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Abstract

Efficient Methods for Exploring Chemical Space in Computational Drug Discovery

Alexander David Wade

In this work novel computational methods will be developed to efficiently explore
chemical space in the search for compounds with desirable properties. To improve the
efficiency of exploration two methods will be used: reducing the cost of evaluating a point
in chemical space, or reducing the number of points which require evaluating to find the
desired compound. The first chapter of this work will introduce the topics relevant to this
work, place them in the wider context of drug design and outline the theory used to generate
the results presented in subsequent chapters.

The first result of this thesis, discussed in chapter 2, is for the application of free energy
methods to the problem of computational fluorine scanning. The application made in this
work will allow for all fluorinated analogues of a compound to be tested five times faster
than existing computational methods and with comparable predictive accuracy.

In chapters 3 and 4 we will consider the application of numerical methods to ligand-
protein binding problems in order to optimize the charge/steric parameters of the ligand and
maximize binding affinity of these ligands to a given protein target. In these two optimization-
based chapters we will use free energy methods to calculate gradients of the binding free
energy with respect to the parameters which describe the ligand, thus allowing optimal sets
of parameters to be found efficiently. In chapter 3 we search for optimized sets of charge
parameters from which design ideas can be generated and tested; 73% of the design ideas
were found to beneficially improve binding affinity. In chapter 4 we find optimized sets of
steric parameters from which beneficial growth vectors for methyl groups can be predicted.
These predictions correlate with existing free energy methods with a Spearman’s rank order
correlation of 0.59. The advantage of the optimization methods presented in these chapters
are: 1) the methods can generate ideas for mutations which improve ligand binding free
energy and 2) these methods require less computational time to explore the same volume of
chemical space than existing free energy methods.



v

Finally, chapter 5 will discuss a collaborative open source work to find new malaria
therapeutics. Ligand based machine learning methods will be applied to generate and
evaluate the potency of hundreds of thousands of compounds in a manner far faster than is
possible with free energy methods. Based on the computational predictions, compounds are
selected and evaluated experimentally with one compound tested and verified to be active
with a pIC50 of 6.2 in good agreement with the computational prediction of 6.42 ± 0.75.
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Chapter 1

Theory

1.1 Introduction

In this work we will be studying complex biomolecular systems, in particular, we will
primarily be addressing the protein-ligand binding problem. Proteins are prevalent structures
in nature found in biological settings. The relative simplicity of a protein’s building blocks,
amino acids, betrays the complexity of their structure and function. In eukaryotes proteins
are built from strings of only 21 types of amino acids, these are 20 standard residues plus
selenocysteine. the combinatorics of how these amino acids can be arranged allows for a vast
number of unique strings to exist. This is not to mention the enormous complexity of how
these strings fold into 3D structures. A central dogma of structural biology is that sequence
informs structure and that structure informs function. Whilst this dogma has been challenged
by the developing realization that a significant number of proteins are in fact disordered, this
idea remains relevant to highlight that, with such a vast number of potential protein structures
there also exists an enormous number of potential protein functions.

To tackle disease an attack vector of modern medicine is to modulate the function of
proteins in the human body using small molecules/drugs which bind non-covalently to the
protein. In the case of inhibitors the binding free energy, between drug and protein, is a
good predictor for the effectiveness of the drug. However, not every drug is capable binding
strongly to every protein and the field of drug design is concerned with the development of
small molecules which can favourably interact with the specific proteins relevant for a given
human disease. Before a drug design effort can begin one must have a good understanding of
the clinical or molecular pathology of a disease in order to know what observations should be
made to determine the efficacy of a drug. The determination of this pathology is an extremely
difficult task, largely outside the scope of this work. What is relevant to this work is generally
how this determination is made, as this will inform what information is available to guide a
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drug design effort. The next sections will discuss how determining this pathology influences
the computational methods of a drug discovery effort, outline the methods used in drug
discovery in general and highlight some difficulties within the pipeline of drug discovery.

1.2 Drug Design

1.2.1 Target-based vs. Phenotypic

In modern drug discovery, methodologies fall into one of two categories, target based and
phenotypic. Target based methods leverage the advances in genetics and molecular biology
to specify a protein/molecular target for the drug discovery effort [1]. Whereas phenotypic
methods look at disease related responses to a drug in vivo or ex vivo [2]. The advantage of a
phenotypic method is clear in the case a molecular target for a disease is unknown, poorly
understood or difficult to obtain a crystal structure for [3, 4], where the determination of
crystal structures is one of the major bottlenecks to target based drug design [5]. In spite
of this potential advantage, phenotypic studies may still not perform well if the molecular
targets are not well understood. Generally, a poor understanding of a disease will complicate
target deconvolution and the determination for the drugs mechanism of action (MOA) later
in the drug development process which may be an obstacle to clinical trials [2]. In the
example of Alzheimer’s disease, where the precise mechanism of amyloid-β oligomers in
the progression of Alzheimer’s disease is not understood, phenotypic methods have had
success, suggesting new possible treatments [6], but have also presented significant difficulty
in predicting clinical efficacy of drugs [7].

Target based methods, in contrast to phenotypic, need to have validated a target a priori,
and as such determining the MOA can be much easier. There are numerous other advantages
to a target based approach and they can be cheaper and faster avoiding the more costly in
vivo and ex vivo assays in the early stages of a drugs’ development. Some disadvantages to
target based methods stem from the abstraction of the problem away from the complexity
of full human clinical studies. As such the transferability of target based methods may in
general be lower than phenotypic methods [1].

1.2.2 Assays

As compounds are developed throughout a drug discovery campaign there should exist some
metric by which progress is measured as these compounds move through the pipeline to
become safe and effective drugs. Whilst this metric is a complex multi-valued objective
which changes as the campaign advances, we can discuss it usefully in terms of individual
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assays for properties of the compounds. In this work, we will divide these assays into two
categories those pertaining to the binding affinity of a drug to a protein, and those pertaining
to absorption, distribution, metabolism, and excretion (ADME) properties of the drug. The
former set of assays are most important here as it is the computation of ligand-protein
affinities which is the aim of this work and, as such, these binding assays will be the focus of
the discussion here.

The methods which can be used to assay compounds are dependent on what information
is available to the study and whether one is using target based or phenotypic methods. In a
phenotypic regime, it is common to use cell based methods. As the name suggests, cell based
assays use observations of the cell as end points. Examples of some observations which
could be made are cell proliferation, motility and morphology amongst other more complex
end points [8]. One assay method common in studies where a target is available is to use
recombinant methods to create mammalian cells, which over-express the protein target [9].
This protein can then be purified [10] and an affinity measured between a compound and
the protein. This affinity can be measured using many methods [11, 12] including: ligand
labeled methods, such as fluorescent ligand binding assays [13], ligand unlabeled methods,
such as surface plasmon resonance [14] or structure based methods, such as nuclear magnetic
resonance, [15] or X-ray crystallography [16]. Predictive computational methods can also be
considered as assays for molecules. The variety of methods, which can be used to model
protein-ligand interactions, is large and attention will be given to specific methods later in
this work. Here we will comment that generally computational methods will estimate the
binding free energy of a ligand to a protein or use some approximation to this value in order
to assay molecules for affinity.

1.2.3 Hit Identification

In the early stages of a drug discovery effort the focus is to find so-called hit molecules. A
hit molecule is defined here as a molecule which has a desired response when tested, where
the desired response and nature of the test depend on the assay used. Two examples of hit
identification methods commonly used are high throughput screening (HTS), where a large
curated library of small molecules are assayed, and focused screening, which is very similar
to HTS, but as the name suggests the library of small molecules is focused using knowledge
of the target [17]. Fragment screening, although a similar premise to high throughput and
focused screening, has a defining difference. This difference is that for fragment screening
only the libraries contain weakly binding and light molecules < 300 daltons [18] are used, the
goal is to find many hit fragments which interact with the protein and to join or grow these
fragments to develop the hit molecule. Whilst HTS can be applied in phenotypic studies
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[19, 20] focused and fragment screens fall into the domain of structure based methods as
they rely on knowledge of the molecular target. The assay or test used in hit identification
can also be computational and this would be referred to as a virtual screen. For example
docking models can be used to score ligands in the active site of a protein. These scores
are generally based on steric and chemical complementarity between ligand and target [21].
There are numerous variants of these docking algorithms, which range from explicit all-atom
or grid-based methods, and can include ligand or receptor flexibility [22].

1.2.4 Hit to Lead

Once a series of hit molecules have been found, effort must be made to develop these into
effective therapeutics. A key objective in this development is to increase the efficacy of the
drug which is closely linked to the binding affinity of ligand to protein, this is called the hit
to lead stage. In this stage the assays we have discussed can be used to test many ideated
compounds for activity. From these data a structure activity relationship (SAR) can be built
to inform the design of the drug. During this stage, attention is given to the ADME properties
of compounds with the intent to avoid later problems with these properties during final drug
candidate selection. Again, we do not consider optimization of ADME properties in detail in
this work and so it suffices to say, that during the hit to lead stage, assays which measure
properties of the compound such as solubility [23] or toxicity [24] are carried out, and the
data from these assays contributes alongside activity data to compound development.

The ideas for which compounds should be synthesized and tested can come from many
sources. Commonly the intuition of a medicinal chemistry team can be combined with
existing data for a project and also computational modeling to suggest molecules to test; a
particular interest here is in these computational models. The methods to model the activity
of molecules depends, again, on whether this is a target based or phenotypic effort, but now
also on the maturity of the campaign and target. That is to say, if there is significant data for
the affinity of a compound series against a target then it is more likely that accurate ligand
based machine learning (ML) models can be built. There are significant contemporary efforts
to develop ligand based methods [25–27]. These ligand based methods remove consideration
of the protein binding pocket instead focusing only on the properties of the ligand to make
predictions about activity. In the absence of abundant SAR data from a mature campaign,
physics based methods can be used instead. In this work, we are particularly interested
in atomistic models and free energy methods which allow for the computation of ligand-
protein binding affinities. These methods have been widely applied within the drug discovery
pipeline with success at predicting potency improving mutations to compounds [28, 29].
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There exists a large class of methods called computational de novo design programs
which aim to grow molecules, one atom or group of atoms at a time to improve their binding
affinity. Whilst the scope of these methods can extend outside of the hit to lead process
they are worth discussing here as they have the same objective: improve ligand-receptor
affinity. Some computational de novo design programs emerged as early as 1989, namely
HSITE/2D Skeletons [30]. This receptor based algorithm took as input an experimental
3D crystal structure from the Brookhaven Protein Data Bank and would compute a map of
potential hydrogen bonding regions. Interestingly, this very early algorithm only used five
minutes of processor time on an IBM 3084q mainframe computer operated by the Cambridge
University Computing Service from 1982 to 1995 [31]. The idea was that from a map of
potential hydrogen bonding regions a ligand with complimentary interactions could then be
designed, and so the binding affinity improved.

HSITE/2D Skeletons is a structure-based method, using information about the protein
target, in this space of methods there are a number of diverse strategies which have been
explored. The commonality in receptor-based methods regards the use of information about
the 3D structure of receptors in any calculation for ligand protein affinity. Typically this
metric of affinity is described as ‘complementarity’ between the ligand and receptor. This
complementarity can be measured in a number of ways for example the LUDI [32, 33] series
of programs uses a weighted sum of enthalpic and entropic terms, stemming from ideas such
as lipophilic contact, rotatable bond in the ligand etc. The SMoG [34, 35] set of programs
use the observed frequencies of atom-atom contacts in the ligand-protein complex. Generally
these receptor-based methods will a) use either heuristic [36] or knowledge-based scores
[33, 35], or b) use an explicit force field to calculate the potential of the complex and score
the ligand [37]. As commented by Schneider et al. [38], in their comprehensive review of
computational de novo design methods, these receptor-based methods aim to approximate the
full binding free energy in their scores for affinity. Using approximations to the binding free
energy allow these methods to be quite rapid and explore a large area of chemical space, but
this can come at the cost of accuracy for any predictions. Several of these computational de
novo design programs incorporate dynamic structures [39, 40, 37] with the aim of reducing
inaccuracy stemming from considering only a static protein structure. Which is to say if
only a protein static structure is considered then all physical information about its dynamic
structure is not included in the physical model and this will result in a poor model of the
protein ligand system for systems where allosteric effects are important [41] or the binding
site is a cryptic pocket [42] as examples.
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1.2.5 Lead Optimization and Late Stage

The stage following the hit to lead stage is the lead optimization stage. In this stage the aim is
to improve the compounds output from the hit to lead stage, particularly any problems with
ADME properties must be resolved without sacrificing the affinity which has been developed
for the target protein during the hit to lead stage.

The final stages of a drug discovery effort involve rounds of clinical trials. These trials
are beyond the scope of this work however it suffices to say that these clinical trials carry
with them significant ethical implications [43] in addition to being primary contributors to
the cost of drug development [44]. It is therefore imperative that we are confident in the
safety and efficacy of any prediction generated in previous stages, which make it as far as a
clinical setting.

1.2.6 Chemical Space

The experimental and computational methods described in the Drug Design section can all
be applied in aid of searching the chemical space for molecules with some set of desired
properties. One of the principal difficulties of operating in chemical space is the cost involved
for testing a point in this space. However, arguably a more vexing obstacle to finding useful
drugs in chemical space is its large unsearchable size.

By some estimates the number of molecules with 30 atoms containing only C, N, O and S
is 1060 [45], and this scales combinatorially with the number of atoms. Taking these rules for
the number of atoms and type as a rough proxy for drug-likeness we can see that this space of
molecules is impractically large to consider searching with brute force methods. The size of
this space can be somewhat reduced by considering Lipinski’s rule of five [46], which refines
the estimate of 1060 molecules to look at molecules with drug-likeness and bioavailability.
Lipinski et al. developed these rules by looking at a library of several thousand drugs which
had reached phase 2 clinical trials, assuming that reaching phase 2 assured that the drug had
favorable physico-chemical properties. The observations made about this library were that
the majority of molecules had a molecular mass < 500 daltons, calculated partition coefficient
(log10 P) < 5, and the sum no greater than 10 nitrogen and oxygen atoms, as such these are the
rules by which one can refine chemical space to smaller set, which should be both easier to
explore and result in drugs more likely to succeed in clinical trials. There are complications
to these rules and they can’t be applied generally, with many studies highlighting drugs
beyond the rule of five [47], suggesting revised rules for fragment identification [48] and
highlighting additional important properties such as number of rotatable bonds [49] or polar
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surface area [50]. Even with consideration of these complications the space of drug-like
molecules remains large and enumerating it fully is an intractable problem.

Given the size and cost of exploring this space, one could ask: should any hope of
rationally designing drugs be abandoned? Despite the vastness of drug-like space, rational
drug design has been relatively successful at finding new drugs, aided in part by computational
drug design. In order to explore drug-like space with some utility, two core ideas can be used.
These are, 1) to find methods which reduce the number of points which need testing and 2)
reduce the cost of testing each point in the space.

With regards to point 1), to reduce the number of points which need testing, numerous
methods can be used. Some methods use advanced data collection techniques, database
building, to collate data from many sources and make it available across groups. This has
become a more prevalent technique with the rise of machine learning and natural language
processing. However, these methods will not be discussed in detail here and instead predictive
methods will be the focus of this work. The predictive methods we have discussed so far in
this work all construct a model of reality. These models can range from a medicinal chemist’s
intuition, to a deep neural network, to classical atomistic simulation. Modelling allows
many ideas to be tested and predict if they are beneficial without incurring the full cost of
synthesizing and testing the molecules. Most of these modelling methods, however, can only
be applied using trial and error. In light of the number of possible drug like chemicals which
could be tested, trial and error is not an efficient method with which to explore chemical
space. In this work we consider if we can move away from trial and error and reduce the
number of points we test in chemical space using numerical optimization methods. The
theory relevant to this idea will be discussed in Optimization section 1.6 and applied in
chapters 3/4.

Considering point 2), currently the full pipeline of drug discovery is enormously expen-
sive, taking more than a decade and costing more than a billion dollars to produce one drug
[51]. In a research setting testing one molecule at the hit to lead stage is estimated to take
roughly a week and cost around $2000. Comparatively using the computational method
explored in this work to assess a relatively small mutation such as a methylation would cost
15 hours of computer time equating to roughly $4. It’s clear from these costs that in general
computational methods are far cheaper tools with which to explore chemical space. In this
work we will aim to develop novel computational methods for drug discovery which improve
on the efficiencies of current methods to assess protein-ligand binding affinities and this idea
will be explored in detail in all the results chapters.

To address the problem of protein-ligand binding there exist numerous computational
methods which populate varying levels of theory and computational cost. In this work we
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primarily use free energy methods with molecular dynamics to assess protein-ligand affinity
but will also consider some ligand based machine learning methods. With the current level
of computational resources available free energy methods and molecular dynamics allow for
10s-100s of ligand bindings to be evaluated on the time scale of days-weeks, and provide
good predictive capability for drug design [52]. The motivation to study ligand-protein
binding computationally arises from not only the cost savings but also the complexity of
these systems. The affinity of ligand to protein is a complex balance of enthalpic and entropic
terms in both the bound and unbound states of the ligand, and this balance is very difficult to
assess qualitatively with human intuition and predictions for what changes to a ligand will
improve binding affinity can often be misleading [53]. Computational free energy methods
allow us to assess this balance rigorously providing quantitative predictions for binding
affinity. These free energy methods are built on several pillars of theory, and the following
sections will address these pillars in detail. To study proteins-ligand binding we first need
tools to interrogate the dynamics of these systems one candidate method for such a study
would be molecular dynamics.

1.3 Solving Newton’s Equations of Motion on a Computer

Molecular dynamics (MD) is at the core of the free energy calculations we will perform in
this work. MD relies on solving Newton’s equations of motion, for which it is known that
analytic solutions do not exist in general, this holds especially true in the case of the complex
biological systems considered here. In order to solve Newton’s equations numerically, we
can first define a three-dimensional space and call this the simulation cell. Typically, the
simulation cell is bounded in real space, and therefore a choice is required for the type of
spatial boundary conditions; for biological simulations most commonly periodic boundary
conditions are chosen. Within this region, we define a system which is composed of many
individual objects, indexed by i. These objects are assigned, at least, a position at a point
in the region, ri, and a mass, mi. The system as we have defined here would simply be a
box of static objects. We can make this system more interesting, however, by adding initial
velocities for the objects and interaction potentials between them. At a given time t, the
forces on our object can be calculated by taking the gradient of the potential, U(r), in the
three dimensional space,

mi
∂ 2ri

∂ t2 = Fi =−∇U(ri). (1.1)
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This equation uniquely determines the force on each object, and thus the system can be
propagated in time by updating the positions of particles from their velocities, and updating
their velocities from their accelerations. It is not practical to solve these equations by hand
for any systems of interest in the present context, so instead these equations are solved
numerically by a computer.

We are free to use any computational resource, however, the architecture of the computer
will inform what system size and simulation length can practically be attained, and will also
inform the precise algorithmic steps used to solve Newton’s equation. As an example imagine
a computer designed to use ternary instead of binary, in these cases the algorithmic steps
for addition and multiplication of floating point numbers are not the same and therefore the
precise steps to solve Newton’s equation on these computers are also not the same. However,
we will ignore any considerations for the algorithms’ implementation stemming from low
level ideas such as variations in computer silicon design and programming languages. Instead
we look at the level of a single modern desktop computer where there exists two common
resources: the central processing unit (CPU) and graphics processing unit (GPU), both these
resources have their own streams of code designed to take advantage of their respective
architectures [54–56]. A level above the desktop computer is high performance computing
(HPC) centers which, for our purposes, can be conceptualized as hundreds of interconnected
desktop machines. Again, at this level there are additional considerations for the computer
architecture which must be made to inform algorithm design; here we can examine this idea
specifically with reference to parallelization. As an example, the number of instructions
a CPU can perform whilst waiting to communicate with another CPU in a HPC is much
lower than the number of instructions a GPU could perform whilst waiting to communicate
with another GPU. It would therefore make sense to spatially decompose a simulation over
CPU based machines in a HPC but not over GPU based machines and we see this borne out
in modern GPU and CPU molecular dynamics codes. We can state this more generally by
saying that communication between the GPU and any other part of the computer is relatively
slow. This idea is important to mention now as it will inform our choices for software design
later in the parallelization section 1.8 of this thesis.

1.3.1 Molecular Dynamics

Molecular dynamics is a mature class of computer simulation techniques. In contemporary
materials science it leverages the idea of computationally solving Newton’s equations to study
a wide range of physical systems. Originating in the 1960s the ubiquity of the application
of MD has grown over time [57] and MD is now routinely used in the fields of material
science [58], biochemistry [59] and biophysics [60]. MD has applications in many types
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of simulations, for example coarse grained simulations, but in this work we examine the
application of MD, with the use of classical all atom force fields discussed in section 1.3.2,
to study the dynamics of a system at an atomistic level. Particularly relevant here is the
application of MD to the simulation of proteins, and one of the first simulations in this
domain was performed by McCammon et al. in 1977 [61] which examined the dynamics of
protein folding.

At its core MD uses the ideas we have already discussed about numerically solving
Newton’s equations. To obtain this numerical solution for a bio-molecular system one would
like to integrate forward in time the positions of the atoms. The forward propagation in
time of a physical model of a system will be referred to as simulating the system in this
work. To perform this simulation we consider atoms as objects in a three dimensional
space, with the interaction potentials between the atoms chosen to reproduce the physical
properties of the atoms or system we are interested in studying. The choice of potential
and its parameterization will be discussed in more detail in the force fields section 1.3.2.
To perform the forward propagation of the atom positions in time an integrator, such as the
Verlet algorithm, can be used. To reach the equations used in the Verlet algorithm we can
consider time series expansions for the position of a particle ri at time t+∆t and t−∆t which
gives,

ri(t +∆t) = ri(t)+
δri

δ t
∆t +

1
2

δ 2ri

δ t2 (∆t)2 +
1
3

δ 3ri

δ t3 (∆t)3 +O(∆t)4 (1.2)

ri(t −∆t) = ri(t)−
δri

δ t
∆t +

1
2

δ 2ri

δ t2 (∆t)2 − 1
3

δ 3ri

δ t3 (∆t)3 +O(∆t)4 (1.3)

and combining these equations yields the update formula,

ri(t +∆t) =−ri(t −∆t)+2ri(t)+
δ 2ri

δ t2 (∆t)2 +O(∆t)4 (1.4)

It can be seen here that when using the Verlet algorithm the positions are updated with
an accuracy of O(∆t)4. There exist numerous algorithms with improved accuracy when
compared to the Verlet algorithm [62]. An important point to consider is that typical binding
free energy calculations considered in this work are dominated by statistical error [62, 63],
dependant on the amount of sampling performed, and so errors associated with the integration
method are less important. In this work the integrator used is a variant of the Verlet algorithm
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called the leapfrog scheme. These integrators are highly similar and share the favourable
properties such as being symplectic and time reversible which practically translates into
accuracy and stability of the integration after longer times [64, 65].

In this work the simulations are performed using Langevin dynamics. Langevin dynamics
add a friction and random force to the systematic forces present in molecular dynamics.
The origin of these forces is phenomenological but their inclusion is physically motivated
in order to couple the simulated system to a heat bath [66]. Heat from the system can be
exchanged with this bath allowing for the temperature of the system to be controlled. The
reason one might want to perform MD simulations at a constant temperature is to perform a
simulation in a specific thermodynamic ensemble. For example this might be the canonical
(NV T ) ensemble, in this ensemble the number of particles N, the volume of the system V
and the temperature T are all held constant. Another ensemble that could be used is the
isothermal-isobaric ensemble (NPT ) ensemble, where there is a constant number of particles,
N constant pressure P and constant temperature T . The ensemble used in a simulation
depends on the ensemble of the system the user wishes to study, in this work the NV T or
NPT ensembles will be used.

The idea of different thermodynamic ensembles in which T or P could be held constant
has been discussed, to perform a simulation in these ensembles the idea of thermostats and
barostats must be introduced. A simple example of a stochastic thermostat [67] would be
the Andersen thermostat and the basic idea here is that the velocity of random particles
will be reassigned a new velocity from the Maxwell distribution at temperature T . A note
here should be that stochastic thermostats should not be used to interrogate the dynamic
properties of a system, such as diffusion, and this is because the velocity re-scaling, for
example, influences the dynamics of the system. In this work we use a stochastic thermostat
which is included as part of Langevin dynamics.

In the domain of barostats there are many methods that could be used [68, 69]. The aim
of any barostat is to control the pressure of the simulation and this can be achieved typically
by adjusting the size of the simulation cell and re-scaling the atomic positions in this cell.
Just because a barostat controls the pressure it does not guarantee that one is sampling in
the correct ensemble and care should be taken in choosing a barostat. For example the
Berendsen [69] barostat is known to not sample correctly the expected volume fluctuations
in the isothermal-isobaric ensemble [70] with evidence this effects the results of free energy
calculations [71]. In this work we use the Monte Carlo barostat which resizes the simulation
and accepts or rejects this volume change based on the Metropolis algorithm [68].

Applying MD as described is referred to as vanilla MD and will allow us to simulate
a biomolecular system. From this simulation we can calculate time average macrostate
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properties such as temperature, or most relevant here, the free energy. This time averaged
property is calculated from a time series of snapshots for the microstate of the system. To do
this calculation we use the ergodic hypothesis which states that, a property averaged over
many repeats of some experiment will be equal to the time average of the same property, in
the limit that the number of repeats and the length of time are both large. This hypothesis
relies on the assumption that if the system is propagated forward indefinitely every state of
the system will be visited. Precisely how the free energy can be calculated will be considered
in detail in the free energy section 1.4.

One drawback of vanilla MD is that we have no control over what states are sampled.
Therefore, if a study is interested in an event which occurs with a low probability (with the
probability of a state give by the Boltzmann distribution, see Section 1.4) then a large amount
of sampling may be required in order to capture the event. If the potential energy landscape
of a biomolecular system is imagined as many low energy configurations separated by high
energy barriers, meaning that crossing the high energy barriers is a rare event, then, to collect
comprehensive sampling for all the configurations of the systems with brute force MD will be
unfeasible. As an aside these minimums in the free energy landscape of a protein for example,
exist to both guide the folding [72] and insure the kinetic stability of the protein’s folded
state, possibly allowing it to maintain its native state and physiological function for longer
[73]. Adequate sampling of the configurational space of a system is key to our assumption of
ergodicity and will be crucial to calculating accurate free energy differences in later chapters.
As such it would be beneficial if the inefficiency in MD could be addressed to allow these
low energy configurations to be sampled effectively.

The class of methods that can accelerate MD exploration of configurational space is
referred to as enhanced sampling. There are several methods which can be used to accelerate
the sampling of configurational space and generally these methods might look like: adding a
biasing potential to the potential energy landscape to reduce the height of the high energy
barriers, making them easier to cross (umbrella sampling) [74], or using the temperature of
the system to accelerate jumps over the barriers (simulated tempering) [75, 76] by proposing
temperature changes to the system which can be accepted/rejected based on a Metropolis
criteria.

One extension to the idea of using temperature to accelerate sampling is parallel tempering
also known as replica exchange [77, 78]. These methods involve running many replicas
of a simulation in parallel at different temperatures. One cold replica is run at the studied
temperature and so unbiased sampling can be collected from this replica, whilst the other
higher temperature replicas exist to accelerate sampling. The configurations of the hot
replicas are exchanged with the configurations of the cold replica based on a, Monte Carlo
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acceptance criteria [79]. It has been demonstrated in the literature that, using the same
set thermodynamics states, simulated tempering can achieve higher exchange rates than
replica exchange [80]. One advantage of replica exchange is that it is relatively trivial to
parallelize the many replicas over a HPC. A limitation of replica exchange methods is that a
large number of replicas are needed to efficiently sample a system with a large number of
degrees of freedom [81]. With too few replicas the phase space overlap of adjacent replicas
will be small resulting in a low acceptance rate for configuration exchanging moves, and
as such the exploration of phase space have less efficiency compared to a high exchange
rate. To address this problem the methodology of replica exchange can be further extended
to allow for the Hamiltonian of the system to be modified. These methods which modify
the Hamiltonian are called Hamiltonian replica exchange (HREX) [82] methods and they
give far more freedom for what aspects of the system can be modified , beyond changing
the temperature which we have just seen for the tempering methods. As an example, replica
exchange with solute tempering, also known as REST [81], effectively allows for ‘heating’
of only the solute molecule in a large protein-ligand system and this avoids addressing a
large number of degrees of freedom, thus reducing the number of replicas required. Later in
this work, chapter 4, steric optimization, the OpenMMTools [83] implementation of HREX
will be used to perform a set of relative free energy calculations.

1.3.2 Force Fields

In the discussion of MD we considered the idea of modeling the interactions of atoms using
potential energy functions. In this section the theory of these potential energy functions
will be explored in the context of all atom force fields (FFs). In an all atom FF one atom is
represented by one object in the simulation. Alternative methods, not discussed here, exist
which involve mapping many atoms onto one simulation object; these are referred to as
coarse grained [84].

The choice for a functional form to represent the interactions of an atom is free. However,
it is typical to decompose a system into interaction types and to choose one type of potential
to represent each type of interaction in the system. For example, a harmonic well can be used
to describe the bond interactions between atoms. To capture the variation in the character of
interactions between different atom types, the function is chosen to include parameters which
take different values to describe different atoms. The choice for these parameters can be
made by a fitting procedure with the objective of minimizing an error function. An example
of such an error function would be the difference between some computed and experimental
property of the system. A FF is then a collection of the potential energy functions and the
values which parameterize all relevant atom types. The potentials chosen are all implicit or
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explicit functions of the atomic positions and therefore the force field can take as input the
position and type of atoms in a system and output a potential energy. The partial derivative of
the potentials in the FF with respect to the position of the atoms can be used in our description
of Newton’s equation to perform an MD simulation.

For biomolecular simulation there are a set of common interaction types into which the
system is decomposed, and these interactions are represented with a common set of functions.
The potentials normally considered are divided into non-bonded and bonded potentials. The
bonded potentials can be subdivided into bond, angle and torsion potentials. The bonded
potentials are relatively cheap to compute and an example for the functional forms of these
potential is given as follows,

Ubonded = ∑
bonds

kb(r− r0)
2 + ∑

angles
kθ (θ −θ0)

2 + ∑
torsions

kφ (1+ cos(pφ −φ0)), (1.5)

here r is the separation of two atoms in a bond, θ is the angle between three atoms, and φ is
the dihedral angle between four atoms. r0, θ0 and φ0 describe the equilibrium position of the
bond, angle and torsion respectively. kb, kθ and kφ are spring constants which describe the
stiffness of the bond, angle and torsion respectively. The parameter p defines the periodicity
of the torsion. In general more than one torsion term will contribute to the bonded potential.
To parameterize the bonded potentials, as outlined here, a choice must be made for seven
parameters.

The non-bonded interactions are much more expensive, compared to the bonded, to
compute, and in an absolute worst case scenario they would need to be computed in a
pair-wise fashion between all N atoms in the system. As such the computational cost of
computing the non-bonded terms scales like N2 whereas the bonded terms will scale like only
N. The non-bonded interactions can be decomposed further into two interaction types. These
are the Lennard-Jones and electrostatic interactions. The steric component and attractive
components of the non-bonded is typically represented with a Lennard-Jones (LJ) potential,
the electrostatics are commonly represented using a Coulomb potential.

Unonbonded =
N−1

∑
j=1

N

∑
i= j+1

{
εi j

[(
σi j

ri j

)12

−2
(

σi j

ri j

)6]
+

qiq j

4πε0ri j

}
(1.6)

Here εi j is a parameter which defines the well depth of the LJ between atoms i and j,
σi j defines the position for the minimum of the well in the LJ potential between atoms i
and j, qi and q j define the charges of atoms i and j. εi j and σi j are computed by combining
the ε or σ for atoms i and j through a combination rule which varies between FFs; an
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example of a combination rule would be the Lorentz-Berthelot rule [85] which takes the
arithmetic and geometric means of sigma and epsilon parameters respectively. Typically
in biomolecular simulations it is best practice to compute the electrostatics using particle
mesh-Ewald (PME) [86]. PME is an improvement to the Ewald summation [87] method for
computing electrostatics and these two methods allow for the long range component of the
electrostatic potential to be included in a calculation without the expense of computing all
pairwise electrostatic interactions. Ewald methods allow for the faster computation of the
long range component to the electrostatics by splitting the interactions into a short-range
contribution, and a long-range contribution. This short range contribution can be evaluated in
real space and the long-range in Fourier space. Both these summations converge quickly in
their respective spaces (real and Fourier) and therefore a truncation may be made with little
loss of accuracy but a computational time saving.

The interactions detailed here are approximations to the true interaction potential between
atoms. A significant approximation pertains to the polarizability of atoms. Here we have
assumed that each atom has a fixed partial charge. A more accurate description of the partial
charge is that it is a function of the atomic environment of an atom. There exist classes of
polarizable FFs for MD [88, 89], however, due to their increased computational expense
these force fields are rarely used for simulation of proteins. Recent studies have shown that
polarizable FFs may provide significant utility for describing the internal electric fields of
enzymes [90] but these validation studies are rare due to the aforementioned computational
cost of simulating with polarizable FFs.

Key to the study of protein-ligand interactions is the accuracy of the FFs used. Improving
the accuracy of these FFs has been a major focus of work from many groups. In the space
of biomolecular simulations there are a number of FFs which have become ubiquitous and
are periodically updated with the aim of improving their accuracy [91–96]. The most widely
used of these FFs for studies of proteins are the AMBER [91], CHARMM [94], GROMOS
[97] and OPLS [98] FFs. The variation in these FFs stems from the precise inter and
intra molecular potentials used and the parameterization of those potentials. Some notable
differences between FFs are for the empirical scaling of 1-4 interactions, the treatment of
improper dihedrals, the inclusion of additional potentials such as the Urey-Bradly angle
terms and the previously mentioned combination rules.

One difficulty in modelling protein-ligand systems is for the parameterization of the
small molecules that bind to the protein. The problem is that the more generic atom types
seen in proteins may not accurately describe the more unique chemistry and atoms that
can be generated in small molecules. The AMBER GAFF [99] FF provides a solution
to this problem and allows for the generation of bespoke parameters for small molecules.
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Another important consideration for protein simulations, not yet discussed, is water models.
Water molecules make up the majority of the atoms in a protein ligand simulation and the
water model used will significantly impact the structures of the protein that will be sampled
[100, 101]. For biomolecular simulation the most common all-atom water models used are
three point water models. These treat each atom in the water molecule with one interaction
site. Commonly used models are TIP3P [102], SPC [103], TIP3P-Ew [104], SPC-E [105].
There exists more accurate models which can better capture hydrogen bond angles and the
thermodynamic properties of water such as TIP4P/2005 [106], TIP4P-Ew [107] and TIP5P
[108]. These models include additional sites designed to capture the physics of the oxygen
lone pair. Whilst these models are more accurate, they are used less commonly in favour
of the faster three-point models. In order to achieve good simulation accuracy, some meta
considerations for the choice of water model would be, 1) choose a water model that was
parameterized with the protein FF one has selected, and 2) use a FF which was parameterized
with broadly the same settings and thermodynamic conditions one intends to use for the
simulation.

The previous two sections have outlined the theory for the application of molecular
dynamics and biological force fields to simulate protein ligand systems. We have seen in
the Molecular Dynamics section that from these simulations we can collect a time series of
snapshots for the microstate of the system and use this to calculate time average macrostate
properties. An important property for this work is the free energy and the following sections
will discuss how this free energy can be calculated.

1.4 Free Energy

In this section the theory for the Zwanzig equation [109] will be outlined. This equation
is central to the calculations performed in this work for free energy differences. When
describing a thermodynamic system, one can use the idea of a thermodynamic ensemble and
we have previously discussed the NV T and NPT ensembles. Within an ensemble we can
define a thermodynamic potential that will be minimized when the system is at equilibrium.
This minimization comes from the principle of minimum energy and more fundamentally the
principle of maximum entropy [110] which states ’the equilibrium value of any unconstrained
internal parameter is such as to maximize the entropy for the given value of the total internal
energy’. For the canonical ensemble this potential is the Helmholtz free energy,

A =U −T S, (1.7)
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where U is the internal energy, T the temperature and S the entropy.
One may wish to perform experiments in an environment where pressure and temperature

are held constant. Such an environment is called the isobaric-isothermal or NPT ensemble.
The thermodynamic potential associated with this ensemble is the Gibbs free energy defined
as,

G =U +PV −T S, (1.8)

where is P the pressure and V the volume. For a system held at constant pressure and
temperature G will be minimized at equilibrium. It is often easier to deal with changes or
differentials in these potentials thus, to exploit this, equation 1.8 can be rewritten as,

dG = dU +PdV −T dS. (1.9)

We can see from equations 1.8 and 1.9 that for a calculation of G or dG we would need
to know P, V and T and calculate U and S. To calculate U and S we would need a lot of
information about the partition function of a system. If we know the partition function in full
and how it varies with temperature, then we can calculate U and S and use these to calculate
a value for G using equation 1.8. Problems arise with trying to calculate G like this, and as
enumerating all states and their energies to get the partition function for complex systems,
such as protein-ligand systems is not possible analytically, a different approach is needed.
We can explore this different approach if first four definitions are made. Operating in the
canonical ensemble for simplicity, the first definition we make is for the continuous Gibbs
entropy as follows,

S =−kb

∫
p(⃗q) log p(⃗q)dq⃗, (1.10)

where kb is the Boltzmann constant and p(⃗q) is the probability of a system being in some
state with a configuration and momentum in phase space q⃗. The second thing we need to
define is the Boltzmann distribution which tells us the probability of being in the state defined
by q⃗ if we know the energy of that state U (⃗q),

p(⃗q) =
1
Z

e−βU (⃗q). (1.11)

Here, Z is the configuration integral and we are defining β = 1/kbT . A constraint on any
problem is that all probabilities p(⃗q) sum to unity and, therefore, equation 1.11 also allows
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us to define the configuration integral as,

Z =
∫

e−βU (⃗q)dq⃗. (1.12)

We are free to use the configuration integral here, in place of the full partition function,
because the equations we are deriving are for a free energy differences, and the difference in
free energies we are calculating will be between states with equal mass and thus the kinetic
contribution to the partition function will cancel [111, 112]. The final formula we need to
define is for the expectation of an observable as,

⟨O⟩=
∫

Op(⃗q)dq⃗, (1.13)

the angled brackets here denote an expectation value or an ensemble average. Substituting
equation 1.11 into 1.10 and rearranging using equation 1.13 gives a formula for the entropy
in terms of the configuration integral,

S = −kb
1
Z

∫
e−βU (⃗q) log(

1
Z

e−βU (⃗q))dq⃗, (1.14)

= −kb
1
Z

∫
e−βU (⃗q)(− logZ −βU (⃗q)

)
dq⃗, (1.15)

= kb logZ +
U
T
. (1.16)

Thus, with the entropy written like this, we can relate the Helmholtz free energy and
configuration integral as,

A =U −T S =−kbT logZ. (1.17)

With a free energy written in this form we are still not any closer to being able to calculate A
for complex systems as we still rely on the configuration integral. However, writing A like
this makes it easier to follow the steps which will provide the free energy in a more easily
computable form. As mentioned above we are mostly calculating differences in free energies
and formulating A as ∆A here will offer a path forwards,

∆A = A1 −A0 =−kbT logZ1/Z0; (1.18)

here Z1 and Z0 are the configuration integrals for some systems 0 and 1 and the free energy
difference between them is ∆A. We can then make this more explicit using the definition for
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the configuration integral,

∆A =−kbT log
∫

e−βU1(⃗q)dq⃗∫
e−βU0(⃗q)dq⃗

, (1.19)

we can then apply a numerical trick and multiply the numerator of the logarithm by 1
rewritten as e−βU0(⃗q)e+βU0(⃗q),

∆A =−kbT log
∫

e−βU1(⃗q)e−βU0(⃗q)e+βU0(⃗q)dq⃗∫
e−βU0(⃗q)dq⃗

. (1.20)

Writing the free energy like this allows us to use equation 1.13 to identify the argument of the
log as the ensemble average of e−β (U1−U0) which allows us to reach the Zwanzig equation,

∆A =−kbT log⟨e−β (U1−U0)⟩0. (1.21)

The 0 subscript on the ensemble average denotes that this is an ensemble average in the 0
state. This formulation of the free energy removes the need for the configuration integral of
a system to be computable and using the Zwanzig equation it is possible to calculate free
energy changes using the sampling that can be collected from MD simulation.

1.4.1 Free Energy Methods

With the theory for the Zwanzig equation outlined in the previous section, we will now
discuss the practical application of this equation – that is, to compute free energies – and
the surrounding bodies of theory. In the space of methods which allow for protein-ligand
binding affinities to be computed free energy methods have gained significant popularity. The
relevant mathematics for free energy methods, namely the Kirkwood and Zwanzig equations
can be credited to Lev Landau, John Kirkwood and Robert Zwanzig and originated in the
middle of the last century. Methods based on the Kirkwood and Zwanzig equations are
thermodynamic integration (TI) and exponential averaging (EXP) respectively.

Equation 1.21 is the Zwanzig equation and is the central equation in the EXP method.
From this equation we can extract the core ideas of the EXP methods as well as the core ideas
of the broader set of all free energy methods. Equation 1.21 shows us that sampling should
be collected for some system 0, and using this sampling the potential should be calculated in
systems 0 and 1. As an example, to calculate the potential U1 in equation 1.21 a time series
of configurations can be collected with MD using the Hamiltonian of system 0, this time
series is then post processed with the potential being calculated using the Hamiltonian of
system 1, and this gives U1. The different Hamiltonians which must be adopted to perform



1.4 Free Energy 20

the free energy calculation are generally all built as one Hamiltonian with a controlling
parameter λ which turns on and off the relevant interactions to switch between Hamiltonians.
If λ took the value of 0 for example the Hamiltonian would be that of system 0. Typically,
in these simulations there are more than just the end states, 0 and 1, and so λ takes many
values between 0 and 1. The different values λ takes between 0 and 1 stratify this simulation
and by convention the different λ values and associated strata are called states or the λ

windows of the simulation. To answer the question of why these λ windows are introduced
we should consider that the EXP method is a perturbative one, formally exact only in the
limit of infinite sampling. For finite sampling if the difference between states 0 and 1 is large
then the calculated free energy will take a long time to converge and this is where the idea of
intermediate λ windows emerges, designed to reduce the difference between adjacent states
[113, 114].

TI in contrast to EXP is not perturbative, TI methods exist parallel to methods based on
the Zwanzig equations. Whilst we do not use any TI based methods in this work it is an
equally influential set of methods in the space of free energy calculations. We define the
Kirkwood equation, used in the TI methods, here as,

∆A =
∫
⟨δU(λ )

δλ
⟩λ dλ . (1.22)

We will mention here that TI based methods have several advantages, with the literature
demonstrating their accuracy to be equivalent to the best perturbative methods [71], but with
much less computation required to perform the analysis [115]. Some ideas to consider with
TI methods is that they rely on the calculation of δU

δλ
. If an MD code does not calculate this

quantity internally this can add a layer of difficulty to using TI instead of EXP, because the
calculation of δU

δλ
is not as straightforward as the calculation of U . Additionally TI methods

must still make use of λ windows, this is to ensure an accurate calculation for the numerical
integration of δU

δλ
over λ .

Returning to the ideas of perturbative methods. One drawback here is that for a free
energy calculation, lengthy MD simulations must be performed for all end and intermediate
λ windows. If, however, the perturbation between end states remains small enough, such
that the phase space overlap between end states is large, the Zwanzig equation and the
EXP method is sufficient without any intermediate states. Assessing of the overlap between
adjacent λ windows is a difficult task and normally relies on checking several metrics these
would be: 1), the convergence of the computed free energy with respect to sampling, with
respect to the number of lambda windows and with respect to repeats of the simulation, 2)
computing an overlap matrix [116] which details the probability of observing a sample from



1.4 Free Energy 21

λ window adjacent in λ windows and gives a measure of the phase space overlap of these
windows, and 3) using several methods in cooperation with each other. For point 3) here
one could perform the free energy calculation using EXP and TI if the answers from both
methods are well agreed this is a good indication the free energy calculation is converged.
Applying the Zwanzig with no intermediate states is referred to as single step perturbation
(SSP) and this is a free energy method used multiple times throughout this thesis to achieve
rapid free energy estimates. Numerous studies have used SSP [117–120], demonstrating that
it is applicable to relative free energy calculations [121, 122] and can be significantly faster
than standard FEP [123].

In addition to adding intermediate states the other way in which perturbative methods can
be modified to evaluate larger perturbations efficiently is to move away from older methods
such as EXP to more contemporary methods. Building on the EXP method there are two
estimators: the Bennent acceptance ratio (BAR) [124] and the multistate Bennet acceptance
ratio (MBAR) [114]. BAR is a set of self consistent equations which takes sampling from
the two end states of a perturbation to calculate the free energy change between these states.
It has been demonstrated in the literature that BAR is a more efficient estimator than EXP
when applied to realistic atomistic simulations [113]. MBAR is a generalization of the BAR
method which can use sampling from any number of states. We will apply MBAR multiple
times in this work to different relative free energy calculations. In order to perform these
calculations the end states of the perturbation must be specified. The intermediate states
will be built by linearly interpolating any parameters of the system which are changing
between the two end states 1. Sampling can then be collected from all intermediate states
and combined using the MBAR estimator [114].

The choice for the type of perturbation we apply gives rise to two streams of methods;
these are alchemical or geometrical methods. Geometrical methods exist parallel to alchemi-
cal methods and can allow one to to look at kinetics of processes, but these methods are not
used or discussed in this work. Jorgensen et al. were the first to apply alchemical free energy
perturbation (FEP) methods to a chemical transformation in 1985 [125]. The application was
made to calculate the hydration free energy difference between methanol and ethane. This
involves creating a perturbation to the system by ‘turning off’ the atoms in a hydroxyl group
while ‘turning on’ the atoms in a methyl group. The idea of ‘turning on/off’ atoms refers
to scaling the potential energy function associated with these atoms with the controlling λ

parameter. This concept is often referred to as ‘exploiting the malleability of the potential
energy function’.

1For absolute free energy calculations it is necessary to change charge and LJ parameters separately to avoid
instability in the simulation arising from unshielded charges.
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Within alchemical methods there are two types of calculation which can be performed;
these are absolute and relative calculation. Absolute refers to turning off an atom or molecule
in its entirety, this is generally a large perturbation which requires many λ windows and
significant sampling to converge. For protein ligand binding it is more common to use a
relative approach to transform one ligand into another and this often reduces to a transfor-
mation of one chemical group into another, as was seen in the early example of Jorgensen’s
work with the methanol to ethane transformation. Relative methods reduce the size of the
perturbation and eliminate problems such as the ‘floating ligand’ problem 2 thereby reducing
the complexity of the thermodynamic cycle required. The limitation for relative methods is
apparent if the maximum common substructure (MCS) of the two ligands is small or zero,
which would be the case if one wanted to hop from one drug series to another.

For relative calculations numerous topology schemes can be used. In the context of this
work this refers to how we transform one ligand into another, and, for clarity, we define
the common methods explicitly. There are three methods commonly used, single, dual and
hybrid topology. Here we will define the single topology approach as one where MCS of two
ligands does not respect atom element type. Therefore during the alchemical transformation
atoms are free to change their element. Any uncommon atoms are treated with dummy atoms.
A dual topology approach is defined as one in which the MCS of two ligands does respect
atom element type. Therefore atoms cannot change their element during the alchemical
transformation and all atoms involved in the transformation will be uncommon and must
be added as dummies. A hybrid topology is a special case of a dual topology where whilst
atoms can’t change elements they are free to change type, so the carbon in C-F can change its
parameters to become a C-H without the use of a dummy. Figure 1.1 shows the transformation
between a chlorine atom and OH group using the a) single, b) dual and c) hybrid topologies
diagrammatically.

We have seen the various methods by which one can calculate free energy change
including absolute and relative free energy changes. The question remains, how can these
methods be applied to calculate ligand binding affinities. In this work we mainly investigate
relative binding free energies between two highly related ligands named here as ligands A
and B. This relative binding free energy, ∆∆Gbinding, can be constructed in two ways, 1) as the
difference between ∆Gbinding of ligand A and B, where ∆Gbinding is defined as the free energy
change associated with the binding event of a ligand to the protein or 2) as the difference
between ∆Gmutation in the bound and unbound states, where ∆Gmutation is defined as the
free energy difference of mutating one ligand into the other. These two constructions are

2The floating ligand problem occurs in absolute binding free energy calculations when a weakly or non
interacting ligand is free to ’float around’ and explore the entire volume of a simulation space, resulting in poor
convergence of the free energy calculation.
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Fig. 1.1 Graphical depiction of topology schemes commonly used in alchemical free energy
methods in an example transformation of a chlorine atom to an OH group. a) single, b) dual
and c) hybrid topologies. Hydrogen atoms on carbons are omitted for clarity. Parameters of
cyan and yellow atoms are fixed, magenta atoms are free to change their parameters.
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theoretically equivalent but the use of ∆Gmutation has better convergence and is standard best
practice in relative binding free-energy calculations [126] and as such we use the difference
∆Gmutation to calculate ∆∆Gbinding in this work. See figure 1.2 for a graphical depiction of
the thermodynamic cycle used. Whilst the legs of this cycle are combined in the figure, in
practise each leg is a separate simulation.

Fig. 1.2 Graphical depiction of the thermodynamic cycle used throughout this work to
calculate relative binding free energies between ligands. ∆GbindingA/B are the binding free
energies associated with the binding event of ligand A/B respectively. ∆Gmutation1 is the
binding free energy associated with the mutation from ligand A to B in the bound state.
∆Gmutation2 is the same mutation in the unbound state. Red surface depicts the surface of a
protein that the ligand is bound to.
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1.5 Ligand Binding

We have defined one important metric for the binding affinity of a ligand to a protein and
this is the binding free energy. In the literature however there exist several other metrics by
which this affinity can be assessed. These are binding constants and IC50s. An IC50 is a
experimental measure and proxy for binding affinity, it is used commonly in drug design
setting to cheaply (relative to isothermal titration calorimetry) to asses binding affinities of
small molecules to proteins, more detail on IC50s is provided later in this section. In the case
of a ligand, L, binding to a protein, P, to form a complex, PL, we can consider the following
reversible reaction.

P+L ⇌ PL. (1.23)

The forward reaction described in this relation is the ligand binding to the protein and the
backwards reaction is the unbinding event. The forward and backwards reactions have
associated rates, these are k f orwards and kbackwards and their ratio give a binding constant
called the association constant Ka,

Ka =
k f orwards

kbackwards
=

[PL]
[L][P]

; (1.24)

the square brackets here, [ ], represent a concentration. This Ka is easily related to the binding
free energy ∆G as follows,

∆G =−RT logKa, (1.25)

here R is the gas constant. If we have access to either the binding free energy or association
constant then affinity between the protein and ligand is well quantified.

In this work the binding events we will consider are the binding of an inhibitor to an
enzyme. An enzyme is a particular class of protein which catalyses some reaction on a
substrate to produce a product. Both the substrate and inhibitor may bind to the protein and
so this complicates our assessment of the affinity. An inhibitor can bind to a protein either
competitively, uncompetitively or noncompetitively. Competitive means that the inhibitor
and substrate bind to the same location on the enzyme, uncompetitive means that the inhibitor
only binds to the complex of substrate and enzyme and noncompetitive means that the
inhibitor binds to a different site on the enzyme than the substrate.

To measure the affinity of an inhibitor to an enzyme experimentally typically an IC50 or
Ki value is used and these two quantities are related. The experimental techniques used to
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measure these quantities vary both in methodology and expense with IC50 being the cheaper
[127] and so the most common measurement seen in the literature. An IC50 is the inhibitor
concentration at which the remaining activity of the enzyme is half. The Ki is a binding
constant called the inhibition constant. Ki represents the ratio of the binding and unbinding
rate for inhibitor and enzyme. Ki can be converted to a binding free energy similar to Ka in
equation 1.25.

The precise mechanism for these measurements of IC50 or Ki is not important here,
however, we are interested in the relationship between these quantities. To calculate a Ki

one can measure the rate of the enzyme-catalyzed reaction whilst independently varying
the concentration of the substrate [S] and the concentration of the inhibitor. To calculate an
IC50 one would do the same but at a constant [S]. From this, we can see why calculating the
IC50 is cheaper since only one scan over the inhibitors concentration is needed to calculate
the IC50 value. To convert IC50 to Ki the [S] and the Michaelis constant Km are needed
for competitive and uncompetitive binding. Where Km is the concentration of the substrate
for which the rate of reaction is half its potential maximum. The desire to convert these
quantities stems from a drive to compare any computational binding affinities to experiment.
However, a problem can arise here when converting IC50 to Ki as [S] and Km are rarely
reported in the literature. To avoid this problem, Ki can be approximated as the IC50 if [S] is
close to zero for competitive inhibitors and Ki can be approximated as IC50 if [S] is very
large for uncompetitive inhibitors. For a noncompetitive inhibitor it is true that the IC50
and Ki are equal without approximation. Throughout this work many values of experimental
binding free energy will be presented, roughly half are derived from Ki values the remaining
half come from IC50s. None of the IC50 conversions are corrected for [S] for the reasons
outlined here. Two more measures of affinity are commonly seen in the literature. These are
pK or pIC50 where the p here means that either the binding constant or IC50 value is the
argument of − log 10.

1.6 Optimization

Using binding free energies and IC50 values a quantitative assessment can be made for
affinity of a protein to a ligand. A central goal of drug discovery is to be able to select a
drug from the set of all drugs which is assessed to have a favourable binding affinity to a
given protein target. We have discussed, however, there is a significant problem with this
selection process stemming from the huge number of potential drugs which exist. Many
problems in science involve finding a particular element of a large space impracticable to
search exhaustively. For these problems it is rare to restrict the exploration of this space
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to the brute force testing of points and application of numerical optimization methods can
yield solutions much more efficiently. For any continuous optimization problem an objective
function f (x) and the domain x of this objective ideally would be specified as follows.

The objective function is ideally:

1. A locally convex function, i.e. a (locally) unique minimum exists, with a corresponding
unique minimiser.

2. A continuous function of its arguments, i.e a small change in x gives a small change in
f (x) for all x.

3. Twice differentiable so the Jacobian and Hessian can be calculated.

The domain x would ideally:

4. Consist of real numbers.

5. Failing this x should be part of a convex set, i.e. any linear combination for allowed
values of x are also allowed .

6. If not convex the values of x which are allowed should be easily checkable.

Additionally we might want: a) to limit the dimensionality of the domain to be small,
b) to have a good starting position in the domain and c) to have a reasonable idea that the
objective is not full of local minima.

Building the objective like this allows numerical optimization techniques to be applied
more effectively, the problem of rational drug design as a whole is extremely difficult to map
onto an optimization problem which adheres to the above. This is partly because the full
pipeline of drug discovery has a very complex multi-valued objective. However, even if this
full pipeline is cut down into more tangible pieces, difficulties can still arise. Principally,
one of the problems pertains to how the ligand binding problem can be modelled in a way
that is amenable to numerical optimization. For example, molecules could be featurized
into a set of continuous real numbers such as molecular fingerprints. This might be ideal for
optimization and machine learning methods have somewhat helped to solve the problem of
how a molecular figure print might be used as input to algorithms which predict binding free
energy. However, converting the optimized solution, a vector of real numbers, back into a
molecule is in general a difficult problem [128]. This conversion problem could be solved if
instead of featurizing the molecule as a vector of real numbers the molecule is featurized into
chemical groups. If chemical groups are used as the optimization domain with groups added
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and subtracted to try and improve binding affinity [35, 36] the problem of converting a vector
of real numbers into a molecule is sidestepped. This domain, however, does not adhere to
point 4), 5) or 6) in our list of what makes a good optimization domain. This idea will be
explored further in chapters 3/4 and we will show that the real numbers which parameterize
atomistic FFs are a good domain for the optimization of binding affinity.

1.6.1 Techniques

The methods which can be used to explore a space in a directed way are numerous but have
a great deal of commonality. In the space of gradient based methods, one of the simplest
methods for numerical optimization is gradient descent (GD) which can be described as
follows. Given some starting point in a space x and a step size α , a local minimum can be
found in a function f (x) using two algorithmic steps:

1. Calculate a gradient of f (x) with respect to x, this is f ′(x)

2. Move down hill xn+1 = xn −α f ′(xn)

We refer to point 2. as the update formula. In the update formula, xn denotes the value
of x for the nth iteration of the optimizer. These steps are applied iteratively until no step
can be found to reduce f (x). The choice for the value of α is commonly made using a line
search because, whilst there theoretically exists some exact α value which minimizes f (x) in
the search direction, for practical reasons it can be easier to take finite steps in the search
direction until an approximate minimum is found. Other methods to choose the step size
exist such as trust region methods [129]. For gradient descent methods, the choice for the
search direction as − f ′(x) comes from the knowledge that moving against the gradient is the
direction along which f (x) will decrease the fastest for small steps. One of the strengths of
GD is that it should allow for a local minimum in f (x) to be found whilst only computing
the gradient and avoiding calculation of the more costly Hessian f ′′(x). However, GD can be
extremely slow for some problems, a qualitative example would be a function which has a
minimum at the end of a long valley. For such a function, GD will exhibit a characteristic
zigzag search through the valley to reach the minimum, where this zigzag results in many
more evaluations of f (x) than may be necessary. As mentioned, however, GD is a relatively
simple numerical optimization algorithm and there exists many alternative algorithms which
can address GDs weaknesses.

Newton’s method is another popular algorithm which can address some of the shortcom-
ings of GD. Newton’s method for optimization can be reached by considering a second order
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Taylor series expansion of f (xn + p) around xn,

f (xn + p) = f (xn)+ f ′(xn)p+1/2 f ′′(xn)p2, (1.26)

the step p which minimizes f (xn + p) can be found by taking the gradient of equation 1.26
with respect to p and setting the result to zero, which yields a search direction − f ′(x)/ f ′′(x)
and so the Newton update formula is as follow,

xn+1 = xn −α f ′(x)/ f ′′(x). (1.27)

The parameter α controls the size of the step in the Newton direction; the derivation suggests
α = 1, but we are at liberty to adjust α for the sake of stability. The update formula looks
similar to the GD update formula but the search direction is now modified by a factor 1/ f ′′(x),
which is including information for the curvature of the function. Having information about
this curvature, moves the step direction away from the steepest descent and towards the local
minimum, assuming the function is quadratic. Calculating the Hessian can be expensive
and inverting it can cause numerical problems [129, 130]. We can avoid calculating the full
Hessian by using quasi-Newton methods. Quasi-Newton methods forego the inclusion of the
numerically exact Hessian in the search direction, opting instead to use an approximation for
the Hessian which is updated with information from previous iterations of the optimizer. An
example of such a quasi-Newton method would be the Broyden–Fletcher–Goldfarb–Shanno
algorithm [131].

In this work the optimizers we will use are GD and sequential quadratic programming
(SQP). SQP is an iterative optimizer that can generate steps for a constrained nonlinear
objective [129]. Both the GD and Newton’s methods we have described here are uncon-
strained optimizations. The application of constraints is relatively self explanatory in that
they constrain the minimizer to a subset of possible values; their effect on the difficulty
of the optimization problem is less trivial. Constraints can reduce the number of feasible
local minimums in a function, which may help or hinder a user to find a global or local
minimum [129]. To apply SQP to the optimization problems in this work we use the SciPy
implementation which is a wrapper around an older, 1988, implementation by Dieter Kraft
[132]. The advantage of the SciPy implementation of SQP is that it allows for the use of any
arbitrary combination of constraints and the application of these constraints can be seen in
chapter 3: charge optimization.
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1.7 Machine Learning

Machine learning (ML) is a field that relies heavily on optimization methods, and as such
has advanced the theory and use of optimization methods. At their core most ML methods
are optimization problems where parameters must be found to extremize an objective. Some
of the most fundamental methods included under the umbrella of ML are well established
algorithms such as linear regression or k-nearest neighbor. However, the rapid development of
the ML field has seen newer methods such as artificial neural networks (NNs) applied across
a myriad of fields, ranging from image and speech recognition [133] to chemical compound
generation [134] and property prediction [135]. To examine these more contemporary ML
methods we will now consider examples of some classes of NNs in more detail.

Deep neural networks (DNNs) are a commonly used architecture in ML methods and
can be applied to property prediction problems [136, 137]. DNNs can be imagined like a
fitting problem where we have a set of inputs, x, containing d points. These inputs have a
corresponding output, yobserved , which also contains d points, both inputs and outputs are
indexed by k. We would like to approximate these data points with a function. Choosing a
toy example for the function as a straight line, ypredicted = Ax+b, there are two choices for
parameters which must be made: these are the gradient of the line A and the intercept b. The
objective is then to minimize the error between the straight line and the data points yobserved .
The choice for A and b could be made analytically and this would then be an application of
the linear regression method, equally A and b could be found by applying the optimization
techniques we have already discussed in the previous section. Numerically solving for A and
b allows for the introduction of more complicated functions which take a vector of x values
as input and operate on the input with more sophisticated functions.

For a more realistic application of a DNN the function we use to predict a single value
yobserved

k would take a vector of xk values, xk, as input and the function for ypredicted
k is

therefore,

ypredicted
k = w ·xk +bk, (1.28)

many A values are now required one for each element of the input vector, xk, and these
have been combined into a vector w. When the A values are combined like this they are
collectively referred to as the weights of the network. The bk values can be grouped over all
inputs into a vector of values generally referred to as the biases of the network, b. Equation
1.28 corresponds to a network consisting of one layer. More layers can be added by passing
the output of equation 1.28 to the input of another layer of similar linear equations. To stack
these linear layers together in a useful way an activation function [138] such as hyperbolic
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tan or the sigmoid function must be added to each layer. The objective function for a DNN
as described here could be,

min
w,b

DNN(x,w,b) =
1
d

d

∑
k=1

|ypredicted
k (xk,w,bk)− yobserved

k |. (1.29)

In the terminology of ML methods, this objective is referred to as an L1 loss function. Here
d denotes the number of predicted data points, ypredicted

k . The details of the function we are
using to approximate the true function of yobserved are contained within ypredicted(xk,w,bk).
In order to find the values of w, b, which minimize the objective, the gradient of the objective
with respect to the weights and biases of the network can be computed and the optimization
techniques described in the optimization section could be applied to find a minimum. More
commonly in ML, optimizers such as stochastic gradient descent [139] or ADAM [140] are
used but we do not discuss the detail of these optimizers here. More advanced applications of
the artificial neural networks described here have been made in many fields. In the domain of
material and compound property prediction these networks have successfully been applied to
a wide range of systems ranging from alkanes [136] to metal alloys [137] and most relevant
here the properties of drugs such as activity against a target [141] or toxicity in the human
body [142].

The major choices in network architecture are a) the functions used in each layer of
the network b) how information is passed between layers of a network and c) the objective
function. These three choices inform what problems the NN can be applied to solve. We will
see a large variation in these three areas now when examining another class of NN called
recurrent neural networks (RNN). RNNs are a type of NN specifically designed to operate
on sequential data. An ideal application of an RNN would be text generation for example. A
trained RNN could take as input the first word of a sentence and then generate sequential
words in that sentence.

The idea of acting on sequential data in this recurring fashion is built into the architecture
of the RNN, to describe this we introduce the notion of a cell. At training time, each cell in
the network takes as input the previous word in the sentence (the first cell is initialized with an
arbitrary start token). Each cell then outputs a probability distribution over all possible words,
figure 1.3 shows this RNN architecture diagrammatically. The objective function used to
learn the correct probability distributions is to maximize the likelihood that the correct word
will be selected, where correct is defined relative to a training sentence and this objective can
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be written as,

min
w,b

RNN(x,w,b) =−
T

∑
t=1

Qt logP(gt(x,w,b)|gt−1, ...,g1), (1.30)

here t is the index of the word in a sentence of length T , gt is a word in a sentence at index t
and P(gt |gt−1, ...,g1) is the probability distribution for generating gt given that gt−1, ...,g1

was previously generated. x is the start token which is constant here but could vary to bias
the output of the network and Qt is the target probability distribution which represents the
correct word in the training sentence at position t. Generally a RNN would be shown many
sentences at train time with weights and biases found to minimize equation 1.30 summed
over all training sentences.

Fig. 1.3 Schematic for how information is passed between RNN cells at training time. In this
instance the RNN should generate a probability distribution which maximises the probability
of generating the sentence ‘Who is it?’

An important detail we have omitted is the architecture inside each cell which determines
how gt(x,w,b) is a function of the weights and biases of the network, whilst we will not
explore this in detail here it is suffice to say that there are two cell architectures which are
commonly used for contemporary RNNs; these are long short-term memory (LSTM) and
gated recurrent units (GRU). These networks are specifically designed to lessen the impact
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of the vanishing gradient problem which was detrimental to early RNNs [143]. GRUs and
LSTM have been successfully applied to generate human readable text [144] and interpret
speech [133]. Most relevant here is the application of RNNs to de novo drug design by
Olivecrona et al. [128, 134] in these works an application of a GRU based RNN was made to
learn a string based syntax for compounds known as SMILES. This was achieved by training
the RNN with data consisting of small (10-50 heavy atoms) molecules selected from the
ChemBL data base containing only H, B, C, N, O, F, Si, P, S, Cl, Br, I elements. This training
data contained 1.5 million compounds in total. This RNN was capable of generating valid
and novel SMILES strings; several other groups have applied these RNN architectures to
similar problems [145, 146].

In the form we have described RNNs here they could already be applied to de novo
drug design. Simplified, this process would consist of two stages: 1) generation of many
molecules by the RNN (virtual library) 2) prediction of activity for generated compounds
with a discriminative model. This method resembles very closely established compound
library screens, a more innovative application of RNNs is to solve the inverse quantitative
structure–activity relationships (QSAR) problem. We saw in the discussion of DNN that a
model of this type requires an input vector x. In the context of compound property prediction
x can be a set of continuous values describing features of the molecules. These features can
be picked in a supervised or unsupervised fashion but regardless of how they are chosen
the features define a vector space. Within this space each point can be assigned a predicted
value for a property, for example protein binding affinity, by the DNN. If a point is found
to have predicted properties which are beneficial we would like to know what compound
corresponds to this point in the vector space. How to decode this vector into a compound is
the inverse QSAR problem.

Olivecrona and Blaschke et al. deal with this inverse QSAR problem in two ways, first
using a reward based method [128]. A reward layer can be considered as an additional
objective which when included in an RNN network, via an additional round of training, will
add a bias to generated compounds to satisfy the reward layer objective. Reward layers have
been used widely in ML applications across many fields [147, 148]. The reward layer here
acts as an additional post hoc tool to tune the types of molecules that are generated, beyond
the primary requirement of validity. In the context of the inverse QSAR problem Olivecrona
et al. used this method to generate molecules judged active by a DRD2 activity model.

An alternative method to solve the inverse QSAR problem explored by Blaschke et al.
allows the vector that the user wishes to decode to be an input to the RNN [149]. To achieve
this all compounds in the RNN training set are converted into vectors of molecular descriptors,
using an unsupervised method [150]. During the training of the network the RNN is passed,
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as input, the vector associated with a particular compound, whilst learning to generate that
compound. So the ’arbitrary’ start token we described for the general application of a RNN
has now been swapped for a specific vector which biases the RNN to generate a specific
SMILES string. This RNN was combined with the DRD2 activity model to search for
molecules judged to be active. The DRD2 model also used a vector of descriptors as input,
to search this vector space a Bayesian optimization method was used. When an vector of
descriptors was found, judged to be highly active by the DRD2 model, it could be passed to
the RNN which would decode it into a molecule. In chapter 5 of this thesis a similar method
will be used to solve the inverse QSAR problem for an existing plasmodium falciparum (the
parasite which causes the disease malaria in humans) activity model with the aim of helping
to generate effective therapeutics against malaria.

1.8 Parallelization

In this work the term efficiency, with reference to exploring chemical space, will mostly
be used to mean increasing the amount of information we can glean per clock cycle of a
computational resource. It is worth briefly considering efficiency in a different context, which
is in terms of computer wall time. Wall time refers to the real time passing on a clock on the
wall as opposed to the total CPU time which is a function of the number of processes we are
running in parallel on a CPU. Wall time is a critical component to time sensitive research,
such as the search for therapeutics to a newly emerged disease and reducing the wall time of
these calculations can be of great benefit.

In this work the only MD engine used was OpenMM which is already optimized to run
in parallel on the many compute units inside one GPU. There will be multiple opportunities
throughout this work where we can exploit the embarrassingly parallel nature of a task to
parallelize it over many GPUs and reduce the wall time of our calculations. An embarrassingly
parallel problem is one which can be easily decomposed over a domain such that little or no
communications are needed between the decomposed elements. On a scale of difficulty for
domains over which MD can be decomposed from impossible to embarrassing we would
have: a decomposition over sequential time is impossible, over simulation space is difficult,
and over repeats or replicas is embarrassing. The relative speed of communications and
computation for GPU hardware was previously referenced in section 1.3 and we commented
that computation was much faster than communications. Therefore for any calculations
we do in this work using GPUs we will avoid any difficult parallelization to minimize
communications.
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The codes presented in this work (Fluori f y, LigandOptimiser) make an effort to paral-
lelize the work of calculating the dynamics and FEP calculations wherever possible. The
decomposition of these tasks is different. Dynamics is decomposed by trajectory length i.e.
requesting 50 ns over 4 GPUs will compute 4 independent trajectories of 12.5 ns per GPU.
FEP is decomposed by λ windows i.e requesting 16 windows over 4 GPU will compute 4
FEP windows per GPU. There are additional decompositions for other calculations we will
perform that we have not discussed here but the idea is always the same: a decomposition of
the embarrassingly parallel part of a given task over GPUs.



Chapter 2

Computational Fluorine Scanning

We will now present the results of this thesis, each chapter in these results represents a
distinct piece of work, as such each chapter contains its own introduction, methods, results
and conclusion sub chapters. These chapters will include discussion for how each piece
constitutes part of this whole thesis. This discussion will reference how the theory used and
method developed allows for points in chemical space to be tested faster and or allow for
a reduced number of points to be tested in a search for compounds which satisfy a given
objective.

2.1 Introduction

In this chapter we present perturbative fluorine scanning, a computational fluorine scanning
method using free-energy perturbation calculations. This method can be applied to molecular
dynamics simulations of a single compound and make predictions for the best binders out of
numerous fluorinated analogues. We tested the method on nine test systems: renin, DPP4,
menin, P38, factor Xa, CDK2, AKT, JAK2, and androgen receptor. The predictions from the
presented fluorine scanning method are in excellent agreement with more rigorous alchemical
free-energy calculations and in good agreement with experimental data for most of the test
systems. However, the agreement with experiment was very poor in some of the test systems
and this highlights the need for improved force fields in addition to accurate treatment of
tautomeric and protonation states. The method is of particular interest due to the wide use of
fluorine in medicinal chemistry to improve binding affinity and ADME properties.

Fluorine scanning is a common technique in medicinal chemistry and involves systematic
replacement of hydrogen with fluorine [151–156]. It can improve binding affinity as well
as ADME properties [157, 158]. Fluorinations are able to influence the conformation of a
molecule as well as its ability to pass through a cell membrane or, relevant here the molecules
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potency against a target [157], these changes to the properties are mainly related to the
electronegativity of fluorine which is uniquely high. A striking example for the potential
of fluorine scanning can be seen in its application to factor Xa [159]. In the work of Lee et
al. the authors found that a modification from a hydrogen in compound 1 to a fluorine in
compound 2 improved the binding affinity by approximately 55-fold, see figure 2.1.

Fig. 2.1 Two factor Xa inhibitors and their Ki values

One of the drawbacks of fluorine scanning is the requirement to test each hydrogen-to-
fluorine mutation individually. For example, testing all the hydrogen-to-fluorine mutations in
compound 1 requires synthesizing and assaying 16 compounds. Testing combinations of two
hydrogen-to-fluorine mutations is an order of magnitude more challenging.

Computational fluorine scanning using a molecular mechanics-Poisson-Boltzmann/ sur-
face area (MMPBSA) method has been suggested in the past as a way to design molecules
with improved binding affinity in silico [160]. However, MMPBSA calculations use a sim-
plified implicit solvent model. Implicit water models fail to model key elements of protein
ligand systems, for example implicit water models are unable to deal effectively with interfa-
cial water molecules. These occur commonly and are very difficult to treat effectively with
implicit solvent approaches. Additionally the accuracy of implicit water models is lacking
for many types of free energy calculations [161–163], particularly relevant here are implicit
model’s use in the calculation of binding free energies [164]. As such alchemical free-energy
methods with explicit solvent are increasingly used in place of MMPBSA, calculations and
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we therefore propose the application of FEP calculation here for the purpose of computational
fluorine scanning.

To perform full FEP calculations for every possible fluorination, however, may not be the
most efficient way in which to perform a computational fluorine scan. Instead the common
reference state for all possible fluorination can be exploited. In order to leverage this common
reference state the theory of single step perturbation can be used as discussed in the free
energy section 1.4. SSP methods allow for the free energy changes to all perturbed fluorinated
states to be calculated from a single simulation in the reference un-fluorinated state. We refer
to this single step fluorine scan as perturbative fluorine scanning (PFS)

To carry out these PFS calculations we have developed a tool, Fluori f y1, for executing
the pipeline for these calculations automatically. Fluori f y uses OpenMM [165] as both a
molecular dynamics engine and library to create the modified alchemical systems. Fluori f y
will generate all of the required mutant ligands from an input wild type ligand; these mutants
are automatically parameterized, built into complex systems, simulated and analysed.

2.2 Methods

We consider the effect of hydrogen to fluorine mutations for the hydrogens attached to
aromatic carbons of nine different protein ligand binding systems, detailed in table 2.1. The
chemical structures of these ligands are shown in figures 2.2, all mutated hydrogens are
named explicitly.

Examining all of the systems we are considering here, table 2.1 shows the experimental
data that is available for hydrogen to fluorine mutations taken from the respective papers
where these systems were investigated [166, 159, 167, 169, 170, 168, 171–173]. Experimen-
tal ∆∆G values in table 2.1 are calculated from Ki or IC50 values found in their respective
references, see references for experimental methodologies. Errors for these experimental
values are reported here when provided in the original work. It should be noted that manual
preparation of the ligands was required. This manual preparation involved changing the
ligand structure from that provided in the Protein Data Bank [174] (PDB) to the highly
related structure for the start point of the experimental fluorine mutation examined. These
changes are reflected in the chemical structure shown in figure 2.2. In addition, DPP4 was
modelled as a monomer rather than the dimer in the crystal structure. This is done for the
significant computational saving of reducing the number of atoms by a factor of two, under
the assumption that this ligands distance, 20Å, from the dimer interface is sufficient that
modeling as a monomer as little effect on the results.

1Fluori f y available at https://github.com/adw62/Fluorify.

https://github.com/adw62/Fluorify.
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Fig. 2.2 Chemical structures depicting the wild type ligands in each system. (a) Renin [166],
(b) DPP4 [167], (c) Menin [168], (d) P38 [169], (e) FXa [159], (f) CDK2 [170], (g) AKT
[171], (h) JAK2 [172], (i) Androgen receptor [173].
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Table 2.1 ∆∆G for hydrogen to fluorine mutations obtained experimentally. PDB and PDBIDs
taken from the Protein Data Bank. The second column denotes the system as specified by
figure 2.2. Third column shows hydrogen being mutated as specified by figure 2.2. Values in
parentheses are the errors as reported in experimental work.

PDBID System Hydrogen Experimental ∆∆G (kcal/mol)

3OOT[166] Renin (a) H22 -2.47
1RWQ[167] DPP4 (b) H5 -2.31

DPP4 (b) H6 -2.31
DPP4 (b) H7 -2.31
DPP4 (b) H4 0.91
DPP4 (b) H8 0.91

4OG6[168] Menin (c) HAY -0.40(-0.51, -0.30)
3S3I[169] P38 (d) H1 -2.26(-2.67, -1.86)
2RA0[159] FXa (e) H18 -2.37
2W17[170] CDK2 (f) H18 -2.12
3MVH[171] AKT (g) H23 -1.26

AKT (g) H22 -0.29
AKT (g) H25 -0.29
AKT (g) H26 -0.20

3IOK[172] JAK2 (h) H24 -1.15
2NW4[173] Androgen receptor (i) H2 -1.11

The proteins studied in this chapter are renin, menin, DPP4, FXa, CDK2, AKT , p38
and JAK2. Renin is relevant in the pathology of diseases related to blood pressure such as
cardiovascular disease [175]. Menin interacts with a protein called mixed lineage leukemia 1
and this protien-protien interaction is critical in leukemias [168]. DPP4 is responsible in the
human body for cleaving a protein which stimulates the secretion of insulin and its inhibition
is relevant to treating type 2 diabetes [167]. FXa plays a role in coagulation, it’s inhibition is
relevant in anticoagulation therapies, such the prevention of recurrent deep vein thrombosis
[159]. CDK2 is important to the cell progression of eukaryotic cells and its inhibition can be
used in the treatment of cancer[176]. AKT inhibition can also play a role in the treatment
of cancers, with AKT also relevant in cell proliferation, and evidence suggesting AKT can
be deregulated in malignant cells [172]. The inhibition of P38 is sought in the pursuit
of anti-inflammatory therapeutics which can be used to treat inflammatory diseases such
as rheumatoid arthritis [169]. Mutations in the JAK2 protein have been implicated in the
pathology of myeloproliferative disorders which include several leukemias, inhibitors of
JAK2 are sought as therapeutics to these disorders [172].
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2.2.1 System Setup

All FEP and PFS calculations performed in this work were made with Fluorify the details
for each stage of these calculations are as follows. The co-crystal structure for the nine
systems examined here are taken from the PDB with PDBIDs shown in table 2.1. To prepare
these systems, non-standard residues were converted to their standard equivalents with
pdbfixer [177]. Selenomethionines were changed to methionines, sidechains were added
using Schrödinger’s Preparation Wizard [178], which was also used to assign protonation
state of all ionizable residues. All buffer solvents and ions were removed. The hydrogen
atom positions were then built using tleap and forcefield parameters and partial charges
were assigned from the AMBER ff14SB force field [93]. Parameters for the inhibitors were
generated using Antechamber [179] with AMBER GAFF 2 [99] and AM1-BCC [180]. These
structures and parameters were then passed to YANK’s [181] 0.23.7 automatic setup pipeline
to build solvated ligand-protein and ligand systems. For solvation, TIP4P-EW [107] was
used; at this stage a salt concentration of 150mM and any required counter-ions were added.
In every case, the edge of the solvation box was 15Å from any atom of the receptor and
ligand.

2.2.2 Molecular Dynamics

All simulations were performed with OpenMM 7.3.0 [54] as follows. First OpenMM’s
default minimizer was used to minimize all structures. Then equilibration was performed in
the NPT ensemble for 500 ps at 300k and 1 atm using a Langevin integrator and Monte Carlo
barostat. MD simulations were performed in the NPT ensemble using a time step of 2 fs.
Van der Waals interactions were truncated at 11.0 Å with switching at 9.0Å. Electrostatics
were modeled using particle mesh Ewald method with a cutoff of 11Å. All other simulation
parameters were left as default. We ran triplicate simulations of the non-fluorinated compound
with the ligand in complex and in solution, for 50 ns. Snapshots were collected every 5 ps.
The stability of complex structures was assessed with a calculation of protein RMSD over
trajectory lengths, see appendix figures A.1-A.9 for plots.

2.2.3 Perturbative Fluorine Scanning

During perturbative fluorine scanning the binding free energy ∆Gmutation between the original
and fluorinated ligands was calculated with an SSP methodology which applied the Zwanzig
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equation as follows,

∆Gmutation =−kbT log⟨e−β (U f luorinated−Uoriginal)⟩original, (2.1)

here U f luorinated is the potential energy of the system calculated in the fluorinated Hamiltonian
and Uoriginal the potential from the original un-fluorinated Hamiltonian. The angled brackets
<>original denote that the sampling is take from the system using the original Hamiltonian.
To calculate a relative binding free energy ∆Gmutation was combined from the bound and
unbound states as shown in figure 1.2.

To switch between Hamiltonians, van der Waals, charge, bond, angle and torsion param-
eters were all assumed to change. Since this was a post analysis and the dynamics were
collected from the system with the un-fluorinated bond parameters, the change in bonded
parameters had no effect on the dynamics of the molecule’s geometry. Whilst this should be
negligible when considering the change in geometry of non-perturbed atoms this may not
be true for the atoms perturbed from hydrogen to fluorine where the C-F bond should be
longer than C-H. To include this in the model, we used a hybrid topology approach where
massless interaction sites at the position of all possible fluorine mutations were added. The
position of these fluorines was defined relative to the position of their parent hydrogen such
that the C-F distance was always 1.24 times the C-H distance [182]. During the simulation
the LJ, charge, bond, angle and torsions parameters of these additional fluorine sites are
turned off. When mutating to a fluorinated system, the relevant hydrogen was turned off and
fluorine LJ and charge parameters were applied to the additional site this is demonstrated in
figure 2.3. The torsion and angle parameters were mutated from the hydrogenated system
to fluorinated system, but the torsions and angles remain on the parent hydrogen and were
not transferred to the virtual fluorine. This has no effect on the energy as the angles remain
the same. When simulating these systems, all hydrogen bonds were constrained, since the
position of the fluorine was defined relative to the position of its parent hydrogen it was also
implicitly constrained. We therefore make the assumption that the C-F bond oscillations
were negligible. To prevent the hybrid topologies from interacting, the additional fluorine
was excluded from interacting with their parent hydrogens.

2.2.4 FEP Calculations

To validate the PFS result, we compare it against standard alchemical relative binding free
energy calculations using the MBAR [114] estimator, see the free energy theory section for
more details on this. These FEP MBAR calculations use the same fluorinated/un-fluorinated
end states and hybrid topology described previously for PFS. We used a total of 12 equally
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Fig. 2.3 Left panel Androgen inhibitor with all fluorines turned off. Right panel Androgen
inhibitor with H1 and H2 transformed to F1 and F2.

spaced lambda windows in which LJ, charge, angle and torsion parameters were interpolated
simultaneously and lineally from the wild-type to the mutated state as described for the PFS
calculations. All windows were sampled independently with 2 ns of Langevin dynamics.
Giving a total of 24 ns of sampling per mutant half of the 50 ns used for all mutants of
a ligand in PFS. All simulation conditions were identical to the PFS molecular dynamics
calculation described above. The samples were processed with MBAR analysis using the
PyMBAR 3.0.1 [114] python library. This FEP protocol is run automatically as part of the
Fluorify package to check the ∆∆G for the top-ranked mutants as determined by PFS.

2.2.5 Summary of Methods

The FEP calculations performed in this work can be summarized as follows. Perturbative
fluorine scanning calculations were performed using SSP theory and any ∆∆G values from
these calculations are denoted as PFS ∆∆G. These SSP calculations were then verified with
full FEP calculations analysed with MBAR, ∆∆G values from these verification calculations
are denoted as FEP ∆∆G. All experimental ∆∆G will be denoted as EXP ∆∆G.

2.3 Results

We first analysed the convergence of PFS predictions as the simulation time was increased.
Figure 2.4 shows the PFS ∆∆G predictions for the factor Xa test case. From figure 2.4 it can
be seen that the ∆∆G calculations are well converged within 50 ns of sampling.

The results for each system are ∆∆Gs calculated by PFS and FEP and table 2.2 shows the
results of these ∆∆G calculations. ∆∆G values are presented for some number of the best
binding ligands where the number is taken to be either three or the rank (as determined by
PFS) of the best experimental mutant. Such that, PFS and FEP results are always presented
for the experimental mutant measured to be the tightest binder. All computational values in



2.3 Results 44

Fig. 2.4 Convergence of the PFS ∆∆G predictions for the hydrogen to fluorine mutations
in the factor Xa test case as the simulation time is increased, H labels shown in figure
2.2. Calculations were performed at 1.0 ns, 2.5 ns and then from 5.0 ns to 50.0 ns in 5.0
ns increments. ∆∆G reported as mean of three replicates with shaded area showing 95%
confidence interval computed as mean ± t2·SEM, where t2 is the t-distribution statistic with
two degrees of freedom, and SEM is the standard error of the mean computed from the
sample standard deviation of the three independent replicate predictions.
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table 2.2 are the average of three calculations, unaveraged values for PFS are reported in
table A.1 along with ∆∆G values from PFS calculations for all possible aromatic hydrogen
to fluorine mutations.

Overall PFS demonstrated excellent agreement with FEP with a mean unsigned difference
of 0.3 kcal/mol. PFS also shows good agreement with experiment in most systems with a
mean unsigned error of 1.2 kcal/mol and this is comparable to the mean unsigned error of
FEP and experiment, 1.1 kcal/mol. To examine the agreement of these methods more closely
the correlation of their results should be inspected. The correlation between PFS and FEP is
good as seen in figure 2.5 where fitting a trend line yields a R2 value of 0.9. This correlation
is favourably impacted by the uppermost top right data point and excluding this data point
R2 would be 0.8.

In terms of agreement with experimental data, errors are greater than 2.0 kcal/mol in only
three cases (all for DPP4). Overall correlation is poor, however, because the experimental
range for ∆∆G, 0.40 - 2.47 kcal/mol, is small. Table 2.3 shows the correlation R2, the mean
unsigned difference and RMSD between the PFS, FEP and experimental data. Despite poor
experimental correlations, both PFS and FEP have a reasonable accuracy in terms of mean
unsigned difference.

Looking at each test case individually, we see that PFS is a reasonably good predictor of
the mutant highlighted by experimental work. For systems renin, menin, P38, FXa, JAK2
and Androgen receptor PFS correctly predicts the mutant highlighted by experimental work.
System DPP4 was more challenging, the top mutants, H5, H6 and H7 all have the same free
energy. PFS ranks one of the best mutants, H7, as 3rd and incorrectly calculated the best
mutant as H13 and second best as H16. FEP does better, again incorrectly ranking the best
mutant as H13 but ranking two of the best experimental mutations H5 and H7 as second and
third respectively. Whilst PFS and FEP are well agreed (within 1 kcal/mol) for this test case
neither of these methods predict the best experimental mutant correctly. This may be due to
the system preparation, modelling the DPP4 monomer rather than the dimer. Additionally it
can be seen from figure 2.2b that H13 and H16 are on a phenyl already selected as favourable
for chlorination and this may explain why PFS indicates these positions over the best position
determined by experiment. For system CDK2, PFS fails to predict the top mutant however
this failure is mirrored in FEP. The predictions made by PFS and FEP for the ∆∆G of the
top experimental mutant agree within 1 kcal/mol. However neither are within 1 kcal/mol
of the experimental ∆∆G. PFS and FEP select H33 as the best position for fluorination.
It can be seen in figure 2.2f that H33 is close to a position already selected as favourable
for fluorination and this might explain why it selected over the position highlighted in the
experimental work.
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Table 2.2 PFS, FEP and experimental ∆∆Gs for all test cases. Results are reported as the mean
∆∆Gs of three replicates with 95% confidence interval reported between square brackets
computed as mean ± t2·SEM, where t2 is the t-distribution statistic with two degrees of
freedom, and SEM is the standard error of the mean computed from the sample standard
deviation of the three independent replicate predictions. Symmetry related positions are
indicated by †.

System/Hydrogen PFS ∆∆G [kcal/mol] FEP ∆∆G [kcal/mol] EXP ∆∆G [kcal/mol]

(a) Renin
H22 -1.8 [-2.4, -1.2] -1.4 [-1.8, -0.9] -2.47
H25 -1.6 [-2.1, -1.0] -1.5 [-2.3, -0.8]
H15 -0.6 [-1.0, -0.1] -0.4 [-1.1, 0.4]
(b) DPP4
H13 -1.2 [-3.6, 1.3] -0.8 [-2.1, 0.6]
H16 -0.5 [-1.7, 0.8] -0.2 [-1.7, 1.2]
H7 -0.3 [-1.0, 0.4] -0.2 [-0.8, 0.4] -2.31†
H5 -0.2 [-0.6, 0.1] -0.4 [-0.7, 0.0] -2.31†
H4 -0.2 [-0.6, 0.2] 0.2 [-0.6, 1.1] 0.91†
H6 -0.2 [-0.3, 0.0] -0.2 [-0.3, -0.1] -2.31
H8 -0.1 [-1.5, 1.3] 0.0 [-0.7, 0.6] 0.91†
(c) Menin
HAY -1.5 [-2.0, -1.0] -1.4 [-2.3, -0.5] -0.40
HAI -1.3 [-1.6, -0.9] -0.7 [-1.2, -0.3]
HAL -0.9 [-1.1, -0.6] -0.8 [-1.0, -0.5]
(d) P38
H1 -2.2 [-2.8, -1.6] -2.2 [-2.7, -1.6] -2.26
H19 -1.9 [-2.1, -1.6] -1.6 [-1.7, -1.4]
H16 -0.6 [-0.9, -0.3] -0.3 [-0.5, -0.1]
(e) Fxa
H18 -2.3 [-2.5, -2.0] -2.2 [-2.3, -2.1] -2.37
H29 -1.4 [-1.9, -1.0] -0.6 [-1.2, -0.1]
H9 -0.9 [-1.2, -0.6] -0.8 [-1.3, -0.4]
(f) CDK2
H33 -1.0 [-1.4, -0.5] -0.6 [-1.4, 0.1]
H14 -0.3 [-1.2, 0.6] -0.4 [-1.6, 0.8]
H18 -0.2 [-0.9, 0.5] 0.1 [-0.5, 0.7] -2.12
(g) AKT
H22 -2.2 [-2.6, -1.8] -0.9 [-2.3, 0.4] -0.29†
H25 -1.3 [-2.1, -0.5] -0.8 [-1.0, -0.6] -0.29†
H26 -1.2 [-2.2, -0.3] -1.9 [-2.3, -1.6] -0.20
H23 -0.7 [-1.1, -0.3] -0.5 [-0.8, -0.1] -1.26
(h) JAK2
H24 -2.0 [-2.4, -1.6] -2.1 [-2.7, -1.5] -1.15
H27 -1.4 [-2.2, -0.6] -1.2 [-1.7, -0.6]
H14 -1.0 [-1.3, -0.7] -0.8 [-1.4, -0.2]
(i) Androgen receptor
H2 -2.5 [-3.7, -1.3] -2.5 [-2.8, -2.1] -1.11
H7 -0.3 [-0.4, -0.2] -0.3 [-0.3, -0.2]
H5 3.5 [2.9, 4.0] 3.5 [2.9, 4.1]
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Fig. 2.5 Plot for ∆∆G for fluorine mutants for calculations from perturbative fluorine scanning
(PFS) and FEP for all data points in table 2.2. ∆∆G s are reported as the means with error
bars as 95% t-based confidence interval computed from the three independent replicate
calculations.
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Table 2.3 Correlation R2, mean unsigned difference, and RMSD between the PFS, FEP and
experimental data for all data points in table 2.2. 95% confidence intervals were estimated
with the bias-corrected and accelerated bootstrap method and are reported between square
brackets.

Comparison R2 Mean Unsigned Difference [kcal/mol] RMSD [kcal/mol]

PFS vs FEP 0.9 [0.6,1.0] 0.3 [0.2,0.4] 0.4 [0.2,0.5]
FEP vs EXP 0.0 [0.0,0.3] 1.1 [0.8,1.5] 1.3 [1.0,1.6]
PFS vs EXP 0.0 [0.0,0.2] 1.2 [0.9,1.5] 1.3 [1.0,1.6]

2.4 Conclusion

We have developed a new methodology for calculating relative binding affinities, which we
term perturbative fluorine scanning. For a typical small molecule inhibitor, PFS applied to
molecular dynamics simulations of a single molecule has the potential to combinatorially
assess all possible fluorination sites yielding millions of predictions. These predictions can
then be further assessed using more rigorous approaches and would be particularly useful in
medicinal chemistry, providing insight for which analogs to synthesize. The PFS method
is simple and could easily be improved by enhanced sampling techniques such as replica
exchange or solute tempering.

The change in binding affinity for a wide range of hydrogen to fluorine mutations has
been investigated computationally. Two computational methods were applied: FEP and PFS.
It was demonstrated that FEP and PFS are in excellent agreement. However, the correlation
between the computational methods and experiment for the ∆∆G calculations was not good.
This poor correlation could come from many potential sources, such as systematic errors in
the force fields or differences between computational and experimental systems. For example
DPP4 has the worst accuracy, compared to experiment, of any system investigated in this
work, this may stem from simulating it as a monomer compared to its dimer biological unit.
Another potential source of error could be the fluorination making a significant change to
the protonation, tautomeric, or conformational states of the ligand, an effect which we do
not account for here. The poor correlation with experiment does not raise a major concern
regarding the PFS method since it is similar for both FEP and PFS. Additionally, the mean
unsigned error for both methods remains low at 1.1 kcal/mol and 1.2 kcal/mol for FEP and
PFS respectively and this is very close to 1.0 kcal/mol which has been suggested as the
acceptable error for free energy calculations. Where PFS performs well is in reproducing FEP
results (both ∆∆G values and rankings) with good correlation, R2 = 0.9 and high accuracy,
mean unsigned difference = 0.3 kcal/mol at a fraction of the computational cost.
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The scope of this method could also be expanded significantly by considering additional
mutations such as chlorination, aromatic C to N and methylation. These changes, either alone
or in combination, can be considered from single simulations of the bound and unbound
states. In this work we have focused on hydrogen to fluorine changes which are particularly
attractive in a medicinal chemistry context due to the potential for fluorine to act as a
metabolic block in addition to a source of increased binding affinity [183]. We envisage the
use of PFS to identify hydrogen to fluorine changes predicted to increase binding affinity
in addition to hydrogen to fluorine changes predicted to improve ADME properties whilst
maintaining binding affinity.

The results in figure 2.4 suggest that the molecular dynamics simulations need to be run
for at least 30.0 ns and with multiple replicates to reach converged predictions. PFS consumes
far less computational resources compared to traditional FEP approaches. For example, the
FEP calculations in this work used 24.0 ns of sampling for a single mutant whereas PFS
used 50.0 ns of sampling for all possible mutants (For the FXa test case this is 11 single
hydrogens, 55 pairs of hydrogens and increasingly more for additional mutations). As a point
of reference the FXa case has 99,000 and 13,000 atoms in the complex and solvent systems
respectively. Run in parallel across 4 NVIDIA P100 GPUs using OpenMM 7.3.0 [54] and
CUDA 8.0 it takes approximately 8.5 hours to collect 50 ns for both the complex and solvent
systems. Using the methods outlined above PFS analysis then takes 1 hour to calculate ∆∆G
for all 11 mutant ligands. Comparatively with the same hardware and software, full FEP
takes 4 hours to compute ∆∆G for one mutant ligand. As such we have significantly reduced
the constant of proportionality between number of mutants assessed and computation time
by around a factor of 50 times. This allows significantly more fluorinated analogues to be
tested using the same computational time and demonstrates a clear gain in efficiency with
which to explore chemical space.



Chapter 3

Charge Optimization

3.1 Introduction

In this chapter we will develop methods to use numerical optimization techniques with
alchemical free energy methods, allowing for more directed and efficient explorations of
chemical space. In order to make this application we will now return to the idea, referenced
in the free energy methods section 1.4, which was that free energy methods ‘exploit the
malleability of the potential energy function’. This idea is relevant because just as we
are free to play with the potential energy function to evaluate the Zwanzig equation in an
alchemical method, we are also free to play with the potential energy function to construct
an optimization problem in such a way that it can be solved as efficiently as possible. A
good starting place to make the optimization efficient is to use the set of real numbers which
parameterize our potential energy function as the domain of the optimization. Using a
domain consisting of real numbers offers significant advantages for optimization problems
and these advantages are discussed in detail in the optimization section 1.7. Additionally
this domain incurs a limited inverse QSAR problem and it will be shown that the results of
any optimization in this domain can be analysed by eye to generate design ideas for ligand
mutations beneficial to the binding affinity. The disadvantage to this domain is the high
dimensionality of this space, for example optimizing the charges of a molecule with 60 atoms
gives a 60-dimensional space. These advantages and disadvantages will be discussed in more
detail below as they present themselves and the following piece of work will address the
computational cost of operating in this high dimensional space.

In this chapter, we present an explicit solvent alchemical free-energy method for opti-
mizing the partial charges of a ligand to maximize the binding affinity with a receptor. This
methodology can be applied to known ligand-protein complexes to determine an optimized
set of ligand partial atomic charges. Three protein-ligand complexes have been optimized in
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this work: FXa, P38 and the androgen receptor. The sets of optimized charges can be used to
identify design principles for chemical changes to the ligands which improve the binding
affinity for all three systems. In this work, beneficial chemical mutations are generated from
these principles and the resulting molecules tested using free-energy perturbation calcula-
tions. We show that three quarters of our chemical changes are predicted to improve the
binding affinity, with an average improvement for the beneficial mutations of approximately 1
kcal/mol. In the cases where experimental data is available, the agreement between prediction
and experiment is also good. The results demonstrate that charge optimization in explicit
solvent is a useful tool for predicting beneficial chemical changes such as pyridinations,
fluorinations, and oxygen to sulphur mutations.

Charge optimization methods have been previously developed by Tidor and co-workers
using an implicit water treatment of electrostatics [184, 185]. Poisson-Boltzmann calculations
are performed on the bound and unbound states in order to find the optimal partial charges
of a given molecule [186–189]. This approach has since been used by other academic
groups [190, 191], employed in industry [192], and been extended to consider induced fit
effects [193]. However, the approach suffers from the same deficiencies of all implicit water
approaches discussed in the previous chapter. Additionally in this previous work the receptor
and complex were assumed to be rigid. It is known that this may play a significant role
in binding free energies [193]. Due to advances in available computing power, explicit
water approaches to charge optimization are now possible. We propose to exploit these
computational advances by applying SSP to the bound and unbound states of small molecule
inhibitors to develop a method for electrostatic charge optimization in explicit solvent.

Combining SSP with explicit water MD calculations and flexible receptors and complexes
has the potential to develop a more accurate charge optimizer. To carry out these charge
optimizations, we developed a tool to automate their execution. This tool is freely available
at https://github.com/adw62/Ligand_Charge_Optimiser. Our ligand charge optimizer uses
OpenMM [165] as both an MD engine and a tool to create the modified alchemical systems.
The software will generate all of the required mutant ligands from an input wild type ligand.
These mutants are automatically parameterized, built into the complex systems, simulated,
and optimized.

3.2 Methods

We optimize the ligand partial charges for three protein test cases: FXa, P38 kinase, and the
androgen receptor. The chemical structures of the ligands studied are shown in table 3.1. The
ligands were built from highly related molecules in the Protein Databank [174]: 2RA0 [159]

https://github.com/adw62/Ligand_Charge_Optimiser
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Table 3.1 Name of the target for each system with ligands 2D chemical structure and the
PDBIDs of the target ligand complex.

Target Ligand PDBID

Factor Xa 2RA0[159]

P38 3S3I[169]

Androgen Receptor 2NW4 [173]

(FXa), 3S3I [169] (P38), and 2NW4 [173] (androgen receptor). These small modifications
are made from the PDB to allow comparison with experimental data [159, 169, 173].

3.2.1 System Setup and Molecular Dynamics

Complex structure preparation and molecular dynamics protocol are unchanged from the
computational fluorine scanning chapter 2.

3.2.2 Workflow

In this work, several free energy methods were used in different contexts. For clarity we will
now outline these methods for future reference. After models for the protein ligand system
were built, we performed an optimization of the charge parameters of an inhibitor. The



3.2 Methods 53

algorithm which was used to find a local minimum in the objective function was the SciPy
1.1.0 [194] implementation of the Sequential Least Squares Programming algorithm [132].
In order to perform this optimization two calculations are needed: one for the objective
and one for the gradient; both of these calculations are performed using SSP theory. The
details of how these calculations are performed can be found in the Optimization 3.2.3, SSP
Objective 3.2.4 and SSP Gradient 3.2.5 sections below. Once this optimization is assessed
to be converged, the output is analysed to generate design ideas for ligand mutations which
should be beneficial. We then calculate the relative binding free energy for these designed
mutations. These calculations, to test the design, ideas are performed using MBAR. We
name these calculations full FEP with more details in the FEP Calculations section below.
Figure 3.1 illustrates how each of these calculations are combined in the full workflow.

Fig. 3.1 Diagrammatic workflow for calculations performed in this work. SSP objective and
SSP gradient method uses an exponential averaging method to calculate free energies. Full
FEP uses the MBAR estimator.

3.2.3 Optimization

The objective function and the constraints of the optimization performed in this chapter are
shown in equation 3.1-3.4,
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min
qi

= ∆Gbinding(qi)−∆Goriginal, (3.1)

s.t.
M

∑
i=1

= net charge, (3.2)√
∑

M
i=1(qi,0 −qi,n+1)2

M
≤ rmsd limit, (3.3)

|(qi,n −qi,n+1)| ≤ 0.01e. (3.4)

In the objective ∆Gbinding(qi) was defined as the difference in free energy between the bound
and unbound states of the ligand with charges qi. ∆Goriginal was defined as the difference
in free energy between the bound and unbound states of the ligand with the charges of the
original unoptimized ligand, ∆Goriginal is thus a constant. This objective function is a relative
binding free energy which was calculated, as discussed in section 1.4.1, as the difference
of ∆Gmutation in the bound and unbound states. For brevity we will now refer to the relative
binding free energy calculated in the objective as ∆∆Gopt . In the objective and constraints qi

are the charges of the ligand and qi,n the charges for iteration n of the optimization, M is the
number of atoms in the ligand and net charge the total net charge of the ligand. Equation 3.2
constrains the net charge of the ligand to be constant. Equation 3.3 constrains the root mean
squared difference between the ligands original charges, qi,0, and the ligand’s charges in the
next optimization step, qi,n+1, to be less than some value rmsd limit. These rmsd limits were
chosen to limit the change in binding free energy to a sensible range < 10 kcal/mol. Without
this limit, the optimization continued to very large unphysical values of binding free energy
because the atomic partial charges can reach unphysical values. Equation 3.4 bounds the
perturbation to each atom to be less than 0.01e per optimization iteration, where e is the
elementary charge. This constraint ensured that the optimizer never took a large step for
which a converged value of the objective, ∆∆Gopt , could not be calculated using SSP.

With a hand picked limit of 0.01 e in equation 3.4 a determination of how much sampling
was required to give converged calculation of ∆∆Gopt with a perturbation to each atom of
0.01 e was made in figure 3.2. The amount of sampling needed was determined to be 2.5 ns,
this was then the amount of sampling used in this work to calculate the objective and gradient
for each optimization step. We will now discuss the details of how this SSP calculation can
be used to efficiently calculate the objective and gradient for this optimization.
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Fig. 3.2 Convergence of the ∆∆Gopt predictions in the Factor Xa test case for a perturbation
of +0.01 e to half the atoms and -0.01 e to the other half (maintaining the net charge) as the
simulation time is increased, calculations were performed at 0.01 ns and then from 0.05 ns to
2.5 ns in 0.05 ns increments. The values of ∆∆Gopt are reported as mean of three replicates
with the shaded area showing the 95% confidence interval computed as mean ± t2· SEM,
where t2 is the t-distribution statistic with two degrees of freedom, and SEM is the standard
error of the mean computed from the sample standard deviation of the three independent
replicate predictions.
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3.2.4 SSP Objective

The objective was calculated with a straightforward application of the Zwanzig equation to
calculate ∆Gmutation in the bound and unbound states as follows,

∆Gmutation =−kbT log⟨e−β (Uperturbed−Uunperturbed)⟩unperturbed, (3.5)

here Uperturbed and Uunperturbed are the potential energies of the system calculated using
the Hamiltonian of the perturbed system and the unperturbed system, respectively. To
change Hamiltonian, the charges were switched from unperturbed, qi,n, to perturbed values,
qi,n+1. However, Lennard-Jones, bonded, angle, and torsion parameters did not change. We
combined ∆Gmutation in the bound and unbound states as seen in figure 1.2 and this gave a
value for ∆∆Gopt .

Since an SSP method is being used, efforts were made to avoid poor overlap between the
end states of any perturbations. To achieve this two ideas were use 1) constraints were applied
to the optimization and the relevant constraint has already been discussed, see equation 3.4.
2) the system was re-sampled after every optimization step with 2.5 ns. If this re-sampling
was not done then the difference between the perturbed and unperturbed systems would grow
over the course of the optimization, reducing the overlap in phase space and so reducing the
applicability of SSP. Resampling also had one advantage, as it allowed for a calculation of a
reverse alchemical step. Therefore, ∆∆Gopt for both the forwards and backwards alchemical
transformation were calculated for every step and the ∆∆Gopt in the results are reported as
an average of the forwards and backwards transformations.

This need to re-sample is not ideal and reduces the efficiency of applying SSP. For the
calculation of the objective, SSP may not be the best choice of method as the size of any
optimization step is limited by the need to maintain good overlap between the end states of
the calculation of the objective. In chapter 4, we will explore the use of MBAR to calculate
the objective and this will eliminate the problems highlighted with SSP here. Despite some
of the drawbacks of SSP mentioned here, one area in which SSP is extremely useful is for
calculating the gradient of the objective and we will explore this idea in the next section.

3.2.5 SSP Gradient

The gradient of the objective with respect to the force field parameters, ∆∆Ggrad , was
calculated as shown in equation 3.6. For a force field parameter, here we use the partial
charge, q, note that this could be any parameter which is an argument of the potential.
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∇(∆Gbinding(qi)−∆Goriginal) =
∆Gbinding(qi +h)−∆Gbinding(qi)

h
. (3.6)

Here h is a finite difference of 0.00015 e. This is chosen by hand by observing the
variation in the gradient as this value is changed, a value of 0.00015 e was chosen as the
resulting calculations of the gradient where observed not to depend on small changes to this
value. The numerator of the RHS of equation 3.6 is a ∆∆Gbinding and can be calculated using
an SSP approach, using sampling only from a central state containing the ligand using values
qi as detailed in equation 3.5. This calculation of the gradient shows the advantage of SSP
as numerous (10s-100s) evaluations of the RHS of equation 3.6 are required, one for each
dimension in q space, and they can all be calculated from the sampling of one central state.
The number of dimensions in q space comes from the number of optimized atoms in the
molecule. Figure 3.3 shows the ligand from the androgen receptor test case where as an
example there are 10 named hydrogens which could be optimized and therefore there would
be a 10 dimensional q space.

Fig. 3.3 3D structure for the androgen receptor inhibitor with example optimized hydrogens
explicitly labeled.

The finite difference in equation 3.6 is between molecules that are extremely similar,
differing only by 0.00015 e in one atom’s charge parameter. There is therefore likely to be
a large sampling overlap between these states allowing SSP to be applied. Of note is that
for each finite difference calculation the charge of the simulation box has been changed by
0.00015 e. The potential for finite size effects [195] caused by this change were investigated
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and the padding of the simulation with solvent chosen to negate these effects, see appendix
figure B.10.

3.2.6 Optimization Validation

For each optimization, we would like to inspect the convergence of the result over the number
of optimization steps. In the methodology, mention was made to limiting the RMSD between
the original and optimized charges to some value rmsd limit. The values which are chosen
for the rmsd limit are 0.01, 0.03, and 0.05 e. The optimization is therefore repeated with the
RMSD bound to these three values. With an rmsd limit of 0.01 e, the optimizer is limited to
seven steps, as adequate convergence is seen at this point. For the larger values of rmsd limit,
the convergence is slower and, therefore, for optimizations with an rmsd limit of 0.03 and
0.05 e the optimizer is limited to 20 steps. A good metric to analyse the results of the
optimization is the set of optimized charges taken as a vector to assess convergence across
simulation steps, we take the dot product of the normalized vector of new charges with the
normalized vector of original charges for each step of the optimization and present the result
in figure 3.4.

Figure 3.4 shows that the direction of the charge vectors over all systems and values of
rmsd limit are well converged. The direction of these charge vectors represents where the
charge is being applied on the molecule and this is the information that will be used in the
results section to make chemical mutations to improve the binding affinity of these ligands. It
can also be seen that the dot product between the original and optimized charges is different
for different values of rmsd limit. To quantify this difference, the dot product between the set
of optimal charges obtained for rmsd limit values of 0.01 with 0.03 and 0.05 e can be taken
and, the results of these projections can be seen in table 3.2.

In table 3.2 we can see the dot product of the optimized charges from the optimization
with an rmsd limit of 0.01 e with themselves returns 1.00 as expected. The dot product of
the vector of charges with rmsd limit = 0.01 e with rmsd limit = 0.03 e also returns 1.00 as
these vectors are extremely similar in direction. The dot product of the vector of charges with
rmsd limit = 0.01 e with rmsd limit = 0.05 e returns approximately 1.00 as these vectors are
extremely similar in direction but not as close as 0.01 e with 0.03 e . Therefore we conclude
from the results in table 3.2 that sets of charges for the same system are pointing in the
same direction. Thus only the value of the charge changes are dependent on the rmsd limit
value, whilst the direction and relative magnitude of the charge changes are completely
consistent. This is an important result because it shows that the design principles identified
by the approach will not depend on the arbitrary choice of the rmsd limit. The invariance in
where the charge is being applied can also be seen by eye if the atoms are colored by change
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Fig. 3.4 Dot product of the normalized optimized charges with the normalized original
charges showing variation of charge vector direction with step. Results are shown for RMSD
limits 0.01, 0.03 and 0.05 e. With the FXa, P38 and androgen receptor systems labeled a), b)
and c) respectively.
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Table 3.2 Dot products of the normalized vector of optimal charges using an rmsd limit of
0.01 e with the normalized vector of optimal charges using different rmsd limit values.

RMSD [e] FXa P38 Androgen Recp.

0.01 1.00 1.00 1.00
0.03 1.00 1.00 1.00
0.05 0.99 0.98 0.99

in charge. Figures illustrating this are presented in the appendix figures B.1-B.9 for all sets
of optimized charges.

To inspect the convergence of the optimization we can also look at the value ∆∆Gopt over
the course of the optimization, and this can be seen in figure 3.5. With an rmsd limit of 0.01
em figure 3.5 demonstrates that ∆∆Gopt is well converged for all systems. For rmsd limits of
0.03 or 0.05 e, the results are only well-converged for the androgen receptor system, figure
3.5c. This suggests that ∆∆Gopt for the optimized set of charges is dependent on the value of
rmsd limit, and that ∆∆Gopt is slow to converge for larger ligands such as those in the p38
and FXa test cases.

Additional calculations were made to verify the cumulative sum of ∆∆Gopt over all
optimization steps. This involved calculating the relative binding free energy between the
original and optimized parameters of the inhibitor with MBAR. The mean absolute error
between the values of ∆∆Gopt calculated by SSP and the verification calculation calculated
with MBAR was 1.04 kcal/mol. Details and results of this calculation can be seen in the
appendix table B.1.

3.2.7 FEP Calculations

The optimized charges are used to generate design ideas for chemical mutations. These
chemical mutations are applied to the ligands with the aim of improving their binding free
energy. The relative binding free energy change of the ideated compounds was tested using
full FEP calculations and analysed with MBAR. We term the calculated binding free energy
for these tests FEP ∆∆G. These full FEP calculations share their name with the full FEP
calculations discussed in chapter 2 because these calculations use the same methodology and
code.

To perform these calculations the charges, van der Waals and bonded terms were all
interpolated simultaneously from the original to the designed state. All windows were
sampled independently with 2 ns of Langevin dynamics, giving a total of 24 ns of sampling
per mutant, unless specified otherwise. In the case of hydrogen to fluorine mutations
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Fig. 3.5 Cumulative sum of ∆∆Gopt averaged over three replicates for each step of the
optimizer. Three optimizations are shown with RMSD bound to 0.01, 0.03 and 0.05 e. With
the FXa, P38 and androgen receptor systems labeled a), b) and c) respectively.
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Table 3.3 Abbreviated terms used to reference various relative binding free energies calculated
in this work with a brief description of the calculation for the reader’s reference

Free energy value Description

∆∆Gopt The value for the objective. Calculated between
the original and optimized charges with SSP.

∆∆Ggrad The value for the gradient. Calculated between
many highly related ligands using SSP.

FEP ∆∆G The value for mutations calculated with MBAR.
∆∆Gexp The value for mutations determined experimentally.

the original hydrogen was constrained, therefore its associated C-H bond could not be
interpolated to a C-F bond. When neglecting the interpolation of this bond the fluorine
appeared at the position of the hydrogen, instead of the true physical position of the fluorine.
To avoid this issue, for mutations involving constrained hydrogen, we used the same hybrid
topology approach discussed in chapter 2.

3.2.8 Summary of Methods

To summarize, in this chapter an optimization of the charge parameters of several ligands was
performed. The objective of this optimization was to find a set of charges to minimize the
relative binding free energy of the ligand to a protein. This objective, ∆∆Gopt , and gradient,
∆∆Ggrad , were both computed using SSP calculations. The results of the optimizer are used
to predict beneficial areas on the ligand for chemical mutations. To validate these predictions
the relative binding free energy for these mutations were computed using FEP and the MBAR
estimator and we call these calculations full FEP calculations and denote the values calculated
as FEP ∆∆G. For the reader’s reference table 3.3 contains all the abbreviated terms used and
a brief description of the calculation.

3.3 Results

To visualize the results of the optimization, the sets of optimal charges are used to color the
atoms of the ligands and these visualizations are shown in figure 3.6. We developed specific
design ideas to improve ∆∆Gbinding based on the changes in charge. First analyzing the Fxa
ligand, three options are selected:

• Replacing the hydrogen with a fluorine at position 1a.
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Fig. 3.6 Panels a), b) and c) show the FXa, P38 and androgen receptor ligands with atoms
colored by change in charge relative to the original partial charges. The optimised charge is
taken from the optimisation with RMSD bound to 0.03 e. Blue represents atoms which are
more negative and red represents atoms which are more positive. Selected sites for chemical
modification are numbered.



3.3 Results 64

• Replacing the nitrogen with a carbon at position 2a.

• Replacing one or more of the hydrogens with a fluorine atom on the methyl group at
position 3a.

Analyzing the P38 ligand, four options are selected:

• Replacing the hydrogen with a fluorine at position 1b or 4b.

• Replacing the carbon with a nitrogen at position 1b or 4b.

• Replacing the oxygen with a sulphur at position 2b .

• Replacing one or more of the hydrogens with a fluorine atom on the methyl group at
position 3b.

The final set of changes apply to the ligand of the androgen receptor with three options
selected:

• Replacing the oxygen with a sulphur at position 1c and 2c

• Replacing the hydrogen with a fluorine at position 3c, 4c or 5c.

• Replacing the bonded carbon with a nitrogen at positions 4c or 5c.

FEP ∆∆G for all of these changes was calculated using the FEP protocol discussed in the
methods section. Each FEP calculation was performed in triplicate and the averaged results
of these calculations can be seen in table 3.4.

Table 3.4 FEP ∆∆G for proposed chemical mutations to the FXa, P38 and androgen receptor
ligands calculated with FEP. The positions denoted numerically correspond to numerical
positions in figure 3.6. FEP predictions are reported as the mean value of three replicates with
95% confidence interval reported between square brackets computed as mean ± t2· SEM,
where t2 is the t-distribution statistic with two degrees of freedom, and SEM is the standard
error of the mean computed from the sample standard deviation of the three independent
replicate predictions. The asterisk label * indicates single or double fluorinations of a methyl.
These are averaged over every hydrogen or pair of hydrogen in the methyl and as such this
data represents the averaging of nine replicates with the confidence interval reported such
that t2 is now the t-distribution statistic with eight degrees of freedom. The obelisk label †
denotes calculations that were slow to converge and run with 24 lambda windows of 2 ns.
The diesis ‡ label denotes data taken from the previous chapter.

FXa
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Position and mutation Mutant FEP ∆∆G [kcal/mol]

(1a) Hydrogen to fluorine -2.2 [-2.3, -2.1]‡

(2a) Nitrogen to carbon 3.0 [1.9, 4.1]

(3a) Hydrogen to fluorine -0.1 [-0.2, 0.0]*

(3a) Double hydrogen to fluorine -0.6 [-0.7, -0.5]*

(3a) Triple hydrogen to fluorine -0.8 [-1.2, -0.5]
P38

(1b) Hydrogen to fluorine -2.2 [-2.7, -1.6]‡
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(1b) Carbon to nitrogen 2.0 [1.2, 2.7]

(2b) Oxygen to sulphur 0.0 [-2.7 , 2.7]†

(3b) Hydrogen to fluorine 0.3 [0.1, 0.4]*

(3b) Double hydrogen to fluorine -0.5[-0.9, -0.1]*

(3b) Triple hydrogen to fluorine 1.0 [-0.1, 2.1]

(4b) Hydrogen to fluorine -1.6 [-1.7, -1.4]‡

(4b) Carbon to nitrogen -0.4 [-1.7, 1.0]
Androgen Receptor
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(1c) Oxygen to sulphur -2.1 [-3.3 , -0.9]

(2c) Oxygen to sulphur -2.0 [-3.2 , -0.8]

(3c) Hydrogen to fluorine -0.6 [-0.8, -0.4]*

(3c) Double hydrogen to fluorine -1.6[-1.8 , -1.4]*

(3c) Triple hydrogen to fluorine -0.1 [-0.9, 1.0]

(4c) Hydrogen to fluorine -2.5[-2.8, -2.1]‡

(4c) Carbon to nitrogen -0.9 [-1.4, -0.5]
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(5c) Hydrogen to fluorine -0.3 [-0.3, -0.2]‡

(5c) Carbon to nitrogen 1.1 [0.0, 2.2]

The atoms indicated by the optimization to beneficially be more negative in figure
3.6 line up with experimental work on these test cases [159, 169, 173]. Mutants 1, 6,
and 19 are predicted by full FEP to be beneficial (-2.2 kcal/mol, -2.2 kcal/mol, and -2.5
kcal/mol respectively) and this is in good agreement with experimental data (-2.1 kcal/mol,
-2.3 kcal/mol, and -1.1 kcal/mol respectively). Experimental data does not exist for the
remaining proposed mutations. However, 73% of the mutations in table 3.4 are predicted
to be favourable by FEP. Both the FXa and androgen systems have a higher success rate
with 80% and 89% of ideas from charge optimization being beneficial as assessed by FEP
respectively. P38 has a lower (though still promising) success rate with 50% of mutations
being beneficial as assessed by FEP.

3.4 Conclusion

We have demonstrated ligand charge optimization in explicit solvent to be a useful tool to
rationally design ligands with improved binding affinities. The electrostatics of three ligand
receptor systems were systematically optimized using the alchemical SSP method, yielding
sets of optimal ligand charges. These sets of optimal charges were used to generate design
principles for chemical mutations to the ligands that would yield improved receptor binding
affinity. These chemical mutations were assessed with a more rigorous FEP method. Using
FEP, 73% of the predicted chemical mutations were found to be beneficial. The average
improvement of the beneficial mutations was approximately 1 kcal/mol. In three of these
cases, experimental data exists and is in excellent agreement with calculations, with mutants
1, 6, and 19 in table 3.4 predicted by FEP to be beneficial (-2.2 kcal/mol, -2.2 kcal/mol, and
-2.5 kcal/mol respectively) compared to the experimental data (-2.1 kcal/mol, -2.3 kcal/mol,
and -1.1 kcal/mol respectively).
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The major advantage of SSP shown in this work is in the calculation of the gradient. SSP
allows for many highly related mutations to be assessed quickly, as is required to calculate
the gradient via a finite difference method. For comparison, to collect 2.5 ns of sampling
for the FXa system with 99,000 and 13,000 atoms in the complex and solvent systems
respectively takes 29 minutes. To calculate a gradient from this sampling takes 15 minutes
and so, including sampling, this totals to 44 minutes per gradient. To calculate the free energy
change, for a perturbation of 0.00015 e to one ligand atom, with full FEP (assuming 1.0 ns
of sampling converges the ∆∆Gbinding calculation, see appendix figure B.11 for convergence
plot) takes 14 minutes. The FXa ligand contains 58 atoms with partial charges these must all
be perturbed in the complex and solvent systems, so in total each gradient calculated with
FEP would take approximately 27 hours. This advantage would only be compounded if a
more complex optimization scheme, which required a calculation of the Hessian, was used.
Both these example FEP and SSP calculations of the gradient are run in parallel, see the
parallelization chapter for detail, across 4 NVIDIA P100 GPUs using OpenMM 7.3.0 and
CUDA 10.0.

Beyond the calculation of the gradient the overall saving in computer time can be seen
by considering that to test one fluorinated analogue of the FXa ligand with full FEP, takes
roughly 4 hours, as calculated in chapter 2. Therefore to test all fluorinated analogues
would take roughly three days of computer time. Using the optimization method presented
here we can assess qualitatively the benefit of adding, not only a fluorine at all possible
positions but also nitrogens, sulphurs and potentially any charged atoms or groups. Assuming
the optimization needs 48 steps, including calculations for all values of rmsd limit, with
each step for FXa taking less than 1 hour, this equates to roughly two days of computer
time. It can therefore be seen that the method presented here allows for design ideas to be
generated quickly, assessing the relative benefit of mutating atoms on a ligand far quicker
than traditional FEP. This increased speed represents a significant gain in efficiency for the
exploration of chemical space. Additionally the ideas generated are easy to interpret when
compared to faster ML methods. This is because the inverse QSAR problem we have created
here (mapping atom type onto the real numbers) was easily solvable by eye. Problems may
arise if the optimizer were to pick very unphysical charges however this has been addressed
here with some simple constraints.



Chapter 4

Steric Optimization

4.1 Introduction

In this chapter, a novel method to rationally design inhibitors with improved steric contacts
and enhanced binding free energies is presented. This new method uses alchemical single
step perturbation calculations to rapidly optimize the van der Waals interactions of a small
molecule in a protein-ligand complex in order to maximize its binding affinity. The results of
the optimizer are used to predict beneficial growth vectors on the ligand and good agreement is
found between the predictions from the optimizer and a more rigorous free energy calculation,
with a Spearman’s rank order correlation of 0.59. We use the Spearman’s rank order
correlation under the assumption that the rank order of compounds would be the most useful
information to the drug discovery campaigns where we envisage these methods could be
applied. The advantage of the method presented here is the significant 10x speed up over
more rigorous free energy calculation and sublinear scaling with the number of growth
vectors assessed. Where experimental data was available, mutations from hydrogen to a
methyl group at sites highlighted by the optimizer were calculated with MBAR and the mean
unsigned error between experimental and calculated values of the binding free energy was
0.83 kcal/mol.

This work has significant overlap with the charge optimization method presented in the
previous chapter. Whilst the objective function remains the same here the primary difference
is that we now consider this objective as a function of the steric radius of the ligand atoms,
σ . Optimizing the binding free energy with respect to σ introduces some new challenges.
These challenges stemmed mostly from the larger perturbations to phase space introduced by
perturbing the steric parameters compared to charge parameters, in addition to the larger size
of the groups any design ideas might suggest. For example previously we have considered
adding mostly fluorine, which we know to be a small perturbation treatable with SSP, however
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in this chapter the design ideas will point to the addition of larger groups such as methyls.
To address these challenges, several changes are made to the previous charge optimization
methodology and these changes are detailed in the methods section 4.2.

Given the overlap with the charge optimization chapter similar comparisons can be drawn
between this work and the charge optimization work of Tidor et al. This work builds on the
work of Tidor et al. by adopting more contemporary molecular dynamic methodologies such
as flexible ligand/receptor, explicit water and PME electrostatic. Other relevant comparisons
can be drawn between this work and any other computational methods which grow ligands
with the aim of improving binding affinity. Whilst this work focuses specifically on the
hit-to-lead subset of the drug discovery pipeline, we will draw some comparison here to
the broader set of de novo design programs discussed in section 1.2.4. In section 1.2.4, we
discussed how de novo methods score ligands based on the complementarity with the receptor
and mentioned a review of these methods by Schneider et al. [38], which commented that,
receptor based de novo methods generally aim to approximate the full binding free energy
in their scores for affinity. The work presented here does not make this approximation and
instead the binding free energy is calculated explicitly using alchemical free energy methods.

One additional variable in the design of de novo algorithms not discussed in section
1.2.4 was how affinity scores are used to build an optimal ligand. Whilst there exists several
methods which are used to build ligands such as fragment linking [36], for this work we are
most interested in ligand growing methods. Ligand growing, as the name suggests, involves
adding chemical entities to the ligand sequentially to improve the complementarity score.
The chemical entities can range from individual atoms [196] to whole chemical groups [197].
In the former case some efforts are typically made to restrict the exploration of chemical
space and limit combinatorial explosions in the number of possible ligands that could be
generated [196]. In this chapter, these combinatorics were dealt with by only considering the
addition of methyl groups.

The method used to build tight binding ligands in this work is similar to the growth
methods used in previous work, however, only growths motivated by the optimization of
the binding free energy with respect to the steric parameters of the ligand will be explored.
Using information from the gradient and optimization allows for a more directed exploration
of chemical space and should reduce the number of points which must be tested to find a
beneficial ligand mutation.
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4.2 Methods

The goal of this work is to optimize the steric parameters of a ligand in a protein-ligand
complex and use the results of this optimization to predict beneficial growth vectors on
the ligand more efficiently than existing FEP methods. To this end experimental data
has been collected to retrospectively validate this method from the following systems:
androgen receptor (AR)[198, 199], renin[166], menin[168], thrombin[200], and SARS
PL protease[201, 202]. These systems were chosen as they contain data for free energy
differences for changes from hydrogens to methyl groups. Two calculations were performed
with menin using two different ligands, these are termed menin A and B. Four calculations
were performed for the thrombin systems using four different ligands, these are termed
thrombin A, B, C and D. All ligands used in this work are shown in table 4.1.

Table 4.1 Ligands used in androgen receptor, SARS PL protease, renin, menin and thrombin
systems.

System Ligand ref. 2D structure

Androgen receptor A

SARS PL Protease A

Renin A
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Menin A

Menin B

Thrombin A

Thrombin B

Thrombin C

Thrombin D

4.2.1 System Setup and Molecular Dynamics

The complex structure preparation and molecular dynamics procedure used in this chapter are
unchanged from the computational fluorine scanning chapter with the following exceptions.
The code to build the complex and solvated systems previously used YANK’s system builder,
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Table 4.2 PDBIDs for each system used in this work.

System PDBID

Androgen receptor 2NW4 [199]
SARS PL Pro 3E9S [202]
Renin 3OOT [166]
Menin 4OG6 [168]
Thrombin 2ZNK [200]

this is now replaced with a custom system builder developed for this work. This was done to
ensure no variation in the preparation of systems for ∆∆Gopt and MBAR FEP calculations.
Additionally water is now modelled with the SPC/E water model and the edge of the solvation
box was set to be 10.0Å from any atom of the receptor or ligand. Van der Waals interactions
were truncated at 10.0Å. Electrostatics were modelled using the particle mesh Ewald method
with a cutoff of 10.0Å. The PDBIDs for the crystal structures of the systems used as input to
this work are shown in table 4.2.

4.2.2 Workflow

In this work, several free energy methods were used in different contexts. For clarity we will
now outline these methods for future reference. After models for the protein ligand system
were built we performed an optimization of the van der Waals parameters of an inhibitor in
the protein ligand complex. This is done using a gradient descent (GD) algorithm with a
line search. In order to perform this optimization two calculations are needed: one for the
objective and one for the gradient. The objective was calculated with MBAR we therefore
name this the MBAR objective and the gradient was calculated with SSP we therefore name
this the SSP gradient. The details of how these calculations are performed can be found in
the optimization, SSP gradient and MBAR objective sections below. Once this optimization
is converged, the output is analysed to determine growth vectors which should be beneficial.
We then calculate the relative binding free energy of adding methyl groups at the locations
specified by the optimizer. This calculation is performed using MBAR with Hamiltonian
replica exchange. We name these calculations FEP scans with more details in the FEP scans
section below. Figure 4.1 illustrates how each of these calculations are combined in the full
workflow.
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Fig. 4.1 Diagrammatic workflow for calculations performed in this work. SSP gradient
method uses an exponential averaging method to calculate free energies. MBAR objective
and FEP scan both use the MBAR estimator.

4.2.3 Optimization

Optimizations were performed using the Ligand-Optimiser code which is available on Github
at https://github.com/adw62/Ligand-Optimiser. The optimizations were applied to the σ

parameter of the LJ potential shown in the equation 1.6. Note that this method is agnostic
to the exact form of the LJ potential used and the exact meaning of σ in that form. The
objective function for the optimization performed in this work is defined in equation 4.1,

min
σi

∆Gbinding(σi)−∆Goriginal, (4.1)

where ∆Gbinding(σi) is the binding free energy difference between the bound and unbound
states of the ligand and receptor for a ligand with M atoms using σi parameters. ∆Goriginal is
the binding free energy for the ligand using its original parameters and therefore is a constant
for each given system.

To perform this optimization an implementation of the gradient descent algorithm with a
line search was used. The line search used a step size of 0.6 nm and a convergence tolerance
of 0.15 nm in σ . The objective function in equation 4.1 can be considered as the difference
in binding free energies between two ligands with binding free energy ∆Gbinding(σi) and

https://github.com/adw62/Ligand-Optimiser


4.2 Methods 76

∆Goriginal . From this point forward we define this relative binding free energy as ∆∆Gopt . As
previously seen in this work ∆∆Gopt was calculated as the difference between ∆Gmutation in
the bound and unbound states. In this chapter we calculate the objective using MBAR and
the gradient using SSP and the following section discusses these calculations in more detail.

4.2.4 MBAR Objective

In chapter 3 the objective, ∆∆Gopt , was calculated with SSP we now switch to MBAR. There
are two reasons for this: 1) we are generally dealing with larger perturbations in the sterics,
which are harder to converge, 2) using MBAR should allow for the optimizer to take large,
potentially more efficient, steps per iteration without the poor convergence that SSP suffers
from.

The objective was calculated by simulating 24 alchemical windows, the two end states
were a) the system with the Hamiltonian using the sigmas for the current optimization step
n and b) the system with the Hamiltonian using the sigmas from optimization step n+ 1.
The intermediate states are created by linearly interpolating the sigma parameters only.
Charge, bond, angle and torsion parameters do not change. The sigmas for the optimization
step n+ 1 were determined with the standard GD algorithm using a maximum step size,
α of 0.6 nm. Sampling from all windows was collected and the potentials evaluated from
this sampling were combined using the MBAR estimator giving a value for ∆Gmutation.
Combining ∆Gmutation from the bound and unbound states gave ∆∆Gopt values across all
lambda windows. The lambda windows of the free energy calculation were treated as a
line search in sigma space and therefore the lambda window with the minimum in ∆∆Gopt

was selected. The sigma parameters corresponding to that lambda window then became
the accepted parameters for the next step of optimization. If the minimum was found to
be at the last lambda value then the line search was extended by another 0.6 nm without
recalculating the gradient. An example of this line search is shown in figure 4.2, where the
σs corresponding to the seventh window in a line search using 12 MBAR windows would be
selected as, σn+1 = σn − 7

12 ∗α ∗gradient.
Each evaluation of the objective used 6 ns of sampling in AR, SARS PLPro, and menin

A systems. Renin, menin B and the four thrombin systems used 12 ns as these optimizations
were observed taking steps which correspond to larger values of ∆∆Gopt . Figure 4.3 shows
an example for how a calculation for ∆∆Gopt varies with sampling.
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Fig. 4.2 Example line search in GD algorithm. Here the σs corresponding to the seventh
window would be selected for the next step of the optimizer.

4.2.5 SSP Gradient

The calculation of the SSP gradient is the same as in the Charge Optimization chapter 3.
However the gradient is now taken with respect the σ parameters of the ligand using a finite
difference of 0.00015 nm. Figure 4.4 shows an example for how this gradient varies with
sampling for the androgen receptor ligand.

4.2.6 Optimization Validation

To test the reproducibility of the optimization we examined how the optimized values for
the sigma of each hydrogen varied across repeats. Three repeats of an optimization for the
androgen receptor were made and the averaged set of optimized σ are presented in table
4.3. We can see from table 4.3 that the variance in the optimized σ is small relative to the
difference between original and optimized σ values. We are therefore confident that the
solution reached by the optimizer is consistent.

To ensure each optimization is converged over optimization iteration the cumulative
∆∆Gopt is plotted over optimization steps and presented in figure 4.5. We can see from 4.5
that for all systems the optimization is well converged within ten iterations.
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Fig. 4.3 Convergence for a calculation of the objective in the androgen receptor test case.
∆∆Gopt is reported as mean of three replicates with shaded area showing 95% confidence
interval computed as mean ± t2·SEM, where t2 is the t-distribution statistic with two degrees
of freedom, and SEM is the standard error of the mean computed from the sample standard
deviation of the three independent replicate predictions.

Table 4.3 Original and optimized sigmas for every atom in the androgen receptor ligand
alongside the variance. Averages and variances are taken from three repeats. All hydrogen
names are given in figure 3.3

Hydrogen Original σ [nm] Average optimized σ [nm] Variance optimized σ [nm2]

H5 0.263 0.154 0.006
H7 0.263 0.301 0.000
H15 0.242 0.032 0.001
H17 0.242 0.245 0.000
H191 0.260 0.285 0.001
H192 0.260 0.427 0.002
H221 0.242 0.233 0.000
H222 0.242 0.296 0.000
H3 0.263 0.381 0.002
H2 0.263 0.264 0.001
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Fig. 4.4 Convergence for a calculation of the gradient in the androgen receptor test case.
∆∆Ggrad is reported as the mean of three replicates with the shaded area showing 95%
confidence interval computed as mean ± t2·SEM, where t2 is the t-distribution statistic with
two degrees of freedom. Atom names in the legend can be seen in figure 3.3
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Fig. 4.5 Cumulative ∆∆Gopt calculated by summing the MBAR objective for each step of the
optimization plotted against optimization step for every system.

Additional calculations were made to verify the value of the cumulative sum ∆∆Gopt .
This involved calculating the relative binding free energy between the original and optimized
parameters of the inhibitor with MBAR. The mean absolute error between the values of
∆∆Gopt and the verification calculation was 1.57 kcal/mol. Details and results of this
calculation can be seen in the appendix (figure C.1-C.3 and table C.2).

4.2.7 FEP Scans

The results of the optimization were analyzed and the best growth vectors on the ligand
were determined. The best growth vectors were tested using the following protocol named
FEP scans which used the MBAR method to calculate free energy changes. The binding
free energy associated with these FEP scans will be termed ∆∆Gscan. ∆∆Gscan values
were calculated using an unpublished code written by David Huggins. This code uses
OpenMMTools [83] to collect sampling using HREX. In previous chapters HREX was not
used, for the full FEP calculations, we use HREX here to aid the convergence of the larger
perturbations which will be calculated in this chapter. Each Hamiltonian in the replica
exchange was an intermediate state in the alchemical transformation between two ligands
using a hybrid topology. The end states of this transformation where a) the un-methylated
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ligand and b) the methylated ligand. For these calculations the charge, van der Waals, bond,
angle and torsion parameters are all interpolated between the end states. A softcore potential
is used to interpolate the LJ potential for these FEP scan calculations. A softcore potential
was omitted in previous chapters, but is included here to aid convergence of the calculations.

In this work we focus on transforming only hydrogens to methyls. This makes the
exploration of the chemical space tractable. Transformations to methyl at all possible sites
allows for a thorough validation of the optimizations because a more complete comparison
can be made between the ranking of growth vectors by the optimization and the FEP scans.
Exhaustive testing of all methyls is done here for the purpose of validation. If applying this
method in a drug discovery effort, only the top growth vectors ranked highly by the optimizer
would need to be tested using FEP scans.

To disappear a hydrogen and appear a methyl each FEP scan used 33 ns of sampling
split across 22 alchemical windows, except renin which used 55 ns as this was observed to
require more sampling to converge. Hamiltonian swapping was performed every 5 ps. All
calculations were performed in triplicate. In figure 4.6 we show the convergence for making
all possible hydrogen to methyl mutations on the androgen receptor ligand. All remaining
convergence graphs for the FEP scan calculations can be seen in figures C.4-C.10.

When trying to calculate all hydrogen to methyl mutations we encountered some methyls
which introduced numerical instability into the simulation. The causes of these instabilities in
the SARS PLPro, menin and thrombin test cases were very close contact between an existing
part of the ligand and the added methyl. In the androgen receptor test case the cause was
close contact between the protein and the added methyl. We show the androgen receptor case
in figure C.11. Any ∆∆Gscan which could not be calculated due to numerical instability is
given an NA value in the results.

4.2.8 Summary of Methods

To summarize, in this work an optimization of the sigma parameters of several ligands was
performed. The objective of this optimization was to find a set of sigmas to minimize the
relative binding free energy of the ligand to a protein. This objective, ∆∆Gopt , was evaluated
using FEP calculations and the MBAR estimator. To calculate the gradient, ∆∆Ggrad , SSP
calculations were used. The results of the optimizer are used to predict beneficial growth
vectors on the ligand. To validate these predicted growths, hydrogen to methyl mutations
were computed, ∆∆Gscan, using FEP and the MBAR estimator with HREX. For the reader’s
reference table 4.4 contains all the abbreviated terms used and a brief description of the
calculation.
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Fig. 4.6 ∆∆Gscan for each methylation in the androgen receptor system as the amount of
sampling is increased. ∆∆Gscan are reported as mean of three replicates with shaded area
showing 95% confidence interval computed as mean ± t2·SEM, where t2 is the t-distribution
statistic with two degrees of freedom, and SEM is the standard error of the mean computed
from the sample standard deviation of the three independent replicate predictions. All
hydrogen names are taken from figure 3.3.
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Table 4.4 Abbreviated terms used to reference various relative binding free energies calculated
in this work with a brief description of the calculation for the reader’s reference

Free energy value Description

∆∆Gopt The value for the objective. Calculated between
the original and optimized sigmas with MBAR.

∆∆Ggrad The value for the gradient. Calculated between
many highly related ligands using SSP.

∆∆Gscan The value for one or many hydrogen to methyl
mutations calculated with MBAR and HREX.

∆∆Gexp The value for mutations determined experimentally.

4.3 Results

The results from the optimizations performed in this work will be considered one system at a
time. First looking at the androgen receptor. Each optimization produces a set of optimized
σ ’s which minimizes the binding free energy. We show this result with figures, made such
that any optimized hydrogens are sized in proportion to their calculated ∆σ , where ∆σ is the
difference between the atoms optimized and original σ . One reason we create these figures
is to allow the continuous values of σ in the optimization to be converted by eye into the
discrete values of σ associated with adding any atom(s). In the following calculations we
denote symmetry related positions with an obelisk symbol (†). For optimization calculations
no atoms are considered symmetric. This is because the optimizer assigns different sigmas
to symmetric atoms, and this breaks any symmetry. In the context of these simulations,
symmetric methyl hydrogens rapidly interconvert due to rotation, but symmetric hydrogens
on aromatic rings do not. Thus, hydrogens on methyls are considered symmetric for the
∆∆Gscan calculations, but hydrogens on aromatic rings are not.

In this results section all ∆∆Gscan values are reported as the mean of three replicates
with bracketed values showing the 95% confidence intervals computed as mean ± t2 · SEM,
where t2 is the t-distribution statistic with two degrees of freedom, and SEM is the standard
error of the mean computed from the sample standard deviation of the three independent
replicate predictions.

Figure 4.7 shows the relative size of the optimized hydrogens in the androgen receptor
test case. The largest hydrogens are H192 and H3 with H3 as the position chosen in previous
experimental work to be methylated. The values of ∆σ from the optimization are tabulated
along side calculated values for ∆∆Gscan and available experimental free energies are reported
as ∆∆Gexp.



4.3 Results 84

Fig. 4.7 Androgen receptor ligand with all optimized hydrogens sized in proportion to their
calculated ∆σ

Table 4.5 Comparison of ∆σ , ∆∆Gscan for mutating a hydrogen to methyl for the androgen
receptor test case alongside experimental values ∆∆Gexp [173].

Hydrogen ∆σ [nm] ∆∆Gscan [kcal/mol] ∆∆Gexp [kcal/mol]

H192 0.148 -2.32 [ -3.14, -1.50 ]
H3 0.122 -3.78 [ -3.91, -3.64 ] -0.83
H191 0.041 -1.00 [ -1.29, -0.70 ]
H222 0.041 -1.80 [ -2.15, -1.45 ]
H7 0.038 -0.79 [ -1.60, 0.02 ]
H17 -0.004 1.45 [ 0.56, 2.34 ]
H221 -0.004 -0.95 [ -1.09, -0.82 ]
H2 -0.015 -2.28 [ -2.50, -2.05 ]
H5 -0.187 -0.62 [ -2.95, 1.71 ]
H15 -0.237 NA
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The results in table 4.5 show that for the AR test case the optimization and FEP scan rank
the experimentally verified methylation, H3, second and first respectively. The overall agree-
ment in the ranking between computational methods can be calculated with the Spearman’s
Rank-Order Correlation, ρ . Here we calculated ρ between the ranking from the optimization
and FEP scan (any hydrogens without calculated value for ∆∆Gscan are ranked last) and for
the AR test case ρ was calculated as 0.7. The agreement between the experimental ∆∆Gexp

and computational ∆∆Gscan is not good in this case, differing by more than 1 kcal/mol.
Looking at the outlying data in table 4.5 it can be seen that whilst the optimization ranks
H2 as not beneficial the FEP scan calculated it to be a beneficial position for a methyl. We
speculate that this is because during the optimization all σ values are changed simultaneously
in the same system. This means that if both H2 and H3 grow simultaneously they will see
each other with increased radius in the simulation. It may be possible that some growths
which are close in proximity can interfere with each other such that only one position grows
to maximize the binding affinity. This effect would not be seen for the FEP scan calculation
as each methylation is a separate calculation and as such the methylation at H2 and H3 do
not need to be accommodated simultaneously.

Figure 4.8 provides the result from the optimizer for the SARS PLPro system and shows
that three growth vectors have been highlighted. Two of these growths, H4 and H9, are
adjacent to each other pointing in approximately the same direction, the other, H10, is
separately located on the ortho position of a phenyl; it is this ortho position that was the
experimentally chosen position in previous work.

Looking more closely at the SARS PLPro result in table 4.6 it can be seen that the
experimentally chosen hydrogen, H10, is ranked second by the optimizer and first by the FEP
scan. H4, the position most favoured by the optimizer, is confirmed to be a beneficial position
for methylation by the FEP scan with a ∆∆Gscan of -0.45 [-1.09, 0.19]. For the SARS PLPro
test case the correlation in the ranking of growth vectors by the optimizer and FEP scan is
good with ρ calculated to be 0.8. The experimental data which exists for the SARS PLPro
systems is for ligands with methyls at positions H10/H13, H17/H19 and H21 but no reference
data exists for the ligand with a hydrogen at all of these sites. To compare to experiment
we therefore use the ∆∆Gscan values in table 4.6 to calculate the relative binding free energy
change for permuting the methyl on sites H10/H13, H17/H19 and H21 and present this result
in table 4.7.

Table 4.7 shows that the ∆∆Gscan for moving the methyl from H19 to H21 is well agreed
with experiment, within 1 kcal/mol. For the H10 to H19 and H10 to H21 transformations
disagreement with experiment is greater than 1 kcal/mol. However, the ranking in table 4.6
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Fig. 4.8 SARS PLPro ligand with all optimized hydrogens sized in proportion to their
calculated ∆σ
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Table 4.6 Comparison of ∆σ , ∆∆Gscan for mutating a hydrogen to methyl for the SARS
PLPro test case alongside the available data for an experimental ranking for the benefit of a
methyl mutation [201].

Hydrogen ∆σ [nm] ∆∆Gscan [kcal/mol] Experimental Rank

H4 0.270 -0.45 [-1.09, 0.19]
H10 0.115 -1.70 [-2.35, -1.05] 1st
H9 0.115 -0.73 [-0.94, -0.53]
H18 0.047 -0.16 [-0.46, 0.13]
H19 0.028 -0.26 [-0.65, 0.14] 2nd
H22 0.013 -0.34 [-0.75, 0.07]
H21 0.002 -0.10 [-0.27, 0.08] 3rd
H12 -0.004 -0.18 [-0.67, 0.31]
H20 -0.007 -0.58 [-0.79, -0.36]
H13 -0.011 -1.14 [-1.17, -1.11]
H01 -0.02 0.34 [-0.02, 0.70]†
H013 -0.021 0.34 [-0.02, 0.70]†
H012 -0.023 0.34 [-0.02, 0.70]†
H14 -0.080 NA
H6 -0.103 NA
H17 -0.106 1.05 [0.89, 1.21]

Table 4.7 ∆∆Gscan for mutating a methyl from one position to another on the ligand compared
to experimental values, ∆∆Gexp, in the SARS PLPro test case. Values in parentheses are
experimental free energy ± reported experimental uncertainty [201].

Methyl Mutation ∆∆Gscan [kcal/mol] ∆∆Gexp [kcal/mol]

H10 to H19 1.44 [0.68, 2.20] 0.32(0.12, 0.52)
H10 to H21 1.60 [0.93, 2.27] 0.72(0.63, 0.81)
H19 to H21 0.16 [-0.27, 0.59] 0.40(0.19, 0.62)
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is much more accurate with the experimentally preferred methylation ranked first and second
by the FEP scan and optimization respectively.

Fig. 4.9 Renin ligand with all optimized hydrogens sized in proportion to their calculated
∆σ . See all named hydrogens in table C.1.

The data for the renin system are detailed in figure 4.9 and table 4.8, from these data it
can be seen that there is one clear growth vector highlighted by the optimizer H52, this is not
in the direction chosen experimentally (H50/H54). There is, however, agreement between
the optimizer and the FEP scan which also ranked H52 first with a ∆∆Gscan of -1.56 [-1.85,
-1.27]. This is an example where the ranking between the computational and experimental
methods are not agreed but the rankings between computational methods are agreed and this
may result from inaccuracy in the simulation methodology or the force field.

In this renin test case the result for H221 in table 4.8 is outlying and is not well agreed
between the optimizer and the FEP scan, we speculate that this disagreement is caused by
the disruption of favourable charged interaction between the protein and the amine group
adjacent to H221. These interactions may be disrupted by the methyl group added in the
FEP scan but not by the comparatively smaller change in sigma seen during the optimization.
Overall the correlation in the ranking between the computational methods in the renin system
is high with a calculated ρ of 0.7. The difference between the calculated and experimental
binding affinity is between 1 and 2 kcal/mol.
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Table 4.8 Comparison of ∆σ , ∆∆Gscan for mutating a hydrogen to methyl for the renin test
case alongside experimental data, ∆∆Gexp [166].

Hydrogen ∆σ [nm] ∆∆Gscan [kcal/mol] ∆∆Gexp

H52 0.256 -1.56 [-1.85, -1.27]
H38 0.158 -1.05 [-1.28, -0.82]
H221 0.158 1.69 [1.01, 2.36]
H39 0.088 -0.79 [-1.46, -0.13]
H31 0.084 -0.36 [-0.76, 0.04]
H6 0.080 -0.31 [-0.54, -0.08]
H54 0.080 -0.28 [-0.49, -0.07] -1.75
H222 0.077 0.67 [-0.56, 1.91]
H50 0.069 0.68 [0.26, 1.11]
H37 0.052 -0.94 [-1.14, -0.74]
H36 0.037 0.46 [0.07, 0.86]
H99 0.017 0.17 [-0.54, 0.87]
H40 -0.006 0.34 [-0.92, 1.59]
H191 -0.060 6.38 [3.89, 8.88]
H202 -0.065 1.65 [-0.33, 3.63]
H192 -0.067 5.80 [5.10, 6.51]
H201 -0.070 9.14 [8.35, 9.93]
H1 -0.089 1.42 [1.15, 1.70]
H53 -0.099 0.46 [0.08, 0.85]
H231 -0.102 1.78 [-3.86, 7.42]
H232 -0.176 0.70 [-2.30, 3.70]

Fig. 4.10 Menin A ligand with all optimized hydrogens sized in proportion to their calculated
∆σ . See all named hydrogens in table C.1.
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Table 4.9 Comparison of ∆σ , ∆∆Gscan for mutating a hydrogen to methyl for the menin A
test case alongside experimental data, ∆∆Gexp [168]

Hydrogen ∆σ [nm] ∆∆Gscan [kcal/mol] ∆∆Gexp

HAU2 0.167 0.46 [-0.27, 1.20]
HAL 0.111 -1.57 [-2.24, -0.90]
HAO2 0.094 -0.49 [-1.19, 0.20]
HAV1 0.059 0.76 [-0.40, 1.92]
HAV2 0.051 0.78 [-0.66, 2.23]
HAW1 0.051 0.35 [-0.96, 1.65]
HAP1 0.033 1.62 [0.69, 2.54]
HAU1 0.021 1.95 [1.07, 2.84]
HAS1 0.009 -0.05 [-0.61, 0.52]
HAJ 0.006 0.72 [-0.58, 2.01]
HAP2 0.003 0.75 [0.30, 1.20]
HAS2 0.000 0.28 [-0.58, 1.14]
HBF -0.001 -0.22 [-0.78, 0.34] 0.14
HAG -0.001 -0.09 [-0.22, 0.05]
HAF -0.003 0.16 [-0.55, 0.86]
HAH -0.010 1.42 [1.00, 1.84]
H3 -0.017 0.83 [0.28, 1.38]
HAW2 -0.02 0.32 [-0.22, 0.85]
HAT2 -0.062 0.03 [-0.35, 0.41]
HAT1 -0.083 0.29 [0.23, 0.35]
HAI -0.112 NA
HAK -0.1300 0.99 [-0.19, 2.17]
HAO1 -0.158 1.92 [0.72, 3.12]
HBD -0.196 NA
HAE -0.207 0.29 [-0.78, 1.36]
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The result for the menin A system can be seen in figure 4.10 and table 4.9. These results
show that three growth vectors are highlighted: HAL, HAU2 and HAO2. Our method agrees
with the experimental result that HBF is not a position which can beneficially accommodate
a methyl group this can be seen as the ∆σ for HBF is not a large positive.

It is worth noting that the HBF site is beneficial for groups larger than methyl such
as isopropyl or cyclohexyl with a ∆∆Gexp of -2.41 or -2.94 kcal/mol respectively. From
this test case we would conclude that in its current form the optimization cannot provide
information that this is a beneficial spot for larger mutations. The highlighted position, HAL
and HAO2, are well agreed between the optimization and FEP scan, ranked second and third
by the optimizer and first and second by the FEP scan. HAU2 is not agreed between the two
computational methods. The overall rank correlation, ρ , for the menin A system was lower
than seen in the other test cases with a value of 0.3. The experimental value for adding a
methyl at HBF was well agreed with experiment, 0.14 kcal/mol compared to the ∆∆Gscan

value of -0.22 [-0.78, 0.34].

Fig. 4.11 Menin B ligand with all optimized hydrogens sized in proportion to their calculated
∆σ . See all named hydrogens in table C.1.

As mentioned, the site at HBF in the test case menin A will beneficially accommodate
mutations larger than a methyl and this will now be investigated with system menin B. The
menin B ligand is the same as a menin A with a methyl added at HBF. When ligand menin
B is optimized the newly added hydrogens H55 and H54 are now found to be the most
beneficial by the optimizer. This can be seen in figure 4.11 where H55 and H44 are ranked
first and second, see table A5 for all values for optimized σ . The experimental data for
growths of ligand menin B correspond to adding methyls to H54 and H55 simultaneously.
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Therefore the ∆∆Gscan values calculated are now also for adding two methyls, one at H54
and one at H55. These ∆∆Gscan calculations for two methyls give a value of -3.11 [-4.02,
-2.2] kcal/mol which agrees well with the experimental value -2.55 kcal/mol.

The final test case to consider is thrombin. In this test case several mutations are strung
together and the optimization method applied iteratively to build a more tightly binding
inhibitor, we also include a round of charge optimization as discussed in chapter 2. We
perform this test case as we imagine this method might be applied in a drug discovery setting.
This means that not all methylations will be tested by computing ∆∆Gscan, in every round
of optimization, only those which would contribute new information to the study. The goal
here was to use information from the optimizer to move from thrombin A shown in table 4.1
which has an experimental binding free energy of -7.1 kcal/mol to a ligand with improved
binding free energy.

Fig. 4.12 Thrombin A ligand with all optimized hydrogens sized in proportion to their
calculated ∆σ . See all named hydrogens in table C.1.

Considering the result of the thrombin A optimization in figure 4.12 and table 4.10 it
can be seen that H44 is ranked first by the optimization and H27/H45/H48 are ranked first
by the FEP scan. The ranking of H17 is not well agreed between the optimizer and the
FEP scan and this may be a similar effect to that seen for the outlier in the renin test case.
Where perhaps in the FEP scan the added methyl is disrupting charged interaction between
the protein and the amine groups on the ligand nearby to H17. Another possible cause for
the disagreement might be explained by looking at H22. In the original thrombin A ligand
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Table 4.10 Comparison of ∆σ , ∆∆Gscan for mutating a hydrogen to methyl for the Thrombin
A test case alongside experimental data, ∆∆Gexp. Values in parentheses are experimental free
energy ± reported experimental uncertainty [203].

Hydrogen ∆σ [nm] ∆∆Gscan [kcal/mol] ∆∆Gexp

H44 0.232 -0.57 [-0.89, -0.24]
H32 0.056 -0.07 [-0.36, 0.21]
H27 0.046 -1.75 [-2.66, -0.83]†
H25 0.045 -0.24 [-0.49, 0.02] -0.24(-0.39, -0.09)
H48 0.040 -1.75 [-2.66, -0.83]†
H33 0.033 0.34 [-0.65, 1.33]
H17 0.028 5.11 [3.78, 6.44]
H45 0.018 -1.75 [-2.66, -0.83]†
H16 0.012 -0.80 [-1.05, -0.55]
H24 0.003 NA
H26 -0.001 -0.76 [-1.21, -0.31] -0.24(-0.39, -0.09)
H31 -0.010 1.08 [0.79, 1.37]
H29 -0.032 2.70 [1.79, 3.60]
H23 -0.035 1.10 [0.86, 1.34]
H36 -0.075 5.45 [5.03, 5.87]
H34 -0.086 1.56 [1.47, 1.66]
H28 -0.136 2.94 [1.82, 4.06]
H30 -0.144 2.46 [1.49, 3.44]
H37 -0.153 3.56 [-0.66, 7.78]
H22 -0.333 6.09 [3.53, 8.65]
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H17 is symmetric to H22 and the optimizer and FEP scan are in agreement that H22 is very
unfavourable. Therefore it may also be possible that in the FEP scan simulation H17 and H22
are adequately interconverting to converge to the solution that H17/H22 is an unfavourable
position but this interconversion is not occuring sufficiently for the optimization simulations,
which are shorter. Overall the ρ calculated between the ranking from the optimization and
FEP scan for the thrombin A system was 0.7.

Based on the results of figure 4.12 and table 4.10 either H44 or H27/H45/H48 could be
chosen for methylation and here we show the result for methylating H44. The thrombin A
ligand (table 4.1) with a methyl added at H44 is the ligand thrombin B in (table 4.1) and
so ligand thrombin B was then considered for an additional round of optimization. With
the retrospective knowledge that the H44 is a beneficial location for an amine group the
next round of optimization is performed for the partial charges of ligand thrombin B. The
charge optimization used was identical to the steric optimization with the exception that the
parameters of the optimization were the partial charges of the atoms instead of the atoms σ .
The methodology to perform this charge optimization has been explored in chapter 2.

Fig. 4.13 Thrombin B ligand with all optimized hydrogens colored in proportion to their
calculated ∆q. Red is more positive and blue more negative. See all named hydrogens in
table C.1.
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Figure 4.13 presents the result of the charge optimization and shows that hydrogens H49
and H50 can be made more positive to improve the binding free energy. The total change
in charge for H49, H50 and H51 made by the optimizer was +0.3 e, with all changes in
partial charge shown in table C.4. Adding a charged amine group at this position is known
experimentally to be beneficial, giving a change in binding affinity of -2.06 kcal/mol. We
therefore chose to add an amide group to ligand thrombin B (table 4.1) which gave ligand
thrombin C (table 4.1) . We then continued to optimize with another round for the thrombin
C ligand. We are now once again optimizing the sigma parameters of ligand thrombin C and
the result of this optimization are presented in figure 4.14 and table 4.11.

Fig. 4.14 Thrombin C ligand with all optimized hydrogens sized in proportion to their
calculated ∆σ . See all named hydrogens in table C.1.

In table 4.11 only a subset of all possible ∆∆Gscan values are calculated, the calculated
values of ∆∆Gscan are chosen in the areas where growth were made to the ligand experi-
mentally. Looking at figure 4.14 and table 4.11 three growth vectors are highlighted: H45,
H16 and H26 which are all confirmed to be beneficial by the FEP scan. The ρ calculated
between the ranking from the optimization and FEP scan for the thrombin C system was 0.6.
The growth vector ranked first by the optimizer and the methylation scan was H45 with a
∆∆Gscan of -1.68 [-2.27, -1.09] kcal/mol. Since the optimizer and FEP scan both rank H45
first it was selected to be mutated to a methyl. Adding a methyl at H45 of ligand thrombin
C (table 4.1) gives ligand thrombin D (table 4.1), we therefore performed a final round of
optimization on ligand thrombin D.



4.3 Results 96

Table 4.11 Comparison of ∆σ , ∆∆Gscan for mutating a hydrogen to methyl for the Thrombin
C test case alongside experimental data, ∆∆Gexp. Values in parentheses are experimental free
energy ± reported experimental uncertainty [203].

Hydrogen ∆σ [nm] ∆∆Gscan [kcal/mol] ∆∆Gexp

H45 0.305 -1.68 [-2.27, -1.09]†
H16 0.228 -0.54 [-0.87, -0.22]
H26 0.196 -0.52 [-1.11, 0.07] -0.60(-0.83, -0.29)
H24 0.138
H32 0.079
H33 0.038
H23 0.028
H27 0.007 -1.68 [-2.27, -1.09]†
H48 -0.001 -1.68 [-2.27, -1.09]†
H31 -0.003
H29 -0.027
H25 -0.029 -0.29 [-0.93, 0.34] -0.60(-0.83, -0.29)
H34 -0.040
H37 -0.098
H28 -0.099
H22 -0.109
H17 -0.153
H30 -0.159
H36 -0.180
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Table 4.12 Comparison of ∆σ , ∆∆Gscan for mutating a hydrogen to methyl for the Thrombin
D test case.

Hydrogen ∆σ [nm] ∆∆Gscan [kcal/mol]

H16 0.177
H26 0.145 -1.35 [-1.76, -0.95]
H24 0.098 1.57 [0.26, 2.87]
H53 0.089 -1.02 [-1.32, -0.72]†
H52 0.075 -1.02 [-1.32, -0.72]†
H23 0.019
H48 0.015 -0.64 [-1.13, -0.14]
H31 0.012
H54 0.008 -1.02 [-1.32, -0.72]†
H27 0.008 -0.67 [-0.74, -0.60]
H33 0.005
H25 0.000 -0.27 [-1.13, 0.60]
H32 -0.004
H29 -0.038
H34 -0.065
H22 -0.079
H28 -0.126
H17 -0.133
H37 -0.156
H30 -0.156
H36 -0.164
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Fig. 4.15 Thrombin D ligand with all optimized hydrogens sized in proportion to their
calculated ∆σ . See all named hydrogens in table C.1.

Again only a subset of all possible methylations are calculated in table 4.12. With the
calculated values of ∆∆Gscan chosen in the area growths were made to the ligand experimen-
tally. For the thrombin D test case figure 4.15 and table 4.12 show that the optimizer ranks
H16 and H26 as the first and second best growth vectors. The FEP scan ranks H26 as the best
growth vector. The ρ calculated between the ranking from the optimization and FEP scan for
the thrombin C system was 0.4. Based on the information from the optimizer and FEP scan
H26 was selected to be methylated. To compare to experiment the ∆∆Gscan from thrombin C
and thrombin D were combined. The ∆∆Gscan for H45 from thrombin C was combined with
the ∆∆Gscan for a methylation in thrombin D, which gave the free energy change for adding
a methyl at both sites simultaneously, these calculations are presented in table 4.13.

H27 or H48 are the positions methylated in the experimental work and it can be seen in
table 4.13 that computationally these positions are also beneficial to add a methyl. However
H27 and H48 are not ranked highly, instead H26 was ranked first. Comparing the ∆∆Gscan

for H27 or H48 to the experimental values gives reasonable agreement with experiment,
within 1 kcal/mol for both H27 and H48.

Finally combining all the mutations selected in the thrombin optimization iterations
the final computationally ligand is presented alongside an experimentally optimized ligand
[200] in figure 4.16. Both our computationally optimized and the experimentally optimized
ligand originate from the ligand thrombin A (table 4.1). It can be seen in figure 4.16 that our
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Table 4.13 Comparison for ∆σ , ∆∆Gscan for mutating thrombin C H45 to a methyl and one
other named hydrogen in thrombin D to a methyl and any experimental values ∆∆Gexp for
the thrombin D test case. Values in parentheses are experimental free energy ± reported
experimental uncertainty [200].

Hydrogen ∆∆Gscan [kcal/mol] ∆∆Gexp [kcal/mol]

H26 -3.03 [-3.74, -2.32]
H52 -2.70 [-3.36, -2.04]†
H53 -2.70 [-3.36, -2.04]†
H54 -2.70 [-3.36, -2.04]†
H27 -2.35 [-2.94, -1.76] -1.20(-1.62, -1.00)
H48 -2.32 [-3.09, -1.55] -1.20(-1.62, -1.00)
H25 -1.95 [-3.00, -0.90]
H24 -0.11 [-1.54, 1.32]

optimized ligand is very similar to a ligand determined experimentally, differing only in the
placement of one methyl group. The binding free energy of the experimental ligand is -10.4
kcal/mol [200] , we can use this value in combination with our calculation for removing a
methyl at H27 and adding a methyl at H26 (table 4.12) to estimate the binding free energy of
our computationally optimized ligand. The binding free energy of our optimized ligand is
calculated to be -11.1 [-10.7, -11.5] significantly better than the starting ligand (thrombin A)
which had an experimental binding free energy of -7.1 kcal/mol.

4.4 Conclusion

In this work a novel method to optimize the van der Waals interactions of small molecule
inhibitors to maximize the binding affinity to a receptor has been developed. This method
combines rapid single step perturbation calculation with MBAR calculations to calculate the
gradient and objective respectively, allowing optimized inhibitors to be found quickly. This
new method was applied to nine inhibitors across five diverse test systems: androgen receptor,
SARS PL protease, renin, menin and thrombin. Good agreement was found between the
beneficial growth vectors identified by the optimization and the results of full FEP calculations
to exhaustively calculate methylations, with a Spearman’s rank order correlation of 0.59.
One advantage of this method is that it allows for all growth vectors on a ligand to be
systematically assessed for their potential benefit to the binding free energy. Which growth
vectors are best can be challenging to assess by eye, as an example in the androgen receptor
test case the growth vector of H192 is found to beneficially accommodate a hydrogen. An
adjacent hydrogen to H192, H17, is found by FEP to be a very unbeneficial position for
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Fig. 4.16 Ligand with improved binding free energy found experimentally and final computa-
tionally optimized ligand built by choosing perturbations highlighted by our optimization
methodology.
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a growth this is despite the growths at H192 and H17 having their closest contacts in the
protein be 1.91 and 1.93 angstrom respectively. Whilst this argumentation is not rigorous it
does serve to highlight the point that in general determining the best growth vector from the
crystal structure of the protein ligand complex can be a difficult task. The method developed
in this work is found to be approximately 10 times faster than testing all possible growth
vectors with FEP. Using a Nvidia P100 GPU, an optimization for the androgen receptor test
case (containing around 4000 atoms in the ligand-protein simulation) takes approximately
13 hours wall time. This is compared to 15 hours per growth vector totaling 150 hours to
test all growth vectors with full FEP. Additionally the scaling of the optimization compute
time with the number of growth vectors is sublinear compared to linear scaling in the full
FEP scan case. The sublinear scaling is a result of using single step perturbation theory
in the optimization calculations that allowed any number of growth vectors to be assessed
with one molecular dynamics simulation. Where experimental data was available mutations
highlighted by the optimizer were tested with full FEP and the mean unsigned error between
experimental and calculated values of the binding free energy was 0.83 kcal/mol. We suggest
that optimization methods such as this will be useful in a drug discovery setting to identify
beneficial growth vectors during the hit-to-lead process, reducing the need for costly trial
and error in both computational and experimental campaigns.

This work could be extended by investigating the information that could be extracted
by optimizing any other parameters of the system. A natural example might be the epsilon
parameter in the LJ potential which may provide more information as to what groups might
be beneficially accommodated beyond methyl groups. In theory any parameter of the system
could be optimized and looking at the bond, angle or torsion parameters using the methods
developed here may also be interesting.



Chapter 5

Machine Learnt Compound Generation

5.1 Introduction

In the previous chapter we applied physics-based models to explore chemical space and
exploited SSP methods to perform our exploration using reduced computational resources.
These physics-based models rely on particular a priori knowledge and input. Namely, the
input is a biological target and a crystal structure of this target, but this information is not
always available. We now explore the use of ligand-based methods for the generation of
compound ideas when no molecular target exists.

In this chapter we will focus on the application of ligand based methods to aid in the
development of new antimalarial therapeutics. Multiple ligand based methods will be applied
to explore chemical space, where the points in this space are tested using an existing ML
model based on the Alchemite [135–137] software. It will be shown that the ML models
can predict compound activity quickly relative to FEP methods and that this increased
speed, combined with a variety of methods for compound generation, allows for hundreds of
thousands of compounds to be tested.

The context for the application of ligand based methods in this chapter is the Open
Source Malaria (OSM) consortium [204]. OSM is an initiative which has been evaluating
and predicting the activity of compounds against Plasmodium falciparum (pfal), the parasite
which causes the disease malaria in humans. The OSM project has seen multiple rounds of
model building. Most recently the focus of these rounds has been a series of compounds
based on a triazolopyrazine core, referred to internally as ‘Series 4’ compounds. Whilst the
mechanism of action for these Series 4 compounds is not known it is suggested in other work
[205] that they kill the parasite by inhibiting an interacellular ion regulatory pump PfATPA
and may belong to a larger class of compounds with diverse structures which may target this
pump [206]. No crystal structure for this pump exists and as such it is not possible to use
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structure based methods in this campaign. Whilst many anti-malaria therapeutics already
exist, novel mechanisms of action are particularly important for malaria drugs due to the
developing risk of resistance to currently available treatments [207].

The early rounds of the OSM consortium focused on model building for the prediction
of pfal inhibition; the techniques used in these rounds ranged from pharmacophore [208]
to QSAR [209] and DNN models. These rounds ran from 2015-2017 and whilst they were
successful in demonstrating the diversity of modern ML methods and the potential of open
source initiatives for crowd sourcing expertise, none of the models in these rounds were
found to be highly predictive. Given the continued rapid development of machine learning
methods in recent years and the increasing application of these methods to aid drug design
[27], the OSM consortium decided to run another predictive round in July 2019. This most
recent round of the OSM project, round two, involved both model building and now also
prospective suggestions for potent compounds to be tested experimentally. Round two saw
the participation of eleven independent groups from both academic and industry backgrounds.
The groups with the four most predictive models were asked to generate potent compounds
which were then synthesized and tested for potency. It is the generation of these compounds
that will be a major focus of this chapter.

Some general applications of ML to property prediction have been explored in the
machine learning section 1.7 of this thesis and, whilst the specifics of these methods are not
the focus here, the overall relative cost of these methods compared to FEP is of interest. The
ML models which are used to predict activity can, in general, test points in chemical space
extremely cheaply. This allows for predictions for millions of compounds to be computed in
the time it would take to compute one FEP prediction. This huge gain in speed can come at
the cost of physical accuracy, but this drawback can be mitigated in a few ways. For example,
the accuracy can be improved by both remaining close to the training set of a predictive
model, and by using robust uncertainty quantification for predictions. In the section 1.7 we
also discussed the work of Olivecrona and Blaschke et al. and their development of RNNs for
the generation of de novo compounds. This RNN architecture, and the surrounding theory,
will be used in the following methods section in a top down approach to generate compounds
to inhibit pfal.

5.2 Methods

The work presented here began with the author of this thesis joining one of the teams
(Optibrium/Intellegens) already participating in the OSM consortium. At the time of joining,
Optibrium/Intellegens had already built a predictive pfal model assessed to be in the top four
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most predictive models by the OSM consortium. This model was created using Alchimite
[135], a software which has shown itself to be useful when applied to the noisy and sparse
data sets common in drug discovery projects [210, 211]. Alchemite is based on a similar
DNN architecture to that discussed in section 1.7, to recap: 1) the DNN takes as input a
vector of molecular descriptors 2) then operates on this vector with a set of linear equations
which were parameterized to minimize the error between experimental and predicted data
points 3) proceeds to combine the outputs of the linear equations into a value for one or
more properties to be predicted. More specifically the Alchemite model is built using 3
interconnected linear layers using a hyperbolic tangent activation function, see the original
work of Conduit et al. [137] for full details of this method. In the work presented here the
input to the Alchemite model is a set of 330 molecular descriptors combined with available
values for experimental assays (endpoints) and the output is predictions for the values of
endpoints not provided in the input. These molecular descriptors are composed of whole
molecular properties such as molecular weight or topological polar surface area, in addition
to counts of atoms and chemical groups. The output of this model were predictions for
pfal pIC50 and ion regulation activities, amongst other properties. The novel aspects of
Alchemite that deviate from a general application of a DNN are as follows. The input to
the network consists of both molecular descriptors and available assay data. This allows
for the correlation between descriptors and endpoints and the correlation between different
endpoints to both be used in the prediction of unknown endpoints [135, 137]. Uncertainty
estimation is also included in the Alchemite method; this is implemented by training an
ensemble of networks with different weights. The variation in the predictions from this
ensemble of networks is taken to represent the uncertainty of the prediction [212, 213]. With
this Alchemite model in hand to test compounds for pfal inhibition, we will now discuss the
various methods used in this work for compound generation.

5.2.1 Bottom-Up Generation

One method for compound generation used in this work was referred to as a ‘bottom up’
approach. This involved starting from the triazolopyrazine core and, from there, applying
three generations of medicinal chemistry transformations using the Nova module of the
StarDrop program [214]. These transformations include roughly twenty thousand molecular
modifications such as removing atoms, and adding rings or functional groups. The 50% most
diverse compounds in a generation continue to the next round of modification. Filters are
applied at generation time to remove any duplicates or compounds with undesirable groups
via a substructure match against Stardrops’ curated libraries of undesirable fragments. The
result of this generation was hundreds of thousands of compounds which were scored based
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on the Alchimite model for pfal activity. A multiparameter scoring function was then applied
to select molecules with the highest activities balanced across all assays and low uncertainty
in the assay predictions.

5.2.2 Top-Down Generation

In the machine learning section 1.7 we saw the application of RNNs to produce valid SMILES
strings. The idea of solving for active molecules in a vector space and converting these
vectors to molecules with an RNN was also explored. The translation of the vector to
a compound with an RNN helps to solve the inverse QSAR problem which arises from
representing molecules as a vector of molecular descriptors. Here we apply these methods
for the purpose of generating compounds potent against pfal; we refer to these methods as a
‘top down’ approach.

As discussed in section 1.7 the previous works in the domain of compound generation
used an unsupervised method [149] to generate the vector space. Points in this vector space
could then be tested for activity in a discriminative model using the vector as input. If that
point vector space was found to be active then the vector was decoded into a molecule using
a RNN. For the work presented here the Alchemite model can be used as the discriminative
model. At the beginning of this project the Alchemite pfal activity model already existed and
therefore was fixed, as such its input was also fixed as a vector of 330 molecular descriptors,
which we will now call the input vector. Given that the input to the model could not be
changed, we modified an RNN from previous work to take this same input vector and
produce SMILES strings, an open source version of this modified code is available here:
https://github.com/adw62/ODO.

Mirroring the methods discussed in section 1.7, the RNN is passed the input vector
which is then passed internally by the RNN between a series of cells. As an output each
cell generated a probability distribution over all possible characters which can appear in a
SMILES string. At training time the weights of the network were optimized to maximize
the probability which is assigned to the ’correct’ character. Where correct is defined by
the next character in a training SMILES string. At run time the character with the highest
probability was selected for each cell and these characters were arranged sequentially to give
the generated compound. To train this RNN we used the same data set used by Olivecrona et
al. [128], however, in this work we also added all compounds already assayed in the OSM
data set [215]. As a reminder this data set consisted of small (10-50 heavy atoms) molecules
selected from the ChemBL database. These molecules were filtered to contain only H, B, C,
N, O, F, Si, P, S, Cl, Br, I elements. This training data contained 1.5 million compounds in
total.

https://github.com/adw62/ODO
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The first tests of this method were made using a simple toy model for the solvation
of small molecules. This model was also created using Alchemite, but the input vector
was reduced from 330 molecular descriptors, in the case of the pfal inhibition model, to
just four. These descriptors were: molecular weight (MW), hydrogen bond donors (HBD),
hydrogen bond acceptors (HBA) and topological polar surface area (TPSA), where we call
these descriptors the ‘solubility descriptors’. The idea is that if a vector of these solubility
descriptors is input to the RNN, then the RNN will generate as an output molecules which
have similar values for the solubility descriptors which were input. The question, then, is
how should the input vector be chosen to obtain a desired solubility?

The input to the Alchemite solubility model comes from a vector space. As has been
shown in previous work [149], it is possible to perform an optimization in this vector space
to find a vector which minimizes the difference between a target and predicted property, in
this case, solubility. The Alchemite program can perform this optimization, and we call the
output of this optimization the ‘optimized vector’. If we pass the optimized vector to our
RNN we can generate compounds that should have the target solubility. By converting a
vector into a molecule, the RNN helps to solve our inverse QSAR problem.

Examples were made for this procedure, one targeting a high solubility with log10 S
= 6.50, and one targeting molecules with a lower solubility log10 S = -3.00. Solving the
solubility model for descriptors which match these targeted solubilities gave the vectors
shown in table 5.1, named Optimized 1 and Optimized 2. We can see in table 5.1 that
the target and optimized solubility are in good agreement for the high solubility example,
log10 S = 6.50 vs. log10 S = 6.47, but for low solubility there is a larger discrepancy between
target and optimized solubility, log10 S = -3.00 vs. log10 S = -2.24. This discrepancy is a
consequence of the properties of the function Alchemite has parameterized for predicting
solubility, and whether or not a point in that function can be found by the optimizer which
gives the targeted solubility.

If the vectors Optimized 1 and Optimized 2 in table 5.1 are passed to the RNN and the
compounds generated analysed then the average descriptors of the generated compounds
are given by the vectors named in table 5.1 as Generated 1 and Generated 2 respectively. It
can be seen that the generated descriptors match the optimized descriptors well, with the
exception of molecular weight for the Optimized 1 vector, and HBD for the Optimized 2
vector. This may be caused by the extreme values for the descriptors found by the optimizer.
If the optimized vector contains extreme values for the descriptors, such as MW 907, outside
of the compounds that the RNN was shown at training time (small molecules from ChEMBL)
then generated compounds would be expected to struggle to match the optimized descriptors.
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Table 5.1 Solved descriptors for high and low solubility from Alchemite solubility model are
given in vectors Optimized 1 and Optimized 2. Average descriptors of generated molecules
using Optimized 1 and Optimized 2 as input to the RNN are shown by Generated 1 and
Generated 2 respectively. Molecular weight is (MW), hydrogen bond donors (HBD), hydro-
gen bond acceptors (HBA), topological polar surface area (TPSA). log10 S is the solubility
predicted for these vectors by the model.

MW [daltons] HBD HBA TPSA [Å
2
] log10 S

Optimized 1 907 0.4 1.3 47.3 -2.24
Generated 1 755 0.3 2.6 47.4 -0.74
Optimized 2 211 13.8 5.6 103.5 6.47
Generated 2 224 6.9 6.9 101.5 5.74

The average solubility for the compounds generated was assessed by the Alchemite
model and the Optimized 1 vector generated molecules with an average solubility log10 S =
-0.74 with a standard deviation of 1.42, and the Optimized 2 vector generated molecules with
an average log10 S = 5.7 with a standard deviation of 0.25. The difference in the optimized
and generated solubility most likely stems from the difference in Optimized and Generated
vectors in table 5.1. One additional consideration is that the RNN may fail to grow large
heavy molecules because of the increasing probability of the SMILES terminating as they
increase in length. Figure 5.1 shows examples of high and low solubility molecules that have
been generated.

Fig. 5.1 Examples of soluble and insoluble molecules produced by the RNN. Soluble and
insoluble molecules depicted in left and right panels respectively.
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The compounds in figure 5.1 do not appear in the training set of the RNN meaning we
have some confidence that this method allows us to generate novel compounds with a desired
target property in the case of this toy solubility example. One of the clear problems with these
generated compounds, however, is their impossible chemistry. This is a problem that we will
see repeated when ‘optimized’ vectors are used to generate compounds for pfal activity.

To generate compounds for pfal activity the same method tested with the toy solubility
model can be applied to the pfal inhibition model. An example molecule generated with this
method is shown in figure 5.2. Whilst the molecule in figure 5.2 is calculated to be active by
the Alchemite model, and is technically a valid SMILES, it can be seen by eye that there are
significant problems with the chemistry of this molecule. It may be possible to address these
problems with additional filters for synthesizability or introducing a drug likeness score in
the RNN at training time, but we do not examine these ideas here and instead our application
of this generation method will use a filter of human intuition at the end to ‘correct’ any high
scoring compounds to be more synthesizable and less reactive.

Fig. 5.2 An example compound generated using an optimized vector as input to the RNN.

To generate the compound in figure 5.2, an optimized vector was passed to the RNN.
It will be shown in the results that compounds generated with this method can be scored
active by the pfal model. However, clearly the output compounds generated by the RNN in
this case have problems with their chemistry. One solution to this was instead of passing an
optimized vector to the RNN we passed a vector for a known experimentally active Series 4
compound. If a known active vector was passed to the RNN, the compound generated by the
RNN resemble very closely the input molecule/Series 4, and as such was far more reasonable
in terms of both their chemistry and synthesizability, this can be seen in figure 5.3.
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Fig. 5.3 An example compound generated using a known active vector as input to the RNN.

5.2.3 Other OSM methods

As discussed in the introduction to this chapter, round two of the OSM saw the participation
of eleven independent groups from both academic and industry backgrounds which all used
different methods to build their predictive models and generate compound suggestions. We
will discuss here briefly the methods used by the other collaborating groups for compound
generation. Molomics are an industry entry and used a collective intelligence approach to
generate compounds. This involved using a ‘live design’ application where many users can
draft molecules collaboratively and have their idea scored in real time by the Molomics
pfal inhibition model. Molomics submissions for synthesis were selected by consensus
decision with a focus on synthesizability. David Guan was an academic entry and to generate
compounds they used a population-based approach named ChemGE based on the methods of
grammatical evolution [216]. This method was biased towards generating useful molecules
similar to the triazolopyrazine core by using a similarity score as well as scores for synthetic
accessibility, lipophilicity, and an aromatic ring penalty.

5.2.4 Summary of Methods

To summarize, in this work we will use three methods for molecule generation, these are:
a) a bottom-up approach where medicinal chemistry transforms are applied to a compound
series core, we will refer to these compounds as ‘med chem’ compounds. b) a top-down
approach where compounds are generated from an optimized vector of descriptors found by
‘solving’ an Alchemite model, we will call compounds generated with this method ‘alch opt’
compounds. Finally c) another top-down approach, where compounds are generated using a
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vector of descriptors describing a known active molecule as input to the RNN, we will call
compounds generated with this method ‘active vector’ compounds.

5.3 Results

Based on the models and compound generation techniques discussed above, we generated
compounds to be submitted to the OSM consortium. The specifications given by the OSM
consortium were the following: of the four compound submissions made by each group, two
molecules should be structurally distinct from Series 4, and two should be based on Series 4.
Our alch opt compounds were the most structurally distinct from Series 4, but as mentioned
human intervention was required to address reactivity and synthesizability issues with these
compounds. Table 5.2 shows three raw alch opt molecules generated by the RNN alongside
the human corrected molecules. Table 5.3 shows activities predicted by the Alchemite’s pfal
inhibition model for all of these alch opt compounds.

For all the generation methods used here the presented molecules were selected from a
much larger set of generated molecules. They were selected using a multiparameter scoring
function tuned for a good balance of activities across assays and low uncertainty in the assay
predictions. For our discussion of the results the criteria for active potency used by the
OSM group will be used here and this a pIC50 > 6. One point to note is that the Alchemite
model generates output predictions for multiple assays including multiple pIC50 assays from
different labs (Avery, Dundee and GSK). Provided that measurements of pIC50 are performed
accurately there should only be small variations between the pIC50 value of different labs.
The Alchemite model, however, has no knowledge of this and is free to predict different
values of pIC50 for different labs. Anecdotally the model is more likely to assign different
pIC50s across labs the further the input molecule was from the training set of molecules use
to train the Alchemite model.

Table 5.2 contains three molecules which are raw output from the RNN 1a)-3a), and three
molecules which are corrected with human intuition 1b)-3b). In table 5.3 it was predicted
that all molecules would be considered active in the Avery and GSK pIC50 assays; none
of these molecules were predicted to be active in the Dundee assay. In the experimental
work ion regulation activity is assessed using a NA+ reactive florescent dye, sodium-binding
benzofuran isophthalate [217]. When recorded in the OSM data set the raw data from the
observation of this experiment are converted to binary where 1 denotes ion regulation and
0 denotes no ion regulation. It can therefore be seen in table 5.3 that the predicted ion
regulation for compounds 1a-3b is low or none.
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Table 5.2 a) compounds are alch opt compounds, generated by the RNN using an optimized
Alchemite vector as input. b) compounds are the compunds which have been ‘corrected’
with human intuition.

ID (a) Compounds (b) Compounds

1a/b

2a/b

3a/b
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Table 5.3 Predicted activity for alch opt compounds. pIC50 is the pfal pIC50. Square
brackets show the prediction ± the uncertainty predicted by Alchemite’s ensemble based
method [212, 213]. Ion regulation activity varies between 1.0 and 0.0 where 1.0 indicates
ion regulation was observed and 0.0 indicates ion regulation was not observed.

ID ion regulation activity pIC50 (Avery) pIC50 (Dundee) pIC50 (GSK)

1a 0.25 [-0.13, 0.64] 7.56 [6.54, 8.58] 5.37 [4.73, 6.02] 7.23 [6.76, 7.70]
1b 0.09 [-0.15, 0.32] 6.88 [5.74, 8.03] 5.18 [4.54, 5.82] 7.22 [6.74, 7.70]
2a 0.35 [-0.11, 0.81] 7.32 [6.17, 8.46] 5.21 [4.69, 5.74] 7.02 [6.52, 7.52]
2b 0.18 [-0.18, 0.54] 7.24 [6.30, 8.19] 5.34 [4.79, 5.89] 7.26 [6.83, 7.70]
3a 0.15 [-0.20, 0.49] 6.99 [5.61, 8.38] 5.26 [4.70, 5.82] 6.92 [6.28, 7.55]
3b 0.27 [-0.16, 0.70] 6.19 [4.78, 7.60] 5.45 [4.86, 6.04] 6.22 [5.44, 7.00]

The next round of generation pertains to the active vector compounds discussed in the
methods section. The compounds generated at this stage were filtered for duplicates in the
OSM data set and many compounds were found to be unique. Table 5.4 shows high activity
compounds selected from this round of generation, and table 5.5 shows the predicted activity
for these molecules. The pIC50 activities predicted in table 5.5 were lower compared to
the alch opt compounds in table 5.3, but the predicted pIC50s were still promising and both
molecules 4 and 5 were predicted to be active in the Dundee and GSK assays. The predicted
ion regulation, however, was significantly higher than for the alch opt compounds.

The final round of generation then considered the med chem compounds. Using the
bottom-up method discussed prior, hundreds of thousands of compounds were generated
using medicinal chemistry transformations applied to the series core, and the best compounds
that were selected from this generation are presented in table 5.6. The predicted activities of
compounds in table 5.6 are shown in table 5.7. Overall the predictions were good; all assays
were predicted to be active with the exception of the Avery assay for compound 7. Again
the ion regulation activity for the compounds in table 5.7 was much higher than the alch opt
compounds in table 5.3.

Based on the brief given by the OSM consortium and considerations for reactivity and
synthesizability the 4 molecules we chose for submission were 1b, 2b, 6 and 7. All these
compounds were then considered for synthetic routes by the OSM consortium. It can be seen
in table 5.7 that compound 6 has reactivity issues with the difluoromethyl. After submission
this was flagged by eye as having potential to eliminate to HF, a neurotoxin, and therefore
compound 6 was not considered for synthesis. Compounds 1b and 2b were found by the OSM
consortium not to have reasonable routes for synthesis. With this in mind only compound 7
was synthesized and tested at the Dundee lab and found to have a pIC50 of 6.2 very close to
the predicted value of 6.4.
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Table 5.4 Compounds generated using a known active vector as input to the RNN.

ID Compound

4

5

Table 5.5 Predicted activity for active vector compounds. pIC50 is the pfal pIC50. Square
brackets show the prediction ± the uncertainty predicted by Alchemite’s ensemble based
method [212, 213]. Ion regulation activity varies between 1.0 and 0.0 where 1.0 indicates
ion regulation was observed and 0.0 indicates ion regulation was not observed.

ID ion regulation activity pIC50 (Avery) pIC50 (Dundee) pIC50 (GSK)

4 0.90 [0.61, 1.18] 5.19 [4.07, 6.31] 6.38 [5.65, 7.11] 6.46 [5.96, 6.95]
5 0.90 [0.62, 1.18] 5.69 [4.23, 7.15] 6.33 [5.54, 7.11] 6.57 [6.09, 7.06]
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Table 5.6 Compounds generated by expanding series 4 triazolopyrazine core with medicinal
chemistry transformations.

ID Compound

6

7

Table 5.7 Predicted activity for med chem compounds. pIC50 is the pfal pIC50. Square
brackets show the prediction ± the uncertainty predicted by Alchemite’s ensemble based
method [212, 213]. Ion regulation activity varies between 1.0 and 0.0 where 1.0 indicates
ion regulation was observed and 0.0 indicates ion regulation was not observed.

ID ion regulation activity pIC50 (Avery) pIC50 (Dundee) pIC50 (GSK)

6 0.92 [0.67, 1.17] 6.32 [4.8, 7.83] 6.61 [5.94, 7.27] 6.54 [5.95, 7.12]
7 0.91 [0.63, 1.19] 5.31 [4.17, 6.46] 6.42 [5.67, 7.17] 6.47 [6.0, 6.95]
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Table 5.8 Experimental pIC50 for OSM compounds. The Optibrium/Intellegens entrant is
compound 7 designed in this work. Davy Guan, Exscientia and Molomics were collaborating
groups who also submitted molecules to the OSM consortium.

Entrant Compound pIC50 (Dundee)

Optibrium/Intellegens 6.2

Davy Guan <4.6

Exscientia 5.0

Molomics <4.6
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Looking at all synthesized compounds submitted across all collaborating groups (Davy
Guan, Exscientia and Molomics) in table 5.8 it can be seen that overall this work is a success
and that 25% of the synthesised molecules were found to be active. This is a small sample
size and so caution should be taken in drawing any conclusions, but it is interesting to note
that the active rate achieved in these computational works is comparable to the active rate for
the drug discovery effort to date, which has so far been driven by the intuition of medicinal
chemists. For comparison, there are around 232 existing compounds evaluated by the Dundee
lab in the OSM series 4 data set [215] and 55 of these are considered active which gives
roughly a 25% active rate.

5.4 Discussion

The bulk of this work was performed within strict time constraints dictated by the timeline on
which the OSM consortium was operating. As such many ideas and potential improvements
to methods used in this work could not be explored. A discussion on some of the shortcomings
of this work and potential avenues for improvement in future work is now given.

One issue with the generation of compounds that repeatedly occurred in this work was the
generation of invalid chemistry. This became a problem increasingly as the input to the RNN
became more distinct from the training data of the RNN [149]. This can be seen clearly when
comparing the molecules generated from the optimized vector against molecules generated
from the known active vector. Where the compounds generated from the known active vector,
which is safely within the training set, show far fewer problems with their chemistry than
compounds generated from the optimized vector. The solution here would be to restrict the
optimization to search a vector space which is well overlapped with the space of vectors
with which the RNN was trained. One caveat here though is that any restriction of the search
space has the potential to increase the difficulty of the optimization. This may result in less
potent solutions being found but the value of these solutions will be much greater as they can
be decoded by the RNN more robustly.

Another similar issue pertains to the overlap of pfal model vector input with the pfal
model training data. Again, if the vector input to the model is far from the training data, the
model’s predictions will be inaccurate. Since this model was trained on Series 4 compounds
the prediction for compounds structurally distinct from the training set, the predicted activities
of compounds 1a-3b for example, are highly likely inaccurate. To resolve this any predictions
made by the models should be first validated by checking the input is close to the training
data. This solution is at odds, however, with the design brief of the OSM consortium which
asked for structurally diverse molecules. Whilst the OSM consortium was interested in
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structurally diverse compounds, in fact, none of the submitted molecules that constituted
diverse compounds, from any group, were synthesized because either no submission was
made or no route to synthesize the compounds could be found. The difficulty in accurately
predicting activity and finding synthetic routes for structurally diverse molecules highlights
some major obstacles for ligand based methods in computational drug discovery.

5.5 Conclusion

In this chapter we have seen the application of various machine learning methods in the
domains of activity prediction and compound generation. The application of these meth-
ods has allowed for hundreds of thousands of compounds to be tested for activity against
Plasmodium falciparum. Using a combination of generation methods and significant human
intervention a compound was selected which was then confirmed experimentally to be active
with close agreement between the predicted, 6.4, and experimental values, 6.2, for pIC50.
The selected compound would not have been chosen by traditional methods based on the
SAR data available to the project but since it was confirmed to be active it represents a
valuable data point to the OSM project and demonstrates the value which can be added by
ML methods for activity prediction and compound generation. The reduced computational
cost of the ligand based methods applied here allowed for far more compounds to be tested
than any other method explored in this thesis and demonstrates that ML based modelling can
play a useful role in the efficient exploration of chemical space.



Chapter 6

Final Discussion of Results

In this work several novel methods for improving the efficiency of ligand-binding affinity cal-
culations have been presented. Approaches are based on free energy methods were presented
in chapters 2, 3, and 4. In chapter 2 a computational fluorine scanning method was presented
which used single step perturbation theory to quickly assess the relative binding affinity of
fluorinated analogues. The predictions from this method were in excellent agreement with
more rigorous alchemical free-energy calculations, and in good agreement with experimental
data for most of the test systems. However, the agreement with experiment was very poor
in some of the test systems, particularly the DPP4 system, and it was hypothesised that this
may stem from simulating the system as a monomer compared to its dimer biological unit.
In terms of improved computational efficiency, PFS was five times faster to calculate the
same number of relative binding free energies than full FEP calculations. The example that
was given was that 11 fluorinated FXa compounds could be tested in 9.5 hours with PFS
compared to 44 hours with full FEP.

Chapter 3 presented a method to systematically optimize a set of ligand charges to
maximize the ligand-protein binding affinity. This optimization method used SSP to calculate
both the objective and gradient in the search for a set of optimal charges. From this set of
optimal charges design ideas for beneficial chemical mutations could be extracted. When
tested with more rigorous free energy methods it was shown that 73% of these design ideas
were beneficial. It was demonstrated that charge optimization in an explicit solvent was a
useful tool for predicting beneficial chemical changes such as pyridinations, fluorinations,
and oxygen to sulphur mutations. We estimated in this chapter that to test all of the fluorinated
analogues of the FXa ligand would take roughly three days of computer time with full FEP
compared to the two days required for the optimization to qualitatively assess all allowed
fluorination, in addition to pyridination or oxygen to sulphur mutations.
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In chapter 4 the charge optimization method was extended to consider the steric parame-
ters of a ligand. Modifications were made to the optimization method in this chapter such that
the MBAR method was used to calculate the objective and single step perturbation used to
calculate the gradient. Again, from the optimized set of parameters design ideas for affinity
improving mutations could be extracted. In this chapter the design ideas pertain exclusively
to beneficial growth vectors for methylation. The predictions from the optimizer for the
ranking of growth vectors correlated with existing free energy methods with a Spearman’s
rank order correlation of 0.59. Using this optimization method allowed for approximately
a ten times speed up in the testing of all growth vectors. With an example given for the
androgen receptor test case that the optimization took approximately 13 hours of wall time to
rank all growth vectors compared to 15 hours per growth vector totaling 150 hours to test all
growth vectors with full FEP.

Finally, chapter 5 discussed a collaborative effort performed with the OSM consortium.
We presented an application of machine learned property prediction and compound generation
to find compounds potent against Plasmodium falciparum. This work involved the leveraging
of machine learning methods for the testing of hundreds of thousands of compounds, far more
than would have been possible with free energy methods. The result of this chapter was a
selection of compounds predicted to be active from which one was evaluated experimentally
by the OSM and verified to be active with a pIC50 of 6.2 in good agreement with the
computational prediction of 6.42 ± 0.75.
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Appendix A

Computational Fluorine Scanning

Table A.1 presents the ∆∆G for all possible single aromatic hydrogen to fluorine mutations
on all nine test system presented in chapter 2 calculated with perturbative fluorine scanning
(PFS)

Table A.1 Peterbative fluorine scanning (PFS) ∆∆Gs for all aromatic hydrogen to fluorine
substitutions for all test cases, in kcal/mol. See figure 2.2 for hydrogen labels. R1-3 are ∆∆G
collected from repeat calculations, AVG is mean of all repeats.

System R1 [kcal/mol] R2 [kcal/mol] R3 [kcal/mol] AVG [kcal/mol]
Renin[166]
H22 -1.69 -2.11 -1.69 -1.83
H25 -1.32 -1.58 -1.76 -1.56
H15 -0.49 -0.78 -0.4 -0.55
H1 -1.05 -0.05 -0.47 -0.52
H16 -0.25 -0.56 -0.26 -0.35
H14 -0.38 0.1 -0.17 -0.15
H17 0.08 -0.2 -0.27 -0.13
H23 -0.47 0.98 -0.78 -0.09
H2 -0.54 0.65 -0.04 0.02
H18 0.22 0.38 0.03 0.21
H5 0.2 0 1.35 0.52
H24 0.56 0.51 0.53 0.53
DPP4[167]
H13 -1.42 -0.08 -2 -1.17
H16 -0.06 -0.33 -1.02 -0.47
H7 -0.53 0.01 -0.38 -0.3
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H5 -0.27 -0.08 -0.33 -0.23
H4 -0.07 -0.09 -0.36 -0.17
H6 -0.23 -0.16 -0.07 -0.15
H8 0.17 -0.77 0.22 -0.12
H12 -0.04 -0.09 0.23 0.03
Menin[168]
HAY -1.32 -1.72 -1.47 -1.5
HAI -1.37 -1.1 -1.33 -1.27
HAL -0.74 -0.94 -0.91 -0.86
HAH 0.13 -0.38 0.02 -0.08
HAE -0.2 0.24 -0.12 -0.03
HAF 0.41 0.32 0.23 0.32
HAG 0.35 0.52 0.46 0.44
HAJ 0.36 0.63 0.61 0.54
HAK 0.99 1.12 1.14 1.08
P38[169]
H1 -2.4 -2.32 -1.96 -2.23
H19 -2 -1.79 -1.85 -1.88
H16 -0.62 -0.74 -0.48 -0.61
H17 -0.47 -0.24 -0.7 -0.47
H18 0.3 0.13 0.11 0.18
H22 0.41 0.51 0.65 0.52
H20 1.3 0.95 1.24 1.16
H6 1.04 1.03 1.68 1.25
H4 1.79 2.8 2.66 2.42
FXa[159]
H18 -2.4 -2.21 -2.22 -2.27
H29 -1.31 -1.61 -1.28 -1.4
H9 -0.74 -0.89 -0.99 -0.88
H19 -0.24 0.12 -0.49 -0.21
H3 -0.07 -0.02 -0.03 -0.04
H7 0.21 0.05 -0.15 0.03
H6 0.05 0.06 0.06 0.06
H28 0.54 0.41 0.56 0.51
H4 0.84 1.19 0.69 0.91
H8 0.99 1.01 0.93 0.98
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H16 2.57 2.65 2.64 2.62
CDK2[170]
H33 -1.15 -1 -0.8 -0.99
H14 -0.24 -0.71 0 -0.32
H18 -0.52 -0.1 -0.02 -0.21
H15 0.67 0.4 1.66 0.91
H11 2.51 2.66 1.16 2.11
H32 2.98 1.82 1.68 2.16
AKT[171]
H22 -1.99 -2.32 -2.24 -2.18
H25 -0.89 -1.45 -1.48 -1.27
H26 -0.92 -1.69 -1.13 -1.25
H23 -0.81 -0.5 -0.71 -0.67
H21 -0.5 -0.75 -0.76 -0.67
H8 0.03 -0.15 -0.19 -0.1
H4 -0.05 0.06 0.55 0.19
JAK2[172]
H24 -1.99 -2.17 -1.83 -2
H27 -1.77 -1.39 -1.1 -1.42
H14 -1.16 -0.95 -0.9 -1
H26 -1.19 -1.04 -0.64 -0.96
H23 -0.79 -1.01 -0.92 -0.91
H15 -0.32 -0.48 -0.97 -0.59
H7 -0.31 0.19 0.12 0
H22 0.61 0.73 0.79 0.71
H16 2.49 2.51 2.39 2.46
H10 3.62 4.26 4.21 4.03
Androgen Recp.[173]
H2 -2.84 -2.66 -1.93 -2.47
H7 -0.3 -0.25 -0.36 -0.3
H5 3.52 3.68 3.23 3.48

Complex RMSDs

To assert that the complexes of the test cases are maintained during the simulations in chapter
2 a plot of root mean squared difference is made for the protein in each system figures
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A.1-A.9 show that the RMSD for all complex systems is well converged within 2500 frames
(12.5ns).

Fig. A.1 Plot of root mean squared difference for renin complex across 2500 frames.
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Fig. A.2 Plot of root mean squared difference for DPP4 complex across 2500 frames.

Fig. A.3 Plot of root mean squared difference for menin complex across 2500 frames.
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Fig. A.4 Plot of root mean squared difference for P38 complex across 2500 frames.

Fig. A.5 Plot of root mean squared difference for FXa complex across 2500 frames.
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Fig. A.6 Plot of root mean squared difference for CDK2 complex across 2500 frames.

Fig. A.7 Plot of root mean squared difference for AKT complex across 2500 frames.
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Fig. A.8 Plot of root mean squared difference for JAK complex across 2500 frames.

Fig. A.9 Plot of root mean squared difference for androgen receptor complex across 2500
frames.



Appendix B

Charge optimization

To visually assert that the charges optimized in chapter 3 are being placed in the same places
independent of the RMSD limit chosen plots are made for all optimized charges. Figures
B.1-B.9 show all inhibitors colored by change in charge across for all RMSD limits. Figures
B.1-B.9 show that the information about which atoms could be beneficially changed to be
more positive or negative is largely invariant as the RMSD limit is changed.

Fig. B.1 Fxa ligand with atoms colored by charge such that more negative atoms are blue
and more positive atoms are red. Optimal set of charges computed with and RMSD limit of
0.05 qe.

In chapter 3 the cumulative sum of the ∆∆Gopt , calculated with SSP theory, was plotted
for all optimization steps, see figure 3.5. We term the total cumulative sum ∆∆Gopt values
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Fig. B.2 Fxa ligand with atoms colored by charge such that more negative atoms are blue
and more positive atoms are red. Optimal set of charges computed with and RMSD limit of
0.03 qe.

Fig. B.3 Fxa ligand with atoms colored by charge such that more negative atoms are blue
and more positive atoms are red. Optimal set of charges computed with and RMSD limit of
0.01 qe.
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Fig. B.4 P38 ligand with atoms colored by charge such that more negative atoms are blue and
more positive atoms are red. Optimal set of charges computed with and RMSD of 0.05 qe.

Fig. B.5 P38 ligand with atoms colored by charge such that more negative atoms are blue
and more positive atoms are red. Optimal set of charges computed with and RMSD limit of
0.03 qe.
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Fig. B.6 P38 ligand with atoms colored by charge such that more negative atoms are blue
and more positive atoms are red. Optimal set of charges computed with and RMSD limit of
0.01 qe.

Fig. B.7 AR ligand with atoms colored by charge such that more negative atoms are blue and
more positive atoms are red. Optimal set of charges computed with and RMSD limit of 0.05
qe.
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Fig. B.8 AR ligand with atoms colored by charge such that more negative atoms are blue and
more positive atoms are red. Optimal set of charges computed with and RMSD limit of 0.03
qe.

Fig. B.9 AR ligand with atoms colored by charge such that more negative atoms are blue and
more positive atoms are red. Optimal set of charges computed with and RMSD limit of 0.01
qe.
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Table B.1 Calculated ∆∆Gtotal for the set of optimal charges. ∆∆GSSP
total values are calculated

by summing the average of forward and backwards SSP calculations made for each step of
the optimizer. ∆∆GFEP

total values are calculated from an alchemical transformation from the
original charges to the optimal charges using MBAR. SSP and FEP predictions are reported as
the mean of three replicates with 95% confidence interval reported between square brackets
computed as mean ± t2·SEM, where t2 is the t-distribution statistic with two degrees of
freedom, and SEM is the standard error of the mean computed from the sample standard
deviation of the three independent replicate predictions.

FXa
RMSD (e) 0.05 0.03 0.01

∆∆GFEP
total [kcal/mol] -8.7 [-9.2, -8.2] -6.3 [-6.5, -6.1] -3.1 [-3.4, -2.9]

∆∆GSSP
total [kcal/mol] -11.3 [-12.4, -10.1] -8.1 [-9.1, -7.0] -3.9 [-4.4, -3.3]

P38
RMSD (e) 0.05 0.03 0.01

∆∆GFEP
total [kcal/mol] -9.4 [-10.8, -8.0] -6.6[-7.2, -6.0] -3.2[-3.4, -3.1]

∆∆GSSP
total [kcal/mol] -11.1[-11.5, -10.8] -8.3[-8.7, -7.9] -3.5[-4.0, -3.1]

Androgen Receptor
RMSD (e) 0.05 0.03 0.01

∆∆GFEP
total [kcal/mol] -11.5[-12.0, -10.9] -8.8[-8.8, -8.8] -4.2[-4.2, -4.1]

∆∆GSSP
total [kcal/mol] -11.9 [-12.3, -11.5] -8.9[-9.2, -8.7] -4.2[-4.4, -4.0]

as ∆∆GSSP
total . We compare this ∆∆GSSP

total for each set of optimized charges with full MBAR
FEP calculations, see table B.1. These full FEP calculations use the original and optimized
charges as the two end states and calculate a relative binding free energy we term ∆∆GFEP

total .
Table B.1 shows that the SSP and FEP calculations are well agreed with an RMSD limit

of 0.01 e (differing by less than 1.0 kcal/mol in all cases). For an RMSD limit of 0.03 and
0.05 e, SSP and FEP are less well agreed (differing by more than 1.0 kcal/mol in some
cases). Table B.1 also shows clearly that changing the RMSD limit changes the calculated
∆∆Gtotal . The relation here is that increasing the RMSD limit bound increases how much the
charges can be changed and so increases the change in ∆∆Gtotal . However, as discussed in
chapter 3, the convergence of ∆∆Gtotal is an unnecessary condition, providing no additional
information. It is only critical that the direction of the charge vectors are well converged and
consistent for all RMSD limit values for all test cases.

It was discussed in the methods, of chapter 3, that the charge perturbation of 0.00015 e
used to calculate the gradient is unbalanced, in that no counter charge is added to keep the
total charge of the system neutral. This may lead to finite size effects if the periodic images
of these charges interact with each other. To investigate this we calculate the ∆Gbinding values
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resulting from a perturbation of 0.00015 e whilst varying the size of the simulation box.
Where ∆Gbinding is a ∆G between end states with unperturbed and perturbed charges in the
bound (complex) or unbound (solvent) systems. Figure B.10 shows that the calculation of
∆G bound and unbound are not dependent on the size of the simulation box (for the size of
the simulation box considered in this work).

Fig. B.10 ∆G values for a 0.00015 e perturbation to one atom against r (where r is the
minimum padding of solvent added between the protein and edge of the box). ∆G values are
calculated using SSP and 2.5 ns of sampling. ∆Gs are reported as the mean of six replicates
with shaded area showing 95% confidence interval computed as mean ± t2·SEM, where
t2 is the t-distribution statistic with five degrees of freedom, and SEM is the standard error
of the mean computed from the sample standard deviation of the six independent replicate
predictions.

To compare the speed of SSP and full MBAR FEP for computing the gradient of
∆∆Gbinding w.r.t all charges, the convergence of ∆∆Gbinding with sampling time needed to be
investigated when ∆∆Gbinding was calculated with full MBAR FEP. Figure B.11 presents the
results of this investigation and shows that for a perturbation of 0.00015 e to one charge of
the ligand 1 ns is sufficient to calculated converged ∆∆Gbinding.
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Fig. B.11 Convergence of the ∆∆Gbinding predictions in the Factor Xa test case for a per-
turbation of 0.00015 e to one charge as the simulation time is increased, calculations were
performed from 0.02 ns to 2.1 ns in 0.02 ns increments. The values of ∆∆Gbinding are re-
ported as mean of three replicates with the shaded area showing the 95% confidence interval
computed as mean ± t2·SEM, where t2 is the t-distribution statistic with two degrees of
freedom, and SEM is the standard error of the mean computed from the sample standard
deviation of the three independent replicate predictions.



Appendix C

Sterics optimization

Table C.1 shows 2D and 3D structures for all ligands used in chapter 3 with all optimized
hydrogens explicitly named.

Table C.1 2D and 3D structures for ligands used in androgen receptor, SARS PL protease,
renin, menin (A/B), thrombin (A/B/C/D). The 3D poses of these ligands are manipulated to
make explicit hydrogen labels clear.

System 2D/3D Structures

Androgen receptor
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SARS PLPro

Renin

Menin A/B
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Thrombin A/B/C/D

In section 4.2.6 reference is made to Additional calculations were made to verify the
value of the total cumulative sum of ∆∆Gopt . We now perform these calculations and this
involves calculating the relative binding free energy between the original and optimized
steric parameters of the inhibitor with MBAR. We name this calculation the optimization
validation.

To verify these total cumulative sums of ∆∆Gopt values, optimization validation calcu-
lations are performed using the original and optimized sigmas as end states; we term this
relative free energy change ∆∆Goptval . The start and end state of ∆∆Goptval calculations
were the original ligand sigmas and the optimized ligand sigmas respectively and these end
states were linearly interpolated between using the lambda schedule. This will most likely
be a different thermodynamic path than the optimizer took between these end states and is
therefore a good verification of ∆∆Gopt .

Optimization validation calculations were performed using 12 alchemical windows and a
total of 21 ns of sampling for the AR, SARS and menin systems. 24 windows and 108 ns
total sampling was used for the renin and thrombin systems as these were observed to be
harder to converge using less sampling. The convergence for these optimization validation
calculations can be seen in Figure C.1-C.3.

The calculated values for ∆∆Gopt and ∆∆Goptval taken from Figures C.1-C.3 using all of
the sampling are presented in Table C.2.
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Fig. C.1 Convergence of calculation of ∆∆Goptval for systems using 21 ns of sampling.
∆∆Goptval is reported as the mean of three replicates with the shaded area showing 95%
confidence interval computed as mean ± t2·SEM, where t2 is the t-distribution statistic with
two degrees.

Table C.2 Calculated ∆∆Gopt and their verification ∆∆Goptval values for all AR, SARS,
menin, renin and thrombin systems.

System ∆∆Gopt [kcal/mol] ∆∆Goptval [kcal/mol]

AR -1.16 -1.38 [-1.59, -1.18]
SARS -3.80 -3.42 [-3.93, -2.91]
menin A -5.17 -5.04 [-6.63, -3.45]
menin B -10.13 -7.59 [-8.96, -6.23]
renin -8.51 -1.31 [-2.36, -0.27]
thrombin A -2.42 -1.59 [-1.86, -1.31]
thrombin B -5.27 -4.16 [-4.95, -3.37]
thrombin C -5.43 -4.30 [-5.84, -2.77]
thrombin D -3.63 -4.18 [-4.60, -3.76]



158

Fig. C.2 Convergence of calculation of ∆∆Goptval for systems using 108 ns of sampling.
∆∆Goptval is reported as the mean of three replicates with the shaded area showing 95%
confidence interval computed as mean ± t2·SEM, where t2 is the t-distribution statistic with
two degrees.
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Fig. C.3 Convergence of calculation of ∆∆Goptval for systems using 108 ns of sampling.
∆∆Goptval is reported as the mean of three replicates with the shaded area showing 95%
confidence interval computed as mean ± t2·SEM, where t2 is the t-distribution statistic with
two degrees.
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In the chapter 3 many calculations are made for the mutation of the hydrogens on a ligand
to a methyl group using MBAR and HREX. The convergence graphs for these systems are
presented here. Where ∆∆Gcalc in figures C.4-C.10 correspondence to ∆∆Gscan in the main
text. In figures C.4-C.10 ∆∆Gcalc are reported as mean of three replicates with shaded area
showing 95% confidence interval computed as mean ± t2·SEM, where t2 is the t-distribution
statistic with two degrees of freedom, and SEM is the standard error of the mean computed
from the sample standard deviation of the three independent replicate predictions.

Fig. C.4 ∆∆Gcalc for each methylation in the SARS system as the amount of sampling is
increased.

In the main work reference is made to instability in the molecular dynamics calculation
arising when mutated methyl have close contact with the protein structure. Figure C.11
shows an example of this for the androgen receptor system. Where the labeled distances
measure the close contact between the added meth and atoms in the protein.

For brevity the optimized sigmas for the menin B system and the optimized charges of
thrombin B are omitted from the main text here they are presented in full.
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Fig. C.5 ∆∆Gcalc for each methylation in the renin system as the amount of sampling is
increased.

Fig. C.6 ∆∆Gcalc for each methylation in the menin A system as the amount of sampling is
increased.
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Fig. C.7 ∆∆Gcalc for each methylation in the menin B system as the amount of sampling is
increased.

Fig. C.8 ∆∆Gcalc for each methylation in the thrombin A system as the amount of sampling
is increased.
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Fig. C.9 ∆∆Gcalc for each methylation in the thrombin C system as the amount of sampling
is increased.

Fig. C.10 ∆∆Gcalc for each methylation in the thrombin D system as the amount of sampling
is increased.
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Fig. C.11 androgen receptors system with a methylation at H15 (Table C.1). Closest distance
to atoms in protein side chains are labeled in angstroms.
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Table C.3 ∆σ for each atom named in Table C.1 for the menin B test case.

Hydrogen ∆σ [nm]

H55 0.296
H54 0.257
HAU2 0.180
HAW1 0.146
HAO2 0.119
HAL 0.111
HAT1 0.108
HAS2 0.103
HAV1 0.090
HAT2 0.086
H3 0.0810
HAP2 0.035
HAP1 0.011
HAU1 0.009
HAV2 0.007
HAF -0.003
HAG -0.005
HAJ -0.035
HAW2 -0.041
HAH -0.050
HAS1 -0.052
HBC -0.080
HAK -0.106
HAO1 -0.159
HAE -0.160
HAI -0.213
HBD -0.424
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Table C.4 Difference between original and optimized charges for thrombin B test case. All
hydrogen names given in Table C.1

Hydrogen ∆ q e

H49 0.276
H30 0.197
H33 0.194
H29 0.180
H50 0.124
H25 0.097
H45 0.060
H27 0.055
H16 0.041
H48 0.041
H23 -0.038
H24 -0.039
H17 -0.046
H36 -0.051
H31 -0.066
H51 -0.067
H28 -0.086
H26 -0.090
H22 -0.112
H34 -0.134
H32 -0.194
H37 -0.343
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