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Summary 
Silvia-Elena Glont 

 
Novel insights into the molecular mechanisms of 

endocrine resistance in ERα positive breast cancer 

 

ERα transcriptional activity drives tumour development and metastasis in more than 

70% of breast cancer cases. Tamoxifen is the most widely and successfully used 

endocrine treatment for pre-menopausal women with ERα positive breast cancer. 

However, subgroups of patients are resistant to this drug. Investigation into the 

mechanisms of the endocrine refractory phenotype would therefore open possibilities 

for novel targeted therapies. One key aspect of ERα gene regulation is its accessibility 

to compacted chromatin. FOXA1 is a pioneer transcription factor that has the ability to 

bind to ‘closed’ chromatin and open it up for ERα subsequent binding, thereby creating 

the regulatory elements that are used by ERα. 

In this thesis, the dependence of the ERα hormone receptor on FOXA1 is reinforced 

and the latter is confirmed as a bone fide pioneer transcription factor and a promising 

drug target in hormone-dependent cancers. 

Moreover, novel molecular mechanisms of Tamoxifen resistance were investigated 

using quantitative multiplexed rapid immunoprecipitation mass spectrometry of 

endogenous proteins (qPLEX-RIME) in multiple in vitro and in vivo breast cancer 

models. The results showed that the two key proteins ERα and FOXA1 are enriched 

in the resistant phenotype, together with their newly-identified interactor ETV6. The 

role of ETV6 in endocrine resistance was confirmed using an independent siRNA 

screen. In addition, the direct contribution of ETV6 to breast cancer progression was 

proved by the promoting effects of ETV6 overexpression on colony formation ability of 

endocrine sensitive cell lines. 

Furthermore, chromatin immunoprecipitation followed by sequencing (ChIP-seq) 

analysis revealed that Tamoxifen resistance is associated with a global redistribution 

of FOXA1, ERα, ETV6- DNA interactions and altered genomic landscape. This 
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differential binding of the three transcription factors also results in compromised 

transcriptional programmes in endocrine resistance, as assessed by RNA-seq.  

In addition, inhibition of MAPK pathway reduced breast cancer progression and 

modulated ETV6-chromatin interactions.  

Importantly, the clinical significance of ETV6 copy number amplifications was 

assessed in the METABRIC cohort (Curtis et al., 2012). They correlate with 

significantly reduced disease-free survival in Luminal B breast cancer subtype, which 

is the more aggressive ERα positive subtype and is more likely to metastasise. 

Moreover, by conducting a screen of 1000 FDA-approved drugs, potential candidates 

for the treatment of hormone-refractory breast cancer were identified. Further in vitro 

and in vivo validation would consolidate these findings. 

Taken together, the data presented in this dissertation reinforces FOXA1 

independence of hormonal signalling, it identifies ETV6 as a novel ERα and FOXA1 

co-factor that drives a more proliferative phenotype and proposes alternative therapies 

for the endocrine refractory phenotype. 
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Chapter 1. Introduction 

 Breast cancer 
Breast cancer is the second most common form of cancer world-wide, just after lung 

cancer. There were over 2 million cases diagnosed in 2018 alone (International 

Agency for Research on Cancer, 2019). A large proportion of these patients have good 

outcomes, with survival rates increased by new treatments, but there are still 626,000 

world-wide annual deaths resulting from this disease. These statistics place breast 

cancer as the fifth cancer-related cause of death globally. 

In particular, in the UK, there are 55,000 new cases reported annually and 11,400 

deaths per year (Cancer Research UK, 2020). 

Therefore, there is a clinical need to improve breast cancer’s early detection and 

treatment. 

 Risk factors 

There are numerous risk factors that predispose women to breast cancer 

development, such as hormone levels, family history, gene mutations or unhealthy 

lifestyle.  

It is known that more than three quarters of breast cancer cases are driven by estrogen 

receptor α (ERα). Its ligand, the hormone estrogen (E2), promotes cell growth and 

changes in its levels can trigger oncogenesis. Such perturbations have been 

associated with the age at which women have their first full-term pregnancy, the 

number of pregnancies, as well as the use of hormone replacement therapy (Key et 

al., 2001). 

The most prevalent hereditary risks are mutations in tumour suppressors BRCA1 and 

BRCA2, which have been linked with dysregulation of cell cycle checkpoint, genetic 

instability and apoptosis (Dine and Deng, 2013). These cases account for 

approximately 5-10% of all breast cancers (Ford et al., 1998, Miki et al., 1994, 

Ripperger et al., 2009, Wooster et al., 1995). 
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Other prevailing cancer-predisposing alterations are the ones in TP53, ERBB2 (HER2) 

and PIK3CA (Koboldt et al., 2012). In addition, there are a plethora of other mutations 

and deregulations that are not yet fully understood (Curtis et al., 2012, Koboldt et al., 

2012, Pereira et al., 2016). These factors underscore the importance of identifying 

those deregulation events that drive breast cancer development and progression in 

order to better diagnose and treat this disease. 

 

  Breast cancer classification 

The first step towards better management of breast cancer is to correctly classify it. 

This heterogeneous disease can be stratified based on the cell type of origin into ductal 

and lobular cancer, with ductal carcinomas accounting for 90% of the cases (Li et al., 

2003). 

In addition, gene expression analysis led to the most common classification of breast 

tumours. They can be divided into five distinct categories. The subtypes, normal 

breast-like, luminal A and luminal B tumours, ERBB2 (HER2) positive and basal-like 

are used to predict disease course and response to different therapies (Sørlie et al., 

2001). 

Yet, resistance to currently-available treatments occurs as a consequence of breast 

cancer’s cellular and molecular heterogeneity and even within subtypes, treatment 

response is variable. 

The need to gain better insight into somatic drivers of breast cancer motivated the 

Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) project, 

which addressed this issue. A combination of copy number and gene expression 

analyses on a cohort of approximately 2,000 patients identified 11 subgroups of breast 

cancer based on their molecular drivers (Curtis et al., 2012, Rueda et al., 2019). The 

discovery of their molecular drivers opened the possibility to tailor treatments for each 

cancer genotype. 
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 Estrogen receptor alpha (ERα) 
It is known that the steroid hormone estrogen (17β-estradiol) plays an important role 

in the female reproductive system (Zwart et al., 2011). Estrogens are involved in the 

development and function of numerous tissues and physiological processes including 

the development and maintenance of the female sexual organs, the reproductive cycle 

and various neuroendocrine functions (Zhao et al., 2003). 

Estrogen’s actions are mediated by ERα and ERβ nuclear hormone receptors (Gburcik 

and Picard, 2006), which, together with androgen receptor (AR), progesterone 

receptor (PR) and glucocorticoid receptor (GR), are part of the nuclear receptor super-

family (Rastinejad et al., 2013). ERα and ERβ also have crucial roles in certain disease 

states, particularly in mammary and endometrial carcinomas (Brueggemeier et al., 

2005). The role of ERβ in breast cancer remains unclear, with the current paradigm 

suggesting that it can function as a cell growth repressor (Ström et al., 2004). 

On the other hand, ERα has been intensely studied due to its causal role in breast 

tumorigenesis where it functions as a transcription factor to initiate gene expression 

changes that promote cell cycle progression. 

 ERα structure 

ERα encompasses several functional domains that serve specific roles (Kumar et al., 

2011) (Fig.1.1). The N-terminal Domain contains an activation function domain (AF1) 

that acts in a hormone independent manner and facilitates ERα dimerisation prior to 

DNA binding (Berry et al., 1990). 

The DNA-binding domain (DBD) enables ERα interactions with specific genomic 

regions and its subsequent transcriptional programme (Klinge, 2001). ERα-DNA 

interactions also modulate the recruitment of co-regulatory proteins (Glass and 

Rosenfeld, 2000). In Addition, the Hinge region contains a nuclear localisation 

signalling domain, which gets unmasked upon ligand binding and serves as a flexible 

region connecting the DNA-binding domain and the ligand binding domain (Kuiper et 

al., 1996). Moreover, the ligand binding domain (LBD) contains an activation function 

domain (AF2), which requires estrogen presence (Berry et al., 1990) and is 

responsible for most of the functions activated by the hormone (Beato et al., 1995). In 
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addition, the AF2 is responsible for the recruitment of co-activators and co-repressors 

and is also involved in ERα homo- and heterodimerisation (Danielian et al., 1992). 

The C-terminal domain was also found to modulate gene transcription in a ligand-

specific manner (Koide et al., 2007, Montano et al., 1995). It is also known to impact 

receptor dimerisation (Yang et al., 2008). 

  ERα-chromatin direct interactions 

ERα-chromatin interactions have been extensively studied due to their determinant 

role in the ERα transcriptional programme. ERα can directly interact with DNA through 

its DNA-binding domain that specifically associates with a palindromic hexanucleotide 

5′ AGGTCAnnnTGACCT 3′ within the chromatin (Klein-Hitpass et al., 1989). These 

motifs have been termed Estrogen Receptor Elements (ERE). 

Using genomic technologies in breast cancer models, it was shown that ERα is rarely 

associated with promoter regions of target genes. Only ~3-5% of ERα binding events 

occur within 1-5 kb of the TSS (Carroll et al.,2005, Carroll et al., 2006). Instead, it binds 

to enhancer elements at significant distances from the transcription start sites (10-

100kb). Then, DNA-looping occurs and brings enhancers in spatial proximity to 

promoter regions of target genes (Fig.1.2). Thus, transcription is initiated (Fullwood et 

al., 2009, Pan et al., 2008). 

ERα-regulated enhancer-promoter interactions dictate gene activation and their 

deregulations can trigger tumourigenesis. Therefore, there is significant interest in 

understanding their interaction. 

Figure 1.1. ERα protein structure; N-terminus to C-terminus: N-terminus 
containing the activation function domain AF1; DNA binding domain (DBD); Hinge 
Region; Ligand binding domain (LBD) that contains the activation function domain 
AF2; C-terminal domain (CTD). 
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Chromosome conformation capture (3C) is a technique used to study the frequency 

of interaction between two genomic loci and to detect their relative spatial disposition 

(Dekker et al., 2002). The physical association between ERα enhancers and promoter 

regions of target genes such as PGR, GREB1 and TFF1 was proved using 3C (Bonéy-

Montoya et al., 2010, Jia et al., 2017). 

In addition, Fullwood et al studied ERα chromatin loops in MCF-7 cells in a genome-

wide manner, using chromatin interaction analysis by paired-end tag sequencing 

(ChIA-PET). They concluded that more than 80% of the ERα-chromatin interactions 

occur at enhancers and that loops tend to connect more than one enhancer to one 

promoter, impacting on ERα transcription regulation (Fullwood et al., 2009). 

More recently, genome-wide mapping of chromatin interactions (Hi-C) was conducted 

in breast cancer cells. Hi-C showed that the transcriptional regulatory machinery 

assembled at enhancers is brought in close proximity to promoters of target genes 

upon estrogen stimulation (Mourad et al., 2014). This was clear evidence of the 

regulatory role of estrogen on the ERα-chromatin interactions and subsequent gene 

regulation in cancer. 

 ERα complex 

In addition to ERα-chromatin direct interactions, there are also numerous associated 

proteins that contribute to ERα activity. These co-factors can either enable ERα to 

Figure 1.2. Model of ERα direct binding to chromatin: ERα binds to enhancers; 
enhancer-promoter (P) looping brings ERα in close proximity to its target genes to 
initiate their transcription. 
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access its target genes through different mechanisms, or can mediate gene activation 

and repression. ERα cooperative factors are of particular importance as their 

deregulations can contribute to breast cancer development and progression and can 

influence endocrine response. 

 Pioneer transcription factors 

A special class of ERα-associated proteins are the pioneer transcription factors. They 

are able to access highly compacted chromatin and subsequently assist in chromatin 

opening and binding of other nuclear receptors, such as ERα. This ability motivated 

the use of the term ‘Pioneer Transcription Factor’ (Cirillo et al., 1998). Examples of 

such proteins are FOXA1, GATA3, PBX1 or AP2γ. Importantly, these transcription 

factors seem to be interconnected.  

Pre-B-cell leukaemia transcription factor 1 (PBX1) was shown to enhance ERα 

signalling by promoting chromatin accessibility at specific genomic loci and 

subsequently guiding ERα to them. Half of the ERα binding sites are co-occupied by 

XBP1 and the regions demarcated by PBX1 are associated with a more aggressive 

tumour phenotype in breast cancer (Magnani et al., 2011). 

Furthermore, ERα binding sites are enriched for activating enhancer-binding protein 2 

gamma (AP2γ) DNA consensus motifs and a significant number of ERα bound 

genomic sites are co-occupied by AP-2γ and FOXA1 transcription factors. Inhibition 

of AP-2γ repressed ERα-DNA binding and gene transcription (Tan et al., 2011). 

In addition, it was suggested that GATA binding protein 3 (GATA3), one of the key 

markers of ERα positive tumours (Perou et al., 2000) possessed pioneer transcription 

factor activity (Cirillo et al., 2002). Further investigations revealed that loss of GATA3 

in MCF-7 cells impacts on ERα binding sites resulting in both stronger and weaker 

ERα-chromatin interactions. It appeared that GATA3 mediated enhancer accessibility 

at these regions, therefore affecting ERα-driven transcription (Theodorou et al., 2013). 

Other studies defined GATA3’s key role in cell growth. Its silencing in T47D ERα 

positive cells significantly reduced proliferation upon estrogen stimulation (Eeckhoute 

et al., 2007). 

Whilst all of the above factors contribute to some degree to the maintenance of the 

ERα-chromatin interactions, FOXA1 was shown to be the critical factor that determines 
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ERα initial binding to chromatin (Carroll et al., 2005, Hurtado et al., 2011). 

Subsequently, FOXA1 defines the particular locations where ERα can bind to the 

genome (Glont et al., 2019, Hurtado et al., 2011). 

1.3.1.1 FOXA1 pioneer transcription factor 

FOXA1 is a key characteristic of ERα positive breast cancer (Perou et al., 2000, Sørlie 

et al., 2001). It is also known as hepatic nuclear factor 3 HNF3 and it belongs to the 

Forkhead box (FOX) family of transcription factors. 

FOXA and GATA factors have been linked to liver development. Their pioneer activity 

was first uncovered using in vivo footprinting in mouse liver. FOXA and GATA 

occupancy at the albumin (Alb1) enhancer site proceeded all other factors. 

Importantly, their expression was required for the induction of the liver program, but 

FOXA was more active in this process than GATA (Liu et al., 1991). 

Subsequently, it was shown that FOXA1 is required for the normal development of a 

number of organs, including prostate, liver, kidney, pancreas, lung and breast (Behr 

et al., 2004, Bernardo et al., 2010, Gao et al., 2008). In particular, FOXA1 is involved 

in the hormonal induced branching of the breast ducts during puberty and pregnancy 

(Bernardo et al., 2010). 

More recently, FOXA1 has been identified as a determinant factor in ERα positive 

breast cancer. The initial finding that ERα binding sites are enriched for forkhead 

motifs (Carroll et al., 2005), was later consolidated by several studies that have 

established their co-occupancy (Lupien et al., 2008) and, most importantly, that 

FOXA1 acts upstream of ERα, therefore dictating the ERα transcriptional programme 

(Glont et al., 2019, Hurtado et al., 2011). 

1.3.1.1.1 FOXA1 structure 

FOXA1 pioneer activity is conferred by its structure (Fig.1.3). Its winged helix DNA 

binding domain (DBD) resembles that of the linker histone H1 (Clark et al., 1993).  

FOXA1 uses one of the ‘faces’ of its DBD to displace H1 histones and bind to highly 

compacted chromatin. It uses the other ‘face’ of its DBD to recruit other proteins to 

DNA (Cirillo et al., 1998, Cirillo and Zaret, 1999).  In addition, its high-affinity for DNA 

also results from the binding of its C-terminus to histones H3 and H4 (Cirillo et al., 

1998, Cirillo and Zaret, 1999, Taube et al., 2010). Moreover, FOXA1 has a N-terminal 



8 
 

trans-activation domain (TA) that assists in the recruitment of other co-regulatory 

proteins (Pani et al., 1992) (Figure 1.3.). 

1.3.1.1.2 FOXA1 binds to forkhead motifs within the chromatin 

FOXA1 binds to the consensus element A(A/T)TRTT(G/T)RYTY (Overdier et al., 

1994). It acts as a pioneer transcription factor that can actively facilitate the assembly 

of the ERα transcriptional machinery by opening the chromatin locally (Cirillo et al., 

2002) (Figure 1.4.). It can also enhance transcription by recruiting chromatin modifiers 

and co-regulators that contribute to gene activation (Boyer et al., 2005). 

1.3.1.1.3 FOXA1-ERα interaction in breast cancer 

FOXA1 is a marker for good prognosis in ERα positive breast carcinomas (Hisamatsu 

et al., 2012). The functional interaction between ERα and FOXA1 has been extensively 

studied. Coupling chromatin immunoprecipitation with global analytical methods 

(ChIP-on-chip or ChIP–seq) permitted the unbiased mapping of transcription factor 

binding. The first global mappings of ERα-chromatin binding sites showed they are 

enriched both for ERE motifs (either full or half motif) and for forkhead motifs (Carroll 

et al., 2005, Carroll et al., 2006). The co-occupancy of FOXA1 and ERα was then 

NH2-  -COOH 
FOXA1 Structure 

DBD/Forkhead TA TA unknown unknown 

Figure 1.3. FOXA1 protein structure: FOXA1 encompasses two transactivation 
domains (TA) and a winged helix DNA binding domain. 
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Figure 1.4. Model of FOXA1 opening silent chromatin for ERα and its cofactors.
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validated by genome-wide mapping of their binding sites in several cell lines. For all 

the cell lines assessed, more than 50% of all ERα-DNA binding sites were co-occupied 

by FOXA1 (Hurtado et al., 2011). 
The importance of FOXA1 in mediating ERα association with chromatin is shown when 

FOXA1 is specifically silenced using RNAi. In the absence of FOXA1, the majority of 

ERα-DNA binding events were reduced. In addition, gene expression microarray 

analysis revealed that FOXA1 inhibition abolishes the expression of both upregulated 

and downregulated ERα target genes (Hurtado et al., 2011). More recently, it was 

shown that FOXA1–chromatin interactions were not influenced by estrogen treatment, 

implying that FOXA1 acts upstream of ERα (Glont et al., 2019). Thus, there is a 

general requirement of FOXA1 for ERα induced transcription and perturbations in 

either FOXA1 or ERα can trigger tumourigenesis.  

 Tethering proteins 

One class of ERα cooperative factors that enable its binding to DNA are the tethering 

proteins. For example, activator protein 1 (AP1) and specificity protein 1 (SP1) were 

shown to modulate ERα-chromatin interactions and subsequent activation of target 

genes (Jakacka et al., 2001, Porter et al., 1997). In addition, runt-related transcription 

factor 1 (RUNX1) plays a role in tethering ERα to the DNA in the context of mutated 

ERα DNA binding domain (Stender et al., 2010). An illustration of ERα-DNA tethering 

is shown in Figure 1.5. 

 

mRNA 

P 
target gene 

ERα ERα 

AP1 
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Figure 1.5. ERα tethering to DNA by its co-factors: as example, AP1 tethering is 
illustrated; other tethering proteins enable ERα-mediated transcription in a similar 
manner. 
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 Histone modifiers 

Histone modifiers possess chromatin remodelling properties that can influence ERα-

DNA interactions. They can be either co-activators or co-repressors and they can work 

in a cooperative or competitive manner, thus influencing ERα mediated transcription. 

 

1.3.3.1 Co-activators 

Examples of histone modifiers that act as co-activators are the p160 family members 

NCOA1 (SRC1), NCOA2 (SRC2) and NCOA3 (AIB1) (Anzick et al., 1997, Hong et al., 

1997, Oñate et al., 1995). P160 factors are recruited to the ERα complex by interacting 

with the AF2 domain of ERα (Heery et al., 1997). Consequently, p160 members act 

by recruiting acetyltransferases (HATs) such as CREB-binding protein (CBP) and 

p300. HATs interact with the activation domain 1 (AD1) of p160. HATs modify histone 

N-terminal domains though addition of acetyl groups (Rollins et al., 2015). Histone 

acetylation decondenses chromatin and facilitates the recruitment of further factors. 

The importance of this process is underscored by the fact that histone acetylation, in 

particular at lysine 27 of histone H3 (H3K27Ac), is a key mark associated with active 

enhancers (Zhou et al., 2011). It increases at many ERα-regulated enhancers in 

response to estrogen treatment (Lupien et al., 2009).  

In addition, HATs CBP and p300 mediate interactions with active RNA polymerase II, 

thus contributing to the transcriptional machinery (Neish et al., 1998). 

Other co-activators recruited by p160 to the ERα complex are histone 

methyltransferases (HMTs) such as protein arginine methyltransferases 1 (PRMT1) 

and 4 (PRMT4 or CARM1). HMTs interact with p160 activation domain 2 (AD2). 

CARM1 recruitment triggers demethylation of arginine residues of histone 3, resulting 

in the activation mark H3R17me2 (Chen et al., 2000). PRMT1 methylates histone H4 

at arginine, resulting in the histone mark H4R3Me2. Histone methylation, together with 

acetylation, contributed to chromatin decondensation and enhanced ERα-mediated 

transcription (Chen et al., 2000, Wagner et al., 2006). 
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1.3.3.2 Co-repressors 

In addition to ERα co-activators, there are also co-repressors. Their interaction 

contributes to the ERα-mediated gene repression that occurs after estrogen treatment 

(Zubairy and Oesterreich, 2005). The nuclear receptor co-repressor (NCOR), 

receptor-interacting protein 140 (RIP140) and repressor of estrogen receptor activity 

(REA) interact with the AF2 domain of ERα (Watson et al., 2012). In turn, they recruit 

deacetylases (HDACs) to the ERα complex (Castet et al., 2004, Delage-Mourroux et 

al., 2000, Lazar, 2003, Varlakhanova et al., 2010). HDACs mediated co-repression is 

achieved by removing the activating histone acetylation marks and subsequently 

contributing to chromatin condensation.  

 

 ATP-dependent remodellers 

Estrogen-activated gene expression is also influenced by ATP-dependent chromatin 

remodellers. These complexes alter the nucleosomal organisation, making chromatin 

more or less accessible for transcription factors such as ERα (Wang et al., 2007). 

Examples include members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) 

complex such as Brahma-related gene 1 (BRG1) and BRG1- associated factor 57 

(BAF57). They interact with AF2 of ERα and modulate ERα-transcriptional activity 

(DiRenzo et al., 2000, García-Pedrero et al., 2006).  

A model of the ERα-associated proteins in breast cancer is provided in Figure 1.6. 

All these factors interact with ERα through its AF2 domain. This implies they work 

either cooperatively or competitively and the balance between all partners in the ERα 

complex dictates its transcriptome. In fact, it has already been shown that NCOA1 and 

REA compete for the ERα AF2 domain (Delage-Mourroux et al., 2000). 

 

 

 

 



12 
 

 

 

 Targeted therapies for ERα positive breast cancer 
More than 75% of breast cancers are driven by ERα. Therefore, decades of research 

have been invested in generating therapeutic strategies against ERα and its ligand, 

estrogen. There are three main classes of such drugs: selective estrogen-receptor 

modulators [SERMs] such as Tamoxifen; selective estrogen-receptor degraders 

[SERDs] such as Fulvestrant; aromatase inhibitors [AIs] such as Letrozole. 

mRNA 
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Figure 1.6. Model of ERα-associated proteins in breast cancer: Pioneer transcription 
factors such as FOXA1 open up compacted chromatin for the ERα complex. ERα recruits 
p160 co-activators (NCOA1, NCOA2, NCOA3) which in turn can recruit 
acetyltransferases (HATs) (e.g. CBP, p300) or histone methyltransferases HMTs (e.g. 
PRMT1, CARM1). Histone acetylation, in particular H3K27Ac and histone methylation 
(H3R17me) result in chromatin decondensation and facilitate transcription activation by 
RNA polymerase II (Pol II). ERα can also recruit co-repressors (e.g. NCOR, REA, 
RIP140) that in turn recruit deacetylases (HDACs). The latter remove the acetylation 
marks, resulting in chromatin condensation; SWI/SNF complex is also recruited and can 
alter nucleosomal organisation. 
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 Selective estrogen-receptor modulators 

Tamoxifen is the first selective estrogen-receptor response modulator [SERM] and it 

was developed in the early 1970s. Ever since, it has been successfully used in both 

pre- and post-menopausal ERα positive breast carcinomas (Brown, 2002). Several 

clinical trials proved its effectiveness for patients that were progressing after surgery 

or radiation (Cole et al., 1971). In addition, 5 years of Tamoxifen preventative 

treatment in healthy women at a high risk for this disease, reduces the annual death 

rate by 31% (Nazarali and Narod, 2014).  

Within breast cancer cells, Tamoxifen is converted to its active metabolite, 4-

hydroxytamoxifen (4OHT) that mimics endogenous E2. Their structural resemblance 

confers 4OHT high affinity for ERα ligand binding domain, therefore competing with 

E2 to bind to ERα. Tamoxifen-ERα interaction stops the binding of E2 and thus 

prevents the ERα-induced activation of genes involved in proliferation (Jordan, 1994).  

Whilst in breast tissue Tamoxifen acts as an estrogen antagonist, it has agonist effects 

in other types of tissues, notably in uterus tissue. Its estrogenic abilities in the uterus 

have been associated with risk of endometrial cancer (Fisher et al., 1994). Other side 

effects reported for Tamoxifen are hot flushes, vein thrombosis and pulmonary 

embolism (Lin et al., 2018). 

The need for drugs that would successfully treat breast cancer with decreased 

associated risks, motivated the development of second SERMS, such as Raloxifene 

(Black et al., 1983). Significant interest was shown in it initially, as it did not have the 

endometrial hyperplasia stimulating side effect, but more recent trials have shown it is 

less effective in treating breast cancer compared to Tamoxifen. The rate of invasive 

breast cancer was approximately 24% higher in patients taking Raloxifene than in 

those taking Tamoxifen (Vogel et al., 2010). 

 Selective estrogen-receptor degraders 

Selective estrogen-receptor degraders [SERDS], such as Fulvestrant, are second 

generation drugs. They have pure anti-estrogen activity in all tissue types. Fulvestrant 

has very high affinity for ERα. Its binding to ERα induces an ERα conformational 

change that stops ERα- ERα dimerisation and nuclear translocation. Fulvestrant also 
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triggers ERα degradation, resulting in depletion of its total levels (Dauvois et al., 1993, 

Fawell et al., 1990). Subsequently, ERα transcriptional activity is abolished. 

Fulvestrant is indicated for the treatment of ERα positive, HER2 negative advanced 

breast cancer in pre- or postmenopausal women (Deeks, 2018). 

 Aromatase inhibitors 

Estrogen results from the conversion of androgen by aromatase, a member of the 

cytochrome P450 class of enzymes (Cole and Robinson, 1990). In pre-menopausal 

women, high levels of estrogen are produced predominantly by the ovary, although a 

small proportion is also secreted by peripheral tissues. By contrast, in post-

menopausal setting, the latter are the sole source of E2.  

Aromatase inhibitors, such as Letrozole or Anastrozole inhibit ERα-dependent cell 

growth by suppressing estrogen production (Miller, 2003). 

They are typically used as first line of therapy in post-menopausal setting, where ERα 

is only produced by peripheral tissues. In contrast, their effect is counteracted in pre-

menopausal patients by the high ovarian estrogen production. 

Trials using modern AIs showed they reduce the risk of relapse in post-menopausal 

patients with endocrine-responsive early breast cancer. AIs had better results in these 

patients compared with Tamoxifen (Coates et al., 2007). 

However, resistance to these therapies occurs in approximately 30% of cases, within 

1.5 years of treatment (Sporn and Lippman, 2003). Therefore, there is a need to better 

understand breast cancer’s aetiology and the mechanisms of drug resistance. 

 Mechanisms of resistance to endocrine therapy 
Tamoxifen has significantly improved the outcome of ERα positive breast cancer 

patients. However, there are cases with intrinsic resistance to endocrine therapy. In 

addition, 30% of patients treated with Tamoxifen acquire resistance after 

approximately 15 months of treatment (EBCTCG, 2005). Interestingly, in the endocrine 

refractory context Tamoxifen seems to promote cell growth. 

There is significant interest in understanding the mechanisms of resistance, with the 

purpose of developing new therapeutic strategies to bypass Tamoxifen resistance.  
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  Intrinsic resistance 

The main mechanism for de novo endocrine resistance is the lack of ERα expression. 

For those breast cancer cases that are positive for ERα, cytochrome P450 2D6 

(CYP2D6) enzyme is responsible for the conversation of Tamoxifen to its active 

metabolite, Endoxifen. Consequently, those patients that carry inactive alleles of 

CYP2D6 are resistant to endocrine therapy (Hoskins et al., 2009, Musgrove and 

Sutherland, 2009). 

  Acquired Tamoxifen resistance 

Several mechanisms have been postulated to account for acquired resistance 

following prolonged exposure to Tamoxifen. These include changes in genomic 

landscape, changes in FOXA1 and ERα structure and function, alterations in FOXA1 

and ERα protein interactors, increased expression or signalling of growth factor 

receptor pathways, dysregulations in cell cycle related pathways and dysregulations 

in microRNA (Osborne and Schiff, 2011). 

1.5.2.1 ERα alterations in Tamoxifen resistance 

It is now known that ERα-DNA interaction occurs for patients with both early and 

advanced, tamoxifen non-responsive disease (Ross-Innes et al., 2012a). ERα ChIP-

seq was conducted in primary ERα-positive breast tumours from patients with different 

clinical outcomes and in metastases; differential binding analysis identified a number 

of genomic regions bound by ERα in patients with good prognosis that are absent in 

the poor prognosis group. There were also many ERα binding events unique to the 

poor prognosis subgroup. Therefore, Tamoxifen resistance does not imply loss of 

ERα-DNA interactions, but a redistribution of its binding events resulting in aberrant 

gene expression. 

Several ERα alterations have been reported, each potentially contributing to 

Tamoxifen resistance. Large studies have reported ESR1 amplifications in up to 30% 

of primary and metastatic ERα positive breast cancers (Basudan et al., 2019, Brown 

et al., 2008, Holst et al., 2007, Nembrot et al., 1990). Using approaches such as next-

generation sequencing, FISH or NanoString sequencing, it has been shown that the 

patients harbouring copy number aberrations of ESR1 also expressed high levels of 
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ERα proteins (Jeselsohn et al., 2014). ERα overexpression may contribute to reduced 

sensitivity to endocrine therapies. Contradictory reports presented ESR1 amplification 

as an indicator of longer disease-free survival and increased sensitivity to Tamoxifen 

treatment (Holst and Singer, 2016, Tomita et al., 2009). These conflicting results 

reflect the need for more dedicated studies to fully understand the clinical implications 

of ESR1 amplifications. Taken together, it seems that at least in certain subsets of 

patients, ESR1 amplification plays a role in resistance to endocrine therapy and 

metastatic disease progression. 

Advances in sequencing technologies have also enabled the identification of ESR1 

mutations in breast cancer. Three point-mutations, Y537S, Y537N, and D538G were 

identified as most frequent in the ESR1 Ligand-Binding Domain. They trigger a change 

in ERα receptor conformation, making it constitutively active in a ligand-independent 

manner (Jeselsohn et al., 2018). Consequently, patients that harbour these mutations 

are unlikely to respond to estrogen production inhibitors [AIs] (Toy et al., 2013). It is 

worth mentioning that ESR1-Y537S and ESR1-D538G mutants were partially 

sensitive to high doses of Fulvestrant and Tamoxifen (Toy et al., 2017). Importantly, 

ESR1 mutations are rarely detected in the treatment of naïve cases; they are 

predominant in endocrine-refractory metastatic breast cancer (Robinson et al., 2013). 

This strongly suggests a role of ESR1 point mutations in acquired endocrine 

resistance. 

Furthermore, genomic structural rearrangements (RES) involving ESR1 gene have 

been identified in a small percentage of recurrent metastatic ERα positive breast 

cancer. The ESR1 fusions identified are ESR1-YAP1 and ESR1-PCDH11X (Lei et al., 

2018). In order to gain fusion partners, ESR1 commonly loses its ligand binding 

domain (LBD). As the majority of endocrine therapies are designed against ERα LBD, 

cases harbouring ESR1 fusions are usually resistant to endocrine therapies. As such, 

Tamoxifen and Fulvestrant are completely ineffective against ERα fusion proteins 

(Veeraraghavan et al., 2014). 

In breast cancer, post-translational modifications (PTMs) mediate the coupling 

between the extranuclear signalling cascades initiated by estrogen-ERα interaction 

and the ERα-mediated genomic actions (Kastrati et al., 2019). PTMs include 

phosphorylation, acetylation, methylation, sumoylation, ubiquitination, and thiol 
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oxidation (Le Romancer et al., 2011). By far, phosphorylation is the most common and 

functionally explored ERα PTM, also being implicated in endocrine therapy response. 

ERα phosphorylation emerges through overexpression of various receptor tyrosine 

kinases such as HER2, Epithelial Growth Factor Receptor (EGFR), and Insulin like 

growth factor receptor (IGF1R) (Knowlden et al., 2005, Nicholson et al., 2005); In turn, 

the overexpression of these receptors activates MAPK and PI3K/Akt signalling 

pathways (Hasson et al., 2013). This results in ligand-independent ERα activation. 

Phosphorylation affects ERα conformation, dimerisation, ability to recruit co-regulators 

and DNA binding. Bostner et al observed that in primary tumours from 

postmenopausal patients, an overactive PI3K/Akt/mTOR pathway together with 

nuclear phosphorylated ERα at S167 and S305 sites, was associated with significantly 

reduced response to tamoxifen (Bostner et al., 2013). 

1.5.2.2 FOXA1 alterations in Tamoxifen resistance 

FOXA1 was found to play a critical role for ERα function in both tamoxifen-sensitive 

and resistant context (Ross-Innes et al., 2012a). Ross-Innes et al conducted in vitro 

validation of the ERα binding reprograming seen in advanced breast cancer patients. 

This work has shown that FOXA1 and ERα co-localise in both Tamoxifen sensitive 

and resistant cell lines, implying that FOXA1 may redirect ERα to its novel target 

regions (Fig.1.7). 

Figure 1.7. ERα and FOXA1 binding redistribution in Tamoxifen resistant 
compared to sensitive cell lines: FOXA1 redirects ERα to its novel binding sites. 
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Several studies reported that FOXA1 alterations can contribute to the novel 

transcriptional programme associated with endocrine resistance. 

For example, FOXA1 overexpression was shown to mediate endocrine resistance by 

altering the ERα transcriptome and IL-8 expression in ERα-positive breast cancer (Fu 

et al., 2016). 

The Cancer Genome Atlas (TCGA) study identified novel oncogenic alterations in 

breast cancer, including in FOXA1 (Koboldt et al., 2012).They have reported that 1% 

of the 773 breast cancer tumours tested had a focal amplification of the genomic region 

that encompassing FOXA1 (14q21.1). Most of these tumours were ERα positive and 

two of them were HER2 positive (Koboldt et al., 2012). However, there was no 

evidence of amplification of this region in the larger study published by Curtis et al. 

which categorised 1992 breast cancers on the basis of copy number changes and 

mRNA profiles (Curtis et al., 2012). Therefore, these amplifications are rare and their 

role in endocrine response is yet to be determined. 

In addition, FOXA1 mutations have been observed in 1.8% of the TCGA cases 

(Koboldt et al., 2012), as well as in invasive lobular carcinomas (Ciriello et al., 2015). 

They may increase FOXA1 expression and activity, therefore they potentially 

contribute to enhanced ERα activity and subsequent endocrine therapy resistance. 

These mutations are A153V (missense mutation), S194fs (frame shift mutations), 

H247Y (missense); D226N (missense), S250F (missense;); I176M (missense) 

(Koboldt et al., 2012). Experimental modelling of these mutations within the DNA 

binding domain is yet to be conducted therefore it is not known whether they increase 

or perturb FOXA1 function. 

FOXA proteins can also gain post-translational modifications in certain malignancies. 

For example, FOXA1 can undergo SUMOylation in prostate cell lines. This is a post-

translational modification of proteins by small ubiquitin-like modifier (SUMO) proteins. 

FOXA1 is modified at lysines K6 and K389 and these changes influence its 

transcriptional activity (Sutinen et al., 2014). In addition, acetylation of FOXA1 has also 

been observed in liver. Specific acetylation inhibits FOXA1-chromatin binding and 

attenuates the ability of FOXA1 to remodel DNA (Kohler and Cirillo, 2010). 

In human liver carcinoma cell lines, FOXA2 is phosphorylated in response to insulin, 

by Akt, a key mediator of the phosphatidylinositol 3-kinase pathway (Wolfrum et al., 
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2003). Its phosphorylation inhibits FOXA2-mediated transcription as a consequence 

of its nuclear exclusion and cytoplasmic re-localisation. Importantly, Akt did not 

phosphorylate or regulate FOXA1, suggesting that there are distinct regulatory 

mechanisms associated with related FOXA proteins. 

All these events raise the possibility that similar post-translational modifications occur 

for FOXA1 in breast cancer and therefore it is relevant to detect them and assess their 

role in breast cancer and potentially exploit them therapeutically. 

1.5.2.3 Alterations in ERα and FOXA1 co-factor levels 

ERα and FOXA1 are part of a dynamic complex in which other co-regulatory proteins 

play pivotal roles in breast cancer and drug response. 

It has been demonstrated that overexpression of co-activator proteins can contribute 

to the Tamoxifen refractory phenotype. For example, high levels of AIB1 in vitro 

enhance Tamoxifen agonistic activity (Kressler et al., 2007, Webb et al., 1998). 

Moreover, patients receiving Tamoxifen treatment and that exhibit high levels of AIB1 

either alone or in combination with high levels of HER2 have poorer prognosis (Fuqua 

et al., 2003). 

Moreover, low levels of co-repressor protein NCOR also predict poor response to 

Tamoxifen (Lavinsky et al., 1998), supporting the hypothesis that reduction in co-

repressor activity may also contribute to tamoxifen resistance. 

In addition, enhanced interactions between the pioneer transcription factor PBX1 and 

target genomic regions are associated with a more aggressive tumour phenotype in 

breast cancer (Magnani et al., 2011). 

More recently, Rapid Immunoprecipitation Mass spectrometry of Endogenous proteins 

(RIME) was developed (Mohammed et al., 2013). It has enabled the study of protein-

protein interactions. RIME was applied for the identification of ERα interactome and 

known co-factors such as FOXA1, GATA3, NCOA3, CBP, NCOR, TLE3, RXRα were 

found as part of the its complex. Importantly, novel interactors were also discovered, 

with GREB1 being the top enriched ERα interactor both in vitro and in vivo 

(Mohammed et al., 2013). 

The need to understand the changes in protein-protein interactions in different 

biological contexts motivated the development of a quantitative multiplexed workflow 
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that couples RIME with isobaric labelling (quantitative Multiplexed Rapid 

Immunoprecipitation Mass spectrometry of Endogenous proteins or qPLEX-RIME) 

(Papachristou et al., 2018). Using this technique, Papachristou et al described the 

dynamic changes in ERα interactome in breast cancer cells treated with Tamoxifen 

and also successfully applied qPLEX-RIME to PDX and clinical samples for the 

identification of ERα-associated proteins. 

This powerful proteomics tool opens the possibility to identify novel ERα and FOXA1 

protein interactors and to study their quantitative changes between Tamoxifen 

resistant and sensitive context. Such studies may elucidate novel mechanisms of 

Tamoxifen resistance, as these changes may trigger a more aggressive phenotype. 

1.5.2.4 Overexpression of growth factors and kinase signalling 
pathways 

The cross-talk between ERα and tyrosine kinase signalling is evidenced by the 

reciprocal expression of ERα and growth factors such as EGFR or ERBB2 

(deGraffenried et al., 2004, Faridi et al., 2003). The overexpression of these growth 

factors triggers aberrant activation of MAPK and PI3K/Akt/mTOR kinase signalling 

pathways, resulting in abnormal cell growth (Creighton et al., 2010, Hutcheson et al., 

2003, McClelland et al., 2001). Therefore, they can affect cell growth and endocrine 

response (Mills et al., 2018). Importantly, overexpression of ERBB2 is one of the best-

characterised mechanisms of endocrine resistance (Arpino et al., 2008). 

Activation of the kinase signalling pathways can also occur independently of ERα, can 

stimulate cell growth and contribute to cancer development and progression. 

1.5.2.5 Cell cycle regulators 

In breast epithelium, cell cycle is tightly regulated by the cyclin D/cyclin-dependent 

kinases 4 and 6 (CDK4/6)–retinoblastoma protein (RB) pathway. Therefore, 

dysregulations of CDH4/6 are tumourigenic. Such alterations involve overexpression 

of Cyclin D1 (CCND1), gene copy gains of CDK4, loss of negative regulators such as 

p16 tumour suppressor gene or dysfunctional retinoblastoma tumour suppressor 

protein (RB) (Cancer Genome Atlas, 2012). These dysfunctions are maintained 

independently of ERα, thus compromising the efficacy of ERα inhibition (Cariou et al., 

2000). 
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 ETS family of transcription factors 
The E26 transformation‐specific (ETS) family of transcription factors were discovered 

approximately 30 years ago. The family is composed of 28 members, divided into 12 

subfamilies. Ever since their discovery, evidence has emerged that ETS factors can 

mediate differentiation and lineage specification during normal development. They are 

involved in maintaining cell homeostasis, by regulating cell cycle, differentiation, 

proliferation, apoptosis, tissue remodelling and angiogenesis (Findlay et al., 2013). 

Therefore, perturbations in ETS family members render them crucial onco-drivers in 

various cancer types. 

 ETS factors in cancer 

Several alterations of the ETS factors have been linked to carcinogenesis. Among 

these perturbations, there are their copy number amplifications, mutations and 

chromosomal rearrangements. ETS-dependent gene activation is also influenced by 

post-translational modifications. Notably, ETS phosphorylation can influence their 

binding to DNA as well as increase their interactions with co-activator or co-repressor 

proteins, thus impacting on their transcriptional activity (Charlot et al., 2010). 

Therefore, phosphorylation may be a key mechanism for ETS aberrant signalling in 

cancer cells. 

In addition, it has been shown that in gastrointestinal stromal tumour (GIST), mutated 

and constitutively active tyrosine kinase receptor KIT stabilises ETV1 (member of the 

ETS family) through MEK-ERK pathway. This results in ETV1 overexpression and an 

oncogenic ETS transcriptional programme (Chi et al., 2010). 

Importantly, chromosomal rearrangements involving the ETS genes have been 

reported in various cancer types. For example, it was shown that approximately half 

of prostate tumours contain the TMPRSS2–ETS fusions (Mehra et al., 2007). The 

fusion on its own can drive prostatic intraepithelial neoplasia (PIN) and its combination 

with loss of tumour suppressor PTEN was shown to induce prostate adeno-

carcinomas in mouse models (Squire, 2009). 

In particular, in breast cancer, a number of abnormalities involving members of the 

ETS family have been reported. For example, copy number amplifications of the 
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genomic regions encompassing for ETV3 and ELF3 were identified in breast 

carcinoma samples and ELF3 amplification was linked to carcinogenesis (Mesquita et 

al., 2013). In addition, overexpression of ETS1 and ETS2 were also identified in breast 

cancer and linked to repression of BRCA1 expression (Baker et al., 2003, Ibrahim et 

al., 2012). Furthermore, prostate derived ETS factor (PDEF) was identified as an 

oncogenic driver in ERα positive breast cancer (Sood et al., 2017). 

 ETV6 (TEL-1, TEL) in cancer 

ETV6 (also known as TEL) is one of the ETS factors and was originally discovered in 

a leukaemia-associated chromosomal translocation (Golub et al., 1994). It has 

subsequently been identified as a fusion partner in more than 30 chromosomal 

translocation oncogenes (de Braekeleer et al., 2013). 

1.6.2.1 ETV6 structure 

ETV6 contains an ETS DNA-binding domain on its C-terminal (Fig.1.8). The DNA 

binding domain has a winged helix‐turn‐helix structure that recognises and binds to a 

4-nucleotide (GGAA) DNA motif (Karim et al., 1990). 

ETV6 also contains an N-terminal pointed (PNT) domain, known as the helix loop helix 

(HLH) domain (Klämbt, 1993) that is responsible for the homo- and hetero-

dimerisation of ETV6 (Lacronique et al., 1997) (Fig.1.8). 

Both the DBD and the PNT domains of ETV6 are highly conserved within the ETS 

family. In the past, these high similarities created difficulties in distinguishing between 

the effects of individual ETS factors on gene expression and biological processes 

(Hollenhorst et al., 2011). As our research tools such as proteomics, genomics and 

genetics gain higher resolution, we have begun to unravel these redundancies. 

NH2-  -COOH PNT ETS DBD Linker 
              56                    125                                               335                     424     452 

ETV6 Structure 

Figure 1.8. ETV6 protein structure: from the N terminus to the C terminus, ETV6 
contains the pointed domain, the linker and the ETS-DNA binding domain. 
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1.6.2.2 ETV6 deregulations in cancer 

ETV6 was found to be involved in translocations involving other genes such as RUNX, 

PAX5 and NTRK3 (Kralik et al., 2011, Odero et al., 2001). Consequently, the ETV6 

DNA binding domain becomes part of oncogenic fusion proteins, resulting in altered 

expression of ETV6 target genes. In particular, ETV6- NTRK3 gene fusion is the 

driving oncogenic event in 92% of the secretory breast carcinoma clinical samples 

assessed by Tognon et al (Tognon et al., 2002). 

Importantly, copy-number aberrations of ETV6 are associated with significantly worse 

prognosis of breast cancer patients within the METABRIC cohort (Curtis et al., 2012). 

Germline mutations of ETV6 have also been detected in families with predisposition 

to develop haematological disease, such as AML and childhood ALL (Moriyama et al., 

2015). Their occurrence is indicative of their potential contribution to leukemogenesis, 

though more studies need to be conducted to understand how ETV6 mutations 

influence its function.  

In contrast, certain studies describe ETV6 as a tumour suppressor gene. For example, 

ETV6 expression levels were significantly lower in colorectal cancer tissues compared 

to paired normal tissues (Wang et al., 2016). Another previous study has shown that 

upregulation of ETV6 attenuates proliferation and suppresses Ras-induced 

transformation (Van Rompaey et al., 2000). 

These conflicting results suggest a complex role of ETV6 that can act as an oncogene 

or can have anti-oncogenic effects in a context-dependent manner. 

 Current alternative therapies for endocrine 
resistant breast cancer 
HER2 positive breast cancer is a more aggressive subtype, associated with poor 

prognosis and high mortality, but the development of targeted therapies against HER2 

has significantly improved patient survival. Trastuzumab (Herceptin®) is a monoclonal 

antibody against HER2 that inhibits its homodimerisation, thus preventing the HER2-

mediated aberrant cell growth (Namboodiri and Pandey, 2011). Herceptin is FDA-

approved for the adjuvant treatment of HER2-positive early and metastatic breast 
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cancer (Gianni et al., 2012). HER2 targeted therapy is also used in combination with 

tyrosine-kinase inhibitors such as Lapatinib or aromatase inhibitors such as 

Anastrozole (de Azambuja et al., 2014, Kaufman et al., 2009) 

In addition, a novel therapeutic strategy for ERα positive, HER2 positive breast cancer 

patients has recently been developed. It combines the monoclonal antibody 

Trastuzumab (T) with the potent cytotoxic maytansine derivative (DM1) and it is 

termed T-DM1 (Okines, 2017). 

Moreover, in recent years, combination therapies targeting both the ERα and the 

PI3K/AKT/mTOR pathways have proved successful. Clinical trials have assessed the 

combination between aromatase inhibitors and Everolimus, a selective inhibitor of 

mTOR. This combinatorial therapeutic strategy has significantly prolonged patient 

disease-free survival (Yardley et al., 2013). As a result, Everolimus was FDA-approved 

for postmenopausal patients with ERα positive breast cancer. However, due to the 

heterogeneity of breast cancer, a subset of patients did not respond to this drug 

(Martelotto et al., 2014). Therefore, it is crucial to find biomarkers that predict the 

efficacy of Everolimus in clinical settings. 

CDK4/6 inhibitors prevent the phosphorylation of the RB tumour suppressor, resulting 

in cancer cell cycle arrest in G1. Such inhibitors (e.g. Palbociclib, Ribociclib) were 

shown to substantially improve the progression-free survival and are now FDA-

approved for use in combination with endocrine therapy to treat advanced stage ERα 

positive disease (Finn et al., 2015). 

 

Tamoxifen resistance is therefore a major challenge in breast cancer. Understanding 

some of the mechanisms behind resistance has facilitated the development of novel 

targeted therapies that have substantially improved patient outcome. Yet subsets of 

patients do not respond to any of the available therapeutic strategies, indicating there 

still are alternative escape routes for breast cancer progression. As such, further 

understanding of the determinant factors for endocrine resistance, is critical to 

improving breast cancer treatment. 
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 Aims 
The ERα transcription factor is a master regulator in mediating the breast cancer 

phenotype. Therefore, several therapies against ERα or its ligand estrogen have been 

developed and successfully improved patient survival. In addition, extensive work has 

determined that FOXA1 acts upstream of ERα, thus dictating its transcriptional 

programme. As such, FOXA1 is an attractive therapeutic target that may benefit ERα 

breast cancer patients, including those with endocrine resistance. Moreover, in recent 

years, targeted agents against several other pathways have been developed and 

successfully prolonged disease-free survival. Yet, certain patients do not respond to 

any of these therapies and therefore it is vital to further understand the molecular 

mechanisms of endocrine resistance in ERα positive breast cancer with the goal of 

identifying alternative determinant factors that may be therapeutically targeted. 

In this context, the aims of this thesis are: 

1. to reinforce the concept of FOXA1 being a pioneer transcription factor in ERα 

positive breast cancer; 

2. to further characterise ERα and FOXA1 role in endocrine resistant compared to 

sensitive context;  

3. to shed light on the role of the newly identified ERα/FOXA1 interactor called ETV6 

in breast cancer progression and endocrine-resistant phenotype; 

4. to identify potential new candidates for the treatment of hormone-refractory breast 

cancer. 
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Chapter 2. Materials and Methods 

 Materials 

 Cell lines and media 

All cell lines were maintained at 37°C and 5% CO2 in a humidified atmosphere. 

MCF-7, ZR-75-1, MDA-MB-231, HEK293FT and MCF-10A cell lines were obtained 

from ATCC (Middlesex, UK).  

MCF-7 and HEK293FT cells were cultured in Dulbecco’s Modified Eagle Medium 

DMEM (Gibco, Thermo Scientific, Leicestershire, UK, ref. 41966). ZR-75-1 and MDA-

MB-231 cells were grown in RPMI-1640 medium (Gibco, Thermo Scientific, 

Leicestershire, UK, ref. 21875-034). Both media were supplemented with foetal bovine 

serum (FBS), 50 U/ml penicillin, 50 μg/ml streptomycin and 2 mM L-glutamine.  

MCF-10A cells were cultured in Mammary Epithelial Cell Growth Basal Medium MEBM 

(Lonza, Basel, Switzerland ref. CC-3151), supplemented with MEGM Mammary 

Epithelial Cell Growth Medium Kit (Lonza, ref. CC-4136). 

Tamoxifen resistant MCF-7-TRF and ZR-75-1-TamR cell lines were derived from 

MCF-7 and ZR-75-1, respectively, by continuous exposure to 4-hydroxy-Tamoxifen 

(Sigma-Aldrich, H7904) until they have become resistant to the compound. The 

concentration of Tamoxifen was progressively increased to 1µM for MCF-7-TRF and 

100nM for ZR-75-1-TamR. 

Cells were genotyped periodically by short-tandem repeat (STR) profiling using the 

PowerPlex 16HS Cell Line panel and analysed using Applied Biosystems Gene 

Mapper ID v3.2.1 software by external provider Genetica DNA Laboratories (LabCorp 

Specialty Testing Group). Cells were also tested periodically for mycoplasma using 

the MycoProbe Mycoplasma detection kit (R&D). 

 PDX material 

PDX material was kindly provided by Prof Carlos Caldas and Dr Alejandra Bruna 

(CRUK-Cambridge Institute, UK) and by Prof Elgene Lim (Garvan Institute, Sydney, 

Australia). The PDXs have been propagated in immune-compromised mice. Briefly, 
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tumour pieces (1mm3) were implanted into the mammary pad of NSG mice. All mice 

were treated with estrogen pellets. Tumours were measured twice a week. When 

tumours reached ~1000 mm3, mice were sacrificed and tumours resected. They were 

either snap-frozen in liquid nitrogen, fixed in 10% neutral buffered formalin solution for 

subsequent paraffin embedding or embedded in Optimal Cutting Temperature 

compounds (OCT). The PDXs have been provided as frozen material and access to 

the paraffin embedded tissue was granted. Description of PDX models used is 

provided in Table 2.1 below: 

PDX ID tissue type tamoxifen status IHC assessment other 
comments 

AB555 primary 
tumour 

Tamoxifen 
resistant 

ER positive; 
FOXA1 positive; 
HER2 negative 

 

STG143 primary 
tumour 

Tamoxifen 
resistant 

ER positive; 
FOXA1 positive; 
HER2 negative 

 

STG195 Pleural 
effusion 

Tamoxifen and AI 
resistant 

ER positive; 
FOXA1 positive; 
HER2 negative 

Y537S ESR1 
mutation 

HCI005 pleural 
effusion 

Tamoxifen 
resistant 

ER positive; 
FOXA1 positive; 
HER2 negative; 

PR positive 

 

HCI006 pleural 
effusion 

Tamoxifen 
resistant 

ER positive; 
FOXA1 positive; 
HER2 negative; 

PR positive 

same patient 
sample as 
HCI005, 

passaged in 
sister mouse 

HCI011 pleural 
effusion 

Tamoxifen 
resistant 

ER positive; 
FOXA1 positive 

 

HCI013 pleural 
effusion 

Tamoxifen 
resistant 

ER positive; 
FOXA1 positive 

 

Table 2.1. Patient derived xenograft models used and their characterisation. 

 Clinical samples 

Clinical samples were kindly provided by Dr Wilbert Zwart and his colleagues (NKI, 

Amsterdam, The Netherlands). They consisted of six primary breast cancer tumour 

samples and four pleural effusions (Table 2.2). All samples were collected under 
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project “Analyses on pleural effusions breast cancer patients”, registration number 

CFMPB411 at the biobank from the Cancer Institute (NKI). The samples were provided 

frozen. In addition, frozen sections were cut for IHC staining.  

 

Clinical 
sample ID 

Tissue type IHC assessment Other comments 

T15-09974 primary breast 
cancer 

ER positive; FOXA1 positive; 
HER2 negative; PR positive 

 

T15-09974 primary breast 
cancer 

ER positive; FOXA1 positive; 
HER2 negative; PR positive 

Technical rep; 
smaller than 1. 

T13-02381 primary breast 
cancer 

ER positive; FOXA1 positive; 
HER2 negative; PR positive 

 

T11-12448 primary breast 
cancer 

ER positive; FOXA1 positive; 
HER2 negative; PR positive 

 

T-1112441 primary breast 
cancer 

ER positive; FOXA1 positive; 
HER2 negative; PR positive 

 

T12-01538 primary breast 
cancer ER positive; FOXA1 positive  

M6 pleural 
effusion ER positive; FOXA1 positive  

M28 pleural 
effusion 

ER positive; FOXA1 positive; 
HER2 negative; PR positive 

 

M31 pleural 
effusion ER positive; FOXA1 positive  

M32 pleural 
effusion ER positive; FOXA1 positive  

Table 2.2. Clinical samples used and their characterisation. 
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 Antibodies  

Antibodies used for western blot are listed in Table 2.3: 

Primary Antibodies 

Protein 
Target  Antibody reference  Antibody source 

and clonality  
Antibody 
dilution/  

Protein 
molecular 

weight  

ERα Novocastra, Leica NCL-
L-ER-6F11 

mouse 
monoclonal  1 in 50  66 kDa 

FOXA1 Abcam, ab23738 rabbit polyclonal  1 in 1000 50-37 kDa 

β-Actin  Cell Signalling, 4970S Rabbit monoclonal 1 in 1000 42 kDa 

ETV6 Sigma Aldrich, 
WH0002120M1 

mouse 
monoclonal 1 in 500 55 kDa 

pERK  Cell Signalling, 9106S mouse 
monoclonal 1 in 2000  42 and 44 

kDa 

GAPDH 
Cell Signalling, 97166S mouse 

monoclonal 1 in 1000 
37 kDa 

Cell Signalling, 2118S rabbit monoclonal  1 in 1000 
Histone 

3 Cell Signalling, 9715S rabbit polyclonal  1 in 2000 17 kDa 

Secondary Antibodies  

Antibody reference  Antibody source and clonality  Antibody 
dilution 

IRDye® 800 CW, Li-Cor Biosciences 
926-32210   Goat anti-Mouse IgG 1 in 5,000 

IRDye® 680LT Li-Cor Biosciences 
926-68020 Goat anti-Mouse IgG 1 in 

20,000 

IRDye 680LT Li-Cor Biosciences 
926-68071 Goat anti-Rabbit IgG 1 in 

15,000 

IRDye® 800CW Li-Cor Biosciences 
926-32211 Goat anti-Rabbit IgG 1 in 

15,000 

Table 2.3. List of antibodies used for western blot and their targets. 
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Antibodies used for immunohistochemistry are listed in Table 2.4: 

Protein 
Target  

Antibody 
reference 

Antibody 
source 

and 
clonality  

Application Concentration  Retrieval 

ERα 
Novocastra, 
Leica NCL-L-

ER-6F11 

mouse 
monoclonal 

IHC paraffin 
tissue 1.071 µg/ml 

Sodium 
Citrate, 

30’, 100°C 
IHC frozen 

tisue 0.75 µg/ml None 

FOXA1 Abcam 23738 rabbit 
polyclonal 

IHC paraffin 
tissue 0.8 µg/ml 

Sodium 
citrate, 20’, 

100°C 
IHC frozen 

tissue 1.25 µg/ml None 

ETV6 Sigma, 
WH0002120M1 

mouse 
monoclonal 

IHC paraffin 
tissue 1.25 µg/ml Tris EDTA, 

20’ 
IHC frozen 

tissue 1.25 µg/ml none 

Table 2.4. Antibodies and conditions used for immunohistochemistry (IHC). 

Antibodies used for ChIP and RIME are listed in Table 2.5: 

Protein 
Target  Antibody reference 

Antibody 
source and 

clonality  
Concentration Application 

ERa 

Santa Cruz, sc-543 rabbit 
polyclonal 10 µg/µl ChIP, RIME 

Abcam, ab3575 rabbit 
polyclonal 10 µg/µl ChIP, RIME 

EMD Milipore, 06-
935 

rabbit 
polyclonal 10 µg/µl ChIP, RIME 

Abcam, ab80922 rabbit 
polyclonal  10 µg/µl ChIP 

Santa Cruz, sc-
514857 (C-3) 

mouse 
monoclonal  10 µg/µl ChIP 

Diagenode, 
C15100066 

mouse 
monoclonal  10 µg/µl ChIP 

FOXA1 
Abcam, ab5089 goat polyclonal 10 µg/µl ChIP, RIME  

Abcam, ab23738 rabbit 
polyclonal 10 µg/µl ChIP, RIME  

HRK27Ac Abcam, ab4729 rabbit 
polyclonal 10 µg/µl ChIP 

ETV6  Bethyl Lab, A303-
674A-M 

rabbit 
polyclonal 10 µg/µl ChIP, RIME  

Table 2.5. Antibodies used for ChIP and RIME. 
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 Primers 

Primers for ChIP-qPCR are listed in Table 2.6: 

Name Forward primer (5'- 3') Reverse primer (5'- 3') 

XBP1 enh 1 ATACTTGGCAGCCTGTGACC GGTCCACAAAGCAGGAAAAA 

GREB1 enh 
3 GAAGGGCAGAGCTGATAACG GACCCAGTTGCCACACTTTT 

RARα intron GCTGGGTCCTCTGGCTGTTC CCGGGATAAAGCCACTCCAA 

MYC enh GCTCTGGGCACACACATTGG GGCTCACCCTTGCTGATGCT 

ESR1 Enh 3 GAAACAGCCCCAAATCTCAA TTGTAGCCAGCAAGCAAATG 

ER3   
negative site GCCACCAGCCTGCTTTCTGT CGTGGATGGGTCCGAGAAAC 

XBP1 
negative site ACCCTCCAAAATTCTTCTGC ATGAGCATCTGAGAGCAAGC 

Table 2.6. Primer sequences for ChIP-qPCR. 
 

Primers for qRT-PCR are listed in Table 2.7: 

Name Forward primer (5'-3') Reverse primer (5'- 3') 

ESR1 TGATTGGTCTCGTCTGGCG CATGCCCTCTACACATTTTCCC 

FOXA1 GGGGGTTTGTCTGGCATAGC GCACTGGGGGAAAGGTTGTG 

GATA3 CGGCTTCGGATGCAAGTCCAGGC TTGTGATAGAGCCCGCAGGCGTT 

ETV6 AGGTGGAAGACATTGAGGGG CCAAGGGCACAGGTAAGAGA 

UBC 
control ATTTGGGTCGCGGTTCTTG TGCCTTGACATTCTCGATGGT 

Table 2.7. Primer sequences for qRT-PCR. 

 siRNA library and siRNA 

The LP_34662 RNAi Cherry-pick Library used was purchased from Dharmacon, 

Horizon Discovery (ref. G-CUSTOM-294730). Information about all target genes and 

siRNA sequences from the library are provided in Annexe 1: 
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Targets from the siRNA library were then validated using the siRNA reagents listed in 

Table 2.8.  All siRNA transfections were achieved using the Lipofectamine RNAiMAX 

transfection reagent, as per manufacturer’s guidance (Invitrogen, ref. 13778).  

siRNA and target gene reference no siRNA sequence 5'-3' 

SMARTpool: ON-
TARGETplus FOXA1 siRNA L-010319-00 

GCACUGCAAUACUCGCCUU 
CCUCGGAGCAGCAGCAUAA 
GAACAGCUACUACGCAGAC 
CCUAAACACUUCCUAGCUC 

SMARTpool: ON-
TARGETplus non-targeting 

siRNA 
D-001810-10 

UGGUUUACAUGUCGACUAA 
UGGUUUACAUGUUGUGUGA 
UGGUUUACAUGUUUUCUGA 
UGGUUUACAUGUUUUCCUA 

Individual: ON-TARGETplus 
ETV6 siRNA J-010510-10 GGGAUUACGUCUAUCAGUU 

Individual: ON-TARGETplus 
ETV6 siRNA J-010510-11 CAGGUGAUGUGCUCUAUGA 

Table 2.8. Sequences of siRNAs. 

 Compounds and compound library 

The compound library L1300-Selleck-FDA-Approved-Drug-Library-978cpds (Stratech, 

Selleckchem) was used. A list of all 978 compounds and their description is provided 

in the Annexe 2: The individual drugs used to treat cells are listed in the Table 2.9: 

 

Compound 
Mechanism of 

action 
Company and reference 

number 

17β-estradiol hormone Sigma-Aldrich, E2758 

4-hydroxy-Tamoxifen SERM Sigma-Aldrich, H7904 

Fulvestrant SERD Selleckchem, S1191 

Trametinib MEK 1/ 2 inhibitor Selleckchem, GSK1120212 

Everolimus mTOR inhibitor ApexBio, 159351-69-6 

Table 2.9. List of compounds used and their mechanism of action. 
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 Purified plasmids 

The vector used to overexpress ETV6 was purchased from Genecopoeia (ref. EX-

F0874-Lv181). The matched empty control vector pReceiver-Lv181 (Genecopoeia, 

ref. EX-NEG-Lv181) was used and the map for the plasmid is provided in Figure 2.1: 

 Methods 

 Cell culture  

Cell stocks were thawed at 37°C, centrifuged at 1300 rpm for 3 minutes, resuspended 

in their corresponding growth medium and plated. They were cultured until 80-90% 

confluent. Then, they were rinsed twice using sterile phosphate-buffered saline (PBS), 

trypsinised, neutralised with growth media containing 10% FBS, and pelleted by 

centrifugation for 3 minutes at 1300 rpm. Cells were resuspended in medium. For 

continuous culture, they were replated at a dilution between 1:3 and 1:6. To conduct 

experiments, cells were counted using LUNA™ Automated Cell Counter (Logos 

Biosystems, ref. L10001) and seeded at the appropriate density. In order to create 

frozen stocks, cells were resuspended in 10%DMSO and 90% FBS and slowly frozen 

to -80°C using the Nalgene® Freezing container (Sigma Aldrich, ref.C1562-1EA). 

 siRNA transfections 

To assess the effect of target gene knock-down on cell growth and viability, an siRNA 

library screen was conducted and then validated using single siRNA transfections. All 

Figure 2.1 pReceiver-Lv181 vector map. 
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siRNA transfections were achieved using the RNAiMax reagent. Briefly, cells were 

plated in full media at the appropriate density and grown for 24 hours. They were then 

transfected using the Lipofectamine RNAiMax reagent as per manufacturer’s 

guidance. The transfection reagent was diluted in Opti-MEM (Gibco, ref. 31985-047). 

At the same time, the siRNA was separately diluted in Opti-MEM. They were incubated 

separately for 5 minutes, after which they were mixed and incubated for a further 20 

minutes at room temperature. The mixture was then added to the cells in full growth 

media. After 24 hours, the media was changed with fresh normal media and cells were 

further grown for the relevant amount of time. 

 Hormone and compound treatments 

MCF-7 and ZR-75-1 cells were plated at 30% confluency to assess the effects of 17β-

estradiol on FOXA1-chromatin binding. The following morning, media was changes 

and replaced with phenol red-free DMEM supplemented with 5% charcoal/dextran 

stripped FBS. The cells were maintained in hormone-depleted media for 72 hours, and 

media was changed daily. Then, cells were treated either with ethanol or with 10nM of 

17β-estradiol (Sigma) for 45 minutes, as previously described (Schmidt et al., 2009). 

The drug effects on cells were tested through treatment with the appropriate 

concentration of the compounds, diluted in Opti-MEM. 

 FDA-approved compound screen  

The drug screen was conducted in three biological replicates for each screened cell 

line. There was one technical replicate for each of the 978 compounds in every 

biological replicate.  

First, cells were counted and resuspended in their corresponding full media, at 30% 

confluency. They were seeded in 384-well plates with opaque walls using the 

Multidrop™ Combi Reagent Dispenser (Thermo, ref. 5840300) and incubated for 24 

hours. Cells were then treated with 1 µM of each of the 978 compounds. The 

appropriate volume of the drug diluted in DMSO was dispensed using the Echo®555 

liquid handler (Labcyte, ref. 001-5234). Treatment was allowed for 96 hours after 

which cell viability was assessed using CellTiter-Glo® Luminescent Cell Viability 

Assay, (Promega, ref.G7571). Percentage viability over control DMSO was calculated. 
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Only drugs that inhibited growth with 50% in all three biological replicates were 

considered for further analysis.  

 pLenti overexpression of target genes 

MCF-7 and ZR-75-1 cells that overexpress ETV6, as well as their matched controls, 

were generated as follows: 

2.2.5.1 Transformation of competent cells 

DH5α Library Efficiency cells (Invitrogen, cat. no. 18262-014) were transformed either 

with empty control vector pReceiver-Lv181 (Genecopoeia, ref. EX-NEG-Lv181) or with 

the p-ETV6-Lv181 (Genecopoeia ref. EX-F0874-Lv181). 

Briefly, competent cells were gently thawed on ice. For each reaction, 50 μl of E. Coli 

competent cells were mixed gently with 10 ng of plasmid DNA and incubated on ice 

for 30 minutes. The cells were then heat-shocked for 45 seconds in a 42°C water bath 

and then placed on ice for 2 minutes. 950 μl of luria broth (LB) (10g/l tryptone powder, 

5g/l yeast extract powder, 85.5 mM NaCl) was added to the cells and then they were 

incubated at 37°C for 1 hour, at 225 rpm. Then, 100 μl of the transformed bacteria mix 

were spread on agar plates (LB containing 14 g/l agar) treated with 100 ug/ml 

Ampicillin. Plates were incubated overnight at 37°C. The following morning, colonies 

containing the transformed plasmid were picked, added to 200 mls of LB media 

containing 100 μg/ml ampicillin and grown again overnight. 

2.2.5.2 Purification of Plasmid DNA 

In order to isolate the plasmid DNA from the transformed bacteria, the QIAfilter Plamid 

Maxi Kit (cat. no. 122345) was used. The protocol was followed as described by the 

manufacturer. The DNA concentration was quantified using a NanoDrop® ND-1000 

Spectrophotometer (Thermo Scientific, Leicestershire, UK).  The plasmids were 

subjected to Sanger Sequencing to validate they contained the correct insert. 

2.2.5.3 Viral production 

In order to generate the cDNA lentiviral particles, 4 million HEK293FT cells were plated 

in complete DMEM, in 10cm plates. The following morning, they were transfected with 

the following mix, diluted in 1 ml Opti-MEM medium: 
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- 5ug pCMV-gag-pol-tat-rev 

- 2.5ug pMD2-VSV-G 

- 37.5 ul Lipofectamine 2000 transfection reagent.  

- 5ug of transfer plasmid (either p-ETV6-Lv181 or empty p-Lv181) 

The transfection medium was left onto HEK293FT cells overnight. The following 

morning, the medium was changed with 8 mls of fresh complete DMEM medium. Cells 

were grown for 48 more hours, after which the supernatant containing cDNA lentiviral 

particles was collected and filtered through 0.45µm filters. 

2.2.5.4 Viral infection 

MCF-7 and ZR-75-1 cells were counted and 300,000 cells were plated per well in a 6-

well plate, in their corresponding media. The following morning, they were infected 

with 2ml of the viral supernatant supplemented with 10µg/ml Polybrene for 24 hours. 

The following morning, infection media was changed to fresh complete media. Cells 

were allowed to recover for 72 hrs, after which cells containing the plasmid were 

selected with 1µg/ml puromycin. 

 Assessment of cell growth and viability  

2.2.6.1 Cell growth  

Colony Formation Assays were conducted to validate Tamoxifen resistance in MCF-

7-TRF and ZR-75-1-TamR, as well as to assess cell response to various drugs. Cells 

were plated in 6 or 12 well plates. The following day, they were treated appropriately 

and incubated for 10-15 days. Treatments were refreshed periodically. At the end of 

the assay, cells were fixed for 5 minutes using 4% formaldehyde and stained using 

crystal violet. They were washed, air dried and visualised on GelCount Optronix 

(Scintica Instrumantation). Colony mask area total density was assessed using the 

GelCount software. 

Cell confluency as a measure of cell growth was assessed using the IncuCyte Zoom 

Live Cell Analysis System (Essen Bioscience). Cells were seeded in the appropriate 

plates (6-96 well plates) and growth was monitored for at least 120 hours via phase 
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contrast images taken at 3-hour intervals. Confluence was assessed using the default 

settings of the IncuCyte ZOOM software. 

2.2.6.2 Cell viability 

Cell viability in response to drugs, knock-downs or overexpressions was assessed 

using CellTiter-Glo® Luminescent Cell Viability Assay, (Promega, ref. G7571), as 

described by the manufacturer. Briefly, cells were grown and treated appropriately in 

96 or 384 opaque-walled plates. CellTiter-Glo® Reagent was prepared by mixing the 

substrate with the buffer. Then, the reagent was added at a 1:1 ratio to the media from 

the plates. Contents were mixed for 2 minutes on an orbital shaker. Plates were 

incubated for 10 minutes at room temperature and luminescence was recorded using 

the PheraStar FS microplate reader (BMG LABTECH). 

 Assessment of gene expression 

2.2.7.1 RNA isolation and quantification 

Cells were washed twice in ice-cold PBS and harvested in PBS. Total RNA was 

extracted using the RNeasy kit (Qiagen), according to manufacturer’s instructions. The 

extracted RNA was quantified by measuring the absorbance using a NanoDrop ND-

1000 Spectrophotometer (Thermo Scientific). 

2.2.7.2 cDNA synthesis 

Total RNA was used for cDNA synthesis, using the Super Script III Reverse 

Transcriptase kit (Invitrogen, ref. 18080085). Briefly, 1 µg of total RNA, 100 ng of 

random primers, 1 μl 10 mM dNTP Mix (10 mM each dATP, dGTP, dCTP and dTTP 

at neutral pH) were diluted to a final volume of 13 μl using nuclease-free water.  

The mix was incubated at 65°C for 5 minutes and then placed on ice for one minute. 

Then, the following reagents were added: 4 μl 5X First-Strand Buffer, 1 μl 0.1 M DTT 

(1,4-dithiothreitol), 1 μl RNaseOUT™ Recombinant RNase Inhibitor (Cat. no. 10777-

019, 40 units/μl) and 1 μl of SuperScript™ III RT (200 units/μl). 

Reactions were incubated at 25°C for 5 minutes to allow primers to anneal and then 

heated at 50°C for 30 minutes.  

The enzymatic reaction was inactivated at 70°C for 15 minutes.  
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The newly synthetized cDNA was diluted 1:10 and subsequently used for quantitative 

reverse transcriptase PCR (qRT-PCR) analysis.  

2.2.7.3 Quantitative RT-PCR 

Reactions were performed in triplicate and analysed using the Stratagene Mx3005P 

Real Time machine. Each reaction mix contained 1X Power SYBR Green PCR Master 

Mix (Applied Biosystems, ref. 4367659), forward and reverse primers (final 

concentration of 10 µM) and 2 ul of diluted cDNA. The mix was diluted to 15 µl using 

nuclease-free water. The hot-start Taq polymerase from the Master Mix was heat-

activated at 95°C, followed by 40 cycles of 15 seconds at 95°C and 30 seconds at 

60°C. Fluorescence was read in each cycle. For the final step, the temperature was 

slowly increased from 65 to 95°C and a melting curve was generated by continuously 

reading the fluorescence. Gene expression relative to a house keeping gene UBC was 

determined using the delta-delta Ct method (Livak and Schmittgen, 2001) 

2.2.7.4 RNA sequencing (RNA-seq) 

Library preparation was performed using the TruSeq stranded mRNA library prep kit 

(Illumina) and sequencing was conducted by the Genomics Core Facility from CRUK-

Cambridge Institute) using NovaSeq 50bp single-end reads. Approximately 30 million 

reads per sample were generated.  

2.2.7.4.1 RNA-seq bioinformatics analysis 

Data processing and bioinformatic analysis was performed by Dr Igor Chernukhin 

(CRUK-CI, Cambridge). The RNA-seq reads were aligned to the Human Reference 

Genome (hg 38) using STAR tool (Dobin and Gingeras, 2015). Normalised read 

counts were interrogated for differential gene expression using DESeq2 (Love et al., 

2014). 

 Assessment of protein levels 

2.2.8.1 Western blot  

2.2.8.1.1 Whole cell lysate preparation for western blot  

Cells were washed twice in ice-cold PBS and then scraped in 100 µl Pierce RIPA 

Buffer (Thermo Scientific, ref. 89901) supplemented with protease inhibitors (Roche, 
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Mannheim, Germany). Protein lysates were sonicated at high speed for two cycles of 

30 seconds on, 30 seconds off and then the cellular debris was removed by 

centrifugation at 20,000 rpm for 10 minutes, at 4°C. The whole cell lysate was 

transferred to clean eppendorfs for quantification. 

2.2.8.1.2 Chromatin and cytoplasmic protein extractions 

One 15 cm plate per sample used. Cells were washed twice with PBS and scraped in 

PBS containing Protease inhibitors. Following centrifugation at 8,000rpm, 3 minutes, 

4ºC, pellets were subjected to a chromatin isolation protocol adapted after (Méndez 

and Stillman, 2000). 

Pellets were resuspended in 500 Buffer A (10mM Hepes (pH 7.9),10mM KCl, 1.5mM 

MgCl2, 0.34M Sucrose, 10% glycerol) to which 1mM DTT, 0.1% Triton X-100 and 

protease inhibitors were added. Samples were incubated on ice for 10 minutes. 

Samples were centrifuged at 3,500 rpm for 5 minutes, at 4°C. Supernatant containing 

the cytosolic fraction was retained in separate eppendorfs and stored at -20°C. Nuclei 

were further washed in buffer A containing 1 mM DTT, but no detergent. Nuclei were 

pelleted and resuspended in 500 µl Buffer B (3mM EDTA, 0.2mM EGTA) containing 

1mM DTT and protease inhibitors. Samples were incubated on ice for 30 minutes, with 

occasional vortexing.  

Samples were centrifuged at 4,000 rpm for 5 minutes, at 4°C and then washed 5 times 

in 500 µl Buffer B containing 1mM DTT and protease inhibitors. After the last spin, 

pellets were resuspended in 50 µl Pierce RIPA buffer, sonicated for two cycles of 30 

seconds on, 30 seconds off, centrifuged at maximum speed for 10 minutes. 

Supernatant containing the chromatin fraction was taken to clean tubes for 

quantification. 

2.2.8.1.3 Western blot analysis 

Protein quantification for whole cell lysate, chromatin and cytoplasmic extracts was 

achieved using the infrared (IR)-based biomolecular quantitation system Direct 

Detect® (Millipore, Massachusetts USA).  

Twenty-five µg proteins per whole lysate or 15 µg proteins for the chromatin and 

cytoplasmic fractions were used for western blot analysis.  
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Precision Plus, ProteinTM dual color Standards Protein molecular weight marker (Bio-

Rad, #161-0974) was used for the determination of protein sizes.   

Following electrophoresis, the resolved proteins were transferred onto a nitrocellulose 

membrane using the iBlot® 2 Dry Blotting System (Invitrogen, California, USA). The 

membrane containing the irreversibly bound proteins was then blocked for unspecific 

binding of the antibodies to the membrane using the Odyssey Blocking Buffer (Li-Cor, 

927-40000). The membranes were immunoblotted overnight with the appropriate 

primary antibodies diluted in Odyssey blocking buffer: TBS plus 0.1% Tween 20. 

Detection of the primary antibodies was achieved using the appropriate secondary 

antibodies. The proteins were visualised using the Odyssey CLx Infrared Technology 

(Li-Cor) and images were taken with the automated capture option from Image studio 

Version 4.0 software. 

2.2.8.2 Immunohistochemistry (IHC) 

Immunohistochemistry (IHC) assays were conducted by the Histopathology Core 
Facility (CRUK-CI). 

The 3 μm paraffin sections were dewaxed in xylene and rehydrated through graded 

ethanol concentrations on a Leica ST5020 system. IHC staining for paraffin embedded 

sections was then conducted on the BOND-III platform (Leica Biosystems), while 

frozen sections were stained on Bond RX (Leica Biosystems). All IHC was run using 

a modified version of the BOND polymer refine detection kit (Leica Microsystems, ref. 

DS9800).  

The tissue pre-treatment conditions and concentration were optimised for each 

primary antibody (Table 2.4): The rabbit polyclonal anti-FOXA1 antibody was detected 

with the kit’s polymer conjugated secondary antibody (anti-rabbit Poly-HRP-IgG). The 

mouse monoclonal anti ERα and anti ETV6 antibodies were detected by the post 

primary (rabbit anti-mouse IgG) first, followed by the anti-rabbit polymer. The polymer 

was finally detected with the 3-3'-diaminobenzidine (DAB) enhancer (Leica 

Microsystems, ref AR9432). 

Stained sections were de-hydrated and cleared on the Leica ST5020 system and 

mounted using the Leica cover slipper (ref. CV5030). 

Staining was viewed following digitisation using the Aperio platform (Leica 

Biosystems). 
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 Chromatin Immunoprecipitation for ChIP-qPCR and 
ChIP-seq 

2.2.9.1 Bead preparation 

The type of Protein A or G Dynabeads® (Invitrogen) was chosen depending on the 

antibody species used. Aliquots of 50 µl beads were made for each sample. They were 

washed 3 times with PBS + 5mg/ml BSA and resuspended in 1 ml PBS/BSA. Five µg 

of the appropriate antibody was added for each sample and the mix was rotated at 12 

rpm, overnight, at 4°C. 

The following day, beads were washed three times with PBS/PBA, in order to remove 

the unbound antibody. They were then resuspended in LB3+1%Triton X-100 (enough 

for 200µl of beads for each supernatant). 

2.2.9.2 Sample preparation for chromatin immunoprecipitation 

Sample preparation was conducted as follows: Frozen clinical samples and PDX 

material were embedded in Optimal Cutting Temperature compound (OTC) and 

cryosectioned at 30 microns. Samples were cross-linked for 25 minutes at room 

temperature using 2mM disuccinimidyl glutarate (DSG), while rotating at 15prm. Then, 

a final concentration of 1% methanol-free formaldehyde was added straight to the 

DSG solution and samples were cross-linked with the mixture for 20 more minutes, 

maintaining the rotation. Afterwards, the cross-linking was quenched with 2.5M glycine 

(pH7.5) 1:10, for 10 minutes. In order to remove the supernatant, samples were 

centrifuges at 2,000 g for five minutes at 4ºC and sections were pelleted. Pellets were 

washed twice in ice-cold PBS, samples were spun down and PBS removed. Finally, 

the material was resuspended in 3 ml of Lysis buffer 3 (LB3) (10mM Tris–HCl, pH 8, 

100mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.1% Na–Deoxycholate) containing 

protease inhibitors (Roche). 

Samples were then sonicated in 5 ml eppendorfs, using the tip sonicator (details) in 

cycles of 30 seconds on, 60 seconds off, at an amplitude of 40 watts, until chromatin 

fragment size was approximately 200-700bp. 50µl aliquots of sonicated chromatin 

were reverse cross-linking (95C, 10min); purified using the PCR purification kit and 

eluted in 30 ul milliQ. They were run on an E-gel to confirm sufficient sonication. 
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Triton X-100 was added to the samples, to reach a final concentration of 1% in LB3+ 

protease inhibitors (PI) and centrifuged at 20,000g for 10 min at 4ºC. A small aliquot 

of supernatant was kept as input for ChIP-seq. After centrifuging the clinical/PDX 

samples, the clean supernatant was added to the bead-bound antibody and the mix 

was rotated overnight.  

For cell line samples, cells were seeded in 15cm2 plates, treated accordingly and 

collected at 80-90% confluency. Two plates were used per sample. Cells were cross-

linked by adding 2mM DSG solution directly to the plates and incubated for 20 minutes 

at room temperature. The solution was then removed and replaced with 1% 

formaldehyde ((Thermo, #28908) for 10 minutes. The cross-linker was quenched with 

0.1M glycine. Then, cells were washed and harvested in ice-cold PBS containing 

protease inhibitors (Roche). In order to enrich for the nuclear fraction, pellets were 

resuspended in Lysis Buffer 1 (50mM Hepes–KOH, pH 7.5, 140mM NaCl, 1mM EDTA, 

10% Glycerol, 0.5% NP-40/Igepal CA-630, 0.25% Triton X-100) and rotated for 10 

minutes at 4oC. Cells were then pelleted, resuspended in Lysis buffer 2 (10mM Tris–

HCL, pH8.0, 200mM NaCl, 1mM EDTA, 0.5mM EGTA) and incubated for 5 minutes 

at 4oC with rotation. Cells were then pelleted, resuspended in 300 µl Lysis buffer 3 

(10mM Tris–HCl, pH 8, 100mM NaCl, 1mM EDTA, 0.5mM EGTA, 0.1% Na–

Deoxycholate) and sonicated using the Bioruptor PLUS sonicator (Diagenode, Liege, 

Belgium, ref. B01020001) for 15 cycles (30 seconds on, 30 seconds off) or until 

chromatin fragment size were between 200 and 700 bp. After sonication the samples 

were centrifuged at maximum speed for 10 minutes at 4oC and a small aliquot of 

supernatant was kept as input for ChIP-seq. The rest of the supernatant was added to 

the bead-bound antibody and rotated overnight.  

After overnight incubation of the samples, the beads-antibody-chromatin complex 

were washed six times with RIPA buffer (50mM HEPES pH 7.6, 1mM EDTA, 0.7% Na 

deoxycholate, 1% NP-40, 0.5M LiCL) followed by one wash with TE (pH 7.4). Both 

ChIP samples and inputs were then de-crosslinked by adding 200 μl elution buffer (1% 

SDS, 0.1 M NaHCO3) for 16 hours at 65oC. After reverse crosslinking, DNA was 

isolated and purified using the phenol-chloroform-isoamyl DNA extraction method. 

ChIP-seq and the input libraries were prepared using the ThruPlexChIP Sample Prep 

Kit (Illumina).  
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2.2.9.3 ChIP-qPCR 

Quantitative RT-PCR Reactions were performed in triplicate and analysed using the 

Stratagene Mx3005P RealTime machine.  Every reaction mix contained Power 

SYBR® Green PCR Master Mix (Applied Biosystems, California, USA), 10 µM of each 

primer, 2 µl of ChIP samples or 2 µl of 1:10 diluted inputs. nuclease-free H2O was 

added to a final volume of 15 μl.  First, the hot-start Taq polymerase was heat-

activated at 95oC for 10 minutes, followed by 40 cycles of 15 seconds at 95oC and 30 

seconds at 60oC. The fluorescence from each well was read in each cycle. For the 

final step, the temperature was slowly increased from 65 to 95oC and a melting curve 

was generated by continuously reading the fluorescence.  The results were analysed 

using the delta-delta Ct method (Livak and Schmittgen, 2001).  

2.2.9.4 ChIP Sequencing  

ChIP-seq reads were mapped to hg38 genome using bowtie2 2.2.6 (Langmead and 

Salzberg, 2012). Aligned reads with the mapping quality less than 5 were filtered out. 

A Minimum of three independent biological replicates were conducted, unless 

otherwise specified. The read alignments from the three replicates were combined into 

a single library and peaks were called using MACS2 version 2.0.10.20131216 (Zhang 

et al., 2008). Matched input controls were used as background. The peaks yielded 

with MACS2 q value ≤ 1e-3 were selected for downstream analysis. 

2.2.9.4.1 Motif Analysis  

MEME tool FIMO version 4.9.1 (Bailey et al., 2009) was used for searching all known 

transcription factor motifs from JASPAR database (JASPAR CORE 2016 vertebrates) 

in the tag-enriched sequences. As a background control, peak size - matching 

sequences corresponding to known open chromatin regions in MCF-7 cells were 

randomly selected from hg38. Motif frequency for both tag-enriched and control 

sequences calculated as sum of motif occurrences adjusted with MEM q-value. Motif 

enrichment analysis was performed by calculating the odds of finding an 

overrepresented motif among MACS2-defined peaks by fitting Student's t-cumulative 

distribution to the ratios of motif frequencies between tag-enriched and background 

sequences. Yielded p-values were further adjusted using Benjamini-Hochberg 

correction. 
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2.2.9.4.2 Differential analysis and heatmaps  

For visualizing tag density and signal distribution, heatmaps were generated with the 

read coverage in a window of +/- 2.5 or 5 kb region flanking the tag midpoint using the 

bin size of 1/100 of the window length. Differential binding analysis (Diffbind) was 

performed as described previously (Stark and Brown). 

2.2.9.4.3 Integration of RNA-seq and ChIP-seq data  

Genes located around +/- 50kb from the peak regions were selected. –log10 

transformed p-values from DESeq2 analyses of the RNA-Seq data were subsequently 

used for ranking and weighting of genes. GSEA pre-ranked analysis tool from Gene 

Set Enrichment Analysis (GSEA) software, version 2.2.3, was used for the evaluation 

of statistically significant genes. 

 Rapid Immunoprecipitation Mass-spectrometry of 
Endogenous Proteins (RIME)  

2.2.10.1 Chromatin immunoprecipitation for RIME 

Chromatin immunoprecipitation was performed as described in section 2.2.9.2 until 

the RIPA washing step after the overnight incubation of bead-bound antibody and 

chromatin. For RIME experiments, beads were washes 10 times with RIPA, followed 

by 2 AMBIC washes (10 nM ammonium hydrogen carbonate). Supernatant was 

removed from the beads and they were frozen at -80°C. 

2.2.10.2 Sample preparation and LC-MS/MS analysis  

RIME sample preparation was performed by the Proteomics Core Facility (CRUK-CI) 

(Glont et al., 2019, Papachristou et al., 2018).  

Briefly, tryptic digestion of bead-bound proteins was conducted overnight at 37°C, 

using 10µL trypsin solution (15ng/ul) (Pierce) prepared in 100mM AMBIC. The 

following morning, a second digestion was achieved by adding fresh trypsin solution 

to the samples for 4 extra hours, at 37°C. At the end of the second step, the tubes 

were placed on a magnet and the supernatant solution was collected and acidified by 

the addition of 2µl 5% formic acid.  
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The peptides were cleaned with the Ultra-Micro C18 Spin Columns (Harvard 

Apparatus) according to manufacturer’s protocol.   

For non-quantitative RIME, digested peptide mixtures were reconstituted in 15µl 

loading buffer (2% acetonitrile, 0.1% formic acid, water) and analysed on LTQ Velos-

Orbitrap MS (Thermo Scientific) coupled with the Ultimate RSLCnano-LC system 

(Dionex). 

For quantitative RIME, the samples were dried using speedvac, resuspended in 100µl 

0.1M Triethylammonium bicarbonate buffer (TEAB) and labelled using TMT 10-plex 

reagents (Thermo Fisher). The peptide mixture was fractionated with Reverse-Phase 

cartridges at high pH (Pierce). Nine fractions were collected using different elution 

solutions in the range of 5-50% acetonitrile.  Peptide fractions were analysed on nano-

ESI Fusion Lumos (Thermo Scientific) coupled with Dionex Ultimate 3000 UHPLC.  

 

2.2.10.3 RIME data processing and bioinformatics analysis  

Data processing was conducted by the Proteomics Core Facility and bioinformatics 

analysis by Dr Kamal Kishore (Bioinformatics Core facility, CRUK-CI).  

2.2.10.3.1 Non-quantitative RIME 

In order to identify specific peptides and proteins from non-quantitative RIME 

experiments, the raw mass-spectrometry files were processed using the SequestHT 

search engine from Proteome Discoverer 2.1 software. The filtering parameters 

included: precursor mass tolerance 20ppm, maximum missed cleavages sites 2, 

fragment mass tolerance 0.02Da. 

The protein intensities were normalised by the summed intensity separately for the 

IgG control pulldowns and for the target protein pull downs.  

The plots for bait protein coverage were created using the qPLEXanalyzer tool 

(Papachristou et al, 2018).  

2.2.10.3.2 Quantitative RIME 

The raw MS files were processed with the Sequest HT search engine on the Proteome 

Discoverer 2.1 software for peptide and protein identification.  
Pre-processed quantitative data (peptide or protein-level intensities) generated by 

Proteome Discoverer were imported into R and data was analysed using the 
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qPLEXanalyser tool (Papachristou et al., 2018) to identify differentially abundant 

proteins.  

 Survival analysis 

For analysis of disease-free survival, Kaplan-Meier plots were generated. The 

METABRIC cohort (Curtis et al., 2012, Rueda et al., 2019) was stratified based on the 

copy number of the genomic region encompassing for ETV6. The effect of ETV6 

gains/amplifications were assessed in ERα positive compared to ERα negative 

subtypes. In addition, ETV6 copy numbers were assessed separately in Luminal A, 

Luminal B, HER2 positive, triple negative groups. 

 Additional statistical analysis 

Additional statistical analysis was performed in GraphPad Prism Software Inc., version 

7. Either one-way or two -way analysis of variance (ANOVA) were employed to assess 

significant difference between the means of the groups compared. Results are 

represented as mean value with standard deviation. P values less than 0.05 were 

considered as statistically significant. 
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Chapter 3. FOXA1 function is independent of 
ERα signalling 
 

The work in this chapter is the basis of the paper: Silvia-E. Glont, Igor Chernukhin and 

Jason S. Carroll∗: Comprehensive Genomic Analysis Reveals that the Pioneering 

Function of FOXA1 Is Independent of Hormonal Signaling, Cell Reports, 2019; 26(10): 

2558–2565.e3, DOI: 10.1016/j.celrep.2019.02.036 Sequencing was performed by the 

Genomics Core Facility and ChIP-seq analysis was conducted by Dr Igor Chernukhin. 

 Introduction 
The development and differentiation in eukaryotic systems are dictated by gene 

expression events. ERα is a master regulator of breast cancer phenotype. The ERα 

transcriptional program culminates in cell division, defining its critical role in normal 

mammary gland development and in malignancy (Carroll, 2016). 

The ERα-chromatin interactions have first been described once genome-wide 

mapping of transcription factors methodologies were developed (Carroll et al., 2005, 

Carroll et al., 2006). Interestingly, it was revealed that ERα-binding events occur at 

enhancer regions located at significant distances from promoters (Carroll et al., 2005, 

Carroll et al., 2006, Lin et al., 2007). As a consequence, transcription initiation requires 

long-distance interaction between the cis-regulatory elements and the promoter 

regions of target genes (Fullwood et al., 2009). Carroll et al has also linked ERα and 

FOXA1 for the first time. ERα binding sites were enriched for forkhead motifs (Carroll 

et al., 2005). Subsequent studies have shown that approximately half of ERα 

chromatin binding sites are co-occupied by FOXA1 (Hurtado et al., 2011).  

One key aspect of ERα gene regulation is its accessibility to the estrogen response 

elements (ERE) from compacted chromatin. The concept of pioneer transcription 

factors (PTFs) developed over decades of research. They have the unique ability to 

bind to ‘closed’ chromatin. Forkhead box protein (FOXA) family members have been 

shown to bind to silent chromatin and initiate gene activation. FOXA1 pioneer activity 

is given by its ability to bind to nucleosomal embedded DNA through its winged-helix 
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domain that is similar to the H1 linker histone. It dislodges H1 and can induce 

nucleosome rearrangements via an ATP-independent mechanism (Zaret and Carroll, 

2011). Subsequently, they remodel the adjacent chromatin landscape, assist in 

chromatin opening and binding of secondary transcription factors such as steroid 

receptors, specifically ERα in breast cancer and AR in prostate cancer (Bernardo and 

Keri, 2012, Cirillo et al., 2002, Cirillo et al., 1998).  

Several studies indicate a transcription factor hierarchy in breast cancer, with FOXA1 

being the initiator and ERα the secondary protein. On the one hand, FOXA1 

knockdown with RNAi results in impaired ERα binding to chromatin (Hurtado et al., 

2011). On the other hand, inhibiting ERα does not impact on FOXA1-chromatin 

interactions (Lupien et al., 2008). Importantly, FOXA1 is required for growth of drug-

resistant cancer models and it has been shown to directly contribute to endocrine 

resistance (Fu et al., 2016).  

All these findings support the dependence of hormone receptor signalling on FOXA1 

pioneer transcription factor (Nakshatri and Badve, 2007, Jozwik and Carroll, 2012). As 

such, FOXA1 is an attractive therapeutic target. Its inhibition would act upstream of 

ERα and benefit ERα positive breast cancer patients, including those resistant to 

endocrine therapy. FOXA1 inhibition would bypass the mechanisms of endocrine 

resistance. 

Contrary to the pioneer transcription factor model, another mechanism of transcription 

regulation has been described, namely dynamic assisted loading. In this model, 

transcription factors can modulate each other. One factor can recruit ATP-dependent 

remodelling complexes, which in turn open up chromatin for the other (Biddie et al., 

2011, Grøntved et al., 2013, Miranda et al., 2013). This process allows the second 

factor to bind to chromatin. This model is different from the pioneer transcription 

concept in three fundamental aspects. First, there is a reciprocal modulation of the 

transcription factors and which one comes first is dependent on the local chromatin 

environment. Secondly, residence time of the proteins on chromatin is in the region of 

seconds. Lastly, the chromatin remodelling in the dynamic assisted loading is an ATP-

dependent process (Voss and Hager, 2014). Certain studies have implied that ERα 

and FOXA1 undergo dynamic assisted loading, therefore being able to modulate each 

other. Upon ERα knock down, Caizzi et al observed the loss of a number of FOXA1-

chromatin binding sites (Caizzi et al., 2014). In addition, Swinstead et al suggested 
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there is a subset of FOXA1 genomic binding sites induced by steroid activation 

(Swinstead et al., 2016). These new studies challenge the importance of FOXA1 

targeted therapy upstream of ERα.  

 Aims  
Given the recent studies that challenged the paradigm of FOXA1 pioneer activity in 

ERα positive breast cancer, the aim of this chapter was to investigate the hierarchy of 

these transcription factors. This study aims to shed light on whether FOXA1 binding 

events are regulated by hormone stimuli or whether FOXA1 is indeed a bone fide 

pioneer factor that acts upstream of ERα.  

 Results 
ERα and FOXA1 play pivotal roles in breast cancer. There are two distinct models for 

their transcription regulation. On the one hand, the pioneer transcription model places 

FOXA1 first to open up chromatin for ERα. On the other hand, the dynamic assisted 

loading postulates that the two transcription factors can modulate each other. 

Shedding light into which of the two transcriptional regulation models is applicable for 

FOXA1 and ERα is crucial, as this can influence therapeutic strategies. 

In this context, we sought to assess if hormone steroid treatment can modulate FOXA1 

in ERα positive breast cancer cell lines. For this purpose, MCF-7 and ZR-75-1 cells 

were first deprived of hormones for three days. Then, they were treated either with 

vehicle or with 10nM of estrogen for 45 minutes. This time point has previously shown 

to induce maximal ERα binding and enhancer activity (Shang et al., 2000). ERα 

induction after hormone treatment was tested using ERα ChIP-qPCR at known binding 

loci. ChIP-qPCR was conducted in three biological replicates from independent 

passages (Fig.3.1). 
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The next step was to perform FOXA1 ChIP-seq on both cell lines, to elucidate if 

estrogen treatment affects FOXA1-chromatin binding. The samples used for this 

experiment matched the ones used to confirm estrogen induction. Matched Input 

samples were also included.  

Importantly, while our study included three independent biological replicates, the work 

conducted by Swinstead et al only had two replicates. In addition, PCA analysis 

revealed that the three biological replicates used in our study clustered very closely, 

while the ones used by Swinstead et al did not cluster (Glont et al., 2019). 

To ensure peaks are biologically relevant and not artefacts given by the antibody, two 

different FOXA1 antibodies were used for ChIP-seq: ab23738 and ab5089. Peaks 

were called using MACS2 (Stark and Brown, Ross-Innes et al., 2012).  

In MCF-7 cells, the ab23738 antibody generated 64,823 FOXA1 peaks in vehicle-

treated and 62,000 peaks in estrogen-treated condition. ChIP-seq using ab5089 

antibody resulted in 37,318 FOXA1 binding sites in vehicle and 35,925 in estrogen 

treated samples (Table 3.1).  

In ZR-75-1 cells, FOXA1 ChIP-seq using ab23738 antibody resulted in 70,602 FOXA1 

peaks in vehicle and 66,604 peaks in estrogen conditions. ab5089 generated 35,763 

FOXA1 peaks in vehicle conditions and 31,361 peaks in E2 conditions (Table 3.1).  

Therefore, the global numbers of FOXA1 binding sites did not suffer major changes in 

estrogen stimulated compared to vehicle conditions in neither of the cell lines and with 

neither of the two antibodies used.  

A B MCF-7- ERα ChIP-qPCR ZR-75-1- ERα ChIP-qPCR 

Figure 3.1. Validation of estrogen activity in MCF-7 (A) and ZR-75-1 (B) cells:
ERα ChIP-qPCR was conducted in biological triplicates, at known ERα binding loci; 
these samples were matched with the FOXA1 ChIP-seq used for the study. 
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To exclude the possibility that FOXA1 binding is redistributed after hormone treatment, 

resulting in similar numbers of binding events, but in fact at different genomic loci, 

DiffBind analysis was conducted (Ross-Innes et al., 2012) (Table 3.2). 

In MCF-7 cells, ChIP-seq experiments using the ab23738 antibody gave 14 peaks 

gained and 2 peaks lost after estrogen stimulation. These differentially bound regions 

represent less than 0.02% of the total number of FOXA1 peaks (Fig.3.2.A and C). The 

ab5089 FOXA1 antibody gave the biggest change observed in our study (Fig.3.2.A-

C): a total of 357 FOXA1 peaks enriched in estrogen conditions (representing less 

than 1% of all peaks called) and 5 peaks enriched in vehicle conditions (Fig.3.2.B).  

In ZR-75-1 cells, ChIP-seq experiments using ab23738 antibody revealed 23 

estrogen-enriched and 2 vehicle-enriched FOXA1 binding sites (Fig.3.2. D and F). The 

ab5089 antibody gave 109 estrogen-induced FOXA1 binding sites and 1 vehicle-

enriched site (Fig.3.2. E). all these changes are less than 0.03% of the total number 

of peaks in ZR-75-1. 

Table 3.1. Total number of FOXA1 ChIP-seq peaks obtained using ab237338 
and ab5089 antibodies, in MCF-7 and ZR-75-1.  

Table 3.2. Differential binding comparison between vehicle and estrogen 
treatment. 
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Overall, the ChIP-seq data obtained using two different anti-FOXA1 antibodies and 

conducted in two independent cell line models, showed that only 0.02-1% of the 

FOXA1 binding sites are induced by estrogen. This is just a very small fraction of the 

total FOXA1-chromatin interactions that seem to be hormonally regulated. 

Figure 3.2. Analysis of FOXA1 ChIP-seq binding with two separate antibodies 
in response to estrogen treatment in MCF-7 and ZR-75-1 cells: ChIP-seq tag 
densities visualised at FOXA1-occupied genomic locations in control and estrogen-
treated MCF-7 (A and C) and ZR-751 cells. ChIP-seq tag densities visualised at 
FOXA1-occupied genomic locations in control and estrogen-treated MCF-7 (A and C) 
and ZR-75-1 (D and F) cells, using antibodies ab23738 and ab5089. Zoomed 
heatmaps show differential binding of FOXA1 specific to ab5089 in MCF-7 cells (B) 
and ZR-75-1 (E), respectively. 
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The ab5089 antibody produced a small number of estrogen-induced FOXA1 binding 

sites (357 sites), although it is important to note that these differential binding events 

constitute less than 1% of total FOXA1 binding events in the ChIP-seq dataset. Only 

28 common FOXA1 binding events were identified in both MCF-7 and ZR-75-1 cell 

lines, implying that these differential sites are not reproducible between different 

cancer models (Fig.3.3.A). 

Motif analysis for the estrogen-induced FOXA1 binding sites in MCF-7 and ZR-75-1 

revealed the Estrogen Responsive Element (EREs) motif (p=1x10-42), but no Forkhead 

motifs (Fig.3.3.B). This finding suggests that FOXA1 is not directly interacting with the 

chromatin at these regions. The small number of estrogen-induced FOXA1 binding 

sites might be indirect FOXA1 binding events mediated via chromatin loops connecting 

estrogen-induced genes and their enhancers. 

A 

329 

81 
28 

Overlap of Estrogen-induced FOXA1 
binding sites in MCF-7 and ZR-75-1 

ZR-75-1 

MCF-7 

B 

Motif enriched in common sites:  
FOXA1   p=1e-32 

Motif enriched in gained sites: 
ERE   p=1e-42 

MCF-7 and ZR-75-1 

Figure 3.3. Analysis of FOXA1 binding sites using ab5089 antibody in MCF-7 and 
ZR-75-1: (A) Overlap of estrogen-enriched FOXA1 binding sites between MCF-7 and 
ZR-75-1 cells; (B) Transcription factor motifs found overrepresented in the common 
and estrogen induced FOXA1 sites. 



54 
 

This hypothesis was explored on the highest difference detected in the ChIP-seq 

experiments: the 357 estrogen-induced FOXA1 binding sites from MCF-7 cell line 

seen with the ab5089 antibody. To understand the underlying properties of these 

binding sites, the ChIP-seq data was integrated with previously published RNA-seq 

performed in estrogen-stimulated MCF-7 compared to vehicle (Fig.3.4.A) (Hurtado et 

al, 2011). Almost all the 357 E2-induced binding sites were significantly biased 

towards the most estrogen-regulated genes from the RNA-seq data investigated (Fig. 

3.4.B). 

It has previously been established that the estrogen-induced genes, especially those 

with the greatest estrogen response, are regulated by clusters of closely associated 

cis-regulatory domains (Carroll et al., 2006).  

Examples of well-characterised ERα target genes are shown in Figure 3.5.A. They are 

either co-bound by FOXA1 and ERα, or unique to each of the two transcription factors, 

as shown in Figure 3.5.A. Of great relevance, the 357 sites are all in close proximity 

(within 2kb) from an independent ERα binding event, and within 8kb from another 

FOXA1 binding site (Fig.3.5.B and C). On the one hand, this indicates they are present 

in regions of enriched transcriptional activity and on the other hand it shows they are 

closer to an ERα binding event rather than to another FOXA1 site.  

A B 
MCF-7 

Figure 3.4. Integration of the estrogen-enriched FOXA1 binding events with 
estrogen-mediated gene expression events: (A) RNA-seq expression profile 
following short-term (3hr) estrogen treatment of MCF-7, shown as a dispersion plot.
(B) GSEA Pre-ranked test correlating estrogen-induced genes with the 357 estrogen-
induced FOXA1 binding sites. 
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This raises the possibility that the 357 sites are in fact the result of chromatin 

interactions between ERα binding sites and adjacent FOXA1 binding sites. 

Moreover, it is known that cis-regulatory elements physically associate with each other 

after estrogen stimulation (Pan et al., 2008, Fullwood et al., 2009). Therefore, the 

hypothesis that FOXA1 could associate with adjacent ERα binding sites through 

chromatin looping has emerged. The cross-linking in the ChIP-seq protocol fixes these 

indirect chromatin loops and creates FOXA1 binding sites that are not direct cis-

regulatory elements and thus represent “shadow peaks”. At these regions, FOXA1 

does not function as a pioneer factor and new regulatory elements are not created.  

Therefore, there is the possibility that the small fraction (<1%) of the FOXA1 binding 

sites that appear to be induced by estrogen stimulation are in fact just indirect peaks 

mediated via ERα at those genomic regions. Chromatin interaction analysis by paired-

end tag sequencing (ChIA-PET) is a novel methodology for unbiassed mapping of 

ERα-mediated chromatin interactions that occur in the presence of estrogen, in MCF-

7 cells (Fullwood et al., 2009). 
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Examples of sites co-bound by FOXA1 and 
ERα or specific to each of the two factors 

Figure 3.5. Estrogen-induced genes are regulated by clusters of closely
associated cis-regulatory domains: (A) Examples of sites co-bound by FOXA1 and 
ERα, as well as sites unique to each of the two transcription factors; Proximity of 
estrogen-induced FOXA1 peaks and the closest ERα (B) or FOXA1 (C) site. 
Heatmaps represent FOXA1-gained sites in red. 



56 
 

To assess whether the 357 estrogen induced FOXA1 peaks are indeed novel binding 

sites or simply ‘shadow peaks’, correlation analysis between ChIA-PET and the 

hormone-mediated sites was conducted. Remarkably, 319 of the 357 estrogen 

induced FOXA1 peaks were detected in experimentally identified ERα ChIA-PET 

chromatin loops (Fig.3.6). This represents the vast majority of 89% of the E2 specific 

sites (Fig.3.6.A). Examples of estrogen-induced FOXA1 binding sites existing within 

ChIA-PET chromatin loops, are shown in Figure 3.6.B. 

This finding confirms that the limited number of estrogen-induced FOXA1 binding 

events are in fact created by clusters of cis-regulatory elements brought into proximity 

Figure 3.6. ERα binding mediates indirect FOXA1 binding via chromatin looping 
at cis-regulatory elements: (A) Correlation between ERα-mediated chromatin 
interactions (ChIA-PET) and the 357 estrogen-induced FOXA1 binding sites (ab5089). 
The table shows the correlation values between ChIA-PET interactions and the 357 
estrogen-induced FOXA1 binding sites. (B) Examples of ERα and FOXA1 peaks at 
regions that are involved in chromatin loops, as detected by ChIA-PET. The images 
of the ChIA-PET loops are taken from (Fullwood et al., 2009). 
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by chromatin looping. Therefore, FOXA1 is not influenced by steroid hormones, it 

remains a bone fide pioneer factor that binds upstream of nuclear receptors. 

 Discussion 

In breast cancer, gene regulation is dictated by ERα, which regulates its target genes 

from enhancer regions (Carroll et al., 2005, Lin et al., 2007). However, additional 

factors are required for ERα activity (Shang et al., 2000, Glass and Rosenfeld, 2000).  

Resistance to ERα targeted drugs develops through different mechanisms, including 

but not limited to changes in genomic landscape, mutations in ERα or its co-factors or 

changes in co-activators and co-repressors levels. These abnormalities result in 

ligand-independent ERα activity. Therefore, there is significant interest in developing 

novel targeted therapies that may bypass endocrine resistance in ERα breast cancer.  

One determinant component of the ERα complex is FOXA1, which has previously 

been described as a pioneer transcription factor. FOXA1 is able to open silent 

chromatin for the nuclear receptor and hence influences its transcriptional programme. 

Therefore, inhibition of FOXA1 upstream of ERα represents a therapeutic opportunity 

to overcome ERα-associated mechanisms of resistance (Nakshatri and Badve, 2007, 

Nakshatri and Badve, 2009, Jozwik and Carroll, 2012). This is of particular relevance, 

as FOXA1 has been shown to be required for ERα binding and activity in both 

endocrine sensitive and resistant context (Ross-Innes et al., 2012).  

FOXA1 activity upstream of ERα was recently challenged with claims that it can be 

modulated by E2 (Swinstead et al., 2016), in an ATP-dependent manner. The 

implications are that FOXA1 may be inhibited by drugs targeting the ERα pathway and 

therefore the benefits of direct inhibition of FOXA1 are abolished.  

The genomic analysis conducted in this chapter reveals that less than 1% of FOXA1 

binding sites emerge after hormonal stimulation in MCF-7 cells. This percentage is 

even smaller when other antibodies are used or in different cell lines. As such, more 

the 99% of FOXA1 binding sites are not affected by the hormonal status.  
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Importantly, the changes in FOXA1 binding that appear to be linked with estrogen-

stimulation are peaks that form within clusters of ERα/FOXA1 binding sites at genes 

that are regulated. They lack the hallmarks of genuine FOXA1 binding sites, as they 

do not result in the creation of new regulatory elements and they do not result in new 

gene expression events. The lack of robust, reproducible FOXA1 binding sites 

confirms that FOXA1 binding is not estrogen regulated and that it functions upstream 

of ERα. In support of this conclusion, previous experimental data showed that the 

breast cancer treatment with the ERα degrader Fulvestrant does not alter FOXA1 

binding (Hurtado et al., 2011). 

In addition, it is worth mentioning that the conclusion of Swinstead et al that steroid 

treatment can modulate FOXA1 was mainly based on their ChIP-seq analyses. Yet, 

only 1000 new FOXA1 binding sites appeared after estrogen stimulation, representing 

just a minor fraction of the total number of FOXA1 peaks found in their study. Notably, 

Swinstead et al only included two biological replicates which did not cluster according 

to conditions, as evidenced by PCA analysis (Glont et al., 2019). Our study included 

three biological replicates, collected from independent passages. Therefore, the 

apparent estrogen-mediated FOXA1 binding events seen in the Swinstead et al study 

are likely an artefact resulting from inadequate number of robust replicates. 

In addition, Swinstead et al also assessed FOXA1 chromatin interaction time using an 

exogenous tagged-FOXA1 approach. The caveat of this approach is that exogenous 

FOXA1 alters the levels and potentially function of endogenous FOXA1 and the tagged 

protein might not faithfully recapitulate endogenous FOXA1. Nonetheless, there was 

a minimal change in FOXA1 dwell time between presence or absence of E2. Thus, 

this non-ChIP-based method does not offer grounds to conclude that FOXA1 is 

hormonally modulated.  

In conclusion, our study shows that the vast majority of more than 99% of FOXA1 

binding is not regulated by estrogen and the small fraction of altered FOXA1 binding 

events are created via chromatin loops during the course of estrogen-receptor 

mediated gene expression. FOXA1 therefore acts upstream of ERα, its chromatin 

interactions are not influenced by estrogen signalling and it remains a promising drug 

target in hormone-dependent cancers. 



59 
 

Chapter 4. Characterising novel mechanisms 
of endocrine resistance in ERα positive 
breast cancer 

 Introduction 
ERα is the driving transcription factor in approximately three quarters of all breast 

cancers. This nuclear receptor mediates most of estrogen-induced effects on cell 

proliferation, survival and development (Musgrove and Sutherland, 2009) and 

therefore deregulations in  ERα activity results in aberrant cell growth and 

tumourigenesis.  

Due to ERα’s causal role in breast cancer, extensive efforts have been invested into 

the development of efficient endocrine treatments for ERα positive breast cancer. The 

selective estrogen receptor modulator (SERM) Tamoxifen was the first endocrine 

therapy developed (Jensen and Jordan, 2003). It remains the most widely used agent 

in pre-menopausal women and continues to be used for post-menopausal patients 

(Davies et al., 2011).  

However, 20-30% of breast cancer cases present with endocrine resistance (Davies 

et al., 2011, Hoskins et al., 2009). Several molecular mechanisms for the refractory 

phenotype have been identified, including changes in ERα levels and activity, changes 

in its protein interactors, overexpression of growth factors and kinase signalling 

pathways, or dysregulation of cellular proliferation. These insights have triggered the 

development of promising new targeted therapies that are now FDA-approved for 

endocrine resistant breast cancer.  

A new strategy that significantly improved the outcome of ERα-positive, HER2 positive 

breast cancer patients is the inhibition of HER2-mediated aberrant cell growth using 

an antibody-drug conjugate. This compound combines the monoclonal antibody 

against HER2 Trastuzumab (T) with the potent cytotoxic maytansine derivative (DM1) 

(Okines, 2017) and it is termed T-DM1. 

In addition, inhibitors of cyclin D–CDK4/6-Retinoblastoma pathway such as Palbociclib 

(Finn et al., 2015) or inhibitors of the AKT/mTOR signalling pathway such as the mTOR 
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inhibitor Everolimus have significantly improved disease-free survival in subsets of 

breast cancer patients (Yardley et al., 2013). 

Nonetheless, there are still cases that do not respond to any of the currently-available 

therapies (Martelotto et al., 2014). This is a consequence of breast cancer 

heterogeneity and it implies that there are alternative molecular mechanisms for 

endocrine resistance that need to be identified and targeted for the overall 

improvement of breast cancer survival rates. 

While ERα gene activation can be dictated by its direct interactions with the estrogen 

response elements (ERE) within the chromatin (Klein-Hitpass et al., 1989), there are 

also numerous ERα associated proteins that mediate its transcriptional activity. 

Comprehensive genomic studies have identified FOXA1 as the critical pioneer 

transcription factor in ERα positive breast cancer. Due to its structure, it is able to 

access highly compacted chromatin and subsequently assist in chromatin opening and 

binding of the nuclear receptor. FOXA1 acts upstream of ERα and influences its 

transcriptional programme (Glont et al., 2019, Hurtado et al., 2011). FOXA1 plays a 

critical role in both Tamoxifen-sensitive and resistant context (Ross-Innes et al., 

2012a). Ross-Innes et al conducted in vitro validation of the ERα binding reprograming 

seen in advanced breast cancer patients. This work has shown that FOXA1 and ERα 

co-localise in both Tamoxifen sensitive and resistant cell lines, implying that FOXA1 

may redirect ERα to its novel target regions associated with endocrine resistance.  

There is also a plethora of known ERα interactors that mediate gene activation or 

repression by promoting histone modifications or chromatin remodelling. Examples of 

known co-activators are members of the p160 family of transcription factors such as 

SRC1, SRC2 and AIB1 (Anzick et al., 1997, Hong et al., 1997, Oñate et al., 1995). 

They are recruited to the ERα complex and in turn recruit acetyltransferases (HATs) 

and histone methyltransferases (HMTs) that decondense chromatin and enhance 

ERα-mediated transcriptional programme (Chen et al., 2000, Rollins et al., 2015).  

Moreover, co-repressors such as NCOR, RIP140 or REA mediate ERα-induced gene 

down-regulation by recruit deacetylases (HDACs) (Castet et al., 2004, Delage-

Mourroux et al., 2000, Lazar, 2003, Varlakhanova et al., 2010). HDACs remove the 

acetylation marks resulting in chromatin condensation and gene inactivation.  
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ERα co-factors are of particular importance. They work in a cooperative or competitive 

manner and disbalances in their levels can contribute to breast cancer progression 

and influence endocrine response. 

Another recent study of the molecular mechanisms underpinning endocrine resistance 

has found a differential interaction between ERα, GATA3 and AP1 transcription factors 

in therapy refractory breast cancer (Bi et al., 2020). The differential binding of GATA3 

and AP1 was associated with a global enhancer reprogramming that profoundly 

impacted on ERα transcriptional function in treatment-resistant breast cancer. It is 

worth mentioning this study was only conducted in one endocrine resistant model. 

Moreover, quantitative Multiplexed Rapid Immunoprecipitation Mass spectrometry of 

Endogenous proteins (qPLEX-RIME) (Papachristou et al., 2018) is a recently 

developed proteomic tool for the study of quantitative changes in protein-protein 

interactions between different biological contexts. This powerful proteomic tool opens 

the possibility to identify novel ERα and FOXA1 protein interactors and to investigate 

their quantitative changes between Tamoxifen resistant and sensitive context. Such 

studies may elucidate novel mechanisms of endocrine resistance. 

ETV6 (TEL-1, TEL) is one of the ETS factors that can mediate differentiation and 

lineage specification during normal development. They regulate cell cycle, cell 

differentiation, proliferation and apoptosis (Findlay et al., 2013). Therefore, 

perturbations in ETS proteins render them crucial onco-drivers in various cancer types. 

ETV6- NTRK3 gene fusion is the driving oncogenic event in 92% of the secretory 

breast carcinoma clinical samples (Tognon et al., 2002).  

Importantly, copy-number amplifications of ETV6 are associated with significantly 

worse prognosis in ERα positive, Luminal B breast cancer cases from the METABRIC 

cohort (Curtis et al., 2012), suggesting ETV6 possible contribution to poor outcome in 

these patients.  

In addition, it has been shown that in gastrointestinal stromal tumours, mutated and 

constitutively active tyrosine kinase receptor KIT stabilises ETV1 (member of the ETS 

family) through MEK-ERK pathway. This results in ETV1 overexpression and an 

oncogenic ETS transcriptional programme (Chi et al., 2010). This knowledge raises 

the possibility that other ETS family members, such as ETV6, may also be regulated 

by MEK/ERK pathway in breast cancer. 
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 Aims of the chapter 
In this context, the first aim of this chapter was to identify novel ERα and FOXA1 

protein interactors that may contribute to the development of endocrine resistance, by 

conducting qPLEX-RIME. The second aim was to characterise and validate the role 

of the newly-identified interactor called ETV6 in breast cancer progression and 

endocrine refractory phenotype. This would pave the way for improved personalised 

treatments. 

 Results 

 Optimisation steps 

4.3.1.1 ERα antibody validation  

The work in this chapter was published in the paper: Silvia-E. Glont#, Evangelia K. 

Papachristou#, Ashley Sawle, Kelly A. Holmes, Jason S. Carroll*, Rasmus Siersbaek*: 

Identification of ChIP-seq and RIME grade antibodies for Estrogen Receptor alpha, 

PLOS ONE, 2019: e0215340, DOI: https://doi.org/10.1371/journal.pone.0215340. 

Sequencing was performed by the Genomics Core Facility (CRUK-Cambridge 

Institute), ChIP-seq analysis was conducted by Dr Ashley Sawle (Bioinformatics Core, 

CRUK-CI) and proteomics experiments were done by Evangelia K Papachristou.  

ChIP-seq studies of ERα-chromatin interactions in different biological contexts is 

essential for the identification of those changes associated with aggressive breast 

cancer and endocrine refractory phenotype. ERα transcriptional activity can also be 

modulated by its association with co-regulatory proteins which can be identified using 

RIME. In addition, qPLEX RIME enables the study of quantitative protein changes 

between Tamoxifen resistant and sensitive context. Such studies may elucidate novel 

mechanisms of Tamoxifen resistance.  

However, these techniques rely on the specificity and sensitivity of the ERα antibody 

used for the immunoprecipitation. To date, most ERα ChIP-seq and RIME experiments 

have been conducted using the sc-543 ERα antibody from Santa Cruz Biotechnology. 

This antibody has recently been discontinued, impacting on the ability to further study 
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ERα function in different contexts. Therefore, it has become paramount to identify 

antibodies that can replace the previously-established one.  

As a result, alternative antibodies for ChIP-seq and RIME experiments were tested. 

The initial ChIP-qPCR comparison of sc-543 with several other ERα antibodies 

demonstrated that 06-935 (Millipore) and ab3575 (Abcam) can successfully enrich 

ERα-bound chromatin at the selected loci similarly to sc-543 (Glont et al., 2019). 

ChIP-seq was then performed on MCF-7 cells to compare ERα genome-wide binding 

profiles obtained with sc-543, 06-935 and ab3575. IgG was used as negative control 

(Fig 4.1). ERα and IgG ChIP-seq were performed in at least technical duplicates using 

the same batch of chromatin to ensure that antibodies could be directly compared. In 

addition, the ERα negative cell line MDA-MB-231 was included in order to assess the 

non-specific enrichment of chromatin by these antibodies. For MDA-MB-231, ChIP-

seq was performed in biological triplicates.  

ChIP-seq analysis resulted in 6,031 ERα binding sites for sc-543 antibody, 6,192 

peaks for ab3575 and 6,552 for 06-935. Importantly, none of these binding sites were 

observed in the IgG negative control. The vast majority of sites identified in MCF-7 

cells by sc-543 overlapped with those detected by ab3575 and 06-935 (Fig.4.1.A and 

B). Importantly, none of the antibodies showed any significant enrichment in the ERα 

negative cell line MDA-MB-231 (Fig.4.1. B and D).  There was only one peak detected 

in MDA-MB-231 using ab3575, two peaks for 06-935 and 124 peaks for sc-543. This 

confirms the specificity of the newly tested antibodies. In addition, motif analysis 

identified the ERα response element (ERE) as significantly enriched at the sites bound 

by ERα in MCF-7 cells for all three antibodies assessed (Fig. 4.1.C). Examples of 

peaks at previously described ERα binding sites are illustrated in Figure 4.1.D. 

Overall, the genome-wide analyses of ERα-chromatin binding sites suggest that 

ab3575 and 06-935 perform similarly to sc-543 in ChIP-seq experiments, in terms of 

sensitivity and specificity and are valid alternatives. 

The genomic data was corroborated with ERα RIME experiments (Glont et al., 2019). 

Proteomic analysis revealed that all three antibodies specifically identified the bait 

protein ERα with similar coverage, as well as its known interactors such a FOXA1, 

GATA3 and members of the p160 family for all three antibodies. 
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Figure 4.1. ERα antibody optimisation: ChIP-seq Comparison between sc-543 
(Santa Cruz), 6-935 (Millipore) and ab3575 (Abcam); (A) Venn diagram showing the 
overlap between ERα binding sites for sc-543, 6-935 and ab3575 in MCF-7 cells. (B)
Heatmap of total number of ERα binding sites seen in both technical replicates of 
MCF-7, and all three biological replicates for MDA-MB-231, respectively. (C) De novo 
motif analysis of ERα binding sites using MEME. (D) Examples of ERα-bound regions
using sc-543, 6-935 and ab3575; tag densities are shown as reads per million. 
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Taken together, the genomic and proteomic data indicate that both newly tested 

antibodies 06-935 (EMD Millipore) and ab3575 (Abcam) perform similarly to sc-543 

(Santa Cruz) for immunoprecipitation-based experiments (Glont et al., 2019). 

Further assessment of the combination of 06-935 and ab3575 in equal concentrations 

improved the quality of the genomic and proteomic results. Therefore, the two-

antibody mix was the standard used throughout all further experiments. 

4.3.1.2 ETV6 antibody optimisation 

As part of this chapter, the role of ETV6 in endocrine resistant ERα positive breast 

cancer models was investigated. Therefore, the validation of sensitive and specific 

antibodies for its detection was required. 

To this end, western blot analysis was performed for the detection of ETV6 protein 

levels in the chromatin fraction of ZR-75-1 and ZR-75-1-TamR (Fig.4.2.A). The two 

cell lines were transfected either with non-targeting siRNA (siNT) or subjected to ETV6 

silencing (siETV6). The WH0002129M1 antibody (Sigma Aldrich) accurately detected 

two isoforms of ETV6 in the siNT condition of the two cell lines. Importantly, there was 

a robust inhibition of the target protein in the siETV6 condition, confirming both the 

antibody specificity and the efficiency of the knockdown. The cytoplasmic marker 

GAPDH was not detected, while the chromatin fraction mark Histone 3 was identified, 

attesting the accurate chromatin purification. 

Moreover, immunohistochemistry (IHC) using the WH0002129M1 antibody accurately 

detected ETV6 total protein levels in ZR-75-1 transfected with non-targeting siRNA, 

while ETV6 knockdown almost completely depleted its levels (Fig. 4.2.B). 

Furthermore, RIME comparison of ETV6 WH0002120M1 (Sigma Aldrich) and A303-

674 (Bethyl Laboratories) antibodies was conducted (Fig.4.2.C). Both of them 

detected the bait protein with a coverage of 25.44%, confirming their specificity. In 

addition, WH0002120M1 identified 84 ETV6 specific interactors, while A303-674 

identified 631 specific interactors of the bait protein, among which there was ERα with 

a coverage of 4.54%. This indicates that A303-674 may be more sensitive. 

Moreover, genome-wide analysis of ETV6-chromatin interactions using ChIP-seq was 

performed (Fig.4.2.D). While WH0002120M1 failed to generate ETV6 peaks, A303-

674 successfully identified a total number of 19,298 ETV6 DNA binding events. Motif 
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analysis of these sites identified ETS specific motifs with high confidence (e=9.2249E-

10). Examples of ETV6, ERα and FOXA1 co-bound regions are provided in Fig.4.2.D. 

Taken together, whilst WH0002120M1 (Sigma Aldrich) can accurately detect ETV6 by 

western blot and IHC, A303-674 (Bethyl Laboratories) proved most specific and 

sensitive for immunoprecipitation-based experiments such as ChIP-seq and RIME. 

Figure 4.2. ETV6 antibody optimisation: 
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ZR-75-1 and ZR-75-1-TamR were transfected with 15nM of either siGENOME Non-
Targeting siRNA pool (Dharmacon, D-001206-13-05) or siGENOME siRNA pool 
targeting ETV6 (Dharmacon, M-010510-03); after 48 hours of knockdown, samples 
were collected for chromatin fractionation followed by western blot protein detection 
(A) and for IHC (B); (C) RIME comparison of ETV6 WH0002120M1 (Sigma) and A303-
674 (Bethyl) antibodies; Venn diagrams show protein interactors specific to ETV6 
compared to the IgG controls; ETV6 and ERα protein coverage are illustrated;(D) 
ETV6 ChIP-seq in MCF-7 using A303-674;Motif analysis of ETV6 binding sites using 
MEME; examples of regions co-bound by ETV6, ERα and FOXA1.  

4.3.1.3 Generation of Tamoxifen resistant breast cancer models 

In order to study the molecular changes associated with acquired endocrine 

resistance, two in vitro resistant models were generated. MCF-7-TRF and ZR-75-1-

TamR cell lines were derived from MCF-7 and ZR-75-1, respectively, by continuous 

exposure to 4-hydroxy-Tamoxifen (Sigma-Aldrich, H7904) until they became resistant 

to the drug. The concentration of Tamoxifen was progressively increased to 1µM for 

MCF-7-TRF and 100nM for ZR-75-1-TamR. This work was conducted by Dr Aisling 

Redmond. 

The effect of Tamoxifen on the growth of the endocrine-resistant derivatives along with 

their parental cell lines was assessed (Fig.4.3.A and B). After six days of treatment, 

MCF-7 cell growth was significantly inhibited by 1µm of Tamoxifen (p value of 0.0005), 

whereas the same concentration of the compound enhanced growth of MCF-7-TRF (p 

value of 0.03) (Fig.4.3.A). These results attest that MCF-7-TRF are Tamoxifen 

resistant. Moreover, MCF-7-TRF present a more proliferative phenotype compared to 

their parental cells, as evidenced by the significantly higher growth rate of untreated 

MCF-7-TRF versus untreated MCF-7 (p value of <0.0001).  

Similarly, Tamoxifen effect was assessed on ZR-75-1 and ZR-75-1-TamR (Fig.4.3.B). 

While ZR-75-1 cell growth was significantly reduced by 100nM of Tamoxifen (p value 

of <0.0001), the compound had no effect on ZR-75-1-TamR. 

Moreover, the ability of the four cell lines to form colonies was investigated (Fig.4.3.C 

and D). The more proliferative phenotype of MCF-7-TRF compared to MCF-7 as well 

as ZR-75-1-TamR compared to ZR-75-1 was reinforced by the enhanced colony 

formation ability of the resistant cells compared to their parental cells. Furthermore, 

the inhibitory effects of the selective estrogen-receptor modulator [SERM] Tamoxifen 

and the estrogen-receptor degrader [SERD] Fulvestrant (ICI) (Fig.4.3.C and D) were 
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tested on the cell lines. Both compounds almost completely stopped colony formation 

of MCF-7 and ZR-75-1 cells, but had little or no effect on MCF-7-TRF and ZR-75-1-

TamR. Thus, the derived cells seem cross-resistant to multiple endocrine therapies. 

MCF-7 and MCF-7-TRF (A) and ZR-75-1 and ZR-75-1-TamR (B) cell growth in 
response to Tamoxifen was assessed using cell confluency as parameter on IncuCyte 
ZOOMTM system; cells were seeded and after 12 hours MCF-7 and MCF-7-TRF were 
treated with 1µM Tamoxifen, while ZR-75-1 and ZR-75-1-TamR received 100 nM of the 
compound; results are shown as mean ±SD of six technical replicates; Two-way-
ANOVA statistical analyses were conducted in GraphPad Prism Software Inc; * =
p=0.03;  *** = p=0.0005; **** = p ≤ 0.0001 (C) Colony formation assay for MCF-7 and 
MCF-7-TRF in response to 1µM Tamoxifen and 100nM Fulvestrant (ICI); (D) Colony 
formation assay for ZR-75-1 and ZR-75-1-TamR in response to 100nM of either 
Tamoxifen or ICI; cells were seeded at a density of 300 cells per well in a six well plate. 
Technical duplicates were used and compound treatment duration was 14 days. 

Figure 4.3. Characterisation of Tamoxifen sensitive and resistant in vitro models:



69 
 

 ETV6 is a novel interactor from the FOXA1/ERα 
complex that is enriched in endocrine resistance 

Having established the antibodies and breast cancer models required, the following 

step was to investigate the quantitative differences in the ERα-FOXA1 protein complex 

between Tamoxifen resistant and sensitive breast cancer. 

4.3.2.1 ETV6 is identified in the FOXA1 complex in vivo 

FOXA1 interactome was studied in vivo using qPLEX-RIME. To achieve this, four 

patient derived tumour xenografts known to be ERα and FOXA1 positive, endocrine 

resistant were assessed (Fig.4.4).  

In order to identify specific interactors of FOXA1, each sample was equally divided 

between FOXA1 and IgG immunoprecipitation (Fig.4.4.A). The bait protein was 

successfully identified with a coverage of 18.85% in the FOXA1 vs IgG qPLEX RIME 

(Fig.4.4.B). In addition, several specific protein interactors were also detected as 

enriched in the FOXA1 complex compared to IgG (Fig.4.4.C). ETV6 was one of the 

factors detected with a coverage of 1.55% (Fig.4.4.C). 

Figure 4.4. ETV6 is identified in the FOXA1 interactome in PDXs: (A) Experimental 
design; four PDXs were considered biological replicates; each sample was equally 
divided between FOXA1 and IgG control immunoprecipitation; (B) protein coverage 
plots for FOXA1 and ETV6 show the unique peptides identified with high confidence 
across each protein sequence; the corresponding percentage coverage is provided 
above each coverage plot; (C) Volcano plot illustrates significant changes between 
FOXA1 and IgG, as identified by qPLEX-RIME in the four models; proteins significantly 
enriched - as assessed by adjusted p value ≤0.05 - are illustrated in red and those 
that are significantly depleted are shown in blue. 
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Furthermore, FOXA1 interactome was investigated in clinical samples. For this 

purpose, four pleural effusions and six non-matched primary breast tumours were 

included (Fig 4.5). FOXA1 was successfully detected with a coverage of 11.65% 

across all samples (Fig.4.5.B). In addition, several interactors were identified, including 

ETV6 with a coverage of 3.32% (Fig.4.5.B). ETV6 presence in the FOXA1 complex in 

the clinical samples is highlighted in Figure 4.5.C. 

Therefore, ETV6 is a novel FOXA1 interactor identified across multiple endocrine 

resistant breast cancer models. 

Figure 4.5. ETV6 is identified in the FOXA1 interactome in clinical samples: (A)
Experimental design: FOXA1 qPLEX RIME was conducted in four pleural effusions 
and six primary breast cancer clinical samples, all assessed as ERα, FOXA1 positive; 
(B) protein coverage plots for FOXA1 and ETV6 show the unique peptides identified 
with high confidence across each protein sequence; the corresponding percentage 
coverage is provided above each coverage plot; (C) Average peptide intensity plot 
highlighting ETV6 in the FOXA1 interactome in clinical samples. 
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4.3.2.2 ETV6 interactor of ERα and FOXA1 is specifically enriched in 
endocrine resistant compared to sensitive breast cancer models 

In order to study changes in the ERα-FOXA1 complex associated with endocrine 

resistance, qPLEX-RIME was conducted in MCF-7-TRF compared to MCF-7 and ZR-

75-1-TamR compared to ZR-75-1 cell lines. The experimental design is illustrated in 

Figure 4.6. A minimum of four biological replicates of every cell line and for each factor 

were assessed. In order to identify specific interactors of ERα and FOXA1, IgG 

controls were included in every qPLEX-RIME experiment. 

Both ERα and FOXA1 were consistently enriched in Tamoxifen resistant cell lines 

compared to their sensitive counterparts across the four qPLEX-RIME experiments 

conducted (Fig. 4.7.A-D). Importantly, ERα pulldown validated FOXA1 presence in its 

complex and vice-versa. 

In addition, the development of endocrine refractory phenotype triggered the 

significant depletion or enrichment of several specific interactors from the ERα and 

FOXA1 complex, as illustrated in the volcano plots (Fig.4.7.A-D). Importantly, the 

newly identified ERα and FOXA1 interactor ETV6 was consistently detected as 

significantly enriched in endocrine resistant compared to sensitive context. 

ERα, FOXA1 and ETV6 percentage protein coverages confirm their detection with 

high confidence across all experiments (Fig.4.7.A-D).  

Figure 4.6. Experimental design for ERα and FOXA1 qPLEX RIME in MCF-7-TRF 
versus MCF-7 and ZR-75-1-TamR versus ZR-75-1. 



72 
 

 
Figure 4.7. Endocrine resistance is associated with ERα and FOXA1α 
enrichment on the chromatin, as well as significant changes in the levels of 
their interactors: A-D volcano plots for ERα and FOXA1 qPLEX RIME in MCF-7-
TRF versus MCF-7 and ZR-75-1-TamR versus ZR-75-1; interactors that significantly 
change according to adjusted p value (p adj ≤0.05 after multiple testing correction 
using the Benjamini-Hochberg procedure) are represented in red (enriched) and blue 
(depleted); protein coverage for ERα, FOXA1 and ETV6 show unique peptides 
identified with high confidence across each protein sequence; the corresponding 
percentage coverage is provided on the left side of each coverage plot. 
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Several proteins were significantly enriched or depleted in all four comparisons 

(Fig.4.8.A). 

Figure 4.8. Interactors that change significantly in ERα and FOXA1 complex 
in MCF-7-TRF versus MCF-7 and ZR-75-1 TamR versus ZR-75-1: 
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(A) Venn diagram showing the overlap between proteins that commonly change 
significantly in the four qPLEX-RIME experiments conducted; (B) heatmap showing 
log2 fold change for the 35 interactors that are significantly enriched or depleted in 
ERα and FOXA1 in MCF-7-TRF vs MCF-7 and ZR-75-1-TamR vs ZR-75-1. 

There were 35 proteins that significantly changed in ERα and FOXA1 complex in both 

MCF-7-TRF compared to MCF-7 and ZR-75-1-TamR compared to ZR-75-1 

(Fig.4.8.B). Among them, there were known co-factors of ERα and FOXA1, such as 

TRPS1, GATA3, GREB1, TLE3 and TFAP2A. 

GATA3 is one of the most well-established interactors of ERα and FOXA1 (Carroll et 

al., 2005, Lin et al., 2007, Theodorou et al., 2013). Notably, the ERα-induced growth 

in breast cancer models seems to be dependent on GATA3 (Eeckhoute et al., 2007).  

TRPS1 has been described as a context-dependent regulator of epithelial cell growth 

and differentiation in breast cancer (Cornelissen et al., 2020, Serandour et al., 2018). 

GREB1 was previously identified as a key estrogen receptor co-factor that is part of 

the ERα interactome (Mohammed et al., 2013, Rae et al., 2005). 

The ERα transcriptional co-repressor TLE3 impairs ERα-mediated gene expression at 

a subset of target genes (Jangal et al., 2014). 

AP-2α transcription factor (TFAP2A) is implicated in the differentiation and proliferation 

of the mammary gland. Its isoforms have also been linked with different activities in 

breast cancer (Berlato et al., 2011). 

The presence of these known treatment resistance-related co-factors of ERα in the 

four qPLEX-RIME experiments conducted validates the quality of the data generated. 

Importantly, several novel interactors were identified as changing significantly in ERα 

and FOXA1 interactome once Tamoxifen resistance developed, among which ETV6 

was significantly enriched in endocrine resistant context. ETV6 is a member of the 

ETS family of transcription factors that mediate differentiation and lineage specification 

during normal development. Perturbations in ETS factors have previously been linked 

with various cancer types (Findlay et al., 2013, Tognon et al., 2002). 

Furthermore, qRT-PCR was conducted to examine gene expression levels of ERα, 

FOXA1, GATA3 and ETV6 in the Tamoxifen resistant cell lines compared to sensitive 

counterparts (Fig.4.9.A). FOXA1 and GATA3 were significantly upregulated in both 

MCF-7-TRF compared to MCF-7 and ZR-75-1-TamR versus ZR-75-1. In addition, 



75 
 

ETV6 expression level was significantly higher in MCF-7-TRF versus MCF-7, though 

its levels remained similar in ZR-75-1-TamR compared to ZR-75-1. These findings 

confirm that the enrichment of these transcription factors on the chromatin assessed 

by qPLEX-RIME are largely associated with their gene expression upregulation. In 

contrast, ERα mRNA levels seemed to be depleted in endocrine resistant context, with 

significantly lower expression in ZR-75-1-TamR vs ZR-75-1 (p value of 0.01). 

Western blot was then conducted to evaluate total protein levels of ERα, FOXA1, 

GATA3 and ETV6 Fig.4.9.B). All four proteins had higher levels in both MCF-7-TRF 

and ZR-75-1-TamR compared to their sensitive counterparts. 

The results suggest that post-translational modifications may further stabilise these 

transcription factors, resulting in their chromatin enrichment detected by qPLEX-RIME 

in Tamoxifen resistant compared to sensitive cells. 

 

Taken together, ERα, FOXA1 and their newly identified interactor ETV6 are enriched 

in endocrine resistance across multiple breast cancer models. This suggests ETV6 

may play a role in cancer progression and drug-refractory phenotype and is a worthy 

candidate to pursue. 

Figure 4.9. Assessment of ERα, FOXA1, GATA3 and ETV6 gene expression 
levels (A) and total protein levels (B) for MCF-7, MCF-7-TRF, ZR-75-1, ZR-75-1-
TamR: (A) mRNA levels were assessed with qRT-PCR; results represent mean ±SD 
of enrichment relative to the housekeeping gene UBC. Two-way-ANOVA statistical 
analyses were conducted; * = p = 0.01; **** = p ≤ 0.0001; (B) ERα, FOXA1, GATA3 
and ETV6 Western blot analysis on whole protein lysate from the four cell lines 
investigated. β-Actin was included as loading control. 
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 Independent validation of ETV6 relevance in endocrine 
resistant context 

To ensure further studies would focus on the most relevant ERα and FOXA1 

interactors for endocrine resistance, an siRNA screen was conducted to target the top 

most enriched proteins depicted in the ERα and FOXA1 qPLEX RIME in MCF-7-TRF 

compared to MCF-7 and ZR-75-1-TamR compared to ZR-75-1 (Fig.4.10). As 

expected, FOXA1 knock-down had a pronounced inhibitory effect on cell viability. 

Notably, ETV6 silencing also strongly affected cell viability of both Tamoxifen sensitive 

and resistant cell lines, confirming its relevance in the endocrine refractory phenotype. 

Figure 4.10. Independent siRNA screen validates ETV6 relevance in endocrine 
resistant context: the LP_34662 siGenome library of siRNA pools (Dharmacon, G-
CUSTOM-294730) was used; non-targeting siRNA pool was also included in the 
library; four independent biological replicates were conducted for MCF-7, MCF-7-
TRF, ZR-75-1 and ZR-75-1-TamR, each containing 6 technical replicates; cells were 
transfected with 15nM of either siNT or siRNA pool targeting each selected interactor; 
knockdown was conducted for 72 hours, after which cell viability was assessed using 
CellTiter-Glo® Luminescent Assay. Heatmap illustrates log2fold change compared to 
non-targeting siRNA for every knockdown in each cell line as an average of the four 
biological replicates; cell viability inhibition is illustrated in blue, while red represents 
cell viability promotion. 
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To ensure the effects of ETV6 silencing on cell viability are not specific to the pool of 

siRNAs used as part of the library screen, further validation was conducted. 

ETV6 was inhibited using single siETV6 On-TARGET plus (Dharmacon, j-010510-10 

or j-010510-11) compared to matched ON-TARGET-plus non-targeting siRNA 

(Dharmacon, D-001810-10). The knockdown efficiency was assessed (Fig.4.11.A). 

ETV6 silencing using any of the siRNAs resulted in a significant anti-proliferative effect 

in all four cell lines (Fig.4.11.B). 

These results show that targeting ETV6 inhibit the growth of the cells that no longer 

respond to endocrine therapy and suggest that targeting ETV6 may be beneficial for 

the endocrine refractory breast cancer patients. 

Figure 4.11. Validation of the effects of ETV6 inhibition using single siRNA: knock-
down was achieved using 15nM of single siETV6 (Dharmacon, j-010510-10 or j-010510-
11) and was compared to non-targeting siRNA (Dharmacon, D-001810-10); (A) western 
blot confirming robust ETV6 silencing in all four cell lines after 48 hours of knockdown (B) 
cell growth in response to ETV6 inhibition; cells were seeded and transfected the following 
day. T0 is the time of transfection; experiments were performed in biological triplicates; 
one of the replicates is illustrated; data points represent mean ±SD of six technical 
replicates; Two-way-ANOVA statistical analysis was conducted; **** = p ≤ 0.0001. 
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 ETV6 directly contributes to breast cancer progression 
associated with endocrine resistance  

Furthermore, it was assessed if the more proliferative phenotype seen in MCF-7-TRF 

compared to MCF-7 and ZR-75-1-TamR compared to ZR-75-1 could be recapitulated 

by ETV6 overexpression in the sensitive cell lines (Fig.4.12). 

The successful generation of pLenti overexpressing MCF-7 and ZR-75-1 cells using 

the p-ETV6-Lv181 (Genecopoeia ref. EX-F0874-Lv181) (ETV6 V) compared to the 

matched empty control vector (pReceiver-Lv181 (Genecopoeia, ref. EX-NEG-Lv181) 

(Ctrl V) was validated using western blot (Fig.4.12.A). 

Figure 4.12. ETV6 overexpression in Tamoxifen sensitive MCF-7 and 
ZR-75-1 results in a more proliferative phenotype: 
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Cell growth was investigated for MCF-7 and ZR-75-1 that carried either Ctrl V or ETV6 

V (Fig.4.12.B). ETV6 overexpression seemed to promote growth of both cell lines in 

multiple biological replicates, though the difference did not reach statistical 

significance. 

An alternative assessment was therefore conducted, namely colony formation assays. 

It presents the major advantage of spanning over a longer time frame compared to 

proliferation assays and therefore the trend of ETV6 overexpression resulting in a 

more proliferative phenotype may become significant. 

Thus, colony formation assays were conducted for ETV6 V compared to Ctrl V in MCF-

7 and ZR-75-1 (Fig.4.12.C). Mask area total density was assessed as a parameter of 

all pixels within the mask boundary. This parameter allows quantitative comparisons 

between different conditions. As such, MCF-7 cells overexpressing ETV6 showed a 

significant increase in the colony formation assay, as assessed by mask area total 

density (p value of 0.01). In addition, there was also a slight enrichment in ZR-75-1 

ability to form colonies upon ETV6 overexpression. 

Taken together, the role of ETV6 in cancer progression which is associated with 

endocrine resistance was validated by the promoting effects of ETV6 overexpression 

on MCF-7 colony formation. 

(A) Western blot assessment of pLenti ETV6 overexpressing MCF-7 and ZR-75-1 cells 
using the p-ETV6-Lv181 (Genecopoeia ref. EX-F0874-Lv181) (ETV6 V) compared to the 
matched empty control vector pReceiver-Lv181 (Genecopoeia, ref. EX-NEG-Lv181) (Ctrl 
V); (B) MCF-7 and ZR-75-1 cell growth is promoted in response to ETV6 overexpression, 
as assessed by cell confluency using IncuCyte ZOOMTM system; experiments were 
conducted in biological triplicates; the graphs represent one replicate and results are 
shown as mean ±SD of 6 technical replicates; (C) Colony formation assay for MCF-7 and 
ZR-75-1 ETV6 V vs Ctrl V; one biological replicate out of three is illustrated; cells were 
seeded at a density of 300 cells per well in a six well plate and were grown for 14 days; 
mask area total density was assessed using GelCount Optronix software; results are 
presented as mean ±SD and t-test analyses were conducted in GraphPad Prism; ** = p 
= 0.01; ETV6 V promotes colon formation compared to Ctrl V. 
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 ERα, FOXA1, ETV6-chromatin interactions are 
redistributed to the same genomic regions in endocrine 
resistant compared to sensitive breast cancer models 

Genome-wide mapping of ERα-binding events using ChIP-seq in clinical samples has 

previously revealed that endocrine-resistant metastatic breast cancers recruit ERα to 

novel regulatory regions that are associated with poor clinical outcome (Ross-Innes et 

al., 2012). In vitro validation of this work has shown that FOXA1 and ERα co-localise 

in Tamoxifen-sensitive and resistant models, implying FOXA1 may be the critical factor 

that redirects ERα to its novel target regions. 

In this context, ETV6, FOXA1 and ERα chromatin interactions were assessed in 

endocrine resistant compared to sensitive models, in order to interrogate ETV6 role in 

the reprograming of ERα. In addition, the enhancer landscape at these novel binding 

sites was also assessed. 

ChIP-seq was conducted to study ETV6, FOXA1 and ERα chromatin interactions in 

MCF-7, MCF-7-TRF, ZR-75-1 and ZR-75-1-TamR. To assess whether enhancers are 

active at these binding sites, histone H3 acetylation at Lysine K27 (H3K27Ac) marker 

was included (Zhou et al., 2011). The experimental design is illustrated in Figure 4.13. 

Figure 4.13. Experimental design for ERα, FOXA1, ETV6 and H3K27Ac ChIP-seq 
in MCF-7, MCF-7-TRF, ZR-75-1 and ZR-75-1-TamR. 
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ChIP-seq experiments were conducted in at least three biological triplicates. Input 

samples were also included and significant peaks were called using MACS2 for each 

group of samples against their marched inputs. For every group of samples, only 

peaks present in all biological replicates were considered. The total number of peaks 

for each factor is provided in Table 4.1: 

In MCF-7 cells, ChIP-seq analysis generated 39,260 peaks for ERα, 45,622 binding 

sites for FOXA1, 27,967 for ETV6 and 85,413 for H2K27Ac. In MCF-7-TRF cells, there 

were 59,552 sites for ERα, 50,020 for FOXA1, 31,197 for ETV6 and 59,479 for 

H3K27Ac. 

In ZR-75-1 cells, ChIP-seq generated 7,204 peaks for ERα, 50,172 binding regions for 

FOXA1, there were 21,729 sites for ETV6 and 76,223 for H3K27Ac. In ZR-75-1-TamR, 

there were 6,362 peaks for ERα, 29,630 for FOXA1, 6,347 for ETV6 and 58,421 for 

H3K27Ac. These results confirm the efficiency of the ChIP-seq experiments 

performed. 

Table 4.1. Total number of peaks called in for ERα, FOXA1 and ETV6 and 
H3K27Ac ChIP-seq in MCF-7, MCF-7-TRF, ZR-75-1 and ZR-75-1-TamR: All ChIP-
seq experiments were conducted in at least biological triplicates; Peaks were called 
using MACS in narrow mode for transcription factors and H3K27ac in broad mode. The 
numbers shown are the number of peaks/regions found to be significantly enriched at 
a q-value of 0.05 across all replicates for each experimental group compared to their 
matched inputs. 



82 
 

Importantly, in both the Tamoxifen sensitive and resistant models, there was a high 

number of sites co-bound by all three transcription factors (Fig.4.14). There were 9,905 

binding events common among ERα, FOXA1 and ETV6 for MCF-7 cells, 10,697 

common sites for MCF-7-TRF, 2,240 for ZR-75-1 and 1,268 for ZR-75-1-TamR. These 

numbers represent between 17.96% and 31.09% of the total numbers of ERα binding 

sites. This high overlap of the three transcription factors reinforces the association 

between ERα, FOXA1 and ETV6, suggesting they function together to dictate gene 

transcription in both Tamoxifen sensitive and resistant context. 

 

Examples of two key ERα target genes (RARα and CCND1) that are co-bound by 

FOXA1 and ETV6 in all four cells lines are illustrated in Figure 4.15. In addition, the 

presence of H3K27Ac marker on the chromatin at these sites proves those regions 

are active for transcription. 

Figure 4.14. Overlap of ERα, FOXA1 and ETV6 binding sites in each cell line 
investigated. 
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To further investigate the differences in chromatin binding between Tamoxifen 

resistant and sensitive cell lines, DiffBind analysis was conducted for MCF-7-TRF 

compared to MCF-7 and ZR-75-1-TamR compared to ZR-75-1. The summary of the 

results is provided in Table 4.2. For MCF-7-TRF compared to MCF-7, ChIP-seq 

experiments for ERα gave 33,282 gained peaks and 9,363 peaks lost peaks; there 

were 38,976 gained and 16,604 lost FOXA1 sites and 5,685 gained and 2,658 lost 

ETV6 binding sites. 

For ZR-75-1-TamR compared to ZR-75-1, ChIP-seq experiments showed there were 

2,443 gained and 2,515 lost ERα binding sites, 7,254 gained and 11,009 lost FOXA1 

peaks and 1,276 gained and 3,134 lost ETV6 chromatin interactions. 

Figure 4.15. Examples of regions bound by ERα, FOXA1, ETV6 and H3K27Ac in 
both endocrine sensitive and resistant cell lines: IGV genome browser tracks of 
ChIP-seq signal for the four factors in MCF-7, MCF-7-TRF, ZR-75-1 and ZR-75-1-
TamR. 
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A representation of the differentially bound ERα, FOXA1 and ETV6 binding sites in the 

two pairs of cell lines is illustrated in Figure 4.16. 

Figure 4.16. Tamoxifen resistance triggers ERα, FOXA1 and ETV6- DNA binding 
redistribution: Volcano plots show log2 fold change for each transcription factor in MCF-
7-TRF versus MCF-7 and ZR-75-1-TamR versus ZR-75-1, respectively. Pink dots 
represent significant peaks with FDR <=0.01. 

 

Table 4.2. Differential binding analysis for MCF-7-TRF compared to 
MCF-7 an ZR-75-1-TamR compared to ZR-75-1. 
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The DiffBind analyses conducted in the present study confirm the ERα, FOXA1 and 

ETV6 chromatin binding redistribution associated with endocrine resistance. 

As described in Chapter 4.3., ETV6 together with ERα and FOXA1 were significantly 

enriched on the chromatin in Tamoxifen resistant breast cancer models compared to 

the sensitive ones according to qPLEX RIME assessments. 

In addition, previous studies have described a global redistribution of ERα binding 

sites associated with endocrine-resistant metastatic breast cancer (Ross-Innes et al., 

2012a). More recently, enhancer reprogramming during hormone resistance 

acquisition was reported (Bi et al., 2020). Bi et al saw an enrichment of GATA3 and 

AP2γ motifs on the lost sites and RUNX and JUN motifs on the gained sites when 

comparing endocrine resistant MCF-7 with parental MCF-7. In addition, whilst FOXA1 

motif was present in all groups, ERα was only detected at the common enhancers. 

In order to further understand the molecular mechanisms underlying endocrine 

resistance in the models used for this study, motif analysis was performed for ERα 

and FOXA1 differentially bound sites in MCF-7-TRF compared to MCF-7 and ZR-75-

1-TamR compared to ZR-75-1 (Fig.4.15 and Fig.4.16). 

Notably, ETS motifs corresponding to the ETV6 transcription factor were identified in 

ERα and FOXA1α gained sites but not in the lost sites for both resistant cell lines 

compared to their matched parental cells. These results strongly reinforce the finding 

that ERα, FOXA1 and ETV6 work collaboratively at the gained sites to promote cancer 

progression and endocrine refractory phenotype. 

In addition, Forkhead motif was present in gained and lost ERα and FOXA1 sites in 

both MCF-7-TRF compared to MCF-7 and ZR-75-1-TamR compared to ZR-75-1. 

Importantly, Forkhead motifs were detected with higher confidence in the gained sites 

across all comparisons, according to the e value (Fig. 4.17 and Fig. 4.18). These 

results are in accordance with FOXA1 total protein levels being higher in Tamoxifen 

resistant cells (Fig.4.7), with FOXA1 enrichment in the proteomics experiments 

conducted in Chapter 4.3.2 (Fig.4.6), and its significantly higher gene expression in 

the endocrine refractory models. 
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Moreover, ERE motif was also present with higher confidence in the gained compared 

to lost ERα sites in both MCF-TRF versus MCF-7 and ZR-75-1-TamR versus ZR-75-

1. ERE were also detected in the FOXA1 differentially bound regions in MCF-7-TRF 

compared to MCF-7. The presence of ERE and Forkhead motifs at the reprogrammed 

sites indicates that in the multiple models used in this study, ERα and FOXA1 directly 

bind to their novel cis-regulatory elements. 

Furthermore, GATA3, one of the two motifs described by Bi et al as specific to lost 

sites in resistance was investigated. GATA motif was found in ERα and FOXA1 gained 

and lost sites for both Tamoxifen resistant cell lines compared to their matched 

parental cells. Importantly, GATA was found with higher confidence in the gained sites, 

according to the e value. These results suggest that the Bi et al finding that GATA is 

lost in treatment resistance is model-specific and not a general feature of drug 

resistance. 

In addition, JUN and FOS proteins are known to form the AP1 transcription factor 

network. Bi et al identified JUN motifs specifically in the gained sites associated with 

treatment resistance. In contrast, the investigation conducted in MCF-7-TRF 

compared to MCF-7 and ZR-75-1-TamR compared to ZR-75-1 identified FOS and 

JUN in both ERα and FOXA1 gained and lost sites. 

Therefore, it seems that neither loss of GATA3 nor the gain of JUN are the hallmarks 

of endocrine resistance. 

Taken together, motif analysis reinforced the finding that ERα, FOXA1 undergo a 

global redistribution biased towards novel gained chromatin interactions in endocrine 

resistance. Importantly, ETV6 motifs are enriched at the gained sites in both 

Tamoxifen resistant models compared to their sensitive counterparts. These results 

suggest the three transcription factors work collaboratively in endocrine refractory 

phenotype in multiple breast cancer models. 
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Figure 4.17. Motif analysis of ERα and FOXA1 gained and lost sites in MCF-7-
TRF compared to MCF-7: enrichment analysis was performed using MEME Suite 
tools; e value is determined by the significance of the motif according to the discovery 
program reporting the motif. 
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Figure 4.18. Motif analysis of ERα and FOXA1 gained and lost sites in ZR-75-1-
TamR versus ZR-75-1; Enrichment analysis was performed using MEME tools; e 
value represents significance of the motif according to the discovery program reporting 
it. 



89 
 

Examples of ERα, FOXA1 and ETV6 co-bound regions that are gained in both MCF-

7-TRF compared to MCF-7 and ZR-75-1-TamR compared to ZR-75-1 are illustrated 

in Figure 4.19. 

 

 

Figure 4.19. Examples of ERα, FOXA1 and ETV6 commonly gained sites in
MCF-7-TRF compared to MCF-7 and ZR-75-1-TamR compared to ZR-75-1. 
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Further genome-wide analysis of the ETV6, ERα and FOXA1 differentially bound 

genomic regions associated with endocrine resistance revealed that the three 

transcription factors are re-distributed to the same novel sites in both MCF-7-TRF 

compared to MCF-7 and ZR-75-1-TamR compared to ZR-75-1 (Fig.4.20 and Fig.4.21). 

Importantly, there is enhancer reprogramming at the novel binding sites, as assessed 

by H3K27Ac (Fig.4.20.A and B and Fig.4.21.A and B). 

Figure 4.20. Endocrine resistance accompanies global ERα, FOXA1 and ETV6 
reprogramming associated with enhancer redistribution in MCF-7-TRF versus 
MCF-7: (A) ChIP-seq tag densities visualised at ETV6, ERα, FOXA1 and H3K27Ac 
genomic locations in MCF-7-TRF vs MCF-7; heatmaps are scaled on ETV6 
differentially bound sites; (B) Aggregate plots showing normalised signal enrichment 
of the four factors at gained, common and lost sites. 
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The regions with stronger H3K27Ac peaks in the Tamoxifen resistance cell lines 

compared to their sensitive counterparts corresponded to the ETV6, FOXA1 and ERα 

gained regions. Conversely, the genomic sites with weaker H3K27Ac peaks 

corresponded to regions where the three transcription factors had lost binding 

according to DiffBind analysis. 

These results confirm that ERα positive breast cancer progression and endocrine 

resistance are driven by ERα, FOXA1 and ETV6 global reprogramming across 

multiple models which is accompanied by altered enhancer landscape. 

Figure 4.21. Endocrine resistance accompanies global ERα, FOXA1 and ETV6 
reprogramming associated with enhancer redistribution in ZR-75-1-TamR 
versus ZR-75-1: (A) ChIP-seq tag densities visualised at ETV6, ERα, FOXA1 and 
H3K27Ac genomic locations in ZR-75-1-TamR versus ZR-75-1; heatmaps are scaled 
on ETV6 differentially bound sites; (B) Aggregate plots showing normalised signal 
enrichment of the four factors at gained, common and lost sites. 
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 ETV6-chromatin binding redistribution affects gene 
expression and correlates with Tamoxifen resistance 
signatures 

RNA-seq was conducted to compare gene expression in MCF-7-TRF with MCF-7 and 

ZR-75-1-TamR with ZR-75-1 (Fig.4.22). 

RNA-seq revealed there was a high number of repressed or activated genes in the 

endocrine resistant cell lines compared to the parental counterparts (Fig.4.22.A-D). 

Figure 4.22. RNA-seq analysis for MCF-7-TRF compared to MCF-7 and ZR-75-1-
TamR compared to ZR-75-1: four biological replicates were included for each cell 
line; (A) and (C) heatmaps illustrate genes that are up or downregulated in the 
resistant cell lines compared to their matched parental cells; relative expression (row 
Z scores) are plotted; (B) and (D) MA plots showing log2 fold change gene expression
for MCF-7-TRF vs MCF-7 and ZR-75-1-TamR vs ZR-75-1, respectively; gene that are 
significantly repressed or activated in endocrine resistant compared to matched 
sensitive cell lines are represented in red (p value ≤ 0.05); (E) overlap between 
upregulated genes in MCF-7-TRF compared to MCF-7 and ZR-75-1-TamR compared 
to ZR-75-1 and downregulated genes (F), respectively. 
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Specifically, differential expression analysis using DESeq2 resulted in 4,790 

significantly upregulated genes in MCF-7-TRF compared to MCF-7 and 3,170 induced 

genes in ZR-75-1-TamR compared to ZR-75-1. Importantly, 785 genes were 

commonly activated in both pairs of cell lines (Fig.4.22.E). In addition, there were 

4,769 and 4,441 repressed genes in MCF-7-TRF compared to MCF-7 and ZR-75-1-

TamR compared to ZR-75-1, respectively, of which 1290 were commonly 

downregulated (Fig.4.22.F). 

Further integrative ChIP-seq and RNA-seq analysis was conducted (Fig.4.23 and Fig. 

4.24), focusing on the ETV6 differentially bound genomic regions as assessed using 

DiffBind (Chapter 4.3.5.). It was revealed that genes in close proximity to ETV6 ChIP-

seq gained sites tend to be upregulated in both MCF-7-TRF versus MCF-7 and ZR-

75-1-TamR versus ZR-75-1 (Fig.4.23.A and Fig.4.24.A). Conversely, genes in close 

proximity to ETV6 ChIP-seq lost sites tend to be repressed in endocrine resistant 

compared to sensitive context (Fig.4.23.B and Fig.4.24.B). 

Moreover, higher percentage of ETV6 gained chromatin interactions in MCF-7-TRF 

compared to MCF-7 and ZR-75-1-TamR compared to ZR-75-1 were located closer to 

the upregulated genes rather than downregulated genes (Fig.4.23.C and Fig.4.24.C). 

In addition, a higher percentage of ETV6 gained sites were situated at significant 

distances from the transcription start sites of upregulated genes. These findings imply 

that ETV6 reprogrammed binding sites upregulate target genes from distal enhancer 

regions in endocrine resistance. 

Furthermore, the ETV6 lost sites in MCF-7-TRF compared to MCF-7 and ZR-75-1-

TamR compared to ZR-75-1 were located closer to the repressed genes rather than 

activated genes (Fig.4.23.D and Fig.4.24.D). 

Taken together, the data suggests that ETV6 differential chromatin interactions 

between endocrine resistant and sensitive breast cancer models affect the 

transcriptome and therefore may contribute to the more aggressive phenotype 

associated with resistance.
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Figure 4.23. Integrative ChIP-seq and RNA-seq analysis of the expression of 
genes in close proximity to ETV6 differentially bound genomic regions in MCF-
7-TRF compared to MCF-7: RNA-seq heatmaps illustrate expression of genes in 
close proximity to ETV6 ChIP-seq gained (A) and lost sites (B), as assessed by 
DiffBind in Table 4.2; (C) and (D) graphs show cumulative fraction of ETV6 gained (C)
or lost (D) sites within up to 100 kb of the TSS of three groups of genes: significantly 
upregulated genes with p value ≤ 0.05, (red line), significantly downregulated genes 
with p value ≤ 0.05 (blue) and genes that do not change significantly in MCF-7-TRF 
vs MCF-7 according to RNA-seq, called constant genes (grey). 
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Figure 4.24. Integrative ChIP-seq and RNA-seq analysis focused on the 
expression of genes in close proximity to ETV6 differentially bound genomic 
regions in ZR-75-1-TamR compared to ZR-75-1: RNA-seq heatmaps illustrate 
expression of genes in close proximity to ETV6 ChIP-seq gained (A.) and lost sites 
(B.), as assessed by DiffBind; C. and D. graphs show cumulative fraction of ETV6 
gained (C.) or lost (D.) sites within up to 100 kb of the TSS of three groups of genes: 
significantly upregulated genes with p value ≤ 0.05, (red line), significantly  
downregulated genes with p value ≤ 0.05 (blue) and genes that do not change 
significantly in MCF-7-TRF vs MCF-7 according to RNA-seq, called constant genes 
(grey). The dotted lines indicate analysis performed on matched number of 
downregulated and constant genes, while the solid lines indicate analysis conducted 
for matched upregulated and constant genes. 
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Genomic Regions Enrichment of Annotations Tool (GREAT) (McLean et al., 2010) 

was then used to interpret the functions of genes in close proximity to ETV6 gained 

sites in the two pairs of cell lines (Fig.4.25.) As demonstrated in Figures 4.20 and 4.21, 

the ETV6 gained regions are also gained by ERα, FOXA1 and H3K27Ac, making the 

assessment of ETV6 reprogrammed regions relevant for the global transcription factor 

redistribution associated with endocrine resistance. 

ETV6 gained sites in both MCF-7-TRF compared to MCF-7 and ZR-75-1-TamR 

compared to ZR-75-1 were highly enriched for the signatures of the genes upregulated 

in Tamoxifen resistance as assessed by Massarweh et al (Massarweh et al., 2008). In 

addition, in MCF-7-TRF versus to MCF-7, the ETV6 gained sites were also enriched 

for the Creighton endocrine resistance group 3 signature, which corresponds to 

upregulated genes in Tamoxifen resistant PDXs (Creighton et al., 2008). 

These results demonstrate that ETV6 gained sites tend to regulate genes associated 

with Tamoxifen resistance, basal cell determination and EMT/metastatic phenotype. 

Figure 4.25. GREAT analyses of the annotations of nearby genes of gained ETV6 
sites in MCF-7-TRF vs MCF-7 and ZR-75-1-TamR vs ZR-75-1: the top ten enriched 
Gene Ontology (GO) annotations are shown. 
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 Inhibition of MAPK pathway reduces breast cancer 
progression and modulates ETV6-chromatin interactions  

The results obtained indicate that ETV6 contributes to cancer progression and 

endocrine resistance and that ETV6 silencing results in a significant inhibitory effect 

of cell viability and growth (Fig.4.10 and Fig.4.11). 

In addition, it is known that constitutively activated MAPK stabilises other ETS family 

members (e.g. ETV1) in gastrointestinal stromal tumours (Chi et al., 2010). This raises 

the possibility that ETV6 may also be regulated by MEK/ERK pathway in breast cancer 

and that inhibition of MAPK pathway may therefore be beneficial for endocrine 

resistant breast cancer. 

To test this hypothesis, the MEK inhibitor Trametinib was used on MCF-7-TRF and 

ZR-75-1-TamR. Cells were treated with either with 500nM of the compound (Tram) or 

with vehicle (Veh) (Fig.4.26). 

Samples were collected after 24 hours of treatment for chromatin and cytoplasmic 

fractionation and subjected to western blot analysis. The compound efficiency was 

validated by the depletion of phospho-ERK from the cytoplasm in Trametinib treated 

samples compared to vehicle (Fig.4.26.A). In addition, MAPK inhibition seemed to 

Figure 4.26. Trametinib effects on ETV6 total chromatin levels (A) and on 
colony formation ability for MCF-7, MCF-7-TRF, ZR-75-1 and ZR-75-1-TamR (B).
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reduce ETV6 global chromatin levels in both MCF-7-TRF and ZR-75-1-TamR 

(Fig.4.26.A). 

Furthermore, colony formation assays were conducted in the four cell lines, over a 

time frame of 14 days. It was seen that Trametinib reduced the colony formation ability 

even for MCF-7-TRF and ZR-75-1-TamR cell lines that no longer respond to endocrine 

therapies (Fig.4.26.B). 

Taking these results into account, the effects of Trametinib on ETV6-chormatin 

interactions were assessed (Fig.4.27 and Table 4.3). Cells were treated for six hours 

either with the MEK inhibitor (Tramet) or wih vehicle (Veh). 

In MCF-7-TRF, differential binding analysis identified a general trend towards lost 

ETV6 binding after Trametinib treatment, with 112 sites being significantly lost (Figure 

4.27.A and B and Table 4.3). 

Importantly, there were 5513 lost regions in ZR-75-1-TamR treated with Trametinib 

compared to vehicle and just 1 gained region (Fig.4.27.C and D and Table 4.3). 

 

ETV6 differential binding comparison 
Contrast lost gained common 

MCF-7-TRF Tramet vs Veh 112 0 8677 

ZR-75-1-TamR Tramet vs Veh 5513 1 10806 

Table 4.3. ETV6 Differential binding analysis for MCF-7-TRF and ZR-75-1-TamR 
cell lines treated with Trametinib (Tramet) compared to Vehicle (Veh). 

 

Examples of ETV6 lost sites in both MCF-7-TRF Trametinib compared to vehicle and 

ZR-75-1-TamR Trametinib treated compared to vehicle are provided in Fig.4.27.E). 

Taken together, these results show that MAPK pathway inhibition reduces colony 

formation ability of ERα breast cancer models, including those that are resistant to 

endocrine targeted therapies. Trametinib also modulates ETV6-chromatin binding 

events. 
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Figure 4.27. Trametinib effects on ETV6-chromatin interactions: all ChIP-seq 
experiments were performed in biological triplicates; ChIP-seq tag densities visualised
at ETV6 binding sites for MCF-7-TRF (A.) or ZR-75-1-TamR (C.) treated with 
Trametinib for six hours or with vehicle (Ctrl); heatmaps are scaled on ETV6 binding 
in vehicle condition for each cell line investigated; Volcano plots show log2 fold change 
for ETV6 binding sites in MCF-7-TRF (B.) or ZR-75-1-TamR (D.) for Trametinib 
treatment compared to vehicle; (E.) Examples of ETV6 peaks that are lost with 
Trametinib treatment in both MCF-7-TRF and ZR-75-1. 
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 ERα, FOXA1 and ETV6 cooperate to drive endocrine 
resistance in vivo 

To further examine whether ERα, FOXA1 and ETV6 cooperate to drive endocrine 

resistance in vivo, ERα Luminal B endocrine resistant patient-derived xenograft 

samples (PDXs) were used for ChIP-seq experiments. First, immunohistochemistry 

was conducted to determine the positivity for the three investigated proteins (Fig.4.28). 

Figure 4.28. IHC assessment of ERα, FOXA1 and ETV6 protein levels in Luminal 
B endocrine resistant PDX models. 
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ERα, FOXA1 and ETV6 immunohistochemistry has identified STG143, STG195, HC-

005 and HCI-013 PDXs to express different levels of the three proteins. 

Therefore, these models were used for ChIP-seq experiments. The total number of 

peaks identified for each factor in every PDX model is provided in Table 4.4. 

For HCI-013, there were 51,704 FOXA1 binding sites, 68,172 peaks for ERα and 

129,673 peaks for ETV6. In addition, ChIP-seq for STG143 resulted in 59,136 binding 

FOXA1 binding sites, 28,500 peaks for ERα and 14,092 ETV6 sites. For STG195, 

103,926 FOXA1 peaks were identified, 22,773 ERα peaks and 2,837 ETV6 peaks, 

respectively. For HCI-005 PDX model, 16,901 FOXA1-chromatin interactions were 

found, as well as 7,687 ERα and 7,969 ETV6 peaks. 

The variability between number of peaks for the same factor in different PDXs may be 

caused by the biological difference in protein levels, as visualised with IHC. 

Nonetheless, all ChIP-seq experiments conducted resulted in high peak numbers and 

the results were further assessed to gain insight into the molecular mechanisms of 

endocrine resistance in vivo. 

 

Table 4.4. Total number of peaks called for ERα, FOXA1 and ETV6 in PDX 
models: peaks were called using MACS in narrow mode; the numbers shown 
represent peaks found to be significantly enriched at a q-value of 0.05 for each sample 
against their matched input. 
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ETV6, FOXA1 and ERα binding sites were overlapped for each PDX model (Fig.4.29). 

There were 11,490 regions co-bound by the three factors in HCI-013, 5,091 co-bound 

regions in STG143 and 885 and 340 co-bound sites in STG195 and HCI-005 

respectively. 

Furthermore, it was assessed whether the ERα gained chromatin interactions 

identified in both MCF-7-TRF compared to MCF-7 and ZR-75-1-TamR compared to 

ZR-75-1 were also present in the endocrine resistant PDX models (Fig 4.30). 

For all four HCI-013, STG143, STG195 and HCI-005 PDX models, there was a high 

overlap between the binding of the three transcription factors and the gained sites 

associated with endocrine resistance in the in vitro models (Fig.4.30.A). RARα is 

provided as an example of a common genomic region bound across all models, while 

TRPS1 and TEX36-ASI are examples of genes in close proximity to peaks that are 

gained in the two resistant cell lines compared to their sensitive counterpart (Fig.4.19) 

and also present in the endocrine resistant models PDX models (Fig.4.30). 

Figure 4.29. Overlap of ETV6, FOXA1 and ERα binding sites in endocrine 
resistant PDX models. 
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Figure 4.30. Assessment of ETV6, ERα and FOXA1-chromatin interactions in 
endocrine resistant PDX models: (A) ChIP-seq tag densities visualised at ETV6, 
ERα and FOXA1 genomic locations in HCI-013, STG143, STG195 and HCI-005; 
heatmaps are scaled on the ERα gained sites from both MCF-7-TRF versus MCF-7 
and ZR-75-1-TamR versus ZR-75-1; (B) Examples of ERα, FOXA1 and ETV6 peaks 
present in the endocrine resistant PDXs and either common across all cell lines 
(RARα) or gained in both Tamoxifen resistant cell lines compared to the parental 
counterparts (TRPS1 and TEX36-ASI). 
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Taken together, one can conclude that there is a cooperative redistribution of ERα, 

FOXA1 and ETV6 associated with breast cancer progression and endocrine 

resistance both in vitro and in vivo models. 

 

 ETV6 copy number amplifications are associated with 
significantly reduced disease-free survival in ERα positive 
Luminal B breast cancer 

The amplification of the genomic region encompassing ETV6 was assessed in the 

METABRIC cohort (Curtis et al., 2012). This analysis revealed that ETV6 copy number 

amplifications are specifically associated with significantly reduced disease-free 

survival in ERα positive Luminal B breast cancer (p value < 0.001) (Fig.4.31). Luminal 

B subtype is a more aggressive form of breast cancer, more likely to metastasise. 

 

This observation confirms ETV6’s role in the development of a more aggressive 

phenotype in ERα breast cancer. Further validation of this finding would require 

assessment of ETV6 copy number amplifications and gene expression levels in 

matched metastatic and primary breast cancer samples. 
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Figure 4.31. Assessment of ETV6 copy number amplifications (CNA) in the 
METABRIC cohort: Kaplan Meier plots were generated to assess disease-free 
survival (DSF); ETV6 CNA are associated with significantly reduced DSF in ERα 
positive breast cancer (p value < 0.001), in particular in Luminal B subtype (p value < 
0.001). 
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 Discussion 
ERα is the driving transcription factor in more than three quarters of all breast cancer 

cases. Its transcriptional activity promotes cell growth and proliferation (Musgrove and 

Sutherland, 2009). Therefore, endocrine therapies such as selective estrogen receptor 

modulators (e.g. Tamoxifen) or estrogen-receptor degraders (e.g. Fulvestrant - ICI) 

have significantly prolonged patients’ disease-free survival (Jensen and Jordan, 

2003). 

More recently developed targeted therapies - inhibitors of cyclin D–CDK4/6-

Retinoblastoma pathway such as Palbociclib (Finn et al., 2015), or inhibitors of the 

AKT/mTOR signalling pathway such as the mTOR inhibitor Everolimus (Yardley et al., 

2013) - have further improved patient outcome.  

However, there are subsets of patients that do not respond to any of the currently 

available therapeutic strategies, which suggests there are alternative endocrine 

resistance mechanisms that still need to be discovered and targeted for the overall 

improvement of breast cancer survival rates.  

FOXA1 is another key protein in ERα positive breast cancer. It acts as a transcription 

factor, binds to compacted chromatin and opens it up for ERα subsequent binding 

(Glont et al., 2019, Hurtado et al., 2011). Moreover, endocrine resistance is associated 

with ERα –chromatin binding reprogramming dictated by FOXA1, that results in altered 

transcriptional program (Ross-Innes et al., 2012). 

ERα and FOXA1 co-factors are of particular importance. They work in a cooperative 

or competitive manner and alterations in their levels can contribute to breast cancer 

progression and can influence endocrine response. 

In this context, the work presented in this chapter explored novel molecular 

mechanisms of endocrine resistance in ERα positive breast cancer. ETV6 was 

identified as a novel FOXA1/ERα interactor enriched in endocrine resistant compared 

to sensitive breast cancer models. As ETV6 mediates cell differentiation and growth 

(Findlay et al., 2013), its enrichment renders it as an onco-driver in breast cancer. The 

direct role of ETV6 in breast cancer progression associated with endocrine resistance 

was further validated. ETV6 overexpression in MCF-7 and ZR-75-1 promoted their 
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growth and colony formation ability compared to control cells (Fig.4.12). Further work 

to investigate the effects of ETV6 overexpression in vivo would reinforce this finding.  

In addition, silencing ETV6 had an inhibitory effect on cell growth and viability in 

Tamoxifen sensitive, as well as resistant cells. This suggests that targeting ETV6 may 

be beneficial even for the endocrine refractory breast cancer patients (Fig. 4.10 and 

Fig. 4.11). 

Genome-wide analysis of ETV6, ERα and FOXA1 chromatin interactions revealed that 

all three transcription factors are re-distributed to the same novel regions in endocrine 

resistance (Fig.4.20 and Fig.4.21). These results suggest the three transcription 

factors work collaboratively in endocrine refractory phenotype in multiple breast cancer 

models. 

Importantly, the gained ETV6, ERα and FOXA1 regions also presented stronger 

H3K27Ac signal, implying these novel binding sites are active for transcription. 

Conversely, the ETV6, ERα and FOXA1 lost sites in endocrine resistant compared to 

sensitive models presented weaker H3K27Ac peaks, implying these enhancer regions 

are no longer active for transcription. This suggests that ETV6, ERα and FOXA1 may 

cooperatively associate with acetyltransferases (HATs) (e.g. CBP, p300) which in turn 

acetylate histone H3 at lysine 27. Further genome-wide analyses of p300 and CBP 

would consolidate this hypothesis. 

Indeed, RNA-seq analysis confirmed that ETV6 gained sites in MCF-7-TRF compared 

to MCF-7 and in ZR-75-1-TamR compared to ZR-75-1 tended to upregulate target 

genes, while the ETV6 lost sites repressed genes in both Tamoxifen resistant cell lines 

compared to their matched parental cells (Fig. 4.23 and Fig.4.24). 

Furthermore, GREAT analysis of the ETV6 gained sites revealed that they tend to be 

enriched for the signatures of upregulated genes in Tamoxifen resistance as assessed 

by Massarweh et al (Massarweh et al., 2008) and by Creighton et al (Creighton et al., 

2008) (Fig.4.25). 

In addition, previous studies have identified that ETS transcription factors are 

regulated by MAPK pathway (Chi et al., 2010). Therefore, the effects of MEK inhibitor 

Trametinib on endocrine sensitive and resistant models were assessed. It was found 

that inhibition of MAPK pathway reduced colony formation ability of endocrine resistant 

models (Fig.4.26) and modulated ETV6-chromatin interactions (Fig.4.27). This effect 
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might be a consequence of ETV6 translocation from the nucleus to the cytoplasm 

when MAPK pathway is inhibited, resulting in ETV6 loss of binding to its target 

genomic regions. 

Further assessment of the enhancer landscape, as well as gene expression analysis 

of Trametinib effects on MCF-7-TRF and ZR-75-1-TamR would shed more light on 

these matters. 

Of importance, ETV6 copy number amplifications were assessed in the METABRIC 

cohort (Curtis et al., 2012) (Fig.4.31). They were found to be associated with 

significantly reduced disease-free survival in ERα positive Luminal B breast cancer, 

which is the more aggressive subtype of cancer, more likely to metastasise.  

Taken together, the work in this chapter describes ETV6 as a novel interactor of ERα 

and FOXA1 that contributes to breast cancer progression and endocrine refractory 

phenotype. 

 

For the work in this chapter, proteomics analysis was performed by the Proteomics 

Core Facility (CRUK-CI) with further bioinformatic analysis conducted by Dr Kamal 

Kishore (CRUK-CI). Sequencing was performed by the Genomics Core Facility and 

further bioinformatics analysis was conducted by Dr Sankari Nagarajan, Dr Igor 

Chernukhin and Dr Ashley Sawle (CRUK-CI).   
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Chapter 5. Repurposing of FDA-Approved 
Drugs for Endocrine Resistant ERα Breast 
Cancer 

 Introduction 

To date, it is known that steroid hormone estrogen is pivotal to the normal development 

of the female reproductive system, through its effects on cell proliferation and cell 

survival (Musgrove and Sutherland, 2009). Most of estrogen-induced effects are 

mediated by the nuclear receptor ERα and deregulations of ERα trigger abnormal cell 

growth. Consequently, ERα is the driving factor in approximately 70% of all breast 

cancers. Extensive efforts have been invested into the development of efficient 

endocrine treatments for these patients. The selective estrogen receptor modulator 

(SERM) Tamoxifen was the first endocrine therapy developed (Jensen and Jordan, 

2003). It remains the most widely used agent in pre-menopausal women and 

continues to be used for post-menopausal patients too (Davies et al., 2011). 

However, subtypes of breast cancer cases have intrinsic resistance to Tamoxifen. 

Some patients lack ERα expression, while others carry inactive alleles of cytochrome 

p450 2d6 (CYP2D6) therefore being unable to convert tamoxifen to its active 

metabolites (Hoskins et al., 2009). 

In addition, a third of the patients treated with Tamoxifen for 5 years acquire resistance 

and relapse within 15 years (Davies et al., 2011). Acquired resistance happens 

through multiple mechanisms including, but not limited to changes in ERα levels and 

activity, changes in its protein interactors, cross-talk with Receptor tyrosine kinase 

signalling pathways or dysregulation of cellular proliferation. 

The main ERα alterations linked to endocrine resistance are loss of its expression that 

occurs in 15–20% of cases and ESR1 mutations that occur in 1% of cases (Clarke et 

al., 2003, Gutierrez et al., 2005). Post-translational modifications of ERα, also affect 

its function. In particular, its phosphorylation results in ligand-independent ERα 

activation and increased interaction with its co-factors (Bostner et al., 2013) 
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ERα transcriptional activity is also influenced by its interaction with other proteins. As 

such, enhanced interaction between ERα and PBX1 pioneer transcription factor is 

associated with a more aggressive tumour phenotype (Magnani et al., 2011). In 

addition, increased levels of co-activator proteins such as AIB1 (Kressler et al., 2007, 

Webb et al., 1998) and decreased expression of co-repressors such as NCOR1 also 

predict poor response to Tamoxifen (Lavinsky et al., 1998). 

The crosstalk between ERα and tyrosine kinase signalling pathways is evidenced by 

the reciprocal expression of ERα and epidermal growth factors (e.g. ERBB2, EGFR) 

(deGraffenried et al., 2004, Faridi et al., 2003). In turn, the overexpression of the 

epidermal growth factors activated the MAPK and PI3K/Akt/mTOR signalling 

pathways (Knowlden et al., 2005). On the one hand, this process leads to ERα 

activation through phosphorylation. On the other hand, these tyrosine-kinase 

signalling pathways can promote cell growth independently of ERα thus potentiating 

cancer progression and endocrine-refractory phenotype.  

All these events contribute to breast cancer progression and to Tamoxifen resistance, 

though other mechanisms may also be involved. The complexity of these processes 

makes it crucial to identify reliable biomarkers for response to available targeted 

therapies and also to identify new therapeutic strategies. 

In recent years, several targeted therapies against the molecular pathways associated 

with Tamoxifen resistance have been proposed, either on their own or in combination 

with endocrine agents. Examples of such compounds are Herceptin (Trastuzumab) 

that is a monoclonal antibody against HER2. It inhibits its homodimerisation and 

prevents HER2-mediated aberrant cell growth (Namboodiri and Pandey 2011). 

Herceptin is FDA-approved for the treatment of HER2-positive early and metastatic 

breast cancer (Gianni et al., 2012) either on its own of in combination with tyrosine-

kinase inhibitors such as Lapatinib or aromatase inhibitors such as Anastrozole 

(Kaufman, Mackey et al. 2009, de Azambuja, Holmes et al. 2014). 

In addition, clinical trials have assessed the combination between aromatase inhibitors 

and Everolimus, a selective inhibitor of mTOR. This combinatorial therapeutic strategy 

has significantly prolonged patient disease-free survival (Yardley et al., 2013). 

Everolimus was recently FDA-approved for postmenopausal patients with ERα 

positive breast cancer. 
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However, due to the heterogeneity of breast cancer, subsets of patients do not 

respond to any of the available therapies (Martelotto et al., 2014) or develop resistance 

to them. This implies there are other undiscovered mechanisms that contribute to 

cancer progression and resistance to therapies. 

 Aims of this chapter 
Using existing drugs originally developed for one disease to treat endocrine-resistant 

breast cancer is a very appealing approach. FDA-approved drug repurposing can 

speed up the process of bringing new treatments to patients, as well as reduce the 

costs. These drugs have well-documented mechanisms of action toxicity, 

pharmacology and drug-drug interaction parameters (Nowak-Sliwinska et al., 2019). 

In this context, the main aim of this chapter was to identify novel therapeutic 

opportunities for endocrine resistant breast cancer by re-purposing FDA-approved 

drugs.  

 

 Results 
In recent years, several mechanisms of Tamoxifen resistance in breast cancer have 

been identified, which led to the development of targeted therapies directed against 

epidermal growth factor HER2 (Namboodiri and Pandey, 2011) or against pathways 

such as PI3K/Akt/mTOR (Knowlden et al., 2005) and cyclin D/cyclin-dependent 

kinases 4 and 6 (CDK4/6)–retinoblastoma protein (RB) pathway (Finn, Crown et al. 

2015). Though all these novel targeted therapies have significantly improved patient 

survival, there are still subsets of patients that do not respond to any of the currently-

available therapeutic strategies. This is indicative of alternative pathways involved in 

endocrine resistance that are yet to be identified and targeted for the overall 

improvement of breast cancer therapy. 

One way to accelerate drug development is by repurposing FDA-approved drugs. In 

this context, we sought to test the compound library L1300-Selleck-FDA-Approved-

Drug-Library-978cpds (Stratech, Selleckchem) on ERα positive Tamoxifen sensitive 
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cells MCF-7 and ZR-75-1 and the endocrine resistant MCF-7-TRF and ZR-75-1-TamR 

cells. The normal breast epithelial MCF-10-A cells and the triple-negative MDA-MB-

231 cells were also included as controls. The experimental design is illustrated in 

Figure 5.1: 

The screen was performed in biological triplicates, for all cell lines except MCF-7-TRF 

which had 2 biological replicates. All compounds were tested at a concentration of 

1µM for 96 hours. At the end of the four-day treatment, cell viability was assessed 

using CellTiter-Glo® Luminescent Assay and luminescence was recorded using the 

PheraStar FS microplate reader (BMG LABTECH). The PCA plot in Figure 5.2 

illustrates the reproducibility between biological replicates for each individual cell line: 

Drug treatment  
(1µM) 

 
96 hrs 

Cell titre glow 
Assess cell viability 

3* 

MCF-7 

MCF-7-
TRF 

ZR-75-1 
ZR-75-1- 
TamR 

P1            P2           P3              P4 

MCF10A 
MDA- 
MB-231 

Figure 5.1. Experimental design for the compound library screen: L1300-Selleck-
FDA-Approved-Drug-Library-978cpds (Stratech, Selleckchem) library was tested in 
biological triplicates for each of MCF-7, MCF-7-TRF, ZR-75-1, ZR-75-1-TamR, MCF-
10-A and MDA-MB-231 cell lines. For each biological replicate, cells were seeded in 
four 384 plates using the Multidrop™ Combi Reagent Dispenser. After 24 hours of 
incubation, drugs were dispensed in technical singlets using the Echo®555 liquid 
handler. All drug treatments were performed at 1µM, for 96 hours. At the end of the 
four-day treatment, cell viability was assessed using CellTiter-Glo® Luminescent 
Assay. 
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For further analysis, percentage viability over control DMSO was calculated for each 

compound in each cell line. The average of the three biological replicates was 

calculated and used for further analyses.  

The full list of compounds tested, as well as their percentage inhibition over control in 

each cell line is provided in Annexe 2, while a broad overview of the results is shown 

in Figure 5.3: 

Most drugs had minimal inhibitory effects on the cell models used. Therefore, only 

drugs that reduced viability with 50% in the Tamoxifen resistant cell lines MCF-7-TRF 

and ZR-75-1-TamR were considered for further analysis. There were 62 such drugs. 

Percentage viability of all the cell lines for these filtered compounds is illustrated in 

Figure 5.4, as well as their main FDA-approved indications. 

MCF-7 
MCF10A 
MDA-MB-231 
MCF-7-TRF 
ZR-75-1 
ZR-75-1-TamR 

PC1, 39% variance 

PC
2,

 1
9%
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e 

Figure 5.2. Principal component analysis (PCA) for the biological replicates of 
the compound screen for each cell line: the first two principal components are 
displayed. 
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Figure 5.3. Overall results of the compound screen: (A) Box plots representing % 
cell viability over DMSO control for each drug in each cell line; (B) Heatmap 
representing % viability over DMSO for each compound in each cell line. 
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Irinotecan: Cancer treatment; induces DNA damage 
Chlorprothixene: Neurological Disease 
Tenoxicam: Infection 
Ampicillin-trihydrate: Infection; 
Everolimus: Cancer treatment; mTOR inhibitor 
Rifabutin: Infection; antibiotic 
Nitrendipine: neurological Disease; calcium channel blocker 
Diminazene-aceturate: Vermifuge  
Fenofibrate: Cardiovascular Disease 
Clofarabine: Cancer; inhibits DNA-polymerase 
Ritodrine: Infection 
Cyromazine: Vermifuge 
Albendazole: Vermifuge 
Dronedarone: Neurological Disease 
Ouabain: Neurological Disease 
Temsirolimus; cancer; mTOR inhibitor 
Meloxicam: Inflammation 
Loperamide-hydrochloride: Infection  
Difluprednate: Endocrinology; topical corticosteroid 
Rapamycin: Immunology; mTOR inhibitor  
Indapamide: Cardiovascular Disease 
Halobetasol-propionate: Inflammation; psoriazis 
Imatinib: cancer; multi-target inhibitor of v-Abl, c-Kit and PDGFR 
Topotecan-Hydrochloride: Cancer; DNA damage 
Amlodipine-besylate: Cardiovascular Disease 
Scopine: Metabolic Disease 
Climbazole: Infection; anti-fungal 
Felodipine: Cardiovascular Disease; Ca2+ channel blocker 
Floxuridine: cancer; DNA damage 
Clindamycin-palmitate: infection; antibiotic 
Liothyronine: endocrinology; thyroid hormone 
Abitrexate: cancer; inhibiting the metabolism of folic acid 
Teniposide:  chemotherapeutic for (ALL). 
Phenytoin: endocrinology; sodium channel stabilizer 
Benzethonium: neurological disease 
Vincristine-sulfate: cancer; inhibitor of polymerization of microtubules 
Betaxolol: cardiovascular disease; β1 adrenergic receptor blocker 
Penciclovir: infection; antiviral activity  
Sulbactam-sodium: infection; β-lactamase inhibitor 
Disulfiram: neurological; treatment of chronic alcoholism 
Fesoterodine-fumarate: immunology 
Valdecoxib: Neurological Disease 
Camptothecine: Cancer treatment; DNA damage 
Ganciclovir: infection; antiviral action against herpesvirus 
Dimethyl-fumarate: inflammation; treatment of sclerosis  
Benzocaine: respiratory disease; local anesthetic 
Nifedipine: cardiovascular disease 
Idarubicin: cancer; DNA damage; topoisomerase II 
Phenformin-hydrochloride: metabolic disease; antidiabetic  
Trometamol 
Acadesine: Cardiovascular Disease 
Epirubicin: antineoplastic agent; inhibits Topoisomerase 
Miconazole-Monistat: anti-fungal agent 
Choline-chloride: dietary supplement 
Adriamycin: Cancer treatment; DNA damage 
Vidarabine: infection; antiviral action 
L-adrenaline-Epinephrine: cardiovascular disease 
Benzylpenicillin-sodium: infection; antibiotic 
Bortezomib: cancer; 20S proteasome inhibitor 
Gemcitabine: metabolic disease; antimetabolite  
Clindamycin: infection; antibiotic 
Mequinol: infection 

MCF-7 ZR-75-1 MCF-7 
TRF 

ZR-75-1 
TamR MCF10A MB-231 

colour key 

20   40  60  80 
%viability 

Figure 5.4. Heatmap of the compounds that affected cell viability with at least 
50% in MCF-7-TRF and ZR-75-1-TamR: the effect of these compounds on MCF-7, 
ZR-75-1, MCF10A and MDA-MB-231 is also illustrated and the drug class and main 
therapeutic indication is mentioned for each of the 62 filtered drugs. 
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The 62 compounds that affect cell viability with at least 50% in the endocrine resistant 

cell lines belong to different compound classes. These classes include therapies for 

neurological, cardiovascular and metabolic disease, antibiotics, antivirals and 

vermifuges, endocrinology disease and cancer. 

Interestingly, several compounds targeting mTOR pathway emerged as top inhibitors 

of cell viability in ERα positive cell lines. These are Everolimus, Temsirolimus, 

Rapamycin. In fact, such inhibitors, in combination with aromatase inhibitors, have 

been FDA-approved for the treatment of post-menopausal patients with ERα positive 

breast cancer (Yardley et al., 2013). Therefore, the presence of Everolimus, 

Temsirolimus and Rapamycin as top inhibitors can be considered a validation of the 

screen. The percentage cell viability over control for these drugs is illustrated in Table 

5.1: 

  % viability over control (DMSO)  

Compound MCF-7 ZR-75-1 MCF-7-
TRF 

ZR-75-1-
TamR 

MDA-
MB-231 MCF-10A 

Everolimus 36.949 44.789 45.414 46.221 68.301 55.062 
Temsirolimus 31.963 40.306 39.511 45.943 71.743 47.714 
Rapamycin 27.166 36.250 36.149 44.255 75.447 45.990 

Table 5.1. Effects of mTOR inhibitors on cell viability; % cell viability compared to 
vehicle is illustrated for the compounds on each cell line. 

 

In order to measure the potency of Everolimus in reducing cell viability of Tamoxifen 

sensitive cells compared to resistant cells, the drug concentration was titrated and 

IC50 values were generated in ZR-75-1 and ZR-75-1-TamR (Fig.5.5.A). The IC50 for 

ZR-75-1 was 125 nM and 500nM for ZR-75-1-TamR. 

Furthermore, using the Everolimus IC50 for ZR-75-1-TamR of 500nM, cell confluency 

of MCF-7, MCF-7-TRF, ZR-75-1 and ZR-75-1-TamR was assessed over a course of 

5-day treatment (Fig.5.5.B). The compound significantly inhibited cell growth in all four 

cell lines, confirming its efficacy. 
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In addition, other cancer therapeutics, including compounds that induce DNA damage, 

have emerged as top hits in the drug screen (Table 5.2). They are Irinotecan, 

Topotecan, Idarubicin and Camptothecin. 
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Figure 5.5. Everolimus effect on cell viability and cell growth: (A) generation of 
IC50 in ZR-75-1 and ZR-75-1-TamR. Cells were seeded in 6 technical replicates and 
treated 24 hours later with serial 1:3 dilutions of Everolimus ranging from 10µM to 4nM. 
Cell viability was assessed after 96 hours, using Cell Titre Glo. IC50 was calculated 
using GraphPad Prism Software and the non-linear regression model of log (inhibitor) 
vs response- variable slope settings. (B) Everolimus effect on MCF-7, ZR-75-1, MCF-
7-TRF and ZR-75-1-TamR; cell growth is expressed as mean ±SD of % confluency, 
assessed using the Incucyte ZoomTM system. Cells were seeded in 6 technical 
replicates (wells) and treated with 500nM Everolimus 24 hours later. Two-way ANOVA
multiple comparison was performed; p values ≤0.0001 are illustrated as (****). 
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 %over control (DMSO) 

Compound MCF-7 ZR-75-
1 

MCF-
7-TRF 

ZR-75-
1-

TamR 

MDA-
MB-231 

MCF-
10A 

Camptothecin 13.986 16.150 11.889 27.998 31.772 16.545 
Irinotecan 38.901 53.014 42.198 49.568 68.913 51.008 
Topotecan 34.928 33.705 26.071 48.482 66.054 39.269 
Idarubibin 16.107 19.433 12.935 19.414 26.605 20.250 

Table 5.2. Effect of DNA damage inducing agents on cell viability; % cell viability 
compared to control is illustrated for the compounds on each cell line. 

 

Camptothecin and its analogues - Irinotecan and Topotecan - induce DNA damage by 

inhibiting DNA topoisomerase II. They intercalate DNA, disrupt nucleic acid synthesis 

and induce DNA double strand breaks, ultimately resulting in cell death (Hollingshead 

and Faulds, 1991). Therefore, they are used as cancer chemotherapeutic agents in 

leukaemia, ovarian, small-cell lung, and refractory colorectal cancers (Liu et al., 2015). 

They have also been tested in clinical trials for metastatic breast cancer, but to date 

have not been introduced as standard of care. The clinical trials were small and 

showed variable response rates between 14-64%, indicating the need for an 

appropriate biomarker predictive of these drugs’ response. Nonetheless, this class of 

compounds may benefit certain subgroups of metastatic breast cancer patients 

(Kümler et al., 2013). 

Idarubicin is an anthracycline that also inhibits DNA topoisomerase II and has been 

successfully used is various cancer types, including breast cancer. They target 

proliferating cancer cells, although the exact mechanism for its cell killing ability is still 

not entirely understood (Zhong et al., 2019). 

A potentially interesting cluster of drugs (Disulfiram, Fesoterodine, Valdecoxib) appear 

to specifically inhibit cancer cells and only marginally inhibit the normal epithelial 

breast cell line MCF10A. The percentage viability over control for these compounds is 

shown in Table 5.2. These compounds are promising, as their toxicity on normal 

tissues may be considerably lower compared to DNA damage inducers. 
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 %over control (DMSO) 

Compound MCF-7 ZR-75-1 MCF-
7-TRF 

ZR-75-1-
TamR 

MDA-
MB-231 

MCF-
10A 

Disulfiram 16.919 42.385 47.191 40.863 53.366 85.897 
Fesoterodine 16.928 42.439 47.110 40.825 53.384 85.878 
Valdecoxib 16.898 42.409 47.189 40.908 53.313 85.485 

Table 5.3. Effects of compounds that specifically inhibit breast cancer cell 
viability, but not normal epithelial cells: percentage cell viability compared to 
control is illustrated for each cell line. 

 

Disulfiram is approved by the FDA for the treatment of alcohol dependence (Williams, 

2019). In recent years, considerable evidence has emerged for the anti-cancer effects 

of this drug (Lun et al., 2016, Viola-Rhenals et al., 2018, Yang et al., 2015). In 

particular, it has been shown that treatment with Disulfiram/Copper complex results in 

cell proliferation inhibition in vitro and in ERBB2 transgenic mice. This effect was 

demonstrated to occur through inhibition of AKT and cyclin D1 signaling. In addition, 

Disulfiram promotes apoptosis by suppressing the nuclear factor kB signaling. These 

results suggest that treatment with Disulfiram/Copper complex may be a promising 

therapy for ERBB2 positive breast cancer (Yang et al., 2015). The preliminary results 

from our drug screen suggest that Disulfiram may also be beneficial for endocrine 

resistant ERα positive breast cancer. 

Valdecoxib is a nonsteroidal anti-inflammatory drug from the same pharmacological 

class as Celecoxib. Their mechanism of action involves inhibition of Cyclooxygenase 

type-2 (COX-2) is the enzime that triggers Protaglandin synthesis. The use of COX-2 

inhibitors was shown to modulate tumour growth in chemoresitant colorectal cancer 

(CRC) xenograft models (Rahman et al., 2012). In adition, it was observed that 

Celecoxib has a preventative effect againt progression of oral squamous cell 

carcinoma in vitro and in PDX models through inhibition of epithelial-to-mesenchial 

transition (Chiang et al., 2017). COX-2 therefore acts as biomarker for those cancer 

models that may benefit from inhibitors such as Valdecoxib or Celecoxib (Chiang et 

al., 2017, Rahman et al., 2012). Moreover, COX-2 expression was previously 

associated with an aggressive phenotype in ductal carcinoma in situ (Boland et al., 

2004), implying that Cyclooxygenase type-2 inhibition with celecoxib or other coxibs 
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(Valdecoxib, Rofecoxib) may potentially prevent the development of both ERα-positive 

and ERα-negative breast cancers. Further investigations are required to clarify the 

benefits of COX-2 inhibition in breast cancer. 

Fesoterodine is a compound that reduces spasms of the bladder muscles. It is 

therefore FDA-approved for the treatment of overactive bladder with symptoms of 

urinary frequency (2008). No studies of Fesoterodine’s anti-cancer effects have been 

conducted to date. In contrast, this drug seems to increase the risk of lung and colon 

cancer (Löfling et al., 2019). 

 

Another cluster of compounds from the screen is the one of Vincristine-sulfate, 

Betaxolol, Penciclovir and Sulbactam-sodium. They are clustered together because 

they specifically reduce cell viability in ERα positive breast cancer cell lines and, to a 

much lesser extent, in the triple negative MDA-MB-231 cells. In addition, the effect of 

these four agents on the normal epithelial MCF10A cells was moderate (Table 5.4). 

 %over control (DMSO) 

Compound MCF-7 ZR-75-1 MCF-
7-TRF 

ZR-75-1-
TamR 

MDA-
MB-231 

MCF-
10A 

Vincristine-sulfate 15.018 25.308 17.888 35.932 81.650 62.811 
Betaxolol 15.039 25.342 17.857 35.912 81.621 62.808 

Penciclovir 14.987 25.261 17.926 35.970 81.747 62.485 
Sulbactam-sodium 15.009 25.331 17.885 36.008 81.592 62.529 

Table 5.4. Effects of compounds that specifically inhibit ERα positive breast 
cancer cell viability and not ERα negative cells: the normal epithelial cells were 
moderately inhibited; percentage cell viability compared to control is illustrated for 
each cell line. 

 

Vincristine is part of the alkaloid group of anti-cancer drugs. They stop mitosis by 

inhibiting polimerisation of microtubules, hece blocking cell growth (Zhou et al., 2019). 

It is already FDA-approved for the treatment of lymphomas. 

Betaxolol hydrochloride is a beta-1-selective adrenergic receptor antagonist. It acts on 

the heart and circulatory system and decreases cardiac contractility and rate, thereby 

reducing cardiac output. It can be applied topically for the treatment of ocular 
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hypertension and glaucoma (Onishchenko et al., 2019). There are no studies to date 

about Betaxolol in cancer treatment. 

Penciclovir is an antiviral drug for varicella-zoster virus and herpes simplex virus 

infections (Lazarus et al., 1999) with no previous connection to cancer. Sulbactam-

sodium has antibacterial properties. 

 

 Discussion 
To date, the estrogen receptor modulator Tamoxifen remains the most widely-used 

agent in pre-menopausal women and it is still one of the main options in post-

menopausal context (Davies et al., 2011). However, subgroups of patients are 

resistant to this drug. The endocrine refractory phenotype can result though various 

mechanisms including, but not restricted to changes in ERα levels and activity, 

changes in its protein interactors, cross-talk with receptor tyrosine kinase signalling 

pathways or dysregulation of cellular proliferation. 

Advances in our understanding of Tamoxifen resistance have paved the way for novel 

targeted therapies. Herceptin - a monoclonal antibody against HER2 (Namboodiri and 

Pandey 2011) – is currently used for ERα positive and ERBB2 positive patients. 

Another novel therapeutic approach is to target the PI3K/Akt/mTOR signalling 

pathways with compounds such as Everolimus and this has proved successful in 

postmenopausal patients with ERα positive breast cancer.  

Nonetheless, certain patients are not responsive to any of the currently-available 

medicines, which is an indication of more yet unidentified pathways to resistance to 

therapies. Therefore, there is still a need to improve breast cancer treatment.  

By conducting a screen of 1000 FDA-approved drugs, potential candidates that show 

efficacy in hormone-refractory breast cancer cell lines were identified. There are 62 

compounds that reduce cell viability of MCF-7-TRF and ZR-75-1TamR with more than 

50% compared to control DMSO. 

Among these drugs, there are multiple mTOR inhibitors as well as DNA damage 

inducers that are already FDA-approved for breast cancer treatment (Kümler et al., 
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2013, Lun et al., 2016, Yardley et al., 2013). Their presence as top inhibitors in this 

screen validates the quality of the data. 

In contrast to mTOR inhibitors and DNA damage inducers that are associated with 

high toxicity (Junpaparp et al., 2013, Ryan et al., 1991), some of the compounds that 

emerged as top inhibitors in this drug screen seem to specifically inhibit ERα positive 

and negative cancer cells and only have a small impact on normal epithelial cells. This 

is particularly appealing as a therapeutic opportunity, as it implies reduced toxicity on 

normal cells. Among these compounds there are Disulfiram and Valdecoxib. The first 

agent is FDA-approved for the treatment of alcohol dependence, but recent studies 

have shown it inhibits cell proliferation in HER2 positive breast cancer cell lines and in 

ERBB2 transgenic mice (Yang et al., 2015). 

Valdecoxib and its more potent analogue Celecoxib are FDA-approved as 

nonsteroidal anti-inflammatory drugs. They have also been identified as anti-tumour 

agents in chemo-resistant colorectal cancer xenograft models (Rahman et al., 2012) 

and oral squamous cell carcinoma in vitro and PDXs (Chiang et al., 2017).   

The results from this screen indicate Disulfiram and Valdecoxib may also be beneficial 

in endocrine resistant breast cancer. 

Moreover, Vincristine which is currently FDA-approved for the treatment of lymphomas 

(Zhou et al., 2019) seems to specifically reduce cell viability of endocrine sensitive and 

resistant ERα positive breast cancer cell lines. 

In addition, all the other compounds identified as viability inhibitors for breast cancer 

cells are worth validating. 

The next steps would be to titrate down the compound concentration and calculate the 

IC50 for these hits. The coumpounds would also be tested on a panel of other cell 

lines with common characteristics. Once in vitro steps are completed, the drugs would 

be validated in vivo (e.g. on tumour explants from PDX models and in mice). 

Furthemore, assessing the effects of the compounds on ERα-chromatin interactions 

would shed light on subsequent gene regulation and would offer inhight into the drugs’ 

mechanism of action in breast cancer models. 

Taken together, this compound screen has identified potential candidates for the 

treatment of hormone-refractory breast cancer. 
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Chapter 6. General Discussion 
ERα is the driving transcription factor in approximately three quarters of all breast 

cancer cases. This hormone receptor regulates genes involved in cell proliferation and 

survival (Musgrove and Sutherland, 2009) and its alterations result in oncogenesis.  

ERα targeted therapies have been developed and have significantly improved 

patients’ outcome. Notably, Tamoxifen was the first selective estrogen receptor 

modulator to be used widely in breast cancer treatment and it continues to be 

prescribed particularly to pre-menopausal women. However, certain subsets of 

patients are resistant to endocrine therapy. 

A key protein in ERα positive breast cancer is FOXA1. Several studies have described 

FOXA1 as a pioneer transcription factor that opens up compacted chromatin for 

subsequent binding of the hormone receptor (Carroll et al., 2005, Carroll et al., 2006, 

Hurtado et al., 2011). Thus, FOXA1 acts upstream of ERα and dictates its 

transcriptional programme. As such, FOXA1 is an attractive therapeutic target that 

may benefit ERα breast cancer patients, including those with endocrine resistance.  

One recent study has disputed the paradigm of FOXA1 pioneer activity in ERα positive 

breast cancer (Swinstead et al., 2016). Swinstead et al. suggested there is a subset 

of FOXA1 genomic binding sites induced by steroid activation. This conclusion 

challenges the importance of FOXA1 targeted therapy upstream of ERα. 

 

 FOXA1 functions independently of ERα signalling 
In this context, the aim of chapter 3 from this dissertation was to investigate whether 

FOXA1 binding events are regulated by hormone stimuli (Glont et al, 2019). The data 

generated reinforced the concept of a transcription factor hierarchy with FOXA1 acting 

upstream of ERα. Only a very small number (less than 1%) of FOXA1-chromatin 

interactions appear to be E2-induced in the experiments conducted. These <1% of 

E2-induced FOXA1 binding sites were shown to be in fact “shadow” peaks created by 

pre-existing binding sites that form chromatin loops.  
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Thus, FOXA1 acts upstream of ERα, its chromatin binding capacity is not influenced 

by estrogen signalling, and it remains a relevant and important drug target in hormone-

dependent cancers. 

 

 ETV6 is a newly identified interactor of FOXA1 
and ERα that contributes to breast cancer 
progression and endocrine resistance 
In recent years, several mechanisms of endocrine resistance in ERα positive breast 

cancer have been discovered, including changes in ERα levels and activity, changes 

in its protein interactors, cross-talk with growth factors and receptor tyrosine kinase 

signalling pathways or dysregulation of cellular proliferation. These insights have 

facilitated the development of several targeted therapies that have successfully 

prolonged disease-free survival in subsets of patients. 

One novel successful therapeutic strategy for ERα positive, HER2 positive breast 

cancer patients is the inhibition of HER2-mediated aberrant cell growth using an 

antibody-drug conjugate. This treatment, T-DM1, combines the monoclonal antibody 

against HER2 Trastuzumab (T) with the potent cytotoxic maytansine derivative (DM1) 

(Okines, 2017). 

In addition, inhibitors of cyclin D–CDK4/6-Retinoblastoma pathway such as Palbociclib 

(Finn et al., 2015) or inhibitors of the AKT/mTOR signalling pathway such as the mTOR 

inhibitor Everolimus (Yardley et al., 2013) have significantly improved disease-free 

survival in subsets of breast cancer patients. 

Yet, certain patients do not respond to any of these therapies and therefore it is vital 

to identify alternative determinant factors in breast cancer progression and endocrine 

resistance. A better understanding of the events that contribute to disease progression 

would pave the way for the development of new therapeutic strategies for the overall 

improvement of breast cancer survival. 

In chapter 4 of this thesis, the novel proteomics technique qPLEX-RIME was used to 

assess quantitative changes in FOXA1 and ERα interactome associated with the 
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development of the endocrine refractory phenotype. It was revealed that ERα and 

FOXA1 are enriched in Tamoxifen resistance, together with their newly identified 

interactor ETV6. 

ETV6 is an ETS transcription factor, that can mediate cell cycle, differentiation and 

lineage specification in normal development (Findlay et al., 2013). Therefore, it was 

plausible to hypothesise that ETV6 enrichment in the ERα/FOXA1 interactome 

associated with Tamoxifen resistance may play a role in cancer progression. 

Further validation of ETV6 relevance in endocrine resistance was provided by the 

growth inhibitory effect of ETV6 silencing in Tamoxifen resistant cell line models. This 

suggests that targeting ETV6 may be beneficial even for the endocrine refractory 

breast cancer patients. 

Moreover, ETV6’s direct contribution to breast cancer progression was shown by the 

growth promoting effects of ETV6 overexpression on MCF-7 colony formation ability. 

More insights into the functional role of ETV6 in endocrine resistance would be 

achieved by assessing the influence of ETV6 silencing in Tamoxifen resistant models 

on FOXA1/ERα chromatin interactions and subsequent gene regulation. 

In addition, assessing how would ETV6 overexpression in drug sensitive models affect 

ERα chromatin interactions and gene regulation would also reinforce the direct role of 

ETV6 in tumour progression. 

Importantly, ChIP-seq analysis has revealed that ERα, FOXA1 and ETV6 cooperate 

to drive endocrine resistance both in vitro and in vivo. Diffbind analysis showed that 

ERα, FOXA1, ETV6-chromatin interactions are redistributed together to the same 

genomic regions in endocrine resistant, when compared to endocrine sensitive breast 

cancer models (Fig.6.1). 

This redistribution is accompanied by an altered enhancer landscape. The genomic 

regions that lose ERα, FOXA1 and ETV6 binding also contain weak signal for the 

H3K27Ac marker of active chromatin, while the regions gained by the three 

transcription factors are also associated with stronger H3K27Ac peaks, proving they 

are more active for transcription. 
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Importantly, integration of ChIP-seq and RNA-seq data showed that ETV6-chromatin 

binding redistribution affects gene expression. A much higher percentage of ETV6 

gained chromatin interactions in endocrine resistant compared to matched sensitive 

models were located closer to the transcription start site of upregulated genes rather 

than downregulated genes. 

Furthermore, the ETV6 lost sites in endocrine resistant compared to matched sensitive 

models were located closer to the transcription start site of repressed genes rather 

than activated genes. 

These data suggest that ETV6 differential chromatin interactions between endocrine 

resistant and sensitive breast cancer models affect the transcriptome and therefore 

may contribute to the more aggressive phenotype associated with drug resistance. 

Further Genomic Regions Enrichment of Annotations Tool (GREAT) (McLean et al., 

2010) analysis revealed that ETV6 differentially bound regions also correlate with 

Tamoxifen resistance signatures as assessed in previously published datasets 

(Massarweh et al., 2008, Creighton et al., 2008). 

In addition, previous studies have described ETS transcription factors as being 

regulated by MAPK pathway (Chi et al., 2010). Therefore, the effects of MEK inhibitor 

Trametinib on endocrine sensitive and resistant models were assessed. It was found 

that inhibition of MAPK pathway reduced breast cancer progression and modulated 

ETV6-chromatin interactions. Further assessment of the enhancer landscape, as well 

Figure 6.1. Model of ERα, FOXA1 and ETV6 cooperative redistribution in 
endocrine resistant compared to sensitive context. 
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as gene expression analysis of Trametinib effects on Tamoxifen resistant models 

would shed more light on ETV6 regulation by MAPK pathway. 

In order to gain confidence that the anti-proliferative effect of Trametinib in endocrine 

resistance occurs through ETV6 modulation, further experiments could be conducted 

to assess whether ETV6 overexpression minimises the effect of Trametinib. 

Of importance, ETV6 copy number amplifications were assessed in the METABRIC 

cohort (Curtis et al., 2012). They were found to be associated with significantly 

reduced disease-free survival in ERα positive Luminal B breast cancer, which is the 

more aggressive subtype of cancer, more likely to metastasise. 

Taken together, the work in chapter 4 describes ETV6 as a novel interactor of ERα 

and FOXA1 that contributes to breast cancer progression and endocrine refractory 

phenotype. 

 

 Repurposing of FDA-approved compounds 
identifies potential new therapeutic strategies for 
Tamoxifen resistant breast cancer 
Another angle from which endocrine resistance was tackled in this dissertation was by 

aiming to repurpose FDA-approved drugs (chapter 5). Potential candidates that show 

efficacy in hormone-refractory breast cancer cell lines were identified using a 1000-

compound screen. Due to time restrictions the follow-up work from this chapter could 

not be completed. 

The next steps would be to titrate down the compound concentration and calculate the 

IC50 for these hits. The compounds IC50 would then be tested and validated on a 

panel of cell lines with common characteristics. Once in vitro steps are completed, the 

drugs would be validated in vivo (e.g. on tumour explants from PDX models and in 

mice-bearing PDX tumours). 

Furthermore, assessing the effects of the compounds on ERα-chromatin interactions 

and gene regulation would offer insights into the drugs’ mechanism of action in breast 

cancer models. 
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Taken together, this compound screen identified potential candidates for the treatment 

of hormone-refractory breast cancer. 

 Conclusions 
In summary, this study has reinforced that FOXA1 functions independently of ERα 

signalling. In addition, it was revealed that FOXA1 and ERα are enriched in endocrine 

resistance, together with their newly identified interactor ETV6. The contribution of 

ETV6 to cancer progression and endocrine refractory phenotype was further validated 

by an independent siRNA screen. Furthermore, there is a global reprogramming of 

FOXA1, ERα and ETV6 – chromatin interactions that results in altered transcription 

activity in endocrine resistance. The clinical relevance of ETV6 copy number 

amplifications was assessed and it was found that they correlate with significantly 

worse prognosis in ERα positive, Luminal B breast cancer. Last but not least, potential 

candidates for the treatment of Tamoxifen resistant breast cancer models were 

identified. 
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Annexes 



Annexe 1: Information about all target genes and siRNA sequences from LP_34662 

RNAi Cherry-pick Library (Dharmacon, Horizon Discovery, ref. G-CUSTOM-294730).  

 



LP_34662 G-CUSTOM-294730
Plate Well Pool Catalog Number Duplex Catalog Number Gene Symbol GENE ID Gene Accession GI Number Sequence
Plate 1 B02 M-011591-01 D-011591-02 BCL6 604 NM_001706 21040323 GAGAACAACCUGCCACUGA
Plate 1 B02 M-011591-01 D-011591-03 BCL6 604 NM_001706 21040323 GUACACAUCUCGGCUCAAU
Plate 1 B02 M-011591-01 D-011591-04 BCL6 604 NM_001706 21040323 GUCGAGACAUCUUGACUGA
Plate 1 B02 M-011591-01 D-011591-05 BCL6 604 NM_001706 21040323 UUACAGACCAGUUGAAAUG
Plate 1 B03 M-004584-01 D-004584-01 BCOR 54880 NM_020926 21071035 CCAAAUGGCUUCAGUGCUA
Plate 1 B03 M-004584-01 D-004584-04 BCOR 54880 NM_020926 21071035 CCAUAGAGAUUACUAAAGA
Plate 1 B03 M-004584-01 D-004584-17 BCOR 54880 NM_020926 21071035 GAAGUGAGAUUCCGAAAGA
Plate 1 B03 M-004584-01 D-004584-18 BCOR 54880 NM_020926 21071035 UCGCCAACUCAGCGGGUUA
Plate 1 B04 M-008456-01 D-008456-01 NFIB 4781 NM_005596 93004091 GGAGUCAACUUCCCAAUUG
Plate 1 B04 M-008456-01 D-008456-02 NFIB 4781 NM_005596 93004091 GCACCACCAUCCCGGAAUA
Plate 1 B04 M-008456-01 D-008456-03 NFIB 4781 NM_005596 93004091 AAAGAGCAGUCAAAGAUGA
Plate 1 B04 M-008456-01 D-008456-04 NFIB 4781 NM_005596 93004091 GCCAAACUGCGCAAAGAUA
Plate 1 B05 M-003422-00 D-003422-01 NR2F2 7026 NM_021005 31377723 GUACCUGUCCGGAUAUAUU
Plate 1 B05 M-003422-00 D-003422-02 NR2F2 7026 NM_021005 31377723 CCAACCAGCCGACGAGAUU
Plate 1 B05 M-003422-00 D-003422-03 NR2F2 7026 NM_021005 31377723 ACUCGUACCUGUCCGGAUA
Plate 1 B05 M-003422-00 D-003422-04 NR2F2 7026 NM_021005 31377723 GGCCGUAUAUGGCAAUUCA
Plate 1 B06 M-019085-00 D-019085-01 SNRPD3 6634 NM_004175 34328935 GAAGAACGCACCCAUGUUA
Plate 1 B06 M-019085-00 D-019085-02 SNRPD3 6634 NM_004175 34328935 GAACACCGGUGAGGUAUAU
Plate 1 B06 M-019085-00 D-019085-03 SNRPD3 6634 NM_004175 34328935 CGAUUAAAGUACUGCAUGA
Plate 1 B06 M-019085-00 D-019085-04 SNRPD3 6634 NM_004175 34328935 AUACAUCCGUGGCAGCAAA
Plate 1 B07 M-011984-02 D-011984-01 WDR1 9948 NM_005112 53729351 GGAAAGUGCGUCAUCCUAA
Plate 1 B07 M-011984-02 D-011984-02 WDR1 9948 NM_005112 53729351 GGUGGGAUUUACGCAAUUA
Plate 1 B07 M-011984-02 D-011984-03 WDR1 9948 NM_005112 53729351 GCGGCAAGUCCUACAUUUA
Plate 1 B07 M-011984-02 D-011984-18 WDR1 9948 NM_005112 53729351 UUGUCAACUGUGUGCGAUU
Plate 1 B08 M-004743-01 D-004743-01 SBNO2 22904 NM_001100122 154355003 GCUAAUAUAUGCAAUUCUC
Plate 1 B08 M-004743-01 D-004743-03 SBNO2 22904 NM_001100122 154355003 GAGAGUGGCUACGCUUUGU
Plate 1 B08 M-004743-01 D-004743-04 SBNO2 22904 NM_001100122 154355003 GGACCUUGCUCCCGGUAUC
Plate 1 B08 M-004743-01 D-004743-17 SBNO2 22904 NM_001100122 154355003 UGAUGGAUGCGGACGUGAA
Plate 1 B09 M-019929-01 D-019929-01 TLE3 7090 NM_020908 157384983 GCCAUUAUGUGAUGUACUA
Plate 1 B09 M-019929-01 D-019929-17 TLE3 7090 NM_020908 157384983 GGAUGUAGCAUAUCGAAGA
Plate 1 B09 M-019929-01 D-019929-18 TLE3 7090 NM_020908 157384983 GCCUCAAAGUGGAGUACGA
Plate 1 B09 M-019929-01 D-019929-19 TLE3 7090 NM_020908 157384983 AAGGACAGCUUGAGCCGAU
Plate 1 B10 M-006422-03 D-006422-02 CEBPA 1050 NM_004364 28872793 CAGAGAGCUCCUUGGUCAA
Plate 1 B10 M-006422-03 D-006422-04 CEBPA 1050 NM_004364 28872793 ACAAGAACAGCAACGAGUA
Plate 1 B10 M-006422-03 D-006422-05 CEBPA 1050 NM_004364 28872793 CGGUGGACAAGAACAGCAA
Plate 1 B10 M-006422-03 D-006422-19 CEBPA 1050 NM_004364 28872793 GGAACACGAAGCACGAUCA
Plate 1 B11 M-010510-03 D-010510-02 ETV6 2120 NM_001987 153267458 GGAGCUGGAUGAACAAAUA
Plate 1 B11 M-010510-03 D-010510-03 ETV6 2120 NM_001987 153267458 GUAGACUGCUUUGGGAUUA
Plate 1 B11 M-010510-03 D-010510-04 ETV6 2120 NM_001987 153267458 GAACGAAUUUCAUAUACAC
Plate 1 B11 M-010510-03 D-010510-05 ETV6 2120 NM_001987 153267458 GGGAUUACGUCUAUCAGUU
Plate 1 C02 M-010509-00 D-010509-01 ETV3 2117 NM_005240 20270187 ACAAGAGGAUCCUUCAUAA
Plate 1 C02 M-010509-00 D-010509-02 ETV3 2117 NM_005240 20270187 GGGAAAAGAUUUACCUAUA
Plate 1 C02 M-010509-00 D-010509-03 ETV3 2117 NM_005240 20270187 GGGAAUUUGUCAUCAAGGA
Plate 1 C02 M-010509-00 D-010509-04 ETV3 2117 NM_005240 20270187 AACAUUCGGUCAAGUGGUA
Plate 1 C03 M-015412-01 D-015412-01 ZFHX3 463 NM_006885 118498344 GAACAAGGUUUACGGACUA
Plate 1 C03 M-015412-01 D-015412-02 ZFHX3 463 NM_006885 118498344 CCACUAUGCUAGAAUGUGA
Plate 1 C03 M-015412-01 D-015412-04 ZFHX3 463 NM_006885 118498344 GUACAGAGACCACUACGAU
Plate 1 C03 M-015412-01 D-015412-17 ZFHX3 463 NM_006885 118498344 GUAUAAACCAAACGAGUUA
Plate 1 C04 M-009504-00 D-009504-01 TFAP4 7023 NM_003223 4507446 GGAUUCCAGUCCCUCAAGA
Plate 1 C04 M-009504-00 D-009504-02 TFAP4 7023 NM_003223 4507446 GAAGGUGCCCUCUUUGCAA
Plate 1 C04 M-009504-00 D-009504-03 TFAP4 7023 NM_003223 4507446 GCAGACAGCCGAGUACAUC
Plate 1 C04 M-009504-00 D-009504-04 TFAP4 7023 NM_003223 4507446 GCCCACAUGUACCCGGAAA
Plate 1 C05 M-006913-00 D-006913-01 RNF40 9810 NM_014771 37588854 GAGAUGCGCCACCUGAUUA
Plate 1 C05 M-006913-00 D-006913-02 RNF40 9810 NM_014771 37588854 GAUGCCAACUUUAAGCUAA
Plate 1 C05 M-006913-00 D-006913-03 RNF40 9810 NM_014771 37588854 GAUCAAGGCCAACCAGAUU
Plate 1 C05 M-006913-00 D-006913-04 RNF40 9810 NM_014771 37588854 CAACGAGUCUCUGCAAGUG
Plate 1 C06 M-006448-02 D-006448-02 HLTF 6596 NM_139048 117968479 UAAAGGAGAUAGUCCAUUA
Plate 1 C06 M-006448-02 D-006448-03 HLTF 6596 NM_139048 117968479 GAACAACACUGAUCAUCUG
Plate 1 C06 M-006448-02 D-006448-04 HLTF 6596 NM_139048 117968479 CCAGAUGACUUUCUAACUA
Plate 1 C06 M-006448-02 D-006448-05 HLTF 6596 NM_139048 117968479 GGACUACGCUAUUACACGG
Plate 1 C07 M-020007-01 D-020007-01 IRX5 10265 NM_005853 139394645 GUACAGCACCAGCGUCAUU
Plate 1 C07 M-020007-01 D-020007-02 IRX5 10265 NM_005853 139394645 GAACUAUGGCUCCUUCGGA
Plate 1 C07 M-020007-01 D-020007-03 IRX5 10265 NM_005853 139394645 GUGCAAAGACUCUCCCUAU
Plate 1 C07 M-020007-01 D-020007-04 IRX5 10265 NM_005853 139394645 GAAGAAAGGUAUGUCCGAC
Plate 1 C08 M-010738-00 D-010738-01 CREB3L4 148327 NM_130898 31542090 GGAGUGACUUCCAGAAAUA
Plate 1 C08 M-010738-00 D-010738-02 CREB3L4 148327 NM_130898 31542090 GAACCAAGAAUUACAGAAA
Plate 1 C08 M-010738-00 D-010738-03 CREB3L4 148327 NM_130898 31542090 UCAGUGAGCUGCCCUUUGA
Plate 1 C08 M-010738-00 D-010738-04 CREB3L4 148327 NM_130898 31542090 GCACAACAUCUCCUUGGUA
Plate 1 C09 M-008927-01 D-008927-02 PPP1CA 5499 NM_206873 45827797 CAAGAGACGCUACAACAUC
Plate 1 C09 M-008927-01 D-008927-03 PPP1CA 5499 NM_206873 45827797 GAACGACCGUGGCGUCUCU
Plate 1 C09 M-008927-01 D-008927-04 PPP1CA 5499 NM_206873 45827797 CCAAGUUCCUCCACAAGCA
Plate 1 C09 M-008927-01 D-008927-17 PPP1CA 5499 NM_206873 45827797 AAAGCUGGAUUCUCGCAAA
Plate 1 C10 M-012157-02 D-012157-01 AES 166 NM_198970 39812026 GCUCGAAUGUGACAAGUUG
Plate 1 C10 M-012157-02 D-012157-02 AES 166 NM_198970 39812026 CAAAGACGAAUUUCAGCUA
Plate 1 C10 M-012157-02 D-012157-03 AES 166 NM_198970 39812026 GCACAAACAGGCUGAGAUC
Plate 1 C10 M-012157-02 D-012157-18 AES 166 NM_198970 39812026 GGUACUGCAUGCACGCAAU
Plate 1 C11 M-010319-01 D-010319-01 FOXA1 3169 NM_004496 24497500 CCUCGGAGCAGCAGCAUAA
Plate 1 C11 M-010319-01 D-010319-03 FOXA1 3169 NM_004496 24497500 GCGCUGAGCCCGAGCGGCA
Plate 1 C11 M-010319-01 D-010319-04 FOXA1 3169 NM_004496 24497500 CGGGAAGACCGGCCAGCUA
Plate 1 C11 M-010319-01 D-010319-17 FOXA1 3169 NM_004496 24497500 GUGUAGACAUCCUCCGUAU



Annexe 2: The compound library L1300-Selleck-FDA-Approved-Drug-Library-

978cpds (Stratech, Selleckchem). Full list of the 978 compounds, their descriptions 

and their effects on cell viability for the cell lines investigated: MCF10A, MDA-MB-231, 

MCF-7, MCF-7-TRF, ZR-75-1, ZR-75-1-TamR. 



DRUG MCF-7 ZR-75-1 MCF-7-
TRF 

ZR-75-1-
TamR MCF10A MDA-MB-

231 Indication Target

10-dab-10-deacetylbaccatin 103.1 99.3 101.0 101.2 99.3 98.9 Others

1-hexadecanol 53.2 68.6 51.6 67.6 48.1 78.2 Others

2-Methoxyestradiol(2ME2) 75.9 103.8 65.3 76.9 50.3 75.1 Cancer HIF

2-thiouracil 82.4 104.4 101.0 106.3 87.3 95.2 Endocrinology Others
5-Aminolevulinic-acid-

hydrochloride 94.5 101.0 101.9 104.1 88.8 99.0 Neurological Disease Others

9-aminoacridine 86.5 89.9 94.7 95.3 80.6 99.0 Others
Abitrexate 45.0 62.0 37.1 48.6 17.6 47.0 Cancer DHFR

Acadesine 15.1 26.1 11.7 34.0 20.6 37.1 Cardiovascular Disease AMPK

Acarbose 107.1 97.6 109.1 108.1 97.9 102.3 Metabolic Disease Others
acebutolol-hcl 102.7 100.0 98.1 98.2 100.6 97.6 Neurological Disease Adrenergic Receptor
aceclidine-hcl 100.2 101.7 111.0 110.6 92.8 103.0 Others

acemetacin-emflex 73.4 75.6 70.8 83.5 70.8 98.6 Infection Others
Acetanilide-Antifebrin 53.3 68.8 51.5 67.6 48.1 78.1 Neurological Disease Others

acetarsone 88.0 93.6 85.2 110.1 63.7 77.0 Others
Acetylcholine-chloride 58.2 72.2 85.6 76.3 58.0 88.8 Neurological Disease AChR

Acetylcysteine 103.8 100.3 94.2 101.1 109.1 98.1 Respiratory Disease AChR

Acipimox 53.4 68.8 51.4 67.4 48.3 78.1 Cardiovascular Disease Others

Acitretin 61.3 64.0 54.3 83.0 83.0 83.6 Infection Others
aclidinium-bromide 105.9 99.1 97.7 96.8 101.3 101.3 Neurological Disease AChR
Acyclovir(Aciclovir) 65.3 75.4 84.3 98.9 57.3 106.8 Infection Others

Adapalene 63.0 68.5 61.1 84.7 25.9 99.6 Inflammation Others

Adefovir-Dipivoxil(Preveon) 74.2 63.3 63.5 57.2 28.5 76.9 Infection Others

adenine-hydrochloride 104.1 97.0 79.6 99.5 87.5 90.2 Cancer DNA/RNA Synthesis

Adenosine(Adenocard) 106.0 101.0 97.0 106.0 97.8 101.2 Cardiovascular Disease Others

adiphenine-hcl 103.2 99.9 99.1 100.0 109.0 105.3 Cardiovascular Disease Others

adrenalone-hcl 97.7 99.4 103.3 96.8 95.6 96.2 Cardiovascular Disease Adrenergic Receptor

Adriamycin 10.9 26.1 8.0 31.7 4.0 26.4 Cancer Topoisomerase
Adrucil(Fluorouracil) 75.4 72.1 70.1 77.4 75.2 92.7 Cancer DNA/RNA Synthesis

Agomelatine 97.6 102.5 106.4 108.2 90.6 101.6 5-HT Receptor
Albendazole(Albenza) 31.2 52.1 36.8 35.0 47.9 64.9 Vermifuge Others

albendazole-oxide-
ricobendazole 76.6 91.2 90.2 102.6 59.9 97.5 Infection Others

Alfacalcidol 85.4 80.2 68.3 88.7 73.3 96.3 Endocrinology Others

Alfuzosin-hydrochloride 87.0 92.2 89.0 102.5 81.8 97.5 Cardiovascular Disease Adrenergic Receptor

alibendol 96.3 91.6 92.8 98.2 82.1 89.2 Neurological Disease Others

Aliskiren-hemifumarate 100.2 102.3 97.8 98.3 100.6 98.9 Cardiovascular Disease RAAS

Allopurinol(Zyloprim) 103.4 104.0 104.0 99.7 99.4 102.5 Neurological Disease Others
allylthiourea 96.1 99.3 96.8 97.9 96.8 101.3 Metabolic Disease Others

almotriptan-malate-axert 103.9 100.4 94.1 101.0 109.1 98.1 Cardiovascular Disease 5-HT Receptor

Alprostadil(Caverject) 91.7 93.1 99.5 102.8 101.8 101.4 Endocrinology Others

altrenogest 107.3 101.3 106.2 116.1 97.6 101.3 Neurological Disease
Estrogen/progestogen 

Receptor
Altretamine 90.4 90.1 101.6 108.7 89.0 95.0 Cancer Others

alverine-citrate 103.9 97.0 79.7 99.7 87.2 90.1 Digestive system disease Others

Amantadine-
hydrochloride(Symmetrel) 94.3 94.5 101.5 103.1 96.5 92.7 Cardiovascular Disease Dopamine Receptor

ambrisentan 101.6 100.3 116.9 123.3 100.4 104.2 Neurological Disease Others
Amfebutamone-

hydrochloride(Bupropion) 100.6 101.1 109.3 102.5 95.8 101.0 Infection Dopamine Receptor

amfenac-sodium-monohydrate 78.8 79.6 87.7 94.3 65.5 74.9 Inflammation Others

amidopyrine 103.7 100.4 94.2 101.3 108.6 98.1 Neurological Disease Others

amilorida 104.2 101.2 111.1 110.1 99.6 100.7 Cardiovascular Disease Sodium Channel

Amiloride-
hydrochloride(Midamor) 79.0 97.6 87.6 97.4 80.4 98.3 Metabolic Disease Others

Cell viability in response to 4-day treatment with 1µM of each drug; 
results are shown as % over control (DMSO)



DRUG MCF-7 ZR-75-1 MCF-7-
TRF 

ZR-75-1-
TamR MCF10A MDA-MB-

231 Indication Target

Aminocaproic-acid(Amicar) 97.6 97.2 106.4 99.7 106.5 99.7 Cardiovascular Disease Others

Aminoglutethimide(Cytadren) 97.8 98.5 100.0 104.9 98.2 102.9 Endocrinology Aromatase

Aminophylline(Truphylline) 102.2 98.1 100.0 101.2 98.7 102.7 Respiratory Disease PDE

aminosalicylate-sodium 102.7 100.3 104.0 102.5 101.9 93.3 Neurological Disease NF-?B
aminothiazole 107.5 100.6 111.0 108.5 69.2 95.9 Infection Others

amiodarone-hcl 102.7 101.1 84.5 100.3 81.2 104.8 Cardiovascular Disease Potassium Channel

Amisulpride 98.5 99.0 107.2 110.2 98.9 96.8 Neurological Disease Dopamine Receptor

amitriptyline-hydrochloride 99.6 101.0 104.5 94.7 81.3 104.1 Infection 5-HT Receptor

Amlodipine(Norvasc) 86.6 97.3 90.1 97.6 80.4 98.6 Cardiovascular Disease Calcium Channel

Amlodipine-besylate(Norvasc) 35.0 33.7 26.0 48.4 39.2 66.1 Cardiovascular Disease Others

Ammonium-
Glycyrrhizinate(AMGZ) 103.7 90.9 103.4 84.7 96.5 125.9 Others

Amorolfine-Hydrochloride 97.9 98.1 99.8 96.8 79.2 99.7 Infection Others
amoxicillin-(amox) 97.3 101.6 104.0 112.3 93.1 101.9 Infection Others

amoxicillin-amoxycillin 61.2 64.0 54.3 83.2 82.7 83.5 Neurological Disease Others
Amphotericin-B(Abelcet). 103.9 97.1 95.5 99.7 94.8 108.2 Others

ampicillin-sodium 67.3 71.4 54.0 80.0 89.0 85.9 Infection Others
ampicillin-trihydrate 38.8 52.9 42.3 49.6 50.7 68.9 Infection Others

ampiroxicam 100.1 97.2 101.6 102.0 105.4 98.5 Cardiovascular Disease COX

Amprenavir-(Agenerase) 99.9 101.5 97.4 98.1 96.6 99.6 Infection HIV Protease
amprolium-hcl 74.6 89.3 89.6 91.6 77.8 91.3 Metabolic Disease Others

anagrelide-hydrochloride 91.1 95.8 95.9 96.2 98.2 98.9 Endocrinology PDE
Anastrozole 82.6 92.8 87.7 96.8 85.8 95.7 Endocrinology Aromatase

Aniracetam 100.1 100.1 112.1 109.4 92.2 99.0 Neurological Disease
AMPA Receptor-kainate 

Receptor-NMDA Receptor

anisotropine-methylbromide 68.6 92.9 96.1 100.7 81.3 98.9 Neurological Disease Others

antazoline-hcl 106.8 97.3 109.3 108.1 97.5 102.4 Neurological Disease Others
antipyrine 101.6 98.4 98.4 93.9 99.1 104.6 Infection Others

AP24534 88.2 93.8 85.0 110.0 64.0 76.9 Cancer
Bcr-Abl, VEGFR, FGFR, 

PDGFR, Flt
Apatinib-YN968D1 102.2 98.2 99.8 101.2 98.7 102.7 Cancer VEGFR

Apixaban(BMS-562247-01) 100.6 101.6 96.4 99.3 100.9 98.0 Cardiovascular Disease Factor Xa

Aprepitant 85.3 91.8 97.7 100.2 77.3 95.4 Neurological Disease Substance P

Arbidol-hcl 103.9 96.6 107.4 98.1 107.3 106.3 Cardiovascular Disease Others

arecoline 85.3 92.4 96.2 96.4 81.6 96.0 Endocrinology AChR

argatroban 99.2 98.4 96.5 100.3 99.2 103.6 Cardiovascular Disease Others

aripiprazole-abilify 82.3 93.9 95.3 93.0 77.9 104.6 Neurological Disease 5-HT Receptor
Arranon 101.4 95.3 89.0 99.3 80.9 101.2 Cancer DNA/RNA Synthesis

Artemether(SM-224) 101.0 102.4 103.8 99.6 105.1 96.2 Cancer Others
Artemisinin 70.4 83.8 91.4 103.9 80.5 94.6 Infection Others

articaine-hydrochloride 99.6 89.6 98.1 98.8 99.2 99.4 Neurological Disease Others

Asenapine 95.7 90.0 105.2 108.1 89.7 93.8 Neurological Disease
Adrenergic Receptor, 5-HT 

Receptor
aspartame 104.0 97.4 106.5 108.9 97.8 102.4 Metabolic Disease Others

aspirin-acetylsalicylic-acid 77.2 87.8 83.1 96.6 81.0 92.7 Cancer Others

Atazanavir 93.6 93.8 101.0 113.3 87.8 101.2 Cancer HIV Protease

atomoxetine-hydrochloride 100.4 101.7 96.4 99.5 100.5 97.9 Neurological Disease 5-HT Receptor

atorvastatin-calcium-lipitor 97.8 99.3 103.1 96.6 96.0 96.3 Cardiovascular Disease HMG-CoA Reductase

atovaquone-atavaquone 97.5 94.0 107.7 108.8 99.1 92.1 Neurological Disease Free Base
atracurium-besylate 102.3 98.6 101.0 109.2 91.8 97.6 Neurological Disease Others

Atropine-sulfate-monohydrate 104.5 100.0 101.2 97.8 106.5 96.6 Respiratory Disease Others

auflomedil-hcl 92.3 85.1 89.7 88.4 79.6 93.8 Neurological Disease Others

avanafil 105.9 99.1 96.4 98.6 100.9 95.5 Cardiovascular Disease PDE

Avobenzone(Parsol-1789) 85.5 92.4 96.0 96.2 81.9 96.0 Others
Axitinib 40.0 65.6 24.4 51.5 53.6 88.2 Cancer VEGFR, PDGFR, c-Kit
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Azacitidine(Vidaza) 77.9 86.8 80.4 88.9 76.9 97.6 Cancer DNA/RNA Synthesis
azacyclonol 97.8 97.2 99.9 103.2 95.1 101.2 Neurological Disease Others

azaguanine-8 100.5 99.5 110.1 106.5 89.3 103.6 Cancer Others
azaperone 80.8 79.3 70.8 78.0 73.6 95.4 Neurological Disease Others

azatadine-dimaleate 106.4 100.5 100.5 95.3 100.1 99.9 Infection Histamine Receptor
Azathioprine(Azasan) 71.7 74.1 60.7 75.0 72.7 82.0 Immunology Others

Azelastine-hydrochloride-
Astelin 97.5 102.6 106.4 108.4 90.2 101.6 Neurological Disease Histamine Receptor

azelnidipine 102.5 101.1 84.6 100.5 80.9 104.7 Neurological Disease Calcium Channel

azilsartan-medoxomil-tak-491 94.5 99.5 96.4 105.3 93.5 98.1 Cardiovascular Disease RAAS

azilsartan-tak-536 88.0 98.2 91.9 96.6 79.8 101.0 Neurological Disease RAAS
azithromycin-dihydrate 87.2 89.9 86.8 96.9 81.4 93.4 Infection Others

azithromycin-zithromax.h 104.4 101.2 110.9 109.9 100.0 100.8 Cancer autophagy
azlocillin-sodium-salt 102.9 100.0 99.3 100.3 108.6 105.3 Neurological Disease Others
Aztreonam(Azactam) 102.7 98.5 102.3 107.7 100.3 97.1 Infection Others

bacitracin 92.3 89.8 84.4 82.2 84.1 92.5 Infection Others
balofloxacin 101.8 98.3 98.2 93.6 99.5 104.7 Metabolic Disease Others
BAY-73-4506 88.3 96.3 90.3 80.0 40.1 53.6 Cancer c-Kit, Raf, VEGFR

bazedoxifene-hcl 106.1 99.1 97.5 96.6 101.7 101.3 Metabolic Disease
Estrogen/progestin 

receptor

beclomethasone-dipropionate 106.1 98.4 97.7 110.7 93.7 94.5 Inflammation Others

bemegride 97.7 97.4 103.7 110.4 91.8 96.6 Others

Benazepril-hydrochloride 106.3 100.3 114.7 109.2 95.1 98.7 Cardiovascular Disease RAAS

Bendamustine-Hydrochloride 82.0 87.0 85.4 91.9 80.5 95.7 Cancer Others

benidipine-hydrochloride 82.5 104.3 100.8 106.0 87.6 95.2 Cardiovascular Disease calcium channel

Benserazide-
hydrochloride(Serazide) 102.9 100.3 103.8 102.2 102.3 93.4 Neurological Disease Dopamine Receptor

benzbromarone 73.4 75.4 71.0 83.4 70.7 98.8 Others
benzethonium-chloride 44.9 61.8 37.1 48.7 17.5 47.0 Neurological Disease Others

benzocaine 13.9 16.1 11.9 28.0 16.4 31.8 Respiratory Disease Others
benzoic-acid 75.1 71.9 70.3 77.5 74.8 92.8 Others

benzthiazide 52.2 58.6 61.8 61.1 70.5 95.4 Cardiovascular Disease Others

benztropine-mesylate 94.0 90.8 96.1 95.0 96.4 94.5 Infection Histamine Receptor
benzydamine-hcl 101.2 95.0 89.2 99.4 80.5 101.3 Inflammation Others

benzylpenicillin-sodium 10.9 26.1 8.1 31.8 4.0 26.4 Infection Others
bephenium-

hydroxynaphthoate 96.6 96.0 107.7 110.6 94.1 96.1 Vermifuge Others

bepotastine-besilate 97.6 88.4 84.3 86.9 76.6 95.0 Cancer Histamine Receptor
bergapten 94.5 100.2 110.6 111.7 82.9 87.4 Cancer Others

Beta-Carotene 74.8 89.7 89.2 91.5 78.2 91.3 Others

betahistine-dihydrochloride 104.8 93.3 103.3 96.4 98.9 97.1 Histamine Receptor

Betamethasone-(Celestone) 81.3 85.7 112.9 85.6 91.7 118.3 Inflammation Others

Betamethasone-
Dipropionate(Diprolene) 103.6 90.9 103.5 84.7 96.6 125.9 Others

Betamethasone-
valerate(Betnovate) 88.0 92.0 103.3 78.5 92.7 117.4 Inflammation Others

betamipron 104.0 100.8 111.3 110.0 99.5 100.9 Infection Others
Betapar(Meprednisone) 105.3 104.9 103.6 103.6 96.5 106.1 Inflammation Others

betaxolol-betoptic 104.9 101.8 96.3 95.9 103.0 95.0 Neurological Disease Adrenergic Receptor
betaxolol-hydrochloride-

betoptic 15.0 25.3 17.9 35.9 62.8 81.6 Cardiovascular Disease Adrenergic Receptor

bexarotene 103.6 101.6 98.7 113.7 97.8 97.9 Cardiovascular Disease Others

bezafibrate 77.7 86.5 80.7 89.1 76.5 97.6 Metabolic Disease Others
BIBR-1048(Dabigatran-

etexilate) 93.1 97.5 106.3 100.4 96.7 102.6 Infection Others

BIBW2992 70.0 64.5 52.0 56.6 26.6 52.7 Cancer EGFR

Bicalutamide(Casodex) 88.5 100.5 95.5 104.9 82.0 94.3 Endocrinology Androgen Receptor, P450

bifonazole 90.5 90.2 101.4 108.6 88.9 95.0 Infection others

Bimatoprost 104.0 96.9 79.7 99.6 87.5 90.2 Cardiovascular Disease Others

bindarit 96.6 95.0 89.7 95.2 79.9 90.0 Cancer Others
biotin-vitamin-b7 98.9 97.1 110.8 106.4 87.1 91.7 Infection Others
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bisacodyl 84.0 104.4 105.2 102.7 95.1 98.4 Cardiovascular Disease Others

Bisoprolol-Fumarate 77.9 86.7 80.5 89.0 76.9 97.6 Adrenergic Receptor
Bleomycin-sulfate 85.5 74.9 82.9 85.7 67.4 73.4 Cancer DNA/RNA Synthesis

Bortezomib 6.1 10.8 4.1 8.4 3.4 4.0 Cancer Proteasome
bosentan 93.5 80.7 78.4 84.1 78.1 91.0 Others
Bosutinib 50.3 71.3 47.3 59.9 41.1 77.6 Cancer Src

brinzolamide 91.6 98.6 94.2 95.0 106.9 93.6 Neurological Disease Carbonic Anhydrase

bromhexine-hydrochloride 107.5 101.2 106.0 115.8 98.0 101.4 Cardiovascular Disease Others

brompheniramine 104.4 99.2 107.7 106.1 98.1 99.6 Infection Histamine Receptor
broxyquinoline 97.2 101.2 104.2 112.1 92.9 102.0 Vermifuge Others

brucine 44.4 61.0 46.9 52.9 17.4 76.2 Others
Budesonide 104.1 97.4 113.1 103.3 99.6 96.5 Endocrinology Others
bufexamac 88.9 87.8 80.7 88.6 78.5 98.6 Metabolic Disease HDAC

Bumetanide 104.5 99.1 107.7 105.9 98.5 99.6 Cardiovascular Disease Others

Bupivacaine-
hydrochloride(Marcain) 98.1 108.1 121.2 115.8 107.5 101.0 Neurological Disease Others

Busulfan(Busulfex) 103.0 99.2 101.2 101.3 99.3 98.9 Cardiovascular Disease NULL

butenafine-hydrochloride 88.6 92.4 98.6 95.3 102.1 103.2 Neurological Disease Others
butoconazole-nitrate 104.1 95.2 98.0 110.9 102.5 95.1 Infection Others
cabazitaxel-jevtana 52.3 58.8 61.7 61.1 70.6 95.2 Neurological Disease Others
Calcitriol-(Rocaltrol) 55.3 68.4 54.7 75.3 65.1 95.8 Endocrinology Others
calcium-gluceptate 88.8 87.5 80.9 88.6 78.3 98.8 Others

Camptothecine 14.0 16.2 11.9 28.0 16.5 31.8 Cancer Topoisomerase

camylofin-chlorhydrate 81.2 85.5 113.2 85.6 91.1 118.4 Digestive system disease Others

Candesartan(Atacand) 101.8 98.2 98.4 93.7 99.5 104.7 Cardiovascular Disease RAAS

Candesartan-cilexetil-Atacand 88.2 93.9 84.9 110.0 64.0 76.9 Cardiovascular Disease Others

Capecitabine(Xeloda) 68.8 101.6 100.0 103.9 79.9 101.2 Cancer DNA/RNA Synthesis
captopril-capoten 99.8 89.6 98.0 98.5 99.6 99.4 Metabolic Disease RAAS

carbachol 103.0 96.0 94.7 109.3 88.0 97.8 Others
carbadox 92.9 89.4 85.6 89.3 77.6 95.8 Infection Others

Carbamazepine(Carbatrol) 101.7 97.7 101.8 99.1 100.8 93.3 Neurological Disease Others

Carbamyl-beta-methylcholine-
chloride(Bethanechol-chloride) 40.0 65.6 24.4 51.6 53.4 88.1 Neurological Disease AChR

carbazochrome-sodium-
sulfonate 88.0 95.6 97.3 96.3 64.8 101.1 Cancer Others

carbenicillin-disodium 99.0 98.4 96.7 100.5 98.8 103.5 Infection Others
carbenoxolone-sodium 82.3 104.0 101.3 106.2 87.2 95.3 Endocrinology Others

Carbidopa 73.6 75.6 70.7 83.3 71.1 98.7 Neurological Disease others
carbimazole 99.2 102.1 96.5 100.2 96.3 103.0 Infection Others

carfilzomib-pr-171 90.7 100.9 94.8 100.4 87.8 90.7 Cardiovascular Disease Proteasome

Carmofur 70.5 66.3 64.6 68.5 70.2 88.9 Cancer Antimetabolites
carprofen 88.3 100.3 95.8 105.0 81.6 94.4 Inflammation Others

carvedilol 90.1 95.6 105.8 113.4 87.6 98.3 Cardiovascular Disease Adrenergic Receptor

caspofungin-acetate 89.0 102.7 100.1 109.6 90.7 96.5 Infection Others
catharanthine 98.0 100.7 102.1 95.7 97.9 102.6 Others

Cefdinir(Omnicef) 99.7 98.7 96.6 105.9 100.6 101.6 Infection Others
Cefditoren-pivoxil 92.6 90.2 84.1 82.0 84.6 92.4 Infection 5-alpha Reductase

cefoperazone-cefobid 103.1 99.8 99.3 100.1 109.0 105.3 Infection Others
ceftazidime-pentahydrate 82.9 89.3 85.1 83.1 82.4 95.2 Infection Others

Ceftiofur-hydrochloride 78.8 97.6 87.8 97.7 80.1 98.2 Others
Celecoxib 97.9 97.7 103.5 110.3 92.3 96.6 Inflammation COX

Cephalexin-(Cefalexin) 100.2 99.7 115.2 107.9 97.2 96.8 Infection Others
cephalomannine 101.8 99.2 101.0 102.4 97.1 99.6 Cancer Others
cepharanthine 89.4 92.9 96.2 95.6 83.6 98.1 Metabolic Disease Others
Cetirizine-di-hcl 72.8 79.1 72.9 78.6 73.4 88.7 Inflammation Histamine Receptor

cetrimonium-bromide 72.6 93.6 77.6 84.1 41.9 95.6 Infection Others
cetylpyridinium-chloride 58.0 72.0 85.9 76.5 57.7 88.9 Infection Others
Chenodeoxycholic-acid 82.1 96.7 100.8 102.4 87.4 96.0 Infection NULL

Chloramphenicol(Chloromyceti
n) 84.1 104.2 105.2 102.5 95.5 98.5 Infection Others
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Chlormezanone(Trancopal) 105.3 95.9 107.3 111.4 92.9 93.3 Respiratory Disease Others

chlorocresol 104.3 98.9 107.9 105.9 98.0 99.7 Others

Chlorothiazide(Diuril) 96.2 99.2 96.8 97.7 97.2 101.4 Cardiovascular Disease Others

Chloroxine 100.8 99.8 109.6 106.4 89.8 103.5 Infection Others

Chlorpheniramine-maleate 75.9 103.9 65.2 76.9 50.3 75.1 Neurological Disease Histamine Receptor

Chlorpromazine-
hydrochloride(Sonazine) 69.9 64.6 52.0 56.6 26.5 52.7 Neurological Disease

Dopamine Receptor, 
Potassium Channel

chlorpropamide 85.3 74.7 83.0 85.9 67.0 73.5 Infection Others
Chlorprothixene 38.9 53.1 42.1 49.5 51.0 68.9 Neurological Disease Others
chlorquinaldol 76.4 90.9 90.6 102.7 59.6 97.6 Infection Others
chlorzoxazone 72.8 87.2 92.3 88.6 76.9 90.4 Metabolic Disease Others

choline-chloride 15.0 26.0 11.8 34.0 20.5 37.1 Others

chromocarb 103.8 97.2 113.3 103.4 99.0 96.6 Cardiovascular Disease Others

ciclopirox-ethanolamine 86.7 90.2 94.5 95.4 80.7 98.9 Infection ATPase
Ciclopirox-Penlac 101.3 95.4 89.0 99.5 80.6 101.1 Neurological Disease Others

Cilnidipine 61.4 76.8 67.2 74.9 52.9 86.7 Cardiovascular Disease Calcium Channel

Cilostazol 74.0 82.9 78.9 79.2 74.2 85.5 Cardiovascular Disease PDE

Cimetidine(Tagamet) 98.0 97.8 103.3 110.2 92.3 96.6 Inflammation NULL
Cinacalcet-hydrochloride 82.1 96.6 101.0 102.4 87.5 96.0 Endocrinology CaSR

cinchophen 103.8 94.9 98.4 111.0 102.0 95.1 Immunology Others
cinepazide-maleate 105.2 95.9 89.4 99.4 78.7 96.0 Inflammation Others

cisatracurium-besylate-nimbex 100.0 101.6 97.2 98.0 96.6 99.6 Neurological Disease Adrenergic Receptor

Cisplatin 80.3 97.5 94.3 93.0 83.8 93.8 DNA/RNA Synthesis
Cladribine 79.0 79.8 87.5 94.2 65.9 74.8 Cancer DNA/RNA Synthesis

clarithromycin 81.2 96.7 97.0 102.5 87.2 100.2 Neurological Disease P450
Clemastine-Fumarate 107.9 100.9 110.5 108.4 69.4 95.8 Immunology Histamine Receptor

cleviprex-clevidipine 105.9 101.3 94.5 94.5 103.5 95.0 Cardiovascular Disease Calcium Channel

climbazole 34.9 33.6 26.1 48.6 39.0 66.1 Infection Others
clindamycin 94.7 100.6 110.4 111.9 83.0 87.3 Infection Others
Clindamycin-

hydrochloride(Dalacin) 6.1 10.8 4.1 8.5 3.4 4.0 Neurological Disease Others

clindamycin-palmitate-hcl 47.6 51.7 36.3 48.1 42.4 32.1 Infection Others
clobetasol-propionate 104.0 97.5 113.1 103.5 99.2 96.5 Neurological Disease Others

Clofarabine 40.8 57.0 40.0 40.9 42.1 60.9 Cancer DNA/RNA Synthesis
clofazimine 24.7 37.7 25.9 53.5 28.4 40.2 Infection Others

clofibric-acid 106.0 100.1 114.9 109.2 94.6 98.8 Metabolic Disease Others
clofoctol 70.2 55.0 99.9 90.4 49.1 74.3 Infection Others

Clomifene-citrate-Serophene 76.5 91.2 90.4 102.9 59.7 97.4 Cancer
Estrogen/progestogen 

Receptor
Clomipramine-hydrochloride-

Anafranil 65.2 75.5 84.5 99.1 57.1 106.8 5-HT Receptor

Clonidine-
hydrochloride(Catapres) 50.2 71.4 47.3 60.0 40.9 77.6 Infection Adrenergic Receptor

Clopidogrel-bisulfate 99.6 102.1 104.5 103.6 86.2 101.3 Cardiovascular Disease P2 Receptor

clorprenaline-hcl 85.1 91.6 97.9 100.2 76.9 95.4 Cardiovascular Disease Others

clorsulon 83.2 89.5 80.3 87.1 74.5 86.2 Cancer Others
closantel 84.3 92.8 78.5 89.1 55.0 93.8 Vermifuge Others

closantel-sodium 91.5 97.2 89.3 98.9 84.0 96.8 Vermifuge Others
Clotrimazole(Canesten) 99.8 100.8 104.5 94.6 81.6 104.2 Infection Others

Cloxacillin-sodium-Cloxacap 100.6 99.8 109.9 106.6 89.5 103.5 Cardiovascular Disease Others

Clozapine(Clozaril) 42.5 53.9 41.0 53.0 31.3 31.0 Cardiovascular Disease 5-HT Receptor

cobicistat-gs-9350 72.6 93.9 77.4 84.3 42.0 95.5 Cancer P450 (e.g. CYP17)

conivaptan-hcl-vaprisol 96.3 99.3 96.6 97.7 97.2 101.4 Cardiovascular Disease Others

Cortisone-acetate-Cortone 103.9 95.3 98.2 111.2 102.1 95.0 Cancer Others

coumarin 94.2 94.2 77.6 93.1 80.1 95.6 Others
CP-690550 94.2 94.1 95.0 90.4 96.4 90.3 Cancer JAK

Crystal-violet 68.5 94.5 101.5 106.8 81.0 94.4 Infection Others
Curcumin 107.2 97.7 108.9 108.1 97.9 102.3 Others

cyclamic-acid 99.8 101.6 97.4 98.3 96.2 99.5 Inflammation Others
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cyclandelate 101.9 98.3 101.5 109.3 91.3 97.7 Neurological Disease Others
cyclophosphamide-

monohydrate 98.7 98.7 101.0 101.0 99.7 103.4 Cancer Others

Cyclosporine 90.0 91.9 88.1 97.9 94.1 96.4 Immunology Others
cyproheptadine-hydrochloride-

periactin 100.3 99.9 115.0 107.8 97.2 96.8 Neurological Disease Histamine Receptor

cyromazine 40.7 56.9 40.1 41.0 41.8 61.0 Vermifuge Others
cysteamine-hcl 95.6 89.8 105.4 108.1 89.2 93.9 Metabolic Disease Others

cytidine 88.8 92.4 98.4 95.1 102.5 103.3 Cardiovascular Disease Others

dabrafenib-gsk2118436a 89.5 93.3 96.0 95.7 83.7 97.9 Infection Raf
Dacarbazine 85.8 90.9 89.9 92.8 78.5 102.3 Cancer DNA/RNA Synthesis

Daidzein 63.1 68.5 61.0 84.6 25.9 99.6 Cardiovascular Disease Others

Dapoxetine-
hydrochloride(Priligy) 104.2 97.5 112.9 103.3 99.5 96.5 Neurological Disease 5-HT Receptor

DAPT-GSI-IX 97.7 97.3 106.2 99.7 106.5 99.7 Cancer
Gamma-secretase, Beta 

Amyloid
darifenacin-hydrobromide 100.1 99.9 115.2 108.1 96.9 96.8 Infection AChR

Darunavir-Ethanolate(Prezista) 104.9 101.7 96.4 95.9 103.0 95.0 Infection HIV Protease

Dasatinib 42.6 53.9 41.0 53.0 31.4 31.0 Cancer Src, Bcr-Abl, c-Kit
daunorubicin-hcl-daunomycin-

hcl 81.4 89.9 79.1 92.9 90.7 89.2 Cancer Telomerase

decamethonium-bromide 100.4 101.1 109.5 102.8 95.5 100.9 Neurological Disease AChR

Decitabine 68.7 85.7 65.7 97.0 59.3 87.6 Cardiovascular Disease DNA/RNA Synthesis

Deferasirox(Exjade) 40.0 65.6 24.3 51.5 53.6 88.2 Endocrinology Others
Deflazacor 81.1 79.6 70.5 77.8 74.0 95.3 Endocrinology Others

Dehydroepiandrosterone(DHEA
) 90.7 86.2 98.2 91.9 77.1 92.1 Endocrinology Androgen Receptor

deoxyarbutin 82.4 92.6 87.9 96.8 85.4 95.8 Cardiovascular Disease Others

deoxycorticosterone-acetate 87.9 95.3 97.5 96.2 64.7 101.2 Endocrinology Others

desloratadine 103.7 97.2 95.5 99.9 94.4 108.2 Cardiovascular Disease Histamine Receptor

Desonide 93.4 94.6 104.0 87.1 88.3 121.4 Inflammation Others

detomidine-hcl 97.6 99.8 99.3 97.0 103.0 100.2 Cardiovascular Disease Adrenergic Receptor

Dexamethasone 70.4 82.3 93.6 68.5 71.4 119.2 Inflammation IL Receptor
dexamethasone-acetate 76.5 72.9 62.1 86.4 64.4 93.8 Inflammation Others

dexlansoprazole 81.2 91.3 82.7 96.3 70.8 99.8 Cardiovascular Disease Others

dexmedetomidine 103.1 96.3 94.4 109.4 88.1 97.7 Neurological Disease Adrenergic Receptor
dexmedetomidine-hcl-

precedex 98.2 100.7 101.8 95.5 98.2 102.6 Neurological Disease Androgen Receptor

Dexrazoxane-Hydrochloride 94.5 94.4 77.4 92.9 80.5 95.5 Cardiovascular Disease Others

Dextrose(D-glucose) 106.1 101.1 96.8 105.9 97.7 101.2 Infection Others
dibenzothiophene 70.3 83.6 91.7 103.9 80.1 94.7 Others

dibucaine-cinchocaine-hcl 93.0 97.5 106.5 100.6 96.2 102.6 Endocrinology Sodium Channel
diclazuril 100.9 99.8 108.7 114.6 93.7 102.8 Infection Others

diclofenac-diethylamine 98.4 101.1 100.8 107.6 93.2 102.8 Neurological Disease Others
diclofenac-potassium 99.5 102.2 104.5 103.8 85.8 101.3 Infection Others

Diclofenac-sodium 83.3 89.5 80.1 86.9 74.8 86.3 Neurological Disease COX
dicloxacillin-sodium 27.1 47.4 26.0 51.6 37.0 47.1 Infection Others

dicyclomine-hcl 97.7 97.4 111.3 107.7 97.7 101.5 Neurological Disease Others
Didanosine(Videx) 101.1 101.5 102.9 108.6 99.9 95.9 Infection NULL

Dienogest 90.1 95.5 106.0 113.5 87.6 98.3 Endocrinology
Estrogen/progestogen 

Receptor

Diethylstilbestrol(Stilbestrol) 70.5 83.9 91.3 103.8 80.5 94.6 Cancer Others

difloxacin-hcl 98.7 96.7 111.0 106.2 86.9 91.8 Infection Others
difluprednate 31.9 40.2 39.6 46.0 47.4 71.8 Endocrinology Others

Diltiazem-HCl(Tiazac) 95.8 90.1 105.0 108.0 89.7 93.8 Cardiovascular Disease Others

dimethyl-Fumarate 14.0 16.2 11.9 28.0 16.5 31.7 Inflammation Others
diminazene-aceturate 36.9 44.7 45.5 46.2 54.7 68.4 Vermifuge Others

diperodon-hcl 99.9 99.5 115.5 107.9 96.8 96.9 Neurological Disease Others
diphemanil-methylsulfate 104.3 100.0 101.4 98.1 106.1 96.5 Neurological Disease AChR

Diphenhydramine-
hydrochloride(Benadryl) 106.4 100.4 114.4 109.1 95.0 98.7 Immunology Others
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diphenylpyraline-hcl 78.2 78.1 84.8 91.8 75.8 89.3 Neurological Disease Others
Dipyridamole(Permole,-

Persantine) 90.8 86.2 98.0 91.7 77.3 92.1 Cardiovascular Disease Others

dirithromycin 72.6 78.9 73.1 78.8 73.0 88.8 Infection Others

disopyramide-phosphate 96.5 92.6 89.0 100.3 82.7 104.3 Cardiovascular Disease Others

Disulfiram(Antabuse) 16.9 42.4 47.2 40.9 85.9 53.4 Neurological Disease Others
Divalproex-sodium 87.2 101.0 108.9 105.1 96.7 104.4 Neurological Disease Others

DL-Carnitine-hydrochloride 100.9 100.8 105.9 100.8 104.9 97.1 Cardiovascular Disease Others

D-Mannitol(Osmitrol) 105.3 105.0 103.4 103.5 96.5 106.1 Cardiovascular Disease Others

Docetaxel(Taxotere) 24.8 37.8 25.9 53.4 28.5 40.2 Cancer Microtubule Associated

Dofetilide(Tikosyn) 105.4 101.5 95.0 101.4 95.4 103.8 Cardiovascular Disease Others

domiphen-bromide 94.3 100.6 102.1 104.0 88.7 99.2 Infection Others
Domperidone(Motilium) 73.6 72.0 57.1 60.3 27.2 89.3 Neurological Disease Dopamine Receptor

Dopamine-hydrochloride-
Inotropin 85.4 74.9 82.9 85.9 67.2 73.3 Infection Dopamine Receptor

Doripenem-Hydrate 77.3 87.7 83.1 96.3 81.3 92.7 Infection Others
doxapram-hcl 105.2 101.6 95.0 101.6 95.0 103.7 Neurological Disease Others

Doxazosin-mesylate 82.5 88.4 85.2 87.2 69.7 95.5 Cardiovascular Disease Adrenergic Receptor

Doxercalciferol(Hectorol) 76.6 72.8 62.1 86.3 64.7 93.9 Endocrinology Others
doxifluridine 99.2 91.2 111.0 101.4 98.4 90.6 Immunology Others
doxofylline 81.8 86.8 85.6 92.0 80.0 95.8 Metabolic Disease Others

doxylamine-succinate 90.6 100.6 95.0 100.3 87.8 90.8 Neurological Disease Others
dronedarone-hcl-multaq 31.2 52.1 36.7 35.0 47.9 64.9 Neurological Disease Others

droperidol 61.2 76.4 65.5 72.4 38.1 82.5 Neurological Disease Others
dropropizine 39.1 70.7 58.2 88.1 77.8 84.8 Respiratory Disease Others

Drospirenone 86.8 90.1 94.5 95.2 81.0 99.0 Endocrinology
Estrogen/progestogen 

Receptor
duloxetine-hcl-cymbalta 98.0 97.2 99.8 102.9 95.4 101.2 Neurological Disease 5-HT Receptor

Dutasteride 86.6 93.1 84.4 98.6 74.8 93.4 Endocrinology 5-alpha Reductase
dyclonine-hydrochloride 81.4 85.8 112.7 85.5 91.6 118.3 Inflammation Others

dydrogesterone 51.0 83.0 78.3 56.3 50.2 43.1 Endocrinology Others
Dyphylline(Dilor) 99.1 91.1 111.2 101.4 98.4 90.7 Respiratory Disease PDE

Econazole-nitrate-Spectazole 94.4 94.5 77.4 93.1 80.2 95.5 Neurological Disease Others

Edaravone 92.4 85.0 89.7 88.2 79.9 93.9 Cardiovascular Disease Others

Ellence 15.1 26.1 11.7 34.0 20.6 37.1 Topoisomerase
Eloxatin 58.2 72.2 85.8 76.4 58.0 88.8 Cancer DNA/RNA Synthesis

Eltrombopag-SB-497115-GR 84.1 104.3 105.0 102.4 95.5 98.5 Cancer Others

Elvitegravir 86.3 100.1 97.5 103.1 89.6 99.8 Immunology Integrase
Emtricitabine 87.5 100.0 106.3 106.9 94.3 92.4 Infection Reverse Transcriptase

Enalaprilat 92.5 95.9 98.0 97.4 97.0 99.8 Cardiovascular Disease RAAS

Enalapril-maleate(Vasotec) 52.4 58.8 61.6 61.0 70.9 95.3 Cardiovascular Disease Opioid Receptor

Enoxacin(Penetrex) 87.4 95.6 92.1 99.0 83.3 91.0 Infection Others
entacapone 102.5 98.6 102.3 107.9 99.9 97.0 Neurological Disease Others

Entecavir 102.2 98.5 101.2 109.3 91.8 97.6 Infection Others
epalrestat 99.0 97.1 110.5 106.1 87.4 91.7 Inflammation Others

Epinephrine-bitartrate-
Adrenalinium 77.8 86.8 80.5 89.1 76.6 97.5 Cancer Adrenergic Receptor

eprosartan-mesylate 91.0 93.1 84.1 86.8 68.0 87.1 Cardiovascular Disease Others

erdosteine 100.3 96.7 101.0 106.6 93.7 97.1 Respiratory Disease Others
Erlotinib-Hydrochloride. 74.2 63.2 63.6 57.2 28.5 76.9 Cancer EGFR

Erythromycin(E-Mycin).ht 100.2 97.1 101.6 101.8 105.8 98.5 Infection Others

erythromycin-ethylsuccinate 101.5 97.8 101.8 99.3 100.4 93.2 Infection Others

escitalopram-oxalate 100.9 101.6 102.9 108.9 99.5 95.8 Infection 5-HT Receptor

esmolol-hcl 34.1 79.4 53.0 66.8 42.8 79.7 Cardiovascular Disease Others

Esomeprazole-
magnesium(Nexium) 84.5 93.1 78.2 89.0 55.3 93.8 Digestive system disease 5-alpha Reductase

Esomeprazole-sodium-Nexium-
I.V. 99.4 102.1 96.3 100.0 96.6 103.1 Cancer ATPase

Estradiol 98.0 108.0 121.4 115.8 107.6 101.1 Endocrinology Others
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estradiol-cypionate 97.8 98.2 99.8 97.0 78.9 99.6
Estrogen/progestogen 

Receptor

estradiol-valerate 91.6 93.2 99.5 103.0 101.3 101.3 Endocrinology
Estrogen/progestogen 

Receptor

Estriol(Oestriol) 71.6 74.1 60.8 75.2 72.5 82.0 Neurological Disease
Estrogen/progestogen 

Receptor
Estrone 90.3 107.5 112.8 115.5 94.0 99.8 Endocrinology Others

ethacridine-lactate-
monohydrate 82.0 96.4 101.2 102.5 87.0 96.0 Infection Others

ethambutol-hcl 87.4 93.7 100.1 76.3 95.8 128.1 Neurological Disease Others

ethamsylate 86.4 92.9 84.6 98.7 74.3 93.5 Cardiovascular Disease Others

Ethinyl-Estradiol 101.5 100.2 117.1 123.3 100.4 104.2 Endocrinology Others
Ethionamide 86.7 93.2 84.3 98.6 74.8 93.4 Infection Others

ethoxzolamide 96.5 94.6 89.9 95.2 79.8 90.1 Neurological Disease Others

ethynodiol-diacetate 98.0 98.5 98.7 98.7 102.9 101.3 Endocrinology
Estrogen/progestogen 

Receptor
Etodolac 84.9 89.3 90.4 87.1 78.2 88.0 Inflammation COX

Etomidate 95.8 88.8 84.3 95.0 79.4 87.4 Neurological Disease GABA Receptor
Etopophos 53.3 68.7 51.5 67.5 48.3 78.1 Cancer Topoisomerase

etravirine-tmc125 91.2 96.9 103.5 108.4 87.6 99.6 Neurological Disease Reverse Transcriptase
Everolimus(RAD001) 36.9 44.8 45.4 46.2 55.1 68.3 Cancer mTOR

Evista 65.3 75.4 84.5 99.0 57.3 106.9 Endocrinology
Estrogen/progestogen 

Receptor
Exemestane 92.6 90.1 84.2 82.1 84.6 92.4 Endocrinology Aromatase

Ezetimibe(Zetia) 104.4 99.9 101.4 97.9 106.5 96.6 Cardiovascular Disease Others

Famciclovir(Famvir) 64.1 67.5 57.8 71.7 26.6 85.3 Cancer Others

famotidine-pepcid 106.6 100.4 100.3 95.1 100.5 100.0 Cardiovascular Disease Histamine Receptor

famprofazone 76.4 90.4 94.6 88.1 75.4 100.7 Inflammation Others
Febuxostat(Uloric) 98.7 98.6 101.2 101.0 99.7 103.4 Inflammation Others

Felbamate 83.3 89.4 80.3 87.0 74.8 86.3 Neurological Disease Others

Felodipine(Plendil) 47.7 51.7 36.3 48.0 42.6 32.2 Cardiovascular Disease NULL

Fenbendazole(Panacur) 87.9 84.8 85.8 90.6 75.3 91.5 Others

Fenofibrate(Tricor) 40.8 57.1 40.0 40.8 42.1 61.0 Cardiovascular Disease NULL

fenoprofen-calcium 100.4 100.1 88.8 108.6 91.0 99.3 Inflammation Others

fenoprofen-calcium-hydrate 78.3 78.3 84.6 91.9 75.9 89.2 Immunology Others

Fenspiride-hcl 85.6 75.9 79.9 77.9 46.5 63.7 Inflammation Others
fenticonazole-nitrate 76.7 72.9 62.0 86.2 64.7 93.9 Neurological Disease Others

Fesoterodine-fumarate-Toviaz 16.9 42.4 47.1 40.8 85.9 53.4 Immunology AChR

fexofenadine-hcl 97.4 99.8 99.4 97.2 102.6 100.1 Neurological Disease Histamine Receptor
fidaxomicin 82.4 88.2 85.4 87.3 69.4 95.5 Infection Others
Finasteride 87.4 90.1 86.6 96.8 81.8 93.3 Endocrinology 5-alpha Reductase

FK-506-(Tacrolimus) 93.9 90.5 96.3 94.9 96.3 94.6 Cancer Others
flavoxate-hcl 63.8 60.1 49.8 60.7 88.1 84.1 Neurological Disease AChR

florfenicol 90.2 89.9 101.8 108.8 88.5 95.1 Infection Others
Floxuridine 47.7 51.6 36.3 48.0 42.6 32.1 Cancer DNA/RNA Synthesis
Fluconazole 85.4 92.3 96.2 96.2 81.9 96.0 Infection Others

Flucytosine(Ancobon) 100.1 104.0 96.0 97.0 94.5 101.7 Infection Others
Fludara 78.9 97.5 87.8 97.5 80.4 98.3 Cancer DNA/RNA Synthesis

Fludarabine(Fludara) 96.9 96.2 107.5 110.5 94.6 96.1 Cancer STAT, DNA/RNA Synthesis

Flumazenil 86.5 97.2 90.2 97.7 80.4 98.6 Neurological Disease GABA Receptor
flumequine 99.5 98.9 96.6 106.1 100.1 101.5 Metabolic Disease Others

flumethasone 73.4 79.9 73.8 76.9 59.8 86.5 Endocrinology Others

flunarizine-dihydrochloride 55.4 68.5 54.6 75.3 65.1 95.8 Cancer Calcium Channel

flunixin-meglumin 100.3 97.2 101.4 101.7 105.8 98.5 Immunology COX
Fluocinolone-acetonide(Flucort-

N) 78.1 77.7 80.5 80.4 69.7 68.7 Infection Others

Fluocinonide(Vanos) 84.8 89.4 90.4 87.3 77.9 87.9 Endocrinology Others
fluorometholone-acetate 92.2 84.8 89.9 88.3 79.5 94.0 Inflammation Others
Fluoxetine-hydrochloride 65.1 95.4 95.8 99.0 80.4 101.1 Neurological Disease 5-HT Receptor

Flurbiprofen(Ansaid) 99.3 102.0 96.5 100.0 96.7 103.1 Inflammation Others
Flutamide(Eulexin) 78.2 91.1 98.5 88.1 81.5 89.7 Cancer P450

fluticasone-propionate-Flonase-
Veramyst 99.7 102.2 104.3 103.6 86.1 101.3 Inflammation Others
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Fluvastatin-Sodium(Lescol).htm 89.7 93.2 95.9 95.5 84.0 98.0 Cardiovascular Disease HMG-CoA Reductase

Fluvoxamine-maleate 78.2 91.0 98.7 88.1 81.5 89.7 Neurological Disease 5-HT Receptor
formoterol-hemifumarate 93.2 93.0 96.8 111.7 85.0 96.6 Neurological Disease Adrenergic Receptor

fosaprepitant 97.9 91.4 85.6 88.9 88.6 95.0 Cardiovascular Disease Others

fosfomycin-tromethamine 103.6 97.1 106.9 109.1 97.3 102.5 Others
Ftorafur 81.0 79.5 70.7 77.8 74.0 95.3 Cancer DNA/RNA Synthesis

Fulvestrant 39.2 70.8 58.1 88.1 78.3 84.7 Cancer
Estrogen/progestogen 

Receptor
furaltadone-hcl 98.2 98.7 107.4 110.3 98.6 96.8 Infection Others

Furosemide(Lasix) 91.8 98.5 94.1 94.8 107.4 93.7 Cardiovascular Disease Others

gabexate-mesylate 87.5 93.7 99.9 76.1 96.2 128.2 Cardiovascular Disease Proteasome

Gallamine-triethiodide(Flaxedil) 73.5 80.2 73.7 76.9 59.9 86.3 Inflammation AChR

ganciclovir 14.0 16.2 11.9 28.0 16.5 31.8 Infection Others
Gatifloxacin 89.7 93.1 96.0 95.5 84.0 98.0 Others
GDC-0449 76.9 87.7 88.1 85.9 75.6 92.9 Cancer Hedgehog, P-gp
Gefitinib 73.7 71.9 57.1 60.2 27.3 89.4 Cancer EGFR

Gemcitabine(Gemzar) 6.1 10.8 4.1 8.4 3.4 4.0 Metabolic Disease Others

Gemfibrozil(Lopid) 73.6 80.1 73.5 76.8 60.2 86.4 Cardiovascular Disease Others

genipin 93.5 94.7 103.8 87.0 88.3 121.3 Others
geniposide 95.9 97.7 108.7 86.6 104.0 116.1 Others

geniposidic-acid 101.1 101.6 102.7 108.6 99.9 95.9 Others
Genistein 94.8 100.5 110.4 111.6 83.2 87.4 Cancer Topoisomerase

Gestodene 87.6 87.2 90.5 92.9 78.1 93.6 Endocrinology
Estrogen/progestogen 

Receptor
gimeracil 98.2 98.5 98.5 98.4 103.3 101.4 Neurological Disease Dehydrogenase

ginkgolide-a 93.7 93.9 100.8 113.3 87.8 101.2 Cardiovascular Disease GABA Receptor

glafenine-hcl 97.3 93.7 108.0 108.7 99.1 92.2 Inflammation Others
gliclazide-diamicron 93.6 81.0 78.2 84.1 78.2 90.9 Neurological Disease Others

Glimepiride 90.8 100.8 94.8 100.2 88.1 90.8 Metabolic Disease DPP-4
Glipizide(Glucotrol) 50.3 71.4 47.2 59.8 41.1 77.6 Endocrinology Others

gliquidone 89.8 92.0 88.1 98.1 93.7 96.3 Metabolic Disease Others
Glyburide(Diabeta) 42.6 54.0 41.0 52.9 31.4 31.0 Endocrinology Others

Guaifenesin(Guaiphenesin) 91.2 93.4 83.7 86.7 68.3 87.0 Respiratory Disease Others

guanabenz-wy-8678-acetate 87.0 101.1 108.9 105.3 96.4 104.4 Endocrinology Adrenergic Receptor

guanidine-aminoformamidine-
hcl 94.1 94.5 101.7 103.3 96.1 92.7 Vermifuge Others

halobetasol-propionate 27.1 36.2 36.2 44.3 45.7 75.5 Inflammation Others
Haloperidol(Haldol) 79.5 93.6 93.8 91.2 83.6 93.4 Neurological Disease Others

homatropine-bromide 93.2 102.9 94.1 99.6 96.2 97.4 Infection AChR

homatropine-methylbromide 104.3 103.1 90.9 103.2 96.2 101.5 AChR

Hydrochlorothiazide 102.9 100.2 104.0 102.3 102.3 93.4 Cardiovascular Disease Others

Hydrocortisone 95.8 97.6 108.9 86.6 104.0 116.1 Infection Others
Hydroxyurea(Cytodrox) 70.5 82.4 93.4 68.5 71.4 119.2 Cancer Others

hydroxyzine-2hcl 100.4 101.8 96.6 96.6 92.0 100.4 Neurological Disease Histamine Receptor
hyoscyamine-daturine 103.8 104.7 94.3 108.9 100.1 102.2 Neurological Disease AChR

Ibuprofen(Advil) 104.0 104.5 94.3 108.6 100.5 102.2 Inflammation COX

ibutilide-fumarate 106.1 99.1 96.2 98.4 101.3 95.6 Cardiovascular Disease Sodium Channel

Idarubicin 16.1 19.4 12.9 19.4 20.2 26.6 Cancer Topoisomerase
idebenone 70.4 82.4 93.6 68.6 71.1 119.1 Inflammation Others
idoxuridine 61.5 76.8 67.1 74.9 52.9 86.7 Infection Others
Ifosfamide 93.7 80.9 78.2 84.0 78.5 90.9 Cancer DNA/RNA Synthesis

Iloperidone(Fanapt) 99.0 96.9 110.7 106.2 87.4 91.7 Neurological Disease Others
Imatinib(STI571) 27.1 36.3 36.2 44.3 45.8 75.4 Neurological Disease PDGFR,c-Kit, v-Abl

Imatinib-Mesylate 71.7 74.0 60.8 75.1 72.7 82.0 Cancer PDGFR, c-Kit, Bcr-Abl

imidapril-tanatril 104.0 97.2 95.3 99.7 94.7 108.2 Cardiovascular Disease RAAS

imipramine-hcl 55.3 68.3 54.8 75.4 64.7 95.9 Neurological Disease Others
INCB18424 68.7 93.1 95.9 100.6 81.7 98.8 Cancer JAK

indacaterol-maleate 95.7 103.8 104.6 115.6 93.4 98.1 Infection Adrenergic Receptor

Indapamide(Lozol) 27.2 36.3 36.1 44.2 46.0 75.4 Cardiovascular Disease Others
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Indomethacin(Indocid) 64.2 67.5 57.7 71.5 26.6 85.3 Inflammation Others
Ipratropium-bromide 100.8 100.7 106.1 100.9 104.9 97.1 Respiratory Disease Others

Irinotecan 38.9 53.0 42.2 49.6 51.0 68.9 Cancer Topoisomerase
Irinotecan-Hcl-Trihydrate-

Campto 97.8 98.6 99.8 104.8 98.1 102.9 Neurological Disease Topoisomerase

Irsogladine-maleate 61.4 64.1 54.2 83.0 83.0 83.5 Neurological Disease Others

Isoconazole-nitrate-Travogen 85.7 91.0 89.9 93.0 78.2 102.2 Infection Others

isoetharine-mesylate 81.3 89.5 79.3 92.9 90.7 89.3 Cardiovascular Disease Others

Isoniazid(Tubizid) 86.8 90.2 94.3 95.2 81.0 99.0 Infection Angiogenesis

Isoprenaline-hydrochloride 82.0 96.8 101.0 102.7 87.1 95.9 Infection Adrenergic Receptor

isosorbide 99.9 99.9 112.3 109.5 91.7 99.1 Others
Isotretinoin 52.3 58.8 61.7 61.1 70.9 95.3 Metabolic Disease Hydroxylase

isovaleramide 80.2 97.3 94.6 93.0 83.4 93.9 Neurological Disease Others
isoxicam 98.8 90.9 111.4 101.5 97.9 90.7 Inflammation Others

Isradipine(Dynacirc) 93.1 97.4 106.5 100.5 96.6 102.7 Neurological Disease Others
Itraconazole(Sporanox) 85.7 76.2 79.7 77.9 46.5 63.6 Cancer Others

ivabradine-hcl-procoralan 105.1 103.2 95.0 103.3 97.4 103.0 Neurological Disease Adrenergic Receptor
Ivermectin 72.7 93.8 77.4 84.1 42.1 95.5 Vermifuge Others

Ketoconazole 88.1 95.5 97.3 96.1 65.1 101.1 Infection P450
Ketoprofen(Actron) 103.9 96.5 107.6 98.2 107.3 106.3 Inflammation COX

Ketorolac-
Tromethamine(Toradol) 91.7 95.3 97.7 99.1 94.7 98.9 Neurological Disease COX

ketotifen-fumarate-zaditor 96.5 90.4 102.7 106.8 84.5 87.7 Neurological Disease Histamine Receptor

lacidipine-lacipil-motens 98.5 101.1 100.6 107.4 93.6 102.9 Cardiovascular Disease Calcium Channel

L-Adrenaline-Epinephrine 10.9 26.2 8.0 31.7 4.0 26.4 Cardiovascular Disease Others

lafutidine 100.6 101.7 96.2 99.2 100.9 98.0 Infection Histamine Receptor
Lamivudine(Epivir) 100.5 101.0 109.5 102.6 95.8 101.0 Infection Others

lamotrigine 93.0 89.7 85.4 89.3 77.7 95.7 Cancer Sodium Channel
Lansoprazole 84.3 95.2 94.1 92.1 79.5 95.4 Infection Proton Pump

lapatinib 104.0 104.6 94.1 108.6 100.5 102.2 Neurological Disease EGFR, HER2
Lapatinib-Ditosylate 64.1 67.4 57.8 71.5 26.7 85.3 Cancer EGFR, HER2

Leflunomide 94.6 100.8 101.9 103.9 89.2 99.1 Inflammation Others

Lenalidomide 88.0 84.7 85.8 90.4 75.6 91.6 Cardiovascular Disease TNF-alpha

Letrozole 100.4 100.0 89.0 108.7 91.0 99.3 Endocrinology Aromatase
Levetiracetam 68.5 94.4 101.7 106.9 81.1 94.4 Neurological Disease Others

levobetaxolol-hcl 87.8 84.5 85.9 90.5 75.2 91.6 Cardiovascular Disease Others

Levofloxacin(Levaquin) 68.8 93.2 95.7 100.5 81.7 98.8 Infection Others
Levonorgestrel(Levonelle) 78.2 77.7 80.3 80.2 69.9 68.8 Endocrinology Others

levosimendan 87.5 100.1 106.1 106.8 94.2 92.4 Metabolic Disease Others
levosulpiride-levogastrol 102.9 100.0 98.0 98.0 101.0 97.6 Neurological Disease Dopamine Receptor

licofelone 91.8 95.4 97.5 99.1 94.7 98.8 COX
Lidocaine 79.4 93.5 93.9 91.2 83.6 93.4 Neurological Disease Histamine Receptor

linagliptin-bi-1356 96.7 93.0 88.8 100.4 82.8 104.1 Cancer DPP-4
Lincomycin-

hydrochloride(Lincocin) 82.2 85.7 67.6 79.8 70.2 94.2 Cancer Others

Linezolid(Zyvox) 94.6 99.4 96.3 105.1 93.9 98.1 Infection Others
liothyronine-sodium 47.5 51.5 36.4 48.1 42.4 32.2 Endocrinology Others

lithocholic-acid 104.5 102.5 98.6 102.8 96.7 104.3 Neurological Disease Others

lomerizine-hcl 64.0 67.2 57.9 71.7 26.5 85.4 Cardiovascular Disease Others

Lomustine(CeeNU) 97.5 101.6 103.8 112.0 93.4 101.9 Cancer Others

lonidamine 95.6 88.9 84.3 95.2 79.1 87.3 Cardiovascular Disease Others

Loperamide-hydrochloride 31.9 40.3 39.5 46.0 47.5 71.7 Infection Opioid Receptor

Lopinavir 89.1 87.7 80.7 88.5 78.8 98.7 Infection HIV Protease
Loratadine 88.5 94.3 89.2 97.5 80.8 93.7 Inflammation Histamine Receptor

lornoxicam-xefo 91.8 93.1 99.3 102.7 101.7 101.3 Inflammation Others

losartan-potassium 96.2 91.5 93.0 98.3 82.1 89.1 Cardiovascular Disease RAAS

Loteprednol-etabonate 94.5 90.9 101.3 90.0 101.1 111.7 Others
lovastatin-mevacor 67.5 71.4 53.9 79.8 89.4 86.0 Respiratory Disease HMG-CoA Reductase
loxapine-succinate 78.0 77.4 80.6 80.4 69.6 68.8 Neurological Disease Others

l-thyroxine 80.9 79.6 70.7 78.0 73.8 95.3 Neurological Disease Others
Malotilate 91.8 97.4 89.1 98.9 84.3 96.7 Metabolic Disease Others
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Manidipine(Manyper) 61.3 76.6 65.3 72.4 38.2 82.4 Metabolic Disease Calcium Channel

Maprotiline-hydrochloride 86.5 93.2 84.4 98.8 74.5 93.3 Neurological Disease Reuptake inhibitor

Maraviroc 89.1 102.6 99.9 109.3 91.0 96.6 Inflammation CCR5
Marbofloxacin 100.8 99.7 108.9 114.7 93.7 102.8 Others

Masitinib-(AB1010) 81.4 91.5 82.5 96.2 71.2 99.7 Respiratory Disease c-Kit, PDGFR, FGFR, FAK

MDV3100 81.3 96.6 97.0 102.3 87.6 100.3 Cancer Androgen Receptor, P450

mecarbinate 99.7 98.8 96.4 105.9 100.5 101.6 Metabolic Disease Others
meclofenamate-sodium 77.1 87.5 83.2 96.4 80.9 92.8 COX

medetomidine-hcl 86.9 92.3 89.0 102.7 81.5 97.5 Infection Adrenergic Receptor

Medroxyprogesterone-acetate 97.8 97.8 103.5 110.5 92.0 96.5 Infection
Estrogen/progestogen 

Receptor

mefenamic-acid 50.2 71.1 47.4 60.0 40.9 77.7 Cardiovascular Disease COX

Megestrol-Acetate 73.5 75.6 70.8 83.3 71.1 98.7 Infection Androgen Receptor
meglumine 88.2 98.2 91.7 96.4 80.0 101.1 Others
Melatonin 72.9 87.4 92.1 88.5 77.3 90.3 Endocrinology Others

Meloxicam(Mobic) 32.0 40.4 39.4 45.9 47.7 71.7 Inflammation Others

memantine-hydrochloride-
namenda 70.4 55.2 99.5 90.3 49.3 74.3 Neurological Disease

AMPA Receptor-kainate 
Receptor-NMDA Receptor

Menadione 89.1 87.8 80.5 88.4 78.8 98.7 Endocrinology Others
mepenzolate-bromide 100.6 99.5 109.2 114.8 93.2 102.9 Others

mepiroxol 93.3 92.8 73.9 85.0 74.8 94.7 Others

mepivacaine-hydrochloride 90.6 96.1 100.2 96.2 105.1 94.4 Metabolic Disease Others

meptazinol-hydrochloride 104.7 101.8 96.4 96.1 102.5 94.9 Others
mequinol 6.1 10.8 4.1 8.4 3.4 4.0 Infection Others

Mercaptopurine 60.5 77.4 52.2 83.2 57.5 91.6 Cancer DNA/RNA Synthesis
Meropenem 93.1 89.6 85.4 89.2 78.0 95.7 Infection Others

Mesalamine(Lialda) 100.9 102.3 104.0 99.6 105.2 96.2 Inflammation Others
Mesna(Uromitexan) 61.4 76.6 65.2 72.2 38.3 82.4 Cancer Others

mesoridazine-besylate 97.5 88.1 84.5 86.8 76.5 95.2 Neurological Disease Others
Mestranol 93.3 102.9 93.9 99.3 96.6 97.4 Endocrinology NULL

metaproterenol-sulfate 97.7 91.1 85.8 88.8 88.4 95.2 Respiratory Disease Others
metaraminol-bitartrate 90.3 90.2 87.5 99.0 81.1 101.2 Others

Methacycline-hydrochloride-
Physiomycine 81.9 87.1 85.4 92.1 80.2 95.6 Cancer Others

methazolamide 90.2 107.6 112.8 115.7 93.6 99.7 Neurological Disease Carbonic Anhydrase
Methazolastone 100.2 96.5 101.2 106.7 93.7 97.1 Cancer Others

methenamine-mandelamine 81.3 85.8 112.9 85.7 91.3 118.2 Inflammation Others

Methimazole(Tapazole) 102.7 97.6 90.6 93.5 102.2 98.2 Endocrinology Others
Methocarbamol(Robaxin) 51.2 83.3 77.9 56.2 50.4 43.1 Neurological Disease Others
Methoxsalen(Oxsoralen) 93.2 89.7 85.2 89.1 78.0 95.7 Inflammation Others

Methscopolamine-
bromide(Pamine) 87.9 90.0 83.5 91.1 79.8 103.1 Neurological Disease AChR

methyclothiazide 87.9 92.1 103.3 78.6 92.3 117.3 Cardiovascular Disease Others

Methylprednisolone 82.4 85.7 67.5 79.6 70.5 94.2 Immunology Others
methylthiouracil 44.4 61.2 46.8 52.9 17.4 76.1 Infection Others

meticrane 105.1 95.6 89.6 99.3 78.6 96.1 Cardiovascular Disease Others

Metolazone(Zaroxolyn) 105.8 101.2 94.7 94.6 103.5 95.0 Cardiovascular Disease Others

metoprolol-tartrate 100.2 100.2 111.9 109.4 92.2 99.0 Cardiovascular Disease Adrenergic Receptor

Metronidazole(Flagyl) 65.2 95.5 95.6 99.0 80.4 101.1 Infection Others

mevastatin 90.6 85.9 98.4 91.9 76.9 92.2 Cardiovascular Disease Others

mexiletine-hcl 70.3 82.1 93.8 68.6 71.1 119.4 Cardiovascular Disease Others

mezlocillin-sodium 75.7 103.6 65.5 77.0 50.0 75.2 Infection Others
Mianserin-hydrochloride 83.1 89.5 84.9 83.0 82.9 95.1 Neurological Disease Others

Miconazole-Monistat 15.0 26.1 11.7 34.0 20.5 37.0 Neurological Disease Others
Miconazole-nitrate 83.2 89.6 84.7 82.9 82.9 95.1 Infection Others

Mifepristone(Mifeprex) 82.4 88.5 85.2 87.4 69.5 95.4 Metabolic Disease
Estrogen/progestogen 

Receptor
miglitol-glyset 70.4 66.4 64.6 68.6 69.9 88.8 Neurological Disease Others

milnacipran-hydrochloride 70.3 55.2 99.7 90.5 49.1 74.2 Endocrinology Others
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Milrinone(Primacor) 51.1 83.3 78.1 56.3 50.3 43.1 Cardiovascular Disease ATPase

mirabegron-ym178 103.3 104.2 104.1 99.9 99.1 102.4 Cancer Adrenergic Receptor

mirtazapine-remeron-avanza 95.9 103.7 104.3 115.3 93.7 98.2 Immunology Others

Mitotane(Lysodren) 85.9 76.2 79.6 77.7 46.7 63.6 Cancer Others

Mitoxantrone 81.3 91.6 82.5 96.4 70.9 99.6 Cardiovascular Disease Others

moclobemide 101.4 100.3 117.1 123.6 100.0 104.1 Neurological Disease MAO

moexipril-hydrochloride 102.8 97.7 90.5 93.5 102.2 98.2 Digestive system disease RAAS

moguisteine 93.1 93.0 97.0 112.0 84.7 96.5 Respiratory Disease Others
mometasone-furoate 94.7 99.5 96.2 105.1 93.8 98.1 Inflammation Others

Monobenzone(Benoquin) 100.5 101.7 96.6 96.4 92.4 100.5 Metabolic Disease Others
montelukast-sodium 70.3 66.1 64.7 68.6 69.8 88.9 Respiratory Disease Others

Moroxydine-hydrochloride 34.2 79.6 52.9 66.9 42.9 79.5 Cancer Others

Mosapride-citrate 78.4 78.3 84.6 91.7 76.2 89.2 Neurological Disease 5-HT Receptor
moxalactam-disodium 87.9 97.9 92.1 96.5 79.6 101.1 Infection Others

Moxifloxacin 100.4 101.9 110.8 110.5 93.3 102.9 Infection Topoisomerase

moxonidine 105.0 93.3 103.1 96.1 99.2 97.2 Digestive system disease Others

mupirocin 87.3 87.0 90.7 92.9 77.7 93.7 DNA/RNA Synthesis
Mycophenolate-mofetil-

(CellCept) 70.4 55.2 99.7 90.3 49.3 74.3 Immunology Others

Mycophenolic-
acid(Mycophenolate) 76.9 87.8 88.1 86.1 75.4 92.8 Infection Others

nabumetone 100.7 100.8 106.1 101.1 104.4 97.0 Inflammation COX
nadifloxacin 105.1 95.8 107.5 111.7 92.6 93.2 Neurological Disease Others

Nafamostat-mesylate 96.8 92.9 88.8 100.2 83.1 104.2 Cardiovascular Disease Proteasome

nafcillin-sodium 94.3 91.0 101.3 90.2 100.7 111.6 Endocrinology Others
Naftopidil(Flivas) 100.6 101.8 96.4 96.3 92.4 100.5 Endocrinology Adrenergic Receptor

Nalidixic-acid(NegGram) 104.5 100.6 105.7 102.0 96.6 101.7 Infection Others
nalmefene-hcl 82.2 93.6 95.7 93.2 77.5 104.7 Neurological Disease Others
naloxone-hcl 86.1 100.2 97.7 103.3 89.3 99.7 Cancer Opioid Receptor

naltrexone-hcl 103.5 104.2 103.8 99.7 99.4 102.5 Neurological Disease Opioid Receptor
Naphazoline-hydrochloride-

Naphcon 72.9 87.5 92.1 88.7 77.0 90.3 Neurological Disease Adrenergic Receptor

Naproxen-Sodium(Aleve) 103.5 101.5 98.9 113.8 97.8 97.9 Inflammation COX
Naratriptan(Amerge) 103.9 97.3 106.7 109.0 97.8 102.4 Neurological Disease 5-HT Receptor

Natamycin(Pimaricin).htm 88.7 92.3 98.6 95.1 102.5 103.3 Infection Others
Nateglinide(Starlix) 91.1 93.4 83.9 86.9 68.0 87.0 Immunology Potassium Channel

Nebivolol(Bystolic) 94.5 94.3 94.8 90.3 97.0 90.2 Cardiovascular Disease Adrenergic Receptor

Nefiracetam(Translon) 98.1 91.4 85.4 88.6 88.9 95.1 Neurological Disease GABA Receptor
nelfinavir-mesylate 96.0 91.2 93.2 98.4 81.7 89.2 HIV Protease

Nepafenac 104.1 95.1 98.2 110.9 102.5 95.1 Inflammation Others
Nevirapine(Viramune) 91.8 97.5 89.0 98.8 84.3 96.7 Infection Others
Niacin(Nicotinic-acid) 24.8 37.9 25.8 53.4 28.5 40.2 Metabolic Disease Others

nialamide 87.7 89.7 83.9 91.3 79.4 103.1 Neurological Disease Others
nicardipine-hcl 100.1 99.8 89.2 108.7 90.5 99.4 Neurological Disease Others

Nicorandil(Ikorel) 90.5 90.5 87.1 98.8 81.6 101.1 Cardiovascular Disease Others

Nicotinamide(Niacinamide) 84.9 89.4 90.3 87.1 78.2 88.0 Neurological Disease NULL

nicotine-ditartrate 93.0 92.7 97.2 111.8 84.6 96.6 Neurological Disease Others

Nifedipine(Adalat) 16.1 19.4 12.9 19.4 20.2 26.6 Cardiovascular Disease Others

nifenazone 102.4 98.2 102.6 107.8 99.8 97.1 Inflammation Others
niflumic-acid 87.4 87.3 90.5 93.1 77.8 93.5 Infection GABA Receptor
nifuroxazide 100.0 96.3 101.5 106.7 93.2 97.2 Infection Others

Nilotinib 78.2 77.6 80.5 80.2 69.9 68.8 Cancer Bcr-Abl
nilvadipine-arc029 78.1 91.1 98.7 88.3 81.2 89.7 Cancer Calcium Channel

nimesulide 44.6 61.2 46.7 52.8 17.5 76.2 Cardiovascular Disease Others

Nimodipine(Nimotop) 27.2 47.5 25.9 51.6 37.3 47.1 Cardiovascular Disease Others

Nisoldipine(Sular) 68.9 101.7 99.8 103.8 79.8 101.2 Cardiovascular Disease Others

Nitazoxanide(Alinia) 104.6 102.4 98.6 102.6 97.1 104.4 Vermifuge Others
nithiamide 85.2 92.1 96.4 96.3 81.5 96.1 Others

Nitrendipine 36.9 44.8 45.4 46.3 54.8 68.2 Neurological Disease Calcium Channel
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Nitrofurazone(ACTIN-N) 99.2 100.7 93.5 97.2 100.8 98.3 Infection Others
Nizatidine(Axid) 93.8 81.0 78.1 83.9 78.5 90.9 Metabolic Disease Others

noradrenaline-bitartrate-
monohydrate-levophed 86.4 97.3 90.2 97.9 80.1 98.5 Metabolic Disease Others

norethindrone-norethisterone 100.0 104.1 96.1 97.2 94.1 101.6 Neurological Disease Others

noscapine-hcl 91.1 96.6 103.7 108.3 87.5 99.8 Cancer Others
Nystatin(Mycostatin).htm 87.6 87.3 90.3 92.8 78.1 93.6 Infection Others

octopamine-hcl 102.6 97.7 90.6 93.7 101.7 98.2 Immunology Others

Olanzapine(Zyprexa) 84.4 93.1 78.3 89.2 55.1 93.7 Infection
5-HT Receptor, Dopamine 

Receptor

olmesartan-medoxomil-Benicar 99.1 98.3 96.7 100.3 99.3 103.6 Cardiovascular Disease RAAS

Olopatadine-
hydrochloride(Opatanol) 24.8 37.8 25.9 53.5 28.4 40.2 Neurological Disease Histamine Receptor

olsalazine-sodium 100.0 102.3 98.0 98.5 100.2 98.8 Inflammation Others
Omeprazole 96.7 94.9 89.7 95.0 80.2 90.1 Metabolic Disease Proton Pump, ATPase

Ondansetron-hydrochloride 76.4 90.6 94.3 87.9 75.8 100.6 Infection 5-HT Receptor

Orlistat(Alli) 99.3 97.9 98.1 96.6 89.3 95.7 Metabolic Disease Others
ornidazole 55.3 68.5 54.7 75.4 64.8 95.7 Endocrinology Others

orphenadrine-citrate-norflex 90.7 96.1 100.0 95.9 105.5 94.4 Infection AChR

OSI-420-Desmethyl-Erlotinib,CP-
473420 94.5 91.0 101.1 90.0 101.1 111.7 Cancer EGFR

ospemifene 61.1 63.8 54.4 83.1 82.7 83.6
Estrogen/progestogen 

Receptor

otilonium-bromide 82.2 93.9 95.5 93.3 77.7 104.5 Cardiovascular Disease AChR

ouabain 31.1 52.1 36.8 35.0 47.7 64.8 Neurological Disease Sodium Channel
oxaprozin 95.5 88.5 84.5 95.1 78.9 87.4 Inflammation Others

Oxcarbazepine 81.5 89.7 79.1 92.8 91.0 89.3 Neurological Disease Sodium Channel
oxeladin-citrate 91.4 92.9 99.7 102.9 101.2 101.5 Respiratory Disease Others

oxethazaine 102.4 100.7 84.8 100.4 80.8 104.8 Neurological Disease Others
oxfendazole 81.3 96.7 96.8 102.2 87.5 100.3 Vermifuge Others

oxybuprocaine-hcl 84.7 89.1 90.6 87.2 77.8 88.0 Neurological Disease Others
Oxybutynin(Ditropan) 80.4 97.6 94.2 93.0 83.8 93.8 Neurological Disease Others
oxybutynin-chloride 100.3 102.0 110.8 110.8 92.9 102.8 Neurological Disease AChR

Oxymetazoline-hydrochloride 27.1 47.5 25.9 51.7 37.1 47.0 Immunology Adrenergic Receptor

Oxytetracycline(Terramycin) 79.1 79.9 87.4 94.1 65.8 74.8 Infection NULL

oxytetracycline-dihydrate 90.0 92.0 88.0 97.8 94.1 96.4 Infection Others

Ozagrel 68.8 101.7 100.0 104.1 79.6 101.2 Cardiovascular Disease Factor Xa

ozagrel-hydrochloride 91.8 98.6 94.0 94.8 107.3 93.7 Cardiovascular Disease Others

Paclitaxel(Taxol) 27.2 47.5 25.9 51.6 37.3 47.1 Cancer Microtubule Associated

paeoniflorin 101.8 97.8 101.6 99.0 100.8 93.3 Others
Pancuronium-

bromide(Pavulon) 80.2 97.6 94.4 93.2 83.5 93.7 Cardiovascular Disease AChR

paromomycin-sulfate 65.1 95.2 96.0 99.1 79.9 101.2 Cardiovascular Disease Others

paroxetine-hcl 68.4 94.5 101.7 107.1 80.8 94.3 Infection 5-HT Receptor
pasiniazid 99.4 89.3 98.3 98.7 99.2 99.5 Infection Others

pazopanib 96.1 91.6 93.0 98.5 81.8 89.1 Cardiovascular Disease VEGFR

Pazopanib-Hydrochloride 73.5 80.1 73.7 76.8 60.2 86.4 Cancer VEGFR, PDGFR, c-Kit
pci-32765 65.1 95.5 95.8 99.2 80.1 101.0 Neurological Disease Src

pefloxacin-mesylate 98.5 99.1 107.0 110.2 98.9 96.8 Infection Others
penciclovir 15.0 25.3 17.9 36.0 62.5 81.7 Infection Others
penfluridol 68.5 85.5 65.8 97.1 59.0 87.7 Neurological Disease Others

pentamidine 99.1 98.0 98.1 96.8 88.9 95.7 Infection Others
pentoxifylline 103.7 96.7 79.9 99.7 87.1 90.3 Others

Pergolide-mesylate 103.4 101.7 98.9 114.0 97.4 97.9 Neurological Disease Dopamine Receptor
PF-2341066 34.2 79.5 52.9 66.7 43.0 79.6 Cancer c-Met, ALK
phenacetin 100.0 100.2 112.1 109.7 91.9 98.9 Infection COX

Phenformin-hydrochloride 16.1 19.4 12.9 19.4 20.2 26.6 Metabolic Disease AMPK

Phenindione(Rectadione) 88.5 94.4 89.1 97.4 80.8 93.7 Cardiovascular Disease Others

pheniramine-maleate 102.0 98.2 100.0 101.4 98.3 102.6 Neurological Disease Others
phenothrin 101.2 101.7 110.7 106.8 91.2 92.8 Others
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Phenoxybenzamine-
hydrochloride 87.2 95.6 92.2 99.3 83.0 90.9 Endocrinology Androgen Receptor

phentolamine-mesilate 97.0 96.3 107.3 110.5 94.6 96.1 Cardiovascular Disease adrenergic receptor

Phenylbutazone(Butazolidin) 106.1 99.0 97.7 96.6 101.8 101.3 Cancer Others

Phenylephrine-hydrochloride 107.7 100.9 110.7 108.7 69.2 95.8 Endocrinology Adrenergic Receptor

Phenytoin-Lepitoin 45.0 62.1 37.1 48.7 17.5 47.0 Endocrinology Sodium Channel

Phenytoin-sodium-Dilantin 75.2 72.2 70.2 77.5 74.9 92.6 Metabolic Disease Sodium Channel

phthalylsulfacetamide 95.6 103.4 104.8 115.5 93.2 98.2 Others
pidotimod 96.3 90.4 102.9 107.1 84.2 87.6 Immunology Others

pilocarpine-hcl 83.1 89.3 80.4 87.1 74.4 86.4 Neurological Disease Others
Pimecrolimus 107.1 100.9 106.4 115.9 97.5 101.4 Cancer Others

Pimobendan(Vetmedin) 94.2 90.7 96.1 94.8 96.8 94.5 Cardiovascular Disease PDE

pimozide 88.9 102.3 100.3 109.5 90.5 96.6 Neurological Disease Others
pioglitazone-actos 72.7 79.2 72.9 78.8 73.1 88.6 Cancer Others

pioglitazone-hydrochloride-
actos 102.7 98.6 102.1 107.6 100.2 97.1 Metabolic Disease Others

piperacillin-sodium 60.3 77.3 52.3 83.3 57.2 91.7 Infection Others
piromidic-acid 94.4 99.2 96.6 105.2 93.4 98.2 Infection Others

Piroxicam(Feldene) 70.0 64.6 52.0 56.5 26.6 52.7 Inflammation COX

Pitavastatin-calcium(Livalo) 88.4 96.4 90.1 80.0 40.1 53.6 Cardiovascular Disease Others

Pizotifen-malate 93.6 93.0 73.7 84.9 75.2 94.6 Inflammation Others
PLX-4032 107.8 100.8 110.7 108.5 69.5 95.8 Cancer Raf

pmsf-phenylmethylsulfonyl-
fluoride 83.0 89.6 84.9 83.1 82.6 95.0 Inflammation Others

Pomalidomide(CC-4047) 107.4 101.1 106.2 115.8 98.0 101.4 Cancer TNF-alpha, COX
Posaconazole 76.6 91.1 90.4 102.6 59.9 97.5 Infection Others

Potassium-iodide 82.6 88.5 85.0 87.2 69.7 95.5 Endocrinology Others
Pralatrexate(Folotyn) 44.5 61.1 46.8 52.8 17.5 76.2 Metabolic Disease DHFR

Pramipexole-dihydrochloride-
monohydrate 91.4 96.9 103.3 108.2 87.9 99.7 Neurological Disease Others

Pramipexole-Mirapex 74.0 63.3 63.6 57.3 28.4 76.9 Neurological Disease Dopamine Receptor
pramiracetam 73.9 83.0 78.9 79.4 73.9 85.5 Endocrinology Others
pramoxine-hcl 82.1 85.4 67.8 79.7 70.1 94.3 Neurological Disease Others

pranlukast 94.6 101.0 101.6 103.8 89.2 99.1 Immunology Others
pranoprofen 76.5 90.7 94.2 87.9 75.8 100.6 Inflammation Others

Prasugrel 100.7 99.7 109.9 106.4 89.8 103.5 Cardiovascular Disease P2 Receptor

pravastatin-pravachol 93.5 93.1 73.7 85.1 74.9 94.6 Metabolic Disease HMG-CoA Reductase
Praziquantel(Biltricide) 101.7 99.1 101.2 102.5 97.1 99.6 Vermifuge Others

Prednisolone(Hydroretrocortin
e) 81.4 91.6 82.4 96.1 71.2 99.7 Infection Others

Prednisolone-acetate-
Omnipred 107.0 97.7 109.1 108.3 97.6 102.2 Immunology Others

Prednisone 97.5 99.7 99.4 97.0 103.0 100.2 Immunology Others

pregnenolone 72.8 93.9 77.3 84.1 42.1 95.5 Neurological Disease
Estrogen/progestogen 

Receptor

pridinol-methanesulfonate 104.9 95.5 107.7 111.6 92.4 93.3 Others

Prilocaine 98.2 100.6 102.0 95.5 98.3 102.6 Neurological Disease Others
primaquine-diphosphate 78.0 90.8 98.9 88.2 81.1 89.8 Others

Primidone(Mysoline) 97.8 88.4 84.1 86.7 76.9 95.0 Neurological Disease Others
proadifen-hcl 76.4 72.6 62.2 86.4 64.4 94.0 Others

probenecid-benemid 91.6 95.4 97.7 99.3 94.4 98.8 Metabolic Disease Others

probucol 99.3 100.8 93.4 97.1 100.8 98.3 Cardiovascular Disease Others

procaine-novocaine-hcl 105.9 101.1 97.0 106.2 97.4 101.1 Neurological Disease Sodium Channel

prochlorperazine-dimaleate 89.7 91.7 88.3 98.0 93.6 96.5 Neurological Disease Others

procodazole 88.5 92.1 98.8 95.2 102.0 103.4 Others
procyclidine-hcl 86.8 92.0 89.2 102.6 81.4 97.6 Neurological Disease Others

Progesterone(Prometrium) 94.2 94.4 101.7 103.1 96.5 92.7 Endocrinology Others

Propafenone(Rytmonorm) 88.2 96.4 90.3 80.2 40.0 53.6 Cardiovascular Disease Sodium Channel

proparacaine-hcl 97.7 102.6 106.2 108.1 90.6 101.6 Neurological Disease Sodium Channel
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propranolol-hcl 69.8 64.3 52.1 56.7 26.4 52.7 Cardiovascular Disease Adrenergic Receptor

Propylthiouracil 87.1 92.3 88.8 102.4 81.8 97.5 Endocrinology Others

protionamide-prothionamide 72.8 79.2 72.8 78.6 73.4 88.7 Infection Others

Pyrazinamide(Pyrazinoic-acid-
amide) 85.4 91.9 97.5 100.1 77.3 95.4 Infection Others

Pyridostigmine-
Bromide(Mestinon) 106.6 100.4 100.5 95.1 100.5 100.0 Cardiovascular Disease Others

pyridoxine-hydrochloride 97.8 97.7 111.0 107.9 97.8 101.3 Endocrinology Others
pyrila 85.2 80.0 68.5 88.8 72.8 96.4 Neurological Disease Others

Pyrimethamine 106.4 98.4 97.5 110.5 94.0 94.6 Immunology NULL

Quetiapine-fumarate(Seroquel) 88.5 100.6 95.4 104.8 82.0 94.3 Neurological Disease Dopamine Receptor

quinapril-hydrochloride-
accupril 95.7 90.1 105.2 108.3 89.4 93.7 Inflammation RAAS

Quinine-hydrochloride-
dihydrate 84.2 95.9 89.7 95.6 84.3 94.0 Cardiovascular Disease Others

Racecadotril(Acetorphan) 82.5 92.9 87.8 97.0 85.5 95.6 Infection Opioid Receptor
ractopamine-hcl 99.4 101.9 104.8 103.7 85.7 101.4 Neurological Disease Others

Raltegravir-(MK-0518) 103.3 96.3 94.3 109.1 88.5 97.7 Immunology Integrase
Ramelteon 97.4 101.4 104.0 112.0 93.4 101.9 Neurological Disease Others

Ramipril(Altace) 85.6 75.0 82.7 85.7 67.4 73.4 Cardiovascular Disease RAAS

Ranitidine-
hydrochloride(Zantac) 94.6 94.5 77.2 92.9 80.5 95.5 Metabolic Disease NULL

Ranolazine(Ranexa) 85.9 91.0 89.7 92.8 78.5 102.3 Cardiovascular Disease Others

Ranolazine-dihydrochloride 98.4 100.9 100.8 107.4 93.6 102.9 Cardiovascular Disease Calcium Channel

Rapamycin 27.2 36.2 36.1 44.3 46.0 75.4 Immunology mTOR

rasagiline-mesylate 99.3 98.0 98.0 96.5 89.2 95.7 Cardiovascular Disease MAO

rebamipide 85.5 80.3 68.2 88.7 73.2 96.3 Infection Others
reboxetine-mesylate 102.0 103.5 96.9 106.1 101.3 98.3 Neurological Disease Others

Repaglinide 86.2 100.0 97.7 103.1 89.6 99.7 Endocrinology Potassium Channel

Reserpine 105.0 93.2 103.3 96.2 99.3 97.2 Cardiovascular Disease Others

Resveratrol 97.7 88.3 84.3 86.7 76.9 95.1 Infection Sirtuin
retapamulin 105.1 105.0 103.6 103.8 96.1 106.0 Neurological Disease Others

Ribavirin(Copegus) 85.2 91.9 97.7 100.4 77.0 95.3 Metabolic Disease Others
Rifabutin(Mycobutin) 37.0 44.8 45.3 46.2 55.0 68.3 Infection Others

Rifampin(Rifadin) 39.2 70.9 58.0 88.0 78.2 84.7 Infection Others
Rifapentine(Priftin) 84.4 95.9 89.5 95.4 84.6 94.0 Infection Others
Rifaximin(Xifaxan) 82.0 87.1 85.3 91.8 80.4 95.7 Infection Others
Riluzole(Rilutek) 102.1 103.4 96.9 105.9 101.7 98.3 Neurological Disease Sodium Channel

rimantadine-flumadine 93.6 93.1 73.6 84.8 75.2 94.6 Infection Others
rimonabant-sr141716 68.7 93.3 95.9 100.8 81.4 98.7 Inflammation Cannabinoid Receptor
Risperidone(Risperdal) 105.0 103.1 95.1 103.4 97.4 103.0 Neurological Disease 5-HT Receptor

Ritonavir 84.4 95.8 89.7 95.4 84.5 94.0 Infection HIV Protease
Rivaroxaban 84.3 95.3 94.1 92.3 79.2 95.3 Metabolic Disease Factor Xa

rivastigmine-tartrate-exelon 97.0 102.7 101.6 102.2 100.0 111.7 Cardiovascular Disease AChR

Rizatriptan-Benzoate(Maxalt) 97.8 99.2 103.3 96.6 96.0 96.3 NULL

Rocuronium-bromide 98.0 91.3 85.6 88.7 88.9 95.1 Neurological Disease AChR

rofecoxib-vioxx 90.4 90.5 87.3 99.0 81.3 101.0 Digestive system disease COX

Roflumilast(Daxas) 92.6 96.0 97.8 97.4 97.0 99.8 Neurological Disease PDE
Rolipram 89.1 102.5 100.1 109.4 91.0 96.6 Inflammation PDE

ronidazole 95.7 97.7 108.9 86.8 103.6 116.1 Neurological Disease Others
ropinirole-hydrochloride 105.6 101.3 94.7 94.8 103.1 95.0 Neurological Disease Others

ropivacaine-hcl 101.6 99.3 101.2 102.7 96.7 99.5 Infection Others
Rosiglitazone-Avandia 90.0 95.6 106.0 113.7 87.2 98.2 Cancer PPAR

rosiglitazone-hydrochloride 99.9 100.9 104.3 94.5 81.6 104.2 Cardiovascular Disease PPAR

Rosiglitazone-maleate 88.4 100.6 95.6 105.1 81.7 94.3 Infection PPAR

Rosuvastatin-calcium(Crestor) 100.2 104.1 95.9 97.0 94.5 101.7 Infection HMG-CoA Reductase

rotigotine 88.2 94.0 89.4 97.5 80.3 93.8 Dopamine Receptor

roxatidine-acetate-hcl 70.6 66.4 64.5 68.5 70.2 88.9 Digestive system disease Histamine Receptor

Roxithromycin(Roxl-150) 39.1 70.9 58.1 88.2 77.9 84.6 Metabolic Disease Others
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Rufinamide 104.3 101.0 111.1 109.9 100.0 100.8 Neurological Disease Sodium Channel
salicylanilide 81.2 96.4 97.2 102.4 87.1 100.4 Infection Others
sasapyrine 89.9 95.2 106.2 113.6 87.1 98.4 Inflammation Others

Saxagliptin(Onglyza) 98.1 98.4 98.7 98.5 103.3 101.4 Infection DPP-4
scopine 34.9 33.7 26.1 48.6 39.1 66.0 Metabolic Disease Others

Scopolamine-hydrobromide 74.6 89.7 89.4 91.7 77.9 91.2 Respiratory Disease Others

Secnidazole-Flagentyl 58.1 72.2 85.8 76.5 57.8 88.7 Infection Others
serotonin-hcl 84.1 95.0 94.3 92.2 79.1 95.5 Neurological Disease Others

sertaconazole-nitrate 98.5 98.7 101.2 101.2 99.3 103.3 Infection Others
sertraline-hcl 104.3 100.6 105.9 102.2 96.2 101.7 Inflammation 5-HT Receptor

Sildenafil-citrate 103.2 96.2 94.4 109.2 88.5 97.7 Cardiovascular Disease PDE

Silodosin(Rapaflo) 98.0 97.1 99.9 103.0 95.5 101.2 Cardiovascular Disease Adrenergic Recepto

Simvastatin(Zocor) 101.5 95.4 88.8 99.2 80.9 101.2 Cardiovascular Disease Others

Sitafloxacin(DU-6859A) 105.4 101.6 94.8 101.3 95.4 103.8 Others
sodium-4-aminohippurate-

hydrate 90.4 95.8 100.4 96.0 105.0 94.5 Others

sodium-ascorbate 68.4 94.2 102.0 106.9 80.6 94.5 Endocrinology Others
sodium-nitrite 97.9 108.2 121.4 116.1 107.2 101.0 Neurological Disease Others

sodium-nitroprusside 102.8 99.4 101.2 101.5 98.9 98.9 Cardiovascular Disease Others

sodium-picosulfate 99.1 100.8 93.5 97.4 100.4 98.3 Metabolic Disease Others
sodium-salicylate 96.8 96.3 107.5 110.8 94.2 96.0 Infection Others

Sodium-valproate 87.3 95.5 92.2 99.1 83.4 91.0 Cardiovascular Disease GABA Receptor, HDAC

solifenacin-succinate 87.8 90.1 83.7 91.4 79.5 103.0 Cardiovascular Disease AChR

Sorafenib-Tosylate 85.8 76.1 79.7 77.8 46.7 63.6 Cancer VEGFR, PDGFR, Raf

Sorbitol(Glucitol) 88.1 92.1 103.1 78.4 92.7 117.4 Digestive system disease Others

Sotalol-
hydrochloride(Betapace) 92.5 90.2 84.2 82.3 84.3 92.4 Neurological Disease Adrenergic Receptor

sparfloxacin 74.1 83.0 78.7 79.2 74.2 85.5 Infection Others
spiramycin 71.5 73.8 60.9 75.2 72.4 82.1 Infection Others

spironolactone 103.5 91.0 103.5 84.9 96.2 125.8 Infection Androgen Receptor

sRolipram 63.9 60.1 49.7 60.5 88.4 84.1 Cardiovascular Disease PDE

Stavudine 90.5 90.4 87.3 98.9 81.6 101.1 Infection Reverse Transcriptase
Streptozotocin 90.8 86.1 98.2 91.8 77.4 92.1 Cancer Others

sucralose 61.4 76.6 67.3 75.0 52.6 86.8 Others
sulbactam 96.8 93.0 88.6 100.1 83.1 104.2 Infection Others

sulbactam-sodium-unasyn 15.0 25.3 17.9 36.0 62.5 81.6 Infection Others

sulconazole-nitrate 87.1 95.3 92.4 99.1 82.9 91.1 Infection Others

sulfacetamide-sodium 73.5 71.7 57.3 60.3 27.2 89.4 Cardiovascular Disease Autophagy

Sulfadiazine 87.5 90.3 86.5 96.8 81.8 93.3 Infection Others
sulfaguanidine 65.1 75.2 84.7 99.1 57.0 107.0 Infection Others
sulfamerazine 103.8 97.4 106.7 109.2 97.4 102.3 Infection Others

Sulfameter(Bayrena) 97.0 102.6 101.8 102.2 100.0 111.7 Infection Others
sulfamethazine 88.1 93.9 85.0 110.3 63.8 76.9 Endocrinology Others

Sulfamethizole(Proklar) 78.5 78.3 84.5 91.6 76.2 89.3 Infection Others
Sulfamethoxazole 88.1 95.6 97.1 96.1 65.1 101.1 Infection Others

Sulfanilamide 104.5 100.5 105.9 102.0 96.6 101.7 Infection Others
Sulfasalazine(Azulfidine) 91.2 95.7 95.9 96.0 98.6 99.0 Inflammation Others

sulfathiazole 100.7 99.8 108.9 114.9 93.3 102.8 Infection Others
Sulfisoxazole 84.4 95.3 93.9 92.1 79.5 95.4 Infection Others

Sulindac(Clinoril) 97.7 94.0 107.5 108.5 99.5 92.1 Cancer NULL
sulphadimethoxine 81.5 89.9 79.0 92.7 91.0 89.3 Infection Others

Sumatriptan-succinate 106.3 98.3 97.6 110.5 94.0 94.6 Neurological Disease 5-HT Receptor
Sunitinib-Malate-(Sutent) 82.3 85.6 67.6 79.6 70.5 94.2 Cancer VEGFR, PDGFR, c-Kit, Flt

suplatast-tosilate 101.5 102.0 110.2 106.6 91.6 92.8 Cardiovascular Disease Others

Suprofen(Profenal) 82.7 92.9 87.6 96.7 85.8 95.7 Inflammation Others
tacrine-hcl 86.1 99.8 97.9 103.2 89.1 99.8 Neurological Disease Others

Tadalafil(Cialis) 99.7 89.5 98.1 98.6 99.6 99.4 Cardiovascular Disease PDE

TAME 98.0 98.2 99.6 96.8 79.2 99.7 Cancer APC

Tamoxifen-Citrate(Nolvadex) 105.4 95.9 89.2 99.2 79.0 96.0 Endocrinology
Estrogen/progestogen 

Receptor
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Tazarotene(Avage) 67.5 71.3 54.0 79.8 89.4 86.0 Inflammation Others

Tebipenem-pivoxil(L-084) 90.4 107.6 112.6 115.5 94.0 99.8 Cardiovascular Disease Others

Telaprevir(VX-950) 90.7 96.0 100.2 96.0 105.5 94.4 Infection HCV Protease
Telbivudine(Sebivo) 93.3 102.8 94.1 99.4 96.6 97.4 Infection Others

Telmisartan(Micardis) 34.2 79.6 52.8 66.7 43.0 79.6 Cardiovascular Disease Others

temocapril-hcl 104.7 102.5 98.4 102.5 97.1 104.4 Cancer RAAS
Temsirolimus 32.0 40.3 39.5 45.9 47.7 71.7 Cancer mTOR

Teniposide(Vumon) 45.1 62.0 37.0 48.6 17.6 47.0 Cancer Others
Tenofovir 88.1 98.1 91.9 96.4 80.0 101.1 Reverse Transcriptase

Tenofovir-Disoproxil-Fumarate 105.4 95.8 89.3 99.2 79.0 96.0 Reverse Transcriptase

Tenoxicam(Mobiflex) 38.8 53.1 42.2 49.7 50.8 68.8 Infection Others

terazosin-hydrochloride-hytrin 94.2 90.8 95.9 94.8 96.7 94.5 Infection Adrenergic Receptor

Terbinafine(Lamisil) 88.1 84.8 85.6 90.3 75.6 91.5 Infection Others
terfenadine 98.2 100.7 101.0 107.5 93.1 103.0 Neurological Disease Others

teriflunomide 85.6 90.6 90.2 93.0 78.0 102.4 Immunology Others
tetracaine-hydrochloride-

pontocaine 63.0 68.5 61.1 84.9 25.8 99.5 Endocrinology Calcium Channel

tetracycline-hydrochloride 90.3 90.2 101.6 108.9 88.6 94.9 Infection Others

tetrahydrozoline-hcl 97.5 97.3 106.4 99.9 106.1 99.7 Inflammation Adrenergic Receptor
Thalidomide 74.7 89.6 89.4 91.6 78.2 91.3 Immunology Others

Thiabendazole 77.0 87.8 88.0 85.9 75.6 92.9 Vermifuge Others

thiamphenicol-thiophenicol 106.2 100.4 114.7 109.4 94.7 98.7 Cardiovascular Disease Others

thioridazine-hcl 93.4 93.6 101.3 113.4 87.3 101.3 Neurological Disease Others
Tianeptine-sodium-salt 97.6 93.9 107.7 108.6 99.5 92.1 Neurological Disease 5-HT Receptor

ticagrelor 42.5 53.7 41.1 53.1 31.2 31.0 Cardiovascular Disease P2 Receptor

Tigecycline 82.3 93.8 95.5 93.1 77.9 104.6 Infection Others
tilmicosin 88.1 96.1 90.5 80.1 39.9 53.6 Infection Others
tinidazole 87.4 100.1 106.4 107.1 93.9 92.3 Infection S4068

tioconazole 94.8 100.6 110.2 111.6 83.2 87.4 Infection Others

tiopronin-thiola 91.2 95.8 95.7 95.9 98.6 99.0 Cardiovascular Disease Others

Tiotropium-Bromide-hydrate 75.8 103.9 65.3 77.1 50.1 75.0 Infection AChR

tioxolone 60.4 77.5 52.2 83.3 57.3 91.6 Endocrinology Carbonic Anhydrase
tiratricol 97.4 102.3 106.7 108.3 90.1 101.7 Endocrinology Others

Tizanidine-hydrochloride 91.3 96.8 103.5 108.2 87.9 99.7 Neurological Disease Adrenergic Receptor
tolbutamide 87.2 101.1 108.7 105.1 96.7 104.4 Cancer Potassium Channel

tolcapone 103.7 96.6 107.6 98.3 106.8 106.3 Metabolic Disease Transferase
tolfenamic-acid 96.8 95.0 89.5 95.0 80.2 90.1 Inflammation Others

tolmetin-sodium 106.0 98.1 97.9 110.6 93.6 94.6 Inflammation Others
tolnaftate 94.6 94.4 94.7 90.3 96.9 90.2 Cancer Others

tolperisone-hcl 62.9 68.3 61.2 84.7 25.8 99.7 Neurological Disease Others

Tolterodine-tartrate-Detrol-LA 100.1 96.7 101.2 106.9 93.3 97.1 Neurological Disease AChR

toltrazuril 97.6 98.7 100.0 105.1 97.8 102.8 Infection Others

tolvaptan-opc-41061 61.4 76.8 67.2 75.1 52.7 86.6 Metabolic Disease
Estrogen/progestogen 

Receptor
Topiramate 101.5 101.9 110.4 106.7 91.6 92.8 Neurological Disease Carbonic Anhydrase

Topotecan-Hydrochloride 34.9 33.7 26.1 48.5 39.3 66.1 Cancer Topoisomerase
Tranilast 95.8 103.6 104.5 115.4 93.8 98.2 Respiratory Disease Others

Tretinoin(Aberela) 63.9 60.0 49.8 60.6 88.4 84.1 Cancer Others
Triamcinolone(Aristocort) 77.3 87.8 82.9 96.3 81.3 92.8 Inflammation Others
Triamcinolone-Acetonide 87.5 93.6 100.1 76.1 96.3 128.2 Inflammation Others

triamterene 74.0 63.1 63.7 57.4 28.3 77.0 Inflammation Sodium Channel

Trichlormethiazide(Achletin) 100.1 102.2 98.0 98.3 100.6 98.9 Cardiovascular Disease Others

triclabendazole 68.7 101.3 100.2 103.9 79.4 101.3 Vermifuge Others

trifluoperazine-dihydrochloride 96.9 102.8 101.8 102.4 99.6 111.6 Neurological Disease Others

triflupromazine-hcl 96.1 90.1 103.1 106.9 84.1 87.7 Neurological Disease Others
Trifluridine(Viroptic) 73.0 87.5 91.9 88.4 77.3 90.3 Infection NULL

triflusal 104.9 103.2 95.1 103.6 97.0 103.0 Infection COX
Trilostane 87.9 90.0 83.7 91.2 79.8 103.0 Endocrinology Dehydrogenase

trimebutine 102.2 103.5 96.7 105.9 101.7 98.3 Neurological Disease Opioid Receptor
trimethoprim 85.4 80.3 68.3 88.9 73.0 96.2 Infection Others

trimipramine-maleate 97.8 98.2 98.9 98.5 102.8 101.5 Neurological Disease Others
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tripelennamine-hydrochloride 99.0 91.1 111.2 101.7 98.1 90.6 Neurological Disease Histamine Receptor

trometamol 16.1 19.4 13.0 19.4 20.1 26.6 Others
tropicamide 90.9 100.9 94.6 100.2 88.1 90.8 Neurological Disease AChR

Tropisetron-hydrochloride 92.5 85.1 89.5 88.2 79.9 93.9 Neurological Disease Others

Trospium-chloride-Sanctura 100.3 100.1 89.0 108.9 90.7 99.3 Cardiovascular Disease AChR

troxipide 84.1 95.6 89.9 95.4 84.2 94.1 Digestive system disease Others

tylosin-tartrate 94.4 94.4 94.8 90.5 96.6 90.1 Neurological Disease Others

ulipristal 101.3 102.0 110.4 106.9 91.3 92.7 Infection
Estrogen/progestogen 

Receptor
uracil 78.8 97.3 88.0 97.6 80.0 98.3 Others

urapidil-hydrochloride 98.0 97.7 110.8 107.6 98.1 101.4 Respiratory Disease 5-HT Receptor
uridine 100.5 102.0 110.6 110.5 93.2 102.9 Vermifuge DNA/RNA Synthesis

Ursodiol(Actigal) 106.0 99.0 96.3 98.4 101.3 95.6 Metabolic Disease Others
valaciclovir-hcl 104.6 99.2 107.5 105.8 98.5 99.6 Infection Others

valdecoxib 16.9 42.4 47.2 40.9 85.5 53.3 Neurological Disease COX
valganciclovir-hcl 100.8 102.5 104.0 99.8 104.7 96.2 Endocrinology Others

valnemulin-hcl 73.9 82.7 79.0 79.3 73.8 85.6 Infection Others

Valsartan(Diovan) 60.5 77.5 52.1 83.1 57.5 91.6 Cardiovascular Disease RAAS

Vandetanib 61.4 76.5 65.3 72.3 38.3 82.4 Cancer VEGFR
Vardenafil(Vivanza) 78.9 79.9 87.5 94.4 65.6 74.8 Infection PDE

Vecuronium-Bromide# 102.6 101.0 84.6 100.3 81.2 104.8 Neurological Disease Others

Venlafaxine-hydrochloride 82.4 104.2 101.0 106.1 87.7 95.2 Neurological Disease 5-HT Receptor

Verteporfin(Visudyne) 75.4 72.2 70.0 77.3 75.2 92.7 Endocrinology 5-alpha Reductase
Vidarabine(Vira-A) 10.9 26.2 8.0 31.7 4.0 26.4 Infection 5-alpha Reductase
vildagliptin-laf-237 76.4 90.7 94.3 88.1 75.5 100.6 Metabolic Disease DPP-4

vinblastine-sulfate 98.4 98.4 101.4 101.1 99.1 103.5 Neurological Disease Microtubule Associated

Vincristine-Sulfate 15.0 25.3 17.9 35.9 62.8 81.7 Cancer
Autophagy,Microtubule 

Associated

vinorelbine-tartrate 79.3 93.2 94.1 91.3 83.2 93.5 Microtubule Associated

Vitamin-B12 95.8 88.9 84.2 95.0 79.4 87.4 Metabolic Disease Others
vitamin-c-ascorbic-acid 93.5 93.9 101.1 113.6 87.5 101.1 Respiratory Disease Others

vitamin-d2-ergocalciferol 92.4 96.0 98.0 97.6 96.6 99.8 Endocrinology Others

vitamin-d3-cholecalciferol 93.3 94.7 104.0 87.3 88.0 121.3 Cardiovascular Disease Others

voglibose 76.8 87.5 88.3 86.0 75.2 92.9 Metabolic Disease Others
Voriconazole 93.2 92.9 97.0 111.7 85.0 96.6 Infection P450

Vorinostat-(SAHA) 51.1 83.2 78.1 56.2 50.5 43.1 Cancer HDAC
VX-770 84.4 93.0 78.3 89.0 55.3 93.8 Respiratory disease CFTR

www.Novobiocin-
sodium(Albamycin) 91.7 97.5 89.1 99.1 84.1 96.7 Cardiovascular Disease Others

www.Ritodrine-hydrochloride-
Yutopar 40.8 57.1 40.0 40.9 41.9 60.9 Infection Adrenergic Receptor

www.Spectinomycin--
hydrochloride 87.3 90.3 86.6 97.0 81.5 93.2 Cardiovascular Disease Others

www.Terbinafine-
hydrochloride(Zabel) 102.1 98.6 101.2 109.5 91.5 97.6 Infection Others

www.Toremifene-
Citrate(Fareston) 68.7 85.8 65.6 96.9 59.3 87.6 Endocrinology Others

XL184 91.2 93.3 83.9 86.8 68.3 87.0 Cancer
VEGFR, c-Met, Flt, Tie-2, c-

Kit

Xylazine(Rompun) 68.6 85.8 65.7 97.2 59.0 87.5 Cardiovascular Disease Adrenergic Receptor

xylometazoline-hcl 98.4 99.1 107.2 110.4 98.6 96.7 Infection Others
Xylose 104.5 103.1 90.7 102.9 96.6 101.6 Metabolic Disease Others

Zafirlukast(Accolate) 102.9 99.9 98.1 98.0 101.0 97.6 Inflammation Others
Zalcitabine 73.8 72.0 57.0 60.1 27.3 89.4 Infection Others
zaltoprofen 88.4 94.4 89.2 97.7 80.5 93.6 Inflammation COX

zanamivir-relenza 79.4 93.6 94.0 91.4 83.3 93.3 Others

zidovudine-retrovir 70.4 83.9 91.4 104.1 80.2 94.5 Cardiovascular Disease Others

Zileuton 105.2 95.7 107.5 111.5 92.9 93.3 Respiratory Disease Others
zinc-pyrithione 39.9 65.4 24.4 51.6 53.4 88.3 Infection Proton Pump

Ziprasidone-hydrochloride 96.4 90.3 102.9 106.9 84.5 87.7 Neurological Disease Others

Zolmitriptan(Zomig) 104.5 103.0 90.9 103.0 96.6 101.6 Neurological Disease Others
Zonisamide 97.9 97.6 111.0 107.7 98.2 101.4 Neurological Disease Others
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zoxazolamine 86.3 97.0 90.4 97.8 80.0 98.6 Neurological Disease Others
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SUMMARY

Considerable work has linked hormone receptors,

suchasestrogen receptor-alpha (ER),with thepioneer

factor FOXA1. Altered FOXA1 levels contribute to

endocrine-resistant breast cancer, where it maintains

ER-chromatin interactions, even in contexts in which

cells are refractory to ER-targeted drugs. A recent

study controversially suggests that FOXA1 binding

can be induced by hormonal pathways, including the

estrogen-ER complex. We now show that the vast

majority (>99%) of FOXA1 binding events are unaf-

fected by steroid activation. A small number (<1%)

of FOXA1 binding sites appear to be induced by

estrogen, but these are created from chromatin inter-

actionsbetweenERbindingsitesandadjacentFOXA1

binding sites and do not represent genuine new

FOXA1-pioneering elements. FOXA1 is therefore not

regulated by estrogen and remains a bone fide

pioneer factor that is entirely upstream of the ER

complex.

INTRODUCTION

Although the term ‘‘pioneer factor’’ has been used recently for

any transcription factor that canmediate binding of another tran-

scription factor to chromatin, a bone fide pioneer can associate

with condensed chromatin, independently of other factors, to

initiate chromatin opening and creation of a cis-regulatory

element (Zaret and Carroll, 2011). FOXA1 is the archetypal

pioneer factor, capable of binding to compact chromatin inde-

pendently of other proteins and creating a localized euchromatic

environment (Cirillo et al., 1998, 2002). It can mediate estrogen

receptor (ER) binding events in breast cancer cell lines (Carroll

et al., 2005; Hurtado et al., 2011; Laganière et al., 2005), it is

required for growth of drug-resistant cancer models (Hurtado

et al., 2011), and it has been shown to directly contribute to

endocrine resistance (Fu et al., 2016).

FOXA1 has been shown to be important for other nuclear re-

ceptors (NRs), such as androgen receptor (AR) in prostate can-

cer (Lupien et al., 2008), in which elevated levels can contribute

to disease outcome (Jain et al., 2011; Robinson et al., 2014). A

role for FOXA1 in castrate-resistant prostate cancer (CRPC) is

exemplified by the fact that models of CRPC, driven by AR splice

variants, are still dependent on FOXA1 for cell growth (He et al.,

2018; Jones et al., 2015).

FOXA1 binding has been consistently implicated as an event

that happens upstream of NR association with cis-regulatory

elements, and experimental data to date show no change in

FOXA1 binding when ER is modulated (Hurtado et al., 2011),

and FOXA1 chromatin interaction does not require ER when

exogenously expressed (Sérandour et al., 2011). The depen-

dence on a single catalytic transcription factor for hormone

receptor signaling represents an attractive therapeutic target

(Jozwik and Carroll, 2012; Nakshatri and Badve, 2007). Impor-

tantly, an inhibitor targeting FOXA1 would circumvent many of

the known mechanisms of resistance, including changes in NR

fidelity, growth factor activation, changes in the occupancy of

co-factors, and additional mechanisms that alter the binding

potential or ligand dependency of the NR.

The aforementioned paradigms have recently been chal-

lenged, with a study suggesting that FOXA1 binding can be influ-

enced by steroid activation of the cognate NR (Swinstead et al.,

2016). This suggests that FOXA1 binding potential can be

dictated partly by hormones, including estrogen and glucocorti-

coids. This questions the concept of transcription factor hierar-

chies, in which specialized transcription factors can function as

biological pathway-determining catalysts. We have repeated

the key genomic transcription factor mapping experiments that

lead to the paradigm-challenging conclusions. We find that the

estrogen-induced FOXA1 binding sites, which were described

before (Swinstead et al., 2016), result from a lack of robust rep-

licates and are not observable when additional, technically

similar, chromatin immunoprecipitation sequencing (ChIP-seq)

biological replicates are conducted. Any altered FOXA1 binding

sites represent a tiny fraction of the overall FOXA1 binding sites

(less than 1%) that result from chromatin loops that occur be-

tween cis-regulatory elements at estrogen-regulated gene re-

gions, creating shadow binding events that do not represent

new cis-regulatory elements.

RESULTS

By mapping FOXA1 binding using ChIP-seq in ER+ breast can-

cer cells, Swinstead et al. (2016) concluded that FOXA1 binding

could be substantially altered by hormonal steroid treatment.

The primary conclusion that FOXA1 binding was hormonally

regulated was based largely on the results from their ChIP-seq
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experiments. We downloaded their FOXA1 ChIP-seq data, ob-

tained in breast cancer cell lines, but could not reproduce the

binding numbers described in the publication, because of insuf-

ficient information about peak calling and how input DNA was in-

tegrated into the analyses. We used the peak coordinates

described by Swinstead et al. (2016) and compared read den-

sities of their duplicate librariesmapped to those coordinates us-

ing both principal-component analysis (PCA) and hierarchical

clustering. Their samples did not cluster by treatment condition

when assessed using PCA, and samples from the same treat-

ment condition showed substantial variability (Figure 1A), sug-

gesting that the replicate samples were not similar. This lack of

consistency between duplicates is a potential source of false-

positive ‘‘differential’’ binding sites. As expected, differential

peak patterns showed little consistency between replicates (Fig-

ure 1B), implying that any differential binding sites might be due

to technical variability between replicates. Given this replicate-

to-replicate variability (even between samples of the same treat-

ment conditions), the lack of any ChIP-qPCR validation, and the

significant implication of the conclusions, we sought to repeat

the key ChIP-seq experiments to determine if FOXA1 binding

was in fact modulated by hormonal stimulation, as claimed

(Swinstead et al., 2016).

We hormone deprivedMCF-7 and ZR-75-1 breast cancer cells

and treated with vehicle or estrogen for 45min, a duration shown

A B

C D

Figure 1. PCA and Unbiased Clustering of the

Different ChIP-Seq Datasets

Read densities from aligned libraries of equal size of

20 million reads were measured on corresponding

FOXA1 binding sites from Swinstead et al. (2016)

(GEO: GSE72249).

(A) The peaks for all treatments were merged in a

single set prior to the measurement for each study,

and obtained data were subjected to PCA. The PCA

plots illustrate degree of similarity between the repli-

cates. Spearman rank correlation between ER-

mediated chromatin interactions (ChIA-PET) and the

357 estrogen-induced FOXA1 binding sites (ab5089).

(B) Hierarchical clustering of the Swinstead et al.

(2016) binding sites. For hierarchical clustering of the

Swinstead et al. (2016) binding sites, the yielded read

densities were normalized using median absolute

deviation and clustered in MATLAB framework using

the ‘‘ward’’ method with the linkage function. The

duplicate samples from Swinstead et al. (2016) did

not cluster on the basis of treatment condition.

(C) PCA of our FOXA1 ChIP-seq generated with two

different FOXA1 antibodies (ab23738 and ab5089).

(D) Hierarchical clustering of our FOXA1 binding sites,

showing clustering on the basis of replicates.

to result in maximal ER binding and

enhancer activity (Shang et al., 2000). ER

ChIP-qPCR was conducted at known bind-

ing loci (Figure S1; Table S1) in order to

confirm the estrogen response. We subse-

quently conducted FOXA1 ChIP-seq exper-

iments using two different antibodies in both

cell line models with three biological repli-

cates from independent passages. Importantly, these were

collected from matched experiments used to confirm estrogen

responsiveness (Figure S1). One of the antibodies used in our

study was the same antibody (ab23738) used by Swinstead

et al. (2016). Matched input samples were included for each

experiment. Peaks were called using MACS2 (Ross-Innes

et al., 2012; Stark and Brown, 2011). In MCF-7 cells, this resulted

in 64,823 FOXA1 peaks in vehicle-treated and 62,000 peaks in

estrogen-treated conditions using the same antibody as Swin-

stead et al. (2016) and 37,318 vehicle and 35,925 estrogen

FOXA1 peaks with the second independent antibody ab5089

(Table S2). PCA of our samples showed that the samples clus-

tered tightly on the basis of replicates (Figure 1C), providing con-

fidence when comparing peaks (Figure 1D). The samples clus-

tered on the basis of the antibody used for ChIP-seq and

showed minimal difference between vehicle or estrogen condi-

tions. In ZR-75-1 cells, the ab23738 antibody generated

70,602 FOXA1 peaks in vehicle conditions and 66,604 peaks in

estrogen conditions. The second antibody (ab5089) generated

35,763 FOXA1 peaks in vehicle conditions and 31,361 peaks in

estrogen conditions (Table S2). As such, estrogen treatment

did not result in a global increase in FOXA1 binding events,

with either antibody or in either cell line assessed.

One possibility is that FOXA1 binding could be redistributed,

resulting in similar binding numbers, but at different locations
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in the genome. We therefore performed DiffBind analyses (Ross-

Innes et al., 2012) (Table S3) and observed no FOXA1 redistribu-

tion. In MCF-7 cells, there were 14 estrogen-induced peaks with

the ab23738 antibody and 2 peaks enriched in vehicle condi-

tions, representing 0.02% of all FOXA1 peaks that are estrogen

induced (Figures 2A and 2C). This is in contrast to the results ob-

tained using the exact same antibody and cell line in Swinstead

et al. (2016), attesting to the potential problems that result from

lack of sufficient replicates. The biggest change observed in

any of the ChIP-seq experiments we undertook was in MCF-7

cells using the ab5089 FOXA1 antibody (which was not used

by Swinstead et al., 2016) (Figures 2A–2C), which revealed a total

of 357 FOXA1 peaks enriched in estrogen conditions (represent-

ing less than 1% of all peaks called) and 5 peaks enriched in

vehicle conditions (Figure 2B).

To establish the degree of variability in this ChIP-seq experi-

ment conducted with sufficient biological replicates, we pur-

posely mixed up the samples from the ab23738 antibody-based

ChIP-seq in different combinations and subsequently called

peaks. Following DiffBind analysis, we found between 121 and

180 peaks that were considered differential, even in samples

that were randomly mixed up with the incorrect treatment sam-

ples, representing �0.5% of all peaks.

In the ZR-75-1 cell line, we observed 23 estrogen-enriched

and 2 vehicle-enriched FOXA1 binding sites using the same

FOXA1 antibody used by Swinstead et al. (2016) (Figures 2D

and 2F). This small number of estrogen-induced FOXA1 bind-

ing sites represents less than 0.03% of all peaks. When using

the second FOXA1 antibody (ab5089) in ZR-75-1 cells, we

found 109 estrogen-induced FOXA1 binding sites (0.03% of

total FOXA1 binding sites) and 1 vehicle-enriched site

(Figure 2E).

Our ChIP-seq data with two different FOXA1 antibodies, con-

ducted in two independent cell line models, revealed that

0.02%–1% of the FOXA1 binding sites were induced by estro-

gen. This is in contrast to Swinstead et al. (2016), who claimed

that there is an appreciable number of FOXA1 binding events

that can be hormonally regulated. Importantly, the same anti-

body that was used by Swinstead et al. (2016) revealed no signif-

icant changes in FOXA1 binding in either cell line model in our

ChIP-seq analysis.

The second FOXA1 antibody (ab5089) that we used produced

a small number of estrogen-induced FOXA1 binding sites (357

sites), although it is important to note that these differential bind-

ing events constitute less than 1% of total FOXA1 binding events

in the ChIP-seq dataset. Only 28 common FOXA1 binding events

were identified in both MCF-7 and ZR-75-1 cell lines, implying

that these differential sites are not reproducible between

different cancer models (Figure 2G).

Further analysis of the estrogen-induced FOXA1 binding sites

in MCF-7 and ZR-75-1 revealed the estrogen responsive

element (ERE) motif (p = 13 10�42), but no forkhead motifs (Fig-

ure 2H), suggesting that FOXA1 is not directly interacting with the

chromatin at these regions. On the basis of themotif analysis, we

hypothesized that the small number of estrogen-induced FOXA1

binding sites might be indirect FOXA1 binding events, potentially

mediated via chromatin loops connecting estrogen-induced

genes and their enhancers.

Given the wealth of genomic, transcriptomic, and chromatin

looping data in the MCF-7 cell line model, we investigated the

underlying properties of the 357 estrogen-induced FOXA1 bind-

ing sites. We used published RNA-seq data following estrogen

treatment of MCF-7 cells (Figure 3A) and observed that the

357 estrogen-induced FOXA1 binding sites were significantly

biased toward the most estrogen-regulated genes (Figure 3B)

with almost all of the binding sites within cis-regulatory domains

adjacent to ER target genes.

It is well established that lineage-specific genes tend to be

regulated by clusters of transcription factor binding sites (Hnisz

et al., 2013; Whyte et al., 2013). This is true for estrogen-regu-

lated genes, in which the classic estrogen-induced genes (i.e.,

those with the greatest estrogen response) are regulated by

clusters of closely associated cis-regulatory domains (Carroll

et al., 2006). Several well-characterized ER target genes are

shown in Figure 3C as examples. As typified by the examples

shown, there are FOXA1 and ER co-bound regions, but impor-

tantly, there are sites at which one transcription factor binds

but the other one does not. The 357 estrogen-induced FOXA1

binding sites are all adjacent to an independent ER binding event

and other FOXA1 binding sites (Figures 3D and 3E), indicating

their presence in regions of enriched transcription factor binding.

Following estrogen-mediated stimulation, physical associa-

tions between cis-regulatory elements occur (Fullwood et al.,

2009; Pan et al., 2008), and we postulated that FOXA1 could

associate with adjacent ER binding sites through chromatin

looping. Because of the cross-linking in the ChIP-seq protocol,

these indirect chromatin loops create FOXA1 binding sites that

are not direct cis-regulatory elements and therefore represent

‘‘shadow peaks.’’ At these regions, FOXA1 does not function

as a pioneer factor, and new regulatory elements are not

created. Our hypothesis is that the small fraction (<1%) of

FOXA1 binding events that appear to be induced by estrogen

are in fact simply indirect peaks mediated via ER at

those genomic regions. To assess this possibility, we used the

ChIA-PET (chromatin interaction analysis by paired-end tag

sequencing) data that provide an unbiased map of the ER-medi-

ated chromatin interactions that occur, in the presence of

estrogen, in MCF-7 cells (Fullwood et al., 2009). Of the 357

estrogen-induced FOXA1 peaks in MCF-7 cells, 89% were de-

tected in experimentally identified ER ChIA-PET chromatin

loops (Figure 4A). Examples of estrogen-induced FOXA1 binding

sites existing within ChIA-PET chromatin loops are shown in

Figure 4B. This finding confirms that the limited number of

estrogen-induced FOXA1 binding events are in fact created by

clusters of cis-regulatory elements brought into proximity during

gene expression. Therefore, FOXA1 is a bone fide pioneer factor

that binds upstream of NRs, and direct FOXA1-chromatin bind-

ing is not influenced by steroid hormones.

DISCUSSION

It is well established that many NRs and other transcription fac-

tors regulate genes from significant distances (Carroll et al.,

2005; Lin et al., 2007). However, additional factors are required

for NR to work (Glass and Rosenfeld, 2000; Shang et al.,

2000). Recent observations have revealed that cells containing
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A B C

D E F

G H

Figure 2. Analysis of FOXA1ChIP-SeqBindingwith TwoSeparate Antibodies inResponse to EstrogenTreatment inMCF-7 and ZR-75-1Cells

(A, C, D, and F) ChIP-seq tag densities visualized at FOXA1-occupied genomic locations in control and estrogen-treated MCF-7 (A and C) and ZR-75-1 (D and F)

cells, using antibodies ab23738 and ab5089.

(B and E) Zoomed heatmap shows differential binding of FOXA1 specific to ab5089 in MCF-7 cells (B) and ZR-75-1 (E), respectively.

(G) Overlap of estrogen-enriched FOXA1 binding sites between MCF-7 and ZR-75-1 cells.

(H) Transcription factor motifs found overrepresented in the common and estrogen-induced FOXA1 sites.
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mutations in ER (ESR1) can be enriched because of selective

pressure imposed by specific ER-targeted drugs (Merenbakh-

Lamin et al., 2013; Robinson et al., 2013; Toy et al., 2013),

resulting in ligand-independent ER activity. As such, there is a

significant interest in defining critical components of the ER

complex that might constitute potential drug targets. One such

protein is FOXA1, a pioneer factor, shown to facilitate chromatin

‘‘opening’’ independently of additional proteins, enabling bind-

ing and activity of other transcription factors. Importantly, this in-

cludes ER in breast cancer and AR in prostate cancer. Although

additional modes of NR binding can occur, such as assisted

loading, involving complexes of multiple ATP-dependent chro-

matin factors (Voss et al., 2011), an absolute dependence on a

single functionally catalytic protein, such as FOXA1, holds prom-

ise for therapeutic exploitation.

FOXA1 has been shown to be required for growth of resistant

cancers (Hurtado et al., 2011), it contributes to endocrine resis-

tance (Fu et al., 2016), and, importantly, it is essential for

ER binding and activity, even in endocrine-resistant contexts

(Hurtado et al., 2011). This places FOXA1 as a key driver of

resistance and reveals a vulnerability in the ER pathway, where

absolute dependence on a single upstream pioneer factor cre-

ates an opportunity for therapeutic intervention, potentially

overcoming known mechanisms of resistance. Interest in

FOXA1 as a therapeutic target for ER+ breast cancer (Jozwik

and Carroll, 2012; Nakshatri and Badve, 2007, 2009) was

compromised by recent claims that FOXA1 binding is estrogen

regulated (Swinstead et al., 2016). The significance of this

conclusion means that ER-targeted agents should, in theory,

show effectiveness in inhibiting FOXA1 binding and transcrip-

tional potential, reducing the need to develop direct FOXA1

inhibitors. Our comprehensive analysis of FOXA1 binding

following estrogen stimulation reveals no appreciable estrogen

regulation of FOXA1 binding. Different antibodies and different

A B

C

D E

Figure 3. Integration of the Estrogen-Enriched FOXA1 Binding Events with Estrogen-Mediated Gene Expression Events

(A) RNA sequencing (RNA-seq) expression profile following short-term (3 h) estrogen treatment of MCF-7, shown as a dispersion plot.

(B) Gene set enrichment analysis (GSEA) pre-ranked test correlating estrogen-induced genes with the 357 estrogen-induced FOXA1 binding sites.

(C) Examples of sites co-bound by FOXA1 and ER, as well as sites unique to each of the two transcription factors.

(D and E) Proximity of estrogen-induced FOXA1 peaks and the closest ER (D) or FOXA1 (E) site. Heatmap represents FOXA1-gained sites in red.
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ER+ breast cancer cell line models show that >99% of FOXA1

binding sites are impervious to hormonal context. The residual

FOXA1 changes represent less than 1% of FOXA1 binding

events and result from peaks formed within clusters of ER/

FOXA1 binding sites at genes that are estrogen regulated. As

such, these lack the hallmarks of genuine FOXA1 binding sites,

they do not result in the creation of new regulatory elements,

and they do not result in new gene expression events. The

lack of robust, reproducible FOXA1 binding sites confirms that

FOXA1 binding is not estrogen regulated and functions up-

stream of ER activity. In support of this conclusion, previous

experimental data showed that the breast cancer treatment ful-

vestrant (ICI 182780), an ER degrader, does not alter FOXA1

binding (Hurtado et al., 2011).

The major distinction in conclusions between the work of

Swinstead et al. (2016) and the present dataset results from

technical differences that can be attributed to insufficient repli-

cates in the previous study (Figure 1). A lack of biological and/

or technical replicates is a source of problems in the reproduc-

ibility of ChIP-seq datasets, particularly when claiming treatment

or condition-specific binding events. We conclude that recent

claims of estrogen-mediated FOXA1 binding events are influ-

enced, in large part, by a lack of independent biological ChIP-

seq replicates and duplicate samples that show unacceptable

variability between purportedly replicate samples (Figures 1A

and 1B).

Swinstead et al. (2016) identified similar steroid hormone

changes in FOXA1 binding in two distinct systems, namely, es-

trogen responsiveness and dexamethasone (dex) activation of

glucocorticoid receptor (GR) (Swinstead et al., 2016). Although

we have only focused on the estrogen-treated conditions, it is

reasonable to assume that the majority of dex-mediated

changes in FOXA1 are also false positives that result from a

lack of independent biological replicates. This is based on the

fact that the experimental approach was comparable, and the

A B Figure 4. ER Binding Mediates Indirect

FOXA1 Binding via Chromatin Looping at

cis-Regulatory Elements

(A) Correlation between ER-mediated chromatin

interactions (ChIA-PET) and the 357 estrogen-

induced FOXA1 binding sites (ab5089). The table

shows the correlation values between ChIA-PET

interactions and the 357 estrogen-induced FOXA1

binding sites.

(B) Examples of ER and FOXA1 peaks at regions

that are involved in chromatin loops, as detected

by ChIA-PET. The images of the ChIA-PET loops

are taken from Fullwood et al. (2009).

same degree of differential FOXA1 bind-

ing was observed in both hormonal sys-

tems. The conclusion that steroids could

change FOXA1 binding was suggested

in large part by ChIP-seq analyses. In

addition to these assays, Swinstead

et al. (2016) also assessed FOXA1 chro-

matin dwell time using an exogenous,

tagged FOXA1-based approach. Despite

the caveat that exogenous FOXA1 alters levels and potentially

the function of endogenous FOXA1, and the tagged protein

might not faithfully recapitulate endogenous FOXA1, there was

a minimal change in FOXA1 dwell time comparing the presence

or absence of estrogen, suggesting that this non-ChIP-based

method supports the conclusion that FOXA1 binding is not

altered in an appreciable way by hormone status.

Understanding what enables FOXA1 binding is of impor-

tance, and recent suggestions that steroid hormones could

function in this capacity to modulate FOXA1-DNA binding po-

tential (Swinstead et al., 2016) present an attractive hypothe-

sis. We show that the vast majority (>99%) of FOXA1 binding

is not regulated by estrogen, and the small fraction of altered

FOXA1 binding events are created via chromatin interactions

during the course of ER-mediated gene expression. FOXA1

therefore exists entirely upstream of the NR, its chromatin

binding capacity is not influenced by estrogen signaling, and

it remains a relevant and important drug target in hormone-

dependent cancers.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit Anti- ERa (HC-20) polyclonal

antibody

Santa Cruz Cat# sc-543, RRID; AB_631471

Goat Anti-FOXA1 polyclonal antibody –

ChIP grade

Abcam Cat# ab5089, RRID; AB_304744

Rabbit Anti-FOXA1 polyclonal antibody –

ChIP grade

Abcam Cat# ab23738, RRID; AB_2104842

Chemicals, Peptides, and Recombinant Proteins

Dynabeads Protein A Invitrogen Cat#10001D

Dynabeads Protein G Invitrogen Cat#10003D

Pierce 16% Formaldehyde (w/v),

Methanol-free

Thermo Scientific Cat# 28908

b-Estradiol Sigma-Aldrich Cat# E8875

Dulbecco’s Modified Eagle Medium

(DMEM)

GIBCO Cat# 41966029

RPMI 1640 Medium GIBCO Cat# 21875034

Fetal Bovine Serum, qualified, heat

inactivated

GIBCO Cat# 16140071

Fetal Bovine Serum, charcoal stripped GIBCO Cat# 12676029

Penicillin-Streptomycin GIBCO Cat#15070063

L-Glutamine (200 mM) GIBCO Cat# 25030081

Trypsin-EDTA (0.5%), no phenol red GIBCO Cat# 15400054

cOmplete EDTA-free Protease inhibitor

cocktail

Sigma-Aldrich Cat# 05056489 001

Phosphatase Inhibitor cocktail Thermo Scientific Cat#78427

Critical Commercial Assays

ThruPlex DNA-seq kit Rubicon Genomics Cat# R400407

Deposited Data

Gene Expression Omnibus (GEO) https://www.ncbi.nlm.nih.gov/geo/ GSE112969; RRID:SCR_005012

Experimental Models: Cell Lines

MCF-7 ATCC Cat# HTB-22, RRID:CVCL_0031;

ATCC HTB-22

ZR-75-1 ATCC Cat# CRL-1500, RRID:CVCL_0588;

ATCC CRL-1500

Oligonucleotides

Primer for ChIP Forward: ER3 negative site

(50- GCCACCAGCCTGCTTTCTGT-30)

This study n/a

Primer for ChIP Reverse: ER3 negative site

(50- CGTGGATGGGTCCGAGAAAC-30)

This study n/a

Primer for ChIP Forward: XBP1 negative

site (50- ACCCTCCAAAATTCTTCTGC-30)

This study n/a

Primer for ChIP Reverse: XBP1 negative site

(50- ATGAGCATCTGAGAGCAAGC-30)

This study n/a

Primer for ChIP Forward: XBP1 target site

(50- ATACTTGGCAGCCTGTGACC-30)

This study n/a

Primer for ChIP Reverse: XBP1 target site

(50- GGTCCACAAAGCAGGAAAAA-30)

This study n/a

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Jason

Carroll (Jason.carroll@cruk.cam.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell culture

MCF-7 and ZR-75-1 cell lines were obtained fromATCC (Middlesex, UK) and represent female breast cancer cell linemodels. MCF-7

cells were cultured in Dulbecco’sModified EagleMediumDMEM (GIBCO, ThermoScientific, Leicestershire, UK, ref. 41966). ZR-75-1

cells were grown in RPMI-1640 medium (GIBCO, Thermo Scientific, Leicestershire, UK, ref. 21875-034). Both media were supple-

mented with fetal bovine serum (FBS), 50 U/ml penicillin, 50 mg/ml streptomycin and 2 mM L-glutamine.

MCF-7 and ZR-75-1 cells were seeded and treated either with ethanol or with 10nM Estrogen (Sigma) for 45 minutes previously

described (Schmidt et al., 2009). All cell lines were regularly genotyped to ensure they were the correct cell lines.

METHOD DETAILS

Chromatin Immunoprecipitation

To validate the Estrogen induction, ER ChIP-qPCR was performed using the rabbit polyclonal sc-543 (Santa Cruz) antibody. FOXA1

ChIP-seq was performed using the goat polyclonal ab5089 (Abcam), and rabbit polyclonal ab23738 (Abcam) antibodies. Chromatin

was prepared as previously described (Schmidt et al., 2009). DNA was isolated and purified using the phenol-chloroform-isoamyl

DNA extraction method. ChIP-seq and the input libraries were prepared using the ThruPlex� DNA-seq kit (Rubicon Genomics,

ref. R400407).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Primer for ChIP Forward: GREB1 target site

(50- GAAGGGCAGAGCTGATAACG-30)

This study n/a

Primer for ChIP Reverse: GREB1 target site

(50- GACCCAGTTGCCACACTTTT-30)

This study n/a

Primer for ChIP Forward: MYC target site

(50- GCTCTGGGCACACACATTGG-30)

This study n/a

Primer for ChIP Reverse: MYC target site

(50- GGCTCACCCTTGCTGATGCT-30)

This study n/a

Software and Algorithms

Bowtie 2 v2.2.6 Langmead and Salzberg, 2012 https://sourceforge.net/projects/

bowtie-bio/files/bowtie2/2.2.6/ ;

RRID:SCR_016368

MEME tool FIMO v4.9.1 Bailey et al., 2009 http://meme-suite.org/doc/install.

html?man_type=web ; RRID:SCR_001783

JASPAR CORE 2016 vertebrates JASPAR http://jaspar.genereg.net/matrix-clusters/

vertebrates/ ; RRID:SCR_003030

MACS2 version 2.0.10.20131216 Zhang et al., 2008 https://pypi.org/project/MACS2/2.0.10.

20131216/ ; RRID:SCR_013291

GSEAPreranked (18) analysis tool Gene

Set Enrichment Analysis (GSEA) v2.2.3

Broad Institute, Massachusetts

Institute of Technology

http://www.broadinstitute.org/gsea/ ;

RRID:SCR_003199

Diffbind Stark and Brown, 2011 https://bioconductor.org/packages/

release/bioc/html/DiffBind.html ;

RRID:SCR_012918

DESeq2 Love et al., 2014 https://bioconductor.org/packages/

release/bioc/html/DESeq2.html ;

RRID:SCR_015687

Other

Bioruptor Plus sonicator Diagenode n/a
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Integration of RNA-seq and ChIP-seq data

Genes located around ± 50kb from the peak regions were selected. –log10 transformed p values from DESeq2 analyses of the RNA-

Seq data were subsequently used for ranking and weighting of genes. GSEAPreranked (18) analysis tool from Gene Set Enrichment

Analysis (GSEA) software, version 2.2.3, was used for the evaluation of statistically significant genes.

QUANTIFICATION AND STATISTICAL ANALYSIS

ChIP Sequencing Analysis

ER ChIP-qPCR and FOXA1 ChIP-seq were performed in biological triplicates, using cells from independent passages.

ChIP-seq reads were mapped to hg38 genome using bowtie2 2.2.6 (Langmead and Salzberg, 2012). Aligned reads with the

mapping quality less than 5were filtered out. The read alignments from three replicates were combined into a single library and peaks

were called using MACS2 version 2.0.10.20131216 (Zhang et al., 2008) with sequences from MCF7 chromatin extracts as a back-

ground input control. The peaks yielded with MACS2 q value % 1e-3 were selected for downstream analysis. MEME tool FIMO

version 4.9.1 (Bailey et al., 2009) was used for searching all known TF motifs from JASPAR database (JASPAR CORE 2016 verte-

brates) in the tag-enriched sequences. As a background control, peak size - matching sequences corresponding to known open

chromatin regions in MCF7 cells were randomly selected from hg38. Motif frequency for both tag-enriched and control sequences

calculated as sum of motif occurrences adjusted with MEMq-value. Motif enrichment analysis was performed by calculating odds of

finding an overrepresented motif among MACS2-defined peaks by fitting Student’s t-cumulative distribution to the ratios of motif

frequencies between tag-enriched and background sequences. Yielded p values were further adjusted using Benjamini-Hochberg

correction.

For visualizing tag density and signal distribution, heatmaps were generated with the read coverage in a window of ± 2.5 or 5 kb

region flanking the tagmidpoint using the bin size of 1/100 of thewindow length. Differential binding analysis (Diffbind) was performed

as described previously (Stark and Brown, 2011).

DATA AND SOFTWARE AVAILABILITY

All ChIP-seq data is deposited in GEO under the accession number: GSE112969. Data can be accessed using the password:

gzmtegactlqtxwp
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Abstract

Estrogen Receptor alpha (ERα) plays a major role in most breast cancers, and it is the target

of endocrine therapies used in the clinic as standard of care for women with breast cancer

expressing this receptor. The two methods ChIP-seq (chromatin immunoprecipitation cou-

pled with deep sequencing) and RIME (Rapid Immunoprecipitation of Endogenous Proteins)

have greatly improved our understanding of ERα function during breast cancer progression

and in response to anti-estrogens. A critical component of both ChIP-seq and RIME proto-

cols is the antibody that is used against the bait protein. To date, most of the ChIP-seq and

RIME experiments for the study of ERα have been performed using the sc-543 antibody

from Santa Cruz Biotechnology. However, this antibody has been discontinued, thereby

severely impacting the study of ERα in normal physiology as well as diseases such as

breast cancer and ovarian cancer. Here, we compare the sc-543 antibody with other com-

mercially available antibodies, and we show that 06–935 (EMDMillipore) and ab3575

(Abcam) antibodies can successfully replace the sc-543 antibody for ChIP-seq and RIME

experiments.

Introduction

In the last decades, there has been significant interest in studying Estrogen Receptor alpha

(ERα) due to its causal role in more than three quarters of breast cancers[1]. Its key role in

breast cancer progression makes ERα the major target for endocrine therapies, which have

substantially improved patient survival. However, resistance to these therapies occurs in many

patients[2], which leads to incurable metastatic disease. Therefore, it is important to under-

stand the mechanisms underlying ERα action in cancer initiation as well as progression of the

disease. In addition, ERα plays an important role in development[3] and other diseases such as

ovarian cancer[4].

Our understanding of ERα-mediated gene transcription has evolved in recent years, due to

delineation of ERα-chromatin binding mechanisms through ChIP-seq (chromatin immuno-

precipitation followed by next generation sequencing) experiments[5–15]. It is now clear that
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differential binding of ERα to chromatin is associated with clinical outcome in primary ERα-
positive breast tumours[5], suggesting that changes in ERα binding mediates the altered gene

expression program that dictates endocrine responsiveness and clinical outcome. In addition

to changes in binding to chromatin, ERα transcriptional activity can be modulated by its asso-

ciation with different co-regulators and other associated transcription factors. Our lab has pre-

viously developed a method termed RIME (Rapid Immunoprecipitation of Endogenous

Proteins) for the study of protein complexes using mass spectrometry[16, 17]. A key compo-

nent of ERα ChIP-seq and RIME assays is the antibody that specifically and with high sensitiv-

ity targets ERα. Most ChIP-seq and RIME experiments have been performed using the ERα
antibody sc-543 from Santa Cruz Biotechnology[5, 9, 17–21]. This antibody has recently been

discontinued, impacting the ability to study ERα function in breast cancer as well as in other

diseases and physiological conditions. Here, we compare the sc-543 (Santa Cruz Biotechnol-

ogy) with other commercially available antibodies using breast cancer cells as a model and

demonstrate that 06–935 (EMDMillipore) and ab3575 (Abcam) antibodies can replace sc-543

in ChIP-seq and RIME assays.

Materials andmethods

Cell culture

MCF7 cells were cultured in Dulbecco’s Modified Eagle Medium DMEM (Gibco, Thermo Sci-

entific) and MDA-MB-231 cells were grown in RPMI-1640 medium (Gibco, Thermo Scien-

tific). Both media conditions were supplemented with 10% foetal bovine serum (FBS), 50 U/

ml penicillin, 50 μg/ml streptomycin and 2 mM L-glutamine. Cell lines were obtained from

ATCC (Middlesex). For both ChIP-seq and RIME experiments, 2x106 cells were seeded in 15

cm2 plates and collected at 80–90% confluency.

ChIP-Seq and RIME assays

The sc-543 (Santa Cruz), ab80922 (Abcam), ab3575 (Abcam), sc-514857 (C-3) (Santa Cruz

Biotechnology), C15100066 (Diagenode) and 06–935 (EMDMillipore) antibodies were used

for ChIP-qPCR. The sc-543, ab3575 and 06–935 antibodies were then used for ChIP-seq and

RIME. For each ChIP, 10μg of each of the antibodies sc-543, 06–935 and ab3575 or the rabbit

IgG ab37415 (Abcam) were used together with 100μl of Dynabeads Protein A (Invitrogen).

The antibody and the beads were incubated overnight at 4˚C with rotation. MCF7 cells were

fixed for 10 minutes using 1% formaldehyde (Thermo, #28908) and quenched with 0.1M gly-

cine. Cells were then washed and harvested in ice-cold PBS containing protease inhibitors

(Roche). In order to enrich for the nuclear fraction, pellets were resuspended in Lysis Buffer 1

(50mMHepes–KOH, pH 7.5, 140mMNaCl, 1mM EDTA, 10% Glycerol, 0.5% NP-40/Igepal

CA-630, 0.25% Triton X-100) and rotated for 10 minutes, at 4˚C. Cells were then pelleted,

resuspended in Lysis buffer 2 (10mM Tris–HCL, pH8.0, 200mMNaCl, 1mM EDTA, 0.5mM

EGTA) and incubated for 5 minutes, at 4˚C with rotation. For both ChIP-seq and RIME

experiments, cells were pelleted, resuspended in 300 μl Lysis buffer 3 (10mM Tris–HCl, pH 8,

100mMNaCl, 1mM EDTA, 0.5mM EGTA, 0.1% Na–Deoxycholate) and sonicated using the

Bioruptor Pico sonicator (Diagenode, Liege, Belgium) for 10 cycles (30 seconds on, 30 seconds

off). After sonication the samples were centrifuged at maximum speed for 10 minutes at 4˚C

and a small aliquot of supernatant was kept as input for ChIP-seq. The rest of the supernatant

was added to the Protein A Dynabeads, which were incubated overnight with antibody. The

next day, the beads for ChIP-seq were washed six times with RIPA buffer (150mMNaCl,

10mM Tris, pH 7.2, 0.1% SDS, 1% Triton X-100, 1% NaDeoxycholate), followed by one wash

with TE (pH 7.4). Both ChIP samples and inputs were then de-crosslinked by adding 200 μl
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elution buffer (1% SDS, 0.1 M NaHCO3) overnight at 65˚C. After reverse crosslinking, DNA

was purified using the phenol-chloroform-isoamyl DNA extraction method. ChIP-seq and the

input libraries were prepared using the ThruPlex Sample Prep Kit (Illumina). ERα ChIP-seq

was performed in at least duplicates for each condition. For RIME, the antibody-bound beads

incubated with the chromatin samples were washed 10 times with RIPA buffer and twice with

100mMAMBIC (ammonium bicarbonate) prior to mass spectrometry analysis.

Sample preparation, LC-MS/MS analysis and data processing

A 10μL trypsin solution (15ng/ul) (Pierce) prepared in 100mMAMBIC was added to the

beads followed by overnight incubation at 37˚C. The next day, trypsin solution was added for

a second digestion step followed by incubation for 4h at 37˚C. At the end of the second step

digestion, the tubes were placed on a magnet and the supernatant solution was collected and

acidified by the addition of 2μl 5% formic acid. The peptides were cleaned with the Ultra-

Micro C18 Spin Columns (Harvard Apparatus) and were analysed in the Dionex Ultimate

3000 UHPLC system coupled with the Q-Exactive HF (Thermo Scientific) mass spectrometer.

Samples were loaded on the Acclaim PepMap 100, 100μm × 2cm C18, 5μm, 100Ȧ trapping col-

umn with the ulPickUp injection method at loading flow rate 5μL/min for 10 min. For the

peptide separation the EASY-Spray analytical column 75μm × 25cm, C18, 2μm, 100 Ȧ was

used for multi-step gradient elution. Mobile phase (A) was composed of 2% acetonitrile, 0.1%

formic acid, 5% dimethyl sulfoxide (DMSO) and mobile phase (B) was composed of 80% ace-

tonitrile, 0.1% formic acid, 5% DMSO. The full scan was performed in the Orbitrap in the

range of 400-1600m/z at 60K resolution. For MS2, the 10 most intense fragments were selected

at resolution 30K. A 2.0Th isolation window was used and the HCD collision energy was set

up at 28%. The HCD tandemmass spectra were processed with the SequestHT search engine

on Proteome Discoverer 2.2 software. The node for SequestHT included the following parame-

ters: Precursor Mass Tolerance 20ppm, MaximumMissed Cleavages sites 2, Fragment Mass

Tolerance 0.02Da and Dynamic Modifications were Oxidation of M (+15.995Da) and Deami-

dation of N, Q (+0.984Da). The Minora Feature Detector node was used for label-free quantifi-

cation and the consensus workflow included the Feature Mapper and the Precursor Ion

Quantifier nodes using intensity for the precursor quantification. The protein intensities were

normalized by the summed intensity separately for the IgG and ERα pull downs (within group

normalization). The plots for ERα coverage were created using the qPLEXanalyzer tool[22].

Heatmaps and PCA plot were done with the Phantasus Web tool (https://artyomovlab.wustl.

edu/phantasus/). The mass spectrometry proteomics data have been deposited to the Proteo-

meXchange Consortium via the PRIDE[23] partner repository with the dataset identifier

PXD012930.

ChIP-seq data analysis

Reads were mapped to the GRCh38 genome using bwa version 0.7.12[24]. Prior to peak call-

ing, reads were filtered according to four criteria: (1) only reads aligning to canonical chromo-

somes (1–22, X, Y, MT) were considered for further analysis; (2) read aligning in blacklisted

regions were excluded[25]; (3) grey lists were generated using the R package GreyListChIP

and reads aligned in these regions were excluded; (4) reads with a mapping quality of less than

15 were excluded. Peak calling was carried out on each ChIP sample with MACS2 version

2.1.1.20160309 using the relevant input sample[26]. Peaks with a q-value< 0.01 were accepted

for further analysis. To create tag heatmaps, a consensus peak set was generated using the R

package DiffBind[5, 16]. The consensus peak set was composed of any peak that was called in

at least two samples. Motif analysis was carried out using AME[27] from the MEME suite
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version 4.12.0[28] and the HOCOMOCO Human (v10) motif database[29]. Sequences for

motif analysis for each sample were derived by selecting the top 1000 peaks by q-value from

the MACS2 peak set and then extracting the genomic sequence 500 bases either side of the

peak summits. A detailed description of the pipeline can be found in S1 File. ChIP-seq data

have been deposited in NCBI’s Gene Expression Omnibus[30] and are accessible through

GEO Series accession number GSE128208.

Results and discussion

ChIP-sequencing validates 06–935 and ab3575 as specific ERα antibodies

Given the discontinuation of anti-ERα antibody sc-543, we sought to validate alternatives for

immunoprecipitation experiments. We first compared the established sc-543 (Santa Cruz Bio-

technology) antibody with ab80922 (Abcam), ab3575 (Abcam), sc-514857 (C-3) (Santa Cruz

Biotechnology), C15100066 (Diagenode) and 06–935 (Millipore). For this purpose, we used

the ERα positive cell line MCF7 and performed ChIP-qPCR in biological duplicates (S1 Fig)

to assess ERα binding at known target regions (S1 Table).

The ChIP-qPCR comparison suggested that 06–935 (Millipore) and ab3575 (Abcam) could

successfully enrich ERα-bound chromatin at these selected loci and could therefore substitute for

sc-543. We performed ChIP-seq to compare these three antibodies in MCF7 cells using IgG as a

negative control. ERα ChIP-seq was performed in at least duplicates for each condition, using the

same batch of chromatin, to ensure that antibodies could be directly compared. In addition, we

included the ERα negative MDA-MB-231 cell line in order to assess non-specific binding by these

antibodies. For MDA-MB-231, ChIP-seq was performed in biological triplicates.

We observed 6,031 ERα binding sites for sc-543 (Santa Cruz) antibody, 6,192 peaks for

ab3575 (Abcam) and 6,552 for 06–935 (Millipore). Importantly, none of these binding sites

were observed in the IgG negative control. The vast majority of sites identified in MCF7 cells

by sc-543 overlapped with those detected by ab3575 and 06–935 (Fig 1A). Consistently, we

found a strong correlation between the binding intensities for the three antibodies, which was

similar to the correlation between replicates for the same antibody (Fig 1B). All three antibod-

ies showed robust enrichment at binding sites compared to background and motif analysis

identified the ERα response element (ERE) as highly significantly enriched at these sites (Fig

1C). Importantly, neither of the ab3575 and 06–935 antibodies showed any significant enrich-

ment in the ERα negative cell line MDA-MB-231 (Fig 1C). In total, one peak was detected in

ER-negative cells using ab3575, two peaks for 06–935 and 124 binding sites for sc-543, con-

firming the specificity of the antibodies. Examples of ERα binding to previously described

ERα binding sites[16, 31] are illustrated in Fig 1D. Taken together, this indicates that the

ab3575 (Abcam) and 06–935 (Millipore) antibodies perform similarly to the sc-543 (Santa

Cruz) antibody in ChIP-seq experiments, both in terms of sensitivity and specificity.

Validation of 06–935 and ab3575 antibodies using RIME

We next sought to evaluate the performance of ab3575 (Abcam) and 06–935 (Millipore) in

RIME experiments to directly compare with the sc-543 (Santa Cruz) antibody, which has pre-

viously been successfully used in RIME experiments to explore the ERα interactome[9, 16, 22].

To this end, we tested the 06–935, ab3575 and sc-543 antibodies in two technical replicates

each using MCF7 cells. IgG controls were also analysed to discriminate specific associations

from non-specific interaction events.

To evaluate the pull-down efficiencies, we compared the sequence coverage of the bait pro-

tein obtained by the different antibodies. ERα was identified with a similar number of peptides

(Fig 2A) across the three different pull-downs, confirming that all three antibodies achieve
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Fig 1. ChIP-seq comparison between Santa Cruz (sc-543), Millipore (06–935) and Abcam (ab3575) antibodies. A) Venn diagram showing
the overlap between ERα binding sites for Santa Cruz (sc-543), Millipore (06–935) and Abcam (ab3575) antibodies in MCF7 cells. B) Pearson’s
correlation between each replicate of all three antibodies in MCF7 cells. C) Top: De novo motif analysis of ERα binding sites using MEME.
Bottom: Heatmap of total number of ERα binding sites identified in both technical replicates of MCF7, and in all three biological replicates for
MDA-MB-231, respectively. D) Examples of ERα- bound regions. Tag densities are shown as reads per million.

https://doi.org/10.1371/journal.pone.0215340.g001

Fig 2. Comparison of RIME data between Santa Cruz (sc-543), Millipore (06–935) and Abcam (ab3575) antibodies. A) Protein sequence coverage of
ERα achieved by the use of Abcam (ab3575), Millipore (06–935) and Santa Cruz (sc-543) antibodies in RIME. B) PCA plot of known ERα interactors
(n = 319, BIOGRID and STRING databases) for the four different RIME pull-downs. C) Hierarchical clustering of the scaled intensities of known ERα
interactors from BIOGRID and STRING databases (n = 319). D) Hierarchical clustering of well-characterized ERα interactors.

https://doi.org/10.1371/journal.pone.0215340.g002
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efficient immunoprecipitation of the bait protein. Next, to compare the efficiency of the differ-

ent antibodies to detect known ERα interactors, we used a label-free quantification method

based on the Minora algorithm implemented in Proteome Discoverer 2.2 software (S2 File).

The PCA plot using intensities of known ERα-associated proteins (n = 319, BIOGRID and

STRING databases) across all four samples revealed a good separation between the ERα RIME

samples and the IgG controls, indicative of high specificity of all antibodies (Fig 2B). Impor-

tantly, we identify only minor differences between the three antibodies, suggesting that they all

efficiently pull down known ERα-associated proteins (Fig 2B and 2C). Specifically, amongst

the known ERα interactors we identified FOXA1, GATA3 and members of the p160 family that

were all highly enriched by all three antibodies (Fig 2D). Taken together, the three ERα anti-

bodies perform similarly in RIME experiments, enriching for well-known key ERα interactors.

Conclusions

Genome-wide analyses of ERα-chromatin binding sites using ChIP-based methods have expo-

nentially increased our knowledge of the role of ERα in breast cancer. Most of the published

ChIP-seq and RIME studies for ERα have been performed using the sc-543 antibody from

Santa Cruz Biotechnology[13, 16, 17, 19–21, 32] and the quality and specificity of sc-543 has

made it the ‘golden standard’ for immunoprecipitation experiments. However, this antibody

has recently been discontinued, which has significantly impacted our ability to study ERα biol-

ogy. Here, we have assessed commercially available alternative antibodies. We demonstrate

using ChIP-seq and RIME that the two antibodies 06–935 (Millipore) and ab3575 (Abcam)

perform similarly to sc-543, in terms of sensitivity and specificity. We therefore propose that

these antibodies can replace the sc-543 antibody for immunoprecipitation-based experiments

such as ChIP-seq and RIME to explore ERα function.

Supporting information

S1 Fig. ERα antibody comparison by ChIP-qPCR. ChIP-qPCR analysis for ERα known

binding sites was performed in MCF7 cells in biological duplicates. Results are shown as arbi-

trary units. Antibodies used: sc-543 (Santa Cruz Biotechnology), ab80922 (Abcam), ab3575

(Abcam), sc-514857 (C-3) (Santa Cruz Biotechnology), C15100066 (Diagenode) and 6–935

(EMDMillipore).

(TIF)

S1 File. Main steps of the ChIP-seq analysis. The file provides details for the main steps of

the Bioinformatic analysis of the ChIP-seq data.

(PDF)

S2 File. Quantitative proteomics analysis results. The file contains the protein intensities

across all the different RIME samples based on a label free quantification method using the

Minora algorithm in Proteome Discoverer 2.2.

(XLSX)

S1 Table. ChIP-qPCR primers. Table listing the primers used for the ChIP-qPCR experi-

ment.

(DOCX)
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