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Abstract
Organisations are increasingly creating inter-organisational ecosystem partnerships to innovate openly. Despite effective knowl-
edge management significantly supporting ecosystem infrastructures, empirical insights into the importance of and interdepen-
dencies between conditions for successful knowledge exchange across ecosystem contexts remain unexplored within existing
literature. This study implements a mixed-method approach to ascertain which conditions are responsible for knowledge transfer
success across innovation ecosystems. Interpretive Structural Modelling was employed to analyse questionnaires with key
ecosystem stakeholders, in order to impose a hierarchical structure upon the conditions. The configurational nature of these
conditions, and their combinations into solutions for success was ascertained through analysing semi-structured interviews using
fuzzy-set Qualitative Comparative Analysis. Results reveal multiple, mutually exclusive pathways to knowledge transfer success,
grouped into three solution types, increasing understanding of the interrelated nature of the knowledge transfer conditions.
Limitations and implications for future research are provided.
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1 Introduction

In an age of digital transformation, organisations are aspiring
to provide innovative and intuitive solutions to address com-
plex business challenges (Matzler et al., 2018). The ability to
innovate formulates a key challenge within this era of
digitisation: as such, new forms of collaboration are necessary
to increase the likelihood of innovative success (Châlons &
Dufft, 2017). Involving knowledgemovement between two or
more organisations in a knowledge-intensive environment
(Retzer et al., 2012) inter-organisational knowledge transfer
acts as an enabler for digital transformation (Hossain &
Lassen, 2017; Nwankpa & Roumani, 2016) creating a para-
dox around knowledge protection versus increased participa-
tion in knowledge sharing activities in order to generate digital
innovations (Ilvonen et al., 2018). As such, sharing knowl-
edge and data is crucial for innovation (Janssen et al., 2017);
identifying new ways of combining innovations and

intensifying inter-organisational collaborations have become
key characteristics for success (Ilvonen et al., 2018). It is nec-
essary for organisations to collaborate with external partners
to share information and consolidate existing knowledge to
create new products that address market requirements
(Chang et al., 2016). Co-creating with external partners
through ‘open innovation’ (Chesbrough, 2003), organisations
can share R&D costs, minimise financial risks, and gain ad-
ditional value (Gillespie et al., 2019).

Information systems research is experiencing a shift in fo-
cus, turning towards ecosystem evolution and the complex
systems within which key technologies are now embedded
(Majchrzak et al., 2016). Diverse ecosystem actors create
and recombine knowledge in order to drive innovation
(Sjödin, 2019), co-create value (Pera et al., 2016) and stimu-
late wider societal change (Appio et al., 2018). This leads to
increased benefits for all actors involved in digital transforma-
tion, and information systems such as ecosystems play a crit-
ical role in this transformation (Pappas et al., 2018). Big data
and business analytics are increasingly incorporated into con-
temporary business environments, necessitating an examina-
tion of how such technologies and their implementation are
directed toward generating meaningful outcomes (Mikalef,
Pappas, et al., 2020a). As such, the innovation potential em-
bedded into large groups of individuals developing innovative
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technology-based solutions drives the emergence of a new
paradigm of digital entrepreneurship (Elia et al., 2020). In
ecosystem contexts, no individual actor operates in isolation,
with all partners collaborating and interacting to co-create
knowledge, whilst simultaneously evolving their interrela-
tions to generate new technologies, companies, and value
(Pappas et al., 2018). With digital technologies supporting
an ecosystem (Jia et al., 2020), existing research has identified
a requirement to investigate digital transformation in the con-
text of ecosystems, particularly regarding the usage and accu-
mulation of readily available knowledge (Radziwon &
Bogers, 2019). A recent literature review surrounding digital
transformation within information systems literature calls for
further understanding on how communication and coordina-
tion occur in ecosystem contexts (Vial, 2019). Most studies
adopt an intra-organisational perspective; however, given that
digital transformation substantially influences inter-
organisational ecosystem partnerships where value is co-
created between multiple organisations, inter-organisational
perspectives require further research (Riasanow et al., 2020).
Radziwon and Bogers (2019) state that further comparative
studies are necessary to examine multiple ecosystems, with
mixed strategic profiles and high versus low tech companies;
they further identify a need to examine knowledge exchange
and management within these ecosystem contexts. Given the
relationship between knowledge transfer and digital transfor-
mation (Hossain & Lassen, 2017) existing research agendas
further emphasise a requirement for additional research that
establishes the mechanisms for knowledge exchange across
innovation ecosystems (Suominen et al., 2019) as well as the
interdependencies between the mechanisms (Milagres &
Burcharth, 2019) as observing the configurational aspects of
ecosystems requires an information systems perspective
(Vassilakopoulou & Hustad, 2021). In addressing these calls
for research, this investigation identifies configurations of
conditions for knowledge transfer success as facilitators for
innovative developments across innovation ecosystems.

While previous scholars (Bacon et al., 2019a) have
analysed knowledge transfer conditions for open innovation,
their research cannot be applied to the ecosystem as a whole,
thus failing to provide insights into the configurational nature
of knowledge transfer success. In remedying this absence, this
investigation poses two key research questions: firstly, within
ecosystem contexts, do certain conditions carry greater prom-
inence for knowledge transfer success? Secondly, what are the
interrelations between knowledge transfer conditions in eco-
system contexts? To address this question, two methods of
analysis will be applied. Innovation-related outcomes have
been analysed by other scholars using fuzzy-set Qualitative
Comparative Analysis (fsQCA; Kraus et al., 2018; Soto
Setzke et al., 2021) and other novel techniques such as
Interpretive Structural Modelling (ISM; Dwivedi et al.,
2017). However, their amalgamation within a single study is

seldom observed in management literature. As both ISM
(Singh et al., 2003) and fsQCA (Ragin, 2008) are grounded
upon the principles of complexity, their synthesis within this
research provides a more comprehensive deconstruction of the
complex outcome of success (Woodside, 2013). To avoid an
overreliance and overconfidence upon a single research meth-
od, researchers should employ multiple methods in a single
study (Brewer & Hunter, 2006). The application of a mixed-
method approach in this paper originates from a lack of
theorisation surrounding the configurational nature of knowl-
edge transfer conditions in the context of innovation ecosys-
tems. Mixed-method studies are highly suitable for addressing
fragmented, inconclusive, and ambiguous findings
(Venkatesh et al., 2013). Hence, this investigation combines
two analytical tools – fsQCA and ISM – to conduct a more
holistic analysis into the conditions responsible for knowledge
transfer success across open innovation ecosystems.

The remainder of this paper is structured as follows.
Section 2 reviews existing literature surrounding knowledge
transfer within innovation ecosystems. Section 3 summarises
the conceptual framework underlying this study. Section 4
presents the first study conducted in this investigation, includ-
ing methods of data collection and analysis, and research re-
sults: in a similar manner, Section 5 presents the second study.
Section 6 discusses the main findings of both studies. Closing
observations, alongside theoretical and practical implications
and limitations of this study, are provided in Section 7.

2 Existing Literature

Digitisation has transformed the nature of openness in inno-
vation contexts in terms of who can participate, what and how
they can contribute, and to what ends (Nambisan et al., 2019).
Open innovation (Chesbrough, 2003) comprises an
organisational openness towards external knowledge sources,
with firms transferring such knowledge across their
organisational boundaries. Involving the movement of knowl-
edge between actors (Van Wijk et al., 2008), inter-
organisational knowledge transfer facilitates the acquisition
of new ideas (Chiang & Hung, 2010) and is critical for the
innovation process (Charband & Navimipour, 2016).

The increasing complexity of knowledge demands multi-
ple innovation partnerships in order to increase the likelihood
that relevant innovation requirements will be addressed
(Bogers, 2011). In the context of open innovation, networks
and ecosystems enable organisations to access external
knowledge (Chesbrough et al., 2006). Ritala and
Almpanopoulou (2017) define innovation ecosystems as
“profit-driven systems of innovation around focal companies,
technologies and platforms… systems that focus on innova-
tion activities (goal/purpose), involve the logic of actor inter-
dependence within a particular context (spatial dimension)
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and address the inherent co-evolution of actors (temporal
dimension)” (p.7). Innovation ecosystems enable regional col-
laboration, both nationally and internationally, through
allowing organisations to combine skills and share resources
to drive benefits for all involved partners (Ferreira & Teixeira,
2019) expediting open innovation through enabling firms to
access a plethora of knowledge transfer partners, fostering
connect iv i ty and knowledge co-crea t ion (Cano-
Kollmann et al., 2016). Previous literature investigates this
inter-organisational knowledge transfer process for open in-
novation within network- (Xie et al., 2016) ecosystem- (Miller
et al., 2016; Secundo et al., 2019; Shaikh & Levina, 2019;
Wulf & Butel, 2017) and community-level analyses
(Pirkkalainen et al., 2018; Randhawa et al., 2017). What is
absent from these existing research articles is a directed focus
towards identifying how conditions for knowledge transfer
success are managed and maintained within open innovation
ecosystems (Bacon et al., 2019a). Previous studies have ex-
plored factors for collaboration in social media ecosystems
(Dwivedi et al., 2021) but not open innovation ecosystems
specifically. Ferreira and Teixeira’s (2019) special issue on
open innovation and business ecosystems includes a number
of significant papers exploring distinct concepts of open inno-
vation and knowledge, including knowledge leaks in open
innovation ecosystems (Giusti et al., 2018), obstacles to coop-
eration within university research centres (Franco & Pinho,
2019), and the roles of open innovation partners in improving
economic and innovation performance (Rauter et al., 2018).
The objective of this special issue by Ferreira and Teixeira
(2019) is to illuminate the role of open innovation and knowl-
edge on ecosystem development: to expand upon these in-
sights and further contribute to this discussion, this paper fo-
cuses on knowledge transfer success within open innovation
ecosystems. Reviews of open innovation literature (Bogers
et al., 2017; Hossain et al., 2016; Kovacs et al., 2015) further
emphasise that constituents of knowledge transfer success in
ecosystem contexts remain unexplored. Moreover, existing
research commonly examines ecosystems at macro-levels of
analysis (Adner & Kapoor, 2010; Engler & Kusiak, 2011;
Rohrbeck et al., 2009). Information exchange supports the
ecosystem infrastructure (Kannisto et al., 2020). With knowl-
edge and innovation occurring at the micro-level, and given
the embeddedness of the individual within their ecosystem
(Gonçalves et al., 2019), the significant role of individuals in
supporting the ecosystem infrastructure requires further theo-
retical attention (Milagres & Burcharth, 2019).

Despite a number of comprehensive reviews that examine
factors affecting knowledge transfer across ecosystem partner-
ships (Bacon et al., 2019a, 2019b; Miller et al., 2016; Secundo
et al., 2019; Shaikh & Levina, 2019; Wulf & Butel, 2017), the
interrelations between the key conditions regarding innova-
tion ecosystems as whole are yet to be confirmed by existing
studies. Hierarchical associations between such conditions

remain largely unaddressed in the context of innovation eco-
systems (Bacon et al., 2019a, 2019b). Recent research
agendas (Milagres & Burcharth, 2019) identify a requirement
to analyse condition interdependencies, in order to encapsu-
late a more holistic depiction of success: the high failure rate
of many innovation partnerships (Lauritzen & Karafyllia,
2019) arguably derives from the absence of a comprehensive
understanding of how success is achieved in these contexts
(Milagres & Burcharth, 2019). It is hence recommended that a
deconstruction of success into its related components, and
identifying how these conditions interact, will contribute to-
wards ensuring knowledge transfer is able to support the eco-
system as a whole (Bacon et al., 2019b).

3 Conceptual Framework

3.1 Selecting the Conditions

Existing research aims to increase understanding of how
knowledge transfer success is achieved (Al-Salti &
Hackney, 2011; Cummings & Teng, 2003; Hasty et al.,
2006) with studies commonly exploring the influence of sin-
gle antecedents of knowledge transfer (Abrams et al., 2003;
Ambos & Ambos, 2009; Minbaeva & Michailova, 2004;
Simonin, 1999). However, success is an inherently complex
phenomenon that is unlikely to derive from a single factor
(Woodside, 2013). Moreover, existing research typically uti-
lises variance-based techniques (Becerra et al., 2008; Chen,
2004; Lee, 2001; Santoro & Bierly, 2006) that are unable to
illuminate how success may be achieved in many different
ways (Woodside, 2013). As such, this investigation aims to
deconstruct the configurational nature of the knowledge trans-
fer conditions, identifying how system elements can be com-
bined in multiple and complex ways (Ortiz de Guinea &
Raymond, 2020).

Conditions were only included in this study if found to
possess theoretical interrelations with extant literature, as ob-
served in previous knowledge transfer research (Bacon et al.,
2019a, 2019b; Milagres & Burcharth, 2019; Van Wijk et al.,
2008). Table 1 displays the included conditions.

Whilst interrelated, each condition purports distinct char-
acteristics. Hence, the conditions are organised into three cat-
egories: knowledge-, relationship-, and firm-related (Bacon
et al., 2019a).

3.2 Knowledge Characteristics

The knowledge exchanged between ecosystem partners argu-
ably requires specific characteristics to ensure its successful
transfer. Firstly, the nature of the knowledge itself affects the
process. Knowledge can commonly be typified as either tacit
or explicit. Tacit knowledge is more difficult to articulate,
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encompassing the more personalised and experiential side of
knowledge: alternatively, explicit knowledge is transmittable
in formal, systematic language, and is argued to be easier to
transfer (Nonaka et al., 1996). It is hence assumed that explicit
knowledge directly improves the transfer process, whilst tacit
knowledge hinders it (Al-Salti & Hackney, 2011). The
articulability of such knowledge can arguably be measured
through the degree of understanding possessed by the recipi-
ent organisation (Bacon et al., 2019a). Because tacit knowl-
edge is embeddedwithin individuals’ cognitive processes, it is
more difficult to explain precisely (Kang et al., 2010): tacit
knowledge retains complex structures that are difficult to un-
derstand and hence cannot be comprehended or communicat-
ed fully (Koskinen, 2000). Tacit knowledge can be under-
stood in multiple ways, emphasising is a requirement to de-
termine a common understanding of the construct (Harlow,
2008). Knowledge transfer success ultimately derives from

understanding the knowledge received (Cummings & Teng,
2003).

In relation to knowledge type, causal ambiguity is often
cited as affecting the transfer process. According to Lippman
and Rumelt (1982), causal ambiguity reflects a basic ambigu-
ity surrounding the causal connections between actions and
results: in other words, the origins of the knowledge itself are
unclear. This presents difficulties for the firm, both
organisationally and at an individual level (Reed &
DeFillippi, 1990) when attempting to replicate and transfer
such knowledge: as such, low causal ambiguity prevents this
barrier to imitation. In sum, the knowledge characteristics
identified within extant literature as affecting the transfer pro-
cess are knowledge type & understanding, and causal ambi-
guity. This paper aligns with extant knowledge transfer liter-
ature that defines knowledge type and causal ambiguity as
separate constructs (Easterby-Smith et al. , 2008;

Table 1 Relationships between knowledge transfer conditions

Condition Citation

Knowledge Type and Trust Panteli and Sockalingam (2005); Roberts (2000)

Knowledge Type and Tie Strength Van Wijk et al. (2008)

Knowledge Type and Cultural Similarity Ismail (2012)

Knowledge Type and Causal Ambiguity Reed and DeFillippi (1990); Simonin (1999)

Knowledge Type and Learning Intent Cummings and Teng (2003); Pérez-Nordtvedt et al. (2008)

Knowledge Type and Absorptive Capacity Spulber (2012)

Knowledge Type and Understanding Al-Salti and Hackney (2011); Pak and Park (2004); Simonin (1999)

Understanding and Trust Abrams et al. (2003); Dodgson (1993); Nielsen (2005)

Understanding and Tie Strength Van Wijk et al. (2008)

Understanding and Cultural Similarity Al-Salti and Hackney (2011); Evangelista (2007);
Szulanski et al. (2004); Van Wijk et al. (2008)

Understanding and Causal Ambiguity Van Wijk et al. (2008)

Understanding and Learning Intent Al-Salti and Hackney (2011)

Understanding and Absorptive Capacity Lawson and Potter (2012)

Causal Ambiguity and Cultural Similarity Williams (2007)

Causal Ambiguity and Trust Shamsudin et al. (2016).

Causal Ambiguity and Tie Strength Van Wijk et al. (2008)

Causal Ambiguity and Learning Intent Lawson and Potter (2012)

Causal Ambiguity and Absorptive Capacity King and Zeithaml (2001)

Trust and Tie Strength Inkpen and Tsang (2005); Narteh (2008); Wulf and Butel (2017)

Trust and Cultural Similarity Szulanski et al. (2004); Zhang and Zhou (2013)

Trust and Learning Intent Maurer et al. (2011); Szulanski et al. (2004)

Trust and Absorptive Capacity Lane et al. (2001); Martinkenaite (2011)

Tie Strength and Absorptive Capacity Gao et al. (2008)

Tie Strength and Learning Intent Xie et al. (2015)

Cultural Similarity and Absorptive Capacity Junni and Sarala (2013)

Cultural Similarity and Tie Strength Lizardo (2006)

Cultural Similarity and Learning Intent Zahra et al. (2018)

Absorptive Capacity and Learning Intent Lawson and Potter (2012)
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Gopalakrishnan & Bierly, 2001; Michailova & Mustaffa,
2012); whilst some literature includes causal ambiguity and
knowledge type under a single variable name such as knowl-
edge context (Cummings & Teng, 2003) this paper analyses
them separately, but under the umbrella term of knowledge-
characteristics.

3.3 Relationship Characteristics

Knowledge transfer literature frequently designates trust be-
tween partners as increasing the likelihood of success. Trust
refers to a willingness of a partner to be ‘vulnerable’ and take
risks (Mayer et al., 1995) as well as being a reliable source of
knowledge through fulfilling partner expectations (Inkpen,
1998). Within a trustworthy partnership, partners are more
likely to absorb and transfer useful knowledge, as well as
making the overall process less costly (Levin & Cross,
2004). Relatedly, the strength of the personal relationship be-
tween these partners can further affect the transfer process
(Cummings & Teng, 2003; Van Wijk et al., 2008). These
strong relationships involve high levels of emotion and fre-
quent interactions which increase opportunities for knowledge
exchange (Rejeb-Khachlouf et al., 2011). Such highly
personalised relationships encourage organisations to spend
more time on the transfer process, ensuring that partners un-
derstand the information received (Van Wijk et al., 2008).
Finally, similarities between organisational cultures arguably
facilitate transfer success (Evangelista, 2007; He et al., 2011).
Cultural similarities encompass a shared vision, encouraging
similar perceptions between organisations regarding their ex-
pectations of the partnership (Fang et al., 2013). This facili-
tates mutual understanding between organisations, providing
a bonding mechanism that expedites knowledge integration
(Van Wijk et al., 2008). It is therefore favourable in terms of
innovation to foster trustworthy, strong, and culturally com-
patible relationships between ecosystem members to encour-
age successful knowledge exchange.

3.4 Organisational Characteristics

Characteristics of ecosystem partners themselves further im-
pact upon the transfer process. The learning intent of the re-
cipient organisation comprises a further facilitator of knowl-
edge transfer. Learning intent involves an organisational mo-
tivation and commitment to learn from others, operating as a
driving force for individuals to pursue a partnership
(Evangelista, 2007) and encouraging knowledge articulation
and codification (Al-Salti & Hackney, 2011). Relatedly, ab-
sorptive capacity, referring to the ability of an organisation to
recognise knowledge value, diffuse it internally, and apply it
to commercial ends, comprises a further organisational char-
acteristic that improves the success rate of knowledge transfer
(Van Wijk et al., 2008). Individuals need to hence ensure that

the knowledge received is fully integrated and at a position to
be efficiently transferred (Al-Salti & Hackney, 2011). Hence,
learning intent and absorptive capacity formulate
organisational characteristics which expedite the transfer
process.

3.5 Conceptual Model

The seven conditions underlying the conceptual model origi-
nate from a larger body of research that identifies further ad-
ditional factors as facilitators of knowledge transfer. This em-
phasises that it is unlikely that a single condition will be re-
sponsible for success, reflecting the notion of conjunctural
causation, whereby no single condition causes the presence
or absence of an outcome (Wu, Yeh, Huan and Woodside,
2014). In line with complexity theory, this investigation sup-
ports such a notion, purporting that multiple conditions are
likely to produce an outcome of knowledge transfer success.
Complexity theory further endorses equifinality, where differ-
ent causal paths can lead to the same outcome (Fiss, 2011).
The multitude of conditions cited within existing research pre-
sents uncertainties as to how these conditions combine and
interact to instigate success. As such, two or more configura-
tions of conditions can be equally effective in explaining
knowledge transfer success (Fiss, 2007). Thus, it is argued
that combinations of conditions across knowledge-, firm-
and relationship-related characteristics will contribute to
knowledge transfer success. This study views success as “ac-
tive exchange of knowledge between organizations, involving
measurable and effective knowledge absorption, application
and satisfaction by the recipient organization” (Bacon et al.,
2019a, p.380). Figure 1 displays all logically possible combi-
nations of the characteristics, comparable to the diagram gen-
erated by Ortiz de Guinea and Raymond (2020).

4 Study 1

4.1 Procedure and Subjects

Existing studies explore ecosystem partnerships from the per-
spective of key stakeholders, utilising both interviews (Franco
& Pinho, 2019; Miller et al., 2016; Randhawa et al., 2017;
Shaikh & Levina, 2019; Wulf & Butel, 2017) and question-
naires (Pirkkalainen et al., 2018; Rauter et al., 2018; Xie et al.,
2016) to ascertain individual perceptions regarding their part-
nerships. Given existing evidence citing role of the individual
in facilitating the presence of knowledge transfer conditions
(Al-Salti & Hackney, 2011; Kang et al., 2010; Reed &
DeFillippi, 1990; Van Wijk et al., 2008) this study mimics
existing research within this domain through utilising individ-
ual employees to formulate an understanding of their percep-
tions of their ecosystem partnerships, hence selecting these
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individuals as the unit of analysis. These individual percep-
tions were deemed representative of the ecosystem partner-
ship. While conditions such as cultural similarity may not
occur at the micro-level, this paper uses individual perceptions
to obtain insights into knowledge transfer success across eco-
system partnerships: thus, in line with existing knowledge
transfer literature (Cummings & Teng, 2003; Evangelista,
2007; Simonin, 1999) this study utilises individual-level anal-
yses to obtain perceptions of knowledge, relationship, and
organisational characteristics.

For both phases of analysis, participants were recruited via
snowball sampling. Participants were asked to provide contact
details for potentially suitable participants, who were subse-
quently contacted and invited to participate. For the first phase
of analysis, employees from a multinational organisation were
invited to complete an online questionnaire. The multinational
adopted a centralised position as an orchestrator of its ecosys-
tems. Participants were deemed experts in ecosystem engage-
ment due to their wealth of experience, and included alliance
managers, partner management coordinators, and strategic
partnership managers. The online questionnaire required par-
ticipants to assess the relationships between the knowledge
transfer conditions. The opening section of the questionnaire
provided a description of the conditions: this description was
included at the start of every page to facilitate participant
understanding. As per standard ISM protocol (see Azevedo
et al., 2013), each individual question asked participants to
assess the pairwise relationship between the conditions,
selecting one option from a list of four options: (1)
Condition A influenced Condition B; (2) Condition B influ-
enced Condition A; (3) the conditions influence each other; or
(4) no relationship exists between the conditions. This resulted
in a total of 34 questions assessing the pairwise relationships
between each of the conditions in their entirety. Eleven

participants responded to the questionnaire: their individual
responses were collected, and consensus was obtained
through observing the most common response within the
group.

4.2 Interpretive Structural Modelling

The first phase of data collection utilised questionnaires to
establish the relationships between the knowledge transfer
conditions and were analysed using ISM. ISM was utilised
to confirm whether the relationships were viewed as interre-
lated by key ecosystem stakeholders, and to ascertain whether
specific conditions displayed greater prominence. An interac-
tive and interpretive method, ISM utilises a consensus gained
from group judgements to ascertain how certain variables are
related (Mandal & Deshmukh, 1994). Individuals are asked to
establish the relationships between variables: these individuals
are usually experts within the given area of investigation
(Azevedo et al., 2013). As ISM relies on individuals assessing
whether each individual factor relates to every other factor
under investigation, it can be utilised to detect the relation-
ships been variables. Whilst ISM can be conducted as a group
learning process, it can also be utilised individually (Ravi &
Shankar, 2005): the individual opinions of experts are fre-
quently sought through questionnaires (Alawamleh &
Popplewell, 2011; Govindan et al., 2015; Kumar et al.,
2013; Pfohl et al., 2011; Sahney et al., 2006; Samantra et al.,
2016; Soti et al., 2011; Tripathy et al., 2013). Individual re-
sponses to the questionnaire were summed and the most com-
mon response utilised to represent consensus, as observed
within existing ISM literature (Alawamleh & Popplewell,
2011; Samantra et al., 2016; Tripathy et al., 2013).

ISM attempts to alleviate complexity through yielding both
a graphical and modular representation of the interrelated

Fig. 1 Conceptual Model
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elements comprising a wider, more complex system (Nishat
Faisal et al., 2006; Ravi & Shankar, 2005; Singh et al., 2003).
Such a model enables the identification and ordering of the
complex relations between the elements, allowing an analysis
of the influence of each element (Sahney et al., 2006). It can
thus be used to prioritise and improve understanding of the
key relationships between variables (Tripathy et al., 2013).
The identified order of these interrelated elements thus facili-
tates an understanding of their varying influences (Talib et al.,
2011).

4.2.1 Stages in ISM

The application of ISM within any given research context is
typically comprised of a series of stages (see Alawamleh &
Popplewell, 2011; Singh and Kant, 2008; Talib et al., 2011).
These stages are explicated within this section to inform un-
derstanding of the exact features of the analytical technique, as
outlined by Pfohl et al. (2011).

The starting point for the ISM analysis is the identification
of the specific variables relevant to the problem under inves-
tigation. This can be achieved through primary or secondary
research. Next, the type of relationship between the variables
must be determined. Relationships can adopt various typolo-
gies, including temporal, comparative, influence, or neutral
(Warfield, 1994).

Participants must then use their experience and knowledge
to decide upon the pairwise relationships between the ele-
ments, selecting one of four options to represent the direction
of the relationship:

& V= i influences j
& A= j influences i
& X= variables i and j influence each other
& O= no relationship

This is used to develop a Structural Self-InteractionMatrix.
These pairwise relations are then converted into numbers to
form an Initial Reachability Matrix, utilising the following
logic:

& If the (i,j) entry is V, the (i,j) entry in the reachability
matrix becomes 1, and the (j,i) entry becomes 0.

& If the (i,j) entry is A, the (i,j) entry in the reachability
matrix becomes 0 and the (j,i) entry becomes 1.

& If the (i,j) entry is X, the (i,j) and (j,i) entries in the reach-
ability matrix both become 1.

& If the (i,j) entry is O, the (i,j) and (j,i) entries in the reach-
ability matrix both become 0.

The reachability matrix is then further refined based upon
the assumption of Transitivity, which states that if A is related
to B and B is related to C, then A and C are related. This

principle is used to alter the entries for variables which are
indirectly related. The reachability matrix also demonstrates
the driving and dependence power of each condition. Driving
power refers to the total number of conditions it affects, i.e. the
sum of the rows. The dependence power refers to the total
number of conditions by which it is affected – i.e. the sum
of the columns. Both the driving and dependence power are
used to classify the conditions into autonomous, dependent,
linkage, and independent conditions. Next, reachability and
antecedent sets are derived for each factor, to facilitate the
construction of a digraph from the reachability matrix. The
reachability set consists of the factor itself and the other factor
it may impact, whereas the antecedent set consists of the factor
itself and the other factor that may impact it (Dwivedi et al.,
2017). The intersection of both sets, i.e. the common elements
for both sets, are identified. Factors within these intersections
occupy the top-level within the ISM hierarchy. Top-level ele-
ments do not relate to any other element above their level, and
they are removed from the other elements once they are iden-
tified. This iteration process is conducted until the levels for all
elements are identified. An initial digraph with transitivity
links is hence obtained from the conical form of the reachabil-
ity matrix. The conical matrix is generated through
rearranging all the elements according to their level, whereby
all the elements with the same level are pooled together.
Transitivity links are removed for the final digraph. Element
nodes are replaced with statements, which converts the di-
graph into an Interpretive Structural Model. The model is
checked for conceptual consistency.

ISM has thus been selected as the first method of data
analysis within this study. A number of studies have used
the survey method to obtain consensus from experts
(Govindan et al., 2015; Kumar et al., 2013; Sahney et al.,
2006; Soti et al., 2011). Expert opinion within the ISM ap-
proach can be sought from any number of individuals:
existing questionnaire-based studies (Azevedo et al., 2013;
Dubey&Ali, 2014; Govindan et al., 2015) have used between
five and eleven participants. The ability of ISM to provide
concrete evidence of the relationships between conditions will
be a viable addition to this research in terms of providing
confirmation of their importance.

4.3 ISM Results

11 experts were consulted on their opinions of the relation-
ships between the conditions. A contextual relationship of
‘influences’ was selected due to the fact that the conditions
were expected to exhibit an influencing relationship, as previ-
ously found in existing studies (see Table 1). Table 2 displays
the SSIM matrix based on the VAXO denotations.

The Structural Self-Interaction Matrix was converted into
an Initial Reachability Matrix (Table 3), by replacing the
VAXO entries with 1 s and 0 s.
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Entries coded as 0 within the Initial Reachability Matrix
were reviewed based upon the principle of transitivity. If two
conditions were identified as having no relationship, their re-
lationship was re-analysed: if Condition A was related to
Condition B, and Condition B was related to Condition C,
then Conditions A and C were characterised as related.
These transitive links resulted in unrelated conditions being
re-coded as related, albeit indirectly, indicated by a 1. This
principle was used to obtain the Final Reachability Matrix
(Table 4). The driving and dependence power of all conditions
are also displayed in Table 4.

The final reachability matrix was used to derive the reach-
ability and antecedent sets for each condition. This resulted in
the level partitions for the conditions (Table 5).

As the reachability and intersection sets are the same for all
conditions, there is only one level present in the final digraph.
The conical form of the reachability matrix has been excluded:
due to all conditions occupying the same level, the conical form
is the same as the final reachability matrix. Figure 2 displays the
final digraph obtained from the ISM analysis. The arrows dis-
play the bi-directional nature of the relationships.

5 Study 2

5.1 Procedure and Subjects

The second phase of analysis expanded the sample to include
participants from the ecosystems of the multinational orches-
trator. Ecosystem partners were invited to offer their percep-
tions of the seven aforementioned conditions through a semi-
structured interview, an appropriate methodological technique
for capturing relevant data for fsQCA (Iannacci et al., 2020;
Mikalef, Sharma, et al., 2020b). A total of 30 participants were
interviewed and represented the three main organisational ty-
pologies typically observed within ecosystem infrastructures:
multinational, SME, and university (Carayannis & Campbell,

2009). The sample included 19 males and 11 females, hence
demonstrating a slight bias toward the male gender; as eco-
system stakeholder perspectives were sought for this study, it
was determined that the relative imbalance between male and
female participants would not affect study results. Participants
were located across a range of industries, including technolo-
gy (10), finance (2), telecommunications (2), transport (1),
services (3), software (2) and education (10); all were in-
volved in ecosystem partnerships that centred around the de-
velopment of an innovation, albeit at different stages of the
process. Various organisational positions were held by partic-
ipants, including directors (6), department heads (11), man-
agers (9), chief technology officers (2), and professors (2).

Ten interviews were conducted for each category in order
to increase comparability between the organisation types,
resulting in a total of 30 participants. The interviews asked
participants to rate the extent of their agreement on a seven-
point semantic differential scale: opposing terminology (e.g.
untrustworthy/trustworthy) was positioned at either end of the
scale to correspond to the presence or absence of the knowl-
edge transfer conditions. The definitions for each condition
were adapted from key studies examining the construct in
the context of knowledge transfer wherever possible
(Table 6). Single-item semantic differential scales can be
utilised for fsQCA to assess the presence and absence of con-
ditions (Seate et al., 2015): however, critics have argued that
such scales can be questionable in terms of reliability and
validity (Al-Hindawe, 1996). Hence, Al-Hindawe (1996) ar-
gues that semantic differential scales should be supplemented
with unstructured questions to further elucidate the results of
the scale ratings. Participants were hence encouraged to ex-
pand upon their scale ratings through additional unstructured
questions. This enabled more detailed insights into each part-
nership, resulting in greater encapsulation to transform the
interviews from scale and qualitative data into ‘cases’ for
fsQCA. Table 6 displays the scales and unstructured questions
utilised in the interviews.

Table 2 Structural Self-Interaction Matrix

Type of
Knowledge

Understanding Causal
Ambiguity

Trust Tie
Strength

Cultural
Similarity

Learning
Intent

Absorptive
Capacity

Type of
Knowledge

Understanding X

Causal Ambiguity V X

Trust V X X

Tie Strength X O X X

Cultural Similarity X X X V V

Learning Intent X X X O A X

Absorptive
Capacity

X X X X X X X
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This study views success as “active exchange of knowl-
edge between organizations, involving measurable and effec-
tive knowledge absorption, application and satisfaction by the
recipient organization” (Bacon et al., 2019a, p.380). To iden-
tify membership within the outcome, this definition was em-
bedded within the interviews as five separate semantic-
differential scales, corresponding to the five separate compo-
nents of this definition (Table 7).

5.2 FsQCA

FsQCA aims to establish which specific causal conditions
interact to produce a given outcome (Ragin, 2008).
According to Ragin (2008), fsQCA can be utilised to examine
cases sharing a specific causal condition, or combination of
causal conditions, and assess whether these cases exhibit the
same outcome. It aims to address two seemingly paradoxical
yet essential objectives: to afford greater insights into case
studies, whilst capturing their complexity (Rihoux & Lobe,
2009). Applications of fsQCA in information systems

research have increased in recent years (Pappas &
Woodside, 2021).

Qualitative research, or case-oriented research, is often cri-
tiqued for failing to incorporate formality and rigour into com-
parisons and for placing too great an emphasis on specific,
individual cases (Rihoux & Lobe, 2009). On the other hand,
quantitative (variable-oriented) research, as the name sug-
gests, arguably over-emphasises variables and fails to capture
detailed analyses of cases, overlooking their specificities in
favour of examining variations across cases (Rihoux &
Lobe, 2009). FsQCA integrates the features of both ap-
proaches. This enables fsQCA as a tool to recognise the di-
versity and heterogeneity of cases, in terms of their causally
relevant conditions and contexts, by allowing cases to be com-
pared as configurations (Fiss, 2011). As an established analyt-
ical tool for investigating the configurational nature of condi-
tions (Delgosha et al., 2020; Fiss, 2011; Pappas, 2018; Pappas
et al., 2020) fsQCA enabled an identification of the combina-
tions of knowledge transfer conditions that led to success in
ecosystem contexts.

Table 3 Initial Reachability Matrix

Type of
Knowledge

Understanding Causal
Ambiguity

Trust Tie
Strength

Cultural
Similarity

Learning
Intent

Absorptive
Capacity

Type of
Knowledge

1 1 0 0 1 1 1 1

Understanding 1 1 1 1 0 1 1 1

Causal Ambiguity 1 1 1 1 1 1 1 1

Trust 1 1 1 1 1 0 0 1

Tie Strength 1 0 1 1 1 0 1 1

Cultural Similarity 1 1 1 1 1 1 1 1

Learning Intent 1 1 1 0 0 1 1 1

Absorptive
Capacity

1 1 1 1 1 1 1 1

Table 4 Final Reachability Matrix

Type of
Knowled-ge

Understandi-
ng

Causal
Ambiguity

Trust Tie
Strength

Cultural
Similarit-y

Learning
Intent

Absorpti-ve
Capacity

Driving
power

Type of
Knowledge

1 1 1* 1* 1 1 1 1 8

Understanding 1 1 1 1 1* 1 1 1 8

Causal
Ambiguity

1 1 1 1 1 1 1 1 8

Trust 1 1 1 1 1 1* 1* 1 8

Tie Strength 1 1* 1 1 1 1* 1 1 8

Cultural
Similarity

1 1 1 1 1 1 1 1 8

Learning Intent 1 1 1 1* 1* 1 1 1 8

Absorptive
Capacity

1 1 1 1 1 1 1 1 8

Dependence 8 8 8 8 8 8 8 8
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5.2.1 Calibration

FsQCA requires data to be transformed into ‘fuzzy’ sets, plac-
ing conditions on a continuous (fuzzy) scale ranging from 0 to
1 (Woodside, 2014). The calibration process informs values
for full membership and non-membership within a set, as well
as a maximum level of ambiguity. These values are selected
according to substantive knowledge of the cases. Qualitative
anchors within the scales were used to calibrate the conditions
(Ordanini et al., 2014). In being an accepted approach to cal-
ibration (Ordanini et al., 2014; Pappas et al., 2016; Woodside,
2013) natural scale breakpoints were utilised to calibrate the
fuzzy sets; as opposed to the direct method to calibration
(Ragin, 2008) substantive knowledge of cases drove the cali-
bration of conditions in this study, rather than sample means
(Oyemomi et al., 2019). For this study, full membership for
each of the conditions was outlined as 6, the crossover point
was 4.5, and non-membership was 3. The usage of 4.5 as a
crossover point ensured that no cases were removed from the
analysis, and is an accepted approach for calibration
(Oyemomi et al., 2019; Tho & Trang, 2015). This aligns with
previous fsQCA research (Bacon et al., 2019a; Mikalef &
Pateli, 2017; Tho & Trang, 2015) where data values and
knowledge about cases drive the calibration of conditions, in
line with the indirect method of calibration. Moreover, akin to
Ordanini et al. (2014), Tho and Trang (2015) and Mikalef and
Pateli (2017), we raised the threshold for non-membership to
3 in order to account for data skewness. Due to a participant
response bias towards the higher end of the likert-scale, a non-
membership threshold of 3 enabled a greater amount of re-
sponses to be categorised as being ‘out’ of the set, hence
accounting for the response bias. All empirical data was
skewed to varying degrees and raising the non-membership

value to 3 provided an acceptable solution to this. Coverage
and consistency scores for solutions were also improved when
using 3 as the threshold for non-membership.

The outcome measure was assessed using five separate
Likert-scales corresponding to the five identified components
of knowledge transfer success. As fsQCA requires a single
value for the outcome, the five scale responses were converted
into a single value through the following procedure. Firstly,
responses to each individual component were averaged. Next,
if each individual response to each component was higher
than the average, then the response was re-coded as a 1; if
below, a 0. Each of the five re-coded values for each partici-
pant were then averaged to result in a final score of between 0
and 1. As the data for the outcome condition was collected
differently from the other conditions, as per Bacon et al.
(2019a), the outcome variable needed to be calibrated differ-
ently than the condition (independent) variables, as observed
in existing fsQCA studies that calibrate the outcome different-
ly to the causal conditions (Veri, 2019; Veríssimo, 2016;
Wang, 2016); Hence, for membership within the outcome,
0.8 was selected as full membership, the crossover point as
0.5, and non-membership as 0.2.

Previous research within this domain (Bacon et al., 2019a,
b) presents contrarieties in terms of the calibration of the con-
ditions ‘type of knowledge’ and ‘understanding’. Bacon et al.
(2019a) calibrate knowledge type and understanding as a
single condition, without considering the influence of either
tacit or explicit knowledge upon the degree of understanding.
Bacon et al. (2019b) calibrate knowledge type and under-
standing as separate conditions, with tacit and explicit knowl-
edge calibrated as separate crisp sets (0/1 membership) and
understanding as a four-value fuzzy set. This paper extends
the work of these authors, superimposing knowledge type and

Table 5 Reachability and Antecedent Sets

Measure number Reachability set Antecedent set Intersection Level

1 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1

2 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1

3 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1

4 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1

5 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1

6 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1

7 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1

8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1,2,3,4,5,6,7,8 1

Causal 

Ambiguity 

Trust Tie 

Strength

Cultural

Similarity

Learning 

Intent

Understanding 

of Knowledge

Absorptive 

Capacity

Type of 

Knowledge

Fig. 2 ISM Digraph
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understanding into a macro-condition renamed ‘knowledge
type & understanding’ through collectively averaging the
values for tacit knowledge, explicit knowledge, and

understanding to deduce whether the type of knowledge af-
fects its understanding. This follows Ragin and Fiss’ (2018)
‘averaging’ approach to generating a macro-condition within

Table 6 Interview scales & questions

Condition
characteristics

Condition Adapted from Initial questions & scales Follow-up questions asked for
each condition (based on response
to initial question)

Knowledge
characteristics

Knowledge
Type &
Understan-
ding

Simonin (2004) Would you say the knowledge you gained from your
ecosystem partner was information highly personal and
experiential, specific to your ecosystem partner (tacit)? Or
was it more technical knowledge, in the form of perhaps
manuals or policies (explicit)?

Could you please tell me a bit
more about why that is?

Why didn’t you choose a
lower/higher rating?

Can you give me an example of
this?

I’d like to hear more about…
Please rate your level of understanding of the knowledge you

received, ranging from low level to high level.
1___2___3___4___5____6___7
Low High

Causal
Ambiguity

Bhagat et al.
(2002)

To what extent do you believe that the origins of the
information gained from your ecosystem partner were
unambiguous, ranging from unclear to clear?

1___2___3___4___5____6___7
Unclear Clear

Relationship
characteristics

Trust Mazloomi
Khamseh
and Jolly
(2008)

To what extent do you believe that you have a trustworthy
relationship with your ecosystem partner, ranging from
untrustworthy to trustworthy?

1___2___3___4___5____6___7
Untrustworthy Trustworthy

Tie Strength Al-Salti and
Hackney
(2011)

To what extent do you believe that you have a strong
relationship with your ecosystem partner, ranging from
weak to strong?

1___2___3___4___5____6___7
Weak Strong

Cultural
Similarity

Van Wijk et al.
(2008)

To what extent do you believe that your organisation
possesses an organisational culture similar to that of your
ecosystem partner, ranging from dissimilar to similar?

1___2___3___4___5____6___7
Dissimilar Similar

Organisational
characteristics

Learning
Intent

Simonin (2004) To what extent do you believe that your organisation
possesses a willingness to learn new knowledge, ranging
from unwilling to willing?

1___2___3___4___5____6___7
Unwilling Willing

Absorptive
Capacity

Easterby-Smith
et al. (2008)

To what extent do you believe that your organisation absorbs
and acquires new knowledge, ranging from unabsorptive to
absorptive?

1___2___3___4___5____6___7
Unabsorptive Absorptive

Adapted from Bacon et al. (2019a)

Table 7 Scales for outcome measure

Outcome measure: knowledge transfer
success

Please rate the extent of your agreement on the following scales, ranging from strongly disagree (1) to
strongly agree (7):

The knowledge transferred from our ecosystem partner was transferred in a resourceful manner, utilising
minimal resources.

The knowledge produced a measurable outcome.
The knowledge was effectively absorbed within our organisation.
As an organisation, we utilised that knowledge in a beneficial manner.
We are satisfied with the knowledge received by our ecosystem partner.
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fsQCA (Ragin & Fiss, 2018). This condition was hence cali-
brated in a similar way to the outcome, with 0.8 constituting
full membership, 0.5 as a crossover point, and 0.3 as full non-
membership. Consequently, the degree to which the knowl-
edge was understood in terms of its typology is collectively
termed ‘knowledge type & understanding’ in this study.
While this condition technically encompasses two variable
names in one, the constructs remain highly interrelated
(Cummings & Teng, 2003; Harlow, 2008; Koskinen, 2000)
with extant fsQCA research combining two separate con-
structs into a single variable name (see, for example, Pappas
et al., 2017). This improved consistency and coverage scores
for the fsQCA results and arguably offered a more compre-
hensive calibration of how knowledge characteristics affect
transfer success. Hence, fsQCA was performed on seven con-
ditions: knowfz (knowledge type & understanding), caufz
(causal ambiguity), trufz (trust), tiefz (tie strength), cultfz (cul-
tural similarity), learnfz (learning intent) and acapfz (absorp-
tive capacity).

5.2.2 Stages in fsQCA

The first stage of fsQCA is to utilise set measures to generate a
data matrix known as a truth table. The truth table displays all
logically possible combinations of conditions (Schneider &
Wagemann, 2012). A truth table possesses 2k rows, where k
is the number of causal conditions employed within the anal-
ysis (Fiss, 2011). Each row within the truth table is associated
with a specific number of conditions; the truth table lists all
logically possible combinations of conditions (Ragin, 2008)
even if there is no case data that empirically demonstrates a
given combination. Having configurations without empirical
instances is referred to as limited diversity (Fiss, 2011): rows
without cases are termed logical remainders.

In the second stage, rows within the truth table are reduced
to facilitate the analysis (Fiss, 2011). The first step in reducing
the rows is to set a benchmark for the minimum number of
cases required for a solution to be considered (Fiss, 2011).
According to Ragin (2008), for small-N samples (e.g. 1–50
cases) a threshold of 1 is appropriate. Next, the consistency of
each solution needs to be assessed. Consistency refers to the
degree to which solution terms and the solution as a whole are
subsets of the outcome (Ragin, 2008). For this study, a con-
sistency threshold of 0.76 was selected, surpassing the recom-
mended 0.75 threshold (Ragin, 2008).

Analysis of the truth table involves the examination of case
distribution across the property space, and a systematic iden-
tification of the causal conditions sufficient for the outcome of
interest to occur (Greckhamer et al., 2008). The analysis al-
lows an identification of combinations of conditions that are
subsets or supersets of the outcome, thus arriving at sufficient
or necessary conditions (Schneider &Wagemann, 2012). The
combination of causal conditions will result in three solutions

being produced for each analysis. Ragin (2008) summarises
the three solutions. The first is a ‘complex’ solution, where no
logical remainders (rows without cases) have been included.
The second is a parsimonious solution, where logical remain-
ders may be used, without any consideration of their empirical
possibility. The final solution is the intermediate, which sup-
posedly bridges the two: the intermediate solution only con-
siders logical remainders that are plausible, where plausibility
is judged using the researcher’s relevant theoretical and em-
pirical knowledge.

This study utilises the approach outlined by Fiss (2011) to
display the final fsQCA results, whereby the parsimonious
and intermediate solutions are awarded utmost prevalence.
Through observing these solutions, core and peripheral con-
ditions can be identified. Core conditions are present within
both the parsimonious and intermediate solutions, and hence
arguably retain high causal essentiality: peripheral conditions
are solely present within the intermediate solution and are
therefore deemed less essential.

5.3 fsQCA Results

Table 8 displays the results arising from fsQCA, demonstrat-
ing six solutions for the outcome of success. The first solution
combines the presence of knowledge type & understanding,
trust, tie strength, and learning intent, with the absence of
absorptive capacity, and with causal ambiguity and cultural
similarity as redundant conditions. Solution Two combines
the presence of knowledge type & understanding, causal am-
biguity, tie strength, cultural similarity, and learning intent,
with trust and absorptive capacity as redundant conditions.
Solution Three combines the presence of causal ambiguity,
trust, tie strength, learning intent and absorptive capacity, with
the absence of cultural similarity and the redundancy of
knowledge type & understanding. Solution Four combines
the presence of knowledge type & understanding, causal am-
biguity, trust, tie strength, and absorptive capacity, with the
absence of cultural similarity, and the redundancy of learning
intent. Solution Five combines the absence of knowledge type
& understanding, trust, cultural similarity, learning intent and
absorptive capacity, with the presence of causal ambiguity and
tie strength. Finally, Solution Six combines the absence of
causal ambiguity, trust, tie strength, and cultural similarity,
with the presence of knowledge type & understanding, learn-
ing intent, and absorptive capacity.

Across all six solutions, core conditions (present within
both the parsimonious and intermediate solutions) are
Acapfz (Solutions 3, 4 and 6), the causal configurations
Tiefz*Learnfz (Solutions 1,2 and 3) and the causal configura-
tion Tiefz* ~ Cultfz (Solutions 3, 4 and 5). Note that the ab-
sence of cultural similarity is a core condition in Solutions 3, 4
and 5, but only when combined with the presence of tie
strength. Overall solution coverage is high at 0.83, indicating
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that the six solutions account for a large proportion of the
outcome. Overall solution consistency is 0.86, surpassing
the recommended 0.75 threshold and confirming that the so-
lutions represent a relatively consistent subset of the outcome
(Ragin, 2006) - although perfect consistency (1) is not
achieved.

5.3.1 Predictive Validity

FsQCA can also be used to test for predictive validity, an
important procedure to demonstrate whether a model is able
to predict equally well the same dependent variable on a dif-
ferent sample (Gigerenzer & Brighton, 2009). Testing for pre-
dictive validity using this procedure is an established tech-
nique in fsQCA research (e.g. Mikalef & Pateli, 2017; Tho
& Trang, 2015). To test for predictive validity in fsQCA, the
sample is divided into two subsamples. Truth table algorithms
are ran for each sample: then, each solution obtained is cali-
brated as a variable, and truth table analysis is ran on the
second sample. Each of these solutions obtained represents a
‘model’ that needs to be calibrated against the outcome
(knowledge transfer success). More details on predictive va-
lidity are outlined in Pappas et al. (2016) and Pappas and
Woodside (2021). Table 9 displays the configurations obtain-
ed from the first subsample. The new variable is plotted
against the outcome (knowledge transfer success) using the
holdout sample (Fig. 3): results from this analysis demonstrate
high consistency (0.80) and coverage (0.32), similar to the
scores obtained from subsample 1 (Table 9). These consisten-
cy and coverage scores are hence appropriate and comparable
to extant literature utilising predictive validity through fsQCA
(e.g. Mikalef & Pateli, 2017; Pappas, 2018; Robinot et al.,
2021). Predictive tests for all models suggest that the highly
consistent models obtained from both sub-samples have high

predictive ability (Pappas, 2018). Further results are available
on request.

6 Discussion

Results from both phases of analysis offer significant insights
into knowledge transfer success within innovation ecosys-
tems. With the principle of transitivity causing all conditions
to occupy the same level within the resultant hierarchy, con-
dition co-dependency was revealed. In response to the first
research question of this investigation, this confirms the no-
tion that no singular condition carried greater prominence for
knowledge transfer success, with all conditions instead being
interrelated. Once confirming that all conditions were interre-
lated, fsQCA afforded configurational insights into knowl-
edge transfer success: in response to the second research ques-
tion for this investigation, we can deduce that relationship,
knowledge and organisational-related characteristics combine
in six mutually exclusive, distinct pathways to knowledge
transfer success. Solutions One and Three display knowledge
type & understanding as present in Solution One, compared
with the presence of causal ambiguity in Solution Three, in-
dicating that at least one knowledge characteristic needs to be
present within these partnership types. Interestingly, causal
ambiguity is present in Solutions Three, Four and Five where
tie strength and the absence of cultural similarity are core
conditions, indicating that this knowledge characteristic re-
tains a clear relationship with the causal configuration
tiefz~cultfz. Tie strength and the absence of cultural similarity
manifest as a core causal configuration in Solution Three; as
previous findings suggest an interrelation between the pres-
ence of both these conditions (Lizardo, 2006) further studies
could obtain additional insights into why the absence of

Table 8 FsQCA Results

Solution

Configuration 1 2 3 4 5 6

Knowfz

Caufz

Trufz

Tiefz

Cultfz

Learnfz

Acapfz

Raw coverage 0.389518 0.298867 0.421624 0.389518 0.0524079 0.0764872

Unique coverage 0.160057 0.0868744 0.0642115 0.0321056 0.0321057 0.0217185

Consistency 0.811209 0.954751 0.843248 0.860271 0.965217 0.931034

Overall solution coverage 0.831445

Overall solution consistency 0.861125
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cultural similarity and the presence of tie strength retain high
causal essentiality with knowledge transfer success. Tie
strength also manifests as a core causal configuration when
combined with learning intent, confirming extant findings re-
garding the relationship between these conditions (Xie et al.,
2015). With Solutions One and Three differing on absorp-
tive capacity manifesting as core within Solution Three on-
ly, it may be the case that the absence of cultural similarity
affects the causal essentiality of absorptive capacity, indi-
cating that organisations were able to absorb and assimilate
acquired knowledge despite greater cultural distance be-
tween their ecosystem partner. Hence, it may be deduced
that differences between parties benefitted knowledge ab-
sorption. This is also the case within Solutions Four and
Six, where absorptive capacity is core, and cultural similar-
ity is absent. Along with Solution Two, Solution Four con-
firms the associat ion between knowledge-related

characteristics (Al-Salti & Hackney, 2011; Pak & Park,
2004; Simonin, 1999) with both characteristics present.
As trust differs on redundancy (Solution Two) and presence
(Solution Four), and cultural similarity differs on presence
(Solution Two) and absence (Solution Four) within these
solutions, it can be inferred that at least two relationship-
rela ted character is t ics require combinat ion with
knowledge-related characteristics in these partnership
types. Nonetheless, tie strength maintains high causal es-
sentiality with the outcome, again reinforcing the signifi-
cance of this condition for knowledge transfer success.
Whilst organisational characteristics further differ on re-
dundancy and presence, their presence as core conditions
suggests that as long as an organisation is motivated to
learn, or is able to disseminate knowledge internally, fos-
tering a strong relationship with their ecosystem partner
ensures successful knowledge exchange.

Table 9 Predictive Validity

Models from Subsample 1 Raw coverage Unique coverage Consistency

Caufz*Trufz*Tiefz*~Cultfz*Learnfz*Acapfz 0.510818 0.0667921 0.795022

Caufz*Trufz*Tiefz*~Cultfz*Acapfz*Knowfzz 0.507996 0.0639699 0.794118

Caufz*Trufz*Tiefz*Cultfz*Learnfz*Knowfzz 0.313264 0.107244 0.988131

Caufz*Tiefz*Cultfz*Learnfz*Acapfz*Knowfzz 0.249294 0.0432737 0.98513

Overall solution coverage 0.789276

Overall solution consistency 0.856997

Fig. 3 Predictive Validity
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Solutions Five and Six display similar discrepancies with
knowledge-related characteristics, differing on the absence of
knowledge type & understanding in Solution Five, and causal
ambiguity in Solution Six, once again confirming that at least
one knowledge characteristic is needed for knowledge transfer
success. With trust and cultural similarity exhibiting absence,
and tie strength onlymanifesting as present in Solution Five, it
can be inferred that tie strength remains a highly significant
antecedent of knowledge transfer (Al-Salti & Hackney, 2011;
Cummings & Teng, 2003; Inkpen & Tsang, 2005; Ko et al.
2005; Levin & Cross, 2004; Narteh, 2008; Rejeb-Khachlouf
et al., 2011; Van Wijk et al., 2008; Wood, Dibben, & Meira,
2016;Wulf & Butel, 2017; Xie et al., 2016). As learning intent
only exhibits high causal essentiality when combined with tie
strength, the relationship between these conditions is further
evidenced in Solutions Five and Six when the absence of
either condition results in these conditions becoming periph-
eral. Nonetheless, absorptive capacity demonstrates high
causal essentiality in Solution Six, indicating that this condi-
tion may be a way to ensure success in these solution types,
confirming its significance as a further antecedent of knowl-
edge transfer (Al-Salti & Hackney, 2011; Chen, 2004;
Cummings & Teng, 2003; Lawson & Potter, 2012;
Martinkenaite, 2011; Narteh, 2008; Pak & Park, 2004;
Rejeb-Khachlouf et al., 2011; Van Wijk et al., 2008).
However, despite these conditions retaining high causal essen-
tiality with the outcome, tie strength only manifests as core
when combined with other causal conditions, and absorptive
capacity is only a core condition within half of the solutions.

According to the two approaches for analysing necessity in
fsQCA as outlined by Dul (2016), we follow the second ap-
proach, where analyses of sufficiency are conducted first to
identify common single conditions that form part of all suffi-
cient configurations as likely candidates for necessary condi-
tions, which are then confirmed through analyses of necessity.
If a single condition is part of a larger number of sufficient
configurations then it is more likely to be necessary (Dul,
2016, p.1519). As no condition was present across all solu-
tions, nor exceeded the 0.9 threshold during the necessary
conditions analysis, it was determined that no condition was
necessary, and that combinations of conditions were sufficient
for the outcome. Results of this necessary conditions analysis
have been excluded from this paper due to space limitations
but are available on request.

With previous studies accentuating condition interrelation-
ships including knowledge type and learning intent
(Cummings & Teng, 2003; Pérez-Nordtvedt et al., 2008) un-
derstanding and cultural similarity (Al-Salti & Hackney,
2011; Evangelista, 2007; Szulanski et al. 2004; Van Wijk
et al., 2008) and trust and tie strength (Inkpen & Tsang,
2005;Wulf & Butel, 2017: see Section 3.1 for a complete list),
insights into the most prevalent knowledge transfer condi-
tions, and whether such relationships were observed across

all conditions and characteristic groupings, remained absent
from the extant literature. While these interrelations are ob-
served in existing studies, indicating a strong likelihood that,
again using the principles of transitivity, the conditions were
likely to be interrelated, limited research had developed in-
sights into the configurational nature of knowledge transfer
success in the context of innovation ecosystems. Despite some
conditions being more heavily cited within existing studies
(e.g. trust), results of both ISM and fsQCA reveal the interre-
lated nature of all conditions, albeit combining in multiple and
distinct ways to contribute to success.

7 Conclusion

7.1 Theoretical Implications

This research retains a number of important theoretical im-
plications. Firstly, this investigation contributes to the
existing ISM literature that identifies success factors for a
given outcome (Sahney, 2008; Singh et al., 2007; Tripathy
et al., 2013): while ISM has been widely applied to a variety
of research areas (Alawamleh & Popplewell, 2011; Hasan
et al., 2007; Mandal & Deshmukh, 1994; Nishat Faisal
et al., 2006; Pfohl et al., 2011; Raj et al., 2008) the applica-
tion of ISM to the analysis of knowledge transfer success
across innovation ecosystems remains limited (Bacon et al.,
2019b). As all conditions in the ISM model had equal driv-
ing and dependence power, all conditions were coined ‘link-
age’ elements in that they are affected by all other conditions
and influence all other conditions. This retains a key impli-
cation for the knowledge transfer literature in identifying that
all these conditions are important constituents of knowledge
transfer success as they all influence one another: as such, the
outcome cannot be analysed sufficiently without consider-
ation of all these elements. In terms of the implications of the
ISM model, we can deduce that not all ISM models are able
to impose a hierarchy upon the conditions. Sometimes com-
plex outcomes such as knowledge transfer success are unable
to be reduced to a hierarchical model and this serves to fur-
ther emphasise that knowledge transfer success is a complex
phenomena, grounded upon multiple and interrelated
elements.

Synthesis of both phases of analysis signifies that knowl-
edge transfer success is grounded upon combinations of con-
ditions. Previous review articles have cited a multitude of
factors which facilitate inter-organisational knowledge trans-
fer (e.g. Charband & Navimipour, 2016; Pérez-Nordtvedt
et al., 2008): this investigation evidences the equifinal nature
of knowledge transfer success through the presence of six
solutions, confirming previous findings regarding the interre-
lations between conditions, evidenced through their moderat-
ing effects (Van Wijk et al., 2008) and contributing to the
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existing body of research that discusses antecedents of success
(Al-Salti & Hackney, 2011; Cummings & Teng, 2003; Hasty
et al., 2006). While existing studies (Lawson & Potter, 2012;
Miller et al., 2016) have investigated the influence of multiple
conditions on knowledge transfer as an outcome, the config-
urational significance of these conditions remains relatively
undiscussed within existing research; both ISM and fsQCA
findings reveal the interrelated nature of the conditions as
elements of knowledge transfer success, emphasising that
such a significance should not be overlooked. Scholars should
therefore be mindful of the highly interrelated nature of these
conditions when pursuing similar research opportunities: fu-
ture research should demonstrate an awareness that these con-
ditions appear to manifest as configurational aspects of this
outcome. Moreover, fsQCA results reveal multiple, mutually
exclusive pathways of sufficient configurations, indicating
that no single condition is responsible for this outcome: thus,
knowledge transfer success cannot be reduced to a singular
condition. Specific conditions retain higher causal essentiality
with knowledge transfer success, indicating that they are core
for knowledge transfer success. Such conditions are absorp-
tive capacity in Solutions 3,4, and 6; tie strength and learning
intent in Solutions 1, 2 and 3; and tie strength combined with
the absence of cultural similarity in Solutions 3, 4 and 5.
Future studies should hence delve further into the configura-
tional nature of these conditions.

This investigation is one of the first, to the best of our
knowledge, to amalgamate ISM and fsQCA as analytical tech-
niques. FsQCA is often combined with other quantitative
techniques such as Structural Equation Modelling (Fang
et al., 2016; Mikalef & Pateli, 2017; Tho & Trang, 2015) or
regression analyses (Fiss et al., 2013; Ho et al., 2016). ISM is
frequently combined with another ‘fuzzy’ analytical tools
such as fuzzy MICMAC analysis (Dubey & Ali, 2014;
Gorane & Kant, 2013; Khan & Haleem, 2012; Pfohl et al.,
2011; Soti et al., 2011) or fuzzy analytic network processes
(Lee et al., 2011). Synthesising these techniques enabled a
more comprehensive examination into the knowledge transfer
conditions, resulting in a more nuanced and holistic analysis
that emphasised their interconnected nature, whilst contribut-
ing to the management literature through offering a potential
combination of analytical techniques for future studies.Whilst
the purpose of ISM was to identify whether certain conditions
retained greater importance for knowledge transfer success,
the resultant model demonstrated that all conditions remained
interrelated, and hence, the combination of these techniques
served to emphasise the interdependencies between the
knowledge transfer conditions. With both ISM (Singh et al.,
2003) and fsQCA (Ragin, 2008) being grounded upon the
principles of complexity, integration of the techniques
afforded a reconciliation of results through deconstructing
knowledge transfer success across innovation ecosystems into
its, albeit interrelated, elements.

In order to achieve digital transformation, the processes by
which public and private organisations interact, cooperate and
collaborate within an ecosystem require evolution and change
(Pappas et al., 2018). This paper generates a more structured
analysis of processes underlying digital transformation across
multiple ecosystems, a necessary insight (Riasanow et al.,
2020) outlining the interrelated nature of knowledge transfer
conditions and providing solutions that will benefit all ecosys-
tem actors (Pappas et al., 2018). This paper hence contributes
to extant digital transformation literature through providing a
comprehensive analysis of the interdependencies underlying
innovation ecosystems, achieved through utilising a mixed-
method approach.

7.2 Managerial Implications

Alongside theoretical implications, this investigation provides
managerial implications for practitioners engaging in an eco-
system approach. Whilst both the ISM and fsQCA results
reveal the interrelations between the conditions, there are
some configurational elements of the fsQCA solutions that
manifest as core, indicating strong causal essentiality with
the outcome (Fiss, 2011). While it is important to recognise
that these conditions formulate a configurational element of a
solution, the fact that they are core means that practitioners
should consider implementing strategies to ensure their pres-
ence or absence. Absorptive Capacity manifests as a core con-
dition across three of the solutions: because this condition is
an organisational construct, it is down to the individual firm to
improve their absorptive capacity. Organisations should hence
increase opportunities for knowledge integration, such as
sharing knowledge through social interactions within the
workplace (Lee & Wu, 2010). With tie strength manifesting
as part of a core causal configuration, managers could consid-
er utilising brokerage individuals or boundary spanners to
foster and sustain strong ties, which are found to occur at an
individual level (Michelfelder & Kratzer, 2013). These indi-
viduals adopt a significant role in maintaining the strength of
these partnerships; hence, firms could consider designating
specific employees to adopt this role in order to cultivate
and improve ecosystem relationships. As tie strength and
learning intent are a core causal configuration in Solutions
One, Two and Three, the combination of these conditions
exhibits high causal essentiality. With inter-organisational in-
teraction, a characteristic of strong partnerships (Rejeb-
Khachlouf et al., 2011), operating as a mechanism for increas-
ing awareness of learning intent (Huang, 2010), ecosystem
partners should not only engender a learning intent within
their own organisation, but also generate an awareness of a
partner’s learning intent, to cultivate pathways to knowledge
transfer success.

Alongside Tiefz*Learnfz, the absence of cultural similarity
is also combined with tie strength as a core causal
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configuration. This indicates that the absence of cultural sim-
ilarities is beneficial for success. Whilst complete distinction
between cultures may be difficult to ensure success, it is the
absence of similarity, and not complete diversity, that mani-
fests as core within fsQCA. Thus, organisations could attempt
to align their strategies with their ecosystem partner in terms
of how their own organisation could offer something alterna-
tive within the partnership. A strong partnership facilitates this
alignment, as observed by its combination with ~Cultfz, and
firms should further be aware of the combinatory effects of
these conditions.

7.3 Limitations and Recommendations for Future
Research

As with all research, a number of limitations arise from this
investigation: such limitations could be mitigated through fu-
ture research. As no configuration exceeded the consistency
threshold (0.75) when conducting fsQCA for the absence of
the outcome, it can be confirmed that the findings are causally
asymmetrical. The conditions for knowledge transfer success
are associated with the presence of success alone, and as such,
solutions for the absence of the outcome may be entirely dis-
tinct. This represents a research area requiring further atten-
tion, to shed light on how and why knowledge transfer is
unsuccessful in these contexts, hence contributing towards a
more holistic picture of success (Woodside, 2014).

This investigation further examines ecosystem partnerships
involved in different stages of the innovation process. These
variances between partnership stages may hence have exerted
unwanted effects upon the analysis: particularly regarding the
relationship characteristics, the stage of the innovation process
may have affected whether certain conditions were present or
indeed absent. It would hence be beneficial for future studies
to ascertain whether these conditions change depending upon
the stage of the innovation process: adopting comparative
methodologies such as fsQCA would be appropriate.

While this investigation has examined seven knowledge
transfer conditions and their impact upon success, their appli-
cation to other inter-organisational contexts comprises an in-
teresting avenue for future research. Platform-based ecosys-
tems, crowdsourcing networks, and communities formulate
important network-level contexts for further research
(Bogers et al., 2017). The conceptual framework applied with-
in this investigation provides a theoretical foundation for such
future research. Moreover, whilst this paper ascertains the
configurational nature of knowledge transfer conditions, it
could be the case that additional conditions could contribute
to knowledge transfer success within innovation ecosystems.
This is further reflected in the ISM model where one level is
observed, potentially indicating that further conditions could
exert an influence upon knowledge transfer success, and the
inclusion of such conditions would impose a greater degree of

structure on this model. The conditions selected for this study
were theoretically validated through a literature review of ex-
tant knowledge transfer literature (Bacon et al., 2019a) and
were empirically validated through the expert consensus ob-
tained in the second study conducted in this research.
However, future studies could conduct a solely qualitative,
exploratory study to examine whether additional conditions
are perceived to affect knowledge transfer success by ecosys-
tem partners.

7.4 Concluding Remarks

This investigation has presented an empirical, two-phase in-
vestigation into knowledge transfer success across innovation
ecosystems. The configurational nature of the conditions rein-
forces that the complex construct of success is grounded upon
combinations of knowledge transfer conditions. Key
takeaways from this investigation accentuate that organisa-
tions can mould their knowledge transfer practices to one of
the solution typologies, as well as cultivating the presence of
core conditions to facilitate the process. Moreover, through
combining knowledge-, firm- and relationship-related charac-
teristics, organisations can maintain greater confidence that
information will be exchanged effectively with their ecosys-
tem partners.
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