## **Supplementary Information**

## Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis

Anna Whitehead<sup>1‡</sup>, Fynn N Krause<sup>2‡</sup>, Amy Moran<sup>1‡</sup>, Amanda D.V. MacCannell<sup>1</sup>, Jason L Scragg<sup>1</sup>, Ben D McNally<sup>2</sup>, Edward Boateng<sup>1</sup>, Steven A Murfitt<sup>2</sup>, Samuel Virtue<sup>3</sup>, John Wright<sup>1</sup>, Jack Garnham<sup>1</sup>, Graeme R Davies<sup>4</sup>, James Dodgson<sup>5</sup>, Jurgen E Schneider<sup>1</sup>, Andrew J Murray<sup>6</sup>, Christopher Church<sup>4</sup>, Antonio Vidal-Puig<sup>3</sup>, Klaus K Witte<sup>1</sup>, Julian L Griffin<sup>2</sup>, Lee D Roberts<sup>1\*</sup>

1. School of Medicine, University of Leeds, Leeds LS2 9JT, UK.

2. Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.

3. Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0QQ, UK.

4. Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK

5. Phenotypic Screening and High Content Imaging, Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge, UK

6. Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, U.K.

<sup>‡</sup> Equal Contribution



## Supplementary Figure 1. Forskolin and PPARδ-agonism induce browning of human primary adipocytes

(a) Forskolin (1 µM) increases the expression of brown adipocyte-associated genes in primary human adipocytes (Control n = 5, Forskolin n = 6; two-tailed t-test; *UCP1 p* = 0.0035, *PGC1a p* = 0.0023, *CIDEA p* = 0.00048, *ACADvl p* = 0.00014, *CYCS p* = 0.000055). (b) PPARō agonist GW0742 induces expression of brown adipocyte-associated genes in primary human adipocytes Control n = 5, PPARō agonist n = 6; two-tailed t-test; *UCP1 p* = 0.007, *PGC1a p* = 0.026, *CIDEA p* = 0.027, *CPT1b p* = 0.0018, *CYCS p* = 0.0017). (c) Mitotracker Green staining of mitochondria in human primary adipocytes treated with a PPARō agonist or forskolin (representative images of 3 independent repeats; scale bars = 100 µm). (d) Forskolin and PPARō agonism increase mitochondrial content of human primary adipocytes treated with forskolin *p* < 0.0001). (e) Immunohistochemical staining of UCP1 (red) in human primary adipocytes treated with forskolin or PPARō agonist GW0742 (representative images of 3 independent repeats; scale bars = 100 µm). (f) Forskolin and PPARō agonism increase UCP1 protein content in human primary adipocytes treated with forskolin or PPARō agonist GW0742 (representative images of 3 independent repeats) and protein content in human primary adipocytes (n = 3; One-way ANOVA with Dunnett's post hoc; PPARō agonism increase UCP1 protein content in human primary adipocytes (n = 3; One-way ANOVA with Dunnett's post hoc; PPARō agonism increase UCP1 protein content in human primary adipocytes (n = 3; One-way ANOVA with Dunnett's post hoc; PPARō agonism increase UCP1 protein content in human primary adipocytes (n = 3; One-way ANOVA with Dunnett's post hoc; PPARō agonism increase UCP1 protein content in human primary adipocytes (n = 3; One-way ANOVA with Dunnett's post hoc; PPARō agonist *p* =

0.029, Forskolin p = 0.024). (g) Glucose uptake measured using fluorescent 6-NBDG in human primary adipocytes treated with forskolin or a PPARō agoinst (n = 3; One-way ANOVA with Dunnett's post hoc; Forskolin p < 0.0015). (h) Extracellular glycerol as a measure of lipolysis analyzed using gas chromatography-mass spectrometry from the media of forskolin and PPARō agonist treated human primary adipocytes (n = 3; One-way ANOVA with Dunnett's post hoc; PPARō agonist p = 0.009, Forskolin p = 0.0024). Blue = PPARō agonist, Red = Forskolin. \*p ≤ 0.05, ^p ≤ 0.01, •p ≤ 0.001, ‡p ≤ 0.0001. Data are mean ± SEM with data points shown. Source data are provided as a Source Data file.



Supplementary Figure 2. Metabolites secreted from browning human primary adipocytes induce a brown adipocyte-like phenotype

*UCP1* expression in primary human adipocytes treated with (**a**) 3-methyl-2-oxovaleric acid (MOVA; 10 μM, 20 μM, 40 μM; n = 3; One-way ANOVA with Dunnett's post hoc; 20 μM p = 0.015, 40 μM p = 0.0026), (**b**) 5-oxoproline (5OP; 10 μM, 20 μM, 40 μM; n = 3; One-way ANOVA with Dunnett's post hoc; 20 μM p = 0.012, 40 μM p = 0.003), (**c**) β-hydroxyisovaleric acid (BHIVA; 5 μM, 10 μM; n = 3; One-way ANOVA with Dunnett's post hoc; 10 μM p = 0.048) and (**d**) β-hydroxyisobutyric acid (BHIBA; 10 μM, 20 μM, 40 μM; n = 3; One-way ANOVA with Dunnett's post hoc; 40 μM p = 0.028). (**e**) Schematic showing TCA cycle <sup>13</sup>C-enrichment from <sup>13</sup>C-palmitate metabolism in metabokine-treated human adipocytes. Red carbons represent <sup>13</sup>C-labeling. Glucose uptake in (**f**) MOVA (Control n = 26, 5 μM n = 10, 20 μM n = 29; One-way ANOVA with Dunnett's post hoc; 20 μM p = 0.0018), (**g**) 5OP (Control n = 32, 5 μM n = 7, 20 μM n = 28; One-way ANOVA with Dunnett's post hoc; 20 μM p = 0.0018), (**g**) 5OP (control n = 32, 5 μM n = 7, 20 μM n = 28; One-way ANOVA with Dunnett's post hoc; 20 μM p = 0.0001), (**h**) BHIVA (Control n = 24, 5 μM n = 9, 20 μM n = 29; One-way ANOVA with Dunnett's post hoc; 20 μM p = 0.0009) treated human primary adipocytes. Fatty acid uptake in (**j**) MOVA (Control n = 23, 5 μM n = 14, 20 μM n = 18; One-way ANOVA with Dunnett's post

hoc; 20  $\mu$ M *p* = 0.012), (**k**) 5OP (Control n = 23, 5  $\mu$ M n = 43, 20  $\mu$ M n = 32; One-way ANOVA with Dunnett's post hoc; 20  $\mu$ M *p* = 0.023), (**l**) BHIVA ((Control n = 23, 2.5  $\mu$ M n = 10, 10  $\mu$ M n = 18; One-way ANOVA with Dunnett's post hoc; 20  $\mu$ M *p* = 0.0002) and (**m**) BHIBA (Control n = 23, 5  $\mu$ M n = 34, 20  $\mu$ M n = 18; One-way ANOVA with Dunnett's post hoc; 20  $\mu$ M *p* = 0.003) treated human primary adipocytes. Mitostress respirometry traces of immortalized human white preadipocytes isolated from neck fat and differentiated to mature adipocytes in the presence of (**n**) MOVA (20  $\mu$ M; Control n = 26, MOVA n = 29), (**o**) 5OP (20  $\mu$ M; Control n = 29, MOVA n = 28), (**p**) BHIVA (10  $\mu$ M; Control n = 28, MOVA n = 30) and (**q**) BHIBA (20  $\mu$ M; n = 29). Points in the assay at which oligomycin (Oligo), carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP) and rotenone and antimycin A (Rot/AA) were added are shown. Dark green = MOVA, light green = 5OP, purple = BHIVA, dark blue = BHIBA. \*p ≤ 0.05, ^p ≤ 0.01, •p ≤ 0.001, ‡p ≤ 0.0001. Bar graphs show mean ± SEM with data points shown. Box and whisker plots show 25<sup>th</sup> to 75<sup>th</sup> percentile (box) min to max (whiskers), mean (+) and median (-). Source data are provided as a Source Data file.



Supplementary Figure 3. <sup>13</sup>C-isotope substrate tracing and RNA-seq reveal mechanisms of MOVA, BHIBA, BHIVA and 5OP biosynthesis in browning human adipocytes

(a) Isoleucine metabolism to 3-methyl-2-oxovaleric acid (MOVA) showing <sup>13</sup>C-labeled substrates and products. (b) RNA-seq identifies increased expression of *branched chain* 

amino acid transaminase 2 (BCAT2), which catalyses the reaction producing MOVA, in forskolin-treated primary human adipocytes. (c) Intracellular adipocyte <sup>13</sup>C-labeled MOVA (n = 4; p = 0.018) and (d) extracellular <sup>13</sup>C-labeled MOVA (n = 4; p = 0.0003) in conditioned media from forskolin-treated human primary adipocytes incubated with <sup>13</sup>C-labeled isoleucine. (e) Valine metabolism to  $\beta$ -hydroxyisobutyric acid (BHIBA) showing <sup>13</sup>C-labeled substrates and products. RNA-seq of forskolin-treated adipocytes identifies increased expression of BCAT2. (f) branched chain keto acid dehydrogenase E1 subunit beta (BCKDHB), (g) acyl-CoA dehydrogenase short chain (ACADS), and (h) Enoyl-Coenzyme A, Hydratase/3-Hydroxyacyl Coenzyme A Dehydrogenase (EHHADH), hydroxyacyl-CoA dehydrogenase (HADHA) and EnovI-CoA Hydratase, Short Chain 1 (ECHS1), which catalyze the generation of BHIBA from valine. (i) Intracellular adipocyte <sup>13</sup>C-labeled BHIBA (n = 4; p = 0.0003) and (j) extracellular <sup>13</sup>C-labeled BHIBA (n = 4; p = 0.0039) in conditioned media from forskolin-treated human primary adipocytes incubated with <sup>13</sup>C-labeled valine. (k) Leucine metabolism to  $\beta$ hydroxyisovaleric acid (BHIVA) showing <sup>13</sup>C-labeled substrates and products. RNA-seq of forskolin-treated adipocytes identifies increased expression of BCAT2, BCKDHB, (I) acyl-CoA dehydrogenase medium chain (ACADM), and EHHADH, HADHA and ECHS1, which catalyze the generation of BHIVA from valine. (m) Intracellular adipocyte <sup>13</sup>C-labeled BHIVA (n = 3; p= 0.0101) and (n) extracellular <sup>13</sup>C-labeled BHIVA (n = 3; p = 0.031) in conditioned media from forskolin-treated human primary adipocytes incubated with <sup>13</sup>C-labeled leucine. (**o**) Glutamate metabolism to 5-oxoproline (5OP) showing <sup>13</sup>C-labeled substrates and products. Expression of the 5OP biosynthetic enzymes (p) glutamate-cysteine ligase catalytic subunit (GCLC), (q) glutathione synthetase (GSS), (r)  $\gamma$ -glutamyltransferase 7 (GGT7) and (s)  $\gamma$ glutamylcyclotransferase (GGCT) from RNA-seq data of forskolin-treated human primary adipocytes. (t) Intracellular adipocyte <sup>13</sup>C-labeled 5OP (Control n = 3, 5OP n = 4; p = 0.028) and (u) extracellular <sup>13</sup>C-labeled 5OP (Control n = 3, 5OP n = 4; p = 0.002) in conditioned media from forskolin-treated human primary adipocytes incubated with 13C-labeled glutamate.  $*p \le 0.05$ ,  $^p \le 0.01$ ,  $\cdot p \le 0.001$ . Dark green = MOVA, light green = 5OP, purple = BHIVA, dark blue = BHIBA. <sup>13</sup>C in structures are labeled in red. Data in bar charts and tables was analysed with a two-tailed t-test. Bar charts are mean ± SEM with individual data shown. Data in tables are Log fold-change (Log FC) of three biological replicates p-values calculated by Exact test. Source data are provided as a Source Data file.



Supplementary Figure 4. Export of metabolite signals from browning adipocytes is mediated by monocarboxylate transporters

The concentration of (a) 3-methyl-2-oxovaleric acid (MOVA) (Extracellular; Control vs Forskolin p = 0.035, Forskolin vs MCTi p = 0.029, Forskolin vs Forskolin + MCTi p = 0.03) (Intracellular; Control vs Forskolin p = 0.047, Control vs MCTi p = 0.023, Control vs Forskolin + MCTi p = 0.03, Forskolin vs Forskolin + MCTi p = 0.027) (b) 5-oxoproline (5OP) (Extracellular; Control vs Forskolin p = 0.028, Forskolin vs MCTi p = 0.012, Forskolin vs Forskolin + MCTi p = 0.034) (Intracellular; Control vs Forskolin p = 0.018, Control vs MCTi p= 0.032, Control vs Forskolin + MCTi p = 0.0017, Forskolin vs Forskolin + MCTi p = 0.043) (c)  $\beta$ -hydroxyisovaleric acid (BHIVA) (Extracellular; Control vs Forskolin p = 0.0003, Forskolin vs MCTi p = 0.0045, Forskolin vs Forskolin + MCTi p = 0.036) (Intracellular; Control vs MCTi p =0.042, Control vs Forskolin + MCTi p < 0.0001, Forskolin vs Forskolin + MCTi p = 0.003, MCTi vs Forskolin + MCTi p = 0.015) and (d)  $\beta$ -hydroxisobutyric acid (BHIBA) (Extracellular; Control vs Forskolin p = 0.0023, Forskolin vs MCTi p = 0.0028, Forskolin vs Forskolin + MCTi p =0.04) (Intracellular; Control vs Forskolin p = 0.05, Control vs MCTi p = 0.028, Control vs Forskolin + MCTi p = 0.001, Forskolin vs Forskolin + MCTi p = 0.048, MCTi vs Forskolin + MCTi p = 0.0099) in adipocytes (intracellular) and media (extracellular) of cells treated with either forskolin (1 μM), the monocarboxylate transporter inhibitor (MCTi) α-cyano-4hydroxycinnamate (2 mM) or both forskolin and  $\alpha$ -cyano-4-hydroxycinnamate (n = 4; two-tailed t-test).  $p \le 0.05$ ,  $p \le 0.01$ ,  $p \le 0.001$ ,  $p \le 0.0001$ . Data are mean  $p \le 0.001$  between the test of tes shown. Source data are provided as a Source Data file.



Supplementary Figure 5. MOVA, 5OP and BHIBA induce a dose responsive increase in oxidative energy metabolism in human primary skeletal myocytes

The expression of a mitochondrial and metabolic gene panel in human primary skeletal myocytes treated with (a) 3-methyl-2-oxovaleric acid (MOVA; 5  $\mu$ M, 20  $\mu$ M; n = 4; two-tailed t-test; 5  $\mu$ M ACADv/ p = 0.011; 20  $\mu$ M PPAR $\alpha$  p = 0.05, CPT1b p = 0.05, ACADv/ p = 0.015), (b) 5-oxoproline (5OP; 5  $\mu$ M, 20  $\mu$ M; n = 4; two-tailed t-test; 5  $\mu$ M CPT1b p = 0.005, ACADvl p = 0.034; 20 µM PPARa p = 0.03, PGC1a p = 0.05, CPT1b p = 0.018, ACADvl p = 0.016), (c)  $\beta$ -hydroxyisobutyric acid (BHIBA; Control n = 3, 5  $\mu$ M n = 3, 20  $\mu$ M n = 4; two-tailed t-test; 20  $\mu$ M PPAR $\alpha$  p = 0.003, *CPT1b* p = 0.011) (**d**)  $\beta$ -hydroxyisovaleric acid (BHIVA; 2.5  $\mu$ M, 10  $\mu$ M; n = 4). Basal oxygen consumption in human primary skeletal myocytes treated with (e) MOVA (Control n = 21; 5 and 20  $\mu$ M n = 7; One-way ANOVA with Dunnett's post hoc; 5  $\mu$ M p = 0.034, 20  $\mu$ M p = 0.012) (f) 5OP (Control n = 21; 5  $\mu$ M n = 7 and 20  $\mu$ M n = 8; One-way ANOVA with Dunnett's post hoc; 20  $\mu$ M p = 0.0085), (g) BHIBA (Control n = 21; 5  $\mu$ M n = 6 and 20  $\mu$ M n = 8; One-way ANOVA with Dunnett's post hoc; 5  $\mu$ M p = 0.03, 20  $\mu$ M p = 0.0002) and (h) BHIVA (Control n = 21; 2.5  $\mu$ M n = 7 and 10  $\mu$ M n = 8). Glucose uptake (6-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-6-Deoxyglucose; 6-NBDG) in (i) MOVA (Control n = 180; 5  $\mu$ M n = 36 and 20  $\mu$ M n = 95; One-way ANOVA with Dunnett's post hoc; 5  $\mu$ M p = 0.0014, 20  $\mu$ M p < 0.0001), (j) 5OP (Control n = 180; 5  $\mu$ M n = 36 and 20  $\mu$ M n = 98; One-way ANOVA with Dunnett's post hoc; 5  $\mu$ M p = 0.02, 20  $\mu$ M p < 0.0001), (**k**) BHIBA (Control n = 180; 5  $\mu$ M n = 36 and 20  $\mu$ M n = 106; One-way ANOVA with Dunnett's post hoc; 20  $\mu$ M p < 0.0001) treated human skeletal myocytes. Fatty acid (BODIPY-FA) uptake in (I) MOVA (Control n = 272; 5  $\mu$ M n = 48 and 20  $\mu$ M n = 144; One-way ANOVA with Dunnett's post hoc; 5  $\mu$ M p = 0.0001, 20  $\mu$ M p < 0.0001), (**m**) 5OP (Control n = 272; 5  $\mu$ M n = 48 and 20  $\mu$ M n = 144; One-way ANOVA with Dunnett's post hoc; 20  $\mu$ M p = 0.0001), (n) BHIBA (Control n = 272; 5  $\mu$ M n = 44 and 20  $\mu$ M n = 140; One-way ANOVA with Dunnett's post hoc; 20  $\mu$ M p = 0.0001) treated human skeletal myocytes. Dark green = MOVA, light green = 5OP, purple = BHIVA, dark blue = BHIBA.  $*p \le 0.05$ ,  $^p \le 0.01$ ,  $^p \le 0.001$ ,  $^p \le 0.0001$ . Data in bar charts are mean ± SEM with data points shown. Box and whisker plots show 25<sup>th</sup> to 75<sup>th</sup> percentile (box) min to max (whiskers), mean (+) and median (-). Source data are provided as a Source Data file.



Supplementary Figure 6. Cold exposure induces a thermogenic phenotype and dietinduced obesity induces whitening to modulate metabokine concentrations in brown adipose tissue in mice

Thermogenic gene expression in the (a) interscapular brown adipose tissue (n = 6; One-Way ANOVA with Dunnett's post hoc; Ucp1 TN vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs M p = 0.008, RT vs W p < 0.0001, TN vs W p < 0.0001, T 0.0001, RT vs M p = 0.037; Pgc1a TN vs W p = 0.001, RT vs W p = 0.024; Cidea TN vs W p< 0.0001, TN vs M *p* < 0.0001, RT vs W *p* < 0.0001, RT vs M *p* < 0.0001; Cycs TN vs W *p* < 0.0001, TN vs M p < 0.0001, RT vs W p < 0.0001, RT vs M p < 0.0001; Cpt1b TN vs W p < 0.0001, TN vs M p < 0.0001, RT vs W p < 0.0001, RT vs M p < 0.0001, Acadv/TN vs W p < 0.0001, TN vs M p < 0.0001, RT vs W p < 0.0001, RT vs M p < 0.0001) and (**b**) subcutaneous inguinal adipose tissue (TN, RT n = 6, W, M n = 4; One-Way ANOVA with Dunnett's post hoc; *Ucp1* TN vs W p = 0.026, TN vs M p = 0.0005, RT vs W p = 0.026, RT vs M p = 0.0005; *Pgc1a* TN vs M p < 0.0001, RT vs M p < 0.0001, W vs M p = 0.0007; Cidea TN vs W p < 0.0001, TN vs M p = 0.0039, RT vs W p < 0.0001, RT vs M p = 0.014; Cycs TN vs M p < 0.0001, RT vs M p < 0.0001; Cpt1b TN vs W p < 0.0001, TN vs M p = 0.0008, RT vs W p < 0.0001, RT vs M p= 0.0016; Acadv/ TN vs W p < 0.0001, TN vs M p < 0.0001, RT vs W p < 0.0001, RT vs M p < 0.0001) of mice housed at thermoneutrality (TN), room temperature (RT), 8°C for 1 week (W) or 8°C for 1 month (M). (c) Immunohistochemical staining of UCP1 protein (red) counterstained with hematoxylin in the brown adipose tissue of cold conditioned mice (representative images of 6 independent repeats). (d) UCP1 protein is increased in the brown adipose tissue of cold conditioned mice (n = 6; One-Way ANOVA with Dunnett's post hoc; TN vs W, p = 0.0064, TN vs M p < 0.0001, RT vs M p = 0.0013). (e) Immunohistochemical staining of UCP1 protein (red) counter stained with hematoxylin in the subcutaneous adipose tissue of cold conditioned mice (representative images of 5 independent repeats). (f) UCP1 protein is increased in the subcutaneous adipose tissue of cold conditioned mice (n = 5; One-Way ANOVA with Dunnett's post hoc; TN vs W, p = 0.043, TN vs M p = 0.0084, RT vs W p = 0.03RT vs M p = 0.0057). (g) Weights of mice receiving standard chow (Chow) or 60% fat diet (HFD) for 17 weeks (Chow n = 5; HFD n = 9; two-tailed t-test; p < 0.0001). (h) Intraperitoneal glucose tolerance test in Chow and HFD-fed mice (Chow n = 5; HFD n = 9; Two-Way ANOVA p < 0.0001; two-tailed t-test; 0 min p = 0.006, 30 min p = 0.0009, 60 min p < 0.0001, 90 min p= 0.0002). (i) Reduced thermogenic gene expression in the brown adipose tissue of HFD-fed mice compared to chow-fed mice n = 5; two-tailed t-test;  $Pgc1\alpha p = 0.015$ ; Cidea p = 0.019; *Cpt1b* p = 0.011; *Acadvl* p = 0.011 *Cycs* p = 0.008). (j) Hematoxylin and eosin stained brown adipose tissue from HFD-fed mice demonstrates whitening compared with brown adipose tissue from chow-fed mice (representative images of 5 independent repeats). (k) Concentrations of 3-methyl-2-oxovaleric acid (MOVA), 5-oxoproline (50P), βhydroxyisovaleric acid (BHIVA) and β-hydroxyisobutyric acid (BHIBA) are lower in brown adipose tissue from HFD mice (n = 5; two-tailed t-test; MOVA p = 0.019; 5OP p = 0.028, BHIVA p = 0.026, BHIBA p = 0.036). \* $p \le 0.05$ ,  $^{p} \le 0.01$ ,  $_{p} \le 0.001$ ,  $_{p} \le 0.0001$ . Data in bar charts are mean ± SEM with data points shown. Box and whisker plots show 25<sup>th</sup> to 75<sup>th</sup> percentile

(box) min to max (whiskers), mean (+) and median (-). Source data are provided as a Source Data file.



Supplementary Figure 7. Plasma concentrations of metabolites are inversely correlated with BMI in humans (a - d) The inverse correlation of 3-methyl-2-oxovaleric acid (MOVA) ( $r^2 = 0.2311$ , p = 0.027), 5-oxoproline (5OP) ( $r^2 = 0.1490$ , p = 0.084,  $\beta$ -hydroxyisovaleric acid (BHIVA) ( $r^2 = 0.2433$ , p = 0.023) and  $\beta$ -hydroxyisobutyric acid (BHIBA) ( $r^2 = 0.2020$ , p = 0.041) plasma concentration to Body Mass Index (BMI) in human volunteers (n = 21). Dark green = MOVA, light green = 5OP, purple = BHIVA, dark blue = BHIBA. Analysis by Pearson correlation. Source data are provided as a Source Data file.



Supplementary Figure 8. Physiological concentrations of MOVA, 5OP and BHIBA increase systemic energy expenditure *in vivo* 

(**a** - **d**) The plasma concentration of 3-methyl-2-oxovaleric acid (MOVA; p = 0.0007), 5oxoproline (5OP; p = 0.045),  $\beta$ -hydroxyisobutyric acid (BHIBA; p = 0.025) and  $\beta$ hydroxyisovaleric acid (BHIVA; p = 0.015) in mice given 100 mg/kg/day MOVA, 100 mg/kg/day 5OP, 150 mg/kg/day BHIBA and 125 mg/kg/day BHIVA, respectively, in their drinking water compared to control mice (n = 5; two-tailed t-test). (e) Water intake in MOVA, 5OP, BHIBA and BHIVA-treated mice (n = 5). (f) The weights of mice receiving MOVA, 5OP, BHIBA and BHIVA in their drinking water compared to untreated controls (n = 5; two-tailed t-test; MOVA p = 0.05, 5OP p = 0.042). Diurnal average energy expenditure for 24 hour period, 12 hour dark phase (DARK) and 12 hour light phase (LIGHT) of (g) MOVA (LIGHT p = 0.027), (h) 50P (24 hrs p = 0.041, DARK p = 0.034), (i) BHIBA (24 hrs p = 0.008, LIGHT p = 0.025, DARK p = 0.009) and (j) BHIVA treated mice (n = 5; ANCOVA with body mass as a covariate). Diurnal average oxygen consumption for 24 hours, 12 hour dark phase (DARK) and 12 hour light phase (LIGHT) of (k) MOVA (LIGHT p = 0.05), (l) 5OP (24 hrs p = 0.035, DARK p = 0.031), (m) BHIBA (24 hrs p = 0.0066, LIGHT p = 0.024, DARK p = 0.0077) and (n) BHIVA treated mice (n = 5; ANOCVA with body mass as a covariate). (**o**) Activity and (**p**) food consumption of MOVA, 5OP, BHIBA and BHIVA-treated mice (n = 5; two-tailed t-test; food consumption 5OP p = 0.01, BHIBA p = 0.003). Thermogenic and brown adipocyte-associated gene expression in (q) brown adipose tissue (BAT) (n = 5; two-tailed t-test; MOVA Ucp1 p = 0.0006, *Cidea p* = 0.003, *Cpt1b p* = 0.0007, *Acadvl p* = 0.00332334, *Cycs p* = 0.006; 5OP *Cidea p* = 0.0005, Cpt1b p < 0.0001, Acadvl p = 0.002, Cycs p = 0.0018; BHIBA Ucp1 p = 0.019, Cidea p = 0.0014, Cpt1b p = 0.0005, Acadvl p = 0.025, Cycs p = 0.005; Cold Ucp1 p = 0.003, Cidea p = 0.012, Cpt1b p < 0.0001, Acadvl p < 0.0001, Cycs p < 0.0001) and (r) subcutaneous white adipose tissue (WAT) (n = 5, Cold Conditioned n = 4; two-tailed t-test; MOVA, PGC1a p = 0.0017, *Cidea p* = 0.009, *Acadvl p* = 0.0014, *Cycs p* = 0.005; 5OP *PGC1α p* = 0.0004, *Acadvl* p = 0.0008, Cycs p = 0.0015; BHIBA PGC1a p = 0.0004, Cidea p = 0.02, Acadvl p = 0.0007, *Cycs* p = 0.05; Cold *Ucp1* p = 0.0097, *PGC1a* p = 0.027, *Cidea* p = 0.006, *Cpt1b* p = 0.002, Acadvl p = 0.00011, Cycs p < 0.0001) of MOVA, 5OP, BHIBA and BHIVA-treated mice. Expression of mitochondrial and metabolic genes in the (s) gastrocnemius (MOVA Cpt1b p =0.0026, Acadvl p = 0.04, Cycs p = 0.007, Ndufs1 p = 0.02; 5OP Pgc1 $\alpha$  p = 0.007, Ppar $\alpha$  p =0.05, *Cpt1b p* = 0.02, *Cycs p* = 0.0028, *Ndufs1 p* = 0.014; BHIBA *Pgc1a p* = 0.0019, *Cpt1b p* = 0.0007, Acadvl p = 0.007, Cycs p = 0.02) and (t) soleus muscles (MOVA Ndufs1 p = 0.011; 5OP *Pparα p* = 0.034, *Cpt1b p* = 0.0027, *Acadvl p* = 0.03; BHIBA *Pparα p* = 0.0007, *Cpt1b p* = 0.005) of metabokine-treated mice (n = 5; two-tailed t-test). Metabokine treatment increases mitochondrial content in (u) BAT (MOVA p = 0.035, BHIBA p = 0.015) (v) subcutaneous WAT (MOVA p = 0.038, 5OP p = 0.01, BHIBA p = 0.013) (w) gastrocnemius (MOVA p = 0.046, 5OP p = 0.0029) and (x) soleus muscle (MOVA p = 0.012, 5OP p = 0.017, BHIBA p = 0.012) of mice, determined using a citrate synthase assay (n = 5; two-tailed t-test). Dark green = MOVA, light green = 5OP, purple = BHIVA, dark blue = BHIBA.  $p \le 0.05$ ,  $p \le 0.01$ ,  $p \le 0.001$ ,  $p \le$ 0.0001. Data in bar charts are mean ± SEM with data points shown. Source data are provided as a Source Data file.



Supplementary Figure 9. The metabolites increase oxygen consumption, improve glucose tolerance and induce a phenotype and morphology consistent with browning in adipose tissue in obese mice

(**a** - **c**) The plasma concentration of 3-methyl-2-oxovaleric acid (MOVA) (p = 0.012, 5oxoproline (5OP) (p = 0.035), and  $\beta$ -hydroxyisobutyric acid (BHIBA) (p = 0.01) in mice given

100 mg/kg/day MOVA, 100 mg/kg/day 5OP, or 150 mg/kg/day BHIBA, respectively, in their drinking water compared to control mice (n = 5; two-tailed t-test). Diurnal average oxygen consumption for 24 hour period, 12 hour dark phase (DARK) and 12 hour light phase (LIGHT) of (d) MOVA (n = 9; 24 hrs p = 0.001, DARK p = 0.014, LIGHT p = 0.0092) (e) 5OP (n = 9; 24 hrs p = 0.005, DARK p = 0.032, LIGHT p = 0.005), and (f) BHIBA (n = 8; 24 hrs p = 0.016) treated mice fed a 60% fat diet compared to controls (n = 8; ANCOVA with body weight as a covariate). (g) Daily activity (beam breaks) (Control, BHIBA n = 8; 50P, MOVA n = 9), (h) food consumption (Control, BHIBA n = 8; 5OP, MOVA n = 9) and (i) water intake (n = 5) of mice treated with 100 mg/kg/day MOVA, 100 mg/kg/day 5OP or 150 mg/kg/day BHIBA. (i) Area under the curve (AUC) of intraperitoneal insulin tolerance tests of BHIBA, 5OP, or MOVAtreated mice (n = 10, Control n = 9; two-tailed t-test; BHIBA p = 0.019, 5OP p = 0.043). Intraperitoneal glucose tolerance tests of (k) MOVA, (I) 50P (Two-Way ANOVA p = 0.0006; two-tailed t-test, 60 min p = 0.02, 90 min p = 0.05) and (m) BHIBA (Two-Way ANOVA p < 1000.0001; two-tailed t-test, 60 min p = 0.012, 90 min p = 0.03, 120 min p = 0.027) treated mice (n = 9). (n) AUC of intraperitoneal glucose tolerance tests of BHIBA (p = 0.024), 5OP (p =0.045), or MOVA-treated mice. (n = 9; two-tailed t-test) (**o**) Immunohistochemical staining of Ucp1 protein (red) counterstained with hematoxylin in the brown adipose tissue (top panels) and inquinal subcutaneous adipose tissue (bottom panels) of BHIBA, 5OP and MOVA-treated mice (representative images of 5 independent repeats). (p) Adipocyte area of the subcutaneous adipose tissue of BHIBA (p = 0.046), 5OP (p = 0.008), or MOVA (p = 0.027) treated mice with data points shown (n = 5; two-tailed t-test). Dark green = MOVA, light green = 5OP, dark blue = BHIBA.  $*p \le 0.05$ ,  $^p \le 0.01$ ,  $^p \le 0.001$ ,  $^p \le 0.0001$ . Data in bar charts are mean ± SEM with data points shown. Box and whisker plots show 25th to 75th percentile (box) min to max (whiskers), mean (+) and median (-). Source data are provided as a Source Data file.



Supplementary Figure 10. The metabolites MOVA and 5OP have additive effects on body weight and glucose disposal in high fat diet-fed mice

(a) The reduction in weight gain in mice given a combination of 3-methyl-2-oxovaleric acid (MOVA) and 5-oxoproline (5OP) was greater than either MOVA or 5OP treatments (Control n = 9; MOVA, 5OP n = 10; MOVA + 5OP n = 5; Two-way ANOVA with Holm-Sidak post hoc; Control vs MOVA + 5OP p < 0.0001; MOVA vs MOVA + 5OP p < 0.0001; 5OP vs 5OP + MOVA p < 0.0001). (b) Computed Tomography demonstrates that combined MOVA and 5OP treatment significantly reduces adiposity in mice (n = 5; two-tailed t-test; p = 0.007). (c) Intraperitoneal glucose tolerance tests showed a greater improvement in glucose tolerance in the MOVA and 5OP combination-treated mice (Control; MOVA, 5OP n = 9; MOVA + 5OP n = 5; Two-Way ANOVA with Holm-Sidak post hoc; 120 min; MOVA vs MOVA + 5OP p = 0.004, 5OP vs MOVA + 5OP p = 0.046). (d) Positron emission tomography / computed tomography (PET/CT) <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) imaging of BHIBA, 5OP, MOVA and a combination of MOVA and 5OP-treated mice identifies enhanced glucose uptake of the combined treatment *in vivo* (Representative images from 5 independent repeats). Scale bars are standardized uptake value (SUV) in rainbow scale (0 violet – 5 red). Right – CT, middle - PET, left – PET/CT co-registration. (e) PET/CT demonstrates that a combined MOVA and

5OP treatment significantly increases uptake of the glucose analogue <sup>18</sup>F-FDG into the skeletal muscle of the hind limbs compared with either 5OP or MOVA treatment alone, expressed as standardized uptake values g/ml (n = 5; Two-Way ANOVA with Holm-Sidak post hoc; Control vs 5OP + MOVA p < 0.0001, BHIBA vs 5OP + MOVA p < 0.0001, 5OP vs 5OP + MOVA p < 0.0001, MOVA vs 5OP + MOVA p = 0.0024). Dark green = MOVA, light green = 5OP, dark blue = BHIBA, red = MOVA + 5OP. \*p ≤ 0.05, ^p ≤ 0.01, •p ≤ 0.001. Data in bar charts are mean ± SEM with data points shown. Source data are provided as a Source Data file.



Supplementary Figure 11. MOVA and 5OP signal through cAMP-PKA-p38 MAPK and BHIBA via mTOR to regulate adipocyte and myocyte metabolic gene expression

Cyclic AMP concentrations in the (**a**) brown adipose tissue (BAT) (5OP p = 0.0024, MOVA p = 0.014), (**b**) inguinal white adipose tissue (WAT) (5OP p = 0.0002, MOVA p = 0.0034) and (**c**) soleus skeletal muscle (5OP p < 0.0001, MOVA p = 0.011 of mice treated with 100

mg/Kg/day 3-methyl-2-oxovaleric acid (MOVA), 100 mg/Kg/day 5-oxoproline (5OP) or 125 mg/Kg/day β-hydroxyisobutyric acid (BHIBA) for 17 weeks (n = 5). MOVA increased (d) brown adipose tissue (BAT) MKK3 (p = 0.0009), p38 MAPKα (p = 0.012) and p38MAPKβ (p = 0.0057), (e) inguinal white adipose tissue (WAT) p38MAPKβ (p = 0.02) and (f) soleus p38 MAPKδ (p = 0.0003) and GSK3β (p = 0.0026) phosphorylation in mice (n = 4). 5OP increased (g) BAT p38MAPKα (p = 0.0048) and p38MAPKδ (p = 0.0019), and (h) inguinal WAT p38MAPKβ (p = 0.0042) and (i) soleus p38MAPKδ (p = 0.00029) and GSK3β (p = 0.00019) phosphorylation in mice (n = 4). BHIBA increased phosphorylation of mTOR and p70S6K in (j) BAT (mTOR p = 0.0008; p70S6K p = 0.018), (k) inguinal WAT (mTOR p = 0.0003; p70S6K p = 0.038) and (I) soleus muscle (mTOR p = 0.003; p70S6K p = 0.002) of mice (n = 4). The phospho mTOR / total mTOR ratio in (m) BAT (p = 0.046) and (n) soleus skeletal muscle (p = 0.031) of 125 mg/Kg/day BHIBA treated mice. Dark green = MOVA, light green = 5OP, dark blue = BHIBA. Significance was derived from a two-tailed t-test. \*p ≤ 0.05, ^p ≤ 0.01, •p ≤ 0.001, ‡p ≤ 0.001. Data are mean ± SEM with individual data points shown. Source data are provided as a Source Data file.

| Metabolite                        | Plasma Concentration<br>(µM) | Reference                                                 |
|-----------------------------------|------------------------------|-----------------------------------------------------------|
| α-hydroxyisocaproic acid (HIC)    | $0.25 \pm 0.02$              | Hoffer et al. <sup>1</sup>                                |
| a-ketoisovaleric acid (AKV)       | 11 ± 1.7                     | Geigy Scientific Tables, 8th Rev<br>edition, pp. 165-177. |
|                                   | 14 (0 – 28)                  | Hoffmann et al. <sup>2</sup>                              |
| a-bydroxyisovaleric acid (AHI)    | 4.5 (2.9-6.2)                | Geigy Scientific Tables, 8th Rev<br>edition, pp. 165-177. |
|                                   | 7.7 (0.0-19.0)               | Hoffmann et al. <sup>2</sup>                              |
|                                   | 22.7 +/- 4.6                 | Geigy Scientific Tables, 8th Rev<br>edition, pp. 165-177. |
| 3-methyl-2-oxovaleric acid (MOVA) | 18.0 (8.0-31.0)              | Hoffmann et al. <sup>2</sup>                              |
| β-hydroxyisobutyric acid (BHIBA)  | 21.0 +/- 2.0                 | Avogaro et al <sup>3</sup>                                |
| β-hydroxyisovaleric acid (BHIVA)  | ≤10                          | Engelke et al.4                                           |
| 5-oxo-proline (5OP)               | 19.5 ± 3.7                   | Friesen et al. <sup>5</sup>                               |

Supplementary Table 1. Physiological concentration of candidate metabokines in human plasma.

| Torget      | Fold obongo |                 |
|-------------|-------------|-----------------|
|             |             | <i>p</i> -value |
|             | 20.754      | 0.06            |
|             | 6.61        | 0.06            |
| LEP         | 5.985       | 0.02            |
| CKM12       | 4.028       | 0.06            |
| FASN        | 3.252       | 0.03            |
| NPR1        | 3.185       | 0.04            |
| SLC36A2     | 3.1         | 0.06            |
| ADIPOQ      | 3.04        | 0.03            |
| CEBPA       | 3.017       | 0.04            |
| IL1B        | 2.755       | 0.08            |
| NR1H3       | 2.622       | 0.01            |
| PNPLA2      | 2.559       | 0.06            |
| FABP4       | 2.311       | 0.01            |
| CKMT1B      | 2.271       | 0.009           |
| Perilipin 1 | 2.199       | 0.04            |
| MLXIPL      | 2.099       | 0.05            |
| CPT1B       | 2.065       | 0.09            |
| GATM        | 2.03        | 0.07            |
| SLC27A1     | 1.908       | 0.02            |
| SLC2A4      | 1.894       | 0.02            |
| CD36        | 1.801       | 0.03            |
| PGC1A       | 1.738       | 0.01            |
| SPARC       | 1.655       | 0.001           |
| Adipsin     | 1.623       | 0.006           |
| PRDM16      | 1.611       | 0.007           |
| NPR3        | 1.539       | 0.04            |
| PPARG       | 1.49        | 0.05            |
| INSR        | 1.436       | 0.02            |
| PPARA       | 1.383       | 0.03            |
| SREBF1      | 1.297       | 0.06            |
| BMPR1A      | 1.286       | 0.04            |
| IGF1R       | 1.258       | 0.03            |
| ELOVL6      | 1.247       | 0.01            |
| ATF2        | 1.234       | 0.03            |
| CREB1       | 1.207       | 0.05            |
| NRF1        | 1.158       | 0.03            |

**Supplementary Table 2.** Table of gene expression array data of key adipocyte and brown adipocyte-associated genes changed in immortalized human white preadipocytes isolated from neck fat and differentiation to adipocytes in the presence of 3-methyl-2-oxovaleric acid (20  $\mu$ M) (Expression targets ordered by magnitude fold change,  $p \le 0.1$ ; Benjamini Hochberg-adjusted two-tailed t-tests; n = 3). Source data are provided as a Source Data file.

| Target      | Fold-change | <i>p</i> -value |
|-------------|-------------|-----------------|
| UCP1        | 14.776      | 0.08            |
| LEP         | 5.731       | 0.02            |
| CKMT1A/B    | 4.695       | 0.05            |
| CKMT2       | 4.205       | 0.05            |
| NPR1        | 3.677       | 0.02            |
| FABP4       | 3.468       | 0.06            |
| FASN        | 3.053       | 0.03            |
| CEBPA       | 2.919       | 0.04            |
| ADIPOQ      | 2.793       | 0.03            |
| PNPLA2      | 2.606       | 0.06            |
| NR1H3       | 2.477       | 0.01            |
| MLXIPL      | 2.447       | 0.03            |
| Perilipin 1 | 2.371       | 0.03            |
| Adipsin     | 2.323       | 0.02            |
| SLC27A1     | 2.09        | 0.02            |
| CD36        | 2.054       | 0.07            |
| SLC2A4      | 1.762       | 0.05            |
| NPR3        | 1.629       | 0.03            |
| INSR        | 1.497       | 0.07            |
| SPARC       | 1.486       | 0.03            |
| PPARG       | 1.482       | 0.05            |
| SREBF1      | 1.431       | 0.003           |
| NRF1        | 1.4         | 0.03            |
| ELOVL6      | 1.317       | 0.02            |
| ATF2        | 1.297       | 0.05            |
| CREB1       | 1.295       | 0.08            |
| BMPR1A      | 1.176       | 0.05            |

**Supplementary Table 3.** Table of gene expression array data of key adipocyte and brown adipocyte-associated genes changed in immortalized human white preadipocytes isolated from neck fat and differentiation to adipocytes in the presence of 5-oxo-proline (20  $\mu$ M) (Expression targets ordered by magnitude fold change,  $p \le 0.1$ ; Benjamini Hochberg-adjusted two-tailed t-tests; n = 4). Source data are provided as a Source Data file.

| Target  | Fold change | <i>p</i> -value |
|---------|-------------|-----------------|
| LEP     | 3.484       | 0.06            |
| ADRB3   | 3.327       | 0.08            |
| Adipsin | 2.204       | 0.01            |
| PGC1A   | 2.019       | 0.009           |
| SLC27A1 | 1.747       | 0.004           |
| MLXIPL  | 1.599       | 0.08            |
| INSR    | 1.58        | 0.006           |
| PRDM16  | 1.546       | 0.01            |
| IGF1R   | 1.493       | 0.004           |
| NPR3    | 1.489       | 0.04            |
| NRF1    | 1.476       | 0.002           |
| SPARC   | 1.473       | 0.01            |
| CEBPA   | 1.455       | 0.09            |
| BMPR1A  | 1.327       | 0.01            |
| PPARG   | 1.324       | 0.09            |
| ATF2    | 1.292       | 0.01            |
| TFAM    | 1.291       | 0.08            |
| CREB1   | 1.258       | 0.02            |
| COL6A3  | 1.191       | 0.06            |
| ELOVL6  | 1.106       | 0.07            |
| NRF1    | 1.077       | 0.07            |
| FOXC2   | 0.753       | 0.03            |
| CIDEA   | 0.119       | 0.09            |

**Supplementary Table 4.** Table of gene expression array data of key adipocyte and brown adipocyte-associated genes changed in immortalized human white preadipocytes isolated from neck fat and differentiation to adipocytes in the presence of  $\beta$ -hydroxyisobutyric acid (20  $\mu$ M) (Expression targets ordered by magnitude fold change,  $p \le 0.1$ ; Benjamini Hochberg-adjusted two-tailed t-tests; n = 4). Source data are provided as a Source Data file.

| Target      | Fold-change | <i>p</i> -value |
|-------------|-------------|-----------------|
| UCP1        | 21.663      | 0.06            |
| CKMT1A/B    | 4.921       | 0.05            |
| LPL         | 4.712       | 0.09            |
| CKMT2       | 3.214       | 0.09            |
| FABP4       | 3.213       | 0.07            |
| LEP         | 2.862       | 0.09            |
| SLC36A2     | 2.655       | 0.08            |
| NPR1        | 2.622       | 0.07            |
| IL1B        | 2.599       | 0.09            |
| CEBPA       | 2.555       | 0.06            |
| ADIPOQ      | 2.438       | 0.06            |
| NR1H3       | 2.392       | 0.02            |
| PNPLA2      | 2.222       | 0.09            |
| CD36        | 2.11        | 0.06            |
| FASN        | 2.085       | 0.09            |
| Perilipin 1 | 1.995       | 0.05            |
| MLXIPL      | 1.954       | 0.06            |
| CPT1B       | 1.917       | 0.04            |
| Adipsin     | 1.884       | 0.007           |
| SLC2A4      | 1.626       | 0.06            |
| NPR3        | 1.596       | 0.02            |
| SPARC       | 1.551       | 0.002           |
| PPARG       | 1.455       | 0.06            |
| INSR        | 1.439       | 0.002           |
| BMPR1A      | 1.407       | 0.009           |
| SREBF1      | 1.294       | 0.03            |
| ELOVL6      | 1.244       | 0.007           |

**Supplementary Table 5.** Table of gene expression array data of key adipocyte and brown adipocyte-associated genes changed in immortalized human white preadipocytes isolated from neck fat and differentiation to adipocytes in the presence of  $\beta$ -hydroxyisovaleric acid (10  $\mu$ M) (Expression targets ordered by magnitude fold change,  $p \le 0.1$ ; Benjamini Hochberg-adjusted two-tailed t-tests; n = 4). Source data are provided as a Source Data file.

| Variant ID       | Gene   | SNP ID      | <i>p</i> -Value | Effect   | Trait | Data Set                                     |
|------------------|--------|-------------|-----------------|----------|-------|----------------------------------------------|
| 6_80866657_T_G   | BCKDHB | rs13220420  | 0.00000750      | -0.0210  | BMI   | GIANT-UK Biobank GWAS Meta-analysis: males   |
| 6_80952806_A_G   | BCKDHB | rs17506768  | 0.000149        | -0.0763  | BMI   | GIANT GWAS: active men                       |
| 6_81034583_G_A   | BCKDHB | rs806848    | 0.000200        | -0.00970 | BMI   | GIANT-UK Biobank GWAS Meta-analysis          |
| 6_81035173_A_G   | BCKDHB | rs806845    | 0.000247        | -0.00950 | BMI   | GIANT-UK Biobank GWAS Meta-analysis          |
| 6_81034730_A_G   | BCKDHB | rs806847    | 0.000262        | -0.00950 | BMI   | GIANT-UK Biobank GWAS Meta-analysis          |
| 6_80977740_G_T   | BCKDHB | rs3805901   | 0.000300        | -0.00980 | BMI   | GIANT UK Biobank GWAS                        |
| 6_81036745_G_A   | BCKDHB | rs1474790   | 0.000304        | -0.00940 | BMI   | GIANT-UK Biobank GWAS Meta-analysis          |
| 6_81035737_C_A   | BCKDHB | rs7747016   | 0.000307        | -0.00940 | BMI   | GIANT-UK Biobank GWAS Meta-analysis          |
| 19_49299109_T_C  | BCAT2  | rs73587808  | 0.000488        | 0.255    | BMI   | GIANT-UK Biobank GWAS Meta-analysis: females |
| 12_121167675_G_A | ACADS  | rs12369156  | 0.000131        | -0.0222  | BMI   | GIANT-UK Biobank GWAS Meta-analysis          |
| 12_121179939_C_T | ACADS  | rs12825376  | 0.000137        | 0.0138   | BMI   | GIANT-UK Biobank GWAS Meta-analysis: females |
| 12_121177120_A_G | ACADS  | rs566325901 | 0.000383        | 0.167    | BMI   | GIANT-UK Biobank GWAS Meta-analysis          |
| 2_26472711_G_C   | HADHA  | rs559393527 | 0.0000341       | -0.124   | BMI   | GIANT-UK Biobank GWAS Meta-analysis          |
| 2_26472712_A_T   | HADHA  | rs529693611 | 0.0000341       | -0.124   | BMI   | GIANT-UK Biobank GWAS Meta-analysis          |
| 2_26472713_A_G   | HADHA  | rs548177580 | 0.0000371       | -0.123   | BMI   | GIANT-UK Biobank GWAS Meta-analysis          |
| 2_26472714_T_C   | HADHA  | rs563090369 | 0.0000371       | -0.123   | BMI   | GIANT-UK Biobank GWAS Meta-analysis          |

| 2_26479414_T_C  | HADHA   | rs397984129 | 0.000461  | -0.0873 | BMI | GIANT-UK Biobank GWAS Meta-analysis                       |
|-----------------|---------|-------------|-----------|---------|-----|-----------------------------------------------------------|
| 20_33523155_G_T | GSS     | rs2236270   | 3.60e-8   | 0.00980 | BMI | GIANT UK Biobank GWAS                                     |
| 20_33525407_G_A | GSS     | rs7265992   | 8.40e-7   | -0.0113 | BMI | GIANT UK Biobank GWAS                                     |
| 20_33547633_T_G | GSS     | rs6088662   | 0.0000250 | 0.00930 | BMI | GIANT UK Biobank GWAS                                     |
| 20_33545055_G_A | GSS     | rs13041792  | 0.0000260 | 0.00930 | BMI | GIANT UK Biobank GWAS                                     |
| 20_33529766_T_G | GSS     | rs2273684   | 0.0000280 | 0.00690 | BMI | GIANT UK Biobank GWAS                                     |
| 20_33542605_T_C | GSS     | rs6088659   | 0.0000285 | 0.0328  | BMI | GIANT GWAS: men, Europeans, active + inactive individuals |
| 20_33538214_G_A | GSS     | rs35416056  | 0.0000326 | 0.0175  | BMI | GIANT-UK Biobank GWAS Meta-analysis                       |
| 20_33522054_T_C | GSS     | rs6087653   | 0.0000429 | 0.0250  | BMI | GIANT GWAS: men, active + inactive individuals            |
| 20_33540000_G_A | GSS     | rs2025096   | 0.0000580 | 0.00890 | BMI | GIANT UK Biobank GWAS                                     |
| 20_33527838_A_G | GSS     | rs6088655   | 0.0000679 | 0.0248  | BMI | GIANT GWAS: men, active + inactive individuals            |
| 20_33544075_C_G | GSS     | rs3761144   | 0.0000719 | 0.0243  | BMI | GIANT GWAS: men, active + inactive individuals            |
| 7_30544048_C_T  | GGCT    | rs549124813 | 0.0000875 | 0.174   | BMI | GIANT-UK Biobank GWAS Meta-analysis: females              |
| 1_113504486_C_T | SLC16A1 | rs186286251 | 0.000471  | 0.296   | BMI | GIANT-UK Biobank GWAS Meta-analysis: males                |

Supplementary Table 6 Genetic variants in the metabokine biosynthetic genes associated with Body Mass Index in Genome Wide Association Study database in Genetic Investigation of ANthropometric Traits (GIANT) and UK Biobank Meta-analysis, including 795,640 subjects in the Type 2 Diabetes Knowledge Portal (http://www.type2diabetesgenetics.org/). *p*-value cut-off < 0.0005.

| Volunteers | Age<br>(years) | % Male | Weight<br>(kg) | Mean body mass index |
|------------|----------------|--------|----------------|----------------------|
| 42         | 74.9 ± 1.3     | 78.6   | 84.5 ± 1.3     | 27.6 ± 0.7           |

**Supplementary Table 7**. Morphological parameters for human adipose biopsy volunteers. Data shown is Mean ± SEM.

|                                        | MOVA                   | 50P                    | BHIBA              | BHIVA    |
|----------------------------------------|------------------------|------------------------|--------------------|----------|
| Mouse Primary Adipocytes               |                        |                        |                    |          |
| Secretion during browning              | ↑                      | ↑                      | ↑                  | 1        |
| Induce brown adipocyte gene expression | $\uparrow\uparrow$     | $\uparrow\uparrow$     | 1                  | <u>↑</u> |
| Human Primary Adipocytes               |                        |                        |                    |          |
| Secretion during browning              | <b>↑</b>               | ↑ (                    | 1                  | ↑ (      |
| Brown adipocyte gene expression        | 1                      | ↑                      | 1                  | ↑        |
| Cellular respiration                   | $\uparrow\uparrow$     | $\uparrow\uparrow$     | 1                  | 1        |
| UCP1 Protein expression                | 1                      | ↑                      | 1                  | _        |
| Relative fatty acid oxidation          | <b>↑</b>               | ↑                      | $\uparrow\uparrow$ | -        |
| Glucose uptake                         | -                      | ↑                      | 1                  | ↑        |
| Fatty acid uptake                      | Ť                      | <u>↑</u>               | ↑                  | <u>↑</u> |
| Mouse C2C12 Myotubes                   |                        |                        |                    |          |
| Metabolic gene expression              | $\uparrow\uparrow$     | <u>↑</u> ↑             | ↑                  | <u>↑</u> |
| Human Primary Skeletal Myotubes        |                        |                        |                    |          |
| Metabolic gene expression              | $\uparrow\uparrow$     | $\uparrow\uparrow$     | 1                  | _        |
| Cellular respiration                   | 1                      | ↑                      | 1                  | _        |
| Glucose uptake                         | ↑                      | ↑                      | -                  |          |
| Fatty acid uptake                      | Ť                      | 1                      | 1                  |          |
| High Fat Diet-fed C57Bl6 Mice          |                        |                        |                    |          |
| Weight gain                            | $\downarrow\downarrow$ | $\downarrow\downarrow$ | $\downarrow$       | -        |
| Adiposity                              | ↓                      | Ļ                      | -                  |          |
| Energy expenditure                     | ↑                      | ↑                      | 1                  |          |
| Oxygen consumption                     | 1                      | ↑                      | 1                  |          |
| Insulin sensitivity                    | 1                      | $\uparrow\uparrow$     | $\uparrow\uparrow$ | -        |
| Glucose tolerance                      | -                      | ↑                      | 1                  | -        |
| BAT Mitochondrial content              | -                      | ↑                      | 1                  |          |
| Subcutaneous WAT Mitochondrial content | -                      | ↑ (                    | 1                  |          |
| Soleus mitochondrial content           | 1                      | 1                      | 1                  |          |
| In vivo BAT glucose uptake             | 1                      | -                      | $\uparrow\uparrow$ |          |
| In vivo hind limb glucose uptake       | 1                      | $\uparrow$             | 1                  |          |
| In vivo fore limb glucose uptake       | 1                      | 1                      | -                  |          |

**Supplementary Table 8**. Summary of the key metabolic effects of 3-methyl-2-oxovaleric acid (MOVA), 5-oxo-proline (5OP),  $\beta$ -hydroxyisobutyric acid (BHIBA) and  $\beta$ -hydroxyisovaleric acid (BHIVA) in mouse and human primary adipocytes, mouse and human skeletal myotubes and C57Bl6/J mice *in vivo*.

| Gene     | ThermoFisher       | Primer Reference | Amplicon Longth |
|----------|--------------------|------------------|-----------------|
|          | Assay ID           | Sequence         | Amplicon Length |
|          |                    | NM_001293163.1;  |                 |
|          |                    | NM_001040110.1;  | 80              |
|          |                    | NM_005011.4;     | 80              |
|          |                    | NM_001293164.1   |                 |
|          |                    | NR_073073.1;     |                 |
|          |                    | XM_011540120.2;  |                 |
| TFAM     | Hs01073349_g1      | NM_001270782.1;  | 64              |
|          |                    | XM_011540121.2;  |                 |
|          |                    | NM_003201.2      |                 |
|          |                    | XM_005244772.4;  |                 |
|          |                    | XM_005244773.4;  |                 |
|          |                    | XM_005244774.4;  |                 |
|          | He00222161 m1      | XM_017002050.1;  | 69              |
| PRDIVITO |                    | XM_011541945.2;  | 00              |
|          |                    | NM_022114.3;     |                 |
|          |                    | XM_006710814.3;  |                 |
|          |                    | NM_199454.2      |                 |
| ADRB3    | Hs00609046_m1      | NM_000025.2      | 65              |
|          |                    | NM_001318383.1;  |                 |
| CIDEA    | Hs00154455_m1      | NM_001279.3;     | 76              |
|          |                    | NR_134607.1      |                 |
|          | Hs01095345_m1      | NR 045774.1;     |                 |
|          |                    | NR_045772.1;     |                 |
|          |                    | NM 001256094.1;  |                 |
|          |                    | NM_001256090.1;  |                 |
|          |                    | NR_045771.1;     |                 |
|          |                    | NM_001256092.1;  |                 |
| ATF2     |                    | NR_045769.1;     | 67              |
|          |                    | NR_045773.1;     |                 |
|          |                    | NM_001880.3;     |                 |
|          |                    | NR_045770.1;     |                 |
|          |                    | NM_001256091.1;  |                 |
|          |                    | NR_045768.1;     |                 |
|          |                    | NM_001256093.1   |                 |
|          |                    | NM_134442.4;     |                 |
|          |                    | XM_011510646.2;  |                 |
|          |                    | XM_017003400.1;  |                 |
|          |                    | XM_011510645.1;  |                 |
|          |                    | XM_017003399.1;  |                 |
|          |                    | NR_135473.1;     |                 |
| CDEB1    | $H_{c}00231713 m1$ | XM_011510651.2;  | 75              |
| URED I   | 11300231713_111    | XM_011510649.2;  | 15              |
|          |                    | XM_011510650.2;  |                 |
|          |                    | NM_001320793.1;  |                 |
|          |                    | XM_017003401.1;  |                 |
|          |                    | XM_011510647.2;  |                 |
|          |                    | XM_011510648.2;  |                 |
|          |                    | NM_004379.4      |                 |
|          |                    | NM_020990.4;     |                 |
| CKMT1B   | Hs00179727_m1      | XM_017021902.1;  | 85              |
|          |                    | XM_011521198.1;  |                 |

|         |                   | XM 011521197.2:XM 0 |     |
|---------|-------------------|---------------------|-----|
|         |                   | 05254150.3:         |     |
|         |                   | XM 011521199.2:     |     |
|         |                   | NM_001321926.1      |     |
|         |                   | NM_001321927_1      |     |
|         |                   | NR 135856 1         |     |
|         |                   | NM 001015001 2      |     |
|         |                   | NM_001321028 1      |     |
|         |                   | NM 001321920.1,     |     |
|         |                   | XM_011521104_1      |     |
|         |                   | XM_011521194.1,     |     |
|         |                   | XIVI_011521195.2,   |     |
|         |                   | AIVI_005254496.3,   |     |
|         |                   | XIM_011521196.1;    |     |
|         |                   | XM_017022369.1;     |     |
|         |                   | XM_017022370.1      |     |
|         | 11 00/70500 /     | NM_001825.2;        |     |
| CKM12   | Hs00176502_m1     | NM_001099735.1;     | 68  |
|         |                   | NM_001099736.1      |     |
|         |                   | NM_013989.4;        |     |
| DIO2    | Hs00255341_m1     | NM_000793.5;        | 88  |
|         |                   | NM_001324462.1      |     |
| DDIA    | He99999901 m1     | NM_021130.4;        | 08  |
|         | 113999999904_1111 | NM_001300981.1      | 38  |
|         |                   | NM_001145135.1;     |     |
|         |                   | NM_001145134.1;     |     |
|         |                   | NR_027928.2;        |     |
| CPT1B   | Hs00189258_m1     | NM_001145137.1;     | 67  |
|         |                   | NM_004377.3;        |     |
|         |                   | NM_152246.2;        |     |
|         |                   | NM 152245.2         |     |
|         |                   | XM 017026097.1;     |     |
|         | 11-00000407 4     | XM_011526271.2;     | 0.4 |
| ZNF516  | HS00206187_m1     | NM 014643.3:        | 84  |
|         |                   | XM 011526272.2      |     |
| NRIP1   | Hs00940782_m1     | XM_005261063.3      | 127 |
|         |                   | XM 005263206.3;     | 00  |
| UCP1    | HS00222453_m1     | NM 021833.4         | 68  |
|         |                   | XM 005252709.1:     |     |
|         |                   | XM 011519808 2      |     |
|         |                   | NM 001251935.1      |     |
|         |                   | XM_011519807_1      |     |
|         |                   | NM_001251934_1      |     |
|         |                   | XM_005252713.3      |     |
|         |                   | XM_006718113.1      |     |
|         |                   | XM_006718112 1:     |     |
| NR1H3   | Hs00172885 m1     | XM_006718115.1      | 78  |
| NICH IS | 11300172000_111   | XM_005252710 1      | 70  |
|         |                   | XM_005252716.3      |     |
|         |                   | XM_005252715.2      |     |
|         |                   | XM 017017059 1      |     |
|         |                   | NIM 001120101 2     |     |
|         |                   | INIVI_UUT13UTU1.2;  |     |
|         |                   | AIVI_U1/U1/U5/.1;   |     |
|         |                   | XIVI_U17U17U56.1;   |     |
|         |                   | NM_001130102.2;     |     |

|           |               | XM_011519806.1;   |     |
|-----------|---------------|-------------------|-----|
|           |               | XM 011519805.2:   |     |
|           |               | XM_005252707.4:   |     |
|           |               | XM_006718116.1    |     |
|           |               | NM 005693 3       |     |
|           |               | XM_005252706.1    |     |
|           |               | XW_005252700.1,   |     |
|           |               | XIVI_005252705.1, |     |
|           |               | XIVI_005252718.3  |     |
| 01 000 40 | 11-00000407 4 | XIVI_006714756.3  | 405 |
| SLC36A2   | HS00699197_m1 | ;NM_181776.2;     | 105 |
|           |               | XM_017009084.1    |     |
| HPRT1     | Hs02800695_m1 | NM_000194.2       | 82  |
|           |               | NM_002561.3;      |     |
|           |               | NM_001204519.1;   |     |
| P2RX5     | Hs00531938_m1 | NR_037928.1;      | 70  |
|           |               | NM_175080.2;      |     |
|           |               | NM_001204520.1    |     |
|           |               | XM_011533842.2;   |     |
|           |               | XM_011533844.1;   |     |
|           |               | NM 005037.5;      |     |
| 55450     |               | NM 138711.3:      |     |
| PPARG     | Hs01115513_m1 | NM 138712.3:      | 90  |
|           |               | NM_015869.4       |     |
|           |               | XM 011533843 2    |     |
|           |               | XM_011533841 2    |     |
|           |               | XM_011530240.2    |     |
|           |               | XM_011530240.2,   |     |
|           |               | XM_011530247.2,   |     |
|           |               | XW_011530242.2,   |     |
|           |               | NM 001001028 2    |     |
|           |               | NIVI_001001928.2, |     |
|           |               | INIVI_005036.4;   |     |
|           | 11-000475004  | XIVI_011530243.2; | 00  |
| PPARA     | HS00947536_m1 | XM_011530244.2;   | 62  |
|           |               | XM_006724270.3;   |     |
|           |               | XM_006724269.3;   |     |
|           |               | XM_017028840.1;   |     |
|           |               | XM_005261655.3;   |     |
|           |               | XM_017028839.1;   |     |
|           |               | XM_011530245.2;   |     |
|           |               | XM_005261656.3    |     |
|           |               | NM_001287424.1;   |     |
| CERDA     | He00260072 e1 | NM_004364.4;      | 77  |
| CEDFA     | HS00209972_51 | NM_001287435.1;   | 11  |
|           |               | NM_001285829.1    |     |
|           |               | XM_011513769.2;   |     |
|           |               | XM_011513768.1;   |     |
|           |               | XM 011513767.2;   |     |
|           |               | XM_011513766.1:   |     |
| PPARGC1   |               | XM_011513765.2:   |     |
| A         | Hs00173304_m1 | XM_005248134_4    | 83  |
|           |               | XM_005248132.1    |     |
|           |               | XM_005248131 4    |     |
|           |               | NM 013261 3       |     |
|           |               | XM 011512771 1.   |     |
| 1         | 1             |                   |     |

|         |                  | -               | -   |  |
|---------|------------------|-----------------|-----|--|
|         |                  | XM_017007664.1; |     |  |
|         |                  | XM_011513770.2  |     |  |
|         |                  | XM_011510574.1; |     |  |
|         |                  | NM_057166.4;    |     |  |
|         |                  | NM_057164.4;    |     |  |
|         |                  | XM_017003304.1; |     |  |
|         |                  | NM_004369.3;    |     |  |
| COL6A3  | Hs00915125_m1    | XM_005246066.1; | 73  |  |
|         |                  | XM_017003303.1; |     |  |
|         |                  | XM_006712253.1; |     |  |
|         |                  | NM_057167.3;    |     |  |
|         |                  | XM_005246065.1; |     |  |
|         |                  | NM_057165.4     |     |  |
| FOXC2   | Hs00270951 s1    | NM 005251.2     | 102 |  |
| FABP4   | Hs01086177 m1    | NM 001442.2     | 96  |  |
|         |                  | NR 110501.1:    |     |  |
|         |                  | NM_001289908.1: |     |  |
|         |                  | NM_001289909_1  |     |  |
|         |                  | NM_001289911_1  |     |  |
|         |                  | NM_001001547_2  |     |  |
|         |                  | NM_001001548.2  |     |  |
| CD36    | Hs00354519_m1    | XM_005250714.1  | 83  |  |
|         |                  | XM_005250715.4  |     |  |
|         |                  | XM_005250713.1; |     |  |
|         |                  | NM_001127443.1  |     |  |
|         |                  | NM_001127444_1  |     |  |
|         |                  | NM 000072 3     |     |  |
|         |                  | XM_011528003.2  |     |  |
|         |                  | XM_017026781.1  |     |  |
|         |                  | NM 198580 2     |     |  |
| SLC27A1 | Hs01587911_m1    | XM_011528000.1  | 120 |  |
|         |                  | XM_011528002.2  |     |  |
|         |                  | XM_011528001.2  |     |  |
|         | Hs01005622_m1    | XM_011523538.2  |     |  |
| FASN    |                  | NM 004104 4     | 62  |  |
|         | Hs00160173 m1    | XM_005254934_4· |     |  |
| PLIN1   |                  | NM_001145311_1; | 54  |  |
| 1 2/141 | 1000100110_111   | NM 002666 4     |     |  |
| FFAR4   | Hs00699184_m1    | NM 181745.3     |     |  |
|         |                  | NM_001195755_1  | 86  |  |
|         |                  | XM_011539746.2  |     |  |
|         | Hs01061407_m1    | XM_006713986.3  |     |  |
|         |                  | NM_004787.3     |     |  |
|         |                  | XM_005248211_3  | 66  |  |
|         |                  | XM_017008845.1  |     |  |
| SLIT2   |                  | NM_001289136.2  |     |  |
|         |                  | NM_001289135.2  |     |  |
|         |                  | XM_011513910.2  |     |  |
|         |                  | XM_011513910.2, |     |  |
|         |                  | NM 020376 3     |     |  |
|         |                  | XM 006718265 3  |     |  |
| PNPLA2  | Hs00386101_m1    | XM 017018028 1  | 116 |  |
|         |                  | XM_006718266 3  |     |  |
| וח ו    | He00172405       | NM_000227.2     | 102 |  |
|         | 11200173423_1111 | INIVI_000237.2  | 103 |  |

|        | Hs00178903_m1    | NM_006252.3;      |     |  |
|--------|------------------|-------------------|-----|--|
| PRKAA2 |                  | XM_017001694.1;   | 102 |  |
|        |                  | XM_017001693.1;   |     |  |
|        |                  | XM_017001692.1    |     |  |
|        |                  | NM_024090.2;      |     |  |
| =      |                  | XM_011532235.2;   |     |  |
| ELOVL6 | Hs00907564_m1    | XM_011532234.2;   | 75  |  |
|        |                  | NM_001130721.1;   |     |  |
|        |                  | XM_011532233.2    |     |  |
| ADIPOQ | Hs00605917 m1    | NM_001177800.1;   | 71  |  |
|        | _                | NM_004797.3       |     |  |
|        | Hs00174131_m1    | XM_005249745.4;   |     |  |
| IL6    |                  | NM_001318095.1;   | 95  |  |
|        |                  | NIVI_000600.4;    |     |  |
|        |                  | XM_011515390.2    |     |  |
| LEP    | Hs001/48//_m1    | NM_000230.2       | /4  |  |
| FGF21  | Hs00173927_m1    | NM_019113.3       | 117 |  |
| BMP7   | Hs00233476_m1    | NM_001719.2       | 73  |  |
|        |                  | NM_181809.3;      |     |  |
| BMP8B  | Hs00236942_m1    | NM_001720.3;      | 110 |  |
|        |                  | XM_011542022.2    |     |  |
| RETN   | He00220767 m1    | NM_020415.3;      | 130 |  |
|        | 11300220707_1111 | NM_001193374.1    | 130 |  |
| CED    | He00157263 m1    | NM_001317335.1;   | 72  |  |
|        | 11800137203_111  | NM_001928.3       | 12  |  |
| SRERE1 | Hs00231674 m1    | XM_005256772.4;   | 84  |  |
| GINEDI | 11300201074_1111 | NM_004176.4       |     |  |
|        |                  | NM_032953.2;      |     |  |
|        |                  | XM_011516278.1;   |     |  |
|        |                  | XM_011516277.1;   |     |  |
|        |                  | NR_134541.1;      |     |  |
| MLXIPL | Hs00975714 m1    | NM_032952.2;      | 56  |  |
|        |                  | NM_032954.2;      |     |  |
|        |                  | XM_017012263.1;   |     |  |
|        |                  | XM_011516281.2;   |     |  |
|        |                  | XM_011516279.1;   |     |  |
|        |                  | NIM_032951.2      |     |  |
| INSR   | Hs00961557_m1    | XIVI_UT1527988.2; |     |  |
|        |                  | INIVI_000200.3,   | 66  |  |
|        |                  | NM 001070917 2    |     |  |
|        |                  | XM_017022120.1    |     |  |
| IGF1R  | Hs00609566_m1    | XM_011521516.2    |     |  |
|        |                  | XM_017022137.1    |     |  |
|        |                  | XM_017022138.1    | 64  |  |
|        |                  | XM_011521517 2    |     |  |
|        |                  | NM_001291858 1    |     |  |
|        |                  | NM 000875.4       |     |  |
|        |                  | XM 017022136.1    |     |  |
| RPLP0  | Hs99999902_m1    | NM 001002.3:      | 107 |  |
|        |                  | NM 053275.3       | 105 |  |
| SLC2A4 | Hs00168966 m1    | NM 001042.2       | 89  |  |
| BMPR1A | Hs01034913 g1    | XM 011540104 2    | 94  |  |
|        |                  | ····              | U . |  |

|               | XM_011540103.2;                                                                   |                                                                                                                                                                                                                                                                                                                                                                                 |  |
|---------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|               | NM_004329.2                                                                       |                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Hs01099013_m1 | XM_011514049.2;                                                                   |                                                                                                                                                                                                                                                                                                                                                                                 |  |
|               | NM_001204376.1;                                                                   |                                                                                                                                                                                                                                                                                                                                                                                 |  |
|               | XM_011514048.2;                                                                   | 65                                                                                                                                                                                                                                                                                                                                                                              |  |
|               | NM_001204375.1;                                                                   |                                                                                                                                                                                                                                                                                                                                                                                 |  |
|               | XM_011514047.1;                                                                   | 00                                                                                                                                                                                                                                                                                                                                                                              |  |
|               | XM_005248309.1;                                                                   |                                                                                                                                                                                                                                                                                                                                                                                 |  |
|               | XM_017009492.1;                                                                   |                                                                                                                                                                                                                                                                                                                                                                                 |  |
|               | NM_000908.3                                                                       |                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Hs01099745_m1 | NM_000906.3;                                                                      |                                                                                                                                                                                                                                                                                                                                                                                 |  |
|               | XM_017001374.1;                                                                   | 65                                                                                                                                                                                                                                                                                                                                                                              |  |
|               | XM_005245218.1                                                                    |                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Hs01555410_m1 | XM_017003988.1;                                                                   | 91                                                                                                                                                                                                                                                                                                                                                                              |  |
|               | NM_000576.2                                                                       |                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Hs00174128_m1 | NM_000594.3                                                                       | 80                                                                                                                                                                                                                                                                                                                                                                              |  |
| Hs99999907_m1 | NM_004048.2                                                                       | 75                                                                                                                                                                                                                                                                                                                                                                              |  |
|               | Hs01099013_m1<br>Hs01099745_m1<br>Hs01555410_m1<br>Hs00174128_m1<br>Hs99999907_m1 | XM_011540103.2;<br>NM_004329.2   XM_011514049.2;<br>NM_001204376.1;<br>XM_011514048.2;<br>NM_001204375.1;<br>XM_011514047.1;<br>XM_01514047.1;<br>XM_005248309.1;<br>XM_017009492.1;<br>NM_000908.3   Hs01099745_m1 XM_017001374.1;<br>XM_017001374.1;<br>XM_005245218.1   Hs01555410_m1 XM_017003988.1;<br>NM_000576.2   Hs00174128_m1 NM_000594.3   Hs99999907_m1 NM_004048.2 |  |

**Supplementary Table 9** TaqMan OpenArray Real-Time PCR human primer details giving gene, ThermoFisher assay identification number, primer NCBI reference sequence and amplicon length.

| Species | Gene         | Commercial            | Catalogue     | Primer Reference |
|---------|--------------|-----------------------|---------------|------------------|
|         |              | Vendor                | Number        | Position         |
|         | UCP1         |                       | PPH02223A-200 | 911 (NM_021833)  |
|         | PGC1a        |                       | PPH00461F-200 | 2303 (NM_013261) |
|         | (PPARGC1a)   |                       |               |                  |
|         | CIDEA        |                       | PPH00899C-200 | 604 (NM_001279)  |
|         | CPT1b        |                       | PPH20905B-200 | 23 (NM_004377)   |
| Human   | ACADvl       |                       | PPH01732A-200 | 1530 (NM_000018) |
|         | CYCS         |                       | PPH20675F-200 | 4466 (NM_018947) |
|         | MCT1/SLC16A1 |                       | PPH09944F-200 | 1531 (NM_003051) |
|         | PPARα        |                       | PPH01281B-200 | 668 (NM_005036)  |
|         | NDUFS1       |                       | PPH19871A-200 | 1768 (NM_005006) |
|         | Ucp1         |                       | PPM05164B-200 | 1112 (NM_009463  |
|         | Pgc1a        |                       | PPM03360I-200 | 2956 (NM_008904) |
|         | (Ppargc1α)   | Qiagen<br>(CanaClaha) |               |                  |
|         | Cidea        | (GeneGlobe)           | PPM03423C-200 | 455 (NM_007702)  |
|         | Cpt1b        |                       | PPM57688A-200 | 1910 (NM_009948) |
| Mouse   | Acadvl       |                       | PPM04358E-200 | 1142 (NM_017366) |
|         | Cycs         |                       | PPM28320A-200 | 295 (NM_007808)  |
|         | Mct1/Slc16a1 |                       | PPM25515A-200 | 1498 (NM_009196) |
|         | Pparα        |                       | PPM03307C-200 | 1648 (NM_011144  |
|         | Ndufs1       |                       | PPM37821A-200 | 1866 (NM_145518) |
|         | Bcat2        |                       | PPM26571A-200 | 977 (NM_009737)  |
|         | Bckdhb       |                       | PPM25713A-200 | 0 (NM_199195)    |
|         | Acads        |                       | PPM25953A-200 | 896 (NM_007383)  |
|         | Hadha        |                       | PPM32964A-200 | 2221 (NM_178878) |
|         | Gss          |                       | PPM06172A-200 | 1323 (NM_008180) |
|         | Ggct         |                       | PPM38268A-200 | 532 (NM_026637)  |

Supplementary Table 10 PCR primer details giving species, gene, commercial vendor,

vendor catalogue number and primer reference position in NCBI reference sequence.

## **Supplementary References**

- 1. Hoffer LJ, Taveroff A, Robitaille L, Mamer OA, Reimer ML. Alpha-keto and alphahydroxy branched-chain acid interrelationships in normal humans. *J Nutr* **123**, 1513-1521 (1993).
- Hoffmann GF, Meier-Augenstein W, Stockler S, Surtees R, Rating D, Nyhan WL. Physiology and pathophysiology of organic acids in cerebrospinal fluid. *Journal of inherited metabolic disease* 16, 648-669 (1993).
- 3. Avogaro A, Bier DM. Contribution of 3-hydroxyisobutyrate to the measurement of 3hydroxybutyrate in human plasma: comparison of enzymatic and gas-liquid chromatography-mass spectrometry assays in normal and in diabetic subjects. *J Lipid Res* **30**, 1811-1817 (1989).
- 4. Engelke UF, *et al.* NMR spectroscopic studies on the late onset form of 3methylglutaconic aciduria type I and other defects in leucine metabolism. *NMR in biomedicine* **19**, 271-278 (2006).
- 5. Friesen RW, Novak EM, Hasman D, Innis SM. Relationship of dimethylglycine, choline, and betaine with oxoproline in plasma of pregnant women and their newborn infants. *J Nutr* **137**, 2641-2646 (2007).