
1

A Unified Model for Context-Sensitive Program Analyses

The Blind Men and The Elephant

SWATI JAISWAL, Visvesvaraya National Institute of Technology, India

UDAY P. KHEDKER, Indian Institute of Technology Bombay, India

ALAN MYCROFT, University of Cambridge, UK

Context-sensitive methods of program analysis increase the precision of interprocedural analysis by achiev-

ing the effect of call inlining. These methods have been defined using different formalisms and hence appear

as algorithms that are very different from each other. Some methods traverse a call graph top-down whereas

some others traverse it bottom-up first and then top-down. Some define contexts explicitly whereas some do

not. Some of them directly compute data flow values while some first compute summary functions and then

use them to compute data flow values. Further, different methods place different kinds of restrictions on the

data flow frameworks supported by them. As a consequence, it is difficult to compare the ideas behind these

methods in spite of the fact that they solve essentially the same problem. We argue that these incomparable

views are similar to those of blind men describing an elephant called context sensitivity, and make it difficult

for a non-expert reader to form a coherent picture of context-sensitive data flow analysis.

We bring out this whole-elephant view of context sensitivity in program analysis by proposing a uni-

fied model of context sensitivity which provides a clean separation between computation of contexts and

computation of data flow values. Our model captures the essence of context sensitivity and defines sim-

ple soundness and precision criteria for context-sensitive methods. It facilitates declarative specifications of

context-sensitive methods, insightful comparisons between them, and reasoning about their soundness and

precision. We demonstrate this by instantiating our model to many known context-sensitive methods.

CCS Concepts: • Theory of computation → Program analysis;

Additional KeyWords and Phrases: Interprocedural data flow analysis, interprocedurally valid paths, context

sensitivity, flow sensitivity

ACM Reference Format:

Swati Jaiswal, Uday P. Khedker, and Alan Mycroft. 2021. A Unified Model for Context-Sensitive Program

Analyses: The Blind Men and The Elephant. ACM Comput. Surv. 1, 1, Article 1 (January 2021), 37 pages.

https://doi.org/10.1145/3456563

1 INTRODUCTION

The precision and efficiency of program analysis are influenced significantly by the abstraction of
control flow both at the intraprocedural, and the interprocedural level.

Authors’ addresses: Swati Jaiswal, swatijaiswal@cse.vnit.ac.in, Visvesvaraya National Institute of Technology, India; Uday

P. Khedker, uday@cse.iitb.ac.in, Indian Institute of Technology Bombay, India; Alan Mycroft, Alan.Mycroft@cl.cam.ac.uk,

University of Cambridge, UK.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

0360-0300/2021/1-ART1 $15.00

https://doi.org/10.1145/3456563

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1145/3456563
https://doi.org/10.1145/3456563

1:2 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

Start(1

2 = 0 ∗ 12

0 ∗ 13

Call'4

Ret'5

End(6

1 ∗ 2 is available

Start'7

0 ∗ 18

End'9

Start) 10

0 = 1 ∗ 2 11

0 ∗ 1 12

Call' 13

Ret' 14

End) 15

0 ∗ 1 is available
Start(1

? = &02

@ = &13

Call'4

Ret'5

End(6

Start'7

∗? = @8

End'9

Start) 10

? = &2 11

@ = &3 12

Call' 13

Ret' 14

End) 15

(a) Available Expressions Analysis (b) Points-to Analysis

Fig. 1. Example illustrating the imprecision introduced if interprocedurally invalid paths are considered

At the intraprocedural level, if an analysis considers the control flow of a procedure and com-
putes distinct information for each program point, then the analysis is flow-sensitive. If it disre-
gards the control flow and computes a single piece of information that is valid at each program
point, then it is flow-insensitive. The former computes more precise information than the latter.

At the interprocedural level, a context-sensitive analysis tries to achieve the effect of inlining
of callee procedures by ensuring that the result of interprocedural analysis matches the result
obtained after inlining callee procedures. Actual inlining of procedures is undesirable in most
cases (because it could increase the size of the code exponentially) and is infeasible in the case
of recursion. The effect of inlining can be obtained by (a) inlining a summary of the procedure
instead of inlining the procedure, or (b) traversing the call graph by performing proper call and
return matchings. A context-insensitive analysis is less precise than a context-sensitive analysis.
Context sensitivity makes an analysis more precise but affects the efficiency of the analysis.

Many methods have been proposed to achieve context sensitivity with the primary motive of
increasing efficiency. These methods use a variety of formalisms that are very different from each
other and hence these methods appear very dissimilar in spite of the fact that they solve the same
problem. Besides, they are defined algorithmically and it is very difficult for a non-expert reader
to compare them. In this paper we survey many of the known context-sensitive methods in order
to bring out the similarities and differences between them.

1.1 The Need for Context Sensitivity

A program is represented by a control flow graph (CFG) in which nodes contain (are labelled with)
statements and edges represent control transfers (see Section 2.1 for a formal definition). A CFG
can contain multiple procedures; some authors call this a ‘supergraph’ or an ‘interprocedural CFG’.

We write = : B to indicate that node = is labelled with statement B ∈ (. We assume that each
call to procedure & has been split into a call node< :Call& (with no intraprocedural control flow
successors) and a paired return node = :Ret& (with no intraprocedural control flow predecessors).
Each procedure& has a unique= :Start& and a unique< :End& . When the statement is not required,
we simply write the nodes:<, =, etc.

Consider the CFG of a program shown in Figure 1 in which procedure ' is invoked from pro-
cedures (and) from call nodes 4 :Call' and 13 :Call' , respectively. For a precise interprocedural

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:3

analysis, the effect of inlining can be obtained by traversing the CFG. However, such traversals
could introduce interprocedurally invalid paths when the calls and returns do not match properly.
For example, path 1 → 2 → 3 → 4 :Call' → 7 :Start' → 8 → 9 :End' → 14 :Ret' → 15 is invalid
because the return node 14 :Ret' does not correspond to the call node 4 :Call' indicating that the
call does not return to the actual call point. We define the notion of interprocedurally valid path
formally in Section 2.1. To see the imprecision caused by interprocedurally invalid paths, consider
an interprocedural available expressions analysis for the procedures in Figure 1(a) for determining
the expressions that are available in nodes 6 and 15. As illustrated in the table below, if we include
interprocedurally invalid paths, the effect of the assignment in node 2 reaches node 15 and the
effect of node 11 reaches node 6 making both expressions unavailable at nodes 6 and 15.

Node Interprocedural path reaching the node Valid? Availability

6
1 → 2 → 3 → 4 :Call' → 7 → 8 → 9 → 5 :Ret' → 6 Yes {0 ∗ 1}

10 → 11 → 12 → 13 :Call' → 7 → 8 → 9 → 5 :Ret' → 6 No {1 ∗ 2}

15
10 → 11 → 12 → 13 :Call' → 7 → 8 → 9 → 14 :Ret' → 15 Yes {1 ∗ 2}

1 → 2 → 3 → 4 :Call' → 7 → 8 → 9 → 14 :Ret' → 15 No {0 ∗ 1}

A similar effect is seen for points-to analysis; with interprocedurally invalid paths, we get spurious
points-to pairs: (0, 3) at node 6 and (2, 1) at node 15. Thus in order to avoid imprecision, we need
to exclude interprocedurally invalid paths.

1.2 Procedure Summaries for Context-Sensitive Interprocedural Analysis

The primary requirement of context sensitivity is to achieve the effect of call inlining during the
analysis. Every context-sensitive method summarizes a procedure in some form or the other and
uses the summary in the callers of the procedure. A summary may be computed in one of two
ways: (a) By analyzing a procedure for a particular incoming data flow value by traversing the call
graph top-down and propagating the information from callers to callees. The resulting summary
depends on the context. (b) Summarizing the procedure independently of the information being
propagated from callers to callee. The resulting summary is used to replace the calls in the callers
to construct the summary of the callers. Thus the call graph is traversed bottom-up.
The summary function constructed by a top-down traversal can also be viewed as an exten-

sional representation of the function which is enumeration of key-value pairs. Consider a function
square : Int → Int which takes an integer and returns the square of the input. Then the enumera-
tion of key-value pairs for function square are {1 ↦→ 1, 2 ↦→ 4, 3 ↦→ 9, . . .}. The summary function
constructed by a bottom-up traversal can be viewed as an intensional representation as a parameter-
ized expression such as _G .G2 or simply G2 for function square. Consider procedure& containing a
statement sequence G = ~ + 1;~ = 2; with contexts f1 and f2 reaching the procedure with values
~ ↦→ ⊥ in f1 and ~ ↦→ 8 in f2. Then, for constant propagation the extensional representation of
the summary for procedure & , denoted by S& , is {(f1, {G ↦→ ⊥, ~ ↦→ 2}) , (f2, {G ↦→ 9, ~ ↦→ 2})}.
The intensional representation of the summary is S& (-) = - [G ↦→ - (~) + 1, ~ ↦→ 2] where - is a
map from variables to their values, - (~) gives the value of y in the map, and - [. . .] denotes how
the values of specific variables in map - are updated.

1.3 Contributions and Organization of the Paper

The known context-sensitive methods use very different formalisms and appear very dissimilar
in spite of the fact that they attempt to solve the same problem. We probe the notion of context
sensitivity in these methods and propose a unified model of context-sensitive methods of data

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:4 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

flow analysis that brings out a whole-elephant view of context sensitivity.1 Our model provides a
clean separation between computation of contexts (captured by an abstract context structure) and
computation of data flow values (captured by an abstract value structure). The model allows us to
identify simple formal criteria for soundness and precision of a method instantiated in the model.
We model most of the known context-sensitive methods using our unified model and show how

they satisfy the soundness and precision criteria. This modelling also uncovers the hidden notion
of contexts in some methods, facilitates insightful comparisons between different methods, and
facilitates cross fertilization of ideas and suggest interesting improvements in the known methods.

In this work we only consider forward data flow analyses for simplicity of exposition. Backward
flows are duals of forward flows and our model can accommodate them easily.

The rest of the paper is organized as follows: Section 2 provides a brief review of data flow anal-
ysis. Section 3 describes various methods of context-sensitive analysis by using a running example
to bring out the differences and similarities between them. Section 4 describes the proposed unified
model by defining abstract context structure and abstract value structure. It also instantiates the
model to all methods surveyed in Section 3. It defines soundness and precision criteria and shows
how the surveyed methods satisfy the criteria. Section 5 presents the bigger picture describing
ideas that we have not modelled. Section 6 concludes the paper.

2 A BRIEF REVIEW OF DATA FLOW ANALYSIS

This section reviews data flow analysis briefly and defines some terms and notations.

2.1 Program Representations for Data Flow Analysis

Let Proc be the set of procedures in a program. Assuming a set (of statements, a control flow graph,
or CFG, (N,E ⊆ N × N,L : N → () is a labelled directed graph whose nodes = ∈ N are labelled
with statements L(=) ∈ (. We write = : B to indicate that node = is labelled with statement B ∈ (.
We write N& for the set of nodes in procedure& ∈ Proc; the sets N& partition N (i.e. are exclusive
and exhaustive). Edges E are discussed below.
We assume each call to procedure & has been split into a call node < :Call& (having no in-

traprocedural control flow successors) and a paired return node = :Ret& (having no intraproce-
dural control flow predecessors). Given = :Ret& we write =̂ for its associated < :Call& . We write
C = {= ∈ N | = :Call& for some Q}; this is the set of call sites. Each procedure & has a unique
= :Start& and, for the convenience of modelling, a unique < :End& . Hence, by abuse of notation,
we sometimes write Start& or End& when a node = is formally required, e.g. InStart& .

Control flow in the program is represented by the set of edges E. Edges (<,=) are classified by
three predicates: IE(<,=), CE(<,=), and RE(<,=) as intraprocedural edge, call edge and return
edge respectively. IE(<,=) represents intraprocedural flow. CE(<,=) holds for edge (<,=), when
node < :Call& contains a call to some procedure & and node = :Start& is the start node of the
callee procedure & . RE(<,=) holds for edge (<,=), when node< :End& is the end node of some
procedure & and node = :Ret& is the return point of some call to & (here =̂ :Call&).

For each node< exactly one of IE(<,=1), CE(<,=2), RE(<,=3) and< :Endmain holds, and sim-
ilarly for each node = exactly one of IE(<1, =), CE(<2, =), RE(<3, =) and = :Startmain holds. We
write pred (=) for {< | IE(<,=)}, and define predicate IntraNode(=) to assert that node = has only
intraprocedural predecessors: IntraNode(=) ⇔ ∃<.IE(<,=).

1Our use of the “blind men” metaphor is only to highlight the difficulty of a non-expert reader in forming a consistent

and coherent view of these methods and does not question the wisdom of the designers of the methods in any way. This

metaphor refers to the parable in which people see different parts and are unable to visualize the whole [1, 28]. We strongly

believe that the story of context-sensitive methods is no different.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:5

Start)17

;2 = . . . ?18

End)19

Start(13

Call)14

Ret)15

End(16

Startmain1

0∗12

2∗33

Call(4

Ret(5

2∗36

Call(7

Ret(8

;0 = . . . ?9

Call(10

Ret(11

Endmain12

The expressions are 0∗1 and 2∗3 . The final values at

each node are shown in the table. Data flow values

are represented by bit vectors in which the first bit

represents 0∗1 and the second bit represents 2∗3 .

Node In Out

1 00 00

2 00 10

3 10 11

4 11 11

5 10 10

6 10 11

7 11 11

8 10 10

9 10 00

10 00 00

11 00 00

12 00 00

13 00 00

14 00 00

15 00 00

16 00 00

17 00 00

18 00 00

19 00 00

Fig. 2. A motivating example of interprocedural available expressions analysis.

For simplicity, we assume that there are no indirect calls (i.e. no calls through function pointers,
virtual function calls or higher-order function calls); this gives the at-most-one-image property
CE(<,=) ∧ CE(<,=′) ⇒ = = =′. This property is equivalent to RE(<,=) being injective:
RE(<,=) ∧ RE(<′, =) ⇒< =<′.
We require the existence of a unique main procedure, assumed non-recursive. Also, we assume

that all nodes are reachable (via IE, CE and RE edges forming a possibly infeasible path) from
Startmain (i.e., all procedures are callable) and Endmain is similarly reachable from every node. Clas-
sical intraprocedural analyses are recovered by requiring that the CFG contains only procedure
main and no call instructions.

Paths. We write Paths(=) for the set of control flow paths from Startmain to = defined as follows:

= ∈ Paths(=)
if = :Startmain

c ·< ∈ Paths(<)

c ·< · = ∈ Paths(=)
if (<,=) ∈ E (1)

In other words, paths c are sequences of : + 1 (: ≥ 0) nodes representing : edges such that
every pair of consecutive nodes forms an edge in the CFG. In the presence of loops, the length of
a path c is unbounded and Paths(=) may be infinite.
For intraprocedural analysis, it is assumed that there are no procedure calls in any path. How-

ever, using Paths naively on a CFG containing calls causes, in general, non-executable paths and
imprecision in analysis (e.g. in Figure 2main calls procedure (thrice, so Paths as defined above in-
cludes cyclic paths where a call at the second call site (node 7) returns to the first call site (node 5)).
Hence, we now refine the definition.

Call Strings and Interprocedurally Valid Paths. A call string, denoted f , is a sequence of nodes =
of the form = :Call& . The set of all call strings is denoted by Σ, with the empty call string written
n ; for recursive programs, Σ is infinite. The set of interprocedurally valid paths reaching node =

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:6 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

from Startmain is denoted IVPC (=) and consists of pairs (c, f) where c is a sequence of nodes
and f is a sequence of call nodes representing active calls. It greatly simplifies the formulation of
interprocedurally valid path to use pairs (c, f) here; the traditional definition is available as c .

Then, IVPC (=) is defined as follows:

(=, n) ∈ IVPC (=)
if = :Startmain

(c ·<, f) ∈ IVPC (<)

(c ·< ·=, f ·<) ∈ IVPC (=)
if CE(<,=)

(c ·<, f) ∈ IVPC (<)

(c ·< ·=, f) ∈ IVPC (=)
if IE(<,=)

(c ·<, f · =̂) ∈ IVPC (<)

(c ·< ·=, f) ∈ IVPC (=)
if RE(<,=)

(2)

In the presence of loops or recursive calls, a path c is unbounded and IVPC (=) is infinite.
For convenience, we define predicate ReachC= (f) to assert that call string f reaches node =.

ReachC= (f) ⇔ ∃c such that (c · =, f) ∈ IVPC (=)

For the motivating example in Figure 2, IVPC (5) = {(c, f)} where c is 1 · 2 · 3 · 4 · 13 · 14 · 17 ·
18 · 19 · 15 · 16 · 5 and f is n . There is only one interprocedurally valid path c reaching node 5 and
the call string f reaching node 5 is n . Similarly, IVPC (17) = {(c1, f1), (c2, f2), (c3, f3)} where

c1 = 1 · 2 · 3 · 4 · 13 · 14 · 17 f1 = 4 · 14
c2 = 1 · 2 · 3 · 4 · 13 · 14 · 17 · 18 · 19 · 15 · 16 · 5 · 6 · 7 · 13 · 14 · 17 f2 = 7 · 14
c3 = 1 · 2 · 3 · 4 · 13 · 14 · 17 · 18 · 19 · 15 · 16 · 5 · 6 · 7 · 13 · 14 · 17 f3 = 10 · 14

18 · 19 · 15 · 16 · 8 · 9 · 10 · 13 · 14 · 17
There are three interprocedurally valid paths reaching node 17; the call strings along these three

paths are 4 · 14, 7 · 14, and 10 · 14.

2.2 Mathematical Background

A complete lattice ! is a set ! along with a partial order ⊑ which has least upper bounds (denoted
⊔) and greatest lower bounds (denoted ⊓) of all subsets of !. It therefore has a greatest element ⊤
and a least element ⊥. Our formulation for data-flow analysis uses ! as a (⊓-)semilattice. A chain

in ! is a totally ordered subset of !. A lattice ! is of finite height if all its chain are finite. We only
consider complete lattices, and so tend to omit the word ‘complete’.
We write B = {⊥,⊤}. Given a set (, its powerset 2(ordered by ⊆ or ⊇ is a complete lattice.

Given a set (and a lattice ! then the set of function (→ ! is also a lattice with ordering 5 ⊑ 6 iff
5 (G) ⊑ 6(G) for all G ∈ (.
Given lattices ! and" a function 5 : ! → " is

• monotonic if for every pair G ⊑ G ′ ∈ ! we have 5 (G) ⊑ 5 (G ′);
• ⊓-continuous if for every non-empty chain - ⊆ ! we have 5 (

d
-) =

d
G ∈- 5 (G);

• ⊓-distributive if for every non-empty - ⊆ ! we have 5 (
d
-) =

d
G ∈- 5 (G).

Distributivity implies continuity implies monotonicity, but in general their converses do not hold.
However, continuity is equivalent to monotonicity for finite-height lattices.
Note that there are many bijections between 2(and (→ {0, 1} as sets, and it often makes sense

to treat them as two representations of the same thing. If we treat 2(as a lattice ordered by ⊆

(respectively ⊇) then it is isomorphic to (→ B with {} ↔ ⊥, (respectively {} ↔ ⊤). Similarly,
{0, 1} ordered with 0 < 1 is isomorphic to B (0 ↔ ⊥, 1 ↔ ⊤), but if we order it with 1 < 0 then
(1 ↔ ⊥, 0 ↔ ⊤),
Let (and) be sets and 0 represent a distinguished element not present in (. Then every dis-

tributive function 5 : 2(→ 2) is characterised by a function 6 : ((∪ 0) → 2) . To see this: Take
6(0) = 5 {} and 6(G) = 5 {G} otherwise. Then the function 5 ′ defined by 5 ′({}) = 6(0) and, for
non-empty - ∈ 2(, by 5 ′(-) =

⋃
G ∈- 6(G) is equal to 5 .

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:7

A distributive function 5 : 2(→ 2(can also be characterised [40] by its representation relation

'5 ⊆ ((∪ 0) × ((∪ 0) given by

'5 = {〈B1, B2〉 | B2 ∈ 5 ({B1}) ∧ B2 ∉ 5 (∅)} ∪ {〈0, B2〉 | B2 ∈ 5 (∅)} ∪ {〈0, 0〉}

This is useful because a flow-function meet can be represented by ∪, flow-function composition
by relation composition, and the initial ⊤ flow-function by the empty relation.

We now define, given set (, the property of a function 5 : 2(→ 2(being separable, that is when
it can be represented as a family of basis functions 5 |B∈(: {0, 1} → {0, 1} (these are _1.0, _1.1

and _1.1; we omit _1.1−1 as this is not monotonic when we add an order to {0, 1}). We use 5 |B to

construct 5 ′ : 2(→ 2((which attempts to recover 5):

5 |B (1) =




0 B ∉ 5 (()

1 B ∈ 5 ({})

1 otherwise

5 ′(-) = {G ∈ - | 5 |G (0) = 1}

We say that 5 is separablewhen 5 = 5 ′. The following is immediate: Given set (, every separable
function 5 : 2(→ 2(is characterised by the functions 5 |B∈(: {0, 1} → {0, 1}.

Note that separability implies distributivity, but the converse does not in general hold. Separa-
bility captures the familiar set-based gen-kill properties for simple liveness (but note that the flow
functions for strong liveness are distributive but not separable).

2.3 Intraprocedural Solutions of Data Flow Analysis

We use L for the lattice of data flow values. Each node has an associated flow function 5= : L → L.

2.3.1 Intraprocedural Meet Over Paths Solution. The classical intraprocedural definition of the
(forward) meet-over-paths solution (MoP) at node = (of procedure main containing no calls) is:

MoP (=) =

l

c ∈ Paths (=)

5c (BI) (3)

where BI (short for Boundary Information) denotes the external data flow information reaching
main. We define 5c as the composition of the flow functions of the nodes appearing in Paths(=)

up to, but not including, =. This coheres with the use of In= for data flow variables in a forwards
analysis not including the effects of 5= .

2.3.2 Intraprocedural Maximum Fixed Point Solution. Since MoP solution is uncomputable in
general, data flow analysis is performed by computing the maximum fixed point solution defined
in terms of data flow equations. These equations relate data-flow values In= ∈ L at node= ∈ Nwith
those at adjacent nodes; the desired MFP solution is the maximum fixed point of the equations:

In= =




BI = :Startmain

l

?∈pred (=)

5? (In?) otherwise (4)

In= is a sound approximation of MoP (=) in that ∀= ∈ N, In= ⊑ MoP (=).

2.4 Interprocedural Solutions of Data Flow Analyses

We assume that the flow function associated with Start, End, Call and Ret are the identity (i.e., for
simplicity in this version we do not handle formal parameters or return values).

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:8 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

2.4.1 Meet Over Interprocedurally Valid Paths Solution. Consider (c, f) ∈ IVPC (=) where c =

<1 · . . .<: · =. As above, 5c denotes the composition 5<:
◦ . . . ◦ 5<1 of the flow functions of nodes

appearing in path c up to, but not including, =.
With these provisions, we extend Definition (3) to meet-over-interprocedurally-valid-paths (de-

noted MoIVPC) as follows:

MoIVPC (=) =

l

(c,f) ∈ IVPC (=)

5c (BI) (5)

2.4.2 Interprocedural Maximum Fixed Point Solution. We incorporate context-sensitivity and
extend Equation (4) to define the Interprocedural Maximum Fixed Point solution using call strings

(MFPC). The data flow variables InC andOutC inMFPC are associated with pairs (=, f) where f ∈

Σ is a call string. Rather thanwriting InC(=,f) it is convenient to use curried notation: InC= : Σ → L.
Thus InC= (f) ∈ L denotes the data flow value for a context f ∈ Σ at node = ∈ N.

InC= (f) =




BI = :Startmain ∧ ReachC= (f)

InC< (f ′)
= :Start& ∧& ≠ main ∧ ReachC= (f)
where<,f ′ (uniquely) satisfy f = f ′ ·<.

InCEnd& (f · =̂) = :Ret& ∧ ReachC= (f)

l

?∈pred (=)

5? (InC? (f)) IntraNode(=) ∧ ReachC= (f)

⊤ ¬ReachC= (f)

(6)

In the presence of recursion, theMFPC solution may be uncomputable because Σ is infinite and
the length of f is unbounded. Practical methods compute MFPC by abstracting f suitably or use
properties such as distributivity of flow functions to define a computable version of MFPC.

Note that the data flow variable InC in Equation (6) is parameterised by both node and context.

We sometimes need a variant InC of InC which is only parameterised by node, for example to
match MFP (Equation 4) or MoIVPC (Equation 5). We do this by defining:

∀= ∈ N. InC= =

l

f ∈Σ

InC= (f) (7)

2.4.3 Soundness of Context-Sensitive Interprocedural Data Flow Analysis Relative toMoIVPC. In
this section we show that the data flow values in the context-sensitiveMFPC solution (Equation 7)
over-approximate the data flow values inMoIVPC solution (Equation 5). For this purpose, we need
to show that,

∀= ∈ N. InC= ⊑ MoIVPC (=) (8)

which, from (7) and (5), is equivalent to showing the following

∀= ∈ N.
l

f ∈Σ

InC= (f) ⊑
l

(c,f) ∈ IVPC (=)

5c (BI) (9)

which, in turn, can be established by showing that

∀= ∈ N, ∀(c, f) ∈ IVPC (=) . InC= (f) ⊑ 5c (BI) (10)

Claim (10) can be proved by induction on the number of nodes : in c . The base case is when c
consists of a single node = :Startmain for which the claim trivially holds. For the inductive hypoth-
esis, assume that it holds for every node < and for every (c ′, f ′) ∈ Paths(<) such that path c ′

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:9

contains fewer than : nodes i.e.

InC< (f ′) ⊑ 5c ′ (BI)

Then, the inductive step requires extending c ′ by a single edge (<,=) to obtain c . Since we have
three kinds of edges, the following three remaining mutually exclusive cases cover all possibilities:

(1) CE(<,=). Let f ′′
= f ′ ·<.

InC< (f ′) ⊑ 5c ′ (BI) ⇒ 5< (InC< (f ′)) ⊑ 5< (5c ′ (BI))

⇒ InC= (f
′′) ⊑ 5c ′ ·< (BI) . . . (from (6), InC= (f

′′) ⊑ 5< (InC< (f ′)))

⇒ InC= (f
′′) ⊑ 5c (BI) . . . (c = c ′ ·<)

Since every f ′′ reaching = :Start& is computed from f ′ by appending<, it follows that

∀(c, f) ∈ IVPC (=) . InC= (f) ⊑ 5c (BI)

(2) RE(<,=). Let f ′
= f ′′ · =̂.

InC< (f ′) ⊑ 5c ′ (BI) ⇒ 5< (InC< (f ′)) ⊑ 5< (5c ′ (BI))

⇒ InC= (f
′′) ⊑ 5c ′ ·< (BI) . . . (from (6), InC= (f

′′) ⊑ 5< (InC< (f ′)))

⇒ InC= (f
′′) ⊑ 5c (BI) . . . (c = c ′ ·<)

Since every f ′′ reaching = :Ret& is computed from f ′ by removing =̂, it follows that

∀(c, f) ∈ IVPC (=) . InC= (f) ⊑ 5c (BI)

(3) IE(=,<). In this case, the context does not change.

InC< (f ′) ⊑ 5c ′ (BI) ⇒ 5< (InC< (f ′)) ⊑ 5< (5c ′ (BI))

⇒ InC= (f
′) ⊑ 5c ′ ·< (BI) . . . (from (6), InC= (f

′) ⊑ 5< (InC< (f ′)))

⇒ InC= (f
′) ⊑ 5c (BI) . . . (c = c ′ ·<)

Since every f ′ reaching< also reaches =, it follows that

∀(c, f) ∈ IVPC (=) . InC= (f) ⊑ 5c (BI)

3 A SURVEY OF EXISTING CONTEXT-SENSITIVE METHODS

In this section we briefly review the known context-sensitive methods with the help of a motivat-
ing example. We use the following notation: In most cases, the lattice of data flow values, L is the
set of maps D→V where D is a set of symbols representing program entities appearing in the pro-
gram text such as variables or expressions, and V is the lattice of data flow values corresponding
to the symbols. In many cases V = {0, 1}; in such cases, L is a power set lattice 2D, but note that
some analyses order {0, 1} with 0 < 1 (i.e. order the powerset by ⊆), while other analysis order
{0, 1} with 1 < 0 (i.e. order the powerset by ⊇). Some other examples of V are: For may-points-to
analysis, D is the set of pointers and V is 2Loc where Loc is the set of all locations. For constant
propagation, D is the set of variables and V is the lattice Z⊤

⊥, i.e. integers augmented with ⊤ and
⊥ values. In such cases, L is not a powerset lattice. In some cases such as typestate analysis [18]
D is a set of typestates, which are non-program symbols.
Consider the four-step control flowpath from Start<08= to StartB in Figure 2.We use the following

variants of notation to describe the path: when the types of nodes related to interprocedural control
flow are relevant, we describe the path as 1 :Start<08= → 2 → 3 → 4 :Call(→ 13 :Start(. When we
need the type of only the call nodes, we describe it as 1 → 2 → 3 → 4 :Call(→ 13. Sometimes
we describe the same path without any node type as 1 → 2 → 3 → 4 → 13. Finally, when some

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:10 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

Start)17

;2 = . . . ?18

End)19

Start(13

Call)14

Ret)15

End(16

Gen: 00 Kill: 00

Gen: 00 Kill: 01

Gen: 00 Kill: 00

Gen: 00 Kill: 01

Fig. 3. Computing functional summary for the motivating example in Figure 2

intermediate nodes are not required, we shorten the path by discarding the nodes not required as
1 :Start<08= 4 :Call(→ 13 :Start(.

3.1 A Motivating Example

We use the CFG shown in Figure 2 to illustrate different methods of context-sensitive interproce-
dural data flow analysis for available expression analysis. Procedure (is invoked from procedure
main from call sites 4 :Call(, 7 :Call(, and 10 :Call(with data flow values 11, 11, and 00, respec-
tively (11 indicates that both 0∗1 and 2∗3 are available; 00 indicates that neither 0∗1 nor 2∗3 are
available). Procedure) is invoked from procedure (at call site 14 :Call) . Expression 2∗3 is killed
in node 18 in procedure) . The figure also shows the final result of the context-sensitive available
expressions analysis. For simplicity, the subsequent illustrations for various methods do not show
the main procedure.
For our example,D = {0∗1, 2∗3} andL is a powerset latticeL = 2D, or alternatively,L = D → {0, 1}.

We represent the data flow values by bit vectors in which the first bit represents 0∗1 and the sec-
ond bit represents 2∗3 . In examples, we also refer to the two expressions as 41 and 42, respectively.
The flow functions are of the form 5 (-) = Gen ∪ (- − Kill) where - , Gen, and Kill are subsets of
D represented using bit vectors; Gen and Kill are constant for a given statement.

3.2 Functional Approach

The functional approach forms and inlines the summary of a procedure using a bottom-up traversal
over the call graph and there is no need to define contexts. Thus the analysis of a procedure is
context-independent and computes the summaries using intensional representations. It is efficient
because it analyses every procedure only once even if the procedure has multiple calls. Here we
review the functional method proposed by Sharir and Pneuli [29], which requires flow functions
to be distributive. Section 5.4 describes a functional method for points-to analysis which has non-
distributive flow functions.
Figure 3 shows the procedure summaries computed using a functional method for our example.

They are represented using Gen and Kill sets and their construction requires computing these two
sets. The construction begins by assuming that the flow function associated with the Start nodes
is identity; for 5 (-) = - , both Gen and Kill must be ∅ (or 00 in bit vector notation).
Since procedure) is the leaf node of the call graph, we begin with the identity function repre-

sented by Gen = Kill = 00 at 17 :Start) . Procedure) does not generate any expression and kills
expression 2∗3 in node 18. Thus the summary for procedure) is Gen = 00 and Kill = 01, or

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:11

Start)17

;2 = . . . ?18

End)19

Start(13

Call)14

Ret)15

End(16

(4 · 14, 11) (7 · 14, 11) (10 · 14, 00)

(4 · 14, 10) (7 · 14, 10) (10 · 14, 00)

(4, 11) (7, 11) (10, 00)

(4, 10) (7, 10) (10, 00)

Fig. 4. Explaining classical call-strings method on the motivating example in Figure 2. The three call strings

reaching procedure (are 4, 7 and 10 and the corresponding call strings reaching procedure) are 4 · 14, 7 · 14

and 10 · 14.

S) (-) = - − 01. Thenwe process procedure (starting withGen = Kill = 00 at 13 :Start(. The sum-
mary of procedure) is inlined at to replace the pair of nodes 14 :Call) and 15 :Ret) . The summary
for procedure (is computed as Gen = 00 and Kill = 01, or S((-) = - − 01. It is then used at the
three call sites 4 :Call(, 7 :Call(, and 10 :Call(in procedure main.
After computing the summaries in phase 1, the data flow values are computed in phase 2 as

follows: For every procedure& ≠ main, the data flow values reaching = :Start& are computed from
every call to& . Their meet defines BI& which is then used by applying summary for node = to BI&
to compute the data flow value for node =. Since the data flow values from all callers are merged to
define BI& , the precision of the method requires the data flow frameworks to be distributive. The
tabulation version (see below) of the method additionally requires the lattice L to be finite.

In our example, the data flow value 11 reaches 13 :Start(from call site 4 :Call(. The data flow
value reaching 13 :Start(from 7:Call(is 11 but that from 10 :Call(is 00. This allows us to compute
the data flow values within procedure (. Also, the data flow value reaching 5 :Ret(is computed by
S((11) = 10 (implying that procedure (kills expression 2∗3).
The functional method, as has been defined, does not describe any specific representation for

the intensional form of summaries. Thus, the main challenge in a functional approach is to find a
concise closed-form representation tomodel the summaries. This is easy for bit vector frameworks,
because the summaries can be represented by constant Gen and Kill sets as illustrated by our
example. For other data flow frameworks, the feasibility of this method depends on the feasibility
of finding compact representations for the ⊓ and ◦ (i.e., meets and compositions) of flow functions.
The method however, can also store the summaries in their extensional form (as pairs of input-
output values); this version of the method is called the tabulation version.
The other challenge is to construct summaries in the presence of recursion. This can be handled

by repeatedly constructing summaries for the procedures involved in recursion until a fixed point
(of procedure summaries) is reached. The convergence of this process critically depends on the
representation chosen for the analysis and needs to be established explicitly.

3.3 Full Call-Strings-Based Approach

The classical full call-strings-based approach [29] performs a top-down traversal over the call
graph and records call strings to perform call-return matching. The analysis of a procedure is
context-dependent and records the summaries using an intensional representation. The method

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:12 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

defines contexts explicitly in terms of call strings.We refer to full call-stringsmethod as call-strings
method, unless otherwise qualified e.g. by k-limited.
The analysis begins with the empty call string n for procedure main. When a context f reaches

the call site = :Call& , the context reaching the callee & from call site = :Call& is f · = which is ob-
tained by suffixing= tof . For ourmotivating example (Figure 2) call site 4 :Call(invokes procedure
(. The context for procedure (is obtained by suffixing 4 to the initial call string n for procedure
main. This is represented by the call string 4. Thus the three contexts reaching procedure (are 4,
7, and 10 with data flow value 11, 11, and 00, respectively (Figure 4).

• Context 4 reaches procedure (along the path 1 :Startmain 4 :Call(→13 :Start(.
• Context 7 reaches (for its second call along the path 1 :Startmain 4 :Call(→13 :Start(
14 :Call) →17 :Start) 19 :End) →15 :Ret) 16 :End(→5 :Ret(7 :Call(→13 :Start(.

• Context 10 reaches (for its third call along the path
1 :Startmain 4 :Call(→13 :Start(14 :Call) →17 :Start) 19 :End) →
15 :Ret) 16 :End(→5 :Ret(7 :Call(→13 :Start(10 :Call(→13 :Start(.

Procedure) is invoked from procedure (at call site 14 which is suffixed to the contexts reaching
procedure (. Thus the contexts reaching procedure) are 4 · 14, 7 · 14, and 10 · 14 with data flow
values 11, 11, and 00, respectively. Contexts 4 · 14 and 7 · 14 have the same data flow value reaching
the start of the procedure. Yet, it is analyzed separately for each context.

At = :End& , the last node (say<) in a call string identifies the call site of the call to procedure& .
Hence, when the data flow value associated with a call string f ·< reaches a return node ; :Ret& ,

if < = ;̂ , then the data flow value is propagated across ; :Ret& with the context f (obtained by
removing< to indicate that the call to & is over). In our example, for the context 4 · 14 reaching
19 :End) , the last call site is 14 and thus the return site is 15. The context reaching the return point
removes 14 from the call sequence to get the context after node 15 :Ret) as 4. Thus, a call string
facilitates call-returnmatching and eliminates interprocedurally invalid paths. For our example,S(

is {4 ↦→ 10, 7 ↦→ 10, 10 ↦→ 00} and S) is {4 · 14 ↦→ 10, 7 · 14 ↦→ 10, 10 · 14 ↦→ 00}. Note that these
are extensional representations.
In the absence of recursion Σ is finite and the call string length is bounded by the maximum

number of distinct call nodes in any call chain (say). For recursive programs Σ is infinite. How-
ever, for finite L, there exists a known fixed length " such that no new data flow values can be
computed for call strings longer than " [29]. Thus it is sufficient to construct call strings only
up to length " and the longer call strings can be safely discarded without compromising sound-
ness or precision. For general data flow frameworks," = · (|L| + 1)2. For separable frameworks,

" = · (|L̂| + 1)2 where L̂ is the component lattice (i.e., the lattice associated with the symbols in
D). For bit vector frameworks, the value of" further reduces to 3 .
Note that unlike the round-robin iterative algorithm the call-strings method does not have a

means of discovering convergence.2, Hence, the method as proposed, constructs all call strings up
to the length" . Since the length of the call strings is quadratic in the number of data flow values,
the number of call strings is rather large, rendering the method impractical.

3.4 Value-Based Termination of Call-Strings Method

The Value-Based Termination of Call-Strings method [10] (VBTCS) proposes to terminate the con-
struction of call strings when the data flow values associated with newer call strings reaching
= :Start& are same as the data flow values associated with existing call strings at = :Start& .

2For a round robin iterative method, 3 + 1 iterations are sufficient to achieve convergence for unidirectional bit vector

frameworks, where 3 is the maximum number of back edges in any acyclic path. Practically, convergence is achieved

when there is no change of information in two consecutive iterations and 3 + 1 iterations may not be needed.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:13

Start)17

;2 = . . . ?18

End)19

Start(13

Call)14

Ret)15

End(16

(4 · 14, 11) (10 · 14, 00)

(4 · 14, 10) (10 · 14, 00)

(4 : 7, 11) (10, 00)

(4, 10) (10, 00)

(4, 10) (7, 10) (10, 00)

Regenerated

Fig. 5. Explaining value-based termination of the call-strings method on the motivating example in Figure 2

Like the call-stringsmethod, it defines contexts in terms of call strings. However, it partitions the
call strings reaching = :Start& into equivalence classes on the basis of data flow values and& need
not be reanalyzed for a new call string with the same data flow value reaching& . It is sufficient to
analyze procedure & for a single call string for each equivalence class because doing so covers all
data flow values reaching procedure& . This reduces the number of call strings significantly. If L is
finite, we get a natural bound on the number of the call strings even in the presence of recursion.
The method uses a representation function R which maintains equivalence classes of call strings

associated with data flow values. The representation function is implemented as a mutable list of
call strings, one for each data flow value E ∈ L. Given data flow value E , its first associated call
string to be encountered appears as the head of the list corresponding to E , and is used as the
representative; subsequent call strings associated with E are stored later in the list.
In the classical call-strings approach shown in Figure 4, call strings 4 and 7 reaching procedure (

have the same data flow value 11. VBTCS groups these call strings together. It analyses procedure
(with context 4 for data flow value 11. Since context 7 has the same data flow value as context
4, it belongs to the same equivalence class as context 4. Thus procedure (is not analyzed for
context 7. Instead, the effect of context 4 is regenerated at the end of procedure (for context 7.
Available expressions analysis using VBTCS on our motivating example is shown in Figure 5. Since
procedure (is not analyzed for context 7, context 7 · 14 does not reach procedure) .
Similar to the classical call-strings method, the last call site in a call string identifies the call of

the procedure and thus identifies the return site as well as the context at the return site. For our
example, S(is {4 ↦→ 10, 7 ↦→ 10, 10 ↦→ 00} and S(is {4 · 14 ↦→ 10, 10 · 14 ↦→ 00}. As before, these
are extensional representations.

3.5 VASCO

VASCO [22] is similar to VBTCS in spirit. However, unlike VBTCS, it does not name a partition by
a representative call string. Instead, it explicates the use of data flow values and defines contexts
in terms of data flow values instead of call strings. We call such contexts as value-contexts.
Consider the motivating example in Figure 2. Let the context in procedure main be -0 where

the context represents the boundary information for main. Procedure main invokes procedure (
from three call sites 4, 7, and 10 with data flow values 11, 11, and 00, respectively. VASCO analyses

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:14 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

Start)17

;2 = . . . ?18

End)19

Start(13

Call)14

Ret)15

End(16

Context Table

Context Proc Entry Exit

-0 main 00 00

-1 (11 10

-2 (00 00

-3) 11 10

-4) 00 00

Context transition diagram

-0

-1

-2

-3

-4

4
7

10

14

14

11

-3

00

-4

(-3, 10) (-4, 00)

-1 -211 11 00

(-1, 10) (-2, 00)

Fig. 6. Explaining VASCO on the motivating example in Figure 2

a procedure only once for a particular incoming data flow value. Every distinct data flow value
reaching a procedure defines a context. Since two distinct data flow values 11 and 00 reach pro-
cedure (, the procedure will be analyzed only twice. Thus context -1 and -2 are created for data
flow values 11, and 00, respectively as shown in Figure 6.

VASCO uses the tabulation-based approach to record the data flow values reaching a procedure
in a context table. It also maintains a context transition diagram to record call sequences in or-
der to perform call-return matching; this diagram represents the context-sensitive call graph and
its traversal gives the call strings. For our motivating example, the context transition diagram is
shown in Figure 6. It records transitions from context -0 to context -1 on call sites 4 and 7, and
from context -0 to context -2 on call site 10. The two data flow values reaching procedure) are
11 and 00. Thus two contexts -3 and -4 are created for procedure) and transitions from -1 to -3

on 14 and from -2 to -4 on 14 are created.
At the end of procedure) , the context transition diagram helps perform call-return matching. It

identifies the return site in the caller as well as the corresponding context in the caller. For context
-3, there is an edge from -1 to -3 on 14. Thus, the return point is node 15 and the corresponding
context at node 15 is -1 in procedure (. Similarly, for context -4, the return point is 15 and the
corresponding context at node 15 is -2. Since there are two edges reaching context -1, the data
flow value computed at the end of procedure (for context-1 is propagated to both the return sites
5 and 8 with the corresponding context at both the sites as -0.
The summary S(can be viewed as an extensional representation {-1 ↦→ 10, -2 ↦→ 00} and S)

can be viewed as {-3 ↦→ 10, -4 ↦→ 00}. They are explicated by the context transition table as shown
in Figure 6. The call-strings approach analyses both the procedures (and) thrice for distinct call-
sequences reaching the procedure, whereas VASCO analyses both the procedures only twice.

Since data flow values are used to define contexts, a bound on the data flow values acts as
a natural bound on the number of contexts to be created in case of data flow framework with
finite lattices. Thus, there is no need to compute call strings up to a prescribed length, even in
the presence of recursion. However, some form of approximation may be required for instances of
data flow frameworks with infinite lattices.

3.6 Restricted Contexts

A classical variant of the call-strings method (which was published almost simultaneously) [17] is
called the restricted-contexts method in [9]. It performs a top-down traversal over the call graph. A
curious aspect of this method is that it only stores call strings suffixes of length one and yet does
not lose precision. This is because it is restricted to only bit vector frameworks in which

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:15

Start)17

;2 = . . . ?18

End)19

Start(13

Call)14

Ret)15

Start(16

(10, 41)

(10, 41)

(14, 41)

(14, 41)

(14, 41)

(14, 41)

(14, 41)

(10, 41)

(10, 42)

(10, 42)

(14, 42)

(14, 42)

(∗, 42)

(∗, 42)

(∗, 42)

(∗, 42)

Fig. 7. Explaining the restricted-contexts method on the motivating example in Figure 2. We depict the

complement of the available expression analysis problem

• the flow functions are separable (Section 2.2), i.e. the data flow values of the symbols in D

are independent of each other, and
• only two data flow values ⊤ and ⊥ are possible for each symbol.

This allows storing at every node, only the symbols that have ⊥ value at the node by associating
the last call node in the call chain with each symbol G ∈ D separately. Thus, the data flow values
are relations C ∪ {∗} × D where C is the set of all call sites and ∗ is a wild card character for call
sites. In other words, each pair (<,3) reaching node = records the last call site< from which the
⊥ value of symbol 3 reaches = along some path. When the ⊥ value of 3 reaches = without crossing
any call site (i.e. is generated in a callee procedure or in BI), it is represented by (∗, 3) at =.
When a pair (<,3) reaches = :Ret& , if< = =̂, then the pair (;, 3) that reached< :Call& is prop-

agated further; this has the effect of retrieving the previous call site in a call chain on reaching a
return node. If< = ∗, then the pair (∗, 3) is propagated unchecked.
Remembering only the last call site has the surprising effect of ensuring full precision as if

the full call chain is remembered because of the following reason: Since the flow functions are
separable and pairs (<,3) are maintained for each symbol G ∈ D, there are ‘parallel’ call strings
for each symbol 3 and each call node in a call string has exactly the same (⊥) value of the same

symbol associated with it. As a consequence, there is no need to construct the entire call string. It
is sufficient to remember just the last call node because the previous call node in the call strings

can be retrieved at ; :Ret& by examining the mapping made at ;̂ :Call& .
An application of the restricted-contexts method on our motivating example is shown in Fig-

ure 7. Since the method propagates only ⊥ values, we model available expressions analysis as its
complement problem in which only the “unavailable expressions” are remembered. Expressions 41
and 42 are both available at 13 :Start(from the call sites 4 :Call(and 7 :Call(in functionmain. How-
ever, neither 41 nor 42 are available from the call site 10 :Call(in function main. Since we model
unavailability of expressions, the data flow value reaching Start(is {(10, 41), (10, 42)}. At call site
14 in procedure (, data flow value (14, 41) is created from (10, 41) and (14, 42) is created from (10, 42).
Thus, the data flow value reaching 17 :Start) from call node 14 :Call) is {(14, 41), (14, 42)}.

If a data flow value is generated at any node in the procedure, a special context ∗ is created. In
our example, unavailability of expression 42 is generated at node 18, which is represented by the
pair (∗, 42). Node 18 also blocks propagation of data flow values of the form (<, 42) for expression
42 whose operand 2 is defined in node 18. The information associated with ∗ is propagated to all the
callers. Thus the pair (∗, 42) is propagated from 19 :End) to the return node 15 :Ret) . At 15 :Ret) ,

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:16 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

lp

;2 = . . . ?

lp

lp

Call)

Ret)

lp

Start) 17

18

19End)

Start(

14

15

16

13

End(

◦ ◦ ◦
0 41 42

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦
0 41 42

◦ ◦ ◦

◦ ◦ ◦

lp

?41 : 0 ∗ 1;

?42 : 2 ∗ 3;

Call(

. . .

Startmain1

2

3

4

◦ ◦ ◦
0 41 42

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

Fig. 8. Exploded CFG used by graph-reachability-based IFDS method for the motivating example in Figure 2.

The CFG depicts the complement of the available expression analysis problem. The generation of unavail-

ability of the expression 42 is shown by the edge from data flow value 0 at node 18 to data flow value 42 at

node 19. The killing of unavailability of the expression 41 (i.e., generation of the availability of 41) is depicted

by the absence of the edge for data flow value 41 at node 2 to data flow value 41 at node 3. The CFG depicts

only the relevant part of proceduremain to highlight the killing of the unavailability of the expression 41 and

42 in node 2 and 3, respectively.

the data flow value at 14 :Call) is consulted and the call sites of the expressions reaching 15 :Ret)
are recovered. Thus, the data flow value propagated across 15 :Ret) is (10, 41), (∗, 42).

3.7 Graph Reachability – IFDS

The IFDS method [24], defined for Interprocedural, Finite, Distributive and Subset-based prob-
lems, uses a graph-reachability-based tabulation algorithm. It traverses the call graph top-down.
It requires the lattice to be L = 2D and the flow functions to be distributive. This allows an effi-
cient representation of distributive functions 5 : 2D → 2D as their representation relations '5 ⊆

(D∪ {0}) × (D∪ {0}), see Section 2.2. These relations can be represented by a graph with at most
(|D| + 1)2 edges.
Hence, this method represents the interprocedural control flow of a program by an exploded

CFG that is obtained by constructing a CFG in which every node is a pair 〈=,3〉 where = ∈ N and
3 ∈ D ∪ {0}. The exploded CFG has an edge 〈=,3〉 → 〈=′, 3 ′〉 if (=, =′) is an edge in the CFG and
〈3, 3 ′〉 ∈ '5= , i.e. if 3 and 3 ′ are related by the representation relation of the flow function 5= . Thus
the effect of symbol 31 ∈ D at program node =1 can be identified on the effect of symbol 32 ∈ D

at program node =2 by composing the effect of appropriate basis functions along a path in the
exploded CFG from node 〈=1, 31〉 to node 〈=2, 32〉. This amounts to finding out if there is a path in
the exploded CFG from node 〈=1, 31〉 to node 〈=2, 32〉 and is solved by modelling the problem as a
graph reachability problem. A data flow value 3 ∈ D holds at node = ∈ N provided there is a path
from 〈< : Startmain, 0〉 to 〈=,3〉.
A natural fallout of this approach is that the analysis to be performed should be amenable to

modelling in terms of some path reaching a node independently of the other paths reaching the
node. Hence available expression analysis cannot be directly mapped to an IFDS problem because
IFDS analysis combines values using union operation to capture the effect of a path independently
of other paths. Hence, we again consider the complement of available expression analysis that
records unavailability of expressions which can then be combined using union—if an expression
is unavailable along some path reaching a node, then it is unavailable at the node.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:17

lp

;2 = . . . ?

lp

lp

Call)

Ret)

lp

Start) 17

18

19End)

Start(

14

15

16

13

End(

◦ ◦ ◦
0 41 42

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦
0 41 42

◦ ◦ ◦

◦ ◦ ◦

Summary Edge

Path edge 〈17, 0〉 → 〈19, 42〉 in procedure) becomes
Summary edge 〈14, 0〉 → 〈15, 42〉 in procedure (.

Path edge 〈13, 0〉 → 〈16, 42〉 in procedure (becomes
Summary edges 〈4, 0〉 → 〈5, 42〉, 〈7, 0〉 → 〈8, 42〉 and
〈10, 0〉 → 〈11, 42〉 in procedure main.

Path edges for 0 reaching from 4
〈13, 0〉 → 〈13, 0〉
〈13, 0〉 → 〈14, 0〉
〈17, 0〉 → 〈17, 0〉
〈17, 0〉 → 〈18, 0〉
〈17, 0〉 → 〈19, 0〉
〈17, 0〉 → 〈19, 42〉
〈13, 0〉 → 〈15, 0〉
〈13, 0〉 → 〈15, 42〉
〈13, 0〉 → 〈16, 0〉
〈13, 0〉 → 〈16, 42〉

Path edges for 42 ∈ D reaching from 10
〈13, 42〉 → 〈13, 42〉
〈13, 42〉 → 〈14, 42〉
〈17, 42〉 → 〈17, 42〉
〈17, 42〉 → 〈18, 42〉

Fig. 9. Explaining graph-reachability-based tabulation algorithm for IFDS on the motivating example in

Figure 2. Path edges for 41 ∈ D reaching from 10 are not shown in the figure.

For the unavailable expressions analysis, the exploded CFG (Figure 8) would contain the edge
〈2, 41〉 → 〈3, 41〉 if node 2 does not kill the unavailability of the expression 41 (in other words, does
not generate the availability of the expression 41). Since this is not the case, this edge does not exist
in our exploded CFG. Similarly, node 3 kills the unavailability of the expression 42, which can be
seen by the absence of edge 〈3, 42〉 → 〈4, 42〉. Generation of unavailability of the expression 42 at
node 18 is denoted by the edge 〈18, 0〉 → 〈19, 42〉.

Figure 9 shows the IFDS algorithm on our example. Path edges represent the paths from start
node in a procedure to other nodes within that procedure. A path edge 〈17 :Start) ,3〉 → 〈18,3 ′〉
indicates that 3 ′ = 5 (3) where 5 is the flow function for path from 17 :Start) to 18. The path edges
are constructed by traversing the paths in exploded CFG starting from procedure main with data
flow value 0 and composing appropriate edges. When 14 :Call) is encountered, a path edge reach-
ing call node 14 is extended by including a summary edge 〈14 :Call) , 0〉 → 〈15 :Ret) , 42〉 which
represents the path edge from 〈17 :Start) , 0〉 → 〈19 :End) , 42〉.

The algorithm traverses the exploded CFG to eliminate interprocedurally invalid paths as illus-
trated in Figure 9. Expressions 41 and 42 are not unavailable (i.e., are available) at 13 :Start(from call
site 4 in proceduremain. Since PathEdges are paths within a procedure, PathEdge 〈13, 0〉 → 〈13, 0〉
is added by the algorithm along the interprocedural path from 4 to 13 for data flow value 0.
Since there exists an edge from 13 to 14 for expression 0, path is extended by recording PathEdge

〈13, 0〉 → 〈14, 0〉. All paths are extended in a similar manner for the entire procedure.
Once PathEdge for the entire procedure is computed, summary edges are added at the call sites

in the caller to capture the effect of the call. Such summary edges help construct PathEdge in the
caller procedure. For procedures involved in recursion, summary edges are added repeatedly in
the caller until no further PathEdge can be computed. Thus it achieves the effect of repeatedly
applying the summary of the callee in the caller until a fixed point is achieved.
The call-return matching to exclude interprocedurally invalid paths is handled by the algorithm

explicitly by adding a summary edge 〈14 :Call) ,31〉 → 〈15 :Ret) ,34〉 in the caller procedure (of
procedure) such that all edges described below are present.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:18 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

lp

0 = 1+2

lp

lp

Call)

Ret)

lp

Start) 17

18

19End)

Start(

End(

13

14

15

16

◦ ◦ ◦
0 0 1

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦ ◦
0 0 1

◦ ◦ ◦

◦ ◦ ◦
i _; .; + 2

Fig. 10. Example to illustrate IDE algorithm for linear constant propagation problem. The edge functions are

all _; .; except where indicated.

• An edge from call node in (to the start node of) : 〈14 :Call) ,31〉 → 〈17 :Start) ,32〉.
• A PathEdge from the start node of) to the end node of) : 〈17 :Start) ,32〉 → 〈19 :End) ,33〉.
• An edge from the end node of) to the return node in (: 〈19 :End) ,33〉 → 〈15 :Ret) ,34〉.

For the summary edge 〈14 :Call) , 0〉 → 〈15 :Ret) , 42〉, 31 is 0, 32 is 0, 33 is 42 and 34 is 42.
For unavailable expression analysis, a summary edge indicates that the expression is not avail-

able from the start of the callee procedure to the end of the callee procedure. Since the notion of
context is not explicit, a lookup key for extensional representation is not required.

3.8 Graph Reachability – IDE

The method of Interprocedural Distributive Environment (IDE) [27] is a generalization of the IFDS
method and the functional method both combined into a single method. Like a functional method
it computes procedure summaries that are used at call sites. However, it differs from the functional
method in that it defines a compact representation for the summaries which is an extension of the
representation used for IFDS; the IFDS method takes data flow values to be subsets of D (i.e. L =

2D) and hence its flow functions are members of 2D → 2D or equivalently (D → V) → (D → V)

where V = {0, 1}. The IDE method drops the restriction V = {0, 1} and generalizes to allowing
L = D → Vwhere V can be any complete lattice. Members of the set L are called environments and
the IDE method computes environment transformers or functions 5 : (D → V) → (D → V). Given
an environment ` : D → V, and 3 ∈ D, the function application 5 (`)(3) computes a value in V.
Recall that function application here is left-associative. Let `8 denote the environment obtained by
composing the environments along the path (c8 , f8) ∈ IVPC (=). Then, the method requires that
∀3 ∈ D, 5 (

d
`8) (3) =

d
5 (`8)(3), i.e., the environment transformers must be distributive.

IFDS stores distributive (flow) functions 5 : 2D → 2D (or (D → {0, 1}) → (D → {0, 1})) as their
representation relation '5 ⊆ (D ∪ {0}) × (D ∪ {0}); this relation has at most (|D| + 1)2 edges. IDE
stores environment transformers (flow functions of the form) (D → V) → (D → V) by an ex-
tended representation relation ⊆ (D ∪ {0}) × (D ∪ {0}) × (V → V). Such relations are best thought
of graphs of relations like '5 above whose edges (there are at most (|D| + 1)2 of them) are labelled
with functions in V → V. These labelling functions are called “micro” functions in [24].

Since we wish to illustrate this method for a data flow framework with an infinite lattice, we
take the example of linear constant propagation in Figure 10. In node 18, value of variable 0 is
computed using the value of variable 1. This computation is marked on the edge from 18 to 19 by
an edge function _; .; + 2. Other edges are labelled with the identity function _; .; .

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:19

Start)17

;2 = . . . ?18

End)19

Start(13

Call)14

Ret)15

End(16

(14, 00)

(14, 00)

(4, 11) (7, 11) (10, 00)

(4, 00) (7, 00) (10, 00)

Fig. 11. Explaining :-limited call-strings method for k=1 on the motivating example in Figure 2

Similar to the IFDS method, the IDE method also traverses the edges in the exploded CFG. The
PathEdges in the IDE method are annotated with path functions and summary edges are anno-
tated with summary functions. Thus, apart from traversing the exploded CFG, the analysis also
computes the summary function for the procedure similar to the functional approach [29] but for
every symbol 3 ∈ D separately and also by performing a top-down traversal over the call graph.

Unlike IFDS, this method does not require the data flow values to be merged only using union.
It can compute the data flow value that must hold along every path, such as in (linear) constant
propagation, by performing an additional top-down traversal. This traversal computes values at
each node by taking the meet of the data flow values along all paths reaching the node.

This method computes a path edge 〈17 :Start) , b〉 → 〈19 :End) , a〉 which is annotated with _; .; +
2 because the value of variable 0 in procedure) is computed by the expression 1 + 2. The path
function for procedure) is incorporated in the caller (as a summary function to compute the
value for 0. Thus, the value of 0 is computed using the value of 1. Similar to IFDS method, the
notion of contexts is not explicit, and hence a key for extensional representation is not required.
Like the functional method, the IDE method also computes the data flow values in the second

phase by first computing BI& for every procedure & ≠ main.

3.9 :-Limited Call Strings

The call-strings method [29] has a popular approximate version in which the length of call strings
is restricted to an a-priori fixed bound : such that the analysis is context-insensitive beyond the
call-sequences of length : . Thus this is a sound abstraction and appears in many context-sensitive
methods such as :-CFA [15, 30] and parameterized object sensitivity [16].

We denote the restriction on call string length by suffix: (U ·=) which returns the :-length suffix
of U·= if U·= contains more than : call sites; otherwise it returns U·=. Figure 11 shows the :-limited
call-strings method for : = 1 on our motivating example. Procedure (is invoked with the context
4 :Call(, 7 :Call(and 10 :Call(from procedure main. Procedure) is invoked from procedure (at
call site 14 :Call) . Since the length of call sequence to be maintained is 1, the context reaching pro-
cedure) is obtained by identifying a suffix of length 1 from the call strings 4 · 14, 7 · 14 and 10 · 14.
Thus, these three call strings are approximated to context 14 and this context reaches procedure
) with data flow value 00 obtained by taking a meet of the data flow values reaching along the
three contexts. At the return node 15 :Ret) , the three contexts are reconstructed with the data flow
value associated with context 14 at 19 :End) .

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:20 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

Method
Notion of
context

Definition
of context

Inlining strategy
Restrictions on data
flow frameworksCall graph traversal

Call-return
matching

Functional None None
Bottom-up traversal
followed by
top-down traversal

Inlining
procedure
summary

Compact
representations of
meets/compositions
of flow functions

Full call
strings

Explicit
Sequence of
unfinished
calls

Top-down traversal
Using
context

Finite lattice

VBTCS Explicit

Sequence of
unfinished
calls and data
flow values

Top-down traversal
Using
context

Finite lattice

VASCO Explicit
Data flow
values

Top-down traversal

Using
context
transition
diagram

Finite lattice

IFDS Implicit
Data flow
values

Top-down traversal

Direct
matching
by the
algorithm

Distributive flow
functions, finite
subset-based lattice

Restricted
contexts

Explicit
Call site
and data
flow values

Top-down traversal
Using
context

Separable flow
functions over
finite lattice

IDE Implicit
Data flow
values

Bottom-up traversal
followed by
top-down traversal

Inlining
procedure
summary

Lattice of
distributive
environments

:-limited
call strings

Explicit

Suffixes of
sequence of
unfinished
calls

Top-down traversal
Using
context

Lattice with
finite height

Table 1. Comparing context-sensitive methods.

Observe that the history of calls from procedure main has been discarded to restrict the length
of call strings to 1 implying that the data flow value should be propagated back to every context
reaching procedure (context insensitively. Thus the expression 0∗1 which is available at nodes
5 and 8, is now marked to be unavailable by the :-limited call-strings method. In other words,
discarding the caller history (by maintaining only call-string suffixes) introduces imprecision by
merging the information associated with different call strings.
Note that the notion of :-limiting is different from the length " used in the full call-strings

method. The :-limiting method remembers the suffixes of length up to : whereas the full call-
strings method remembers the prefixes of length up to" .

3.10 An Overview of the Features Characterizing Context-Sensitive Methods

Context sensitivity achieves precision by distinguishing between the information for different con-
texts of a procedure. Since this increases the cost, many context-sensitive methods are motivated
primarily by efficiency and employ specialized formalisms for the purpose. In our opinion, this

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:21

focus on efficiency is the main reason why most methods are presented algorithmically instead of
declaratively. In the process, the formal properties that must be satisfied by the analysis (such as
insights about soundness or precision) take a back seat and the steps that compute the properties
efficiently take prominence. The result is that an absence of coherence between different meth-
ods in that the insights gained about a method do not help in understanding the similar formal
properties of the other method.
We identify the following set of features that characterize the context-sensitive methods that we

have surveyed to bring out the range of variations in the methods. (see Table 1) The table shows
that these methods use very different formalisms and appear very dissimilar to a non-expert reader.

• An interprocedural method may define the notion of contexts explicitly [10, 17, 22, 29], may
leave it implicit [24, 25, 27], or may not need it at all [29].

• Where the context is explicitly defined, it may be defined in any of the following ways: (a) se-
quences of unfinished calls [29], (b) sequences of unfinished calls and data flow values [10],
(c) data flow values [22], and (d) call sites and data flow values [17].

• The call graph may be traversed bottom-up or top-down [41]. Bottom-up procedure sum-
maries do not depend on the contexts because the information from calling contexts is not
available. Hence they use intensional representations. Top-down procedure summaries de-
pend on the contexts because the information from the calling contexts is available and is
used for computing the summaries. Hence they use extensional representations.

• The call-return matching may be done using contexts [10, 16, 17, 29] or may use additional
abstractions such as context-transition graph [22], or may be directly matched within the
algorithm [24, 25, 27], or may be achieved by explicit inlining [29].

• The data flow frameworks supported by the methods have varied requirements. In some
cases, L must be finite [10, 16, 17, 29]; additionally, in some cases, L should be (2D, ⊇) and
flow functions must be distributive [24]. Alternatively, L lattice may be infinite but be de-
finable as D → V where V is a complete lattice [25, 27]. Additionally, the meets (⊓) and
compositions (◦) of flow functions must have a compact representation [29].

4 A UNIFIED MODEL OF CONTEXT-SENSITIVE DATA FLOW ANALYSIS

In this section, we generalize the (interprocedural) Maximum Fixed Point solution (MFPC, Equa-
tion 6 in Section 2.4.2) to define the Maximum Fixed Point solution using abstract contexts (MFPA).
This generalization has two dimensions: the generalization of concrete contexts to abstract con-
texts, and the generalization of the values computed by MFPA from a lattice L to a set of abstract
values M. We formalize these generalizations by defining the notions of an abstract context struc-

ture denoted A, and an abstract value structure denoted V . These generalizations allows us to
model many known methods of context-sensitive data flow analysis by defining a pair (A,V).

4.1 Abstract Context Structure and Abstract Value Structure

4.1.1 Abstract Context Structure. An abstract context structure A is a generalization of the
concrete contexts and is defined as a triple (A, U0,Ncontext) where

• A is a set of abstract contexts,
• U0 ∈ A is the initial abstract context corresponding the empty call string n , and
• Ncontext=∈N : A → A is the context transition function associated with Call node =.

Ncontext= is only defined at call nodes = :Call& where, given a context U reaching = :Call& , it de-
termines the corresponding context U ′ reaching< :Start& . Context sensitivity requires matching a
context reaching a return node ; :Ret& with the corresponding context reaching the corresponding

call node ;̂ :Call& . Our model achieves it by consulting the Ncontext function of ;̂ :Call& .

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:22 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

Start'6

Call'7

End'8

Start(1

Call'2

Call'3

Ret'4

End(5

Start)8

Call'9

Call'10

Ret'11

End)12

'
InA6 (n) = [

Call
3 (InA3(n)) ⊓ [

Call
10 (InA10(n)) = id

InA8 (n) = \ 7(In6(n)) = 57 ◦ id = 57

InA3 (n) = \ 2(In1(n)) = 52 ◦ id = 52

(InA4 (n) = [
Ret
4 (InA8(n), InA3(n))

= InA8(n) ◦ InA3(n) = 57 ◦ 52

InA10(n) = \ 9(In8(n)) = 59 ◦ id = 59

) InA11(n) = [
Ret
11 (InA8(n), InA10(n))

= InA8(n) ◦ InA10(n) = 57 ◦ 59

Fig. 12. Preserving context sensitivity using interprocedural abstract flow functions \= , [
Call
= , and [Ret= . The

effect of node 2 in procedure ((flow function 52) reaches node 4 in (but not node 11 in) . Similarly, the

effect of node 9 in procedure) (flow function 59) reaches node 11 in) but not node 4 in (.

The following special instantiations of abstract context structure illustrate its generality.

• The abstract context structure (Σ, n,Ncontext= (U) = U · =) recreates IVPC (=) in terms of call
strings recording active calls.

• The abstract context structure ({n}, n,Ncontext= (n) = n) gives all interprocedural paths, not
just the interprocedurally valid ones.

• The abstract context structure (Σ: , n,Ncontext= (U) = suffix: (U · =)) recreates paths under
model of the :-limited call strings, assuming that Σ: is the set of call strings whose length is
bounded by : , and suffix: gives the last : elements of its argument. Note that taking : = ∞

or : = 0 re-creates the two previous cases.

4.1.2 Abstract Value Structure. An abstract value structure V is a generalization of the values

computed by a data flow analysis and is defined as a tuple
(
M, E0, \, [

Call
= , [Ret= , Project&

)
where

• M is a set of abstract values, E0 ∈ M is the initial abstract value that holds at = :Startmain,
• \=∈N : M → M is the intraprocedural abstract flow functions,
• [Call= : M → M (defined only for = :Call&) and [

Ret
= : M × M → M (defined only for = :Ret&)

are interprocedural abstract flow functions, and
• Project& ∈Proc : M → L is the projection function that extracts values in L from those in M

for nodes associated with procedure & .

Intuitively, we expectA andV , taken together, to be rich enough to support precise call-return
matching. Two exemplifying instantiations of abstract value structures are as follows, where id is
the shorthand for the identity function _G .G .

• The call-strings method uses a simple abstract value structure
(
M = L, E0 = BI, \= (E) = 5= (E), [

Call
= (E) = E, [Ret= (E,F) = E, Project& (E) = E

)

HereM is L, [Ret= ignores its second argument (data flow value at the entry of a call node) and
returns the first argument (data flow value at the exit of the end block of the callee) and all
other functions are identity functions. Yet, the method is precise because its abstract context
structure (Σ, n,Ncontext= (U) = U · =) is rich enough to contain all contexts and the transi-
tion function is injective so we can distinguish between all contexts reaching a procedure.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:23

• The functional method uses the abstract value structure
(
M = L→L, E0 = id, \= (E) = 5=◦E, [

Call
= (E) = id, [Ret= (E,F) = E◦F, Project& (E) = E (BI&)

)

This is richer than the abstract value structure used by the call-strings method because M

is L → L in this case. Thus a value E ∈ M represents a summary function instead of a data
flow value in L. As a consequence, the intraprocedural abstract flow function \ composes
its argument with the default flow function 5= of node =. Besides, [Ret= allows composition
of its arguments. As we shall see later, the second argument F is the summary function
associated with a call node and the first argument E is the summary function for the proce-
dure called at the call node. Effectively, [Ret= facilitates call-return matching. Given this rich
abstract value structure, the functional method uses the trivial abstract context structure
({n}, n,Ncontext= (n) = n). Intuitively, the summaries constructed by a functional method
are independent of any context because they can be used for any call to a procedure; they
are functions parameterised on the information reaching the call. Unlike context-insensitive
summaries that merge all contexts, the summaries constructed by a functional method com-
pute values separately for different information reaching the calls to the procedures. Fig-
ure 12 illustrates how the method ensures call-return matching.

4.2 Interprocedural MFP Solution in the Unified Model

Let (A, U0,Ncontext=) be an abstract context structure. An abstract interprocedurally valid path

reaching node =, denoted IVPA(=) is (c, U) where c is a sequence of nodes and U is an abstract
context and is defined as follows.

(=, U0) ∈ IVPA(=)
if = :Startmain

(c ·<, U) ∈ IVPA(<)

(c ·< ·=, Ncontext< (U)) ∈ IVPA(=)
if CE(<,=)

(c ·<, U) ∈ IVPA(<)

(c ·< ·=, U) ∈ IVPA(=)
if IE(<,=)

(c ·<, Ncontext=̂ (U)) ∈ IVPA(<)

(c ·< ·=, U) ∈ IVPA(=)
if RE(<,=)

(11)

For convenience, we define predicate ReachA= (U) to assert that abstract contextU reaches node=
through a series of valid transitions starting from U0:

ReachA= (U) ⇔ ∃c such that (c · =, U) ∈ IVPA(=)

With this provision, the data flow equations forMFPA are obtained from those forMFPC (Equa-
tion 6) by using the abstract context structure to replace the call strings f ∈ Σ by abstract contexts
U ∈ A and by replacing the data flow values in L by abstract values in M.

InA= (U) =




E0 = :Startmain ∧ ReachA= (U)

l

<,U′ such that< : Call&
U = Ncontext< (U′)

[Call< (InA< (U ′)) = :Start& ∧& ≠ main ∧ ReachA= (U)

[Ret=

(
InAEnd& (Ncontext=̂ (U)), InA=̂ (U)

)
= :Ret& ∧ ReachA= (U)

l

?∈pred (=)

\? (InA? (U)) IntraNode(=) ∧ ReachA= (U)

⊤ ¬ReachA= (U)

(12)

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:24 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

Observe that the following combination recreates the data flow equations for InC= (Equation 6) as
a special case of InA= (Equation 12).

A = (Σ, n,Ncontext= (U) = U · =)

V =
(
M = L, E0 = BI, \= (E) = 5= (E), [

Call
= (E) = E, [Ret= (E,F) = E, Project& (E) = E

)

For contrast, the following combination models the functional method. Figure 12 illustrates call-
return matching performed by the interprocedural abstract flow functions \= , [

Call
= , and [Ret= .

A =
(
{n}, n,Ncontext= (n) = n

)

V =
(
M = L→L, E0 = id, \= (E) = 5=◦E, [

Call
= (E) = id, [Ret= (E,F) = E◦F, Project& (E) = E (BI&)

)

The variant InA of InA which is only parameterised by node, is defined as

∀= ∈ N. InA= =

l

U ∈A

InA= (U) (13)

Note that both InA= and InA= are values in M. The final result of data flow analysis are values
In= ∈ L and are retrieved as follows:

∀& ∈ Proc,∀= ∈ N& . In= = Project& (InA=) (14)

A method instantiated in our model is sound if ∀= ∈ N, In= ⊑ InC= where InC= is defined using
Equation (6); the method is precise if ∀= ∈ N, In= = InC= .

4.3 Examples of Instantiating Various Context-Sensitive Methods in the Unified Model

Table 2 instantiates many known interprocedural methods in our unified model. We first explain
the methods one by one and then summarize our observations. For each method, the abstract
context structure is explained first followed by its abstract value structure.

• For the call-strings method, Ncontext= merely appends the call site to the context reaching
= :Call& . In the absence of recursion Σ is finite and the call-string length is bounded by the
maximum length of call chain. For recursive programs, Σ is infinite. If L is finite, then there
is no need to construct call strings longer than" (see Section 3.3). We model it by

∀= ∈ N,∀U ∈ A, length(U) > " ⇒ ReachA= (U) = false

Hence, the call strings longer than" can be ignored because it from Equation (12),

∀= ∈ N,∀U, length(U) > " ⇒ InA(U) = ⊤

Since A of the call-strings method is rich enough to distinguish between all contexts, itsV
is simple: the abstract value set M = L and all functions are identity functions.

• The VBTCS method partitions the call strings reaching = :Start& on the basis of the data flow
values associated with them (see Section 3.4). Its abstract context structure is same as that of
the call-strings method except that the Ncontext= function uses the representation function
R. Its abstract value structure is same as that of the call-strings method.

• VASCO defines contexts in terms of values in L (see Section 3.5). Its Ncontext= function
chooses the data flow value InA= (U) as the context reaching < :Start& . Its abstract value
structure is identical to that of the call-strings method and VBTCS with identical restrictions
on the data flow frameworks supported—all of them require the lattice L to be finite (which
translates to the lattice V being finite); they differ only in their abstract context structures.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A
U
n
ified

M
o
d
el
fo
r
C
o
n
text-S

en
sitive

P
ro
g
ra
m

A
n
a
ly
ses

1:25
Method

Abstract Value StructureV Abstract Context Structure A
Restrictions Precise?

M E0 \= (E) [Call= (E) [Ret= (E,F) Project& (E) A U0 Ncontext= (U)

Full call
strings

L BI 5= (E) E E E Σ n U ·= Finite V Yes

VBTCS L BI 5= (E) E E E Σ n R(U ·=, InA= (U)) Finite V Yes

VASCO L BI 5= (E) E E E L BI InA= (U) Finite V Yes

Restricted
contexts

M=2C (as defined in Section 4.3) {n} n n
V= ({0, 1}, ⊑),
Separable 5=

Yes

IFDS
method

L BI 5= (E) E E E L BI InA= (U)
V= ({0, 1}, ⊑),
Distributive 5=

Yes

IDE
method

L→L id 5=◦ E id E ◦F E (BI&) {n} n n Distributive 5= Yes

Functional
method

L→L id 5=◦ E id E ◦F E (BI&) {n} n n

Compact
representations
of ⊓ and ◦ of 5=

Yes

:-limited
call strings

L BI 5= (E) E E E Σ: n suffix: (U ·=)
V with
finite height

No

Context-
insensitive

L BI 5= (E) E E E {n} n n
V with
finite height

No

– The set of symbols, D, is finite; the lattice of values L = D → V; BI ∈ L is the boundary value; function id : L → L is a shorthand for _G .G .
– Other examples of V are {⊤,⊥} ∪ Z for constant propagation and (2Loc, ⊇) for points-to analysis where Loc is the set of all locations.
– C is the set of call sites {= | = :Call& } (n ∉ C), Σ is the set of call strings (C∗), Σ: is :-limited call strings (suffixes of length :), and R is the
representation function defined in Section 3.4.

Table 2. Instantiating different methods to the unified model.

A
C
M

C
o
m
p
u
t.
Su

rv.,V
o
l.
1,N

o
.
1,A

rticle
1.
P
u
b
licatio

n
d
ate:

Jan
u
ary

2021.

1:26 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

• The restricted-contextsmethod is applicable only to the bit vector frameworks and computes
a set of pairs (<,3) at node = where < ∈ C is the last call site from where the ⊥ value of
G ∈ D has reached node =. We model the method using a simple A but a rich V . Although
the call site< in a pair (<,3) for G ∈ D plays the role of context, we do not model it through
A because of the presence of a wild card ∗ which propagates across a return node unmod-
ified but not across a call node< :Call& where the ∗ must transition to<. This asymmetry
is different from any notion of context found in any other method and hence cannot be
modelled without complicating the model for all methods.
We use the property of separability of flow functions and model the method as a ‘parallel’
analysis over all symbols in D. Let D = {31, 32, . . . , 3 |D |}. Then,

V =

(
V31

× · · · × V3 |D|

)

Weuse the trivial abstract contextA = ({n}, n,Ncontext= (n) = n) for allV38 , where 1 ≤ 8 ≤ |D|.
Thus the context n flows to all nodes. The abstract value structureV38 is defined by viewing
data flow values as a set of call sites to identify the callers to which the data flow value of 38
can be propagated to (because it is ⊥). The universal set represents C implying that there
is no restriction on the callers to which the data flow value of 38 can be propagated to (thus
C models ∗; the online appendix shows an instantiation of our model using an explicit ∗).
The empty set indicates that the propagation of the data flow value of 38 should be stopped
(because it is ⊤) .
– The set of abstract values is M = 2C and the initial value E0 ∈ M is defined as follows:

E0 =

{
C if 38 has ⊥ value in BI

∅ otherwise

– The intraprocedural abstract flow function is defined as follows:

\= (E) =




∅ 5= |38
= _1.⊤

C 5= |38
= _1.⊥

E otherwise

– The interprocedural abstract flow functions are defined as follows:

[Call= (E) =

{
{=} E ≠ ∅

∅ otherwise

[Ret= (E,F) =




E E = C

F E ≠ C ∧ =̂ ∈ E

∅ otherwise

– The projection function is defined as follows:

Project& (E) =

{
{38 } E ≠ ∅

∅ otherwise

– The above Project& function was actually one of a family, one Project8& per symbol G8 . We

obtain the overall Project& function as the union over 8 of all the Project8& .

• In our model,A of IFDS is identical to that of VASCO and the methods differ slightly on their
abstract value structure. Note that unlike VASCO, IFDS requires the flow functions to be
distributive (see Section 3.7). This allows an efficient representation in terms of an exploded

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:27

CFG that stores a collection of (D ∪ {0}) × (D ∪ {0}) relations. Ourmodel is oblivious to this
level of detail because it is a matter of efficiency than a matter of defining what is computed.
The use of relations by IFDS allows procedures to internally define contexts in terms of
individual elements of D rather than in terms of subsets of D as is done by VASCO. For
example, forD = {0,1, 2},A =

{
∅, {0}, {1}, {2}, {0,1}, {0, 2}, {1, 2}, {0,1, 2}

}
for VASCO. Thus

VASCO could analyze a procedure for each of these contexts separately and thus as many as
eight times. Theoretically, IFDS must consider the same A. However, given its assumption of
distributive functions, IFDS implements the contexts in the same U as a combination of the
following: 0, 0, 1, 2 . Thus a procedure would be analyzed at most four times by IFDS. Thus
IFDS is more efficient than VASCO but is less general because it requires distributive flow
functions.

• The functional method also uses the simplest abstract context structure similar to that of
a context-insensitive method. However, it achieves precision by using a more advanced ab-
stract value structure that ensures precise call-return matching using the interprocedural
abstract flow functions [Call= and [Ret= as illustrated in Figure 12.

The values InA= ∈ M computed in phase 1 are summary functions L → L using which the

values In= ∈ L are computed in phase 2. By definition, InA= computes In= from the data flow
values reaching = :Start& where = ∈ N& . Hence, the second phase computes the following:

– For procedure main, In= = Projectmain(InA=) = InA= (BI).
– For every procedure & ≠ main, BI& is computed as the meet of the data flow values In<
for all< :Call& . Then. In= = Project(InA=) = InA= (BI&).

Since the data flow values from all callers are merged to define BI& , the method ensures
precision by requiring the data flow frameworks to be distributive. The tabulation version
of the method additionally requires the lattice L to be finite.

• The IDE method combines the features of the IFDS and functional methods. Like the func-
tional method it computes procedure summaries that are used at call sites. However, it differs
from the functional method in that it defines a representation for the summaries (see Sec-
tion 3.8). This representation is an extension of the representation used in IFDS. However,
since the underlying representation is a matter of detail not captured by our model, the
abstract context and value structures IDE are similar to those of the functional method.

• The :-limited call-strings method considers only :-length suffixes of call strings. Thus, the
Ncontext= function is non-injective in that the call strings that differ in their prefixes at
= :Call& may be mapped to the same call string reaching < :Start& . For example, for 2-
limited call strings, Ncontext= (<

′ ·<) = Ncontext= (<
′′ ·<) =< · =. This leads to merging

data flow values of these call strings leading to imprecision—the merged value reaching

; :Ret& is propagated back to multiple call strings at ;̂ :Call& . The V of this method is same
as that of the call-strings method. The only restriction that this method places on the data
flow framework is that L should have finite height for termination of the analysis. Since
L = D → V and D is finite, this requirement translates to the finiteness of the height of V.

• For contrast, we have also modelled a context-insensitive method using our model. It uses
the simplest possible abstract context structure consisting of the lone 0-length call string
n . In other words, no callers are remembered, effectively converting calls into simple goto
statements but returns are converted to non-deterministic goto to one of several return sites.
This admits interprocedurally invalid paths thereby causing imprecision. Its abstract value
structure is similar to the methods that use a variant of call strings. The only restriction that
this method places on the data flow framework is that the lattice L should have finite height

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:28 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

for termination so that a meet of all descending chains can be computed. Since L = D → V

and D is finite, this requires the finiteness of the height of V.

4.4 Soundness and Precision of MFPA Relative toMFPC

We define soundness and precision of MFPA relative to MFPC and identify

• A soundness criterion that ensures that the MFPA solution computed by a method instanti-
ated in the unified model is an over-approximation of the MFPC solution.

• Aprecision criterion that ensures that theMFPA solution computed by amethod instantiated
in the unified model is same as the MFPC solution.

4.4.1 Validity of an Abstract Context Structure and Abstract Value Structure. An abstract context
structure A = (A, U0,Ncontext=) is valid if a mapping � : N → Σ → A exists between the (con-
crete) context structure (Σ, n,Ncontext= (f) = f · =) andA. A validA guarantees the existence of
an abstract context U ∈ A for every concrete context f ∈ Σ. Thus it ensures that the abstract data
flow equations (Equation (14)) cover all interprocedurally valid paths (defined by (2)).

Observe that all methods in Table 2 have a valid abstract context structure because a mapping
� exists such that every f ∈ Σ can be mapped to some U ∈ A.

In order to define the validity of V , we first define that \ : M → M simulates 5 : L → L if
5 ◦ Project& = Project& ◦ \ . Here \ and 5 are intended as (respectively) abstract and concrete flow
functions for nodes within procedure & . This is straightforward for non-call nodes, but we want
to extend it for call nodes too – those, say, to procedure '. Let 5' : L → L denote the overall flow
function for procedure '. We are not interested in obtaining a representation of 5' but want to
define 5' mathematically and use the value of 5' (G) for any arbitrary G ∈ L to establish a useful

property of abstract value structures. Hence we define 5' (G) = InCEnd' where InC= is defined in
Equation (7) using InC(f) defined as theMFPC solution of Equation (6) with the following changes:

• Startmain in the first case is replaced by Start' .
• BI in the first case is replaced by G .
• If ' is recursive, the we introduce a new function 'REC which clones ' to represent the
recursive calls to '; the non-recursive calls remain calls to '.

Since the flow function 5= associated with a call node is the identity function in the definition of
InC= (Equation (6)), we get the following identity:

∀E ∈ M, & ∈ Proc, = :Call' ∈ N& . Project' ([
Call
= (E)) = Project& (E) (15)

This follows from the way we have defined 5' (G) above in which G replaced the BI value for the
callee procedure.
Again suppose ' is a procedure called from & . Having extended the idea of concrete flow func-

tions 5= from individual nodes to function bodies 5' , we similarly extend the abstract flow functions
\= to function bodies \' . Then, an abstract value structure is valid in our model if the abstract flow
functions simulate the (concrete) flow functions. This is captured by the following conditions:

∀E ∈ M, & ∈ Proc, = ∈ N& . Project& (\= (E)) = 5= (Project& (E)) (16)

∀E ∈ M, & ∈ Proc, = :Ret' ∈ N& . Project&
(
[Ret=

(
\'

(
[Call
=̂

(E)
)
, E
))

= 5'
(
Project& (E)

)
(17)

Figure 13 illustrates these conditions. When they are satisfied, we can be sure that the abstract
flow functions model the flow functions faithfully and the abstract value structure V defined for
the method is valid for our model. It is easy to verify that all methods instantiated in Table 2 have
valid abstract context and value structures.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:29

M L

•
E

•

\= (·)

•

•

5= (·)

Project& (·)

Project& (·)

M L

•
E

•

•

•

[Call
=̂

(·)

\' (·)

[Ret= (·, E)

•

•

5' (·)

Project& (·)

Project& (·)

(a) Illustration for Equation 16 (b) Illustration for Equation 17

Fig. 13. For the abstract value structureV to be valid, abstract flow functions must simulate the (concrete)

flow functions for all E ∈ M

4.4.2 Soundness Criteria. Intuitively, the soundness of a method is guaranteed if it ensures that
no interprocedurally valid path is missed and the method employs a valid abstract value structure.
Our top-level requirement for soundness of MFPA is

∀= ∈ N. In= ⊑ InC= (18)

From Equations (7), (13), and (14), this follows if

∀& ∈ Proc,∀= ∈ N& ,∀f ∈ Σ,∃U ∈ A. Project& (InA= (U)) ⊑ InC= (f) (19)

The existence of an U corresponding to a f at every node is guaranteed by a valid abstract context
structure. Therefore we can do the reasoning over paths. However, since our focus is on interproce-
durally valid paths covered by U , our reasoning is simplified considerably by considering the paths
in which finished calls have been abstracted out. This is achieved for a path c containing =̂ :Call&
and = :Ret& by making = :Ret& immediately follow the closest =̂ :Call& in the path by adding a
summary edge between them to represent the effect of the call that has been abstracted out; we
denote such paths by c and adapt the rules in definition (11) to define them as follows:

(=, U0) ∈ IVPA(=)
= :Startmain

(c ·<, U) ∈ IVPA(<)

(c ·< ·=, U) ∈ IVPA(=)
IE(<,=)

(c ·<, U) ∈ IVPA(<)

(c ·< ·=, Ncontext< (U)) ∈ IVPA(=)
CE(<,=)

(c ·=̂ ·; ·c ′ ·<, Ncontext=̂ (U)) ∈ IVPA(<)

(c ·=̂ ·=, U) ∈ IVPA(=)
RE(<,=) ∧ CE(=̂, ;) ∧ ; ∉ c ′

(20)

We define IVPC (=) by modifying (2) similarly. It is easy to see that both IVPA(=) and IVPC (=) are
non-empty for every = that is reachable from Startmain.

Nowwe can select an arbitrary (c, f) ∈ IVPC (=) and find the corresponding (c,� (f)) ∈ IVPA(=).
By abuse of notation, we extend InA= (U) to InA= (c, U) and InC= (U) to InC= (c, f) as the values
computed for node = along the single path c such that for every edge (<,=) in c , InA= (c, U) is
computed only from InA< (c, U) and InC= (c, f) is computed only from InC< (c, f). Note that if
(<,=) is an edge (=̂, =) abstracting out a call to procedure & , InA= is computed from InA=̂ using
[Call
=̂

, \& , and [
Ret
= as explained in Figure 13 whereas InC= is computed from InC=̂ using 5& .

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:30 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

Then, the soundness claim (19) follows if the following holds:

∀& ∈ Proc,∀= ∈ N& ,∀(c, f) ∈ IVPC (=) . Project& (InA= (c,� (f))) ⊑ InC= (c, f) (21)

This can be easily proved by induction on the number of nodes in a manner similar to the proof
in Section 2.4.3. The basis is trivially satisfied for = :Startmain because from Equations (6) and (12),

Projectmain(InAStartmain
(c, U0)) = InCStartmain

(c, f0) = BI

The inductive step can be proved using the the validity of the abstract value structure that guaran-
tees that that the projection of a value in M computed by an abstract flow function coincides with
the value in L computed by the corresponding flow function.
Since all methods in Table 2 have a valid abstract context structure, all of them are sound.

4.4.3 Precision Criteria. Intuitively, the precision of a sound method is guaranteed if its ab-
stract context structure is rich enough to ensure that two concrete contexts f1 and f2 that may
have distinct values (i.e., InC= (f1) ≠ InC= (f2)) are not mapped to the same context by the map-
ping � . If � (f1) = � (f2) = U , then in Equation (12), InA= (U) = InC= (f1) ⊓ InC= (f2) leading to
imprecision.3 This merging manifests in two ways:

• If the underlying analysis is non-distributive, this merging causes imprecision in a callee
procedure4. Note that this imprecision is unrelated to interprocedurally invalid paths.
Hence, for precision, a method with such � , must place the restrictions of distributivity
on the data flow framework supported. Out of the five methods with simple abstract con-
text structure in Table 2, the restricted-contexts method requires separability (which implies
distributivity, see Section 2.2) whereas the functional method and the IDE method require
distributivity.
We explain the differences caused by non-distributivity in such situations with the help of
the examples in Figure 1. Available expressions analysis is distributive. In procedure ', the
set of available expressions is calculated as the intersection of {0 ∗ 1} and {1 ∗ 2} implying
that no expression is available within the body of procedure '. This result is precise.
If we change the example to a non-distributive data flow framework such as points-to analy-
sis (Figure 1), we observe that merging the points-to information from the two callers (and
) and using it in node 9 leads to two spurious points-to pairs (0, 3) and (2, 1) that do not
arise along any control flow path reaching node 10.

• Even if the underlying analysis is distributive, this merging causes imprecision in a caller
procedure by accommodating interprocedurally invalid paths containing mis-matched call
return pairs. The example of available expressions in Figure 1 illustrates this making both
the expressions unavailable after the call in procedures (and) amounting to traversal of
the following interprocedurally invalid paths

c1 : 1 → 2 → 3 :Call' → 7 :Start' → 8 → 9 :End' → 13 :Ret' → 14 → 15
c2 : 10 → 11 → 12 :Call' → 7 :Start' → 8 → 9 :End' → 4 :Ret' → 5 → 6

The return node 13 :Ret' in c1 does not correspond to call node 3 :Call' appearing in it
because the two nodes belong to different procedures. Similarly, node 4 :Ret' in c2 not cor-
respond to call node 13 :Call' appearing in it.

Thus our precision criteria boils down to satisfying either of the following requirements:

3If some other f is mapped to U , then InA= (U) ⊑ InC= (f1) ⊓ InC= (f2) .
4The Ncontext function is defined only for call nodes so merging of contexts can happen only at a call node.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:31

(P1) The abstract context structure should be rich enough to ensure that

∀& ∈ Proc,∃� : N& → Σ → A such that InC= (f) = Project& (InA= (�= (f))) (22)

This condition is sufficient for ensuring precision in both callees and callers because it does
not cause merging of distinct data flow values at = :Start& .

(P2) If the abstract context structure is not rich enough to satisfy condition (P1), then the
abstract value structure should be rich enough for precision. However, precision in callees
and callers requires separate criteria:
(P2a) Precision in callees requires the data flow framework to be distributive.
(P2b) Precision in callers requires the abstract flow functions to satisfy the following:
(P2b.i) If [Call

=̂
propagates some value from =̂ :Call& to < :Start& , then [

Ret
= (E,F) should

employ some selection function to select only the part of E that corresponds to the value
propagated by [Call

=̂
and reject the part of E that corresponds to the value propagated by

some [Call that is not associated with =̂.
(P2b.ii) If [Call

=̂
does not propagates any value from =̂ :Call& to< :Start& , then no merging

can happen at< :Start& . Thus, E represents the value resulting from this particular call.

Hence, [Ret= (E,F) should combine the effect of E withF becauseF represents the value
before the call.

4.4.4 Precision of Methods in Table 2. The following methods are precise because they satisfy
precision criterion (P1).

• The call-strings method. The required mapping is �= (f) = f . However, we need to account
for the fact that not all call strings are constructed for recursive programs and the length of
the call strings is restricted to a known fixed length" . Since our model assumes their values
to be ⊤, it does not change the value of the meet across all call strings. Hence it does not
matter if condition (22) is not satisfied by �= for call strings longer than" .

• The VBTCS method. This method is same as the call-strings method except for the use of
the representation function and the required mapping is �= (f) = R(f ·=, InA= (f)). The rep-
resentation function R, by definition, ensures that condition (22) is satisfied.

• VASCO. The required mapping in this case is�= (f) = InC= (f). Thus, if the data flow values
of two concrete call strings f1 and f2 are distinct, the call strings are guaranteed to get
mapped to two distinct abstract contexts by the Ncontext function.

• IFDS. The reasoning is similar to VASCO.

The following methods are precise because although they do not satisfy precision criterion (P1),
they do satisfy precision criterion (P2).

• The restricted-contexts method satisfies (P2a) and (P2b.i).
• The functional and IDE methods satisfy (P2a) and (P2b.ii).

The remaining two methods are :-limiting and context-insensitive method (which is :-limiting
with : = 0). They do not satisfy (P1) because of the following reasons.

• In context-insensitive method, all call strings get mapped to n .
• In :-limited call-strings method. multiple call strings with different data flow values may get
mapped to the same call string because of :-limiting.

Further, They do not satisfy (P2) because although they have a valid V , it is not sufficiently rich.

5 BEYOND THE BASIC CONTEXT-SENSITIVE METHODS

In this section we present some other investigations that model context sensitivity and then de-
scribe several extensions of the context-sensitive methods described in the earlier sections.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:32 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

5.1 Modelling Context Sensitivity

Formal semantics of different kinds of sensitivities (such as flow-, context-, and value-sensitivity)
using abstract interpretation has been used to formalize the effect of these sensitivities (and their
combinations) on the sets of states in a program [12]. Context sensitivity is one of the sensitivities
that they consider and rely primarily on call-strings-based context sensitivity and object sensitivity
can be found in the form of record andmerge functions [31] whose combinationsmodel these forms
of context sensitivities.

5.2 Improving the Efficiency of Context-Sensitive Methods

Some improvements in VASCO [22] were presented in [36]. A comparison of contexts in VASCO
comparing the data flow values to decide whether or not a new context is required. This could be
expensive for analyses such as points-to analysis. Hence, instead of comparing the entire data flow
values, it is proposed to compare only the relevant data flow values for a callee procedure [36]. The
method also proposes to defer analyzing methods which do not affect the data flow value in the
callers (referred as caller-ignorable methods). These improvements make VASCO more efficient
without affecting the precision of the analysis.

Some extensions of graph-reachability-based algorithms [24, 27] were presented in [19]. For
analyses where set D is large, the exploded supergraph used for graph reachability becomes very
large. One of the proposed extensions is to construct the supergraph on demand as required by
the analysis. Our unified formalism also shows that there is no need to construct the exploded
supergraph and ideas from VASCO [22] can be used to avoid construction of large supergraphs.
Another extension is useful for analysis which have subsumption relationships between the ele-
ments of data flow values. Instead of maintaining multiple data flow values, only the one which
subsumes others can be maintained. This makes the analysis highly efficient. Some interesting
insights about the efficiency of context-sensitive data flow analysis can be found in [3].

5.3 Improving the Precision of Graph-Reachability-Based Methods

When two calls are invoked on the same object they are said to be correlated. When such correlated
calls are polymorphic and different types are considered for such calls, it results in infeasible paths
being introduced in the interprocedural control flow graph as described in [37]. Such infeasible
paths cannot be eliminated by the current notion of contexts using the context-sensitive methods
described in this paper. The work in [23] presents a solution to eliminate such infeasible paths
in IFDS method [24]. The proposed solution transforms the IFDS problem to an IDE problem by
annotating the edges with the type of the object on which the call is made. Type of the object
is then propagated along the interprocedural path and is used to eliminate such infeasible paths
arising due to correlated calls from the control flow graph.
An extension proposed in [19] improves the precision of the graph-reachability-based algo-

rithms [24, 27] for the analysis for programs in the SSA form. The imprecision in the SSA form
of the program occurs due to merging immediately before the q instruction. The extension delays
the merge until after the q instruction which increases the precision of the original method to a
level similar to the original non-SSA form of the program. Another interesting twist to IFDS is
an attempt to automatically transform an IFDS problem into an IDE problem for precise analysis
of event-driven applications [40]. This increases the precision of the underlying analysis of an
event-driven application by incorporating information about infeasible paths in IFDS.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:33

5.4 Extending the Data Flow Frameworks Supported

IFDS method requires a data flow framework to be distributive—a requirement that is violated
by practical analyses such as points-to analysis. Boomerang [34] provides an extension to the
IFDS method to support non-distributive data flow frameworks. The part of the program which
is distributive is modelled using the IFDS method. Non-distributive statements in pointer analysis
are handled by adding additional nodes and edges in the exploded supergraph to accommodate
the cartesian product of data flow values that a non-distributive flow function causes.

A functional method for points-to analysis [5] achieves precision without requiring distributiv-
ity by obviating the need of phase 2 for computing points-to information in callees. It uses the
observation that the application of callee summaries in callers gives the points-to information of
the pointers used in the callees. A small book-keeping for remembering statement numbers is suf-
ficient to collect points-to information within the callees without needing phase 2. Since the BI&
are not computed, there is no imprecision even if the data flow framework is not distributive.

5.5 Improving the Precision of Approximate Call-Strings Method

The approximate call-strings approach is popular [21, 35], but entails imprecision. Interestingly,
it can also cause inefficiency by introducing spurious interprocedural cycles (called “butterfly”
cycles) [21]. Such imprecision is mitigated by an extension that additionally records a call-site and
enforces that the called procedure is analyzed for one call site at a time. Recording such additional
information is similar to the restricted contexts method [17]. It also helps avoid the spurious cycles
being introduced and thus makes the analysis efficient as well as more precise.

5.6 Other Context-Sensitive Methods

In this section, we mention further investigations that explore different possibilities to increase
the effectiveness of context sensitivity.

Context Sensitivity Using Pushdown Systems. Context-sensitive analysis using weighted push-
down systems (WPDS) [25, 26] is similar to graph-reachability-based methods [24, 27]. They rep-
resent the exploded supergraph using a pushdown system and traverse it using the rules of a
weighted pushdown system and in the process create an automaton. The transitions in the au-
tomaton correspond to the traversals of edges in the exploded supergraph. Since there is a one-
to-one correspondence between WPDS and graph-reachability-based methods as far as context
sensitivity is concerned, we have not discussed it separately.
Synchronized pushdown system [33] synchronizes the two pushdown systems, one to achieve

context sensitivity (which is similar to WPDS [25, 26]) and the other to achieve field sensitivity.

Approximation in Case of Recursion. The methods discussed in [4, 38, 39] are context-sensitive
for non-recursive procedures but consider recursive procedures context-insensitively. The use of
invocation graphs for context-sensitive interprocedural points-to analysis [4] is similar to the use
of call strings [29]. However, they introduce approximation in case of recursion [9].

The effect of call inlining for context sensitivity has also been attempted by cloning callee pro-
cedures context-sensitively and representing them using binary decision diagrams (BDDs) [38]. In
the presence of recursion, all nodes in a strongly connected component are represented by a single
node to get an acyclic graph. The analysis then uses a context-insensitive algorithm on the cloned
call-graph to achieve context sensitivity.
Partial transfer functions are used to summarize the effect of a procedure in [39]. This is similar

to analyzing a procedure only once for a data flow value reaching it and reusing the already com-
puted procedure summary when the same data flow value is encountered, as done by value-based

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:34 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

termination of call strings [10], VASCO [22] and graph-reachability-based methods [24, 27]. These
methods are fully context-sensitive whereas the method [39] approximates in case of recursion by
combining the information for all the nodes in a strongly connected component.

Use of Types to Define Contexts. Type-sensitive analysis [31] defines contexts using types of the
objects on which call is made. Since the distinctions based on types cause a coarser approximation
than those based on objects [16], type-sensitive analysis is more efficient than object-sensitive
analysis. Both of them are beyond the scope of our work as explained in Section 6.

Tuning Context Sensitivity. The work presented in [20] selectively chooses the number of call
sites to be distinguished based on a pre-analysis that decides where to use context sensitivity
for precision gain. It also identifies the length of the call strings that need to be distinguished to
achieve context sensitivity. A subsequent work tries to achieve the same using machine learning
techniques [7]. Instead of suffixing a call site to a call string at every call, context tunneling up-
dates contexts selectively and decides when to propagate the context without modification. This is
achieved by developing a specialized data-driven algorithm, which is able to automatically search
for high-quality heuristics for context tunneling.
Introspective analysis [32] proposes to refine context-sensitive analysis using metrics computed

by a context-insensitive pass. The information generated by these heuristics estimates potential
cost which will be incurred by a context-sensitive analysis. This is then used to identify the part
of the program which will be performed context sensitively. Another thread of tuning context
sensitivity is to restrict it to a subset of procedures that can benefit from context sensitivity [13]
where a pre-analysis identifies suitable procedures.

Combining Different Context-Sensitive Methods. Hybrid context sensitivity [8] combines the call-
strings method with object sensitivity. For static method calls the contexts are defined using the
call strings method whereas for dynamic method calls they are defined using object-allocation
sites. These contexts are then combined when a static call is made inside a dynamic call. Different
variants of these hybrid context sensitivity are proposed to understand the precision and efficiency
impact of the hybrid context sensitivity.
Similarly, context insensitivity and variants of context sensitivity (such as object-sensitivity or

type-sensitivity) can be adopted for different procedures: Scaler [14] automatically adapts them at
the level of individual procedures to maximize precision without compromising scalability.

6 CONCLUSIONS AND FUTURE WORK

In order to achieve precision, an analysis needs to compute context-sensitive information at the
interprocedural level. The main goal of context sensitivity is to achieve the effect of inlining during
the analysis and is achieved by ensuring proper call-return matching in interprocedural paths.
Table 1 (Section 3.10) has provided a summary of salient features of different context-sensitive

methods. It is clear from the table and the preceding descriptions in Section 3 that these context-
sensitive methods appear very dissimilar because they are algorithmically defined using different
formalisms and it is difficult to compare their key ideas. This leads to a blind-men view in that it
precludes forming a coherent and consistent view of various methods that solve essentially the
same problem. However, when we model the same methods in our unified formalism, they cease
to look all that different because of the well-identified rubrics of our model. This is evident from
Table 2 where there are many more similarities in the methods than there are differences. Thus,
our model provides a vocabulary for a meaningful comparison of these methods. Another strength
of our model is that it facilitates reasoning about soundness and precision of methods that can be
instantiated in our model by defining valid A andV . While our soundness and precision criteria

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

A Unified Model for Context-Sensitive Program Analyses 1:35

consists of only sufficient conditions, they are quite general to inspire a similar reasoning for
methods that use very different A andV to make our criteria inapplicable.
A necessary requirement to achieve context sensitivity is to ensure call-return matching. In

order to render the method practical, a desirable requirement is to reuse procedure summaries. We
describe our take-aways from the process of a unified modelling of these methods.

• Contexts can be defined in terms of data flow values or some abstractions of call strings. The
use of data flow values to form contexts enables reusability of procedure summaries.

• Call return matching may be done explicitly through an abstract context structure thereby
keeping the abstract value structure simple. If we keep a simple M that coincides with L,
then we need a complex mechanism of call return matching. Otherwise, we can keep a very
simple mechanism of call-return matching but then M has to be much richer because it has
to share the burden of call-return matching. As an extreme variation of Equation (12) that
computes mappings A → L, we can push both A and L into M thereby completely doing
away with the need of context matching.

Thus this model opens up a spectrum of possibilities by (a) distilling the essential features re-
quired by a context-sensitive method, (b) showing different possibilities of supporting them, (c) for-
malizing a mechanism of modelling the interplay between them, and (d) providing well-defined
soundness and precision criteria in terms of sufficient conditions. A designer of a context-sensitive
method can judiciously choose an appropriate point on this spectrum to design a suitable method.
We conclude by listing three possible extensions of the proposed unified model:

• Handling indirect calls. In our model, a call node = :Call& has a single callee which is known
before the analysis starts and remains fixed through the analysis. Thus, handling indirect
calls through function pointers or through receiver objects of method calls, requires addi-
tional information supplied externally. Thiswould require enhancing Equation (12) to handle
multiple callees at a return node (the third case).

• Handling object sensitivity. Although there is some similarity in object sensitivity and han-
dling indirect calls in that both of them need pointer-pointee relationships, in the former
case this additional information merely adds more nodes to the call graph. The pointer data
used for discovering the new caller-callee relationship does not become a part of the context
of an analysis unless the method is used to perform pointer analysis. However, in object
sensitivity, a context is defined jointly by the caller and the receiver object of the call; in
some variants, the caller may be omitted from the context. Supporting object sensitivity in
our model would require enriching call-string abstraction with points-to information.

• Handling bidirectional flows. The proposed model is currently restricted to unidirectional
analyses. There are some important bidirectional analyses such as liveness-based points-
to analysis [11], taint analysis [2] that have left context sensitivity implicit and a host of
demand-drivenmethods some ofwhich are context-sensitive and some context-insensitive [6].
We would like to extend our notion of context to uniformly extend all methods in our model
to bidirectional analyses.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their incisive comments which pushed us to strengthen
our model. We also thank Deepak D’Souza for suggesting the possibility of using our model to
characterize soundness and precision of context-sensitive methods.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

1:36 Swati Jaiswal, Uday P. Khedker, and Alan Mycro�

REFERENCES

[1] (Online Resource, Accessed on 3 May 2020). Blind Men and An Elephant. .

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant.

[2] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien

Octeau, and Patrick McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware

Taint Analysis for Android Apps. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI ’14). ACM, New York, NY, USA, 259–269. https://doi.org/10.1145/2594291.2594299

[3] Eric Bodden. 2018. The Secret Sauce in Efficient and Precise Static Analysis: The Beauty of Distributive, Summary-

based Static Analyses (and How to Master Them). In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops

(ISSTA ’18). ACM, New York, NY, USA, 85–93. https://doi.org/10.1145/3236454.3236500

[4] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. 1994. Context-sensitive interprocedural points-to analysis

in the presence of function pointers. In Proceedings of the ACM SIGPLAN 1994 conference on Programming language

design and implementation (PLDI ’94). ACM, New York, NY, USA, 242–256. https://doi.org/10.1145/178243.178264

[5] Pritam M. Gharat, Uday P. Khedker, and Alan Mycroft. 2020. Generalized Points-to Graphs: A New Abstraction of

Memory in Presence of Pointers. ACM Trans. Program. Lang. Syst. 42, 2 (2020), 8:1–8:78.

[6] Swati Jaiswal, Uday P. Khedker, and Supratik Chakraborty. 2020. Bidirectionality in flow-sensitive demand-driven

analysis. Science of Computer Programming 190 (2020), 102391. https://doi.org/10.1016/j.scico.2020.102391

[7] Minseok Jeon, Sehun Jeong, and Hakjoo Oh. 2018. Precise and Scalable Points-to Analysis via Data-driven Context

Tunneling. Proc. ACM Program. Lang. 2, OOPSLA, Article 140 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276510

[8] George Kastrinis and Yannis Smaragdakis. 2013. Hybrid Context-sensitivity for Points-to Analysis. In Proceedings of

the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). ACM, New York,

NY, USA, 423–434. https://doi.org/10.1145/2491956.2462191

[9] Uday Khedker, Amitabha Sanyal, and Bageshri Karkare. 2009. Data Flow Analysis: Theory and Practice (1st ed.). CRC

Press, Inc., Boca Raton, FL, USA.

[10] Uday P. Khedker and Bageshri Karkare. 2008. Efficiency, precision, simplicity, and generality in interprocedural data

flow analysis: resurrecting the classical call strings method. In Proceedings of the Joint European Conferences on Theory

and Practice of Software 17th international conference on Compiler construction (CC08/ETAPS08). 213–228.

[11] Uday P. Khedker, Alan Mycroft, and Prashant Singh Rawat. 2012. Liveness-Based pointer analysis. In Proceedings of

the 19th international conference on Static Analysis (SAS12). 265–282.

[12] Se-Won Kim, Xavier Rival, and Sukyoung Ryu. 2018. A Theoretical Foundation of Sensitivity in an Ab-

stract Interpretation Framework. ACM Trans. Program. Lang. Syst. 40, 3, Article 13 (Aug. 2018), 44 pages.

https://doi.org/10.1145/3230624

[13] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Precision-guided Context Sensitivity for Pointer

Analysis. Proc. ACM Program. Lang. 2, OOPSLA, Article 141 (Oct. 2018), 29 pages. https://doi.org/10.1145/3276511

[14] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. 2018. Scalability-first Pointer Analysis with Self-tuning

Context-sensitivity. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE 2018). ACM, New York, NY, USA, 129–140.

https://doi.org/10.1145/3236024.3236041

[15] Matthew Might, Yannis Smaragdakis, and David Van Horn. 2010. Resolving and Exploiting the k-CFA Para-

dox: Illuminating Functional vs. Object-oriented Program Analysis. In Proceedings of the 31st ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI ’10). ACM, New York, NY, USA, 305–315.

https://doi.org/10.1145/1806596.1806631

[16] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. 2005. Parameterized Object Sensitivity for Points-to Analysis

for Java. ACM Trans. Softw. Eng. Methodol. 14, 1 (Jan. 2005), 1–41.

[17] Eugene M. Myers. 1981. A Precise Inter-procedural Data Flow Algorithm. In Proceedings of the 8th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL ’81). ACM, New York, NY, USA, 219–230.

https://doi.org/10.1145/567532.567556

[18] Nomair A. Naeem and Ondrej Lhotak. 2008. Typestate-like Analysis of Multiple Interacting Objects. In Proceedings

of the 23rd ACM SIGPLAN Conference on Object-Oriented Programming Systems Languages and Applications (OOPSLA

’08). Association for Computing Machinery, New York, NY, USA, 347–366. https://doi.org/10.1145/1449764.1449792

[19] Nomair A. Naeem, Ondřej Lhoták, and Jonathan Rodriguez. 2010. Practical Extensions to the IFDS Al-

gorithm. In Proceedings of the 19th Joint European Conference on Theory and Practice of Software, Inter-

national Conference on Compiler Construction (CC’10/ETAPS’10). Springer-Verlag, Berlin, Heidelberg, 124–144.

https://doi.org/10.1007/978-3-642-11970-5_8

[20] Hakjoo Oh, Wonchan Lee, Kihong Heo, Hongseok Yang, and Kwangkeun Yi. 2014. Selective Context-sensitivity

Guided by Impact Pre-analysis. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’14). ACM, New York, NY, USA, 475–484. https://doi.org/10.1145/2594291.2594318

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/3236454.3236500
https://doi.org/10.1145/178243.178264
https://doi.org/10.1016/j.scico.2020.102391
https://doi.org/10.1145/3276510
https://doi.org/10.1145/2491956.2462191
https://doi.org/10.1145/3230624
https://doi.org/10.1145/3276511
https://doi.org/10.1145/3236024.3236041
https://doi.org/10.1145/1806596.1806631
https://doi.org/10.1145/567532.567556
https://doi.org/10.1145/1449764.1449792
https://doi.org/10.1007/978-3-642-11970-5_8
https://doi.org/10.1145/2594291.2594318

A Unified Model for Context-Sensitive Program Analyses 1:37

[21] Hakjoo Oh and Kwangkeun Yi. 2010. An Algorithmic Mitigation of Large Spurious Interprocedural Cycles in Static

Analysis. Softw. Pract. Exper. 40, 8 (July 2010), 585–603. https://doi.org/10.1002/spe.v40:8

[22] Rohan Padhye and Uday P. Khedker. 2013. Interprocedural Data Flow Analysis in Soot Using Value Contexts. In

Proceedings of the 2nd ACM SIGPLAN International Workshop on State Of the Art in Java Program Analysis (SOAP13).

31–36.

[23] Marianna Rapoport, Ondrej Lhoták, and Frank Tip. 2015. Precise Data Flow Analysis in the Presence of Correlated

Method Calls. In SAS.

[24] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Interprocedural Dataflow Analysis via Graph Reacha-

bility. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL

’95). ACM, New York, NY, USA, 49–61. https://doi.org/10.1145/199448.199462

[25] Thomas Reps, Stefan Schwoon, and Somesh Jha. 2003. Weighted Pushdown Systems and Their Application to Inter-

procedural Dataflow Analysis. In Proceedings of the 10th International Conference on Static Analysis (SAS’03). Springer-

Verlag, Berlin, Heidelberg, 189–213. http://dl.acm.org/citation.cfm?id=1760267.1760283

[26] Thomas Reps, Stefan Schwoon, Somesh Jha, and David Melski. 2005. Weighted pushdown systems and their

application to interprocedural dataflow analysis. Science of Computer Programming 58, 1 (2005), 206 – 263.

https://doi.org/10.1016/j.scico.2005.02.009 Special Issue on the Static Analysis Symposium 2003.

[27] Mooly Sagiv, Thomas Reps, and Susan Horwitz. 1996. Precise Interprocedural Dataflow Analysis with Applications to

Constant Propagation. In Selected Papers from the 6th International Joint Conference on Theory and Practice of Software

Development (TAPSOFT ’95). Elsevier Science Publishers B. V., Amsterdam, The Netherlands, The Netherlands, 131–

170. http://dl.acm.org/citation.cfm?id=243753.243762

[28] John Godfrey Saxe. (Online Resource, Accessed on 3 May 2020). The Blind Men and the Elephant. .

https://en.wikisource.org/wiki/The_poems_of_John_Godfrey_Saxe/The_Blind_Men_and_the_Elephant.

[29] M. Sharir and A. Pnueli. 1981. Two approaches to interprocedural data flow analysis.. In Muchnick, S.S., Jones, N.D.

(eds.) Program Flow Analysis: Theory and Applications. Prentice-Hall Inc., Englewood Cliffs.

[30] Olin Shivers. 1991. Control-Flow Analysis of Higher-Order Languages. Technical Report.

[31] Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. 2011. Pick your contexts well: understanding object-

sensitivity. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming lan-

guages (POPL11). 17–30.

[32] Yannis Smaragdakis, George Kastrinis, and George Balatsouras. 2014. Introspective Analysis: Context-sensitivity,

Across the Board. In Proceedings of the 35th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI ’14). ACM, New York, NY, USA, 485–495. https://doi.org/10.1145/2594291.2594320

[33] Johannes Späth, Karim Ali, and Eric Bodden. 2019. Context-, Flow-, and Field-sensitive Data-flow Analysis Us-

ing Synchronized Pushdown Systems. Proc. ACM Program. Lang. 3, POPL, Article 48 (Jan. 2019), 29 pages.

https://doi.org/10.1145/3290361

[34] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-Driven

Flow- and Context-Sensitive Pointer Analysis for Java. In 30th European Conference on Object-Oriented Program-

ming (ECOOP 2016) (Leibniz International Proceedings in Informatics (LIPIcs)), Shriram Krishnamurthi and Ben-

jamin S. Lerner (Eds.), Vol. 56. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 22:1–22:26.

https://doi.org/10.4230/LIPIcs.ECOOP.2016.22

[35] Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. 2013. Aliasing in Object-Oriented

Programming. Springer-Verlag, Berlin, Heidelberg, Chapter Alias Analysis for Object-oriented Programs, 196–232.

http://dl.acm.org/citation.cfm?id=2554511.2554523

[36] Manas Thakur and V. Krishna Nandivada. 2019. Compare Less, Defer More: Scaling Value-contexts Based Whole-

program Heap Analyses. In Proceedings of the 28th International Conference on Compiler Construction (CC 2019). ACM,

New York, NY, USA, 135–146. https://doi.org/10.1145/3302516.3307359

[37] Frank Tip. 2015. Infeasible paths in object-oriented programs. Sci. Comput. Program. 97 (2015), 91–97.

[38] JohnWhaley andMonica S. Lam. 2004. Cloning-based Context-sensitive Pointer Alias Analysis Using Binary Decision

Diagrams. In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design and Implementation

(PLDI ’04). ACM, New York, NY, USA, 131–144. https://doi.org/10.1145/996841.996859

[39] Robert P.Wilson andMonica S. Lam. 1995. Efficient Context-sensitive Pointer Analysis for C Programs. In Proceedings

of the ACM SIGPLAN 1995 Conference on Programming Language Design and Implementation (PLDI ’95). ACM, New

York, NY, USA, 1–12. https://doi.org/10.1145/207110.207111

[40] Ming-Ho Yee, Ayaz Badouraly, Ondrej Lhoták, Frank Tip, and Jan Vitek. 2019. Precise Dataflow Analysis of Event-

Driven Applications. CoRR abs/1910.12935 (2019). arXiv:1910.12935 http://arxiv.org/abs/1910.12935

[41] Xin Zhang, Ravi Mangal, Mayur Naik, and Hongseok Yang. 2014. Hybrid top-down and bottom-up interprocedural

analysis. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’14, Edinburgh,

United Kingdom - June 09 - 11, 2014. 249–258. https://doi.org/10.1145/2594291.2594328

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://doi.org/10.1002/spe.v40:8
https://doi.org/10.1145/199448.199462
http://dl.acm.org/citation.cfm?id=1760267.1760283
https://doi.org/10.1016/j.scico.2005.02.009
http://dl.acm.org/citation.cfm?id=243753.243762
https://en.wikisource.org/wiki/The_poems_of_John_Godfrey_Saxe/The_Blind_Men_and_the_Elephant
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.1145/3290361
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
http://dl.acm.org/citation.cfm?id=2554511.2554523
https://doi.org/10.1145/3302516.3307359
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/207110.207111
http://arxiv.org/abs/1910.12935
http://arxiv.org/abs/1910.12935
https://doi.org/10.1145/2594291.2594328

	Abstract
	1 Introduction
	1.1 The Need for Context Sensitivity
	1.2 Procedure Summaries for Context-Sensitive Interprocedural Analysis
	1.3 Contributions and Organization of the Paper

	2 A Brief Review of Data Flow Analysis
	2.1 Program Representations for Data Flow Analysis
	2.2 Mathematical Background
	2.3 Intraprocedural Solutions of Data Flow Analysis
	2.4 Interprocedural Solutions of Data Flow Analyses

	3 A Survey of Existing Context-Sensitive Methods
	3.1 A Motivating Example
	3.2 Functional Approach
	3.3 Full Call-Strings-Based Approach
	3.4 Value-Based Termination of Call-Strings Method
	3.5 VASCO
	3.6 Restricted Contexts
	3.7 Graph Reachability – IFDS
	3.8 Graph Reachability – IDE
	3.9 k-Limited Call Strings
	3.10 An Overview of the Features Characterizing Context-Sensitive Methods

	4 A Unified Model of Context-Sensitive Data Flow Analysis
	4.1 Abstract Context Structure and Abstract Value Structure
	4.2 Interprocedural MFP Solution in the Unified Model
	4.3 Examples of Instantiating Various Context-Sensitive Methods in the Unified Model
	4.4 Soundness and Precision of MFPA Relative to MFPC

	5 Beyond the Basic Context-Sensitive Methods
	5.1 Modelling Context Sensitivity
	5.2 Improving the Efficiency of Context-Sensitive Methods
	5.3 Improving the Precision of Graph-Reachability-Based Methods
	5.4 Extending the blackData Flow Frameworks Supported
	5.5 Improving the Precision of Approximate Call-Strings Method
	5.6 Other Context-Sensitive Methods

	6 Conclusions and Future Work
	References

