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Abstract 

Aim: To explore and evaluate an appropriate deep learning system (DLS) for the 

detection of 12 major fundus diseases using color fundus photograph (CFP). 

Methods: Diagnostic performance of a DLS were tested on the detection of normal 

fundus and 12 major fundus diseases including referable diabetic retinopathy (DR), 

pathologic myopic (PM) retinal degeneration, retinal vein occlusion (RVO), retinitis 

pigmentosa (RP), retinal detachment (RD), wet and dry age-related macular 

degeneration (AMD), epiretinal membrane (ERM), macula hole (MH), possible 

glaucomatous optic neuropathy (GON), papilledema and optic nerve atrophy. The 

DLS was developed with 56738 images and tested with 8176 images from on one 

internal test set and two external test sets. The comparison with human doctors were 

also conducted.  

Results: The AUCs  of the DLS on the internal test set and the two external test sets 

were 0.950 (95%CI, 0.942~0.957) to 0.996 (95%CI, 0.994~0.998), 0.931 (95%CI, 

0.923~0.939) to 1.000 (95%CI, 0.999~1.000) and 0.934 (95%CI, 0.929~0.938) to 

1.000 (95%CI, 0.999~1.000), with sensitivities of 80.4% (95%CI, 79.1%~81.6%) to 
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97.3% (95%CI, 96.7%~97.8%), 64.6% (95%CI, 63.0%~66.1%) to 100% (95%CI, 

100%~100%), and 68.0% (95%CI, 67.1%~68.9%) to 100% (95%CI, 100%~100%) 

respectively, and specificities of 89.7% (95%CI, 88.8%~90.7%) to 98.1% (95%CI, 

97.7%~98.6%), 78.7%(95%CI, 77.4%~80.0%) to 99.6%(95%CI, 99.4%~99.8%) and 

88.1% (95%CI, 87.4%~88.7%) to 98.7% (95%CI, 98.5%~99.0%). When compared 

with human doctors, the DLS obtained a higher diagnostic sensitivity but lower 

specificity. 

Conclusion: The proposed DLS is effective in diagnosing normal fundus and 12 

major fundus diseases, and thus has much potential for fundus diseases screening in 

the real world. 

Key words: Deep learning, color fundus photography, automatic detection, multiple 

fundus diseases  
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Introduction 

Color fundus photography (CFP) plays an important role in detecting prevalent 

vision-threatening fundus diseases, such as diabetic retinopathy (DR), retinal vein 

occlusion (RVO), age-related macular degeneration (AMD), and glaucoma. 

According to recent epidemiological studies, approximately 79.6 million people 

worldwide will have glaucoma by 2020
[1]

, while the number of people with AMD is 

expected to reach around 200 million
[2]

. The prevalence of diabetes around the world 

will reach 592 million people by 2035
[3]

, with one-third affected by DR
[4,5]

. However, 

medical services are extremely limited worldwide. For example, in mainland China 

the ophthalmic human resource at the country level was only 0.14 per thousand 

people according to a survey in 2014
[6]

. This serious situation imposed a substantial 

burden on the large-scale screening of multiple fundus diseases for early detection. 

Deep learning system (DLS)-based diagnosing and grading in ophthalmology 

has progressed rapidly in many conditions, including cataracts
[7,8]

, DR
[9-11]

, 

glaucoma
[12]

, retinopathy of prematurity (ROP)
[13,14]

, AMD
[15,16]

, and macular 

telangiectasia (MacTel) type 2
[17,18]

. However, current studies mostly focus on one or 
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only a few (less than five) diseases
[19,20]

. To the best of our knowledge, there are still 

lack of efficient DL models for multiple diseases (especially more than 10) 

recognition using CFPs. We attribute this absence to two factors: the difficulties of 

establishing a large-scale multi-disease dataset for training and validation, and the 

technical challenges of developing a DLS suited not only for separating abnormal and 

normal CFPs but also for distinguishing one disease from many others. 

Recently, Son et al
[21]

 proposed a DLS for the detection of 12 major fundus 

abnormalities using 12 binary classification models, which could help greatly on the 

detection of retinal lesions. However, for diseases recognition, it still needs 

professional interpretation, which may bring obstacles for screening and AI 

assisted diagnosis if there’s no trained ophthalmologists available. Also, the 

application of a panel of binary classification models will take much more time 

and computer resources than a single multiclassification model. This paper aims 

to develop an automated screening DLS for multiple major fundus diseases, which 

could be of great significance for clinical practice in the future. 

Methods 
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The current study complied with the Declaration of Helsinki and was approved by the 

Ethics committee of Peking Union Medical Collage Hospital (NO. S-K631). The 

review board waived the need to obtain informed patient consent because of the 

retrospective study design and the use of fully anonymized CFPs. 

Image acquisition and datasets 

The selection of diseases was decided according to their prevalence and morbidity, 

also taking into account their clinical potential for screening using CFPs. Hence, in 

addition to normal fundus images we selected 12 major fundus diseases including 

nine retina diseases: referable diabetic retinopathy (DR), pathologic myopic (PM) 

retinal degeneration, retinal vein occlusion (RVO), retinitis pigmentosa (RP), retinal 

detachment (RD), wet and dry age-related macular degeneration (AMD), epiretinal 

membrane (ERM) and macula hole (MH), and three optic nerve disorders: possible 

glaucomatous optic neuropathy (GON), papilledema and optic nerve atrophy. The 

imaging diagnosis were made upon standard diagnostic criteria (eTable1). Although 

dry and wet AMD can be considered as the same disease of different stages
[22]

, we 

still classified them into two categories considering their potential difference on 
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treatments and prognoses. 

Since there were no publicly available datasets for the detection of multiple 

fundus diseases, we acquired and annotated a dataset for the development and internal 

test of the DLS. To test the generalizability of the model, we also collected CFPs from 

an independent tertiary medical center forming the external test set A and three 

primary hospitals forming the external test set B.  

Development set: A total of 56738 CFPs taken between January 2014 and 

December 2018 were collected from three participating centers (Henan Provincial 

Peoples' Hospital, Zhengzhou, Henan, Beijing Tongren Hospital, Beijing and Beijing 

Aier Intech Eye Hospital, Beijing). These images formed the development dataset for 

the models’ training and validation. 

Test sets: Another 8176 CFPs were collected for the DLS testing. Among them, 

3579 were from the same source of the development set and ensure the sample size of 

each disease reached over 100, forming the internal test set. Another 1245 CFPs from 

757 patients were collected from another independent tertiary medical center (Peking 

Union Medical College Hospital) from 1
st
 January 2019 to 30

th
 June 2019, as the 
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external test set A. The last 3352 CFPs from 2558 patients were collected from three 

primary hospitals from 4
th

 July 2017 to 14
th

 September 2020, as the external test set 

B. 

For each patient enrolled, only one image of each eye could be included. The 

detailed inclusion and exclusion criteria are provided in the online material. 

 

After preprocessing and desensitization, the development data set was separated into a 

training set and a validation set with the ratio of 4:1 according to the patients’ number, 

which means the bilateral CFPs of the same patient were assigned together to either 

the training set or validation set. This process was organized randomly. The three test 

sets were maintained independently to test the performance and generalization of the 

DLS. 

  Online annotation was carried out to label the images as normal fundus or the 12 

selected diseases. A total of 17 senior board-certified ophthalmologists (with five to 

12 years of experience) were randomly assigned for image annotation. Thirteen of 

them were assigned to label the development dataset and internal test set. The other 
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four doctors were assigned to label the external test sets. Images in the test sets were 

labeled three times by different ophthalmologists to obtain high reliability. Consistent 

labels by all three doctors were retained. If the label was only agreed by two doctors, 

then the final decision would be made by a fourth, more senior ophthalmologists 

(with over 10 years of experience). Images with no consistent labels or those 

annotated with poor quality, such as loss of focus, misalignment, excessive brightness 

or dimness, were excluded.  

Development of evaluation of the DLS 

The DLS was designed using the convolutional neural network (CNN) of 

SeResNext50
[23]

 network as a multilabel model selected from four candidate CNNs 

with two parallel branches at the fully connected layer, one for the distinguish of 

normal and abnormalities and the other for the recognition of diseases it predicted to 

have, which could be more than one kind of diseases, simultaneously. The details are 

available on online materials (eFigure1). 

The performance of the DLS were evaluated on the three test sets. We used the area 

under the receiver operating characteristic (ROC) curve (AUC), sensitivity and 
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specificity for assessments. The metrics were calculated for each label instead of each 

image, since one image could be annotated with more than one label. Information 

learned in our automated method was visualized for further clinical review using 

Class Activation Map
[24]

, which is a CNN’s visualization technique that can identify 

the importance of the image regions by projecting back the weights of the 

classification layer on the convolutional feature maps obtained from the last 

convolution layer.  

The comparison of the DLS with human doctors 

To assess if the DLS has reached a comparable diagnostic performance with human 

doctors, four ophthalmic residents were tested using the external test set B. They were 

assigned randomly with one quarter samples of the whole set and annotated online, 

and then compared the performance with DLS which annotated the same images. 

All statistical analyses, including receiver operating characteristic (ROC) curves, were 

carried out using the programming language Python (version 2.7; Python Software 

Foundation; Wilmington, DE, USA). The results of the indicators are presented as 

values with 95% confidence intervals. 
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Results: 

A total of 64914 CFPs were enrolled in this study with the field of 35-55 degrees of 

the posterior pole covering the whole area of macula and the optic disc. The DLS was 

trained and validated using 46501 and 10237 images respectively, and evaluated on 

the three test sets with 3579 images (2635 patients with a mean age (±SD) of 

55.4±18.3 ranging from 2 to 96), 1245 images (757 patients with a mean age (±SD) of 

48.7±18.0 ranging from 4 to 89) and 3352 images (2558 patients with a mean age 

(±SD) of 52.6±20.6 ranging from 3 to 97) respectively. The numbers of images in 

each category of the internal test set were all over 100, which ensured the reliability 

of the test results. The two external test sets represented a real clinical scenario and 

the disease distribution of both tertiary medical center and primary hospitals in China 

over a certain period of time (Table 1). CFPs with more than one label in the training, 

validation internal test set, external test set A and B were 3202 (6.9%), 488 (4.8%), 

334 (9.3%), 70(5.6%) and 217(6.5%), respectively. 
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Table 1. The sample size of normal fundus and 12 fundus diseases in the five datasets 

Label 

Development set  Test sets 

Training set  

N=46501 

Validation set 

 N=10237 

 Intern test set  

N=3579 

External test set A 

N=1245 

External test set B  

N=3352 

Normal fundus 19146 (41.2) 4315 (9.3)  1053 (29.4) 441 (12.3) 1804 (50.4) 

Retinal vein occlusion 3528 (7.6) 967 (2.1)  531 (14.8) 54 (1.5) 123 (3.4) 

Referable diabetic retinopathy 2701 (5.8) 642 (1.4)  285 (8.0) 292 (8.2) 388 (10.8) 

Pathological myopic retinal degeneration 8243 (17.7) 989 (2.1)  192 (5.4) 84 (2.3) 113 (3.2) 

Retinitis pigmentosa 587 (1.3) 137 (0.3)  130 (3.6) 62 (1.7) 38 (1.1) 

Retinal detachment 315 (0.7) 88 (0.2)  110 (3.1) 5 (0.1) 14 (0.4) 

Epiretinal membrane 2403 (5.2) 544 (1.2)  268 (7.5) 36 (1.0) 165 (4.6) 

Dry age-related macular degeneration 2669 (5.7) 808 (1.7)  267 (7.5) 86 (2.4) 404 (11.3) 

Wet age-related macular degeneration 1564 (3.4) 433 (0.9)  146 (4.1) 67 (1.9) 75 (2.1) 

Macular hole 266 (0.6) 59 (0.1)  137 (3.8) 1 (0.0) 14 (0.4) 

Possible glaucomatous optic neuropathy 3648 (7.8) 544 (1.2)  270 (7.5) 79 (2.2) 227 (6.3) 

Papilledema 2882 (6.2) 682 (1.5)  228 (6.4) 78 (2.2) 82 (2.3) 

Optic nerve atrophy 1459 (3.1) 462 (1.0)  202 (5.6) 23 (0.6) 150 (4.2) 

The results are presented with: number (%). 
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The model performance on the test sets 

We developed a late-fusion multi-label model as well as 12 binary classification 

models for comparison, and the former achieved a higher mean average precision 

(mAP) on validation set with statistical significance (P=0.020) (eTables 2, 3). The 

ROC curves were also listed on line (eFigure2, eFigure3). We therefore selected the 

late-fusion multi-label model for testing. The threshold of the model on validation set 

were listed in online materiel (eTable4). The AUCs in the internal test set and the two 

external test sets were 0.950 (95%CI, 0.942~0.957) to 0.996 (95%CI, 0.994~0.998), 

0.931 (95%CI, 0.923~0.939) to 1.000 (95%CI, 0.999~1.000) and 0.934 (95%CI, 

0.929~0.938) to 1.000 (95%CI, 0.999~1.000), with corresponding sensitivities of 80.4% 

(95%CI, 79.1%~81.6%) to 97.3% (95%CI, 96.7%~97.8%), 64.6% (95%CI, 

63.0%~66.1%) to 100% (95%CI, 100%~100%), and 68.0% (95%CI, 67.1%~68.9%) 

to 100% (95%CI, 100%~100%), and corresponding specificities of 89.7% (95%CI, 

88.8%~90.7%) to 98.1% (95%CI , 97.7%~98.6%), 78.7% (95%CI, 77.4%~80.0%) to 

99.6% (95%CI, 99.4%~99.8%) and 88.1% (95%CI, 87.4%~88.7%) to 98.7% (95%CI, 
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98.5%~99.0%), respectively. For the major blindness leading diseases, the AUCs of 

referable DR, possible GON, dry and wet form AMD in the external test sets were 

0.965 (95%CI, 0.960~0.971) to 0.986 (95%CI, 0.984~0.988), 0.931 (95%CI, 

0.923~0.939) to 0.946 (95%CI, 0.942~0.950), and 0.968 (95%CI, 0.964~0.971) to 

0.988 (95%CI, 0.986~0.990), respectively. Table 2 shows the results of the AUC, 

sensitivity and specificity, of the DLS tested on the three test sets. The ROC curves of 

the DLS tested in the internal set were as Figure 1 shows. Other ROC results tested in 

the external sets are listed on the online material. (eFigure4,5)  
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Table 2. The model's performance on the three test sets. 

  

Intern test set   External test set A   External test set B 

Sensitivity Specificity AUC   Sensitivity Specificity AUC   Sensitivity Specificity AUC 

Normal fundus 0.945 (0.938, 0.953) 0.967 (0.961, 0.973) 0.989 (0.985, 0.992) 

 

0.951 (0.945, 0.958) 0.787 (0.774, 0.800) 0.956 (0.950, 0.963) 

 

0.862 (0.855, 0.868) 0.895 (0.889, 0.901) 0.955 (0.951, 0.959) 

Referable diabetic retinopathy 0.804 (0.791, 0.816) 0.897 (0.888, 0.907) 0.950 (0.942, 0.957) 

 

0.990 (0.986, 0.993) 0.810 (0.797, 0.823) 0.965 (0.960, 0.971) 

 

0.923 (0.918, 0.928) 0.881 (0.874, 0.887) 0.986 (0.984, 0.988) 

Retinal vein occlusion 0.964 (0.958, 0.970) 0.969 (0.963, 0.974) 0.994 (0.992, 0.997) 

 

0.963 (0.957, 0.969) 0.960 (0.953, 0.966) 0.992 (0.990, 0.995) 

 

1.000 (1.000, 1.000) 0.986 (0.983, 0.988) 0.999 (0.998, 0.999) 

Pathological myopic retinal degeneration 0.958 (0.952, 0.965) 0.971 (0.965, 0.976) 0.988 (0.984, 0.991) 

 

0.952 (0.945, 0.959) 0.990 (0.986, 0.993) 0.992 (0.989, 0.995) 

 

0.991 (0.989, 0.993) 0.938 (0.934, 0.943) 0.989 (0.988, 0.991) 

Retinitis pigmentosa 0.962 (0.955, 0.968) 0.978 (0.973, 0.983) 0.996 (0.994, 0.998) 

 

1.000 (1.000, 1.000) 0.988 (0.985, 0.992) 1.000 (0.999, 1.000) 

 

0.895 (0.889, 0.901) 0.977 (0.974, 0.980) 0.996 (0.995, 0.998) 

Retinal detachment 0.973 (0.967, 0.978) 0.981 (0.977, 0.986) 0.996 (0.993, 0.998) 

 

0.800 (0.787, 0.813) 0.981 (0.977, 0.986) 0.992 (0.990, 0.995) 

 

0.786 (0.778, 0.794) 0.987 (0.985, 0.990) 0.992 (0.990, 0.993) 

Epiretinal membrane 0.918 (0.909, 0.927) 0.923 (0.915, 0.932) 0.968 (0.963, 0.974) 

 

0.694 (0.679, 0.709) 0.975 (0.970, 0.980) 0.938 (0.931, 0.946) 

 

0.745 (0.737, 0.754) 0.889 (0.883, 0.895) 0.934 (0.929, 0.938) 

Dry age-related macular degeneration 0.858 (0.846, 0.869) 0.939 (0.931, 0.947) 0.976 (0.971, 0.981) 

 

0.895 (0.885, 0.905) 0.940 (0.932, 0.947) 0.973 (0.967, 0.978) 

 

0.718 (0.709, 0.727) 0.941 (0.937, 0.946) 0.968 (0.964, 0.971) 

Wet age-related macular degeneration 0.842 (0.831, 0.854) 0.953 (0.946, 0.960) 0.964 (0.958, 0.970) 

 

0.925 (0.917, 0.934) 0.894 (0.884, 0.904) 0.974 (0.969, 0.979) 

 

0.920 (0.915, 0.925) 0.971 (0.968, 0.975) 0.988 (0.986, 0.990) 

Macular hole 0.876 (0.865, 0.887) 0.963 (0.957, 0.970) 0.978 (0.973, 0.983) 

 

1.000 (1.000, 1.000) 0.978 (0.974, 0.983) 1.000 (1.000, 1.000) 

 

1.000 (1.000, 1.000) 0.966 (0.962, 0.969) 1.000 (0.999, 1.000) 

Possible GON 0.804 (0.791, 0.817) 0.934 (0.925, 0.942) 0.953 (0.946, 0.960) 

 

0.646 (0.630, 0.661) 0.938 (0.930, 0.946) 0.931 (0.923, 0.939) 

 

0.797 (0.790, 0.805) 0.930 (0.925, 0.935) 0.946 (0.942, 0.950) 

Papilledema 0.904 (0.894, 0.913) 0.950 (0.943, 0.957) 0.980 (0.975, 0.985) 

 

0.756 (0.742, 0.770) 0.990 (0.986, 0.993) 0.991 (0.989, 0.994) 

 

0.756 (0.748, 0.764) 0.975 (0.972, 0.978) 0.990 (0.988, 0.992) 

Optic nerve atrophy 0.950 (0.943, 0.958) 0.946 (0.938, 0.953) 0.989 (0.985, 0.992)   0.826 (0.814, 0.838) 0.996 (0.994, 0.998) 0.996 (0.994, 0.998)   0.680 (0.671, 0.689) 0.952 (0.947, 0.956) 0.955 (0.951, 0.959) 
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To further understand the model’s performance, we used heat maps for 

visualization and clinical review. Figure 2 shows heat maps of the true-positive 

reports normal fundus and 12 fundus diseases on the external test sets. Different 

colors mark subregions with different degrees of activation of the DLS, which 

increase progressively from blue to red as indicated by the color bar. The heat maps 

indicate that the features extracted by the model generally present a high consistency 

with human doctors’ diagnostic basis in real clinical work according to the specific 

lesions on CFPs. Some false-positive and false-negative cases indicated that the DLS 

seemed to miss some fine abnormalities like the change of the disc rim, optic disc pit 

in possible GON or small macula hole (Figure 3). 

We also noticed that the model achieved a relatively lower sensitivity on the 

detection of possible GON. To further interpret and prove the model’s performance, 

we compared our DLS with some other specialized GON detecting models using 

public available dataset. The test was performed on Retinal Fundus Glaucoma 

Challenge, REFUGE (https://refuge.grand-challenge.org) test set, which contains 400 

fundus images with 360 normal fundus and 40 glaucoma. We achieved 0.955 AUC 
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and 0.931 reference sensitivity, which rank six and four among all the 12 participating 

team, that is comparable to the state-of-the-art models (reference sensitivity: 

0.725~0.976, AUC: 0.846~0.989)
[25]

. The detailed comparison results were available 

in online materiel (eTable5, eFigure4). 

The comparison between human doctors and the DLS model 

The mean sensitivity, specificity of the four human doctors were 69.5%, 75.7%, 74.0% 

and 71.1%, and 98.1%, 97.8%, 97.8% and 97.6%, respectively. The corresponding 

DLS model’s sensitivity and specificity were 90.2%, 86.8%, 84.0% and 82.4%, and 

97.6%, 92.6%, 93.7% and 93.6%, respectively. Statistical analysis (Mann-Whitney U 

test) showed that the DLS achieve significant higher sensitivity comparing with two 

of the four doctors and lower specificity comparing with all four doctors. Detailed 

results are available on online materials (eTable6).  

 

Discussions: 

DL models for the detection of multiple fundus diseases 

Previous studies have reported a large number of DLSs used for multiclassification, 
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such as the detection of several diseases or severity of DR and AMD using CFPs or 

optical coherence topography (OCT)
 [9,16,26]

. There have also been studies focused on 

the detection of multiple fundus lesions recently
[21]

. The detection of certain fundus 

diseases using DLS exceeding 10 categories remains very rare. Choi JY. et al.
[27]

 

described automated differentiation between normal fundus and 9 retinal diseases but 

achieved an accuracy of only 36.7% for all 10 classes. Comparing with their study, 

our work were carried out using a large data set with over 60000 images acquired 

from real clinical patients. The DLS developed by Son et al.
[21]

 proposed a deep 

learning method for detecting multiple lesion-level abnormalities in color fundus 

images. The strength to their study is that the detected lesions provide a more intuitive 

interpretation than holistic predictions as made by the prior art. However, as there 

lacks a one-to-one correspondence between lesions and fundus diseases, a gap 

naturally exists when converting lesion-level findings to diseases, which is left 

untouched by Son et al. in this work, we take a orthogonal direction, making a novel 

attempt to directly recognize 12 fundus diseases from a given color fundus image. 

Moreover, we adopt the Class Activation Mapping (CAM) technique to visualize 
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which part of the given image is responsible for the final prediction. 

Furthermore, the diseases selected in this study mostly comprise leading causes of 

blindness that need early detection and intervention covering a broad spectrum 

including retinal vascular diseases (RVO, referable DR), retinal degeneration diseases 

(PM retinal degeneration, RP, RD), macular disease (ERM, AMD and MH) and optic 

nerve disorders (possible GON, papilledema and optic nerve atrophy). Most of them 

have rarely been reported in previous studies.  

The development and selection of the models 

The models developed for multi-disease detection were diverse in previous studies. 

The scenario targeted most often by machine learning methods for applications in 

ophthalmology is image classification
[28]

, which is typically used in retinal analysis 

for automatic screening. Multi-class classification is used
[28]

 to detect the type of 

disease present or to accurately determine the stage of disease. This has been done for 

DR
[10,11]

 and ROP
[29,30]

. In the case of multi-class classification, images belong to only 

one of the mutually exclusive categories. Choi J. Y. et al.
[27]

 reported a multi-disease 

recognition model that applied a method of classification to classify fundus images 



 22 

into different categories of retinal diseases for diagnosis. The authors attributed part 

of the dissatisfactory performance of the model to decreased expected accuracy as the 

number of categories multiplied, which has been demonstrated in previous studies
[31]

. 

However, mutually exclusive multi-classification model may not be unsuitable for 

multiple diseases recognition since some fundus diseases may coexist. For example, 

patients could have DR and ERM simultaneously
[32]

, and the incidence rate of open 

angle glaucoma in patients with RVO is significantly higher than that in the general 

population
[33]

. Our multilabel model was developed with the modified feature layer of 

SeResNext50 in order to simultaneously classify abnormal versus normal CFP images, 

and to accurately detect the presence of multiple diseases. We combined the two steps 

into a single model to simplify implementation in future clinical practice.  

The data sets and the model’s performance 

Our model was trained and tested in real clinical data sets, and this was an important 

feature of the study, mimicking real screening scenarios as closely as possible at this 

early stage of development. To assure the accuracy, diversity and reliability of the 

data sets, we used CFPs from real-life data sets from three different clinical centers 
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that were annotated by 17 experienced ophthalmologists. The amount of work 

involved in annotating the images was formidable, and this data set was much larger 

than in previous studies on multi-disease classification with only 279 images
[27]

. To 

our knowledge, this is also the largest multi-disease recognition data set thus far.  

Considering the future application scenarios of the model is screening especially in 

lower level medical places, which maybe accompanied with more complex conditions 

and interferences while screening, we provided two external test sets from tertiary 

medical center and primary hospitals respectively. The results showed that the 

diseases distribution was different from that of tertiary hospital. For example, the 

proportion of dry AMD and possible GON were much higher. Even so, the results still 

supported, that the DLS could do well in both scenarios, which proved the possibility 

of large-scale screening in the future work.  

Notice that for glaucoma detection, the sensitivity of our DLS varies, which is 0.913, 

0.797 and 0.646 on REFUGE, the external test set B and the external test set A, 

respectively. We attribute this variation to the distinct sources of the three test sets. 

REFUGE, as a public benchmark dataset, tends to include images of less ambiguity to 
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ensure the reliability of its ground truth. Indeed, we observed that images from this 

dataset are typical with respect to glaucoma. Recall that the external test set B and A 

were collected from primary hospitals and tertiary hospitals respectively. Given the 

common practice of a referral medical system, where cases that are less typical and 

thus more difficult to diagnose are to be referred from a primary hospital to a tertiary 

hospital, it is fair to claim that images from A were the most challenging. The 

increasing difficulty in glaucoma diagnosis from REFUGE to the test set B and to the 

test set A explains the decreasing sensitivity of the DLS to detect this condition. 

The interpretation of the heat maps 

The “black box” problem of DLS has greatly limited its application and acceptance in 

real clinical practice. In this study, we used heat maps for visualization. As the heat 

maps indicated, the features extracted by the model for prediction are very similar to 

human doctors’ considerations. Taking referable DR as an example (Figure 2, O), the 

model precisely extracted the appropriate retinal lesions (intraretinal and preretinal 

hemorrhages) and provided a correct prediction. The heatmaps are also helpful on 

understanding the false results. For example, the heatmap indicted that in false 
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negative case of possible GON (Figure 3 A2), the model payed almost no attention on 

the optic disc and failed to give the correct answer. The DLS model presented a 

limited performance on the detection of specific diseases like possible GON. To 

further interpret the results, we tested the model in a public available  

Limitations and future works 

Our work has some limitations. Firstly, while we have spent much efforts to 

expand our external test sets, the testing sample sizes for MH and RD, which are 19 

and 15 in total, remain relatively small, as compared to the other conditions. To 

improve the reliability of the detection performance of the two diseases, more test 

samples need to be collected for future exploration. Secondly, the external evaluation 

on a clinical dataset collected from tertiary hospitals (external test set A) shows that 

our DLS detects glaucoma with a relatively lower sensitivity of 0.646. Given that 

glaucoma is a major blinding disease, much work remains to be done for real-world 

deployment. Thirdly, some diseases included in this study initiate from the peripheral 

retinal area such as RP and RD, but most of the images we used for analysis were 

centered by the macula fovea with the maximal field of 55 degree. Therefore, the 
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detection of these diseases may be limited. With the future common use of ultrawide 

fundus camera, DLS model for this kind of CFP is of high research value. Finally, 

future prospective trials are needed to assess the DLS in multiple independent real 

clinical scenarios. 

 

Conclusion: 

The proposed DLS showed well performance on the three test sets for the detection of 

normal fundus as well as 12 major fundus diseases. The application of this model may 

alleviate the workloads of trained specialists and provide an efficient, low-cost 

approach for preliminary screening in places with scarce medical resources and 

ophthalmologists. Further acquisition of data to broaden the extent of screening for 

more fundus diseases will be the next step of our work. 
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Figure legends 

Figure 1 The receiver operating characteristic (ROC) curves of the DLS tested in the 

internal test set. 

Figure 2 CFPs and visualization heat maps of true-positive cases on the internal test 

set. The color bar marks subregions with different active intensities of the model, 

which increase progressively from the blue end to the red end. These heat maps 

represent the ability of our method to objectively distinguish different diseases. 

Figure 3. The fundus image and corresponding heat maps of some cases of false 

positive and false negative results predicted by the DLS in the validation set. A1 and 

A2 are false negative cases: the DLS miss diagnosed referable diabetic retinopathy 

(A1) and possible GON (A2) to normal fundus; B1 and B2 are false positive cases: 

the DLS miss diagnosed macular hole to wet age-related macular degeneration.  


