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HIGH ENERGY POSITIVE SOLUTIONS FOR A COUPLED HARTREE SYSTEM

WITH HARDY-LITTLEWOOD-SOBOLEV CRITICAL EXPONENTS

FASHUN GAO†, HAIDONG LIU‡, VITALY MOROZ⋆, AND MINBO YANG∗⋆

Abstract. We study the coupled Hartree system
{

−∆u+ V1(x)u = α1

(

|x|−4 ∗ u2
)

u+ β
(

|x|−4 ∗ v2
)

u in RN ,

−∆v + V2(x)v = α2

(

|x|−4 ∗ v2
)

v + β
(

|x|−4 ∗ u2
)

v in RN ,

where N ≥ 5, β > max{α1, α2} ≥ min{α1, α2} > 0, and V1, V2 ∈ LN/2(RN ) ∩ L∞
loc(R

N ) are nonnegative
potentials. This system is critical in the sense of the Hardy-Littlewood-Sobolev inequality. For the system
with V1 = V2 = 0 we employ moving sphere arguments in integral form to classify positive solutions and to
prove the uniqueness of positive solutions up to translation and dilation, which is of independent interest.
Then using the uniqueness property, we establish a nonlocal version of the global compactness lemma

and prove the existence of a high energy positive solution for the system assuming that |V1|LN/2(RN ) +

|V2|LN/2(RN ) > 0 is suitably small.
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1. Introduction and main results

The two-component coupled Hartree system

(1.1)

{
i∂tΨ1 = −∆Ψ1 +W1(x)Ψ1 − α1

(
K(x) ∗ |Ψ1|2

)
Ψ1 − β

(
K(x) ∗ |Ψ2|2

)
Ψ1, (t, x) ∈ R+ × RN ,

i∂tΨ2 = −∆Ψ2 +W2(x)Ψ2 − α2

(
K(x) ∗ |Ψ2|2

)
Ψ2 − β

(
K(x) ∗ |Ψ1|2

)
Ψ2, (t, x) ∈ R+ × RN

appears in several physical models, such as in the nonlinear optics [38] and in the study of a two-component
Bose-Einstein Condensate [17, 21]. Here, Ψi : R+ × RN → C, Wi are the external potentials, K is a
nonnegative response function which possesses information about the self-interaction between the particles
and αi measures the strength of the self-interactions in each component: αi > 0 corresponds to the
attractive (focusing) and αi < 0 to the repulsive (defocusing) self-interactions. The coupling constant
β > 0 corresponds to the attraction (cooperation) and β < 0 to the repulsion (competition) between the
two components in the system. In this work we are interested in the purely attractive case αi, β > 0. We
refer the reader to [25,26] and references therein for the physical background and mathematical derivation
of Hartree theory in the case of a single equation.

When the response function is a delta function, i.e., K(x) = δ(x), the nonlinear response is local
and the problem has been intensively studied in the past twenty years. In this case, via the ansatz
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Ψ1(t, x) = e−iE1tu(x) and Ψ2(t, x) = e−iE2tv(x), (1.1) is transformed into a coupled nonlinear Schrödinger
system

(1.2)

{
−∆u+ V1(x)u = α1u

3 + βuv2 in RN ,

−∆v + V2(x)v = α2v
3 + βu2v in RN ,

where Vi(x) = Wi(x) − Ei for i = 1, 2. Existence, multiplicity and properties of weak solutions of (1.2)
have been investigated by many authors. See, for example, [5, 6, 12–14, 18, 31, 33–35, 37, 43, 45, 46, 49, 52]
and references therein. Clearly, (1.2) may have semitrivial solutions of the form (u, 0) for some u 6= 0 or
(0, v) for some v 6= 0. Looking for nontrivial solutions of (1.2) with both components being nonzero is more
complicated and requires new techniques and ideas. Here we only recall some results closely related to the
current paper. Chen and Zou [13, 14] investigated the nonlinear Schrödinger system





−∆u+ λ1u = α1u
2p−1 + βup−1vp in Ω,

−∆v + λ2v = α2v
2p−1 + βupvp−1 in Ω,

u, v ≥ 0 in Ω, u = v = 0 on ∂Ω,

where Ω ⊂ RN is a smooth bounded domain, 2p = 2N
N−2 is the Sobolev critical exponent, −λ1(Ω) <

λ1, λ2 < 0, α1, α2 > 0, and β 6= 0. They established the existence, uniqueness and limit behaviour of
positive least energy solution. It turned out that results in the higher dimensions are quite different from
those in N = 4. In [15], considering the functional constrained on a subset of the Nehari manifold consisting
of functions invariant with respect to a subgroup of O(N+1), the authors obtained infinitely many positive
solutions. In [45], the authors showed that the Palais-Smale condition holds at any levels in a small right
neighbourhood of the least energy and then proved via a contradiction argument that there is a positive
solution with critical value in this small neighbourhood. Using positive solutions of the corresponding
scalar equation as building blocks, the authors of [44] constructed positive solutions for systems via the
Lyapunov-Schmidt reduction argument, revealing concentration and blow-up features as well as a tower
shape of the solutions. Recently, Liu and Liu [34] considered the nonlinear Schrödinger system with critical
nonlinearities

(1.3)





−∆u+ V1(x)u = α1u
3 + βuv2 in R4,

−∆v + V2(x)v = α2v
3 + βu2v in R4,

u, v ≥ 0 in R
4, u, v ∈ D1,2(R4),

where V1, V2 ∈ L2(R4)∩L∞
loc(R

4) are nonnegative potential functions. If β > max{α1, α2} ≥ min{α1, α2} >
0 and |V1|L2(R4) + |V2|L2(R4) > 0 is suitably small, they proved that (1.3) has at least a positive solution
with a high energy level. This generalizes the well known result for semilinear Schrödinger equation by
Benci and Cerami [7] to the coupled nonlinear Schrödinger system.

In this work we study standing wave solutions of (1.1) in the purely attractive case αi, β > 0 with a
Riesz potential response function, i.e., K(x) = |x|−µ where µ ∈ (0, N). Clearly, Ψ1(t, x) = e−iE1tu(x) and
Ψ2(t, x) = e−iE2tv(x) solve (1.1) if and only if (u(x), v(x)) is a solution of the system

(1.4)

{
−∆u+ V1(x)u = α1

(
|x|−µ ∗ u2

)
u+ β

(
|x|−µ ∗ v2

)
u in RN ,

−∆v + V2(x)v = α2

(
|x|−µ ∗ v2

)
v + β

(
|x|−µ ∗ u2

)
v in R

N ,

where again Vi(x) = Wi(x) − Ei for i = 1, 2. There are very few results available on the coupled Hartree
system of type (1.4). The first attempt is due to Yang, Wei and Ding [54], there the authors considered
a singular perturbed problem related to (1.4) and proved the existence of a ground state solution when
the coupling constant β is large. In [50], Wang and Shi studied (1.4) with positive constant potentials and
proved the existence and nonexistence of positive ground state solutions. For the critical case, the authors
of [55] considered a critical coupled Hartree system with a fractional Laplacian operator and proved the
existence of a ground state solution via the Dirichlet-to-Neumann map.

Clearly, semitrivial solutions of (1.4) correspond to solutions of the Choquard type equation

−∆u+ Vi(x)u = αi

(
|x|−µ ∗ u2

)
u in R

N .
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The Choquard type equation goes back to the description of the quantum theory of a polaron at rest
by Pekar in 1954 [42] and the modelling of an electron trapped in its own hole in 1976 in the work of
Choquard [29]. They also appear in the study of boson stars [20]. Mathematically, Lieb [29] and Lions [32]
studied the existence of solutions to the Choquard’s equation. Lieb [29] also established the uniqueness of
the ground state solution when N = 3 and µ = −1. Ma and Zhao [36] studied symmetry and uniqueness
of positive solutions. The existence of radial ground states with nonlinearities more general than u2 was
studied in [39, 40]. The authors of [22] considered the Choquard equation

(1.5) −∆u + V (x)u =
(
|x|−µ ∗ |u|2∗µ

)
|u|2∗µ−2u in R

N ,

where 2∗µ = 2N−µ
N−2 is the critical exponent. They established a global compactness result and proved that

(1.5) has at least a positive solution if |V |LN/2(RN ) > 0 is suitable small. This extended to the nonlocal

Choquard equation the well known result for semilinear Schrödinger equation by Benci and Cerami [7]. The
existence of multiple solutions for (1.5) was established in [2]. Lei [24], Du and Yang [19] studied positive
solutions of the critical equation

(1.6) −∆u =
(
|x|−µ ∗ |u|2∗µ

)
|u|2∗µ−2u in R

N ,

and proved that every positive solution of (1.6) must assume the form

u(x) = c
( δ

δ2 + |x− z|2
)N−2

2

.

They also established the nondegeneracy result when µ is close to N . We also refer the readers to [1, 3, 4,
22, 36, 51] and a survey [41] for recent progress on the topic of Choquard equation.

Inspired by the work in [7, 33] for local nonlinear Schrödinger equations and [10] for a Schrödinger–
Poisson system, in the present paper we aim to study the existence of nontrivial solutions of the critical
Hartree system

(1.7)

{
−∆u+ V1(x)u = α1

(
|x|−4 ∗ u2

)
u+ β

(
|x|−4 ∗ v2

)
u in RN ,

−∆v + V2(x)v = α2

(
|x|−4 ∗ v2

)
v + β

(
|x|−4 ∗ u2

)
v in RN ,

where N ≥ 5, β > max{α1, α2} ≥ min{α1, α2} > 0, and V1, V2 ∈ L
N
2 (RN ) ∩ L∞

loc(R
N ) are nonnegative

potential functions. Our goal is to find a nontrivial positive solution of (1.7) at a higher energy level when
L2-norm of Vi are both suitably small.

To state the main results, we first recall the Hardy-Littlewood-Sobolev inequality (see [30, Theorem 4.3])
to clarify the meaning of ”critical” for the nonlocal Hartree equation.

Proposition 1.1. Let t, r > 1 and 0 < µ < N be such that 1
t +

µ
N + 1

r = 2. Then there is a sharp constant

C(N,µ, t) such that, for f ∈ Lt(RN ) and h ∈ Lr(RN ),

(1.8)

∣∣∣∣
ˆ

RN

ˆ

RN

f(x)h(y)

|x− y|µ dxdy
∣∣∣∣ ≤ C(N,µ, t)|f |Lt(RN )|h|Lr(RN ).

In particular, if t = r = 2N
2N−µ then

C(N,µ, t) = C(N,µ) = π
µ
2

Γ(N2 − µ
2 )

Γ(N − µ
2 )

(
Γ(N2 )

Γ(N)

)−1+ µ
N

,

where Γ(s) =
´ +∞
0

xs−1e−x dx, s > 0. In this case, equality in (1.8) holds if and only if f ≡ (const.)h and

h(x) = c
(
δ2 + |x− z|2

)− 2N−µ
2

for some c ∈ R, δ > 0 and z ∈ RN .

According to Proposition 1.1, the functional
ˆ

RN

ˆ

RN

|u(x)|p|v(y)|p
|x− y|µ dxdy
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is well defined in H1(RN )×H1(RN ) if 2N−µ
N ≤ p ≤ 2N−µ

N−2 . Here the constant 2∗µ = 2N−µ
N−2 is called the upper

Hardy-Littlewood-Sobolev critical exponent. In this sense, (1.7) is said to be a critical Hartree system.
The authors of [23] investigated a critical Choquard type equation on a bounded domain and extended

the well known results in [9]. In particular, it was proved in [23] that the infimum

SH,L := inf
u∈D1,2(RN )\{0}

ˆ

RN

|∇u|2dx
( ˆ

RN

ˆ

RN

u2(x)u2(y)

|x− y|4 dxdy
) 1

2

is achieved if and only if

u(x) = c
( δ

δ2 + |x− z|2
)N−2

2

,

where c > 0, δ > 0 and z ∈ RN . Moreover,

(1.9) SH,L =
S√

C(N, 4)
,

where S is the optimal constant for the Sobolev embedding D1,2(RN ) →֒ L
2N

N−2 (RN ).
Our first step in this work is to establish a classification of positive solutions for the critical Hartree

system

(1.10)

{
−∆u = α1

(
|x|−4 ∗ u2

)
u+ β

(
|x|−4 ∗ v2

)
u in RN ,

−∆v = α2

(
|x|−4 ∗ v2

)
v + β

(
|x|−4 ∗ u2

)
v in RN ,

which plays a role of the limit system for (1.7). To formulate our result denote k0 = β−α2

β2−α1α2
, l0 = β−α1

β2−α1α2

and RN = 1
4π

−N
2 Γ(N−2

2 ). For 0 < s < N
2 we set

I(s) =
π

N
2 Γ(N−2s

2 )

Γ(N − s)
.

Using moving sphere arguments in integral form inspired by [11, 19, 24] we establish the uniqueness of
positive solutions of (1.10) up to translation and dilation.

Theorem 1.2. Let β > max{α1, α2} ≥ min{α1, α2} > 0. If (u, v) ∈ H := D1,2(RN ) × D1,2(RN ) is a

positive classical solution of (1.10), then

u(x) = C1

( τ

τ2 + |x− x|2
)N−2

2

, v(x) = C2

( τ

τ2 + |x− x|2
)N−2

2

for some τ > 0 and x ∈ RN , where

C1 =

√
k0√

RNI(2)I
(
N−2
2

) , C2 =

√
l0√

RNI(2)I
(
N−2
2

) .

To study (1.7) using variational methods we introduce the energy functional

J (u, v) =
1

2

ˆ

RN

(
|∇u|2 + |∇v|2 + V1(x)u

2 + V2(x)v
2
)
dx

− 1

4

ˆ

RN

ˆ

RN

α1|u(x)|2|u(y)|2 + α2|v(x)|2|v(y)|2 + 2β|u(x)|2|v(y)|2
|x− y|4 dxdy,

In view of the Hardy-Littlewood-Sobolev inequality, the functional J is of class C1 on the Hilbert space
H := D1,2(RN )×D1,2(RN ). Critical points of J are weak solutions of (1.7). Consider the infimum

(1.11) c = inf
(u,v)∈Ñ

J (u, v),

where Ñ = {(u, v) ∈ H : (u, v) 6= (0, 0), 〈J ′(u, v), (u, v)〉 = 0} is the Nehari manifold of J . A ground state
solution of (1.7) is by definition a minimizer of (1.11).
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In the case V1 = V2 = 0, the analogues of J and c are denoted by J∞ and c∞ respectively. We prove in
Lemma 2.3 that if β > max{α1, α2}, then

c∞ =
1

4
(k0 + l0)S

2
H,L.

This estimate, combined with the uniqueness result of Theorem 1.2 implies that every finite energy positive

classical solution of the limit system (1.10) is a ground state solution (see Corollary 3.5).
We also prove in Lemma 2.4 that if Vj 6= 0 for some j ∈ {1, 2} and β > max{α1, α2} then

c = c∞

and the infimum in (1.11) is not attained, i.e. (1.7) does not have ground state solutions.
The main result of this paper is the following.

Theorem 1.3. Let N ≥ 5 and β > max{α1, α2} ≥ min{α1, α2} > 0. If V1, V2 ∈ L
N
2 (RN ) ∩ L∞

loc(R
N ) are

nonnegative functions satisfying

(1.12)

0 <
β − α2

2β − α1 − α2
C(N, 4)−

1
2 |V1|LN/2(RN ) +

β − α1

2β − α1 − α2
C(N, 4)−

1
2 |V2|LN/2(RN )

< min

{√
β2 − α1α2

α1(2β − α1 − α2)
,

√
β2 − α1α2

α2(2β − α1 − α2)
,
√
2

}
SH,L − SH,L,

then system (1.7) has a positive solution (u, v) ∈ H such that

c∞ = c < J (u, v) ≤ min
{S2

H,L

4α1
,
S2
H,L

4α2
, 2c∞

}
.

The main difficulties in the proof of Theorem 1.3 are the loss of compactness and the need to distinguish
the solutions from the semitrivial ones. To overcome the loss of compactness we will follow the idea of
Struwe [47] to establish a novel nonlocal version of the global compactness lemma for the critical Hartree
system (Lemma 4.2). This result is more delicate than the lemma obtained in [22] for the scalar equation,
since the proofs in this work rely heavily on the classification of positive solutions of the limit system
established in Theorem 1.2.

Remark 1.4. The proofs in this paper can also be adapted to the general form of the critical Hartree
system

(1.13)

{
−∆u+ V1(x)u = α1

(
|x|−µ ∗ |u|2∗µ

)
|u|2∗µ−2u+ β

(
|x|−µ ∗ |v|2∗µ

)
|u|2∗µ−2u in RN ,

−∆v + V2(x)v = α2

(
|x|−µ ∗ |v|2∗µ

)
|v|2∗µ−2v + β

(
|x|−µ ∗ u2∗µ

)
|v|2∗µ−2v in RN ,

where N ≥ 3, N > µ > 0, β > N−µ+2
N−2 max{α1, α2} ≥ min{α1, α2} > 0, and V1, V2 ∈ L

N
2 (RN ) ∩ L∞

loc(R
N )

are nonnegative potential functions with small L
N
2 norms.

Throughout this paper, we will use the following notations.

• The standard norm in the Sobolev space D1,2(RN ) is given by

‖u‖ :=
(ˆ

RN

|∇u|2dx
) 1

2

.

• Set H := D1,2(RN )×D1,2(RN ) equipped with the norm

‖(u, v)‖ :=
( ˆ

RN

(|∇u|2 + |∇v|2)dx
) 1

2

.

• The standard norm in Lq(Ω) is denoted by | · |q,Ω and by | · |q if Ω = RN .
• o(1) means a quantity which tends to 0.
• c, Cj , CN , C(·) stand for various positive constants whose exact values are irrelevant.

The paper is organized as follows. In Section 2, we give some preliminary results. In Section 3, we prove
a uniqueness result for limit system by the method of moving spheres. Section 4 is devoted to the proof of
a nonlocal global compactness lemma and Theorem 1.3 is proved in Section 5.
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2. Preliminaries

To prove the existence of positive solutions of (1.7), we will study the modified system

(2.1)

{
−∆u+ V1(x)u = α1

(
|x|−4 ∗ |u+|2

)
u+ + β

(
|x|−4 ∗ |v+|2

)
u+ in RN ,

−∆v + V2(x)v = α2

(
|x|−4 ∗ |v+|2

)
v+ + β

(
|x|−4 ∗ |u+|2

)
v+ in R

N ,

where u+ = max{u, 0} and v+ = max{v, 0}. In fact, if (u, v) is a nontrivial solution of (2.1), then u(x) > 0
and v(x) > 0 for all x ∈ RN by the strong maximum principle, which implies that (u, v) is a positive
solution of (1.7). Therefore, we only need to prove the existence of a nontrivial solution of (2.1).

Semitrivial solutions of (2.1) are closely related to solutions of the single elliptic equation

−∆u+ Vi(x)u = αi

(
|x|−4 ∗ |u+|2

)
u+ in R

N ,

of which the associated functional Ii : D
1,2(RN ) → R is defined by

Ii(u) =
1

2

ˆ

RN

(
|∇u|2 + Vi(x)u

2
)
dx− αi

4

ˆ

RN

ˆ

RN

|u+(x)|2|u+(y)|2
|x− y|4 dxdy.

Consider the infimum
ci = inf

u∈Mi

Ii(u),

where Mi = {u ∈ D1,2(RN ) : u 6= 0, 〈I ′i(u), u〉 = 0}. In the case Vi = 0, we denote the analogues of Ii, ci,
Mi by Ii∞, ci∞, Mi∞ respectively.

For δ > 0 and z ∈ RN , we denote

Uδ,z(x) = CN

( δ

δ2 + |x− z|2
)N−2

2

where CN = S−N−4

4 C(N, 4)−
1
2 [N(N − 2)]

N−2

4 . Then we have
ˆ

RN

|∇Uδ,z|2dx =

ˆ

RN

ˆ

RN

U2
δ,z(x)U

2
δ,z(y)

|x− y|4 dxdy = S2
H,L

and, according to [19, Theorem 1.3], the set {Uδ,z : δ > 0, z ∈ RN} contains all positive solutions of

−∆u =
(
|x|−4 ∗ u2

)
u in R

N .

It is easy to verify that ci∞ = 1
4αi

S2
H,L.

Lemma 2.1. If Vi ∈ L
N
2 (RN ) is nonnegative, then ci = ci∞ = 1

4αi
S2
H,L.

Proof. For u ∈ Mi, let tu > 0 be such that tuu ∈ Mi∞. Since Vi(x) ≥ 0 for x ∈ RN , we have

t2u =
‖u‖2

αi

ˆ

RN

ˆ

RN

|u+(x)|2|u+(y)|2
|x− y|4 dxdy

≤
‖u‖2 +

ˆ

RN

Vi(x)u
2dx

αi

ˆ

RN

ˆ

RN

|u+(x)|2|u+(y)|2
|x− y|4 dxdy

= 1.

Then

ci∞ ≤ Ii∞(tuu) =
1

4
t2u‖u‖2 ≤

1

4

(
‖u‖2 +

ˆ

RN

Vi(x)u
2dx

)
= Ii(u),

which implies that ci ≥ ci∞.
To prove the reverse inequality, let tn > 0 be given by

t2n =

‖U1,zn‖2 +
ˆ

RN

Vi(x)U
2
1,zndx

αi

ˆ

RN

ˆ

RN

U2
1,zn(x)U

2
1,zn(y)

|x− y|4 dxdy

,

then we have tnU1,zn ∈ Mi. Therefore

ci ≤ Ii(tnU1,zn) =
1

4
t2n

(
‖U1,zn‖2 +

ˆ

RN

Vi(x)U
2
1,zndx

)
.
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Since Vi ∈ L
N
2 (RN ), for any ε > 0 there exists a number r = r(ε) > 0 such that

(ˆ

RN\Br(0)

|Vi|
N
2 dx

) 2
N

< ε.

For such r, let {zn} ⊂ RN be a sequence such that limn→∞ |zn| = +∞, then we can find n0 ∈ N such that

( ˆ

Br(0)

U
2N

N−2

1,zn
dx

)N−2

N

=
( ˆ

Br(−zn)

U
2N

N−2

1,0 dx
)N−2

N

< ε, for n ≥ n0.

Then the Hölder inequality leads to
∣∣∣
ˆ

RN

Vi(x)U
2
1,zndx

∣∣∣ =
∣∣∣
ˆ

Br(0)

Vi(x)U
2
1,zndx +

ˆ

RN\Br(0)

Vi(x)U
2
1,zndx

∣∣∣

≤ |Vi|N
2

(ˆ

Br(0)

U
2N

N−2

1,zn
dx

)N−2

N

+
( ˆ

RN\Br(0)

|Vi|
N
2 dx

) 2
N
( ˆ

RN

U
2N

N−2

1,0 dx
)N−2

N

< Cε

for n ≥ n0, which implies that

(2.2) lim
n→∞

ˆ

RN

Vi(x)U
2
1,zndx = 0.

Moreover, by the definition of tn, we know t2n = 1
αi

+ on(1) as n→ ∞. Then

ci ≤ Ii(tnU1,zn) =
1

4

( 1

αi
+ on(1)

)(
S2
H,L + on(1)

)
=

1

4αi
S2
H,L + on(1)

and so ci ≤ 1
4αi

S2
H,L = ci∞. Combining this with ci ≥ ci∞ , we get the desired conclusion. �

To study (2.1) by variational methods, we define the energy functional J : H → R by

J(u, v) =
1

2

ˆ

RN

(
|∇u|2 + |∇v|2 + V1(x)u

2 + V2(x)v
2
)
dx

− 1

4

ˆ

RN

ˆ

RN

α1|u+(x)|2|u+(y)|2 + α2|v+(x)|2|v+(y)|2 + 2β|u+(x)|2|v+(y)|2
|x− y|4 dxdy.

In view of the Hardy-Littlewood-Sobolev inequality, the functional J is well defined and belongs to C1(H,R).
Then we see that (u, v) is a weak solution of (2.1) if and only if (u, v) is a critical point of the functional J .

Consider the infimum

c = inf
(u,v)∈N

J(u, v),

where

N = {(u, v) ∈ H : (u, v) 6= (0, 0), 〈J ′(u, v), (u, v)〉 = 0}.
In the case V1 = V2 = 0, the analogues of J , c, N will be denoted by J∞, c∞, N∞ respectively. As is
known, critical points of the functional J∞ correspond to weak solutions of the coupled system

(2.3)

{
−∆u = α1

(
|x|−4 ∗ |u+|2

)
u+ + β

(
|x|−4 ∗ |v+|2

)
u+ in RN ,

−∆v = α2

(
|x|−4 ∗ |v+|2

)
v+ + β

(
|x|−4 ∗ |u+|2

)
v+ in RN .

The next lemma is proved in [34].

Lemma 2.2. If β > max{α1, α2} and f : [0,+∞) → R is defined by

f(t) =
(t+ 1)2

α1t2 + 2βt+ α2
,

then mint≥0 f(t) = k0 + l0, where k0 = β−α2

β2−α1α2
and l0 = β−α1

β2−α1α2
.



8 F. GAO, H. LIU, V. MOROZ, AND M. YANG

Lemma 2.3. If β > max{α1, α2}, then we have

c∞ =
1

4
(k0 + l0)S

2
H,L

and any least energy solution of (2.3) must be of the form

(
√
k0Uδ,z,

√
l0Uδ,z)

for some δ > 0 and z ∈ RN , where again k0 = β−α2

β2−α1α2
and l0 = β−α1

β2−α1α2
.

Proof. Firstly, we show that c∞ = 1
4 (k0 + l0)S

2
H,L. Since (

√
k0Uδ,z,

√
l0Uδ,z) ∈ N∞, we have

c∞ ≤ J∞(
√
k0Uδ,z,

√
l0Uδ,z) =

1

4
(k0 + l0)S

2
H,L.

To prove the reverse inequality, let (u, v) ∈ N∞ and assume without loss of generality that v 6= 0. Set

t =
|u|22∗
|v|22∗

≥ 0,

where 2∗ = 2N
N−2 . Then, by the Sobolev inequality and Proposition 1.1,

S(t+ 1)|v|22∗ = S|u|22∗ + S|v|22∗

≤
ˆ

RN

(
|∇u|2 + |∇v|2

)
dx

=

ˆ

RN

ˆ

RN

α1|u+(x)|2|u+(y)|2 + α2|v+(x)|2|v+(y)|2 + 2β|u+(x)|2|v+(y)|2
|x− y|4 dxdy

≤ C(N, 4)
(
α1|u|42∗ + α2|v|42∗ + 2β|u|22∗ |v|22∗

)

= C(N, 4)
(
α1t

2 + 2βt+ α2

)
|v|42∗

and so

|v|22∗ ≥ S(t+ 1)

C(N, 4)
(
α1t2 + 2βt+ α2

) .

Noting that (u, v) ∈ N∞, by Lemma 2.2 and (1.9), we obtain

(2.4)

J∞(u, v) =
1

4

ˆ

RN

(
|∇u|2 + |∇v|2

)
dx

≥ 1

4
S(t+ 1)|v|22∗

≥ S2(t+ 1)2

4C(N, 4)
(
α1t2 + 2βt+ α2

)

≥ 1

4
(k0 + l0)S

2
H,L.

Then c∞ ≥ 1
4 (k0 + l0)S

2
H,L and we conclude that c∞ = 1

4 (k0 + l0)S
2
H,L.

Secondly, we prove the uniqueness of least energy solutions up to translation and dilation. On one hand,
if (u, v) ∈ N∞ and either u 6= a1Uδ,z or v 6= a2Uδ,z, where a1 6= 0, a2 6= 0, δ > 0 and z ∈ RN are parameters,
then we see from (2.4) and

ci∞ =
1

4αi
S2
H,L >

1

4
(k0 + l0)S

2
H,L, i = 1, 2

that J∞(u, v) > 1
4 (k0 + l0)S

2
H,L. On the other hand, if (u, v) = (a1Uδ,z, a2Uδ,z) ∈ N∞ and J∞(u, v) = c∞,

then there must be a1 =
√
k0 and a2 =

√
l0. Therefore, any least energy solution of (2.3) must be of the

form

(
√
k0Uδ,z,

√
l0Uδ,z)

for some δ > 0 and z ∈ RN . The proof is complete. �
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Lemma 2.4. If β > max{α1, α2} and V1, V2 ∈ L
N
2 (RN ) are nonnegative functions satisfying

(2.5) |V1|N
2
+ |V2|N

2
> 0,

then c = c∞ and c is not achieved.

Proof. Using the arguments in the proof of Lemma 2.1, one can prove c ≥ c∞ = 1
4 (k0 + l0)S

2
H,L. We shall

show that the equality holds indeed. Let us consider the sequence {zn} ⊂ RN satisfying |zn| → +∞ as
n→ ∞. By the claim in the proof of Lemma 2.1, we have

lim
n→∞

ˆ

RN

(
k0V1(x)U

2
1,zn + l0V2(x)U

2
1,zn

)
dx = 0.

For tn > 0 defined by

t2n =

‖(
√
k0U1,zn ,

√
l0U1,zn)‖2 +

ˆ

RN

(
k0V1(x)U

2
1,zn + l0V2(x)U

2
1,zn

)
dx

(k0 + l0)

ˆ

RN

ˆ

RN

U2
1,zn(x)U

2
1,zn(y)

|x− y|4 dxdy

,

we have (tn
√
k0U1,zn , tn

√
l0U1,zn) ∈ N and t2n = 1 + on(1) as n→ ∞. Then

c ≤ J(tn
√
k0U1,zn , tn

√
l0U1,zn)

=
1

4
t2n

(
‖(
√
k0U1,zn ,

√
l0U1,zn)‖2 +

ˆ

RN

(
k0V1(x)U

2
1,zn + l0V2(x)U

2
1,zn

)
dx

)

=
1

4

(
1 + on(1)

)(
(k0 + l0)S

2
H,L + on(1)

)

=
1

4
(k0 + l0)S

2
H,L + on(1),

which implies c ≤ 1
4 (k0 + l0)S

2
H,L = c∞. Therefore, we conclude that c = c∞.

We use an argument of contradiction to prove the nonexistence result. Assume that (u, v) ∈ N satisfies

J(u, v) =
1

4

(
‖(u, v)‖2 +

ˆ

RN

(
V1(x)u

2 + V2(x)v
2
)
dx

)
= c.

Let t(u,v) > 0 be such that (t(u,v)u, t(u,v)v) ∈ N∞. It is easy to verify that t(u,v) ≤ 1. Then

c∞ ≤ J∞(t(u,v)u, t(u,v)v) =
1

4
t2(u,v)‖(u, v)‖2 ≤ 1

4

(
‖(u, v)‖2 +

ˆ

RN

(
V1(x)u

2 + V2(x)v
2
)
dx

)
= c = c∞,

which indicates that t(u,v) = 1 and

(2.6)

ˆ

RN

(
V1(x)u

2 + V2(x)v
2
)
dx = 0.

This means that (u, v) is a least energy solution of (2.3). By Lemma 2.3, we know u(x) > 0 and v(x) > 0
for x ∈ RN . Combining this with (2.6), we have V1 = V2 = 0 almost everywhere in RN , which contradicts
(2.5). Therefore, the infimum c is not attained. �

By Lemma 2.4, we know that (2.1) does not have a ground state solution. Therefore, nontrivial solutions
of (2.1) only at high energy levels can be expected.

3. Uniqueness for a limit problem

This section is devoted to the classification of positive solutions for critical coupled Hartree system

(3.1)

{
−∆u = α1

(
|x|−4 ∗ u2

)
u+ β

(
|x|−4 ∗ v2

)
u in RN ,

−∆v = α2

(
|x|−4 ∗ v2

)
v + β

(
|x|−4 ∗ u2

)
v in RN .

We will employ the Kelvin transformation and the method of moving spheres in integral forms to complete
the proof. See [11, 19, 24] and references therein for uniqueness results for a single elliptic equation.
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Recall that k0 = β−α2

β2−α1α2
and l0 = β−α1

β2−α1α2
in Lemma 2.3. We also denote RN = 1

4π
−N

2 Γ(N−2
2 ) and,

for 0 < s < N
2 ,

I(s) =
π

N
2 Γ(N−2s

2 )

Γ(N − s)
,

where Γ(s) =
´ +∞
0

xs−1e−x dx, s > 0.

According to [11], (3.1) is equivalent to the following integral system in RN

(3.2)





u(x) = α1RN

ˆ

RN

u(y)w(y)

|x− y|N−2
dy + βRN

ˆ

RN

u(y)g(y)

|x− y|N−2
dy,

v(x) = α2RN

ˆ

RN

v(y)g(y)

|x− y|N−2
dy + βRN

ˆ

RN

v(y)w(y)

|x− y|N−2
dy,

w(x) =

ˆ

RN

u2(y)

|x− y|4 dy,

g(x) =

ˆ

RN

v2(y)

|x− y|4 dy.

Let x0 ∈ RN and λ > 0. The inversion of x ∈ RN\{x0} about the sphere ∂Bλ(x0) is given by

xx0,λ =
λ2(x− x0)

|x− x0|2
+ x0.

Assume (u, v, w, g) satisfies (3.2) and each component is positive. We define the Kelvin transform of u and
v with respect to ∂Bλ(x0) by

ux0,λ(x) =
( λ

|x− x0|
)N−2

u(xx0,λ), vx0,λ(x) =
( λ

|x− x0|
)N−2

v(xx0,λ)

and the Kelvin transform of w and g with respect to ∂Bλ(x0) by

wx0,λ(x) =
( λ

|x− x0|
)4

w(xx0,λ), gx0,λ(x) =
( λ

|x− x0|
)4

g(xx0,λ),

respectively. Set

Ux0,λ = ux0,λ − u, Vx0,λ = vx0,λ − v, Wx0,λ = wx0,λ − w, Gx0,λ = gx0,λ − g.

When x0 = 0, we will drop x0 in the subscript of above notations and write, for example,

xλ =
λ2x

|x|2 , uλ(x) =

(
λ

|x|

)N−2

u(xλ), Uλ = uλ − u.

Denoting

Bu
λ = {x ∈ Bλ\{0} : Uλ(x) < 0}, Bv

λ = {x ∈ Bλ\{0} : Vλ(x) < 0},
Bw

λ = {x ∈ Bλ\{0} :Wλ(x) < 0}, Bg
λ = {x ∈ Bλ\{0} : Gλ(x) < 0},

we have

Lemma 3.1. There exists a positive constant C independent of λ such that

(3.3)
|Uλ|2∗,Bu

λ
≤ C

(
α1|u|22∗,Bu

λ
+ α1|w|N

2
,Bu

λ
+ β|g|N

2
,Bu

λ

)
|Uλ|2∗,Bu

λ

+ Cβ|u|2∗,Bu
λ
|v|2∗,Bv

λ
|Vλ|2∗,Bv

λ

and

(3.4)
|Vλ|2∗,Bv

λ
≤ C

(
α2|v|22∗,Bv

λ
+ α2|g|N

2
,Bv

λ
+ β|w|N

2
,Bv

λ

)
|Vλ|2∗,Bv

λ

+ Cβ|u|2∗,Bu
λ
|v|2∗,Bv

λ
|Uλ|2∗,Bu

λ
,

where 2∗ = 2N
N−2 .
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Proof. Since dyλ = ( λ
|y|)

2Ndy, a direct computation shows that

u(x) = α1RN

( ˆ

Bλ

u(y)w(y)

|x− y|N−2
dy +

ˆ

RN\Bλ

u(y)w(y)

|x− y|N−2
dy

)

+ βRN

(ˆ

Bλ

u(y)g(y)

|x− y|N−2
dy +

ˆ

RN\Bλ

u(y)g(y)

|x− y|N−2
dy

)

= α1RN

( ˆ

Bλ

u(y)w(y)

|x− y|N−2
dy +

ˆ

Bλ

uλ(y)wλ(y)∣∣ |y|
λ x− λ

|y|y
∣∣N−2

dy
)

+ βRN

(ˆ

Bλ

u(y)g(y)

|x− y|N−2
dy +

ˆ

Bλ

uλ(y)gλ(y)∣∣ |y|
λ x− λ

|y|y
∣∣N−2

dy
)

and

uλ(x) =
( λ

|x|
)N−2

u(xλ)

= α1RN

( λ

|x|
)N−2(ˆ

Bλ

u(y)w(y)

|xλ − y|N−2
dy +

ˆ

RN\Bλ

u(y)w(y)

|xλ − y|N−2
dy

)

+ βRN

( λ

|x|
)N−2(ˆ

Bλ

u(y)g(y)

|xλ − y|N−2
dy +

ˆ

RN\Bλ

u(y)g(y)

|xλ − y|N−2
dy

)

= α1RN

( ˆ

Bλ

u(y)w(y)
∣∣ |y|
λ x− λ

|y|y
∣∣N−2

dy +

ˆ

Bλ

uλ(y)wλ(y)

|x− y|N−2
dy

)

+ βRN

(ˆ

Bλ

u(y)g(y)
∣∣ |y|
λ x− λ

|y|y
∣∣N−2

dy +

ˆ

Bλ

uλ(y)gλ(y)

|x− y|N−2
dy

)
,

where we have used

|xλ − y| = λ2|x− yλ|
|x||yλ|

=
|y|
|x|

∣∣∣∣x− λ2

|y|2 y
∣∣∣∣ =

λ

|x|

∣∣∣∣
|y|
λ
x− λ

|y|y
∣∣∣∣

and

|xλ − yλ| =
λ2|x− y|
|x||y|

for x, y ∈ RN\{0}. Then it follows

(3.5)

Uλ(x) = uλ(x)− u(x)

= α1RN

ˆ

Bλ

( 1

|x− y|N−2
− 1

∣∣ |y|
λ x− λ

|y|y
∣∣N−2

)
× (uλ(y)wλ(y)− u(y)w(y))dy

+ βRN

ˆ

Bλ

( 1

|x− y|N−2
− 1

∣∣ |y|
λ x− λ

|y|y
∣∣N−2

)
× (uλ(y)gλ(y)− u(y)g(y))dy.

Denoting a− = min{a, 0}, we claim

(3.6) uλwλ − uw ≥ wU−
λ + uW−

λ and uλgλ − ug ≥ gU−
λ + uG−

λ .

Since the argument is analogous, we only prove the first inequality and divide the discussion into four cases.
Case 1. If uλ(y) ≥ u(y) and wλ(y) ≥ w(y), then U−

λ (y) =W−
λ (y) = 0 and so

uλ(y)wλ(y)− u(y)w(y) ≥ 0 = w(y)U−
λ (y) + u(y)W−

λ (y).

Case 2. If uλ(y) ≥ u(y) and wλ(y) < w(y), then U−
λ (y) = 0 and W−

λ (y) =Wλ(y), which implies that

uλ(y)wλ(y)− u(y)w(y) ≥ u(y)Wλ(y) = w(y)U−
λ (y) + u(y)W−

λ (y).

Case 3. If uλ(y) < u(y) and wλ(y) ≥ w(y), then U−
λ (y) = Uλ(y) and W

−
λ (y) = 0, which implies that

uλ(y)wλ(y)− u(y)w(y) ≥ w(y)Uλ(y) = w(y)U−
λ (y) + u(y)W−

λ (y).
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Case 4. If uλ(y) < u(y) and wλ(y) < w(y), then U−
λ (y) = Uλ(y) ≤ 0 and W−

λ (y) =Wλ(y) ≤ 0. Hence

uλ(y)wλ(y)− u(y)w(y) = wλ(y)Uλ(y) + u(y)Wλ(y)

≥ w(y)Uλ(y) + u(y)Wλ(y) = w(y)U−
λ (y) + u(y)W−

λ (y).

Using (3.5), (3.6) and the fact that
∣∣∣∣
|y|
λ
x− λ

|y|y
∣∣∣∣
2

− |x− y|2 =

(
|x|2 − λ2

) (
|y|2 − λ2

)

λ2
> 0, for x, y ∈ Bλ\{0}

leads to

Uλ(x) = α1RN

ˆ

Bλ

( 1

|x− y|N−2
− 1

∣∣ |y|
λ x− λ

|y|y
∣∣N−2

)
× (uλ(y)wλ(y)− u(y)w(y))dy

+ βRN

ˆ

Bλ

( 1

|x− y|N−2
− 1

∣∣ |y|
λ x− λ

|y|y
∣∣N−2

)
× (uλ(y)gλ(y)− u(y)g(y))dy

≥ α1RN

ˆ

Bλ

( 1

|x− y|N−2
− 1

∣∣ |y|
λ x− λ

|y|y
∣∣N−2

)
× (w(y)U−

λ (y) + u(y)W−
λ (y))dy

+ βRN

ˆ

Bλ

( 1

|x− y|N−2
− 1

∣∣ |y|
λ x− λ

|y|y
∣∣N−2

)
× (g(y)U−

λ (y) + u(y)G−
λ (y))dy

≥ α1RN

(ˆ

Bλ

w(y)U−
λ (y)

|x− y|N−2
dy +

ˆ

Bλ

u(y)W−
λ (y)

|x− y|N−2
dy

)

+ βRN

( ˆ

Bλ

g(y)U−
λ (y)

|x− y|N−2
dy +

ˆ

Bλ

u(y)G−
λ (y)

|x− y|N−2
dy

)
.

Invoking the Hardy-Littlewood-Sobolev inequality and the Hölder inequality, we have

(3.7)

|Uλ|2∗,Bu
λ
≤ Cα1|wUλ| 2N

N+2
,Bu

λ
+ Cα1|uWλ| 2N

N+2
,Bu

λ∩Bw
λ

+ Cβ|gUλ| 2N
N+2

,Bu
λ
+ Cβ|uGλ| 2N

N+2
,Bu

λ∩Bg
λ

≤ Cα1|w|N
2
,Bu

λ
|Uλ|2∗,Bu

λ
+ Cα1|u|2∗,Bu

λ
|Wλ|N

2
,Bw

λ

+ Cβ|g|N
2
,Bu

λ
|Uλ|2∗,Bu

λ
+ Cβ|u|2∗,Bu

λ
|Gλ|N

2
,Bg

λ
.

By a similar argument, we can deduce from (3.2) that

(3.8) Wλ(x) =

ˆ

Bλ

( 1

|x− y|4 − 1

| |y|λ x− λ
|y|y|4

)
× (u2λ(y)− u2(y))dy ≥ C

ˆ

Bλ

u(y)U−
λ (y)

|x− y|4 dy

and

(3.9) Gλ(x) =

ˆ

Bλ

( 1

|x− y|4 − 1

| |y|λ x− λ
|y|y|4

)
× (v2λ(y)− v2(y))dy ≥ C

ˆ

Bλ

v(y)V −
λ (y)

|x− y|4 dy.

Using the Hardy-Littlewood-Sobolev inequality and the Hölder inequality again leads to

(3.10) |Wλ|N
2
,Bw

λ
≤ C|uUλ| N

N−2
,Bw

λ ∩Bu
λ
≤ C|u|2∗,Bu

λ
|Uλ|2∗,Bu

λ

and

(3.11) |Gλ|N
2
,Bg

λ
≤ C|vVλ| N

N−2
,Bg

λ∩Bv
λ
≤ C|v|2∗,Bv

λ
|Vλ|2∗,Bv

λ
.

Then (3.3) follows easily from (3.7), (3.10) and (3.11). Similarly, one can prove (3.4). �

Lemma 3.2. For any x0 ∈ R
N , the sets

Γu
x0

:= {λ > 0 : Ux0,σ ≥ 0 in Bσ(x0)\{x0} for all σ ∈ (0, λ]}
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and

Γv
x0

:= {λ > 0 : Vx0,σ ≥ 0 in Bσ(x0)\{x0} for all σ ∈ (0, λ]}
are not empty.

Proof. Since (3.2) is invariant by translations, it suffices to consider the case x0 = 0. Let C > 0 be the
constant given in Lemma 3.1 and choose ε0 ∈ (0, 1) sufficiently small such that, for all 0 < λ ≤ ε0,

α1|u|22∗,Bu
λ
+ α1|w|N

2
,Bu

λ
+ β|g|N

2
,Bu

λ
+ β|u|2∗,Bu

λ
|v|2∗,Bv

λ
≤ 1

4C

and

α2|v|22∗,Bv
λ
+ α2|g|N

2
,Bv

λ
+ β|w|N

2
,Bv

λ
+ β|u|2∗,Bu

λ
|v|2∗,Bv

λ
≤ 1

4C
.

We see from Lemma 3.1 that

|Uλ|2∗,Bu
λ
= |Vλ|2∗,Bv

λ
= 0,

which implies meas (Bu
λ) = meas (Bv

λ) = 0. Then it follows from (3.5), (3.8) and (3.9) that Uλ ≥ 0 in
Bλ\{0}. Similarly, we also have Vλ ≥ 0 in Bλ\{0}. Therefore, we have Γu

0 6= ∅ 6= Γv
0. �

According to Lemma 3.2, we define

λux0
:= supΓu

x0
> 0, λvx0

:= supΓv
x0
> 0, λx0

:= min{λux0
, λvx0

} > 0.

Lemma 3.3. If λx0
< +∞, then Ux0,λx0

= Vx0,λx0
= 0 in Bλx0

(x0)\{x0}.
Proof. As before, it is sufficient to consider the case x0 = 0. Without loss of generality, we assume that
λ0 = λu0 < +∞. Since Uλ and Vλ are continuous with respect to λ, we have Uλ0

≥ 0 and Vλ0
≥ 0 in

Bλ0
\{0}. Then we see from (3.8) and (3.9) that

Wλ0
(x) =

ˆ

Bλ0

( 1

|x− y|4 − 1

| |y|λ0
x− λ0

|y|y|4
)
× (u2λ0

(y)− u2(y))dy ≥ 0

and

(3.12) Gλ0
(x) =

ˆ

Bλ0

( 1

|x− y|4 − 1

| |y|λ0
x− λ0

|y|y|4
)
× (v2λ0

(y)− v2(y))dy ≥ 0.

Observe that if Uλ0
= 0 in Bλ0

\{0}, then it follows from (3.5) that Gλ0
= 0 in Bλ0

\{0}, which combined
with (3.12) implies Vλ0

= 0 in Bλ0
\{0}. Analogously, if Vλ0

= 0 in Bλ0
\{0}, then we also have Uλ0

= 0 in
Bλ0

\{0}.
Assume to the contrary that Uλ0

6≡ 0 and Vλ0
6≡ 0 in Bλ0

\{0}. Then Wλ0
> 0 in Bλ0

\{0}, which
together with (3.5) indicates that Uλ0

> 0 in Bλ0
\{0}. Similarly, there also holds Vλ0

> 0 in Bλ0
\{0}. We

claim that there exist two numbers ρ > 0 and δ > 0 such that

(3.13) Uλ0
≥ δ and Vλ0

≥ δ in Bρ\{0}.
Indeed, since Uλ0

> 0, Vλ0
> 0, Wλ0

> 0 and Gλ0
> 0 in Bλ0

\{0}, we deduce from (3.5) that

lim inf
|x|→0

Uλ0
(x) ≥ α1RN

ˆ

Bλ0

(
1

|y|N−2
− 1

λN−2
0

)
× (uλ0

(y)wλ0
(y)− u(y)w(y))dy

+ βRN

ˆ

Bλ0

(
1

|y|N−2
− 1

λN−2
0

)
× (uλ0

(y)gλ0
(y)− u(y)g(y))dy

> 0

and, similarly, lim inf |x|→0 Vλ0
(x) > 0. Then (3.13) holds for small ρ > 0 and δ > 0.

Let C > 0 be the constant given in Lemma 3.1 and fix a number r0 ∈ (0, λ0

2 ) such that

(3.14)

α1|u|22∗,Bλ0+r0
\Bλ0−r0

+ α1|w|N
2
,Bλ0+r0

\Bλ0−r0
+ β|g|N

2
,Bλ0+r0

\Bλ0−r0

+ β|u|2∗,Bλ0+r0
\Bλ0−r0

|v|2∗,Bλ0+r0
\Bλ0−r0

≤ 1

4C
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and

(3.15)

α2|v|22∗,Bλ0+r0
\Bλ0−r0

+ α2|g|N
2
,Bλ0+r0

\Bλ0−r0
+ β|w|N

2
,Bλ0+r0

\Bλ0−r0

+ β|u|2∗,Bλ0+r0
\Bλ0−r0

|v|2∗,Bλ0+r0
\Bλ0−r0

≤ 1

4C
.

Since Uλ0
> 0 and Vλ0

> 0 in Bλ0
\{0}, we see from (3.13) that Uλ0

≥ δ′ and Vλ0
≥ δ′ in Bλ0−r0\{0}

for some δ′ > 0. By uniform continuity, there exists τ0 ∈ (0, r0) such that, for any λ ∈ (λ0, λ0 + τ0),
Uλ ≥ δ′/2 and Vλ ≥ δ′/2 in Bλ0−r0\{0}. Then Bu

λ ⊂ Bλ0+r0\Bλ0−r0 and Bv
λ ⊂ Bλ0+r0\Bλ0−r0 for any

λ ∈ (λ0, λ0 + τ0). Using Lemma 3.1, (3.14) and (3.15) leads to |Uλ|2∗,Bu
λ
= 0 when λ ∈ (λ0, λ0 + τ0), which

means meas (Bu
λ) = 0. Therefore, we have Uλ ≥ 0 in Bλ\{0} for any λ ∈ (λ0, λ0 + τ0), which contradicts

the definition of λu0 . The proof is complete. �

The following lemma is proved in [27, 28].

Lemma 3.4. Let N ≥ 1, ν ∈ R and u ∈ C1(RN ,R). For every x0 ∈ R
N and λ > 0, define

ux0,λ(x) =
( λ

|x− x0|
)ν

u
(λ2(x− x0)

|x− x0|2
+ x0

)
, x ∈ R

N\{x0}.

(i) If for every x0 ∈ RN there exists λx0
< +∞ such that

ux0,λx0
(x) = u(x), for all x ∈ R

N\{x0},
then

u(x) = C
( τ

τ2 + |x− x|2
) ν

2

for some C ∈ R, τ > 0 and x ∈ RN . Moreover, we have λx0
=

√
τ2 + |x0 − x|2.

(ii) If for every x0 ∈ R
N there holds

ux0,λ(x) ≥ u(x), for all λ ∈ R and x ∈ Bλ(x0)\{x0},
then u ≡ C for some C ∈ R.

We are in a position to prove the main result in this section.

Proof of Theorem 1.2. Let (u, v) be a positive solution of (3.1) and recall that

λux0
:= supΓu

x0
> 0, λvx0

:= supΓv
x0
> 0, λx0

:= min{λux0
, λvx0

} > 0,

where
Γu
x0

:= {λ > 0 : Ux0,σ ≥ 0 in Bσ(x0)\{x0} for all σ ∈ (0, λ]}
and

Γv
x0

:= {λ > 0 : Vx0,σ ≥ 0 in Bσ(x0)\{x0} for all σ ∈ (0, λ]}.
We first claim that λx0

< +∞ for any x0 ∈ R
N . If not, then we have the following two cases.

Case 1. λx0
= +∞ for any x0 ∈ RN . In this case, we see from Lemma 3.4(ii) that

(u, v) ≡ (C1, C2)

for some constants C1, C2 > 0. Then (u, v) could not be a solution of (3.1), yielding a contradiction.
Case 2. There exist x0, y0 ∈ RN such that λx0

= +∞ and λy0
< +∞. In this case, since λux0

≥
λx0

= +∞, we have, for any λ > 0, Ux0,λ ≥ 0 for x ∈ Bλ(x0)\{x0} which implies that u(x) ≥ ux0,λ(x) for
x ∈ RN\Bλ(x0). Then we obtain |x− x0|N−2u(x) ≥ λN−2u(xx0,λ) for x ∈ RN\Bλ(x0) and so

lim inf
|x|→∞

|x|N−2u(x) ≥ λN−2u(x0).

Since λ > 0 is arbitrary and u(x0) > 0, we obtain

(3.16) lim
|x|→∞

|x|N−2u(x) = +∞.

On the other hand, since λy0
< +∞, we see from Lemma 3.3 that

uy0,λy0
(x) = u(x), for x ∈ R

N\{y0}.
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Then we have lim|x|→∞ |x|N−2u(x) = λN−2
y0

u(y0) < +∞, yielding a contradiction with (3.16).

Since λx0
< +∞ for any x0 ∈ RN , we deduce from Lemma 3.3 that

ux0,λx0
(x) = u(x) and vx0,λx0

(x) = v(x), for all x ∈ R
N\{x0}.

In view of Lemma 3.4(i), (u, v) must be of the form

(3.17) u(x) = C1

( τ

τ2 + |x− x|2
)N−2

2

, v(x) = C2

( τ

τ2 + |x− x|2
)N−2

2

for some C1, C2, τ > 0 and x ∈ RN .
Using (3.17) and the identity (see [16, (37)] for example)

(3.18)

ˆ

RN

1

|x− y|2s
( 1

1 + |y|2
)N−s

dy = I(s)
( 1

1 + |x|2
)s

, 0 < s <
N

2
,

we have

w(x) =

ˆ

RN

u2(y)

|x− y|4 dy = C2
1I(2)

( τ

τ2 + |x− x|2
)2

and

g(x) =

ˆ

RN

v2(y)

|x− y|4 dy = C2
2I(2)

( τ

τ2 + |x− x|2
)2

.

Then we deduce from (3.2) and (3.18) that

u(x) = α1RN

ˆ

RN

u(y)w(y)

|x− y|N−2
dy + βRN

ˆ

RN

u(y)g(y)

|x− y|N−2
dy

= α1RNC
3
1I(2)I

(N − 2

2

)( τ

τ2 + |x− x|2
)N−2

2

+ βRNC1C
2
2I(2)I

(N − 2

2

)( τ

τ2 + |x− x|2
)N−2

2

,

which combined with (3.17) leads to

α1RNC
2
1I(2)I

(N − 2

2

)
+ βRNC

2
2I(2)I

(N − 2

2

)
= 1.

Similarly, we also have

α2RNC
2
2I(2)I

(N − 2

2

)
+ βRNC

2
1I(2)I

(N − 2

2

)
= 1.

A simple calculation shows that

C1 =

√
k0√

RNI(2)I
(
N−2
2

) , C2 =

√
l0√

RNI(2)I
(
N−2
2

) .

The proof is completed. �

As a direct consequence of Theorem 1.2 and Lemma 2.3, we have the following corollary.

Corollary 3.5. Let β > max{α1, α2}. If (u, v) ∈ H is a nontrivial classical positive solution of (2.3), then
we have

(u, v) = (
√
k0Uδ,z,

√
l0Uδ,z)

for some δ > 0 and z ∈ RN . Moreover, each nontrivial classical positive solution (u, v) ∈ H of (2.3) is a

ground state solution.
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4. A nonlocal global compactness lemma

In this section, we will prove a nonlocal global compactness result for (2.1), i.e., we will give a complete
description for the Palais-Smale sequences of the functional J . We start with a Brézis-Lieb type lemma
about the nonlocal term which is inspired by the Brézis-Lieb convergence lemma (see [8]). The proof is
analogous to that of [23, Lemma 2.2] and [39, Lemma 2.4], but we exhibit it here for completeness.

Lemma 4.1. Let N ≥ 5 and assume {(un, vn)} to be a bounded sequence in L
2N

N−2 (RN )×L
2N

N−2 (RN ) such
that (un, vn) → (u, v) almost everywhere in RN as n→ ∞. Then we have
ˆ

RN

(|x|−4 ∗ |u+n |2)|u+n |2dx−
ˆ

RN

(|x|−4 ∗ |(un − u)+|2)|(un − u)+|2dx→
ˆ

RN

(|x|−4 ∗ |u+|2)|u+|2dx

and
ˆ

RN

(|x|−4 ∗ |u+n |2)|v+n |2dx−
ˆ

RN

(|x|−4 ∗ |(un − u)+|2)|(vn − v)+|2dx→
ˆ

RN

(|x|−4 ∗ |u+|2)|v+|2dx

as n→ ∞.

Proof. Similar to the proof of the Brézis-Lieb Lemma in [8], we have

(4.1) |u+n |2 − |(un − u)+|2 → |u+|2 in L
N

N−2 (RN )

and

(4.2) |v+n |2 − |(vn − v)+|2 → |v+|2 in L
N

N−2 (RN ).

Using Proposition 1.1 yields

(4.3) |x|−4 ∗ (|u+n |2 − |(un − u)+|2) → |x|−4 ∗ |u+|2 in L
N
2 (RN )

and

(4.4) |x|−4 ∗ (|v+n |2 − |(vn − v)+|2) → |x|−4 ∗ |v+|2 in L
N
2 (RN ).

Note that

(4.5)

ˆ

RN

(
|x|−4 ∗ |u+n |2

)
|u+n |2dx−

ˆ

RN

(
|x|−4 ∗ |(un − u)+|2

)
|(un − u)+|2dx

=

ˆ

RN

(
|x|−4 ∗ (|u+n |2 − |(un − u)+|2)

)
(|u+n |2 − |(un − u)+|2)dx

+ 2

ˆ

RN

(
|x|−4 ∗ (|u+n |2 − |(un − u)+|2)

)
|(un − u)+|2dx

and

(4.6)

ˆ

RN

(
|x|−4 ∗ |u+n |2

)
|v+n |2dx−

ˆ

RN

(
|x|−4 ∗ |(un − u)+|2

)
|(vn − v)+|2dx

=

ˆ

RN

(
|x|−4 ∗ (|u+n |2 − |(un − u)+|2)

)
(|v+n |2 − |(vn − v)+|2)dx

+

ˆ

RN

(
|x|−4 ∗ (|u+n |2 − |(un − u)+|2)

)
|(vn − v)+|2dx

+

ˆ

RN

(
|x|−4 ∗ (|v+n |2 − |(vn − v)+|2)

)
|(un − u)+|2dx.

Combining (4.1)−(4.6) with the fact that

|(un − u)+|2 ⇀ 0 and |(vn − v)+|2 ⇀ 0 in L
N

N−2 (RN )

leads to the desired result. �
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The global compactness lemma plays an important role in the study of critical problems, see [47,53] for
a single elliptic equation with a local interaction, [34,43] for local system and [22] for a nonlocal Choquard
equation. For r ∈ R+ and z ∈ RN , we denote the rescaling

(u, v)r,z = r
N−2

2 (u(rx + z), v(rx + z)).

Inspired by the above results, we can establish the global compactness lemma for nonlocal type systems.

Lemma 4.2. Suppose that V1, V2 ∈ L
N
2 (RN ) ∩ L∞

loc(R
N ) and {(un, vn)} ⊂ H is a (PS)d sequence for

the functional J . Then there exist a number k ∈ N, a solution (u0, v0) of (2.1), nonzero solutions

(u1, v1), · · · , (uk, vk) of (2.3), sequences of points {z1n}, · · · , {zkn} in RN and radii {r1n}, · · · , {rkn} such

that, up to a subsequence,

(u0n, v
0
n) := (un, vn)⇀ (u0, v0) in H

and

(ujn, v
j
n) := (uj−1

n − uj−1, vj−1
n − vj−1)rjn,zj

n
⇀ (uj , vj) in H, j = 1, ..., k.

Moreover, we have

lim
n→∞

‖(un, vn)‖2 =

k∑

j=0

‖(uj, vj)‖2

and

lim
n→∞

J(un, vn) = J(u0, v0) +

k∑

j=1

J∞(uj, vj).

Proof. Let {(un, vn)} be a (PS)d sequence for J , then it is bounded in H . We assume up to a subsequence
that (un, vn)⇀ (u0, v0) in H , (un, vn) → (u0, v0) almost everywhere in RN and (u0, v0) is a weak solution
of (2.1). Setting (un, vn) := (un − u0, vn − v0), we have (un, vn) ⇀ (0, 0) in H . Using this together with
the Brézis-Lieb Lemma [8] and Lemma 4.1, we deduce that

‖(un, vn)‖2 = ‖(un, vn)‖2 − ‖(u0, v0)‖2 + on(1),(4.7)

J(un, vn) = J(un, vn)− J(u0, v0) + on(1)

and
J ′(un, vn) = J ′(un, vn)− J ′(u0, v0) + on(1) = on(1).

Since V1 ∈ L
N
2 (RN ), for any ε > 0 there exists a number r = r(ε) > 0 such that

(ˆ

RN\Br(0)

|V1|
N
2 dx

) 2
N

< ε.

For such an r, we can find n0 ∈ N such that
ˆ

Br(0)

u2ndx < ε, for n ≥ n0.

Then, using V1 ∈ L∞
loc(R

N ) and the Hölder inequality, we have
∣∣∣
ˆ

RN

V1(x)u
2
ndx

∣∣∣ =
∣∣∣
ˆ

Br(0)

V1(x)u
2
ndx+

ˆ

RN\Br(0)

V1(x)u
2
ndx

∣∣∣

≤ |V1|∞,Br(0)

ˆ

Br(0)

u2ndx+
(ˆ

RN\Br(0)

|V1|
N
2 dx

) 2
N
(ˆ

RN

|un|
2N

N−2 dx
)N−2

N

< Cε

for n ≥ n0, which means that

lim
n→∞

ˆ

RN

V1(x)u
2
ndx = 0.

Similarly, we also have

lim
n→∞

ˆ

RN

V2(x)v
2
ndx = 0.
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Then

(4.8) J∞(un, vn) = J(un, vn) + on(1) = J(un, vn)− J(u0, v0) + on(1)

and

(4.9) J ′
∞(un, vn) = J ′(un, vn) + on(1) = on(1).

If (un, vn) → (0, 0) in H then we are done: k is just 0 and (u0n, v
0
n) := (un, vn). Now we consider the

case where (un, vn) 9 (0, 0) in H . Assume up to a subsequence that limn→∞ ‖(un, vn)‖2 = b > 0 and, by
(4.9), there also holds

lim
n→∞

ˆ

RN

ˆ

RN

α1|u+n (x)|2|u+n (y)|2 + α2|v+n (x)|2|v+n (y)|2 + 2β|u+n (x)|2|v+n (y)|2
|x− y|4 dxdy = b.

For tn > 0 defined by

t2n =
‖(un, vn)‖2

ˆ

RN

ˆ

RN

α1|u+n (x)|2|u+n (y)|2 + α2|v+n (x)|2|v+n (y)|2 + 2β|u+n (x)|2|v+n (y)|2
|x− y|4 dxdy

,

we have (tnun, tnvn) ∈ N∞ and t2n = 1 + on(1) as n→ ∞. Then

c∞ ≤ J∞(tnun, tnvn) =
1

4
t2n‖(un, vn)‖2 =

1

4
b+ on(1),

which implies that b ≥ 4c∞.
Claim: There exist sequences {rn} ⊂ R+ and {zn} ⊂ RN such that

(ũn, ṽn) = (un, vn)rn,zn ⇀ (u, v) in H,

where (u, v) is a nonzero solution of (2.3).
We see from (4.9) that

J∞(un, vn) =
1

4
‖(un, vn)‖2 + on(1).

Define the Levy concentration function of (un, vn) by

Qn(r) := sup
z∈RN

ˆ

Br(z)

(|∇un|2 + |∇vn|2)dx.

Let L be the least number of balls with radius 1 covering a ball of radius 2. We see from

lim
n→∞

‖(un, vn)‖2 = b ≥ 4c∞

that, for large n, there exist rn ∈ R+ and zn ∈ RN such that

sup
z∈RN

ˆ

Br(z)

(|∇un|2 + |∇vn|2)dx =

ˆ

Brn (zn)

(|∇un|2 + |∇vn|2)dx =
2c∞
L

.

Setting (ũn, ṽn) := (un, vn)rn,zn , we have

(4.10) sup
z∈RN

ˆ

B1(z)

(|∇ũn|2 + |∇ṽn|2)dx =

ˆ

B1(0)

(|∇ũn|2 + |∇ṽn|2)dx =
2c∞
L

and {(ũn, ṽn)} is bounded in H . Assume by extracting a subsequence that (ũn, ṽn) ⇀ (u, v) in H and
(ũn, ṽn) → (u, v) almost everywhere in RN . The scale invariance under translation and dilation implies
that

‖(un, vn)‖ = ‖(ũn, ṽn‖,
ˆ

RN

ˆ

RN

|u+n (x)|2|u+n (y)|2
|x− y|4 dxdy =

ˆ

RN

ˆ

RN

|ũ+n (x)|2|ũ+n (y)|2
|x− y|4 dxdy,

ˆ

RN

ˆ

RN

|v+n (x)|2|v+n (y)|2
|x− y|4 dxdy =

ˆ

RN

ˆ

RN

|ṽ+n (x)|2|ṽ+n (y)|2
|x− y|4 dxdy,

ˆ

RN

ˆ

RN

|u+n (x)|2|v+n (y)|2
|x− y|4 dxdy =

ˆ

RN

ˆ

RN

|ũ+n (x)|2|ṽ+n (y)|2
|x− y|4 dxdy.
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Then we have

J∞(ũn, ṽn) = J∞(un, vn) + on(1)

and

‖J ′
∞(ũn, ṽn)‖ = ‖J ′

∞(un, vn)‖ = on(1).

Therefore, (u, v) is a solution of (2.3).
Next we show that (u, v) 6= (0, 0). In fact, using the arguments in [47], we can find ρ ∈ [1, 2] such that

the solution ϕ̂n of the boundary value problem
{

−∆ϕ = 0 in B3(0)\Bρ(0),

ϕ|∂Bρ(0) = ũn − u, ϕ|∂B3(0) = 0

satisfies ϕ̂n → 0 in H1(B3(0)\Bρ(0)) and the solution ψ̂n of the problem in which the boundary condition

ϕ|∂Bρ(0) = ũn − u is replaced with ϕ|∂Bρ(0) = ṽn − v also satisfies ψ̂n → 0 in H1(B3(0)\Bρ(0)). Define

ϕ̃n(x) =





ũn(x) − u(x), x ∈ Bρ(0),

ϕ̂n, x ∈ B3(0)\Bρ(0),

0, x ∈ RN\B3(0).

Replace ũn and ϕ̂n with ṽn and ψ̂n respectively in the definition of ϕ̃n, and denote this resulted new

function by ψ̃n. Setting

ϕn = r
−N−2

2
n ϕ̃n

( · − zn
rn

)
and ψn = r

−N−2

2
n ψ̃n

( · − zn
rn

)
,

we have

(4.11)

ˆ

RN

(|∇ϕn|2 + |∇ψn|2)dx =

ˆ

RN

(|∇ϕ̃n|2 + |∇ψ̃n|2)dx

=

ˆ

Bρ(0)

(|∇(ũn − u)|2 + |∇(ṽn − v)|2)dx+ on(1)

=

ˆ

Bρ(0)

(|∇ũn|2 + |∇ṽn|2)dx −
ˆ

Bρ(0)

(|∇u|2 + |∇v|2)dx+ on(1)

≤
ˆ

Bρ(0)

(|∇ũn|2 + |∇ṽn|2)dx + on(1).

Since ϕ̂n → 0 and ψ̂n → 0 in H1(B3(0)\Bρ(0)), the scale invariance implies that
(4.12)

on(1) = 〈J ′
∞(un, vn), (ϕn, ψn)〉 = 〈J ′

∞(ũn, ṽn), (ϕ̃n, ψ̃n)〉

=

ˆ

Bρ(0)

(∇ũn∇(ũn − u) +∇ṽn∇(ṽn − v))dx

− α1

ˆ

Bρ(0)

ˆ

RN

|ũ+n (x)|2ũ+n (y)(ũn − u)(y)

|x− y|4 dxdy − β

ˆ

Bρ(0)

ˆ

RN

|ṽ+n (x)|2ũ+n (y)(ũn − u)(y)

|x− y|4 dxdy

− α2

ˆ

Bρ(0)

ˆ

RN

|ṽ+n (x)|2ṽ+n (y)(ṽn − v)(y)

|x− y|4 dxdy − β

ˆ

Bρ(0)

ˆ

RN

|ũ+n (x)|2ṽ+n (y)(ṽn − v)(y)

|x− y|4 dxdy

+ on(1).

Since {ũ2n} is bounded in L
N

N−2 (RN ) and ũn → u almost everywhere in RN , we have |ũ+n |2 ⇀ |u+|2 in

L
N

N−2 (RN ). By the Hardy-Littlewood-Sobolev inequality, the Riesz potential defines a linear continuous

map from L
N

N−2 (RN ) to L
N
2 (RN ) and then
ˆ

RN

|ũ+n (x)|2
|x− y|4 dx ⇀

ˆ

RN

|u+(x)|2
|x− y|4 dx in L

N
2 (RN ).
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Combining this with ũ+n ⇀ u+ in L
2N

N−2 (RN ) leads to

ũ+n (y)

ˆ

RN

|ũ+n (x)|2
|x− y|4 dx ⇀ u+(y)

ˆ

RN

|u+(x)|2
|x− y|4 dx in L

2N
N+2 (RN ),

which implies that

lim
n→∞

ˆ

Bρ(0)

ˆ

RN

|ũ+n (x)|2ũ+n (y)u(y)
|x− y|4 dxdy =

ˆ

Bρ(0)

ˆ

RN

|u+(x)|2u+(y)u(y)
|x− y|4 dxdy

=

ˆ

Bρ(0)

ˆ

RN

|u+(x)|2|u+(y)|2
|x− y|4 dxdy.

Then

(4.13)

ˆ

Bρ(0)

ˆ

RN

|ũ+n (x)|2ũ+n (y)(ũn − u)(y)

|x− y|4 dxdy

=

ˆ

Bρ(0)

ˆ

RN

|ũ+n (x)|2|ũ+n (y)|2
|x− y|4 dxdy −

ˆ

Bρ(0)

ˆ

RN

|u+(x)|2|u+(y)|2
|x− y|4 dxdy + on(1)

=

ˆ

Bρ(0)

ˆ

RN

|(ũn − u)+(x)|2|(ũn − u)+(y)|2
|x− y|4 dxdy + on(1).

Similarly, we also have
(4.14)
ˆ

Bρ(0)

ˆ

RN

|ṽ+n (x)|2ũ+n (y)(ũn − u)(y)

|x− y|4 dxdy =

ˆ

Bρ(0)

ˆ

RN

|(ṽn − v)+(x)|2|(ũn − u)+(y)|2
|x− y|4 dxdy + on(1),

(4.15)̂

Bρ(0)

ˆ

RN

|ṽ+n (x)|2ṽ+n (y)(ṽn − v)(y)

|x− y|4 dxdy =

ˆ

Bρ(0)

ˆ

RN

|(ṽn − v)+(x)|2|(ṽn − v)+(y)|2
|x− y|4 dxdy + on(1)

and
(4.16)
ˆ

Bρ(0)

ˆ

RN

|ũ+n (x)|2ṽ+n (y)(ṽn − v)(y)

|x− y|4 dxdy =

ˆ

Bρ(0)

ˆ

RN

|(ũn − u)+(x)|2|(ṽn − v)+(y)|2
|x− y|4 dxdy + on(1).

Substituting (4.13)−(4.16) into (4.12) and using (ũn, ṽn)⇀ (u, v) in H , we obtain

on(1) =

ˆ

Bρ(0)

(|∇(ũn − u)|2 + |∇(ṽn − v)|2)dx

− α1

ˆ

Bρ(0)

ˆ

RN

|(ũn − u)+(x)|2|(ũn − u)+(y)|2
|x− y|4 dxdy − β

ˆ

Bρ(0)

ˆ

RN

|(ṽn − v)+(x)|2|(ũn − u)+(y)|2
|x− y|4 dxdy

− α2

ˆ

Bρ(0)

ˆ

RN

|(ṽn − v)+(x)|2|(ṽn − v)+(y)|2
|x− y|4 dxdy − β

ˆ

Bρ(0)

ˆ

RN

|(ũn − u)+(x)|2|(ṽn − v)+(y)|2
|x− y|4 dxdy.

Using ϕ̂n → 0 and ψ̂n → 0 in H1(B3(0)\Bρ(0)) and the scale invariance again

(4.17)

on(1) =

ˆ

RN

(|∇ϕ̃n|2 + |∇ψ̃n|2)dx− α1

ˆ

RN

ˆ

RN

|ϕ̃+
n (x)|2|ϕ̃+

n (y)|2
|x− y|4 dxdy

− α2

ˆ

RN

ˆ

RN

|ψ̃+
n (x)|2|ψ̃+

n (y)|2
|x− y|4 dxdy − 2β

ˆ

RN

ˆ

RN

|ϕ̃+
n (x)|2|ψ̃+

n (y)|2
|x− y|4 dxdy

=

ˆ

RN

(|∇ϕn|2 + |∇ψn|2)dx− α1

ˆ

RN

ˆ

RN

|ϕ+
n (x)|2|ϕ+

n (y)|2
|x− y|4 dxdy

− α2

ˆ

RN

ˆ

RN

|ψ+
n (x)|2|ψ+

n (y)|2
|x− y|4 dxdy − 2β

ˆ

RN

ˆ

RN

|ϕ+
n (x)|2|ψ+

n (y)|2
|x− y|4 dxdy.
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If (ϕ+
n , ψ

+
n ) 6= (0, 0), we define tn > 0 by

t2n =
‖(ϕn, ψn)‖2

ˆ

RN

ˆ

RN

α1|ϕ+
n (x)|2|ϕ+

n (y)|2 + α2|ψ+
n (x)|2|ψ+

n (y)|2 + 2β|ϕ+
n (x)|2|ψ+

n (y)|2
|x− y|4 dxdy

.

Then (tnϕn, tnψn) ∈ N∞ and

c∞ ≤ J∞(tnϕn, tψn) =
1

4

‖(ϕn, ψn)‖4
ˆ

RN

ˆ

RN

α1|ϕ+
n (x)|2|ϕ+

n (y)|2 + α2|ψ+
n (x)|2|ψ+

n (y)|2 + 2β|ϕ+
n (x)|2|ψ+

n (y)|2
|x− y|4 dxdy

,

which indicates that
ˆ

RN

ˆ

RN

α1|ϕ+
n (x)|2|ϕ+

n (y)|2 + α2|ψ+
n (x)|2|ψ+

n (y)|2 + 2β|ϕ+
n (x)|2|ψ+

n (y)|2
|x− y|4 dxdy ≤ 1

4c∞
‖(ϕn, ψn)‖4.

Note that the above inequality also holds if (ϕ+
n , ψ

+
n ) = (0, 0). Combining this with (4.17) and (4.11) yields

on(1) ≥
(
1− 1

4c∞

ˆ

RN

(|∇ϕn|2 + |∇ψn|2)dx
) ˆ

RN

(|∇ϕn|2 + |∇ψn|2)dx

≥
(
1− 1

4c∞

ˆ

Bρ(0)

(|∇ũn|2 + |∇ṽn|2)dx
) ˆ

RN

(|∇ϕn|2 + |∇ψn|2)dx+ on(1).

Therefore, we have

lim
n→∞

ˆ

Bρ(0)

(|∇(ũn − u)|2 + |∇(ṽn − v)|2)dx = lim
n→∞

ˆ

RN

(|∇ϕn|2 + |∇ψn|2)dx = 0,

since the definition of L implies
ˆ

Bρ(0)

(|∇ũn|2 + |∇ṽn|2)dx ≤ L

ˆ

B1(0)

(|∇ũn|2 + |∇ṽn|2)dx = 2c∞.

Then we see from (4.10) that (u, v) 6= (0, 0) and conclude the proof of the claim.
Set (u1n, v

1
n) := (un, vn), (u

1, v1) := (u, v), r1n := rn and z1n := zn. Doing iteration, we obtain sequences
{rjn} and {zjn} such that (ujn, v

j
n) := (uj−1

n − uj−1, vj−1
n − vj−1)rjn,zj

n
⇀ (uj , vj) in H , where (uj , vj) are

nonzero solutions of (2.3). Moreover, we see from (4.7) and (4.8) that, by induction,

‖(ujn, vjn)‖2 = ‖(un, vn)‖2 −
j−1∑

i=0

‖(ui, vi)‖2 + on(1)

and

J∞(ujn, v
j
n) = J(un, vn)− J(u0, v0)−

j−1∑

i=1

J∞(ui, vi) + on(1).

The iterating process must terminate in finite steps, because, for any nonzero solution (u, v) of (2.3), there
holds J∞(u, v) ≥ c∞ > 0. Moreover, the last Palais-Smale sequence for J∞ must converge to (0, 0) strongly
in H . This finishes the proof. �

Corollary 4.3. Let {(un, vn)} ⊂ N be a (PS)d sequence for the constrained functional J |N at the level

d ∈ (c∞,min{S2
H,L/4α1, S

2
H,L/4α2, 2c∞}), then {(un, vn)} is relatively compact in H.

Proof. It is easy to see that {(un, vn)} ⊂ N is a (PS)d sequence for the functional J . According to Lemma
4.2, there exist a number k ∈ N, a solution (u0, v0) of (2.1) and nonzero solutions (u1, v1), · · · , (uk, vk) of
(2.3) such that, up to a subsequence,

lim
n→∞

‖(un, vn)‖2 =

k∑

j=0

‖(uj, vj)‖2
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and

lim
n→∞

J(un, vn) = J(u0, v0) +

k∑

j=1

J∞(uj , vj).

We first claim that (u0, v0) 6= (0, 0). If not, we see from d < 2c∞ that k = 1. By Corollary 3.5 and
the uniqueness of positive solutions for the Choquard equation −∆u = αi(|x|−4 ∗ u2)u in RN , (u1, v1)
must be, up to translation and dilation, one of the three solutions (

√
k0U1,0,

√
l0U1,0), (

1√
α1
U1,0, 0), and

(0, 1√
α2
U1,0). Then either d = c∞ or d = S2

H,L/4α1 or d = S2
H,L/4α2, which contradicts the assumption.

since (u0, v0) 6= (0, 0), using d < 2c∞ again and Lemma 2.4 leads to k = 0. Therefore, we conclude that
{(un, vn)} is relatively compact in H . �

5. Existence of a positive solution

For (u, v) ∈ H , set

‖(u, v)‖NL :=
(ˆ

RN

ˆ

RN

α1|u+(x)|2|u+(y)|2 + α2|v+(x)|2|v+(y)|2 + 2β|u+(x)|2|v+(y)|2
|x− y|4 dxdy

) 1
4

.

Following the idea in [10], we introduce a barycenter map β : H → RN defined as

β(u, v) =
1

‖(u, v)‖4NL

ˆ

RN

x

1 + |x|

ˆ

RN

α1|u+(x)|2|u+(y)|2 + α2|v+(x)|2|v+(y)|2 + 2β|u+(x)|2|v+(y)|2
|x− y|4 dy dx.

We also define a functional

γ(u, v) =

1

‖(u, v)‖4NL

ˆ

RN

∣∣∣ x

1 + |x|−β(u, v)
∣∣∣
ˆ

RN

α1|u+(x)|2|u+(y)|2 + α2|v+(x)|2|v+(y)|2 + 2β|u+(x)|2|v+(y)|2
|x− y|4 dy dx

to estimate the concentration of (u, v) around its barycenter. Denote

M :=
{
(u, v) ∈ N : β(u, v) = 0, γ(u, v) =

1

2

}

and consider the infimum

c⋆ = inf
(u,v)∈M

J(u, v).

Lemma 5.1. If β > max{α1, α2} and V1, V2 ∈ L
N
2 (RN ) are nonnegative functions such that

|V1|N
2
+ |V2|N

2
> 0,

then c⋆ > c∞.

Proof. We first see from M ⊂ N and Lemma 2.4 that c⋆ ≥ c = c∞. Assume to the contrary that c⋆ = c∞.
Then, by Ekeland’s variational principle, there exists a sequence {(un, vn)} ⊂ N such that, as n→ ∞,

(5.1) β(un, vn) → 0, γ(un, vn) →
1

2

and

J(un, vn) → c∞, (J |N )′(un, vn) → 0.

By Lemmas 2.4 and 4.2, there exist δn > 0, zn ∈ RN and (ϕn, ψn) ∈ H such that

(un, vn) = (
√
k0Uδn,zn ,

√
l0Uδn,zn) + (ϕn, ψn),
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where (ϕn, ψn) → (0, 0) in H . Then we have
(5.2)
1

2
= lim

n→∞
γ(un, vn)

= lim
n→∞

1

‖(un, vn)‖4NL

ˆ

RN

|x|
1 + |x|

ˆ

RN

α1|u+n (x)|2|u+n (y)|2 + α2|v+n (x)|2|v+n (y)|2 + 2β|u+n (x)|2|v+n (y)|2
|x− y|4 dy dx

= lim
n→∞

1

S2
H,L

ˆ

RN

|x|
1 + |x|

ˆ

RN

U2
δn,zn

(x)U2
δn,zn

(y)

|x− y|4 dy dx

and

(5.3) 0 = lim
n→∞

β(un, vn) = lim
n→∞

1

S2
H,L

ˆ

RN

x

1 + |x|

ˆ

RN

U2
δn,zn

(x)U2
δn,zn

(y)

|x− y|4 dy dx.

We divide into the following four cases. In each case, we will come to a contradiction and finish the proof.
Case 1. Up to a subsequence, there holds limn→∞ δn = +∞.
In this case, we have

lim
n→∞

ˆ

Br(0)

ˆ

RN

U2
δn,zn

(x)U2
δn,zn

(y)

|x− y|4 dy dx = 0

for any r > 0. Combining this with (5.2) leads to

1

2
= lim

n→∞
1

S2
H,L

ˆ

RN\Br(0)

|x|
1 + |x|

ˆ

RN

U2
δn,zn

(x)U2
δn,zn

(y)

|x− y|4 dy dx ≥ r

1 + r
,

which is impossible when r > 1.
Case 2. Up to a subsequence, there hold limn→∞ δn = δ > 0 and limn→∞ zn = z.
In this case, one can prove that

(
√
k0Uδn,zn ,

√
l0Uδn,zn) → (

√
k0Uδ,z,

√
l0Uδ,z) in H

and then (un, vn) → (
√
k0Uδ,z,

√
l0Uδ,z) in H . We come to a contradiction as shown by

c∞ = lim
n→∞

J(un, vn)

=
1

4
lim
n→∞

ˆ

RN

(|∇un|2 + |∇vn|2 + V1(x)u
2
n + V2(x)v

2
n)dx

=
k0 + l0

4

ˆ

RN

|∇Uδ,z|2dx+
1

4

ˆ

R4

(k0V1(x)U
2
δ,z + l0V2(x)U

2
δ,z)

>
k0 + l0

4
S2
H,L

= c∞.

Case 3. Up to a subsequence, there holds limn→∞ δn = δ > 0 and limn→∞ |zn| = +∞.
In this case, we have

1

S2
H,L

ˆ

RN

|x|
1 + |x|

ˆ

RN

U2
δn,zn

(x)U2
δn,zn

(y)

|x− y|4 dy dx

= 1− 1

S2
H,L

ˆ

RN

1

1 + |x|

ˆ

RN

U2
δn,zn

(x)U2
δn,zn

(y)

|x− y|4 dy dx

= 1− on(1),

which contradicts with (5.2).
Case 4. Up to a subsequence, there holds limn→∞ δn = 0.
In this case, we have

lim
n→∞

ˆ

RN\Br(0)

ˆ

RN

U2
δn,0

(x)U2
δn,0

(y)

|x− y|4 dy dx = 0
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for any r > 0. Combining this with (5.1), (5.3) and the inequality | zn
1+|zn| −

x
1+|x| | ≤ r for x ∈ Br(zn) yields

|zn|
1 + |zn|

=
∣∣∣ zn
1 + |zn|

− β(un, vn)
∣∣∣+ on(1)

≤ 1

S2
H,L

ˆ

RN

∣∣∣ zn
1 + |zn|

− x

1 + |x|
∣∣∣
ˆ

RN

U2
δn,zn

(x)U2
δn,zn

(y)

|x− y|4 dy dx+ on(1)

=
1

S2
H,L

ˆ

Br(zn)

∣∣∣ zn
1 + |zn|

− x

1 + |x|
∣∣∣
ˆ

RN

U2
δn,zn

(x)U2
δn,zn

(y)

|x− y|4 dy dx + on(1)

≤ r + on(1),

which implies that |zn| → 0 as n→ ∞, since r > 0 is arbitrary. Then we have

1

S2
H,L

ˆ

RN

|x|
1 + |x|

ˆ

RN

U2
δn,zn

(x)U2
δn,zn

(y)

|x− y|4 dy dx

=
1

S2
H,L

ˆ

Br(zn)

|x|
1 + |x|

ˆ

RN

U2
δn,zn

(x)U2
δn,zn

(y)

|x− y|4 dy dx+ on(1)

≤ r + on(1)

for any r > 0. This contradicts with (5.2) again when r < 1
2 . �

Let η ∈ C∞
0 (B1(0)) be a radially decreasing function such that η ≡ 1 on Bρ(0) for some 0 < ρ < 1 and

define uε(x) = η(x)Uε,0(x) for ε > 0. By [23, Section 3], we have

(5.4)

ˆ

RN

|∇uε|2dx = S2
H,L +O(εN−2),

(5.5)

ˆ

RN

ˆ

RN

u2ε(x)u
2
ε(y)

|x− y|4 dxdy ≥ S2
H,L −O(εN−2)

and

(5.6)

ˆ

RN

ˆ

RN

u2ε(x)u
2
ε(y)

|x− y|4 dxdy ≤ S2
H,L +O(ε2N−4).

Set

tε =

(
ˆ

RN

|∇uε|2dx
ˆ

RN

ˆ

RN

u2ε(x)u
2
ε(y)

|x− y|4 dxdy

) 1
2

.

Then

‖tεuε‖2 =

ˆ

RN

ˆ

RN

|tεuε(x)|2|tεuε(y)|2
|x− y|4 dxdy

=
‖uε‖4

ˆ

RN

ˆ

RN

u2ε(x)u
2
ε(y)

|x− y|4 dxdy

≥
[
S2
H,L +O(εN−2)

]2

S2
H,L +O(ε2N−4)

= S2
H,L +O(εN−2)

> S2
H,L

for ε > 0 sufficiently small. By (5.4)−(5.6), it is easy to see that

lim
ε→0

‖tεuε‖2 = lim
ε→0

ˆ

RN

ˆ

RN

|tεuε(x)|2|tεuε(y)|2
|x− y|4 dxdy = S2

H,L.
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Take w = tεuε with ε > 0 small enough, we can see that the nonnegative radial function w ∈ C∞
0 (RN )

satisfies the following properties: suppw ⊂ B1(0), w is non-increasing with respect to r = |x|,

‖w‖2 =

ˆ

RN

ˆ

RN

w2(x)w2(y)

|x− y|4 dxdy > S2
H,L,

(5.7)
k0 + l0

4
‖w‖2 < c⋆

and

(5.8)

k0 + l0
4

‖w‖2S−2
H,L

(
SH,L +

β − α2

2β − α1 − α2
C(N, 4)−

1
2 |V1|N

2
+

β − α1

2β − α1 − α2
C(N, 4)−

1
2 |V2|N

2

)2

< min
{S2

H,L

4α1
,
S2
H,L

4α2
, 2c∞

}

which is equivalent to the second inequality in (1.12).
The proof of the following Lemma is similar to Lemma 3.6 in [10], Lemma 4.2 in [33], we only state the

main results here.

Lemma 5.2. Denote wδ,z = δ−
N−2

2 w(x−z
δ ) for δ > 0 and z ∈ RN . If a ∈ L

N
2 (RN ), then

lim
δ→0+

ˆ

RN

a(x)w2
δ,zdx = lim

δ→+∞

ˆ

RN

a(x)w2
δ,zdx = 0

uniformly for z ∈ R
N and

lim
|z|→+∞

ˆ

RN

a(x)w2
δ,zdx = 0

uniformly for δ > 0.

Lemma 5.3. Denote the inner product in RN by 〈·, ·〉RN and let r > 0 be a fixed number. Then

(1) 〈β(
√
k0wδ,z,

√
l0wδ,z), z〉RN > 0 for any δ > 0 and z ∈ R

N\{0};
(2) limδ→0+ γ(

√
k0wδ,z ,

√
l0wδ,z) = 0 uniformly for z ∈ RN ;

(3) limδ→+∞ γ(
√
k0wδ,z,

√
l0wδ,z) = 1 uniformly for z ∈ Br(0).

Proof. (1) Let δ > 0 and z ∈ RN\{0}. For any x ∈ RN with 〈x, z〉RN > 0, there holds | − x− z| > |x− z|.
Then from the properties of w we see that wδ,z(x) ≥ wδ,z(−x) for any x ∈ RN with 〈x, z〉RN > 0 and
meas {x ∈ RN |〈x, z〉RN > 0, wδ,z(x) > wδ,z(−x)} > 0. Thus we have

ˆ

RN

〈x, z〉RN

1 + |x|

ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx

=

ˆ

{x∈RN |〈x,z〉
RN>0}

〈x, z〉RN

1 + |x|

ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx

+

ˆ

{x∈RN |〈x,z〉
RN<0}

〈x, z〉RN

1 + |x|

ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx

=

ˆ

{x∈RN |〈x,z〉
RN>0}

〈x, z〉RN

1 + |x|

ˆ

RN

(w2
δ,z(x) − w2

δ,z(−x))w2
δ,z(y)

|x− y|4 dy dx

> 0,

which indicates that

〈β(
√
k0wδ,z ,

√
l0wδ,z), z〉RN =

1

‖w‖2
ˆ

RN

〈x, z〉RN

1 + |x|

ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx > 0

for any δ > 0 and z ∈ RN\{0}.
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(2) For any δ > 0 and z ∈ RN , we have

∣∣∣ z

1 + |z| − β(
√
k0wδ,z,

√
l0wδ,z)

∣∣∣ ≤ 1

‖w‖2
ˆ

RN

∣∣∣ z

1 + |z| −
x

1 + |x|
∣∣∣
ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx ≤ δ,

where we have used the fact that | z
1+|z| − x

1+|x| | < δ for any x ∈ Bδ(z). Then

0 ≤ γ(
√
k0wδ,z ,

√
l0wδ,z)

=
1

‖w‖2
ˆ

RN

∣∣∣ x

1 + |x| − β(
√
k0wδ,z,

√
l0wδ,z)

∣∣∣
ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx

≤ 1

‖w‖2
ˆ

RN

∣∣∣ x

1 + |x| −
z

1 + |z|
∣∣∣
ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx

+
1

‖w‖2
ˆ

RN

∣∣∣ z

1 + |z| − β(
√
k0wδ,z,

√
l0wδ,z)

∣∣∣
ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx

≤ 2δ,

which implies that

lim
δ→0+

γ(
√
k0wδ,z,

√
l0wδ,z) = 0

uniformly for z ∈ RN .
(3) We first claim that

(5.9) lim
δ→+∞

β(
√
k0wδ,z,

√
l0wδ,z) = 0

uniformly for z ∈ Br(0). Indeed, since wδ,0 is radially symmetric, we have

ˆ

RN

x

1 + |x|

ˆ

RN

w2
δ,0(x)w

2
δ,0(y)

|x− y|4 dy dx = 0

and so
∣∣∣β(

√
k0wδ,z,

√
l0wδ,z)

∣∣∣ = 1

‖w‖2
∣∣∣
ˆ

RN

x

1 + |x|

ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy )dx
∣∣∣

=
1

‖w‖2
∣∣∣
ˆ

RN

x

1 + |x|

ˆ

RN

w2
δ,z(x)w

2
δ,z(y)− w2

δ,0(x)w
2
δ,0(y)

|x− y|4 dy dx
∣∣∣

≤ 1

‖w‖2
ˆ

RN

ˆ

RN

|w2
δ,z(x)w

2
δ,z(y)− w2

δ,0(x)w
2
δ,0(y)|

|x− y|4 dy dx

=
1

‖w‖2
ˆ

RN

ˆ

RN

|w2
1,z/δ(x)w

2
1,z/δ(y)− w2

1,0(x)w
2
1,0(y)|

|x− y|4 dy dx

→ 0

as δ → +∞, uniformly for z ∈ Br(0).
For ε > 0, we fix a constant ρ = ρ(ε) > 0 such that 1

1+ρ <
ε
3 . For such a ρ, we see from (5.9) that

lim
δ→+∞

ˆ

Bρ(0)

ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx = 0

uniformly for z ∈ Br(0) and that there exists δ0 > 0 such that
∣∣β(

√
k0wδ,z,

√
l0wδ,z)

∣∣ < ε

3

and
1

‖w‖2
ˆ

Bρ(0)

ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx <
ε

3
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for all δ ∈ (δ0,+∞) and z ∈ Br(0). Observe that

γ(
√
k0wδ,z,

√
l0wδ,z) =

1

‖w‖2
ˆ

RN

∣∣∣ x

1 + |x| − β(
√
k0wδ,z,

√
l0wδ,z)

∣∣∣
ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx < 1 +
ε

3

for all δ ∈ (δ0,+∞) and z ∈ Br(0). On the other hand, for all δ ∈ (δ0,+∞) and z ∈ Br(0) we have

γ(
√
k0wδ,z,

√
l0wδ,z) =

1

‖w‖2
ˆ

RN

∣∣∣ x

1 + |x| − β(
√
k0wδ,z,

√
l0wδ,z)

∣∣∣
ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx

≥ 1

‖w‖2
ˆ

RN

|x|
1 + |x|

ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx− ε

3

≥ 1

‖w‖2
ˆ

RN\Bρ(0)

|x|
1 + |x|

ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx− ε

3

≥ ρ

1 + ρ
− 1

‖w‖2
ˆ

Bρ(0)

ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dy dx− ε

3

≥ 1− 1

1 + ρ
− ε

3
− ε

3

> 1− ε.

Therefore, we have

lim
δ→+∞

γ(
√
k0wδ,z,

√
l0wδ,z) = 1

uniformly for z ∈ Br(0). �

For simplicity, we define T : R+ × R
N → H by

T (δ, z) = (
√
k0wδ,z,

√
l0wδ,z)

and Θ : H\{(0, 0)} → N by

Θ(u, v) = (t(u,v)|u|, t(u,v)|v|),
where t(u,v) > 0 is given by

t2(u,v) =
‖(u, v)‖2 +

´

RN (V1(x)u
2 + V2(x)v

2)dx
ˆ

RN

ˆ

RN

α1u
2(x)u2(y) + α2v

2(x)v2(y) + 2βu2(x)v2(y)

|x− y|4 dxdy

.

We have, for δ > 0 and z ∈ RN ,

J(Θ ◦ T (δ, z)) = 1

4

[(k0 + l0)‖wδ,z‖2 +
ˆ

RN

(k0V1(x)w
2
δ,z + l0V2(x)w

2
δ,z)dx]

2

(k0 + l0)

ˆ

RN

ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dxdy

=
1

4

[(k0 + l0)‖w‖2 +
ˆ

RN

(k0V1(x)w
2
δ,z + l0V2(x)w

2
δ,z)dx]

2

(k0 + l0)

ˆ

RN

ˆ

RN

w2(x)w2(y)

|x− y|4 dxdy

.

Then, by Lemma 5.2 and by (5.7), we can fix R0 > 0 such that J(Θ ◦ T (δ, z)) < c⋆ for all δ > 0 and
|z| ≥ R0. Moreover, as a consequence of Lemmas 5.2 and 5.3, we have

Lemma 5.4. (1) There exists δ1 ∈ (0, 12 ) such that

J(Θ ◦ T (δ, z)) < c⋆

and

γ(
√
k0wδ,z,

√
l0wδ,z) <

1

2
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for all δ ∈ (0, δ1] and z ∈ RN .

(2) There exists δ2 ∈ (12 ,+∞) such that

J(Θ ◦ T (δ, z)) < c⋆

and

γ(
√
k0wδ,z,

√
l0wδ,z) >

1

2

for all δ ∈ [δ2,+∞) and z ∈ BR0
(0).

Lemma 5.5. Denote D = [δ1, δ2]×BR0
(0) and define a map g : D → R+ × RN by

g(δ, z) = (γ ◦Θ ◦ T (δ, z), β ◦Θ ◦ T (δ, z)).
Then we have

deg
(
g,D,

(1
2
, 0
))

= 1.

Proof. Consider the homotopy map G : [0, 1]×D → R
+ × R

N defined by

G(s, δ, z) = (1− s)(δ, z) + sg(δ, z).

We claim

(5.10)
(1
2
, 0
)
6∈ G([0, 1]× ∂D).

If this is true, then the conclusion follows easily from the homotopy invariance and normalization of degree.
Now we verify (5.10). If δ = δ1 and z ∈ BR0

(0), then we see from Lemma 5.4(1) that

(1− s)δ1 + sγ ◦Θ ◦ T (δ1, z) = (1− s)δ1 + sγ(
√
k0wδ1,z,

√
l0wδ1,z) <

1

2
.

If δ = δ2 and z ∈ BR0
(0), then it follows from Lemma 5.4(2) that

(1− s)δ1 + sγ ◦Θ ◦ T (δ2, z) = (1− s)δ2 + sγ(
√
k0wδ2,z,

√
l0wδ2,z) >

1

2
.

If δ ∈ [δ1, δ2] and |z| = R0, then using Lemma 5.3(1) yields

〈(1 − s)z + sβ ◦Θ ◦ T (δ, z), z〉 = 〈(1 − s)z + sβ(
√
k0wδ,z,

√
l0wδ,z), z〉RN > 0,

which implies that (1− s)z + sβ ◦Θ ◦ T (δ, z) 6= 0. Therefore, (5.10) holds. �

Setting A = Θ ◦ T (D) and Γ = {h ∈ C(A,N ) : h|∂A = id}, we have

Lemma 5.6. M and ∂A link with respect to Γ.

Proof. Assume that (u, v) ∈ ∂A = Θ ◦ T (∂D). From the choice of R0 and Lemma 5.4, we see that
J(u, v) < c⋆ which implies (u, v) 6∈ M. Therefore, we have M∩ ∂A = ∅.

For any h ∈ Γ, we define a continuous map g : D → R
+ × R

N by

g(δ, z) = (γ ◦ h ◦Θ ◦ T (δ, z), β ◦ h ◦Θ ◦ T (δ, z)).
Since h|∂A = id, we have g|∂D = g|∂D. Then it follows from Lemma 5.5 that

deg
(
g,D,

(1
2
, 0
))

= deg
(
g,D,

(1
2
, 0
))

= 1.

By the Kronecker existence theorem, there is (δ, z) ∈ D such that h ◦ Θ ◦ T (δ, z) ∈ M. Then we conclude
that M∩ h(A) 6= ∅. �

Now we are in a position to prove the main result.
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Proof of Theorem 1.3. Define the minimax value

d = inf
h∈Γ

max
(u,v)∈A

J(h(u, v)).

Lemma 5.6 indicates that M∩ h(A) 6= ∅ for any h ∈ Γ. Then d ≥ c⋆ > c∞. Since id ∈ Γ, we have

d ≤ max
(u,v)∈A

J(u, v)

≤ max
(δ,z)∈R+×RN

J(Θ ◦ T (δ, z))

≤ max
(δ,z)∈R+×RN

1

4

[
(k0 + l0)‖wδ,z‖2 +

ˆ

RN

(k0V1(x)w
2
δ,z + l0V2(x)w

2
δ,z)dx

]2

(k0 + l0)

ˆ

RN

ˆ

RN

w2
δ,z(x)w

2
δ,z(y)

|x− y|4 dxdy

.

Using the Hölder inequality, the definition of S, (1.9) and (5.8) leads to

(5.11)

d ≤ 1

4

[
(k0 + l0)‖w‖2 + k0|V1|N

2
|w|22∗ + l0|V2|N

2
|w|22∗

]2

(k0 + l0)‖w‖2

≤ 1

4

[
(k0 + l0)‖w‖2 + k0S

−1|V1|N
2
‖w‖2 + l0S

−1|V2|N
2
‖w‖2

]2

(k0 + l0)‖w‖2

=
k0 + l0

4
‖w‖2S−2

H,L

(
SH,L +

β − α2

2β − α1 − α2
C(N, 4)−

1
2 |V1|N

2
+

β − α1

2β − α1 − α2
C(N, 4)−

1
2 |V2|N

2

)2

< min
{S2

H,L

4α1
,
S2
H,L

4α2
, 2c∞

}
,

where 2∗ = 2N
N−2 . According to the deformation lemma (see [48, Theorem 8.4 in Chapter II]), the constrained

functional J |N has a Palais-Smale sequence {(un, vn)} ⊂ N at the level d. By Corollary 4.3, we conclude
that {(un, vn)} contains a convergent subsequence in H , and there is a critical point (u, v) of the constrained
functional J |N with J(u, v) = d. Then, by Lemma 2.1 and d < min{S2

H,L/4α1, S
2
H,L/4α2}, it is easy to see

that u 6= 0, v 6= 0, and (u, v) is a critical point of the functional J . By the maximum principle, we see that
(u, v) is a positive solution of (1.7). �
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