
Experimental Observation of Vortex Rings in a Bulk Mag-1

net2

Claire Donnelly1,2,3, Konstantin L. Metlov4,5, Valerio Scagnoli2,3, Manuel Guizar-Sicairos3, Mirko3

Holler3, Nicholas S. Bingham2,3, Jörg Raabe3, Laura J. Heyderman2,3, Nigel R. Cooper1 and Se-4

bastian Gliga35

1Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK.6

2Laboratory for Mesoscopic Systems, Department of Materials, ETH Zürich, 8093 Zürich,7
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Vortex rings are remarkably stable structures occurring in numerous systems: for example12

in turbulent gases, where they are at the origin of weather phenomena1; in fluids with im-13

plications for biology2; in electromagnetic discharges3; and in plasmas4. While vortex rings14

have also been predicted to exist in ferromagnets 5, they have not yet been observed. Using15

X-ray magnetic nanotomography6, we imaged three-dimensional structures forming closed16

vortex loops in a bulk micromagnet. The cross-section of these loops consists of a vortex-17

antivortex pair and, based on magnetic vorticity, a quantity analogous to hydrodynamic vor-18

ticity, we identify these configurations as magnetic vortex rings. While such structures have19

been predicted to exist as transient states in exchange ferromagnets5, the vortex rings we20
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observe exist as stable, static configurations, whose stability we attribute to the dipolar in-21

teraction. In addition, we observe stable vortex loops intersected by magnetic singularities7,22

at which the magnetisation within the vortex and antivortex cores reverses. We gain insight23

into the stability of these states through field and thermal equilibration protocols. The mea-24

surement of stable magnetic vortex rings opens possibilities for further studies of complex25

three-dimensional solitons in bulk magnets, leading to the development of applications based26

on three-dimensional magnetic structures.27

In magnetic thin films, vortices are naturally occurring flux closure states, in which the mag-28

netisation curls around a stable core, where the magnetisation tilts out of the film plane 8, 9. These29

structures have been studied extensively over the past decades due to their intrinsic stability 10 and30

their topology-driven dynamics 11–13, which are of both fundamental and technological 14 interest.31

Antivortices, the topological counterpart of vortices, distinguish themselves from vortices by an32

opposite rotation of the in-plane magnetization that is quantified by the index of the vector field –33

which is equal to the winding number of a path traced by the magnetisation vector while moving34

in the counterclockwise direction around the core 15. While vortices have a circular symmetry35

of the magnetisation (figure 1a), antivortices only display inversion symmetry about the center 16
36

(figure 1b), resembling saddle points in the vector field. Experimental studies of magnetic vor-37

tices and antivortices have mostly been restricted to two dimensional, planar systems, in which38

vortex-antivortex pairs have a natural tendency to annihilate 17, unless they are part of larger, stable39

structures, such as cross-tie walls 18.40
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In bulk ferromagnets, the existence of transient vortex rings, that take the form of localised41

solitons and are analogous to smoke rings, has been predicted 5, but such structures have so far42

not been observed. Just as vortex rings in fluids are characterised by their vorticity, ferromagnetic43

vortex ring structures can be identified by considering the magnetic vorticity 19. By analogy with44

fluid vorticity, the magnetic vorticity is a vector field, which can be defined as 5, 19:45

Ωα =
1

8π
εαβγεijkmi∂βmj∂γmk (1)

where mα(r, t) is a component of the unit vector representing the local orientation of the mag-46

netisation, α indicates the vorticity component, and εαβγ is the Levi-Civita tensor, summed over47

three components x, y, z. The magnetic vorticity vector Ω represents the topological charge flux20
48

(or Skyrmion number21) density. Integrating the magnetic vorticity over a closed two-dimensional49

surface S, results in a scalar value
∫
S

Ω · dS = N corresponding to the Skyrmion number, which50

gives the degree of mapping of the magnetization distribution to an order parameter space de-51

scribed by the surface of an S2 sphere. When N = 1, the target sphere is wrapped exactly once52

and each direction of the magnetisation vector is present in the surface S. The magnetic vorticity53

vector Ω is therefore non-vanishing in the vicinity of the cores of vortices or antivortices, and is54

represented in Figure 1a-d for vortices and antivortices with different polarisations (the polarisa-55

tion is the orientation of the magnetisation within the core). The vorticity vector is aligned parallel56

to the polarisation of a vortex (a,c) and antiparallel to the polarisation of an antivortex (b,d), indi-57

cating that it is dependent upon the direction of the magnetisation in the core as well as the index58

of the structure. Consequently, a vortex-antivortex pair with parallel polarisations, exhibit opposite59

vorticities, that circulate in a closed loop (Figure 1e).60
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Here, we use the magnetic vorticity to locate and identify magnetic structures within a three-61

dimensional magnetic micropillar, that are imaged using hard X-ray magnetic nanotomography.62

Within the bulk of the pillar, we find two types of vorticity loops. The first is characterised by a63

circulating magnetic vorticity forming vortex rings, analogous to smoke rings. The cross-sections64

of these magnetic vortex rings consist of vortex-antivortex pairs with parallel polarisations, as in65

Figure 1e. Consequently, such a pair can be smoothly transformed into a uniformly magnetised66

state and carries zero topological charge. The second type of loop contains singularities, or Bloch67

points7, at which the vorticity abruptly reverses its sign, reflecting the reversal of the polarisation68

of the vortex and antivortex within the cross-section of the ring. Calculating preimages of the ob-69

served structures indicates that the vortex rings display concentric pre-images that do not link each70

other, so have a vanishing Hopf index (a topological invariant which counts the linking number71

of pre-images corresponding to different magnetization vector directions), while structures con-72

taining Bloch points have preimages similar to recently observed ‘toron’ structures in anisotropic73

fluids 22.74

The hard X-ray magnetic nanotomography setup is illustrated in Figure 1f. During the mea-75

surement, high resolution X-ray projections of the sample were measured with dichroic ptychography23
76

for 1024 orientations of the sample with respect to the X-ray beam. The photon energy of the77

circularly-polarised X-rays was tuned to the Gd L3 edge and, by exploiting the X-ray magnetic78

circular dichroism effect, sensitivity to the component of the magnetisation parallel to the X-ray79

beam was obtained. In order to gain access to all three components of the magnetisation, X-ray80

projections were measured for different sample orientations about the tomographic rotation axis81
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for two different sample tilts. The internal magnetic structure was obtained using an iterative re-82

construction algorithm6, which has been demonstrated to offer a robust reconstruction of nanoscale83

magnetic textures24. Further experimental details are given in the Methods section.84

Using this method, we image the magnetic structure of a bulk GdCo2 ferrimagnetic cylinder85

of diameter 5 µm, in which the coupling between the two antiparallel magnetic sublattices leads to86

an effective soft ferromagnetic behavior25. The lowest energy state of such a magnetic cylinder is87

expected to consist of a single vortex26. In our system, the size of the pillar is large enough to reduce88

the role of surface anisotropy, supporting the stabilisation of more complex, often metastable89

states, that can include a large number of vortices, anti-vortices, domain walls and singularities6.90

We compute the magnetic vorticity Ω from the reconstructed magnetisation following equa-91

tion (1). Regions of large vorticity are plotted in Figure 1g, where a number of ‘tubes’ and loops92

corresponding to the cores of vortices and antivortices are visible. In addition, unlike in incom-93

pressible fluids, where the divergence must vanish, a non-zero divergence of the magnetisation, m,94

is allowed in ferromagnets, given that Maxwell’s equations only exclude the divergence of B. In95

this way, computing the magnetic vorticity also allows us to locate singularities of the magnetisa-96

tion – known as Bloch points – within the system, which are characterised by a large divergence97

of the magnetic vorticity, ∇ ·Ω, due to the local variation in the orientation of the magnetisation.98

Here, Bloch point and anti-Bloch points are identified by positive (red) and negative (blue) ∇ ·Ω,99

as plotted in Figure 1h. Within the pillar, we find an equal number of Bloch points and anti-Bloch100

points, indicating that the singularities originated in the bulk of the structure, where they can only101
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Figure 1: Measuring and reconstructing the internal magnetic structure and the magnetic vortic-

ity within a GdCo2 pillar. a-d) Schematic representation of the magnetic vorticity Ω, shown in

purple and orange arrows, for a number of vortex and antivortex configurations with different po-

larisations (red, blue). The vorticity of a ring composed of a vortex-antivortex pair with the same

polarisation is shown in (e). f) Schematic representation of the experimental setup: tomographic

projections with magnetic contrast are measured using dichroic ptychography for the sample at

several different orientations with respect to the X-ray beam. Measurements were performed with

the sample at two different tilt angles: 30◦ (transparent green cylinder) and 0◦ (blue cylinder). g)

Plotting regions of significant magnetic vorticity, we locate a network of structures, and h) plotting

regions of high divergence of the vorticity∇·Ω, we locate Bloch points (red) and anti-Bloch points

(blue), which respectively have positive and negative divergence.
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be created in pairs. As a result, it appears that sample boundaries, through which a single Bloch102

point could be injected, most likely did not play a role in the formation of the observed structures.103

Among the plotted structures in Figure 2, there appear a large number of three-dimensional104

‘loops’, that resemble the vortex ring schematically illustrated in Figure 1e. We first consider the105

case of one such loop that is identified by plotting an isosurface corresponding to m = ±x̂ in106

Figure 2a, where m = |M |/Ms is the reduced magnetisation, and Ms is the saturation magneti-107

sation. This loop is located in the vicinity of a single vortex extending throughout the majority of108

the height of the pillar and whose polarisation equally points along the +x̂ direction in the shown109

slice. Considering the magnetisation in the y − z plane, represented by streamlines in Figure 2a,110

we identify a bound state consisting of two vortices separated by an antivortex, analogous to a111

cross-tie wall. Note that the streamlines are used to indicate the direction of the magnetization112

and are extrapolated beyond the spatial resolution of the measurements. Similarly, the isosurfaces113

highlight the position of the vortex core and do not represent the width of the core. The loop it-114

self is embedded within a quasi-uniformly magnetised region (m = +x̂, red) and therefore the115

vortex and antivortex have the same polarisations, as shown schematically in Figure 1e. When the116

magnetic vorticity vector Ω is plotted, see Figure 2b, it exhibits a unidirectional circulation around117

the loop, directly comparable to the schematic in Figure 1e. This structure is similar to a vortex118

ring in a fluid, which also corresponds to a loop in the hydrodynamic vorticity. Such vorticity119

loops have been predicted to exist as propagating solitons in exchange ferromagnets5. In contrast,120

the vortex loops observed here are static and stable at room temperature over the duration of our121

measurements. We note that the diameter of the vortex ring, i.e. the average distance between122
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Figure 2: Structure of a vortex ring with circulating magnetic vorticity. a) A vorticity ‘loop’ is

identified next to a vortex by plotting an isosurface corresponding to mx = ±1. The in-plane mag-

netisation within a two-dimensional slice through the loop is plotted using streamlines, revealing

two vortices enclosing an antivortex, with the cross-section of the loop consisting of a vortex-

antivortex pair. The colourmap indicates the value of mx, which corresponds to the direction of

the magnetisation in the core (polarisation), showing that the vortex and the antivortex within the

loop have the same polarisation. b) Mapping the vorticity (represented both by the arrows and

the colourmap), reveals that the loop exhibits a circulating vorticity and is a vortex ring. The vor-

ticity map equally indicates that, in the nearby extended vortex, the vorticity abruptly reverses,

corresponding to the presence of a Bloch point. Note that the plotted structures have a relatively

low vorticity, with |Ω| = 0.1 (with the exception of the Bloch point). c) Plotting preimages for

different directions reveals a number of closed loops, that, when the vorticity is plotted, are seen

to correspond to vortex rings (insets). d) In the vicinity of the vortex loop in a), preimages for

neighbouring directions are not linked, indicating a Hopf index of zero.
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the vortex and antivortex cores in the y − z plane, is approximately 370 nm, and is comparable to123

the diameter of other vortex rings present inside the pillar (see Figure 2c) that exhibit an average124

diameter of 400 ± 90 nm. Interestingly, this loop (along with a number of similar vortex rings in125

the sample) occurs in the vicinity of a singularity: indeed, the neighbouring vortex in the cross-tie126

structure contains a Bloch point, which can be located in Figure 2b where the vorticity, (and the127

magnetisation in the vortex core) abruptly reverses direction, as seen in Extended Data Figure M5.128

There is a priori no topological requirement for the presence of a Bloch point in proximity of129

the vortex loop and despite the observed correlations, our static observations do not allow for the130

determination of a causal relationship between the presence of both structures.131

We gain further insight into the topology of these vortex loops by plotting preimages corre-132

sponding to a number of directions of the magnetisation in the vicinity of the vortex ring. The133

preimage corresponding to the +x̂ direction, i.e. mx = +1, is plotted in light green in Figure134

2d, along with additional preimages corresponding to directions indicated in the inset that form an135

ensemble of closed-loop preimages. The plotted loops do not link, indicating that the vortex ring136

has a Hopf number H = 0. Indeed, the vicinity of the H = 0 structure contains only preimages137

representing directions close to the +x̂ direction and, consequently, do not cover the S2 sphere,138

meaning that the magnetisation can be smoothly unwind into a single point on the sphere27. Hence,139

these vortex rings belong to a class of non-topological solitons 28. In the Methods (Extended Data140

Figure M3c), we have developed an analytic model of such a soliton, qualitatively reproducing the141

observed features, vorticity and pre-images.142
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Figure 3: Structure of a vortex ring containing magnetization singularities. a) The vorticity

loop is identified by its relatively high magnetic vorticity. The magnetic configuration in a two-

dimensional slice through the loop is plotted using streamlines to represent the in-plane magneti-

sation, with the colour indicating the out-of-plane magnetisation component ±mx and revealing

that the cross-section of the loop contains a vortex-antivortex pair. Within the loop, the x direction

of the magnetisation, i.e. the core polarisation, switches from positive (red) to negative (blue) at

two points, indicated by the orange and green boxes. b) Plotting the magnetic vorticity reveals

that this is in fact not a closed loop, but an “onion” state, with the vorticity direction reversing at

the same two points. These locations correspond to singularities of the magnetisation (c,d) and,

consequently, of the magnetic vorticity (e,f). g) the preimages corresponding to the Cartesian axes

±x̂ (light/dark green), ±ŷ (light/dark red), and ±ẑ (light/dark blue) are plotted, which reveal an

onion-like state, with all preimages meeting at the singularities. See Extended Data Figure M7

for orientations.
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In addition to vortex rings, we also identify vorticity loops containing sources and sinks of143

the magnetisation, due to the presence of Bloch points. The magnetic structure of one such loop is144

shown in Figure 3a, where the colourscale indicates the polarisation (±x̂) and the magnetisation145

in a plane of the loop is represented by streamlines, revealing a vortex-antivortex pair. At two146

points within the loop, the polarisation along the vortex and antivortex cores reverses with the147

colour changing from blue to red. Consequently, the vorticity does not circulate around the loop,148

but instead assumes an asymmetric onion-like structure, with the vorticity flowing out from a149

source (green box in Figure 3b) and into a sink (orange box in Figure 3b). The structure of the150

magnetisation in the vicinity of the singularities is plotted in Figures 3c,d. In the vicinity of the151

vorticity sink (Figure 3e), the magnetisation structure (shown in Figure 3c) corresponds to that152

of a contra-circulating Bloch point29 (or anti-Bloch point) with Skyrmion number −1. Around153

the vorticity source (Figure 3f), the magnetisation structure (Figure 3d) corresponds to that of a154

circulating Bloch29 point with Skyrmion number +1. Two features of this loop are particularly155

noteworthy. First, the singularities are not linked to the generation and annihilation of a vortex and156

antivortex with opposite polarisations, as has been reported for dynamic processes15. Instead, the157

pair consists of two halves connected by the Bloch points, which locally leads to a reversal of the158

vorticity along the vortex and the antivortex cores, as seen in Extended Data Figure M4. Second,159

while singularities often mediate dynamic processes and have been predicted during magnetisation160

dynamics29, 30 as well as during magnetic field reconnection in plasma physics31, the observed161

structures are inherently static. In Ref. 6, Bloch points were observed at the locations where a162

vortex core intersected a domain wall. Similarly, we find that the Bloch point pair is located at the163
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intersection of the vortex-antivortex loop with a domain wall separating regions of opposite mx164

(Extended Data Figure M5f).165

We gain further insight into the topology of the vortex-antivortex loop containing singu-166

larities by plotting preimages corresponding to a defined set of directions, or points, on the S2
167

sphere. In particular, we plot regions of the magnetisation aligned along ±x̂ (bright/ dark green),168

±ŷ (bright/ dark red), and ±ẑ (bright/ dark blue) in Figure 3g, which can be seen to form a169

three-dimensional onion state, with all directions of the magnetisation meeting at the singularities170

schematically indicated by green and orange circles, corresponding to the anti-Bloch point and171

Bloch point, respectively. The preimages resemble those found to correspond to ‘torons’, which172

have recently been observed in chiral liquid crystals 32 and anisotropic fluids 33. In the methods,173

we present an analytical model of different micromagnetic configurations with similar pre-images,174

allowing us to reproduce and, consequently, understand the experimental observations.175

We explore the stability of the observed vorticity loops by applying two different field and176

thermal protocols on a similar GdCo2 micropillar, and performing magnetic X-ray nanotomog-177

raphy at remanence following each protocol. In the first protocol, we apply a 7 T magnetic field178

along the long axis of the pillar at room temperature, and image the resulting remanent config-179

uration. The applied field is above the measured sample saturation field of ∼ 2 T. A plot of180

the magnetic vorticity (see figure 4a) reveals a large number of vortices and antivortices, as well181

as magnetic singularities (shown in Methods and Extended Data M6 at remanence). By plotting182

pre-images corresponding to different directions of the magnetisation, we observe a small number183
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Figure 4: Magnetic vorticity plots measured for the GdCo2 micropillar at remanence showing the

effect of different field histories on the vortex-antivortex structures. a) following the application of

a 7 T saturating field and c) following saturation and field cooling. A small number of vortex loops

like those in figure 2 are present at remanence after the application of a saturating magnetic field,

shown in b), however none are observed following the thermal annealing procedure.
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of vortex loops, two of which are shown in figure 4b. The presence of these vortex loops after184

the application of a saturating magnetic field indicates that the loops can nucleate spontaneously,185

and therefore do not require a specific field protocol to prepare them. Secondly, we heat the sam-186

ple to 400 K while applying a 7 T magnetic field. The sample is then field cooled and the field187

gradually removed after the sample reached room temperature. This annealing procedure is remi-188

niscent of those used to expel defects in single-crystals in order to increase their purity. A plot of189

the vorticity, shown in figure 4c, reveals a noticeably smaller number of structures with non-zero190

vorticity. Importantly, we do not find any vortex loops, indicating that these are metastable states191

that are more efficiently destroyed through thermal annealing in a field, which is likely to lead192

to the expulsion of magnetic as well as lattice defects that contribute to pinning of the magnetic193

structures (see Methods and Extended Data Figures M1 and M2 for more details). Quantitatively,194

the average vorticity value following field cooling is half the value following only the application195

of a 7 T field, and the total number of Bloch points is roughly halved (52 vs. 110 Bloch points, as196

seen in Extended Data Figure M6).197

Although the vortex rings we observe are topologically trivial structures and have a Hopf198

index of zero, they are surprisingly stable. We attribute their stability to interactions with sur-199

rounding magnetization structures, which ensure that they are, for example, embedded in larger200

cross-tie structures or pinned at the intersection with domain walls (as shown in Extended Data201

Figure M6), resulting in loops intersected by Bloch points. Moreover, the magnetostatic interaction202

clearly plays an important role in the stabilisation of these structures, ensuring that our observations203

of stable localised solitons do not contradict the Hobart-Derrick theorem for an exchange ferro-204
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magnet that requires non-linearities (such as intrinsic chirality in the presence of Dzyaloshinskii-205

Moriya interaction) to set a scale for localised magnetisation non-uniformities. Based on the206

balance of magnetostatic and exchange interactions, a distance of ≈ 296 nm between the vortex207

and antivortex in such bound states can be estimated via the bulk limit of the cross-tie domain208

wall width as described in the Methods section. This value matches the average observed size209

of the rings of 400 ± 90 nm well, indicating that the magnetostatic interaction plays an impor-210

tant role in the stability of these structures. More details are given in the Methods. We note that211

chirality has been demonstrated in a similar bulk amorphous system through the inclusion of struc-212

tural inhomogeneities34. We expect that such systems could host topologically non-trivial solitons,213

such as knots with a higher Hopf number, as well as torons, following predictions for chiral mag-214

netic heterostructures33, 35, 36, analogous to the reported observations in chiral liquid crystals and215

ferrofluids27, 37.216

Finally, very recent advances in time-resolved X-ray magnetic laminography38 open the path217

to investigating the dynamics of three-dimensional magnetic configurations. As well as probing218

resonant dynamics, it is possible that investigations of the stability and motion of three-dimensional219

vortex rings could reveal behaviour analogous to the Kelvin motion of two-dimensional vortex-220

antivortex pairs 39–41. Likewise, we expect that the magnetic vortex loops discovered here con-221

taining singularities will also display compelling dynamics, with implications for the fundamental222

understanding of the role of singularities in magnetic processes. Calculation and visualisation223

of the magnetic vorticity and pre-images have proven an essential tool in the characterisation of224

three-dimensional nanoscale magnetic solitons, providing insight into the topology and structure225
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of complex three-dimensional systems. The study of the conditions for the formation of three-226

dimensional magnetic structures, and of their stability and dynamics, is expected to lead to new227

possibilities for the controlled manipulation of the magnetisation that could be relevant for tech-228

nological applications requiring complexity, such as neuromorphic computing42 or new proposals229

for three-dimensional data storage43.230

1 Methods231

Sample Fabrication The samples investigated were both GdCo2 micropillars of diameter 5µm232

that were cut from a larger nugget of GdCo2 using a focused ion beam in combination with a233

micromanipulator, and mounted on top of OMNY tomography pins44.234

The crystal structure of the GdCo2 micro-pillars was determined using microcrystallography235

measurements, performed at the X06DA beamline, Swiss Light Source. An example diffraction236

pattern is given in Figure M1, where one can observe that the Bragg peaks (right image) display a237

substructure, indicating the polycrystalline nature of the micropillar.238

X-ray ptychographic tomography Hard X-ray magnetic tomography was performed at the cSAXS239

beamline at the Swiss Light Source, Paul Scherrer Institut, using the flexible tomographic nano240

imaging (flOMNI) instrument45. Part of the data presented in this manuscript (the central vortex241

containing the Bloch point in Figure 2a,b) formed part of the dataset presented in Ref. 6. All other242

data is shown and analysed for the first time here.243
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Figure M1: A diffraction pattern from the GdCo2 pillar. The substructure of the Bragg peaks,

highlighted in the inset to the right, indicates the polycrystalline nature of the material.

Two dimensional tomographic projections were measured with X-ray ptychography, a coher-244

ent diffractive imaging technique allowing access to the full complex transmission function of the245

sample46, 47. For X-ray ptychography, an X-ray illumination of approximately 4µm was defined246

on the sample, and ptychography scans were performed by measuring diffraction patterns on a247

concentric grid of circles with a radial separation of 0.4µm for a field of view of 8 × 7µm and248

13× 9µm for the untilted and tilted sample orientation, respectively. The projections were recon-249

structed using 500 iterations of the difference map and 200 iterations of the maximum likelihood250

refinement using the cSAXS PtychoShelves package 48.251

To probe the magnetisation of the sample, X-rays tuned to the Gd L3 edge with a photon en-252

ergy of 7.246 keV were chosen to maximise the absorption XMCD signal23. Circularly polarised253

X-rays were produced by including a 500µm-thick diamond phase plate upstream of the sam-254
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ple position49. The degree of circular polarisation achieved was greater than 99%, and with an255

transmission of approximately 35%.256

The tomographic projections were aligned with high precision as described in Ref. 6.257

Magnetic tomography When a single circular polarisation projection is measured, the component258

of the magnetisation parallel to the X-ray beam is probed, along with the electronic structure of the259

sample. To probe all three components of the magnetisation, projections were measured around a260

rotation axis for two orientations of the sample6. Generally, the magnetic contrast of a projection is261

isolated from other contrast mechanisms by measuring the same projection using circular left and262

right polarised light, where the sign of the magnetic contrast is reversed, and taking the difference263

between the two images. Here, a single X-ray polarisation is used for all measurements and, in264

order to isolate the magnetic structure, projections with circularly left polarisation are measured at265

θ and θ + 180◦. Between these two angles, the magnetic contrast is reversed, which can be used266

to differentiate the magnetic contrast from the electronic contrast. Therefore, for the magnetic to-267

mography measurements, circular left polarisation projections were measured through 360◦ about268

the rotation axis, instead of through 180◦, as in standard tomography.269

The magnetisation (which is a three-dimensional vector field) was reconstructed using a two-270

step gradient-based iterative reconstruction algorithm, described in Ref. 50. The spatial resolution271

for each component of the magnetisation was estimated using Fourier Shell Correlation51, and a272

three-dimensional Hanning low-pass filter was used to remove high-frequency noise. The spatial273

resolution of the reconstructed magnetisation was found to be 97 nm, 125 nm and 127 nm in the274
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x− z, x− y and y − z planes, respectively6.275

The magnetic vorticity was calculated according to Equation 1. The magnetisation was nor-276

malised to obtain the unit vector, which was used to calculate the magnetic vorticity numerically277

in MATLAB. Specifically, the components of the vorticity vector were calculated numerically as278

follows:279

Ωx = 2mx(∂ymy∂zmz − ∂zmy∂ymz) + 2my(∂ymz∂zmx − ∂zmz∂ymx) + 2mz(∂ymx∂zmy − ∂zmx∂ymy)

Ωy = 2mx(∂zmy∂xmz − ∂xmy∂zmz) + 2my(∂zmz∂xmx − ∂xmz∂zmx) + 2mz(∂zmx∂xmy − ∂xmx∂zmy)

Ωz = 2mx(∂xmy∂ymz − ∂ymy∂xmz) + 2my(∂xmz∂ymx − ∂ymz∂xmx) + 2mz(∂xmx∂ymy − ∂ymx∂xmy)

(2)

where mi is the ith component of the unit magnetisation, and ∂i represents the partial derivative280

with respect to the ith direction that were calculated numerically using the gradient function in281

MATLAB 2018a.282

The three-dimensional visualisations of the magnetic vorticity and magnetisation were per-283

formed with Paraview.284

To consider the topology of the magnetisation in three dimensions, pre-images corresponding285

to different directions are plotted within the pillar. The difference between the magnetisation vector286

and the mx = 1 direction is calculated using:287

δpx =

(
mx

|m|
− 1

)2

+

(
my

|m|

)2

+

(
mz

|m|

)2

(3)

To plot the mx = 1 pre-image, for example, we plot an isosurface for δpx = 0.01. This results in288
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a tube rather than a line, which is necessary due to the finite spatial resolution and signal-to-noise289

ratio of the measurement.290

Field and thermal protocols For a second GdCo2 micropillar, the magnetic state was determined291

using magnetic tomography following two different protocols: the first involved the application of292

a 7 T saturating field at room temperature. The second involved thermal annealing, heating the293

micropillar to a temperature of 400 K (close to the Curie temperature of the material), applying a294

7 T field, and then reducing the temperature to room temperature, followed by a slow reduction of295

the applied magnetic field.296

A significant difference in both the presence of high vorticity structures, as well as the num-297

ber of Bloch points present in the configuration, was observed, as shown in Figures 4 and Extended298

Data M6, with the thermal annealing procedure resulting in a decrease in the magnetic vorticity as299

well as in the number of Bloch points.300

Interestingly, although the general magnetic structure is significantly different following the301

different applied protocols, and a significant reduction in the average magnetic vorticity is observed302

following the annealing process, the main vortex that spans most of the height of the pillar occupies303

a similar position, within approx. 300 nm of the previous vortex, as can be seen in Figure M2.304

While the vortex state is in principle the ground state of a cylindrical sample, the formation of the305

vortex core at nearby locations in a structure of this size is indicative of the presence of pinning306

centres that may be attributed to the polycrystalline nature of the material. The suppression of high307

vorticity structures, as well as magnetic vortex rings, following the thermal annealing protocol (see308
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Figure M2: The central vortex following the two different protocols. The position of the central

vortex core is plotted using red and blue isosurfaces for the remanent magnetic structure after (red)

the application of a 7 T magnetic field, and (blue) after the application of the field cooling protocol.

After both protocols, the vortex core returns to almost the same position.

Extended Data Figure M6) indicates, however, that the pinning centres do not solely determine the309

stability of the structures, but rather may indirectly influence them through the pinning of other310

magnetic features.311

Analytical models To qualitatively interpret and understand the observed structures, we build a312

series of 2+1 dimensional models, which allow comparing the observed magnetization structures,313

preimages and the vorticity with the ones derived from modeled vortex loops with different mag-314

netization structures. These models are similar to those used for description of hopfions in Ref.52.315

They are based on the subdivision of the magnetic material volume into thin slices, lying in the316
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x−y plane of a Cartesian coordinate system. The magnetisation in each slice can then be described317

by a complex function w of a complex variable u = x + ıy by means of stereographic projection318

{mx + ımy,mz} = {2w, 1−ww}/(1+ww), where the over-line denotes complex conjugation, so319

that u = x− ıy, ı =
√
−1. Without loss of generality, any three-dimensional magnetisation distri-320

bution m(x, y, z) can be described by a function w = w(u, u, z), which depends on the complex321

coordinate u within each slice and the extra-dimensional variable z, identifying the slice.322

For realistic models, including at least the exchange and the magnetostatic interactions, no323

exact solutions for non-uniform w(u, u, z) are known. However, if the magnetostatic interaction324

is neglected and w(u, u, z) is assumed to be weakly dependent on z, two large families of exact325

solutions exist for w(u, u, z) at a fixed z. These are solitons20, which are meromorphic func-326

tions w(u, u, z) = f(u, z), and singular merons53, which are functions with |w(u, u, z)| = 1 or327

w(u, u, z) = f(u, z)/|f(u, z)|. Zeros of f(u, z) correspond to the centers of magnetic vortices (or328

hedgehog-like structures, if the magnetisation vectors are rotated by π/2 in the x-y plane). The329

poles correspond to the centers of the magnetic antivortices (or saddles). From the stereographic330

projection it follows that for solitons mz = 1 in the centers of the vortices and mz = −1 in the331

centers of antivortices.332

An example of meromorphic functions are the rational functions of a complex argument333

(quotient of two polynomials). They allow direct expression of the vortex/antivortex pair annihi-334

lation as a cancellation of two identical monomials, whereas creation is a time-reversed process.335

The topological charge (or Skyrmion number) in each slice is a conserved quantity 20 in the sense336
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that it cannot be changed by a smooth singularity-free variation of the magnetisation distribution.337

For the slices in the x-y plane the topological charge density is the z-component of the vorticity Ωz338

and the total charge is the integral of this density over the whole slice. Creation and annihilation339

of the vortex-antivortex pairs within the soliton is always accompanied by a singularity.340

A vortex ring can be understood as a process of creation, separation, convergence and an-341

nihilation of a vortex-antivortex pair as the variable z advances through the successive slices5.342

Consider343

wBPr(u, u, z) = f(u, z) = ı
u− p(z)

u+ p(z)
= ı

u−
√

1− (z/2)2

u+
√

1− (z/2)2
(4)

for an (arbitrary) range−2 < z < 2, where the specific expression for p(z) was chosen to make the344

vortex and antivortex cores extend along arcs, as in the experimental data. It describes the creation345

of a vortex-antivortex pair at x = y = 0 and z = 2, the vortex and antivortex moving apart (with the346

maximum distance between their centres equal to 2 at z = 0), then approaching each other again,347

and annihilating at z = −2. We call this model the Belavin-Polyakov ring because each slice is a348

Belavin-Polyakov soliton, described by a meromorphic w(u, u, z). The corresponding schematic349

magnetisation, set of preimages and vorticity are shown in figure M3a. A similar preimage patterns350

connecting two Bloch points were indeed observed in our sample. However, the corresponding351

vorticity distributions are different. Indeed, instead of a single centrally-symmetric vorticity bundle352

we reconstruct a pair of bundles, corresponding to the vortex and antivortex centers. Clearly, the353

pure Belavin-Polyakov ring model can not reproduce this feature.354
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Figure M3: Analytical models of vortex loops with different magnetisation structures. Top to

bottom: Magnetisation, pre-images and vorticity distribution for the different 2 + 1 dimensional

analytical models, discussed in the methods section. The magnetisation plots only include the pro-

jection of the magnetisation onto the shown planes, while the rings correspond to the positions of

the vortex and antivortex centers, and the color indicates the mZ component of the magnetisation.

The preimages are shown as volumes where the magnetisation vectors deviate only slightly from

certain directions di, indicated by the color-coded arrows on each corresponding legend. The opac-

ity and color on the vorticity plots indicates the magnitude of local vorticity vectors. The structure

in c is comparable to the vortex rings in figure 2, while the structure in d is comparable to that in

figure 3.
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To ’unbundle’ the vortex and antivortex, we can use the instanton model53 by writing:355

wi(u, u, z) =



f(u, z)/c(z) |f(u, z)| ≤ c(z)

f(u, z)/|f(u, z)| d(z) > |f(u, z)| > c(z)

f(u, z)/d(z) |f(u, z)| > d(z)

, (5)

where d(z) = 1/c(z), assuming the same size for the vortex and antivortex cores. Choosing356

c(z) = 1 − q + q|z|/2 < 1 allows the control of the size of the vortex and antivortex cores357

(where mz 6= 0) at the central plane z = 0 via the parameter q. The magnetisation, preimages and358

vorticity for such an instanton ring with q = 3/4 are shown in figure M3b. While they reproduce359

qualitatively both the vorticity distribution and the preimages, shown in figures 3b and 3g, the360

structure of the Bloch points is different. Indeed, the instanton ring has two hedgehog-type Bloch361

points (in which the magnetisation directions are opposite), whereas the observed structure, shown362

in figure 3, contains two different types of Bloch points. Additionally, this model differs from363

the observation in figure 3 in that singularities are absent at the transition from the experimentally-364

observed vortex and antivortex pair to a uniformly-magnetized region. The Bloch points in figure 3365

rather coincide with the polarisation reversal of vortex and antivortex cores as they propagate366

through the volume of the sample. In order to analytically describe this structure, we first need to367

build a model for a vortex ring.368

To describe a vortex-antivortex pair unbound by Bloch point singularities, the vortex and the369

antivortex must have identical polarisations (i.e. the same direction of mz within the core). In370

this case the topological charge in each slice is zero. Such a configuration can be obtained as a371
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generalisation of (5)372

wr(u, u, z) = A(z)



f(u, z)/c(z) |f(u, z)| ≤ c(z)

f(u, z)/|f(u, z)| d(z) > |f(u, z)| > c(z)

d(z)/f(u, z) |f(u, z)| > d(z)

, (6)

where the modification to the last line reverses the polarisation of the antivortex. The factorA(z) =373

(1− z2/4)s ensures that, at z = ±2, the function wr = 0, which corresponds to the uniform state.374

The parameter s allows for the control of the degree of quasiuniformity: the smaller s is, the less375

mz deviates from 1. The magnetisation, preimages and vorticity for such a quasiuniform ring376

with q = 3/4 and s = 1/4 are shown in figure M3c. They are qualitatively analogous to the377

experimentally-observed vortex rings in figures 2b and 2d.378

Finally, we can extend the above model to a vortex ring in which the polarisation reverses379

along the vortex and the antivortex cores, in the presence of Bloch points. To describe this state,380

we note that with s = 1, c(z) = z2/4, the magnetisation of the quasiuniform ring (6) at z = 0381

lies completely in the x-y plane except for at the centres of the the vortex and antivortex, where its382

direction is undefined. Joining at the central plane two half-rings with opposite polarisations:383

wvls(u, u, z) = A(z)


wr(u, u, z) z ≤ 0

1/wr(u, u, z) z > 0

(7)

yields the model for the vortex loop with Bloch point singularities, shown in figure M3d. The384

structure corresponds well to the observations in figure 3, including the observed Bloch point385

types.386
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Note that despite piecewise nature of the above functions, the resulting magnetisation vector387

fields are continuous (apart at the Bloch points). While neither ansatz in the presented series is an388

exact solution of the corresponding micromagnetic problem (not even of its restricted exchange-389

only version), they provide a simple and easily interpretable model to understand the observed390

magnetisation distributions.391

We now address the question of size of the observed magnetisation structures. According392

to the Hobart-Derrick theorem, the exchange interaction alone cannot stabilize the solitons as the393

exchange energy does not have a minimum as function of their size. However, the magnetostatic394

interaction, which is always present in ferromagnets, is outside of the scope of the Hobart-Derrick395

theorem and can, in principle, set the length scale of solitons. A complete answer to this question396

requires a sophisticated theoretical model and still remains an open problem. Yet, a simple argu-397

ment for stability of the observed bound states, characterized by vortices and antivortices along398

the soliton cross-sections, can be given in terms of other well-known magnetic textures such as a399

cross-tie wall as described below.400

A single magnetic vortex, centered in a cylindrical nano-pillar, does not have volume mag-401

netic charges (which are proportional to the divergence of the magnetisation) and only generates402

surface charges (proportional to the magnetisation vector component, normal to the surface) at403

the surfaces of the pillar. The total energy (exchange plus surface magnetostatic) of the magnetic404

vortex has a minimum when varying the vortex core size54. However, as the length of the pillar is405

increased to infinity, the equilibrium vortex core size diverges due to the diminishing role of the406
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surfaces. In finite pillars, the vortex core has a barrel-like shape that is narrow at the top/bottom407

faces and wide in the middle of the pillar. These surface charges, however, do not explain the sta-408

bility of the structures in the bulk of our pillar, which do not extend to the surfaces of the sample.409

It is well known that, in thin films, vortices and antivortices may form bound states, such as410

in cross-tie walls55. A simple theoretical model for such a wall can be given directly in terms of411

the function of the complex function w of a complex variable u56:412

wc−t(u, u, z) = ı tan(u/s), (8)

where s is the spatial scale (width) of the domain wall. The corresponding magnetisation vector413

field has both volume and surface magnetic charges. The magnetostatic energy associated to these414

charges stabilizes the wall, yielding a certain equilibrium value of s as a function of the film415

thickness L and the exchange length LEX =
√
C/(µ0M2

S). It should be noted, however, that, due416

to the presence of the volume magnetic charges, the domain wall width for the model given by417

Equation (8) does not diverge as film thickness goes to infinity L → ∞, but assumes a finite bulk418

limit419

s∞ = 8

√
3

12− π2
LEX, (9)

which can be directly computed using the magnetostatic function for the cross-tie wall56. For420

GdCo2 with the exchange length LEX ' 20 nm, the value of s∞ ' 189 nm, corresponding to the421

distances between vortex and antivortex centers of s∞π/2 ' 296 nm , can serve as a ball-park422

theoretical estimate for the size of vortex rings.423

Unlike a cross-tie domain wall, the magnetic vortex rings we observe are quasiuniform states424
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and exist as a perturbation of a largely uniform background. Because the magnetisation vector is425

included in both the exchange energy (squared gradients of components) and the volume magnetic426

charges density (product of divergences) via derivatives, the constant background is irrelevant and427

we can roughly assume that, in the quasiuniform state, only the variation of the magnetisation428

vector is reduced, compared to the case of fully developed vortices and antivortices. For the quasi-429

uniform cross-tie domain wall, this can be modeled by representing its total energy as430

Ec−t ∝ c1
(LEX/L)2

s
+ c2F (s), (10)

where the case c1 = c2 = 1 corresponds to the energy of the fully developed cross-tie wall56
431

and F (s) is the magnetostatic function. The parameters c1 and c2 then account for the reduced432

variation of the magnetisation in the quasiuniform case, which has different effects on exchange433

and magnetostatic energy terms. It is important to note that provided c1, c2 6= 0, this reduced434

variation does not destroy the energy minimum for s, but merely rescales the equilibrium wall435

width. It means that the quasiuniform bound state of vortices and antivortices can also be stable436

with respect to scaling as for the cross-tie wall in a bulk magnet.437
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Figure M4: Detailed overview of the vortex ring with circulating magnetic vorticity, shown in

successive slices through the loop. The colourscale in the top row indicates the magnetisation,

while the colourscale in the bottom row indicates the vorticity. The vorticity associated with the

vortex structure extending throughout the pillar changes in sign in slice d due to the presence of

a Bloch point, while the vortex-antivortex pair conserves its vorticity throughout. In slices b and

c, the magnetisation forms a cross-tie wall like structure, which dissolves as the pair unwinds, at

slices a and d, leaving the a single vortex.
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Figure M5: Detailed overview of the magnetic state of the vortex loop containing Bloch points,

shown in successive slices through the loop. The colourscale in the top row indicates the mag-

netisation, while the colourscale in the bottom row indicates the vorticity. The vorticity along the

vortex core reverses between slices b and c, while the vorticity along the antivortex core reverses

between slices c and d. f) the vortex loop is plotted with a white isosurface corresponding to the

mx = 0, indicating that the vortex loop crosses the domain wall twice (indicated with dashed

circles), at the locations of the Bloch points.
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Figure M6: Effect of different field and thermal protocols on the prevalence of regions of high

magnetic vorticity, and magnetisation singularities plots. a) following the application of a 7 T

saturating field and c) following saturation and field cooling. Regions of high divergence of the

magnetic vorticity indicate the presence of Bloch points (red) and anti-Bloch points (blue) (b) at

remanence, following saturation and d) after heating at 400 K and field cooling in a 7 T field. No-

ticeably fewer magnetic structures with high vorticity are present after the field cooling procedure

in than after the simple application of a magnetic field.
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Figure M7: The vortex loop containing magnetisation singularities seen from multiple directions.

The vortex loop containing Bloch points is shown with the isosurface representing mx = ±1 (a,c)

and pre-images (b,d) for the orientations given in Figure 2a (a,b) amd g (c,d).
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