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Abstract: This perspective article describes the application opportunities of carbon nanotube (CNT)
films for the energy sector. Up to date progress in this regard is illustrated with representative exam-
ples of a wide range of energy management and transformation studies employing CNT ensembles.
Firstly, this paper features an overview of how such macroscopic networks from nanocarbon can
be produced. Then, the capabilities for their application in specific energy-related scenarios are
described. Among the highlighted cases are conductive coatings, charge storage devices, thermal in-
terface materials, and actuators. The selected examples demonstrate how electrical, thermal, radiant,
and mechanical energy can be converted from one form to another using such formulations based
on CNTs. The article is concluded with a future outlook, which anticipates the next steps which the
research community will take to bring these concepts closer to implementation.

Keywords: carbon nanotubes; thin films; energy applications

1. Introduction

The global energy demand continues to rise at a staggering rate. Ritchie and Roser
showed that in the last 100 years, world energy consumption increased from ca. 18,000 TWh
in the 1920s to ca. 160,000 TWh in 2018 [1]. Change by orders of magnitude was deemed
necessary to support the development of civilization, in which energy is now utilized in
many ways. It is evident that the times when energy was mainly used only for heating,
cooking, or simple processing are long gone. At present, much more advanced applications
are the reality. We manage various forms of energy in our daily life without even noticing.
A simple smartphone or computer, on which you are reading this paper, is a multifunctional
tool that transforms various forms of energy in the background to enable the device to
serve its purpose.

Various materials can be used to mediate the conversion of one form of energy into the
other. The discovery of nanomaterials revealed that they can be handy for this purpose due
to their unique properties as they are constrained to 0D, 1D, or 2D architectures [2–5]. Specif-
ically, carbon nanomaterials, such as carbon nanotubes (CNTs) or graphene, have shown a
remarkable performance on this front ever since these materials were made famous at the
turn of the XX and XXI century [6,7]. Properties such as ballistic conduction [8], remarkable
thermal conductivity [9], or unparalleled strength [10] have attracted a significant share of
the scientific community, which in turn has laid the foundation for the development of a
wide range of applications. Most of the applications relevant to these properties require
the material to take the form of macroscopic networks, such as films [11] or fibers [12],
to exploit the merits of the material on a real-life scale. Over the years, many techniques
have been devised for how such networks can be manufactured. These ensembles are
lightweight [13,14], flexible [15], resistant to extreme operational conditions [16,17], and can
be produced from sustainable sources [18], which is essential from the environmental point
of view. Interestingly, the characterization of carbon nanomaterials has demonstrated that
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they have enormous utility potential in energy conversion and storage [19–21] applications,
especially when used in the form of the aforementioned networks.

In this perspective article, the most promising exploitation areas for macroscopic CNT
films for energy management are showcased. The report begins with a description of
the mainstream methods used to produce such macrostructures. A range of applications
concerning electrical, thermal, radiant, and mechanical energy are presented. The contri-
bution is concluded with a summary of the main findings enclosed herein. Finally, future
perspectives for the utilization of CNTs in these scenarios are also provided to indicate gaps
in knowledge which should be solved. Exploring these new research directions should
provide a more thorough understanding of the nature of nanocarbon, which eventually
should bring it closer to the appropriate technology readiness level necessary for imple-
mentation. Transparent coatings are not considered extensively in this article, so readers
are advised to seek information regarding this topic in other dedicated reviews [22,23].

2. Synthesis of CNT Films

There is an assortment of techniques for how one can obtain CNT films (Figure 1).
These can be divided into liquid- and solid-based methods. In the first category, a liquid
medium is required wherein CNTs are dispersed. Van der Waals forces between them are
collectively strong, so some sort of agitation must be applied to overcome these interactions
and cause individualization. Standard techniques to accomplish this goal involve either
sonication [24] or shear mixing [25], which deliver sound and mechanical energy, respec-
tively. Simultaneously, to improve the compatibility of CNTs with the solvent (particularly
with water), oxidation of the material is conducted before the dispersion step [26,27]. This
introduces appropriate functional groups, which increase the affinity of CNTs to the liquid
medium. Since oxidation is most commonly disruptive in nature and deteriorates the prop-
erties of the material, another popular route is to focus on physical interactions. In such a
case, surfactants are used to make CNTs compatible. Amphiphilic chemical compounds,
such as sodium dodecyl sulfate [28], sodium dodecylbenzene sulfonate [29], cetyltrimethy-
lammonium bromide [30], or Pluronic [31], can all be engaged for this purpose. Regardless
of the surfactant type (anionic/cationic/non-ionic/amphoteric), these species improve the
dispersibility of CNTs in liquid medium by mediating the interaction between the medium
and the CNTs.

Once such CNT dispersion is obtained, it can be deposited onto a substrate in many
ways. Among the simplest and oldest methods of CNT film formation is called dip coating
(Figure 1a) [32–36]. In this approach, a substrate is immersed in a reservoir containing a
CNT dispersion, and then the substrate is withdrawn for drying. With each immersion
step, the CNT film’s thickness grows in a decelerating fashion because some of the material
re-disperses in the solvent. This is very well illustrated by the influence of the number
of dips on the obtained CNT films’ electrical properties. The first few deposition rounds
strongly enhance the conductivity of the network, but after reaching a certain threshold,
the improvement is less substantial [37]. For dip coating, it helps to use a highly volatile
solvent, such as chlorinated hydrocarbons [38,39] or low-molecular-weight alcohols [40,41],
to facilitate the evaporation, which in turn reduces the dead processing times between
the dips. It has recently been shown that this simple technique can yield the excellent
alignment of CNTs in the film [42]. To make this possible, CNTs were dispersed with
poly[9 -(1-octylonoyl)-9H-carbazole2,7-diyl] in toluene to identify those of semiconducting
characteristics. The polymer was then removed by tetrahydrofuran, and CNTs were re-
dispersed in 1,1,2-trichloroethane to increase the semiconducting purity. Afterward, the
CNTs were again dispersed in toluene using the aforementioned polymer. After three
rounds of such processing, the material contained >99.9999% of semiconducting-type CNTs.
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Figure 1. Overview of techniques of producing carbon nanotube (CNT) films. (a) Dip coating repro-
duced with permission from [32], copyright the American Chemical Society (2012); (b) spin coating
reproduced with permission from [43], copyright Woodhead Publishing Ltd. (2013); (c) spray coating
reproduced with permission from [44], copyright Elsevier Ltd. (2012); (d) filtration reproduced with
permission from [45], copyright MDPI (2016); (e) printing reproduced with permission from [46],
copyright SAGE Publications Ltd. (2011); (f) electrophoresis reproduced with permission from [47],
copyright Elsevier Ltd. (2006); (g) array drawing reproduced with permission from [48], copyright
IOP Publishing Ltd. (2009); and (h) direct spinning reproduced with permission from [49], copyright
Royal Society of Chemistry (2016).
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An interesting concept was employed using the sorted material mentioned above to
afford highly aligned CNTs by dip coating. The substrate was rinsed with 2-butene-1,4-diol,
and then it was slowly immersed and withdrawn from the CNT dispersion. Hydrogen
bonding between the polymer and 2-butene-1,4-diol resulted in an outstanding material
alignment (Figure 2). Field-Effect Transistors fabricated from this source showed excellent
performance surpassing that of silicon. Coming back to the main topic, the key drawback
of dip coating is the lack of uniformity in the thickness of the CNT film. Due to gravity, the
film is often thicker at the substrate end injected deeper into the CNT reservoir. To alleviate
this problem, spin coating can be employed [50,51]. In this process, the spinning of the
substrate evens out the thickness of the CNT film (Figure 1b). Unfortunately, because of
that, the excess material is often wasted to reach homogeneity.

Figure 2. Alignment of CNT films produced by dip coating, reproduced with permission from [42].
Copyright the authors (2020).

Another way that the material can be made more uniform involves a CNT dispersion
and compressed gas (Figure 1c) [52–55]. Combining these two creates a fine mist of CNTs,
which readily deposits onto the substrate. Spray coating is very quick, and the time
between the deposition of layers is considerably reduced compared with dip coating.

The concept, which is significantly different from already described methods, is
based on filtration principles (Figure 1d) [56–60]. A CNT dispersion is passed through a
membrane with appropriate porosity. The liquid medium permeates across the membrane,
whereas the filter captures the CNT filter cake. The process is commonly facilitated by
employing the pressure on the funnel or vacuum in the receiving flask. For this process,
a filter type to which CNTs have low adhesion (e.g., produced from PTFE) is preferred
to separate nanocarbon from the substrate after deposition. An alternative is to use a
dissolvable membrane from mixed cellulose esters, which upon contact with an organic
solvent readily disintegrates to liberate the CNT film [57,60]. Importantly, from the product
point of view, it has recently been shown that this approach can also yield aligned CNT
films when the process is conducted using diluted CNT dispersions over a prolonged time
period [61]. In addition to the merits of this approach, one of the disadvantages is that as
the film grows in thickness, the process greatly decelerates.

CNT film dispersions can also be printed through conventional inkjet technology
(Figure 1e) [46,62]. This enables one to achieve a high level of detail as the printer head can
make the films in complicated shapes on demand in a fully automated way. However, due
to the unique structural characteristics of CNTs, which determine the fluid mechanics of
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the printed solution, it is often more challenging than expected. To ensure that the process
proceeds uninterruptedly, the proper homogenization of CNTs is essential.

Lastly, it is also possible to create CNT films with electric current assistance by elec-
trophoresis (Figure 1f) [47,63–66]. A conductive substrate is coated with CNTs when
current is passed through their dispersion. The dispersed CNTs respond to the presence
of an electric field mainly due to the presence of surfactant and coat the substrate. The
process is conceptually simple but somewhat difficult to scale up when compared with the
other methods.

CNT films can also be manufactured from solid substrates either by array drawing
(Figure 1g) [48,67,68] or by direct spinning (Figure 1h) [49,69]. In the former approach, a
so-called forest made up of vertically aligned CNTs is carefully drawn in the perpendicular
direction of the array alignment axis. The material reassembles into sheets due to strong
van der Waals forces between the CNTs which keep them together. Due to this, some of
the arrays cannot be spun. If the CNTs are located too sparsely, or the degree of alignment
is inferior, then it is difficult or impossible to produce CNT films this way. On the other
hand, the former technique, the direct spinning method, takes a different approach. It is
the only method presented in this article, which combines the synthesis of CNTs with the
manufacture of networks from them in a single step. CNTs are synthesized inside of a
high-temperature reactor by Chemical Vapor Deposition (CVD), which produces an elastic
aerogel therein. Once it is attached to a rotating bobbin outside the furnace, the material
can be continuously collected as films after an appropriate reaction time. Compaction
of the processing makes it simple, but a disadvantage is that relatively small amounts of
material can be produced on a weight basis.

The following sections highlight promising applications of CNT films prepared by
the methods outlined above. The list is by no means exhaustive, because the purpose of
this contribution is to indicate vigorously explored research areas at present using this
high-performance nanocarbon material.

3. CNT Films for Energy Applications

CNT ensembles are evaluated in several sectors, all of which involve either the gener-
ation, transformation, or utilization of electrical, thermal, radiant, and mechanical energy.
They are described below in the order mentioned above.

3.1. Electrical Energy

The electrical applications of CNT films are the most explored, as perhaps their
characterization is often the least challenging. Furthermore, the manufacture of a successful
device opens a broad spectrum of possible implementations in microelectronics or power
engineering. Three areas of the most intensive research focus were selected for analysis.

3.1.1. Conductive Networks

CNT films prepared by either one of the highlighted techniques are almost always
electrically conductive. Depending on the type of CNTs used for their construction and
impurity content, the material is appropriate for different fields of exploitation. For instance,
the networks mainly made up of metallic CNTs can be utilized to manufacture high-
performance conductors. In contrast, the materials rich in semiconducting CNTs are
particularly useful for applications wherein the network requires sensorial capabilities [15].
Due to the presence of band gaps, such a device conducts current only upon reaching a
specific voltage threshold, which can be more easily affected [70,71].

The electrical conductivity of neat CNT films, as a result, spans many orders of magni-
tude, and, according to recent reports, their capabilities already exceed 10,000 S/cm [72].
Typically, to reach high performance, various measures must be exercised. The electrical
conductivity of CNT ensembles is chiefly affected by the purity of constituting CNTs,
their electrical conductivity, and the degree of densification. A library of methods was
established to enhance the electrical properties of CNT films on all three of these fronts. In
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the first case, both physical and chemical techniques can be used to remove the residual
catalyst from the synthesis stage [73] and improve the graphitization of the structure [74,75].
After such processing, the charge transport operates more facilely as the phenomenon of
scattering is minimized. Secondly, selecting CNTs of appropriate electrical conductivity
is also necessary to produce a network of proper properties. For that to happen, recently,
several CNT sorting strategies have been developed [76,77]. Thirdly, CNT films are porous
structures abundant in voids filled with air, which deteriorates their charge propagation
capabilities due to contact resistance [78]. To alleviate this problem, various densification
tactics have recently been devised [72,79–82]. As illustrated by Tran and co-workers [72],
such processing can not only increase the electrical conductivity by up to six-fold but si-
multaneously preserve the excellent mechanical properties. Indeed, among the key merits
of the CNT films is their high flexibility, which opens perspectives for their implementation
in flexible electronics. Therefore, it is appreciable that the boost indicated above did not
occur at the expense of this property.

It must be stressed that the application of doping agents can considerably improve the
electrical properties of CNT films. CNTs can both accept and donate electrons depending on
the dopant choice, which results in n- and p-doping, respectively. As electron-poor dopants,
species such as acids [83,84] or halogens [85,86] are commonly employed. Alternatively,
electron-rich chemical compounds containing alkali metals [86,87] or nitrogen [88,89] can
be used. A myriad of studies show the beneficial effect of incorporating such dopants into
CNT films to increase their value. The addition of the dopant may, for instance, lower the
band gap for semiconducting CNTs, and increase the DOS near the Fermi level for metallic
CNTs [70].

Furthermore, one must also keep in mind the two niches in which CNT films excel the
most, to match them with the best possible exploitation area. First of all, these materials
are lightweight, so they are most suited for implementation in fields wherein weight is
important, such as aeronautics, aviation, or automotive industries. This is why, sometimes,
the recorded value of conductivity is recalculated to specific electrical conductivity, which
takes weight into consideration. This reveals that CNT ensembles are already competitive
with typical conductors [85,90]. Second, nanocarbon’s electrical capabilities are often
the most appreciable when the maximum current density is investigated rather than
conductivity [91–93]. As illustrated in Hong and Myung’s pioneering work, individual
metallic SWCNTs can carry current densities higher by a factor of 103 than copper [94].
Park and colleagues gave further evidence to support this [95]. CNT films were found to
be remarkably durable and able to withstand extreme conditions when operated at high
current carrying capacities in a non-oxidizing environment. One must keep in mind that
the triple point of carbon at atmospheric pressure is at 3630 ◦C [96], while copper is already
molten at 1085 ◦C [97], which acts in favor of the CNTs.

3.1.2. Electrodes for Electrochemistry

Due to their porosity and high electrical conductivity, the CNT films displayed high
application potential in electrochemistry as they can easily facilitate charge/mass transfer.
There are several notable areas of interest, which have received a significant share of at-
tention. Firstly, CNT films can be used to generate non-fossil fuel resources, which can be
used to obtain electricity when required. To date, perhaps the most work has been devoted
to the generation of hydrogen as an energy vector. Water splitting can be conducted to
produce hydrogen for this purpose, which CNT films can facilitate upon decoration with
appropriate metal particles [98–100]. To improve the CNT network’s electrical charac-
teristics, graphene and its derivatives are also commonly incorporated [101,102]. Such
solutions based on CNT ensembles have been proven to operate with high Hydrogen
Evolution Reaction (HER) performance both in alkaline and acidic conditions. Although
it has been reported that the CNT film by itself could catalyze the Hydrogen Evolution
Reaction (HER) [103], one must keep in mind that they contain residual metallic catalyst
nanoparticles from the synthesis stage, which are also catalytically active. Wang and
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Pumera made an insightful contribution regarding this issue [104]. In their paper, they in-
dicated that residual metallic impurities may actually be present in many studies claiming
the use of metal-free nanocarbon for catalysis. It was shown that many commonly used
methods for material characterization, such as X-ray Photoelectron Spectroscopy (XPS), are
not sensitive enough to validate such a claim. For instance, XPS is unable to detect metal
content below 0.1 wt% [105]. Employing typical purification strategies is almost never fully
successful [106–109], and even a seemingly negligible amount of metal may often provide
most or all of the catalytic capabilities of such a system. The authors rightfully suggest the
use of Inductively Coupled Plasma Mass Spectrometry/Optical Emission Spectrometry
(ICP-MS/OES), Neutron Activation analysis, or X-ray Fluorescence to make a more accu-
rate determination of the amount of residual metallic catalyst in unfunctionalized carbon
nanostructures.

Alternatively, CNTs can also be used for Oxygen Reduction Reaction (ORR) to obtain a
clean oxidant. Deng and colleagues showed how Fe-encapsulated pod-like CNTs facilitated
such transformation [110]. It is important to mention that in such a configuration, metal
nanoparticles are protected from the environment by CNT shells, thereby extending the
life of the catalytic system. To enhance the performance of such a system, CNTs can be
doped with nitrogen, which increases the DOS near the Fermi level and minimizes the
local work function. Vazquez-Arenas et al. investigated the mechanism of ORR using
N-doped CNTs and found it to be similar to the typical Pt/C catalytic system [111]. Inter-
estingly, acid-treated CNTs also exhibited a notable performance in ORR even when no
metal nanoparticles were added [112]. This outcome was explained by (a) the favorable
characteristics of the surface, which was hydrophilic upon the addition of –OH, –COOH,
and C=O groups; (b) the increased number of defect sites where the reaction takes place;
and (c) doping modifying the charge distribution. Lee and colleagues published a com-
prehensive review on how the embedding of nitrogen and other components, such as
polymers, transition metals, metal oxides/nitrides/sulfides, or quantum dots, into CNTs
or graphene makes these materials appropriate for catalytic applications [113].

Furthermore, CNT films can also be used for the direct generation of electrical energy.
For that to happen, they are used as components of Direct Fuel Cells (DFCs), which
commonly exploit methanol as the fuel [114–117]. In such a case, they are referred to as
Direct Methanol Fuel Cells (DMFCs). The predominant configurations exploit Pt-decorated
CNT films, which are typically enhanced by alloying Pt with metals such as Ru, Rh, Pd,
Au, Cu, Ni, Co, Fe, or Sn. By amalgamating these metals with Pt, the efficiency of methanol
oxidation to carbon dioxide increases [114]. Such a bimetallic system outperforms simple
Pt/CNT electrocatalyst by more than 60%. In addition to this gain, one must keep in mind
that pure Pt is prone to poisoning by intermediates, such as CO, and its use comes at a
significant price burden, so combining Pt with other elements can alleviate these issues.
Regarding the CNT film, its use as a support provides a large surface area. Hence, the
metal can be deposited onto them in the form of nanoparticles. Additionally, the high
electrical conductivity of the CNT network guarantees excellent charge mobility in the
device, which justifies its high performance. Therefore, CNTs enable facile mass/charge
transport, thereby enhancing the performance of DMFCs catalyzed by metal particles.

Similarly encouraging performance was obtained when vertically aligned N-doped
CNT arrays were used as catalysts for flexible Li-CO2 batteries [118]. A plethora of catalytic
sites positioned along open mass-charge transfer channels afforded excellent rate capability
and specific full discharge capacity when cycled more than a thousand times over a
hundred days. Instead of N-doping, CNTs can also be decorated with nanoparticles from
Pt [119], Cu [120], CuxZn1-xO [121], or coated with cobalt phthalocyanine [122] to offer
appreciable performance towards the electrochemical reduction of CO2, thereby tackling
one of the great challenges of recent years.

Lastly, the electrochemical characteristics of CNT films make them a promising mate-
rial for electrostimulation [123–127]. Electrical stimulation has been exploited for a long
time to promote the treatment of many disorders. Various tissue types have been targeted
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by using such nanocarbon ensembles. For instance, Krukiewicz and co-workers showed
that neat CNT films exhibited a promising performance in their implementation as flexible
neural interfaces [123]. High cytocompatibility and appreciable mechanical properties were
highlighted as the merits of such a solution. Notably, upon comparison against an electrode
from Pt, the application of CNT films proved beneficial, as their electrochemical parameters
exceeded those of the reference material. The CNT film electrodes demonstrated a small
impedance profile even at low frequencies (>1 Hz)—almost two orders of magnitude
lower than for the Pt control electrode. Neuronal signals have a small amplitude, so it is
crucial to develop an interface which would be able to mimic such characteristics. Due
to these features, CNT films have been proven to be useful for the treatment of various
neurodegenerative diseases. Different tissues have been subjected to electrostimulation by
using analogous formulations as well. Gerwig and colleagues illustrated how CNT films
upon combination with poly(3,4-ethylenedioxythiophene) (PEDOT) can be used for the
recording of signals and electrostimulation of a heart muscle [124]. The presented solution
was found to be helpful for the analysis of cardiac and neurophysiological conditions.
Moreover, electrodes from CNT films were found to promote the remodeling of the inner
retina, with the aim to restore a degree of vision [126,127]. Electrophysiological recordings
demonstrated a gradual decrease in stimulation thresholds and an increase in cellular
recruitment. Successful results of these studies validate the concept of the application of
CNT electrodes as neural prosthetic devices. Finally, CNT film electrodes can also facilitate
bone cell proliferation, demonstrating their utility for bone regenerative medicine [125]. A
composite of CNTs, glass, and hydroxyapatite exhibited a highly improved cell functional
ability when proper electrostimulation was engaged. It is clear that such materials open
new perspectives for regenerative medicine.

3.1.3. Charge Storage

The auspicious electrical properties of CNTs can also be exploited to store electrical charge
due to their high electrical conductivity, durability, and chemical stability. There are two main
options for the use of such nanocarbon networks for this purpose. Electrodes composed from
them can either be used in batteries [103,128–134] or supercapacitors [135–138].

In the former case, CNT films are engaged as a support and current collector. Cui
and colleagues showed how a Si-CNT nanocomposite afforded high specific charge stor-
age capacity while simultaneously ensuring that Li insertion would not deteriorate the
performance excessively [103]. The si-CNT film had a ten-fold higher specific capacity
as compared with graphite/copper electrodes. Furthermore, the utilization of CNT films
improves flexibility, electrical conductivity, and the chemical stability of Li-S batteries, as
reported by Wei and co-workers [128]. The inclusion of CNTs makes the device much
more flexible and less prone to cracking owing to considerable volume changes during
discharge/recharge cycles upon Li (de)alloying [132]. Such electrodes based on CNTs
can even be stretchable once a certain amount of polydimethylsiloxane (PDMS) is intro-
duced [139]. CNTs are capable of experiencing considerable tension before fracture, which
makes them an ideal material for this application. All these studies validate that CNT films
have high application potential in the established Li-ion technology.

For some fields of exploitation, wherein the delivery of high current density is required
over a short period of time, one must employ the so-called supercapacitors. CNTs have
also been found to be a particularly suitable material for such a case [135,137] due to their
high capacitance and the mesoporous characteristics of the CNT films formed from them,
the combined effect of which produces effective charge/mass transport [140]. In recent
years, researchers have begun to combine the merits of graphene and CNTs [134,136,141].
A synergy is formed wherein the CNT films serve as a durable current collector of appro-
priate microstructures, whereas the graphene counterpart deposited on the CNTs offers
high charge mobility. Notarianni demonstrated that such a composite structure already
matches the performance of gold when considered as a current collector [141]. Similarly,
other 2D nanostructures, such as transition metal dichalcogenides (TMDCs), are nowadays
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considered as an attractive component to be interfaced with CNT films. Such a hierarchi-
cal structure can, for instance, widen the operational conditions of the device when an
asymmetric supercapacitor is constructed using CNT scaffolding and TMDCs [142–145].
For example, when MoS2 and MnO2 were deposited onto CNT films, excellent ohmic
connection was established, and the amount of (de)intercalation sites was greatly increased,
leading to the superior supercapacitive performance of the respective electrodes [146].

3.2. Thermal Energy

Films composed of CNTs are successfully employed for a spectrum of applications,
wherein thermal energy is either transferred, utilized, or generated. In this section, the
merits of their application for heat dissipation, utilization, or generation are shown.

3.2.1. Heat Dissipation

The high thermal conductivity of individual CNTs makes them ideal components for
heat dissipation purposes [9]. Consequently, various networks based on CNTs have been
created and utilized as so-called thermal interface materials (TIMs). Figure 3 demonstrates
this concept. A vertically aligned CNT array of a thermal conductivity kCNT delivers
heat from the hot side to the heat sink in the presented case. Thermal contact resistance
Rc experienced at the CNT–heat sink interface limits the performance of the CNTs for
this purpose. This constraint generally prevails over the bulk thermal resistance of the
system [147]. Additionally, impurities, such as carbonaceous by-products arising from
the synthesis, with low thermal conductivity, negatively impact CNT capabilities. These
findings once again demonstrate that purification of the material before characterization
is essential.

Figure 3. Construction of a thermal interface material (TIM) and the key parameters influencing heat
transport [148]; copyright Elsevier (2017).

Analysis of the state of the art shows that vertically aligned CNT arrays are mostly
employed in this field as they consist of CNTs that are directed appropriately [147–156]. The
thermal conductivity along the CNT axis is higher by orders of magnitude than in the radial
direction. Nevertheless, some findings remain universal, so they should be mentioned
in order to understand the thermal characteristics of the CNT film. First, Taphouse and
co-workers showed that the issue with high thermal resistance at the interface may be
alleviated by applying polystyrene and poly-3-hexylthiophene to enhance the contact
area available for heat transfer. Alternatively, a forest composed of large-diameter CNTs
may be employed to improve the contact with the heat sink [150]. This ensures that
the amount of thermally insulating voids in the material is minimized. Furthermore,
CNT arrays can also be coated using diamond-like carbon and titanium nitride, which
further decreases the thermal contact resistance between the array and the heat sink by
removing the gaps otherwise filled with air. Other components based on metals such
as Ni [151,152,156], Cu [157], Ag [153,154], or Au [155] can also facilitate heat exchange.
Alternatively, as revealed by Qiu and co-workers, the material can be shear pressed to
reorient the CNTs. The area of contact with the heat sink increases without the need
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to employ any other chemical compounds or elements [158]. A seven-fold increase in
in-plane thermal conductivity and a four-fold decrease in the thermal contact resistance
were observed..

Chen and colleagues showed how CNT films obtained by vacuum filtration could be
used as a TIM [159]. They observed that the use of large-diameter MWCNTs is beneficial
as compared with longer CNTs of smaller diameter. Interestingly, the authors noticed
that the thermal conductivity of the network improved with shortening the length of the
large-diameter MWCNTs by sonication. As a consequence, the density of the film was
increased and the thermal impedance was reduced.

Therefore, the results show that isotropic CNT networks can also offer appreciable
performance for heat dissipation, but further work is necessary on this front. These
materials are commonly much more durable than vertically aligned CNT arrays and can
be easily produced at a large scale, so their utility on this front remains to be elucidated.

3.2.2. Thermoelectrics

CNTs exhibit the Seebeck effect, which means that if they are exposed to a temperature
gradient, an electric potential builds up in the material. From the practical perspective, this
means that CNT ensembles can convert heat to useful electrical energy. There is an excellent
review by Blackburn and co-workers demonstrating the potential of CNTs in this area [160].
Similarly, as in the case of CNT films used simply as conductive networks, the properties
of individual CNTs differ from their macroscopic ensembles in terms of their thermoelectric
properties. Constituting CNTs have a defined length, which gives rise to the creation of
junctions between them, negatively affecting the material’s ability to transport charge carriers
and phonons. Hung et al. calculated that an individual semiconducting SWCNT of less
than 0.6 nm in diameter should exhibit Sebeeck coefficients exceeding 2000 µV/K [161].
Unfortunately, due to the aforementioned constraints, such a value is unattainable in the case
of CNT films. Furthermore, a considerable complication is that optimizing the material’s
parameters to reach the highest possible thermopower (quantified by the so-called Figure of
Merit zT) depends on a set of intertwined characteristics (Figure 4).

Figure 4. The interdependence of parameters of thermoelectric materials [160]; copyright Wiley-
VCH (2018).

A perfect thermoelectric material should have both a high electrical conductivity and
Seebeck coefficient while ensuring that the thermal conductivity is as low as possible. The
low thermal conductivity of the material guarantees that the temperature gradient used
to create an electric potential does not vanish rapidly during prolonged thermal energy
harvesting. Various measures are executed to reach a trade-off between these factors.



Energies 2021, 14, 1890 11 of 27

First of all, the material of high purity must be selected to minimize the scattering
effect, which would negatively affect these characteristics. To meet this condition, high-
quality SWCNTs are most commonly employed. Additionally, the use of SWCNTs has
a key advantage, as it enables one to sort the material by the characteristics of electrical
conductivity or chirality [76]. Furthermore, despite their higher price, they commonly offer
orders of magnitude higher performance than MWCNTs.

Semiconducting SWCNTs have high Seebeck coefficients, while metallic SWCNTs
typically display high electrical conductivity. Piao and colleagues investigated the depen-
dence of thermoelectric performance on the metallicity of CNT films [162]. The results
showed that the metallic CNT films had a slightly higher electrical conductivity, but their
Seebeck coefficient was almost 7-fold lower than that of the corresponding semiconducting
SWCNTs. As the power factor used to gauge the material’s thermoelectric capabilities is
linearly and quadratically dependent on the electrical conductivity and Seebeck coefficient,
respectively, the difference in performance was even more notable. Consequently, the
semiconducting SWCNT films outperformed the metallic SWCNT films by a factor of 40.
Interestingly, as revealed by Lian et al., the thermal conductivity of both these types of
networks can be comparable and dependent mostly on the length of SWCNTs constituting
the network [163].

Another approach to how the carrier density can be modulated to enhance the thermo-
electric performance of CNT films is to dope the material. Nonoguchi et al. illustrated how
various chemical compounds could be used to tune this parameter [164]. Depending on
the doping species structure, the electrical conductivity of the network may be significantly
improved. Furthermore, in some cases, the conductivity characteristics are changed, which
is manifested by the emergence of negative Seebeck coefficients. In such a scenario, the
CNT films are strongly n-doped. One must keep in mind that under ambient conditions,
the neat CNT ensembles are p-doped with oxygen [165,166], so n-doping must be powerful
enough to overcome this effect. As a consequence of incorporating the doping agents, the
power factors of films constructed from SWCNTs experienced up to a three-fold increase.

3.2.3. Electrothermics

Alternatively, heat can be generated from CNT films due to Joule heating [78,167–172].
CNT films are highly flexible, and their temperature can be readily controlled by applying
a sufficiently high electric current to induce charge scattering (Figure 5).

Figure 5. (a) An image of a twisted CNT film; IR camera images of the same CNT film heated to
(b) medium and (c) high temperatures [173]; copyright Elsevier (2018).

CNT films have a low specific heat capacity, so they can heat up and cool down
rapidly [78]. The heat response rate upon turning the current on or off exceeds 3000 ◦C/s.
Furthermore, these materials can be easily patterned [174,175], so heat delivery can be
made very specific to reach only the targeted locations.

In the electrothermal application of CNT films, the previously discussed junction
resistance is advantageous, as it promotes the charge scattering effect, which facilitates the
transformation of electrical energy into heat [176–178]. Regarding operational conditions,
the employed current densities should not be excessive, as they can either etch CNTs
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layer by layer [177,179] or eradicate the metallic fraction [180,181], which has a higher
conductivity, so it experiences a higher temperature due to larger current densities. As a
consequence, the heating device may break down.

Due to the lightweight characteristic of CNT films, it is envisioned that the generated
heat can be utilized in various applications in which weight is essential. An example
of such an implementation area is the issue of aircraft de-icing, which may utilize high
temperatures to melt it. Proofs of concept have already shown how resistively heated
CNT films can be employed to tackle this challenge [78,182]. Moreover, CNT networks
can be used in heated textiles [172]. The application of such material enables uniform
heat delivery, which is beneficial to the user. This is a considerable improvement over
the widely available heated clothes using resistive wires made up of nichrome or kanthal,
which warm only the parts of the body which are in immediate contact with the wires. An
attempt to increase the temperature of the wires (by employing a higher current) to cover
the other areas is typically not a viable solution. It may result in local overheating, which is
uncomfortable. Thus, CNT films are promising for heated textiles.

3.3. Radiant Energy

The full tunability in terms of the microstructure and composition of CNT films
enables one to adjust their rich optical properties [183,184]. This section highlights how
such ensembles can be used in solar cells and EMI (Electromagnetic interference) shielding
structures due to their high optical absorption capabilities.

3.3.1. Solar Energy

As indicated in a recent review by Wieland and colleagues [185], CNTs, in theory,
could replace all solar cell components. However, practical experience shows that this is
not recommended at present, as a higher performance can be obtained when CNTs are
interfaced with other materials. Due to their auspicious optical and electrical properties,
thin CNT films have been considered as electrodes or hole transport layers. In such cases,
it was already possible to establish Power Conversion Efficiencies (PCEs) matching or
exceeding 13% [186]. Even higher PCEs have already been reported in perovskite-based
solar cells containing CNTs, which approach the level of 20% [187–189].

Recent advances on the front of CNT sorting makes surpassing these values highly
probable in the upcoming future [76,190]. Isborn and co-workers demonstrated how the
use of chirality-resolved CNTs is beneficial for fullerene-containing solar cells [191]. The
authors compared the performance of solar cells as a function of selected CNT chirality. Out
of the evaluated thin layers composed of (6,5), (7,6), and (9,7) CNTs, the former exhibited
the highest PCE because the alignment of energy levels between (6,5) CNTs and C60 is the
greatest, thereby increasing the likelihood of exciton separation and charge transfer from
the SWCNT to C60.

3.3.2. EMI Shielding

The defense industry continually seeks materials and solutions which could provide
critical advantages on the battlefield. Due to the peculiar way in which carbon materials
interact with light, they are perfect candidates for applications in stealth technology. For
a material to succeed in such a scenario, it must interact with the incoming radiation to
reflect, absorb, and disperse it in an optimum way [192]. A schematic of the EMI shielding
mechanics is presented in Figure 6. Ideally, the stealth material should absorb the radiation,
with simultaneous dissipation of the generated heat as a result. The convolution of these
parameters (absorption, transmission, and reflection) makes it challenging to find a suitable
material, but CNTs seem to be a viable candidate. The potential of CNTs was quickly
realized when the scientists noticed that to reach the same shielding effectiveness, one must
add 10%wt of carbon black, 5%wt carbon fibers, or only 1%wt of MWCNTs [193]. Another
milestone was reached when scientists observed that the light absorption capabilities of
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CNTs could also be tuned by the modification of the microstructure and composition,
which can give rise to absorption values of 99.995% or more [194].

Figure 6. The operation of an EMI shielding material [192]. Copyright Elsevier (2018).

The versatility of MWCNT formulations and a plethora of possible composite combina-
tions with polymers enable one to produce solutions for diverse RADAR ranges, including
UHF [195], L [196], S [197], X [198–200], KU [201,202], K [203], and KA [192,204]. Often, metal
particles are added, such as Fe [205], Ni [206], or Co [207], to enhance shielding properties.

Recently, several interesting contributions have emerged in this area. Feng et al.
showed that CNTs can be interfaced with cellulose to produce a material of high EMI
shielding effectiveness [208]. The authors investigated the influence of the CNT structure,
and SWCNTs showed a higher performance than MWCNTs. When the materials’ density
was considered, an extremely high specific EMI SE value of about 7678 dB cm2 g−1 was
obtained. Interestingly, when CNT films contained polyaniline, a one order of magnitude
higher value was recorded, i.e., 7.5 × 104 dB cm2 g−1 [14]. Since a considerable share of
interest is devoted to developing stealth technologies for aviation and aerospace, these
findings are promising, as they offer solutions virtually free of weight burden. Moreover,
Chikyu et al. recently illustrated the impact of CNT alignment on EMI shielding capa-
bilities [209]. Due to high anisotropy, the composite at 2% of CNT encapsulated by PE
loading showed a high attenuation exceeding 50 dB at 10 GHz. Lastly, Wan and colleagues
investigated the performance of an ultrathin densified CNT film with metallic character-
istics [210]. Shielding effectiveness of over 50 dB was achieved at a minimal thickness of
1.85 µm, proving that CNT films have high application potential in this field.

3.3.3. Photocatalysis

CNTs can also be an important component of photocatalysts, which, as the name
implies, exploits radiant energy to facilitate chemical transformations. The source of
this energy can either be solar or created artificially to adjust its characteristics to the
optical properties of the employed CNT types. Murakami and co-workers showed how
hydrogen can be produced from water when fullerodendron-coated SWCNTs are excited
with monochromatic light [211]. In this study, monochiral SWCNTs were coated first
with a layer of dendron-modified C60 fullerenes, and then with Pt nanoparticles as a co-
catalyst. The best results were obtained when a (8,3) SWCNT-based catalytic system was
irradiated with light of 680 nm in wavelength, which corresponds to the E22 absorption
band of this chirality. The same team subsequently reported that Ru particles can be used
instead of Pt [212]. When coupled with BiVO4 as an O2-evolving photocatalyst, and a
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Co complex ([Co(bpy)3]3+/2+) as an electron mediator, substantial H2 and O2 evolution
as a result of water splitting was observed under irradiation from visible light. There
was no need to employ any sacrificial agents or external bias. Later, these researchers
also demonstrated that photocatalytic activity can be enhanced by the encapsulation of
a ferrocenyl-based photosensitizer inside of the SWCNT cavity [213]. In the literature,
one can find reports engaging many other types of materials capable of improving the
photocatalytic characteristics of CNTs, such as graphite carbon nitride [214], CdS [215], or
TiO2 [216], for hydrogen evolution. Readers interested in investigating this concept further
are advised to refer to dedicated reviews on this topic [217,218].

The same principle can be used to reduce CO2, which is the main greenhouse gas
resulting from human activities [219], to useful chemical compounds, such as methanol,
ethanol, methane, or carbon monoxide. A wide spectrum of photocatalytic formulations
employing CNTs for this purpose has been reported [220]. CNTs are often decorated
with TiO2, the combination of which provides appreciable performance [221–223]. The
activity could be modulated by the addition of Cu [221] or Ni [222], which may scavenge
the photoexcited electrons, thereby retarding the recombination process. Lashgari and
colleagues showed how ZnO/CuO/CNT composite material promotes the conversion of
CO2 into oxygenate fuels, such as ethanol, oxalic acid, and formaldehyde [224]. In this
solution, CuO and ZnO acted as p- and n-type semiconductors, respectively, responsible for
charge separation, whereas the CNT provided a surface area for the reaction and facilitated
charge mobility. The utility of metal-based species is not limited to oxides, but it extends to
their halides [225], phosphides [226], complexes with porphyrins [227], etc.

3.4. Mechanical Energy

Due to their excellent mechanical properties [228,229], CNT films can also be used in
a wide spectrum of applications, wherein they are subjected to deformation. High strength
and flexibility enable one to employ such networks to transform mechanical to electrical
energy (piezoelectrics) and vice versa (actuators). The sections below display how CNTs
perform on this front.

3.4.1. Piezoelectrics

Flexible piezoelectric nanocomposites have been at the focal point of researchers
for a long time. Many groups have tried to improve the electrical properties of typical
polymer-based piezoelectric materials material by tuning the piezoelectric and dielectric
characteristics in particular [230,231]. It was recently found that the addition of a conductive
filler could facilitate the device’s polarization, thereby enhancing its performance [232,233].
The high aspect ratio of the CNTs makes them a promising material to include, as they can
afford the percolation of the composite at a relatively low loading and exhibit appropriate
dielectric constants [234]. For instance, Kim and Kim showed that the addition of MWCNTs
to ceramic-epoxy nanocomposites produces thin films of doubled piezoelectric coefficients
reaching 68 pC/N (d33) and 434 mV·m/N (g33) [235]. At just 0.07 wt% of MWCNTs, the
device’s output voltage amounted to 575.42 mV under 1 N, and the film produced from
these materials was highly flexible. Furthermore, the blending of ceramics, PTFE, and
MWCNTs was also found to be useful [236]. The favorable action of MWCNTs in these
three-component piezoelectric materials was further verified by others using different
formulations [237]. In all cases, the addition of MWCNTs was particularly beneficial,
as it ensured the device’s high flexibility and durability. Gau et al. showed that the
combination of polyimide and MWCNTs provides a polymer-based pressure sensor of
linear piezoelectric nature [238]. The authors demonstrated that the change of pressure
from 0 to 400 kPa could be well gauged by monitoring the device’s electrical resistance.
Interestingly, the MWCNTs themselves seem to contribute to the temperature dependence
of piezoelectric characteristics [239]. Cao and colleagues reported that pure MWCNT films
experienced a notable increase in their gauge factor when the temperature was elevated
from 15 to 50 ◦C. Such findings encouraged scientists to consider the development of
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devices in which CNTs would serve the role of the matrix, not the filler. An interesting
study was conducted by Chen and co-workers, who integrated CNT films with PVA
and interfaced them with a layer of ZnO nanowires [240]. The material revealed high
piezoresistive sensitivity and linear stability at different PVA loadings. An 100% PVA
loading with respect to CNTs produced a device of piezoresistive sensitivity and linear
stability of 11.95%/mm and 4.78%, respectively. The proposed concept was also appropriate
for the operation under impulse loading, making it promising for monitoring dynamic
load applications. As a consequence, it could be used for structural health monitoring.
Depending on the device configuration, CNT films can also play the role of substrate and
current collector. Li et al. showed how aligned ZnO nanorods can be deposited on the
surface of a CNT film (Figure 7) [241]. Schottky contacts were established between these
two components, and the device itself reached appreciable piezoelectric performance.

Figure 7. Scheme of a piezoelectric generator from metal/ZnO nanorods/CNT film [241]. Copyright
the Royal Society of Chemistry (2014).

Finally, to reach the best piezoelectric performance, PVDF is typically employed due to
its remarkable piezoelectric coefficients [242–245]. When combined with a proper amount
of CNTs, the CNTs promote the formation of the PVDF β-phase [246]. This phase is more
suitable for piezoelectric applications, since the C-H and C-F dipole moments align and
add up, enhancing the material’s polarizability, which is essential for piezoelectrics. Kabir
and co-workers showed that the presence of CNTs can give rise to the completely pure
(100%) β-crystalline phase of PVDF [247]. Therefore, the development of CNT-containing
materials for harvesting mechanical energy is justified.

3.4.2. Actuators

Perhaps among the earliest reports demonstrating the possibility of using CNTs as
actuators was published by Baughman and co-workers [248]. In this influential paper,
the authors showed that sheets produced from SWCNTs are capable of working like
artificial muscles even in the absence of ion intercalation operating exclusively on the
principle of quantum chemical-based expansion resulting from the electrochemical double-
layer charging. Since then, many similar solutions based on CNT films have emerged in
the literature.

Ning et al. recently reported a different approach in which an aligned CNT/PI film can
be manufactured and used as a fast heater and thermomechanical actuator [169]. Passing a
sufficiently electric current through the network increases its temperature by Joule heating,
thereby modifying its shape (Figure 8).
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Figure 8. Electromechanical deformation of the actuators upon applying bias voltage [169]. Copyright
Elsevier (2018).

Wang et al. showed how this concept could be exploited in a broader temperature
regime [249] (Figure 9). A bilayer actuator was produced from CNTs and boron nitride (BN).
Then, a high electrical current was delivered to the device kept under inert conditions. After
only 100 ms, due to very low heat capacity, the 10 µm-thick composite film’s displacement
was observed towards the BN side. Switching of the current resulted in shape restoration
after another 100 ms, during which the network cooled down to room temperature.

Figure 9. Electromechanical deformation of the actuators upon applying bias voltage under inert
atmosphere [249]. Copyright Wiley (2016).

The combination of different materials can be incredibly beneficial. For instance,
Amjadi and Sitti reported that paper actuators based on graphite and CNTs could offer
self-sensing properties [250]. To obtain such functionality, the authors exploited differences
in the Coefficients of Hygroscopic Expansion (CHE) and Coefficients of Thermal Expansion
(CTE) of the components. Consequently, the device was able to recognize the touch of
soft and hard objects. Lastly, Liang and colleagues recently disclosed that the actuating
feature can be used to construct a biomimetic device capable of sensing location and having
underwater locomotive skills [251]. To produce such a component for intelligent soft
robotics, the authors sandwiched a CNT film between two polydimethylsiloxane (PDMS)
layers producing a fully functional artificial swim bladder operating on the principles of
reversible inflation and deflation. Such a hollow untethered actuating system demonstrated
functions such as synchronous sensing over water depth and even detected tiny vibrations
from the external environment.
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4. Conclusions and Future Outlook

Ever since they were discovered, CNTs have demonstrated a broad application po-
tential. Even if one constrains the consideration to exclusively energy-related areas, the
potential application of these nanostructures remains wide. It easily spans across diverse
fields of science and technology dealing with energy generation or transformation. As
demonstrated in this perspective article, CNTs assembled into thin films have high utility
in managing or transforming electrical, thermal, radiant, and mechanical energy from one
form to another. Often, they exhibit high performance in this regard.

Thirty years after Iijima’s influential paper formally opening the CNT field, the com-
munity can witness that these nanostructures have finally become competitive with the
traditional materials. Especially when weight is taken into account, there are many re-
ports in which the specific electrical conductivity of CNT films has surpassed that of
certain metallic species. Currently, prototypes based on them are evaluated under typical
operational conditions to validate findings obtained in the laboratories. The successful
verification of these outcomes at a large scale should soon enable them to reach a sufficient
technology readiness level for deployment. This will probably start with their more niche
application to eventually reach more domesticated fields of exploitation. In the case of
semiconducting CNTs, first transistors produced from them have already managed to
outperform silicon, which is highly promising for the future. In the long term, reaching
this milestone should enable the manufacture of computing processing units, in which
CNTs would be at the core.

Considerable advances have recently been achieved in the triad of great challenges
faced by CNTs: alignment, chirality control, and reproducibility/scalability. The presented
review shows that they form the common denominator hampering the broad implementa-
tion of CNTs in energy-related fields. Once we grasp the ability to produce CNT networks
of predetermined chirality, alignment, and at a large scale, the route to replace typical
materials used in the energy sector should be essentially clear of obstacles. During only
three decades after their discovery, considerable progress has been made in these areas. As
a consequence, the capabilities of CNT films to transform and generate energy has been
greatly improved. If one takes into the account the time taken to progress well-known
materials, such as steel, to the current level, the achievements on the nanocarbon front
become relatively appreciable. We are only at the beginning of this challenging route, and,
based on the provided evidence, it seems that the widespread implementation of CNT
films is fast approaching.
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