower. Oxenham et al. (2011) showed that even 90 

when all audible harmonics were above 6 kHz, a residue pitch (a pitch corresponding 91 

to the missing fundamental) was evoked, and melody discrimination for the high-92 

frequency complex tones was as good as that for low-frequency pure tones. Carcagno 93 

et al. (2019) also observed good performance in a melody discrimination task for 94 
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high-frequency complex tones with all audible frequency components above 6 kHz, 95 

and reported that the pattern of consonance ratings of various musical intervals for 96 

complex-tone dyads was similar to (albeit less distinct than) that observed for the 97 

same notes with lower frequency components.   98 

Lau et al. (2017) used complex tones whose lowest component had an even 99 

higher frequency (at or above 8.4 kHz). They measured difference limens for 100 

fundamental frequency (F0DLs) and difference limens for frequency (FDLs) for the 101 

individual harmonics presented in isolation. They observed surprisingly small F0DLs 102 

(around 5%) given that the FDLs were much larger (around 20-30%), and argued that 103 

this could be explained by the existence of central harmonic template neurons that 104 

receive rate-place information. Gockel and Carlyon (2018) and Gockel et al. (2020) 105 

reported even smaller F0DLs (around 2%) for the same complex tones as those used 106 

by Lau et al. (2017). However, neither study assessed whether these tones were able 107 

to convey musical pitch.  108 

The objective of the current study was to assess musical pitch perception in a 109 

stricter sense for complex tones having all components at or above 8.4 kHz. To do this 110 

subjects were required to make musical interval adjustments, and, for one subject, 111 

absolute pitch judgements. Musical interval adjustments are generally thought of as a 112 

stricter test of pitch perception than F0 discrimination or pitch matches to unison, 113 

since accurate musical interval judgments require precise frequency-ratio information 114 

and not just the ordinal properties of pitch (see e.g. Burns and Feth, 1983). 115 

Furthermore, a musical interval adjustment task is likely to be more sensitive to 116 

changes in pitch salience than a melody discrimination task, because a change in 117 

melody might be detected even if the size of the musical intervals is not precisely 118 

perceived. The mean error and the variability of the musical interval adjustments as 119 
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well as the time (the number of trials) needed to make the adjustments was analyzed. 120 

Performance for these high-frequency complex tones was compared with that for 121 

lower frequencies, measured for the same subjects. If performance for the high-122 

frequency complex tones was found to be not markedly worse than that for the low-123 

frequency complex tones, this would extend previous results on musical pitch for 124 

complex tones to a higher frequency region. Relative performance in the two 125 

frequency regions would indicate the relative salience of musical pitch in a low 126 

frequency region and in high frequency region where phase locking is presumed to be 127 

very weak or absent.  128 

 129 

II. METHODS  130 

A. Subjects  131 

Nine young normal-hearing musically trained subjects (5 females and 4 males) 132 

between 19 and 28 years of age (mean age of 22.1 years) participated in the 133 

experiment proper; many more were initially screened (see below). One of them had 134 

absolute pitch, i.e. was able to name notes without a reference (Bachem, 1937). None 135 

of them was a professional musician. The average number of years of musical 136 

training/practice was 16 (ranging from 13-21 years). Subjects 1, 2, 3, 8 and 9 started 137 

playing the violin or cello from age 7 years or earlier, and had played for at least 10 138 

years. Subject 9, who had absolute pitch, started violin and piano training at the age of 139 

3 years and had played for about 11 years. Subjects 2, 4, 5, and 7 started playing piano 140 

from age 7, 5, 8 and 9 years, and had played for at least 12 years. All of them except 141 

subject 4 had singing lessons for at least 6 years and most of them were still singing in 142 

choirs. 143 
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To ensure audibility of the high-frequency tones and basic pitch-discrimination 144 

ability, subjects had to pass a three-stage screening, as in Lau et al. (2017) and Gockel 145 

et al. (2020), to be eligible for the main part of the study: (1) Pure-tone audiometric 146 

thresholds at 0.25, 0.5, 1, 2, 4, 6, and 8 kHz had to be < 20 dB HL. (2) Masked 147 

thresholds were measured for 210-ms pure tones at 10, 12, 14 and 16 kHz in a 148 

continuous threshold-equalizing noise (TEN; Moore et al., 2000), extending from 149 

0.02 - 22 kHz. At 1 kHz, the TEN had a level of 45 dB SPL/ERBN, the same as used 150 

in the experiment (see below), where ERBN stands for the average value of the 151 

equivalent rectangular bandwidth of the auditory filter for young normal-hearing 152 

listeners tested at low sound levels (Glasberg and Moore, 1990). Masked thresholds 153 

had to be ≤ 45 dB SPL up to 14 kHz, and ≤ 50 dB SPL at 16 kHz. (3) F0DLs and 154 

FDLs for the same stimuli as in the main experiment but without the TEN and without 155 

level randomization had to be < 6% and < 20% in the low and high frequency regions, 156 

respectively (see below). The geometric mean DLs for those subjects who passed the 157 

screening were 0.29% across frequencies in the low frequency region and 2.5% across 158 

frequencies in the high spectral region. These values were smaller than the mean DLs 159 

reported for a similar initial pitch-discrimination screening in Lau et al. (2017) by 160 

factors of 1.9 and 1.8 for the low- and high spectral regions, respectively. Some of the 161 

subjects took part in some other experiment(s) involving high-frequency tones, not 162 

presented here, before data collection for the present study commenced, and thus had 163 

some previous experience with high-frequency tones. All subjects confirmed that they 164 

were familiar with musical intervals and that they had learned them as part of their 165 

musical training. There was no additional screening for the ability of subjects to 166 

perform musical interval adjustments, as the relevant outcome was the within-subject 167 

comparison between performance in the high and low frequency regions.     168 
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Initially 29 musically trained subjects between 19-28 years old were tested, 169 

nine of whom passed all screening stages. Three dropped out at the first stage, 13 at 170 

the second stage, and four at the last stage of the screening. Informed consent was 171 

obtained from all subjects. This study was carried out in accordance with the UK 172 

regulations governing biomedical research and was approved by the Cambridge 173 

Psychology Research Ethics Committee. 174 

 175 

B. Screening procedure  176 

Pure-tone audiometric thresholds in quiet were measured at octave frequencies 177 

from 0.25 kHz to 8 kHz and at 6 kHz, using a Midimate 602 audiometer (Madsen 178 

Electronics, Minneapolis, MN). Masked thresholds for the high-frequency (> 8 kHz) 179 

210-ms pure tones (including 10-ms onset and offset hanning-shaped ramps) were 180 

measured for each ear using a two-interval two-alternative forced-choice task (2I-181 

2AFC) with a 3-down 1-up adaptive procedure estimating the 79.4% correct point on 182 

the psychometric function (Levitt, 1971). The step size was 5 dB until two reversals 183 

occurred and 1 dB thereafter. The adaptive track terminated after 10 reversals, and the 184 

threshold was determined as the mean of the levels at the last six reversal points. The 185 

final threshold was the mean of the thresholds from three adaptive tracks. 186 

F0DLs were measured in quiet for diotically presented complex tones 187 

containing harmonics 6-10 with an F0 of 280 or 1400 Hz (the same tones as used in 188 

the main experiment, i.e. with edge component levels that were 6 dB below that of the 189 

other components, but without level randomization; see below), and FDLs were 190 

measured for the components of the complex tones presented in isolation. A 2I-2AFC 191 

task with a 3-down 1-up adaptive procedure was used. Subjects had to indicate the 192 

tone with the higher pitch. For both F0DLs and FDLs, the nominal F0 or frequency 193 
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was fixed within a given adaptive run, but varied across adaptive runs. The F0s (or 194 

frequencies) of the two tones presented within a trial were geometrically centered on 195 

the nominal F0 (or frequency). The signal duration was 210 ms (including 10-ms 196 

onset and offset hanning-shaped ramps) and the inter-stimulus interval (ISI) was 500 197 

ms. Initially, the difference in F0 (or frequency) was 20%. This was reduced (or 198 

increased) by a factor of two for the first two reversals, by a factor of √2  for the next 199 

two reversals and by a factor of 1.2 thereafter. The adaptive track terminated after 12 200 

reversals, and the threshold was determined as the geometric mean of the frequency 201 

differences at the last eight reversal points. The final threshold was the geometric 202 

mean of the thresholds from three adaptive tracks. 203 

 204 

C. Musical interval adjustments 205 

Subjects had to adjust the F0 of a complex tone so that its pitch was a certain 206 

musical interval (target interval) below that of a preceding reference complex tone. 207 

Target intervals were a perfect fifth (“Fifth”, 7 semitones down), a major third 208 

(“Third”, 4 semitones down) and a major second (“Second”, 2 semitones down). In 209 

addition, subjects were asked to match to Unison. The reference tones had an F0 of 210 

1400 Hz (“High”) or 280 Hz (“Low”), and all complex tones (reference and 211 

adjustable) contained harmonics 6-10 only. The frequency of the lowest component 212 

was 8400 Hz for the 1400-Hz F0 reference, so phase locking should have been absent 213 

or very weak, while in the Low-F0 condition phase locking should have been strong. 214 

The errors and the variability of the musical interval adjustments for the 1400-Hz and 215 

the 280-Hz F0 were compared. Also, the number of trials taken to make a match, i.e. 216 

the number of times subjects listened to the stimuli, was used as an indicator of the 217 

degree of difficulty (Ward, 1954; Cardozo, 1965; Gockel and Carlyon, 2016).  218 
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The reference tone was presented either diotically (“Dio”) or dichotically 219 

(“Dic”). For the latter, odd harmonics were presented to the left and even harmonics 220 

to the right ear. At low F0s, this manipulation is not expected to affect pitch 221 

discrimination for resolved-harmonic stimuli (Bernstein and Oxenham, 2003). While 222 

the temporal envelope rate of 1400 Hz was expected to be too high to lead to a pitch 223 

percept (Burns and Viemeister, 1976; Macherey and Carlyon, 2014), dichotic 224 

presentation of components would have reduced possible envelope cues to pitch even 225 

further due to the doubling of the frequency spacing between components in each ear, 226 

which would double the envelope repetition rate. The adjustable tone complex was 227 

always presented diotically. For each presentation, the starting phases of all 228 

components were randomized and individual component levels were randomized by 229 

±3 dB about the mean component level, which was 55 dB SPL for harmonics 7-9 and 230 

49 dB SPL for the two edge components. This was done to further weaken envelope 231 

cues, and to minimize edge pitches (Fastl, 1971; Klein and Hartmann, 1981). The 232 

tones were presented in a background of continuous TEN, extending from 0.02 to 22 233 

kHz and with a level of 45 dB SPL/ERBN at 1 kHz, to mask possible distortion 234 

products. When the reference tone was diotic, the TEN was presented diotically as 235 

well, and when the reference tone was dichotic, an independent TEN was presented to 236 

each ear. These stimuli were similar to the ones used by Lau et al. (2017), except that 237 

they used gated rather than continuous TEN, and were identical to those used by 238 

Gockel et al. (2020).  239 

One match consisted of several trials, and subjects could take as many trials as 240 

they wanted to finish a match. A match was finished when the subject indicated by 241 

button press that s/he was satisfied with the adjustment. No feedback was provided as 242 

to the precision of the adjustment. In each trial, subjects first heard the reference tone, 243 
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whose F0 was fixed until the match was completed, followed by the adjustable tone. 244 

Both tones had a duration of 500 ms (including 10-ms onset and offset hanning-245 

shaped ramps). The ISI was 500 ms. After cessation of the adjustable tone, subjects 246 

could adjust its F0 to form the desired musical interval (main task), and adjust its level 247 

to produce roughly equal loudness to that of the reference tone (in case of obvious 248 

differences in loudness) by button presses, and/or initiate the next trial. In practice, the 249 

loudness of the tones was perceived as roughly equal most times, and no level 250 

adjustments were made for most matches. Only for the unison adjustments, when the 251 

reference complex was presented dichotically, did the level adjustment of the diotic 252 

complex, averaged across subjects, reach about −1 dB. In each trial, the subject was 253 

allowed an unlimited number of button presses before s/he initiated the next trial. The 254 

number of trials taken for a match (“n_listen”) was counted, and was visible to the 255 

subject. The starting F0 of the adjustable complex was randomly chosen to be 256 

between 0.5 and 1 times the F0 of the reference tone. The F0 could be adjusted 257 

upwards or downwards via virtual button presses with mean step sizes of 4, 1, 1/4, 258 

and 1/16 semitones. The actual step size associated with each button was randomly 259 

varied across matches within the range 0.75-1.25 times the mean step size. This was 260 

done to discourage subjects from calculating – after the first sound exposure or after 261 

first matching to Unison – a sequence of button presses deemed to give the desired 262 

musical interval, rather than actually listening to and comparing the sounds in each 263 

trial. Subjects were informed about the random jitter, and it was clear from 264 

observation of the matching behaviour of the subjects and from subjects’ reports that 265 

subjects did not use this strategy1.  266 

Before data collection proper started, subjects received at least two hours of 267 

training in which they got accustomed to the procedure and stimuli and completed on 268 
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average two matches for each of the 16 conditions (4 musical intervals × 2 F0s × 2 269 

modes of presentation). The matches from the training were discarded. In the 270 

experiment proper, each subject completed at least 20 matches for each of the 16 271 

conditions, which took on average 7.4 sessions of two hours each (including breaks). 272 

The number of sessions needed varied across subjects, and ranged from 5 to 10. The 273 

very slight variation in number of matches was the result of completing full 2-hour 274 

sessions. The order of conditions was randomized with the restriction that within a 275 

session no condition was repeated before a match was completed for all other 276 

conditions.  277 

 278 

D. Unison adjustments with non-overlapping harmonics 279 

This was a control experiment to verify that the pitch evoked by the 1400-Hz 280 

F0 complex tone containing harmonics 6-10 corresponded to its F0, rather than, for 281 

example, to the frequency of the lower edge component. Subjects had to adjust the F0 282 

of a complex tone containing harmonics 1-5 so that its pitch was the same as that of a 283 

reference tone. The reference tone contained harmonics 6-10 only and, for each 284 

match, its F0 was drawn randomly from a set of eight F0s, equally spaced on a 285 

logarithmic scale, and ranging from 280 to 1400 Hz. For the reference tone, individual 286 

component levels were randomized by ±3 dB about the mean component level, as for 287 

the musical interval adjustments. For the adjustable tone, the levels were not 288 

randomized. Both tones were presented diotically. Otherwise, the stimuli and methods 289 

were the same as for the musical interval adjustment experiment. Subjects needed 290 

between three and four two-hour sessions to complete at least 22 matches for each F0.  291 

 292 

E. Equipment 293 
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All stimuli were generated digitally in MATLAB (The Mathworks, Natick, 294 

MA) with a sampling rate of 48 kHz. Four separate stimuli were generated: two 295 

continuous background noise stimuli (one for each ear) and, for each trial, two 296 

complex tone stimuli (one for each ear); in the diotic conditions the stimuli were 297 

identical across ears. They were played out through four channels of a Fireface UCX 298 

(RME, Haimhausen, Germany) soundcard using 24-bit digital-to-analog conversion, 299 

and were attenuated independently with four Tucker-Davis Technologies (Alachua, 300 

FL) PA4 attenuators. They were mixed with two Tucker-Davis Technologies SM5 301 

signal mixers, and fed into a Tucker-Davis HB 7 headphone driver, which also 302 

applied some attenuation. Stimuli were presented via Sennheiser HD 650 headphones 303 

(Wedemark, Germany), which have an approximately diffuse-field response. The 304 

specified sound levels are approximate equivalent diffuse-field levels. Subjects were 305 

seated individually in a double-walled, sound insulated booth (IAC, Winchester, UK).  306 

  307 

F. Analysis 308 

For statistical analysis, repeated-measures analyses of variance (RM-ANOVA) 309 

were calculated using SPSS (Chicago, IL). Throughout the paper, if appropriate, the 310 

Huynh-Feldt correction was applied to the degrees of freedom (Howell, 1997). In 311 

such cases, the original degrees of freedom and the corrected significance value are 312 

reported. The Unison matches were analyzed separately from the musical interval 313 

adjustments. Before statistical analysis of the musical interval adjustments, the mean 314 

error and the within-subject SDEV of the adjustments were log-transformed to make 315 

them more normally distributed. Shapiro-Wilk tests confirmed that the (transformed) 316 

data were approximately normally distributed.  317 

 318 
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III. RESULTS  319 

A. Musical interval adjustments 320 

The expected F0 for each matched interval was determined on the equal-321 

temperament scale; for the perfect fifth, major third, and major second, the expected 322 

F0 was exactly seven semitones (factor of 1/1.498), four semitones (factor of 1/1.26), 323 

and two semitones (factor of 1/1.122), respectively, below the F0 of the reference 324 

harmonic complex. Figures 1 and 2 show, for all subjects and conditions, the mean 325 

(across 20 or more repetitions) deviation of the adjusted F0 from the expected F0 in 326 

units of cents, where one cent is equal to 1/100th of a semitone; we refer to this value 327 

as the mean error (ME). The error bars show the within-subject SDEVs of the 328 

adjustments. Note the scale difference between the two figures; Figs. 1 and 2 show 329 

adjustments for a group of five subjects with relatively poor performance and a group 330 

of four subjects with relatively good performance, respectively. The group mean (and 331 

the corresponding SDEVs across subjects) for the MEs and for the within-subject 332 

SDEVs are shown in Fig. 3(a) and Fig. 3(b), respectively. In addition, Fig. 3(c) shows 333 

the group mean (and the corresponding SDEVs across subjects) for the absolute 334 

values of the MEs (AMEs); the AME gives, for each subject and condition, the size of 335 

the mean deviation from the target value regardless of its direction.   336 

 337 



15 
 

 338 

FIG. 1.  (Color online) Mean deviation of adjusted F0 from expected F0 (in cents) 339 

for musical interval or unison adjustments for five out of nine subjects with 340 

relatively poor performance. Error bars show the within-subject SDEVs. Each 341 

group of four bars shows the results for one target musical interval. Within each 342 

group of bars, the left-hand two show results for the F0 of 280 Hz and the right-343 

hand two show results for the F0 of 1400 Hz. All complex tones contained 344 

harmonics 6-10. In condition diotic (1st and 3rd bars in each group) all harmonics 345 

were presented diotically. In condition dichotic (2nd and 4th bars in each group) 346 
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even harmonics of the reference tone were presented to the right and odd 347 

harmonics to the left ear (see Methods).  348 

 349 

 350 

FIG. 2. (Color online) As Fig. 1, but for the remaining four (out of the nine) 351 

subjects, who showed better performance. Note the difference in scales between 352 

the two figures. 353 

 354 

Musical-interval adjustments were mostly better, i.e. MEs were closer to zero 355 

and within-subject SDEVs were smaller, in the Low-F0 conditions (left two bars 356 

within each group of four bars) than in the High-F0 conditions (right two bars within 357 

each group). For the High-F0 conditions, there were large differences between 358 

subjects. For example, for subject 2 the mean adjusted F0 exceeded the expected F0 359 

by up to 400 cents for the High-F0 perfect fifth, while in the same condition the 360 
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deviation between expected and adjusted F0 was around 20 cents for subject 9, even 361 

though both subjects showed excellent performance for the Low-F0 condition. For the 362 

five subjects in Fig. 1, the mean deviation of adjusted from expected F0 often 363 

exceeded ±100 cents, mostly for the High-F0 conditions, while for subjects 6-9 in Fig. 364 

2 they were mostly below ±100 cents. It is important to note that, for the Low-F0 365 

conditions, all subjects were able to match all musical intervals well, with two 366 

exceptions (subject 3 for the major third and subject 5 for the fifth). Performance was 367 

often, but not always, worse for the dichotic than for the diotic reference for the High-368 

F0 conditions.  369 

 370 

 371 

FIG. 3. (Color online) Group means of three measures. Error bars show SDEVs of 372 

each measure across subjects. Panel (a) shows the MEs, i.e. the systematic errors. 373 

Panel (b) shows the within-subject SDEVs. Panel (c) shows the AMEs, i.e. the 374 

absolute values of the systematic errors. 375 

 376 
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If subjects were completely unable to match musical intervals and had 377 

responded randomly, then the expected value of the adjusted F0 would be 5.3 378 

semitones below the F0 for all conditions2. Thus, chance performance would lead to 379 

expected MEs of 170, −130, and −330 cents for the perfect fifth, major third, and 380 

major second, respectively. The observed MEs did not follow this pattern. In addition, 381 

the observed within-subject SDEVs were smaller than expected under the assumption 382 

of random button presses. The expected within-subject SDEV depends on the number 383 

of button presses: the more random button presses, the larger the expected SDEV. 384 

Simulations showed that for 10 and 20 random button presses the expected within-385 

subject SDEV was about 740 and 990 cents, respectively. The observed performance 386 

was much better than this, indicating that subjects did not guess randomly in any 387 

condition. 388 

To compare the accuracy of the musical interval adjustments across F0s, the 389 

MEs and the within-subject SDEVs of the adjustments were analyzed separately. The 390 

former is a measure of any systematic error (or bias) while the latter is a measure of 391 

the precision of the adjustments. To compare the size of the MEs across F0s, their 392 

absolute values i.e. the AMEs were used, because the interest was in the size of the 393 

mean deviation from the target value regardless of its direction. A three-way RM-394 

ANOVA (with factors: musical interval (excluding Unison), F0 and type of 395 

presentation of the reference complex) was calculated on the log-transformed AMEs. 396 

The main effect of F0 was highly significant [F(1,8)=18.34, p=0.003]. There was no 397 

other significant main effect or interaction (p>0.3 in all cases). For the Unison 398 

adjustments, AMEs were also significantly larger for the High- than the Low-F0 399 

conditions [RM-ANOVA, F(1,8)=8.66, p=0.019] and significantly larger for dichotic 400 

than diotic reference tones [F(1,8)=6.54, p=0.034]. The interaction was not significant 401 
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[F(1,8)=4.39, p=0.069]. There was no significant rank-order correlation between the 402 

(signed) MEs across F0s (Spearman’s rho < 0.55 and p>0.12 for all intervals).  403 

Consider next the variability of the matches. The within-subject SDEVs, 404 

shown by the error bars in Figs. 1 and 2, were mostly very small for the Low-F0 405 

conditions (mean of 21.8 cents) and substantially larger for the High-F0 conditions 406 

(mean of 94.9 cents); see also Fig.3(b) for the group means of the within-subject 407 

SDEVs. Figure 4 shows, for each of the nine subjects, the ratio of the SDEV of the 408 

adjustments for the High-F0 to the SDEV for the corresponding Low-F0 condition. 409 

The geometric mean of this ratio and the standard deviation across subjects are shown 410 

in the bottom right panel. The ratios are, with few exceptions, larger than 1 and they 411 

range from about 0.75 for subject 5 for the perfect fifth to 29 for subject 4 for the 412 

perfect fifth. The few individual cases of small ratios were mostly associated with 413 

unusually large SDEVs in the corresponding Low-F0 condition as opposed to 414 

unusually small SDEVs in the High-F0 condition. For example, for subject 5 and the 415 

perfect fifth, the MEs and variability were unusually large for the low F0 (see error 416 

bars for low-F0 conditions in Figs. 1 and 2). On average (geometric mean ratio) the 417 

SDEVs were a factor of 5 larger for the High-F0 than for the Low-F0 condition. Note 418 

that subject 6, for whom the mean deviation of adjusted from expected F0 was most 419 

similar across the two F0s, produced more variable adjustments for the High-F0 than 420 

for the Low-F0 condition, like the other subjects. A three-way RM-ANOVA with 421 

factors musical interval (excluding Unison), F0 and mode of presentation, with log-422 

transformed within-subject SDEVs as input data gave a significant main effect of F0 423 

[F(1,8)=30.64, p=0.001]. There was no other significant main effect or interaction 424 

(p>0.12 in all cases). For the Unison adjustments, SDEVs were also significantly 425 

larger for the High-F0 than the Low-F0 [significant main effect of F0: F(1,8)=21.49, 426 
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p=0.002]. In addition, there was a significant main effect of mode of presentation 427 

[F(1,8)=13.85, p=0.006], which was driven by larger SDEVs for dichotic than diotic 428 

presentation for the High-F0 but not for the Low-F0, as shown by the significant 429 

interaction between F0 and mode of presentation [ F(1,8)=13.55, p=0.006].  430 

 431 

 432 

FIG. 4. (Color online) Ratio of the within-subject SDEVs (High F0/Low F0) of 433 

musical interval or unison adjustments (across a minimum of 20 matches for each 434 

condition). The bottom right panel shows the geometric mean (and the SDEVs) of 435 

this ratio across subjects.  436 

 437 

Next, consider the number of trials taken to make a musical interval 438 

adjustment as an indicator of the degree of difficulty. This varied substantially across 439 

subjects, ranging from about 11 trials per adjustment (subjects 2 and 7) to about 30 440 

trials (subject 8). Figure 5 shows the ratios of n_listen, High-F0/ Low-F0, for each 441 

condition. The ratios are mostly larger than one, indicating that subjects took longer in 442 

the High-F0 than in the corresponding Low-F0 condition to be satisfied with their 443 

musical interval adjustments. This was reflected in subjective reports; subjects 444 

described the pitch of the high-F0 (reference) tones as unclear and ambiguous. A 445 
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three-way RM-ANOVA on the values of n_listen gave a significant main effect of F0 446 

[F(1,8)=20.08, p=0.002,]. There was no other significant main effect or interaction. 447 

For the Unison adjustments, both main effects [F0: F(1,8)=17.62, p=0.003; mode of 448 

presentation: F(1,8)=32.27, p<0.001] and the interaction [F(1,8)=10.08, p=0.013] 449 

were significant; n_listen was higher for dichotic than diotic presentation, and 450 

significantly more so for the High-F0 than for the Low-F0.  451 

 452 

 453 

FIG. 5. (Color online) Ratio of the average number of trials taken to make a 454 

musical interval or unison adjustment for reference complex tones with F0s of 455 

1400 and 280 Hz. The bottom right panel shows the geometric mean (and the 456 

SDEVs) of this ratio across subjects.   457 

 458 

Overall the results showed that musical interval adjustments were not random. 459 

However, they were significantly more biased (had larger AMEs) and were more 460 

variable for the High-F0 than for the Low-F0, despite the fact that n_listen was 461 

usually larger for the high-F0.   462 

 463 
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B. Unison adjustments with non-overlapping harmonics and 464 

absolute pitch judgements 465 

It was assumed that subjects perceived a pitch corresponding to the F0 of the 466 

reference tones, even for the High-F0 conditions (see Oxenham et al., 2011) and that 467 

musical interval adjustments were based on this pitch rather than the pitch of any 468 

individual harmonic. A control experiment with three subjects (subjects 5, 6, and 8), 469 

who did relatively well in the musical-interval adjustment tasks for the high F0, 470 

assessed whether the pitch of the complex tones used here did indeed correspond to its 471 

F0. Subjects adjusted the F0 of a complex tone with harmonics 1-5 to have the same 472 

pitch as a reference tone containing harmonics 6-10, with F0s ranging from 280-1400 473 

Hz. Responses were scored as correct when they fell within ±25 cents of the reference 474 

F0 or of an F0 one or more octaves above or below the reference F03. Figure 6 shows 475 

the percent correct matches as a function of the frequency of the lowest component in 476 

the reference tone. Chance performance was at 4.2% correct.   477 

Performance ranged from good (70 to 80% correct) to very good (>95% 478 

correct) for reference complex tones whose lowest component had a frequency up to 479 

5303 Hz. Performance worsened for all subjects when the frequency of the lowest 480 

harmonic in the complex was 6674 Hz, and became even worse for a lowest 481 

frequency of 8400 Hz, which was the same as that in the High-F0 condition of the 482 

musical interval adjustment experiment. Nevertheless, performance was above chance 483 

throughout, in agreement with the findings of Oxenham et al. (2011). There was no 484 

indication in the distribution of the individual matches that subjects perceived a pitch 485 

corresponding to the frequency of an individual harmonic. For the two highest F0s 486 

employed here, percent-correct values were somewhat lower than those observed by 487 

Oxenham et al. (2011). This is probably because in that study the individual 488 
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component levels of the reference complex tone were not randomized and edge 489 

components were not reduced in level by 6 dB.  490 

 491 

FIG. 6. (Color online) Average percent of pitch matches to unison, for complex 492 

tones with non-overlapping harmonics, that were within ±0.25 semitones of the F0 493 

of the reference complex tone or one (or two) octaves below or above, as a 494 

function of the frequency of the lowest component present in the reference 495 

complex. The reference complex always contained harmonics 6-10. The variable 496 

complex contained harmonics 1-5. Chance performance corresponds to 4.2%.  497 

 498 

Overall, these data show that the subjects perceived a pitch corresponding to 499 

the F0 rather than a pitch corresponding to an individual harmonic of the high-F0 500 

complex. However, the pitch of the high-F0 reference note with harmonics 6-10, as 501 

employed in the musical interval adjustment experiment, was less salient than that of 502 

the low-F0 reference note. 503 

Subject 9 possessed absolute pitch and was asked to name note chroma and the 504 

register (octave number) of the note for harmonic complex tones with a wide range of 505 

F0s and of the frequency of the lowest harmonic present in the complex (see 506 
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Appendix). Performance was perfect when the frequency of the lowest harmonic in 507 

the complex was below 7000 Hz. When the lowest frequency was at or above 7911 508 

Hz, at least 50% of the chroma responses were incorrect. The pattern of responses 509 

indicated that the perceived pitch corresponded to the F0 of the complex. It also 510 

showed that while absolute pitch judgements were possible and perfect for medium-511 

high component frequencies, performance markedly deteriorated when the frequency 512 

of the lowest harmonic was above about 7.5 kHz. This contrasts with the ability of the 513 

same subject to adjust musical intervals in the main experiment for a diotic reference 514 

tone whose lowest harmonic had a frequency of 8.4 kHz; the AMEs of her musical-515 

interval adjustments were below 37 cents for all target intervals, and had a mean 516 

(excluding the unison judgements) of 27.3 cents.  517 

 518 

IV. GENERAL DISCUSSION  519 

A.  Overview 520 

In the Low-F0 conditions, most subjects were able to match musical intervals 521 

with small systematic errors and with small SDEVs for all intervals. The observed 522 

mean errors and within-subject SDEVs were similar to those reported previously for 523 

musically trained subjects (Burns and Feth, 1983; Rakowski, 1990; Burns, 1999), 524 

except for the major third for subject 3 and for the fifth for subject 5. In both cases, 525 

the adjustments were one semitone above the expected F0, leading to a smaller 526 

interval than expected, i.e. to a minor third and a diminished fifth. Subjective reports 527 

indicated that the systematic match to a minor third rather than a major third could be 528 

explained by subject 3 wrongly anchoring the reference tone as note C and, going 529 

down two notes from there on the major scale, i.e. from note C to note A. Note that 530 

the upwards major third interval corresponds to two whole-note steps from note C on 531 



25 
 

the major scale. It is unclear what caused the systematic mismatch of the perfect fifth 532 

for subject 5. Musical interval adjustments were not significantly worse in the dichotic 533 

than in the diotic condition. This is in agreement with the finding that F0DLs were 534 

similar for dichotic and diotic presentation for these types of complex tones (Lau et 535 

al., 2017; Gockel and Carlyon, 2018), and indicates that the (musical) pitch of these 536 

tones does not depend on the temporal envelope rate of the stimulus.     537 

 The main finding was that musical interval adjustments were possible for both 538 

F0s, even though, for the high F0, components with frequencies up to at least 9.8 kHz 539 

were required for F0 perception. For frequencies as high as this, phase locking is 540 

presumably weak or absent (Verschooten et al., 2019). However, performance was 541 

clearly worse for the high than the low F0: The matches showed significantly larger 542 

systematic errors and larger within-subject SDEVs for the High-F0 than for the Low-543 

F0 condition, despite the fact that subjects usually took more trials to make the 544 

adjustments for the former, probably because High-F0 conditions were perceived as 545 

more difficult. Thus, the poorer performance in the High-F0 condition cannot be 546 

attributed to subjects putting in less effort for this condition. On the contrary, 547 

performance likely would have been even worse in the High-F0 condition if listeners 548 

had not taken more trials in the High-F0 than the Low-F0 condition. The high-549 

frequency complex tones clearly had a much less salient pitch than the low-frequency 550 

complex tones, and this was also obvious in the unison adjustments with non-551 

overlapping harmonics (control experiment).  552 

In the present study, in order to avoid distracting differences in timbre, the 553 

number of the lowest harmonic present was not roved across presentations. 554 

Conditions were designed to be as easy as possible, whilst still requiring genuine 555 

interval adjustments, as it was not a priori obvious how well the subjects would be 556 
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able to perceive musical intervals for the High-F0 condition. Roving of the number of 557 

the lowest harmonic is sometimes employed to discourage listeners from using 558 

unwanted but useful cues based on the pitches of individual harmonics. Given that 559 

FDLs for the individual frequency components used in the High-F0 condition are 560 

substantially larger than the F0DL for the complex (Lau et al., 2017; Gockel et al., 561 

2020), the pitch of an individual harmonic is unlikely to have provided a useful cue on 562 

which to base musical interval adjustments in the High-F0 condition. For the Low-F0 563 

condition, FDLs for the individual harmonics are not smaller than the F0DL for the 564 

complex, so here too it is unlikely that musical interval adjustments would improve by 565 

using the pitch of an individual harmonic rather than that of the complex.       566 

 567 

B. Comparison to previous results 568 

 The present results contrast with those of Oxenham et al. (2011) on melody 569 

discrimination for high-frequency complex tones (their Experiment 2a). Oxenham et 570 

al. (2011) reported that the ability to discriminate between random melodies was 571 

equally good for high-frequency complex tones, where all audible harmonics were 572 

above 6 kHz, and for low-frequency pure tones. Several factors might contribute to 573 

the different findings. Firstly, in the present study the frequency of the lowest audible 574 

component in the complex was higher than in their study and phase locking 575 

presumably is weaker at 8.4 than at 6 kHz. Related to this, the level of the edge 576 

components was 6 dB lower than that of the inner harmonics in the present study, but 577 

not in the study of Oxenham et al. (2011), likely reducing the contribution of the 8.4 578 

kHz component and shifting upwards the frequency of the most salient harmonic. 579 

Secondly, individual component levels were randomized by ±3 dB about the mean for 580 

each presentation in the present study, but not in the study of Oxenham et al. (2011). 581 
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Randomization of component levels might have affected the salience of the pitch of 582 

the high-frequency complex tones more than that of the low-frequency complexes, for 583 

which phase locking would be available. Thirdly, a melody discrimination task is 584 

likely to be less sensitive to changes in pitch salience than a musical interval 585 

adjustment task; a change in melody might be perceived even if the size of the 586 

musical intervals is not precisely perceived. Oxenham et al. (2011) also collected 587 

Unison matches between a pure tone and high-frequency complex tones (their 588 

Experiment 1) over a range of F0s and frequency regions. Performance deteriorated 589 

only when the frequency of the lowest harmonic in the complex was above 10 kHz. In 590 

the present study, Unison matches of complex tones with non-overlapping harmonics 591 

(control experiment) deteriorated for lower frequencies of the lowest harmonic 592 

present (8.4 kHz). Factors contributing to this difference might be the 6-dB decrease 593 

in the level of the edge components and the level randomization of the individual 594 

components applied in the present study, but not in the study of Oxenham et al. 595 

(2011). 596 

To the best of our knowledge, there are no previous data on musical interval 597 

adjustments for high-frequency complex tones. In the following, we compare the 598 

present data with previous studies on musical interval adjustments with medium- and 599 

high-frequency pure tones. For the present high-frequency complex tones, the within-600 

subject SDEVs of the musical interval adjustments were on average, a factor of 5 601 

larger for the High-F0 than for the Low-F0. For the unison adjustments (main 602 

experiment), SDEVs increased on average by a factor of 5 in the diotic condition and 603 

by a factor of 10 in the dichotic condition. Presumably, unison adjustments were 604 

harder in the dichotic than the diotic condition due to the differences in timbre 605 

between the dichotic reference tone and the diotic adjusted tone in the former 606 
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condition, which may have arisen from differences in suppression between 607 

components within each ear (Ruggero et al., 1992) and in inhibition across ears 608 

(Boudreau and Tsuchitani, 1968). 609 

Burns and Feth (1983) obtained musical interval adjustments for pure tones 610 

with reference frequencies of 1 and 10 kHz. Matches were less accurate for the high- 611 

than for the low-frequency tone, and the within-subject SDEVs increased on average 612 

by a factor of about 4-5, which is similar to the increase observed here. In the study of  613 

Burns and Feth (1983), musical intervals were adjusted upwards, so for the high-614 

frequency condition both the reference tone and the adjusted tone were above 10 kHz, 615 

and thus phase locking would have been very weak or absent for both. In the present 616 

study, musical intervals were adjusted downwards to ensure audibility of the 617 

harmonics with higher ranks. Therefore, the F0 of the adjusted tone was below that of 618 

the reference tone by a factor as big as 1/1.498 for the perfect fifth, the largest musical 619 

interval used. The frequency of the lowest harmonic present in the adjusted tone 620 

complex would have been about 5.6, 6.7, and 7.5 kHz for the fifth, the major third, 621 

and the major second, respectively. The pitch of the adjustable complex probably was 622 

more salient than that of the reference complex. If we had used an upward-interval 623 

task like Burns and Feth (1983), the increase of the SDEVs might have been even 624 

larger than the observed factor of about 5. Note however that, in the present study, 625 

there was no indication that the increase in the SDEVs for the High-F0 relative to the 626 

Low-F0 condition was affected by the frequency of the lowest harmonic in the 627 

adjustable complex, as there was no significant interaction between musical interval 628 

and F0.  This was presumably because performance was limited by the accuracy with 629 

which the pitch of the reference complex was encoded.  630 
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  Gockel and Carlyon (2016) asked subjects to adjust pure tones downwards to 631 

form various musical intervals with a preceding Zwicker tone (ZT). A ZT is a tonal 632 

auditory afterimage that starts when a band-stop noise is turned off and can persist for 633 

5-6 s (Zwicker, 1964). It is generally assumed to be a neural phenomenon, involving a 634 

release from neural lateral inhibition in the cochlear nucleus or higher levels in the 635 

auditory pathway, and phase locking in the AN to the frequency corresponding to the 636 

perceived pitch of the afterimage at the time of the percept is assumed to be absent 637 

(Wiegrebe et al., 1995; Wiegrebe et al., 1996; Gockel and Carlyon, 2016). In the 638 

study of Gockel and Carlyon (2016), the mean error of the musical interval 639 

adjustments with a ZT as reference was similar to that observed when the reference 640 

tone was a pure tone; in a first stage, the pure tones had been matched in frequency, 641 

level, and decay time so that they sounded similar to the ZTs. However, the within-642 

subject SDEVs of the musical interval adjustments were a factor of about 1.9 larger 643 

for the ZT than for the pure tone reference, and subjects took equal time/trials to make 644 

the matches. The  increase of the SDEVs relative to that in the reference condition 645 

was clearly smaller for the ZTs than for the high-frequency pure tones in the study of 646 

Burns and Feth (1983), and smaller than for the high-frequency complex tones in the 647 

present study. Note, that in the reference conditions the size of the SDEVs was very 648 

similar across the three studies (22 cents or 1.3% for the low-frequency complex tones 649 

in the present study, 20 cents or 1.2% for the pure tones ranging from 2.2 to 4.2 kHz 650 

in the ZT study, and 20 cents or 1.2% for the 1-kHz tone in the study of Burns and 651 

Feth).  652 

While phase locking in the AN to the frequency corresponding to the perceived 653 

pitch of the ZT at the time of the percept is assumed to be absent, its relevance in the 654 

debate about the role of phase locking in pitch perception needs some qualification. 655 
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This is because for the ZT there would be phase locking to components of the band-656 

stop noise, which might be used in creating a central rate-place representation that in 657 

turn leads to the ZT percept. This is a different situation from tones with very high 658 

frequencies, for which it is mostly assumed that phase locking is absent or very weak, 659 

and for which therefore phase locking to the stimulus at a peripheral level does not 660 

play a role either in the formation of templates or in the subsequent generation of the 661 

pitch.   662 

Overall the present data show that while at least some of the subjects seemed to 663 

be able to adjust musical intervals for the high-frequency complex tones with 664 

“reasonable” accuracy (AMEs smaller than 53 cents and within-subject SDEVs 665 

smaller than 93 cents were observed for four of the nine subjects), performance was 666 

worse for all subjects for the High-F0 than for the Low-F0. Furthermore, the increase 667 

in SDEVs for the High-F0 relative to the Low-F0 was as large as that observed by 668 

Burns and Feth (1983) for musical interval adjustments for high frequency pure tones 669 

relative to that for low-frequency pure tones. 670 

One of our subjects possessed absolute pitch, and additional absolute pitch 671 

judgements were collected for complex tones with a wide range of F0s and of the 672 

frequency of the lowest harmonic present. When making absolute pitch judgements, 673 

the subject listened to the stimulus only once before her response was recorded, while 674 

in the musical interval adjustment task she could listen many times before recording 675 

her response. This might have increased the difficulty of the former task, explaining 676 

why her performance for absolute pitch judgements declined more than for musical 677 

interval adjustments when the frequency of the lowest harmonic was at or above 8.4 678 

kHz. Overall, the results of the absolute pitch judgements were very much in 679 

agreement with those of the musical interval adjustments, showing that musical pitch 680 
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was much weaker for complex tones with a lowest harmonic frequency around 8.4 681 

kHz than for complex tones with components at lower frequencies.  682 

We are not aware of any previous data on chroma identification for high-683 

frequency complex tones. Ohgushi and Hatoh (1992) investigated the ability of 93 684 

music students to identify the pitch name of 1-s pure tones with frequencies 685 

corresponding to notes in the standard tempered scale ranging from C6 (1047 Hz) to 686 

C10 (16774 Hz). Up to C8 (4186 Hz), the highest note on the piano, more than 50% 687 

of all responses were correct for each tone. Above that, performance decreased 688 

markedly and so results were  broadly consistent with previous reports suggesting that 689 

musical pitch has an upper frequency limit near 5 kHz (Bachem, 1948; Ward, 1954; 690 

Attneave and Olson, 1971). However, some subjects performed above chance level 691 

beyond 5 kHz, not unlike in the study of Ward (1954), who measured octave 692 

adjustments for pure tones. Ohgushi and Hatoh (1992) showed confusion matrices for 693 

two exceptionally good subjects who could perform the task for frequencies up to 694 

about 7-8 kHz. Thus, performance for the two best subjects in Ohgushi and Hato 695 

(1992) was only slightly worse than for the present subject who named complex tones 696 

with high component frequencies, and was one of the better ones in the high-697 

frequency musical interval task.  698 

 699 

C. Explanations for the deterioration in pitch perception at 700 

high frequencies 701 

Next we consider possible explanations for our observations. The first is that the 702 

reduction (or absence) of phase locking information underlies the deterioration of 703 

performance in the high frequency region. It has been suggested that the perception of 704 

the residue pitch of complex tones containing resolved components involves some 705 
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type of central harmonic template mechanism (Goldstein, 1973; Terhardt, 1974; 706 

Cohen et al., 1995; Shamma and Klein, 2000). This does not mean that phase-locking 707 

information is not necessary or discarded. For example, Goldstein (1973) explicitly 708 

did not rule out the use of phase-locking information as the measure of the constituent 709 

frequencies of complex-tone stimuli in his optimum processor theory, while the model 710 

of Shamma and Klein (2000) requires exposure to sounds within the phase-locking 711 

range for the harmonic templates to initially form; frequencies for which there is no 712 

phase-locking do not contribute to the formation of a template and thus would not 713 

activate it at a later time.  714 

The present stimuli were similar to the ones used by Lau et al. (2017). They 715 

observed surprisingly small F0DLs (around 5%), given that the FDLs were much 716 

larger (around 20-30%). They argued that these results could be explained by the 717 

existence of central harmonic template neurons that receive rate-place information. A 718 

single high-frequency component will not (or only weakly) activate this central 719 

template neuron, but a series of harmonics will, and so can lead to a pitch percept. 720 

There is some physiological evidence for the existence of neurons that might serve 721 

this role. Feng and Wang (2017) reported single-unit sensitivity in the auditory cortex 722 

of marmosets to harmonic structure, i.e. higher firing rates to a combination of 723 

harmonically related components than to an individual component, across the entire 724 

range of hearing, beyond the limits of peripheral phase locking. If one assumes that 725 

the pitch of complex tones is mediated by a central harmonic template mechanism, 726 

then the present results together with the findings of Lau et al. could be explained 727 

either by assuming that central harmonic templates get less activated by stimuli with 728 

components above the limits of phase locking because temporal fine structure 729 

information, when it is  available, provides a “better” input than purely spectral 730 
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information, and/or by assuming a relative paucity of central harmonic templates 731 

receiving input from stimuli above the limits of phase locking because these high 732 

frequency input pathways have never been formed due to weak or absent phase 733 

locking in this high frequency region (Shamma and Klein, 2000).  734 

Overall, the present results are consistent with a role of phase locking 735 

information in the production of a salient musical pitch percept that supports precise 736 

musical-interval perception. However, while phase locking information might be 737 

beneficial, it seems not to be strictly necessary to evoke a musical pitch of complex 738 

tones since all subjects performed above chance and some subjects achieved 739 

reasonable levels of performance. The latter conclusion is based on the assumption 740 

that there is no usable phase-locking information for frequencies above about 8.4 kHz 741 

(if phase locking information about all harmonics is supposed to be absent) or above 742 

about 9.8 kHz (if phase locking information for all but the lowest harmonic is 743 

supposed to be absent). As described in the introduction, whether or not this is the 744 

case is still under debate (Verschooten et al., 2019). For their pure tone data, Burns 745 

and Feth (1983) concluded that their “results were not incompatible with a temporal 746 

basis” and noted that Goldstein and Srulovicz (1977) “have recently demonstrated that 747 

there is sufficient temporal information in eighth-nerve firing patterns to explain 748 

psychophysical frequency DLs at high frequencies. It is not necessary, therefore, to 749 

postulate that a separate (tonotopic) mechanism mediates discrimination above 5 750 

kHz”.  Heinz, in Verschooten et al. (2019) noted “the degredation in frequency-751 

discrimination performance as frequency increases is consistent with the ability of 752 

human listeners to use phase-locking information at high frequencies (up to ~10000 753 

Hz)”. In contrast, Joris and Verschooten in Verschooten et al. (2019) argued for an 754 

upper limit of phase locking in the AN of humans of about 3.5-4.5 kHz, with a much 755 
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lower limit of about 1.4 kHz as the highest frequency usable by the central nervous 756 

system. Either way, the present results contribute to the growing evidence that 757 

musical interval perception is possible with either very weak or absent phase locking, 758 

but they also show that performance is worse for these very high frequencies.  759 

Another possible explanation for the deterioration of performance at very high 760 

frequencies is lack of familiarity with high-frequency tones. Studies of the pitch of 761 

pure tones have often used this reasoning (Ward, 1954; Attneave and Olson, 1971). 762 

Gockel and Carlyon (2016) mentioned that this might have contributed to the finding 763 

that musical interval adjustments were more precise for the ZTs, which had a lower 764 

pitch (matched frequencies between 2.2-4.2 kHz ) than for the high-frequency pure 765 

tones of Burns and Feth (1983). However, for the high-frequency complex tones used 766 

here, the F0 was relatively low at 1.4 kHz, and so the pitch itself would not be 767 

unfamiliar. Furthermore, there is at least one study that casts doubt on an explanation 768 

in terms of lack of familiarity and lack of exposure to tones with very high F0s. 769 

Jacoby et al. (2019) investigated musical pitch perception for members of a remote 770 

tribe, the Tsimane′, who live in relative isolation from Western culture. The F0s of 771 

their musical instruments all fall below 2000 Hz, much lower than in the Western 772 

culture where F0s reach just above 4000 Hz. Moreover, Tsimane′ songs typically have 773 

notes at the lower end of the F0 range of their instruments. Jacoby et al. (2019) 774 

assessed the accuracy of the sung reproduction of musical intervals defined by two 775 

pure tones that were presented in a wide range of registers. Despite lack of experience 776 

of the Tsimane′ with high-frequency tones, their accuracy of interval reproduction 777 

started to deteriorate above about 4 kHz, the same frequency as for subjects from a 778 

Western culture. As argued by Jacoby et al. (2019), these results are consistent with 779 

biological constraints on the upper limit of musical pitch, for example the breakdown 780 
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in phase locking for higher frequencies, rather than with constraints imposed by 781 

culture and exposure. However, it cannot be ruled out that a lack of exposure to (and 782 

familiarity with) resolved components in the very high frequency region, rather than a 783 

lack of exposure to high F0s, contributes to the deterioration in performance observed 784 

in the present study. In addition, there may be other (yet undiscovered) factors that co-785 

vary with frequency region and that may underlie the observed effects.  786 

 787 

 V. SUMMARY AND CONCLUSIONS  788 

The ability of musically trained subjects to adjust musical intervals for 789 

reference complex tones with an F0 of 1.4 kHz and harmonic frequencies ≥ 8.4 kHz 790 

was compared to that for reference complex tones with an F0 of 280 Hz and harmonic 791 

frequencies from 1680 Hz to 2800 Hz. There were large individual differences in 792 

performance for the high-frequency complex. Musical interval adjustments were 793 

possible for both F0s, even though for the high F0 all harmonic frequencies were 794 

above the presumed limit of phase locking. However, performance was markedly 795 

worse for the high F0. The mean error and the within-subject SDEV of the 796 

adjustments were significantly larger for the high-frequency than for the low-797 

frequency complex even though subjects took more trials for the former to make the 798 

adjustments. Absolute pitch judgements from one of the subjects were perfect for 799 

harmonic complex tones with lower component frequencies, but deteriorated once the 800 

frequency of the lowest component exceeded 7-8 kHz. The results are consistent with 801 

the idea that the salience of musical pitch is greater for tones for which phase-locking 802 

information is available, but pitch perception at high frequencies may alternatively or 803 

additionally be degraded by a lack of exposure to the upper harmonics (the sixth and 804 

above) of complex tones with high F0s.  805 
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 812 

APPENDIX 813 

A.1. Methods for absolute pitch judgements  814 

Subject 9, who possessed absolute pitch, was asked to name the note chroma 815 

and the register (octave number) of the note for a wide range of stimuli. This was 816 

done by choosing one of 12 virtual chroma buttons labelled C, C#, D, D#, E, F, F#, G, 817 

G#, A, A#, or B, and one of 8 virtual register buttons labelled from 1 to 8 on the 818 

computer screen. No feedback was provided.  819 

In the first two experiments of this type, complex tones with F0s 820 

corresponding to piano keys 39-71 (33 F0s ranging from B3=246.94 Hz to 821 

G6=1567.98 Hz in one-semitone steps) were used. Piano key 69 (F6) with an F0 of 822 

1396.91 Hz corresponds most closely to the 1400-Hz F0 used in the musical interval 823 

adjustment tasks. The complex tones contained either harmonics 1-5 or harmonics 6-824 

10. This allowed assessment of the effect of the lowest frequency present in the 825 

complex on absolute pitch judgements. In each trial, one of the 66 stimuli was chosen 826 

at random for presentation. Tones were presented at the same level and in the same 827 

TEN as for the musical interval adjustments. In the first experiment, the stimulus 828 

duration was 1 s and there were 20 repetitions for each condition. In the second 829 

https://www.mrc-cbu.cam.ac.uk/publications/opendata/
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experiment, the stimulus duration was 210 ms and there were 22 repetitions per 830 

condition.  831 

In a third experiment, the stimulus range was extended to higher F0s and 832 

various lower harmonic ranks, to assess whether, in this extended high-F0 range, the 833 

rank of the lowest harmonic in a tone complex influences performance independently 834 

from its frequency. F0s corresponding to piano keys 72-85 (14 F0s ranging from 835 

G#6=1661.22 Hz to A7=3520 Hz in one-semitone steps) were used. The complex 836 

tones always contained five consecutive harmonics. The rank of the lowest harmonic 837 

present in a complex tone with fixed F0 was varied from 1 to 6, with the restriction 838 

that the frequency of the highest harmonic was always below 18 kHz, to ensure that at 839 

least 4 components would have been audible. This resulted in 45 complex tones, for 840 

which the frequencies of the lowest-rank harmonics ranged from 1661.22 Hz (1st 841 

harmonic of G#6) to 10560 Hz (6th harmonic of A6). The stimulus duration was 210 842 

ms and there were 22 repetitions per condition. Nine 2-hour sessions were needed to 843 

complete all three experiments.    844 

 845 

A.2. Results of absolute pitch judgements  846 

Figure 7 shows the mean deviation of the responses from the true note (in 847 

semitones) across the 20 trials completed for each condition as a function of the F0 of 848 

the 1-s stimulus (x-axis, bottom) and as a function of the frequency of the lowest 849 

harmonic present in the stimulus (x-axis, top). The left and right panels show results 850 

for the complexes containing harmonics 1-5 and 6-10, respectively. The upward-851 

pointing blue triangles (“uncorrected”) are based on the raw response values, and give 852 

an indication of overall biases; the large negative values observed for high F0s when 853 

harmonics 6-10 were present indicate a response bias towards lower registers. The 854 
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circles (“corrected, absolute”) are based on responses after correcting for possible 855 

octave confusions; all responses that differed by more than six semitones from the 856 

true note were adjusted by ± n octaves, where n was the smallest integer number that 857 

would give an absolute difference between adjusted response and true note smaller 858 

than or equal to six semitones. The mean deviations were calculated from the absolute 859 

values of the deviations between true note and octave-corrected responses. For 860 

random responses, the expected mean deviation based on these octave-corrected 861 

absolute deviations is three semitones. More systematic mistakes can produce larger 862 

or smaller mean deviations. The results show that, after correcting for possible octave 863 

confusions, performance was perfect for all F0s tested when the lower harmonics 864 

were present and for F0s up to about 1100 Hz when the higher harmonics were 865 

present. For F0s above 1100 Hz, i.e. when the lowest frequency present was above 866 

6600 Hz, the mean deviations increased first gradually and then more steeply when 867 

the lowest frequency component fell above 7900 Hz (four right-most circles in panel 868 

b).   869 

 870 

FIG. 7. (Color online) Results of absolute pitch judgments by subject 9 for a 871 

stimulus duration of 1 second. The mean deviation of the responses from the 872 
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“correct” note is plotted as a function of the F0 of the complex tone stimulus (the 873 

note chroma and register) on the bottom axis and as a function of the frequency of 874 

the lowest harmonic present on the top axis. The complex tone contained 875 

harmonics 1-5 (Panel a) or harmonics 6-10 (Panel b). The (red) circles are based 876 

on octave-corrected responses, while the (blue) triangles are based on uncorrected 877 

responses.  878 

 879 

Figure 8 shows a “confusion matrix” (based on octave-corrected responses) 880 

for complex tones with harmonic ranks 6-10 for the 13 highest notes used. The color 881 

codes the number of times (out of 20) each chroma response (y-axis) occurred for a 882 

given stimulus (x-axis). Responses were 100% correct for all notes up to and 883 

including C6, for which the frequency of the lowest component fell at 6279 Hz. Once 884 

the frequency of the lowest component was at or above 7911 Hz, at least 50% of the 885 

chroma responses were incorrect. In addition, there was a bias towards responding 886 

“A”.  887 

 888 
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FIG. 8. (Color online) Confusion matrix (based on octave-corrected responses) for 889 

absolute pitch judgements of 1-s complex tones with harmonic ranks 6-10 for the 890 

13 highest F0s shown in Fig. 7. The color codes the number of times (out of 20) 891 

each chroma response (y-axis) occurred for a given stimulus (x-axis).  892 

 893 

The experiment was repeated with a shorter stimulus duration of 210 ms. 894 

Figures 9 and 10 show a very similar pattern of results for this duration; performance 895 

was only slightly worse. Performance deteriorated once the frequency of the lowest 896 

harmonic was above 7000 Hz and chroma identification ability appeared to have been 897 

lost for frequencies above about 8400 Hz.  898 

 899 

FIG. 9. (Color online) Results of absolute pitch judgments by subject 9 for a 900 

stimulus duration of 210 ms. Otherwise as Fig. 7.  901 

 902 
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 903 

FIG. 10. (Color online) Confusion matrix (based on octave-corrected responses) 904 

for absolute pitch judgments of 210-ms complex tones with harmonic ranks 6-10 905 

for the 13 highest F0s shown in Fig. 9. Otherwise as Fig. 8. 906 

 907 

In a third experiment, a higher F0 range (14 notes from G#6=1661.22 Hz to 908 

A7=3520 Hz in one semitone steps) was used and the lowest harmonic rank was 909 

varied. Figure 11 shows the mean absolute deviation of the octave-corrected 910 

responses (across 22 trials for each condition) from the correct chroma as a function 911 

of the frequency of the lowest harmonic. Note, data points are shown only for stimuli 912 

whose lowest component had a frequency above 6 kHz; performance was perfect for 913 

complex tones with lowest-component frequencies below 6 kHz. The results of the 914 

second absolute-pitch experiment, with lowest harmonic rank equal to six, are 915 

replotted for comparison. The rank of the lowest harmonic present in the stimulus is 916 

indicated by the different symbols (see legend).  917 
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 918 

FIG. 11. (Color online) Results of absolute pitch judgements for the extended 919 

high-frequency range with 210-ms stimulus duration. The mean deviation of the 920 

responses from the “correct” note is plotted as a function of the frequency of the 921 

lowest harmonic present. The complex tones (the notes) always contained five 922 

consecutive harmonics, and the rank of the lowest harmonic present (see legend) 923 

and the F0 were varied.  924 

 925 

In addition to the clear increase in deviation with increasing frequency, there 926 

was a tendency towards larger deviations with increasing harmonic rank. 927 

Unfortunately, the possible stimulus space was restricted, as frequencies above 16 928 

kHz were unlikely to be audible, and there are not many informative comparisons 929 

between data points with different lowest harmonic rank, i.e. data points above floor 930 

and below ceiling performance levels. In addition, comparison of data points across 931 

experiments conceivably might be affected by the different context of notes tested 932 

within each experiment. Therefore, unfortunately, no clear conclusion can be drawn 933 

about the role of harmonic rank.  934 

The main conclusion to be drawn from these absolute pitch judgements is that 935 

performance deteriorated markedly as the frequency of the lowest harmonic increased 936 
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above about 7000 Hz. When that frequency was 8381 Hz (Figs. 7b and 9b, 3rd data 937 

point from the end), errors were extremely large, despite the ability of this subject to 938 

make relatively accurate musical-interval adjustments with this stimulus, with mean 939 

errors less than 30 cents, in the main part of the study (Fig. 2). 940 

  941 
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 942 

Footnotes 943 

1. Several additional analyses indicated that the strategy used by subjects to make 944 

musical interval adjustments was not one to first match to unison and then to 945 

adjust the F0 to a “mathematically known” ratio using a calculated sequence of 946 

button presses. This will be referred to hereafter as the “alternative strategy”. 947 

Firstly, if subjects had used the alternative strategy instead of directly matching to 948 

their “internal template” of the expected musical interval, n_listen for musical 949 

interval adjustments would be expected to be higher than n_listen for the unison 950 

matches. This was not the case. The number of trials taken for the musical interval 951 

adjustments was similar to that taken for the unison matches; the geometric mean 952 

ratio [± 1 standard deviation] across subjects (n_listen for musical interval 953 

adjustments divided by n_listen for unison matches in the corresponding 954 

condition) was 1.01 [0.79, 1.29] and 0.98 [0.85, 1.13] for the low F0 and the high 955 

F0, respectively. Secondly, if subjects had used the alternative strategy, n_listen 956 

should be higher for matches where the starting F0 was further away from unison 957 

than for matches where the starting F0 was close to unison (the starting F0 was 958 

randomly chosen between F0 and 0.5 F0): Spearman’s rank correlation, rho, 959 

between the starting F0 and n_listen should be negative. This also was not the 960 

case. For the four conditions that involved adjusting to a perfect fifth, rho was 961 

negative in 11 out of the 36 cases (9 subjects X 4 conditions), and was significant 962 

in only 1 case, i.e. in 3% of the cases. In contrast, for the four conditions where 963 

subjects had to match to unison, rho was negative in 29 out of the 36 cases, and 964 

was significant in 22% of the cases. Thirdly, if subjects did not use the alternative 965 

strategy, but matched directly to their “template” for the target musical interval, 966 
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n_listen should be smaller for matches where the randomly chosen starting F0 was 967 

closer to the final matched F0 than for matches where the starting F0 was further 968 

away from the matched F0. To assess this, rho was calculated between n_listen 969 

and the absolute difference between the random starting F0 and the final matched 970 

F0. If subjects had directly matched to the target F0, this correlation should be 971 

positive. This was the case to a similar extent for all musical intervals and for 972 

unison: For conditions that involved matching a perfect fifth, a major third, a 973 

major second and unison, rho was positive (significant) in 72% (22%), 69% 974 

(25%), 64% (25%) and 81% (19%) of the cases, respectively. Note that for the 975 

latter two analyses, correlations between n_listen and frequency differences were 976 

not expected to be very high as subjects probably used bigger step sizes when the 977 

perceived difference between the starting F0 and the target F0 was large than 978 

when it was small. 979 

 980 

2. If subjects make random adjustments for each match, then the expected adjusted 981 

value corresponds to the starting F0 itself. For all conditions, the starting F0 of the 982 

adjustable complex was randomly chosen to be between 0.5 and 1 times the F0 of 983 

the reference tone (uniformly distributed on a linear frequency scale). The mean of 984 

the logarithms of all possible starting F0s is 5.3 semitones below the F0 of the 985 

reference tone.    986 

 987 

3. Octave confusions are quite common in pitch-matching experiments (Davis et al., 988 

1951). Correcting for octave confusions by dividing or multiplying the adjusted 989 

F0 by a factor of 2, so that the adjusted F0 never differs by more than six 990 
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semitones from the true F0, allows correct chroma responses to be counted as 991 

correct while ignoring tone height (register) errors.   992 
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