
Diversity-Driven Selection Operator for
Combinatorial Optimization?

Eduardo G. Carrano1[0000−0003−3368−4245],
Felipe Campelo1,2[0000−0001−8432−4325], and

Ricardo H. C. Takahashi3[0000−0003−0814−6314]

1 Department of Electrical Engineering, Universidade Federal de Minas Gerais -
Brazil. egcarrano@ufmg.br

2 School of Engineering and Applied Science, Aston University - UK
f.campelo@aston.ac.uk

3 Department of Mathematics, Universidade Federal de Minas Gerais - Brazil.
taka@.mat.ufmg.br

Abstract. A new selection operator for genetic algorithms dedicated
to combinatorial optimization, the Diversity Driven selection operator,
is proposed. The proposed operator treats the population diversity as
a second objective, in a multiobjectivization framework. The Diversity
Driven operator is parameterless, and features low computational com-
plexity. Numerical experiments were performed considering four different
algorithms in 24 instances of seven combinatorial optimization problems,
showing that it outperforms five classical selection schemes with regard
to solution quality and convergence speed. Besides, the Diversity Driven
selection operator delivers good and considerably different solutions in
the final population, which can be useful as design alternatives.

Keywords: multiobjectivization · combinatorial optimization · genetic
algorithms · selection operator · diversity preservation

1 Introduction

Genetic algorithms (GAs) are known to face the exploitation-exploration dilemma:
too much focus on exploitation can result in premature convergence, whereas
too much effort in exploration can negatively affect both convergence speed and
solution quality. Different approaches have been proposed to address this is-
sue, such as: changes in the population structure [1]; adaptation of crossover
or mutation operators [18] or of operator parameters [18]; ranking-based selec-
tion schemes [2]; and niche-sharing/crowding-based selection schemes [14]. In
those procedures, the algorithm can be adjusted in order to become either more
exploitation-oriented or more exploration-oriented, and the choice of a specific
setting should be performed specifically for each class of problem. An important
drawback of those schemes is that the issue of diversity has been often consid-
ered as a merit factor by itself. However, diversity by itself does not provide a

? This work was supported by the Brazilian agencies CNPq, CAPES and FAPEMIG.



2 Carrano et al.

considerable contribution for the quality of the final solutions delivered; instead,
diversity is valuable when the diverse solutions cover promising areas of search
space [18, 31]. Those references have not employed a search mechanism based on
multiobjective optimization principles for dealing with those two objectives.

The formal setting of multiobjective optimization for handling the objectives
of fitness and diversity was firstly introduced by [36]. Within this setting, it be-
comes possible to properly define which solutions should be found and stored,
and to establish suitable search strategies for finding them. Other works followed
the same approach of defining a diversity measure as an auxiliary objective in a
multiobjective setting within evolutionary algorithms [23, 8, 17, 32, 37], but many
rely on diversity metrics that depend on the computation of the distance from
all individuals to all other ones, which causes a computational complexity of
O(n2) [36, 23, 17, 32, 37]. More recent works have focused on the use of multiob-
jective indicators to optimize diversity [28] or in developing frameworks for the
development of algorithms aimed at optimising in the quality-diversity landscape
[15], which indicates an ongoing interest into the development of evolutionary
methods capable of generating both diverse and high-quality final populations.

This paper proposes a further development on the use of multiobjective op-
timization principles for achieving useful diversity in single-objective combina-
torial optimization. A selection operator based on the selection mechanism of
NSGA-II [16] is proposed: the Diversity-Driven (DiD) selection operator. The
DiD operator is parameterless, and can be used as an off-the-shelf operator for
building problem-specific GAs, keeping compatibility with almost any crossover,
mutation, and local search operators. As a main feature, instead of using a
raw distance measure as a new objective, the DiD operator builds an auxiliary
objective function that combines the solution ordering induced by the original
objective function with the distance from solution to solution, in the genotype
space, between solutions that are consecutive in this ordering.To define distance
metrics that adhere to combinatorial problems, the DiD operator uses geometric
descriptions of combinatorial spaces [27, 12, 25, 10].

The remainder of this paper is structured as follows: Section 2 presents some
formal definitions and states the diversity-related objective function used for
problem multiobjectivization. Section 3 describes the proposed diversity-driven
selection operator (DiD operator). Distance metrics in discrete variable spaces
are discussed in section 3.1. The test framework, including problems, instances,
algorithms and comparison procedures is presented in section 4. The results
achieved by the DiD operator and the other five ones employed for benchmark
are discussed in section 5. Some concluding remarks are drawn in section 6.

2 Multiobjective Selection Preference

The optimization problem of interest is defined as stated in (1), where X rep-
resents the space of discrete decision variables, x ∈ X is a point in this space
denoted as a candidate solution (an individual); and f (·) : X 7→ R is an objective
function to be minimized.



Diversity-Driven Selection Operator for Combinatorial Optimization 3

Find: x∗ = arg min
x

f(x)

Subject to: x ∈ X
(1)

Let P = {x1, . . . ,xp} denote a population of current candidate solutions.
Assume that a total order [x1 ← x2 ← . . . ← xp] is induced on this set by the
comparison operator ≤ over the objective function values, such that the set is
ordered in increasing order of objective function values (f(xi) ≤ f(xi+1)∀i ≤
p− 1). Suppose, w.l.g., that when there are replicas of the same point xi, those
replicas are always ordered with consecutive indices. Although the aim of a
single-objective optimization algorithm is to find the minimal element of this
order, x∗, it should be noticed that the direct usage of the raw ordering x1 ←
x2 ← . . . ← xp inside the search engine may cause the loss of diversity because
nothing prevents the selection of very similar individuals, or even several replicas
of the same individual.

The formal statement of orderings that are oriented by more than one ob-
jective should consider the dominance relation operator (≺):

a ≺ b ⇔ {ai ≤ bi ∀i = 1, . . . ,m and ∃j ∈ {1, . . . ,m} such that aj < bj} (2)

It is possible that neither a ≺ b nor b ≺ a is true; in such a case a and b are
said to be non-comparable vectors. Considering a set S of vectors, in which the
≺ operation can be applied, a minimal element a∗ within S is an element for
which the following relation holds:

6 ∃ a ∈ S such that a ≺ a∗ (3)

As a consequence of the existence of non-comparable solutions, there may exist
several different minimal elements in S. The solution of a multiobjective opti-
mization problem is defined as the set of minimal elements of this partial order
in the problem domain, the Pareto-optimal set of the problem.

The idea in this paper is to employ, in the selection operator, the ordering es-
tablished by the dominance relation operator (≺) on the population, considering
the objective function and an auxiliary objective stated as a particular distance
to a neighbor, as follows. Let the left neighbor of an element xi be the element
xi−1. A function fα is defined as:

fα(xi) = −‖(xi)− (xi−1)‖ (4)

in which ‖ · ‖ denotes a norm defined in X , and fα(x1) = −∞ by convention.
In situations where multiple copies of the same individual are present in P,
the relation xi = xi+1 will hold for some pairs of individuals. In this case,
f(xi) = f(xi+1) and fα(xi+1) = 0 hold. Now, define fd as:

fd(xi) =

{
fα(xi), if fα(xi) < 0 or fα(xi−1) < 0

fd(xi−1) + 1, otherwise
(5)

Function fd will return smaller values for individuals at a greater distance
from their left neighbors, which can be interpreted as a measure of diversity. The
following properties of fd are of interest:



4 Carrano et al.

(i) The best individual, x1, has its smallest possible value: fd(x1) = −∞;
(ii) For any two individuals xi 6= xi+1 the condition fd(xi+1) < 0 holds, even if

f(xi) = f(xi+1);
(iii) For any set of j + 1 copies of the same individual, xi = xi+1 = . . . = xi+j

the conditions fd(xi) < 0, fd(xi+1) = 0 and fd(xk+i+1) = fd(xk+i) + 1 for
k = 1, . . . , j − 1 hold.

The idea of the proposed selection method (the DiD operator) is to apply a non-
dominated sorting (NDS) selection procedure [16] to P, using functions f(x) and
fd(x) as the selection criteria.

3 Diversity-Driven Selection Operator

The non-dominated sorting procedure [16] relies on the assignment of a front
number to each individual in P, such that the non-dominated individuals are
put in front F0, the individuals that are dominated only by individuals in the
front F0 are put in F1, the individuals that are dominated only by individuals
in the fronts F0 and F1 are placed in F2, and so forth.

By proceeding in this way with functions f(x) and fd(x), the resulting fronts
Fi are such that the best individual is always the only one in the front F0, since
it dominates all other individuals in P. This ensures that the best individual is
always selected. The second front, F1, will contain the second copy of the best
individual (if any), the first copy of the second best individual, and also the first
copy of some other individuals (only one copy per individual). The following
front F2 will contain the third copy of the best individual (if any), the second
copy of the second best individual (if any), and other individuals. This pattern
is repeated in the other fronts until all individuals are placed in some front.

Consider two individuals xb and xa such that f(xb) > f(xa). These individ-
uals will be placed in the same front only if fd(xb) < fd(xa), which may happen
if: (i) xb is more distant from its left neighbor than xa, or (ii) the previous fronts
already selected include more copies of xa than copies of xb. In both cases, the
situation can be interpreted as xb being more important for diversity than xa.
Otherwise, xb will be placed in a front with higher index than xa.

After finding the k fronts {F0, . . . ,Fk−1}, the individuals within each front Fi
are ordered according to the one-point contribution metric [7]. For two-objective
problems, such as the one considered here, the one-point contribution of a given
point xa is defined as the area A shown in Fig. 1.

The set S of the selected individuals resulting from DiD selection operator
is filled with the first ns individuals, according to the total ordering that is
established considering first the increasing ordering of fronts, breaking the ties
by the decreasing ordering of one-point contributions within any front. Both
population diversity and objective function values are considered in the selection
by the fitness function f(·) and the diversity function fd(·).

The computational complexity of the DiD operator is found by analyzing the
operations within it. Population sorting can be accomplished in O(n log n) time.
Evaluation of fd requires O(n) distance calculations. Efficient implementations



Diversity-Driven Selection Operator for Combinatorial Optimization 5

i

i-1

i+1

f

fd

A

Fig. 1. Evaluation of the one-point contribution for the individual xj .

of NDS [38] have complexity of O(m ·n log n), which reduces to O(n log n) since
m = 2. One-point contribution evaluation requires, in the worst case, n−2 multi-
plication operations. The complexity of the DiD selection procedure is therefore
determined by population sorting and NDS: O (n log n) in the worst case.

3.1 Distance Metrics in Combinatorial Vector Spaces

The proposed selection operator relies on the assumption of availability of a dis-
tance between the individuals in the combinatorial problem. A brief explanation
of the formalism for defining distances in combinatorial spaces is presented next.

The geometric structure of the space of a combinatorial problem may be
stated using the edit move, defined as the smallest change of variables that
transforms one solution into another one [27]. A path P from xa to xb is a
sequence of solutions that start in xa and reaches xb by edit move steps, and the
length of a path is the number of edit moves that generate all solutions on the
path. The distance from xa to xb is the length of the path of minimum length.

A more finely grained definition of a norm can be stated, the weighted norm,
as proposed in [12] for tree networks. Such a definition starts with the definition
of weights for the several components of the decision vector. Each component of
each vector receives its weight, such that xai 7→ wai . Those weights are defined
such that the components whose change have a greater impact in the individ-
ual phenotype receive greater weight. The possibility of defining such weights
depends on the problem. Then, the lengths of the paths between individuals
become weighted. Let `w(·) denote a weighted length of a path, and let xb be
generated from xa by an edit move that changes only the components i and j.
The weighted length of this edit move is defined as:

`w(xa − xb) = wai + wbi + waj + wbj (6)

The weighted length of a path P =
{
p1,p2, . . . ,pm

}
in which p1 = xa and

pm = xb becomes defined by the sum of the weighted lengths of the edit moves
that compose the path:

`w(xa − xb) = `w(pm − pm−1) + . . . + `w(p2 − p1) (7)

From this definition of weighted path length, comes the weighted distance be-
tween individuals.



6 Carrano et al.

4 Test Framework

4.1 Test problems

Seven combinatorial problems are considered: (i) degree-constrained minimum
spanning tree; (ii) quadratic minimum spanning tree; (iii) optimal communica-
tion spanning tree; (iv) linear ordering; (v) common due-date single machine
scheduling; (vi) makespan in unrelated parallel machine scheduling, and; (vii)
generalized assignment problem. These problems can be divided in three classes:
network problems, permutation problems, and assignment problems.

Degree-constrained minimum spanning tree problem (DCMST) is defined as the
search for the minimum cost spanning tree with constraints on the degrees of
its vertices. In [22], the authors propose a class of instances known as SHRD
(structured hard), which are harder than the Euclidean ones. This class is used
in the experiments here. Two instances, with 30 (DCMST30) and 50 vertices
(DCMST50), have been generated, following the procedure described in [22].

Quadratic minimum spanning tree problem (QMST) involves searching for a
spanning tree which minimizes a quadratic cost function that depends on the
cost of edges and on the interaction between each pair of edges [33]. Instances
with 25 (QMST25) and 50 nodes (QMST50) [12] are considered in this study.

Optimal communication spanning tree problem (OCST) which aims at obtaining
the minimum cost spanning tree, with the cost considering the communication
requirements between each pair of nodes in the system [33]. Two instances,
OCST25 and OCST50 [12], are used in this paper.

Linear ordering (LinOrder) problem [21], in which there is a set of n objects
that are to be ordered in a linear sequence. For every pair (i, j) of objects there
are coefficients ci,j that define the preference for having i before j. The goal
is to find a linear sequence that maximizes the sum of the coefficients that are
compatible with the preferences. Six instances from the LOLIB-library [30] are
used in this study: be75eec, be75np, be75oi, stabu1, stabu2 and stabu3. The first
three have 50 objects and the others have 60 objects.

Common due date single machine scheduling (Scheduling) which consists of the
search for the optimal processing sequence for a given set of tasks, in such a way
that the weighted sum of earliness and tardiness is minimized. Instances sch50
(50 tasks, K = 1 and h = 0.60), sch100 (100 tasks, K = 5 and h = 0.60) and
sch200 (200 tasks, K = 1 and h = 0.60) of the OR-Library [5] are used.

Makespan in unrelated parallel machine scheduling (Makespan) consists in as-
signing set of tasks to a set of machines, while guaranteeing that each task is
assigned to a single machine [29]. In this work the makespan is the function to be
minimized. Three random instances have been generated: Mk25 × 5 (25 tasks,
5 machines), Mk50 × 10 (50 tasks, 10 machines), Mk100 × 10 (100 tasks, 10
machines). The processing times have been generated as integer numbers in the
interval 1 ≤ pi,j ≤ 10, following a uniform distribution.

Generalized assignment problem (GAP), which consists in assigning n tasks to
m agents. The objective function is the total cost required for performing the



Diversity-Driven Selection Operator for Combinatorial Optimization 7

tasks [4]. Six instances from the OR-Library [5] are considered in this study,
and coded as “Am × n”: A5 × 100 (5 agents, 100 tasks), A5 × 200, A10 × 100,
A10× 200, A20× 100 and A20× 200.

4.2 Algorithms

Four different genetic algorithms are used for solving the problems described
above. These algorithms vary on the crossover, mutation, and local search op-
erators employed, which are chosen according to the specific problem under
consideration, but have exactly the same generational structure. The operators
employed by each algorithm are briefly described below:

VETreeOpt (DCMST, QMST and OCST) is an algorithm employed for net-
work problems. It has been built with the same crossover (binary) and mutation
(unary) operators as proposed in [12]. These operators have been chosen because
they have achieved very good performance on this class of problems;

PermutationGA (LinOrder and Scheduling) is an algorithm used for permuta-
tion problems, in which each individual is encoded as a permutation. Partially
Matched Crossover (PMX) [19] and Swap Mutation [19] are employed to per-
form crossover and mutation. In the local search operator, all first order swap
operations are tested, one by one, until the first improvement is reached.

AssignmentGA (Makespan) encodes the individuals as chains of integer numbers,
in which the integer lying in position i (xi) identifies the machine that should
perform task i. Crossover and mutation are performed using Uniform Crossover
[35] and Flip Mutation [13]. The local search operator evaluates the tasks (one
by one) on every machine, until it detects the first improvement.

GAPGA (GAP) is very similar to the AssignmentGA, since Makespan and GAP
have similar structures. The only difference of GAPGA is the mutation opera-
tion, which is performed using the technique proposed in [34]. This operator
has been designed specifically for GAP, and cannot be employed on unrelated
parallel machine scheduling.

Each one of those algorithms is tested with six selection operators:

– DiD: the Diversity-Driven operator proposed in this paper;
– SW: stochastic wheel without ranking [20];
– SWLR: stochastic wheel with linear ranking [2];
– SUS: stochastic universal sampling without ranking [24];
– SUSLR: stochastic universal sampling with linear ranking [3];
– ST: stochastic binary tournament [20, 24].

Therefore, six different versions of each algorithm (one for each selection
operator) are employed for solving each instance. All algorithms are executed
considering the same parameters: population size of 50 individuals; stop criterion:
1000n function evaluations (FEs)4; crossover: 0.80 per pair; mutation: 0.40 per

4 n is the problem size: number of vertices for DCMST, QMST and OCST; number
of objects for LinOrder. number of tasks for Scheduling, Makespan and GAP.



8 Carrano et al.

individual; interval between local searches: 50 generations; maximum number of
FEs used in local search: 500; algorithm runs per instance: 50. These settings
are in agreement with what is commonly employed in the literature. In addition,
preliminary testing of the algorithms showed that they are generally robust to
small variations on these parameters.

4.3 Performance assessment

Two merit criteria are employed for comparing the selection operators:

Convergence Quality Criterion (CQC): the quality of the outcomes delivered
by the algorithm is estimated using the objective function value of the best
individual obtained at the end of each algorithm run. For each algorithm and
for each run, the value of the objective function of the final best individual is
stored. After r runs, the CQC performance of an algorithm on a given instance
is determined from the r objective function values stored.

Convergence Speed Criterion (CSC), which estimates how fast an algorithm con-
verges to a reasonable solution. For each algorithm and for each run, the best
individual at the end of each generation and the number of function evaluations
required for reaching that solution are stored. The worst final solution amongst
all runs of all algorithms is found. Then, for each algorithm and for each run,
the number of function evaluations that has been required to reach the first so-
lution that is better than or equal to that worst one is found. The CSC metric
is determined from this information.

The CQC and CSC values achieved by the algorithms in each individual
instance are analyzed using the procedure described below:

1. For CQC and CSC criteria:
(a) For each Instance k:

i. For each pair of operators Opi, Opj , with i < j, estimate the p-
value for the comparison of means of the algorithm equipped with
operators Opi and Opj (pvi,j) based on Welch’s t-test [26].

ii. Using the p-values obtained on step 1(a)i, build a partial order for
the methods using the Benjamini-Hochberg Multiple Comparison
procedure [6], considering a global significance q∗ = 0.05.

(b) Based on the partial orders achieved for CQC and CSC on step 1(a)ii, use
the Pareto dominance principle to identify the set of efficient algorithms.

The output of this procedure is a set of algorithms which are efficient with
regard to CQC and CSC. An algorithm i is efficient if no other algorithm j
is better than i in one criterion without being worse in the other one. This
comparison approach is similar to the one proposed in [11]. The only difference
of the newer procedure is the replacement of the ANOVA and Tukey tests by
the Welch’s t-test and the Benjamini-Hochberg Multiple Comparison procedure,
which makes the process more robust to heteroscedasticity [9].

This procedure makes it possible to establish a ranking of the algorithms:
(i) algorithms that are not significantly outperformed by any others are ranked



Diversity-Driven Selection Operator for Combinatorial Optimization 9

in the first position; (ii) the algorithms that lose only to rank 1 methods are
placed on rank 2, and so forth. In the specific case of this work, the statistical
comparisons generate two orders for the algorithms, one for CQC and other for
CSC. These orders are considered in a Pareto dominance analysis, in order to
find the set of efficient operators in each instance.

5 Results

A summary of the results achieved in all instances is shown in Table 1. The DiD
operator was not outperformed by any other selection operator, staying in the
first position for all instances in both criteria, CQC and CSC. In addition, it
was the only operator that was efficient in all 24 instances. Amongst the other
five operators, SUSLR was efficient in 8 instances, SWLR and ST were efficient
in 7, and SW and SUS were Pareto-optimal in only a single instance each.

Table 1. Operator positions in each criterion for each instance

CQC CSC
Instance DiD ST SUS SUSLR SW SWLR DiD ST SUS SUSLR SW SWLR

DCMST30 1 2 3 2 3 2 1 2 3 2 3 2
DCMST50 1 2 3 2 3 2 1 2 3 2 3 2
QMST25 1 1 1 1 1 1 1 1 2 1 2 1
QMST50 1 1 1 1 1 1 1 2 4 2 4 3
OCST25 1 1 2 1 2 1 1 1 1 1 1 1
OCST50 1 1 1 1 1 1 1 2 2 2 2 2

be75eec 1 1 1 1 1 1 1 1 2 1 2 1
be75np 1 2 2 2 2 2 1 1 2 1 2 1
be75oi 1 2 2 2 2 2 1 1 2 1 2 1
stabu1 1 1 1 1 1 1 1 1 2 1 3 1
stabu2 1 1 1 1 1 1 1 1 2 1 3 1
stabu3 1 2 2 2 2 2 1 1 2 1 3 1
sch50 1 1 1 1 1 1 1 2 3 1 3 2
sch100 1 1 2 1 2 2 1 2 4 2 4 3
sch200 1 1 2 1 2 1 1 1 2 1 2 1

Mk25×5 1 2 1 2 2 2 1 2 2 2 2 2
Mk50×10 1 4 2 6 3 5 1 2 2 2 2 2
Mk100×10 1 3 2 5 2 4 1 1 1 1 1 1
A5×100 1 1 1 1 1 1 1 2 2 2 2 2
A10×100 1 1 1 1 1 1 1 3 2 3 3 3
A20×100 1 1 1 1 1 1 1 1 1 1 1 1
A5×200 1 1 1 1 1 1 1 3 2 3 3 3
A10×200 1 2 2 2 2 2 1 3 2 2 3 3
A20×200 1 2 2 2 2 2 1 2 2 2 2 2

The genetic algorithm using the DiD operator was also able to determine
new “best known solutions” for two scheduling instances, namely sch50 and



10 Carrano et al.

sch100, when compared to the current best reported in the OR-Library (see
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/schinfo.html):

– sch50 (k = 1, h = 0.60), former best: 17990, new best: 17976
– sch100 (k = 5, h = 0.60), former best: 55291, new best: 55286

The genetic algorithms using other selection operators were not able to achieve
those new best objective function values.

6 Conclusions

This paper proposed a multiobjectivization approach for dealing with the explo-
ration/exploitation dilemma in genetic algorithms for combinatorial problems.
The trade-off between population fitness and diversity is processed inside a single
parameter-less operator, the Diversity-Driven (DiD) selection operator, which
selects the individuals according to the objective function and a function that is
built over a specific measure of distance to one neighbor. The specific neighbor-
hood structure induced by the solution ordering scheme employed within DiD
allows the computation of distances with O(n log n) worst-case complexity. The
DiD operator was conceived as an off-the-shelf operator that can be used within
problem-specific GA’s while keeping compatibility with almost any crossover,
mutation and local search operators.

Numerical experiments were performed on 24 instances of seven different
combinatorial problems, for which some specific GA’s were built and equipped
with either the DiD operator or several other existing selection methods. The
comparisons were performed with regards to convergence speed and solution
quality. The results obtained indicate that the proposed DiD operator was able
to significantly and consistently outperform the competing selection approaches
in both merit criteria.

Additional studies are needed in order to assess the behavior of DiD operator
on combinatorial problems with different structures, for instance in the case
of satisfiability problems (maximum satisfiability, constraint satisfaction). It is
expected that the development of distance metrics specially adapted for different
problem structures will allow the application of the DiD operator in a greater
variety of situations.

Other extensions of the DiD operators may be interesting to explore. These
include the incorporation of preference information into the operator, to allow
differential weighting of the dual objectives of solution quality or diversity; and
the exploration of this operator in other problem contexts, such as continuous
optimization.

References

1. Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.): Handbook on Evolutionary Compu-
tation. Oxford University Press (1997)



Diversity-Driven Selection Operator for Combinatorial Optimization 11

2. Baker, J.E.: Adaptive selection methods for genetic algorithms. In: Proc. 1st Int.
Conf. Genetic Algorithms. pp. 101–111 (1985)

3. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Proc.
2nd Int. Conf. Genetic Algorithms Appl. pp. 14–21 (1987)

4. Balachandran, V.: An integer generalized transportation model for optimal job
assignment in computer networks. Oper. Res. 24, 742–759 (1976)

5. Beasley, J.E.: OR-Library. http://people.brunel.ac.uk/ mas-
tjjb/jeb/orlib/schinfo.html, last accessed at 2020-Sep-20

6. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J. Royal Statistical Soc. – Series B 57(1),
289–300 (1995)

7. Brandstreet, L., While, L., Barone, L.: A fast incremental hypervolume algorithm.
IEEE Trans. Evol. Comp. 12(6), 714–723 (2008)

8. Bui, L.T., Abbass, H.A., Branke, J.: Multiobjective optimization for dynamic en-
vironments. In: Proc. IEEE Cong. Evol. Comp. (CEC 2005). vol. 3, pp. 2349–2356.
Edinburgh, UK (2005)

9. Campelo, F., Takahashi, F.: Sample size estimation for power and accuracy in
the experimental comparison of algorithms. Journal of Heuristics 25(2), 305–338
(2019)

10. Carrano, E.G., Ribeiro, G., Cardoso, E., Takahashi, R.H.C.: Subpermutation based
evolutionary multiobjective algorithm for load restoration in power distribution
networks. IEEE Trans. Evol. Comp. 20, 546–562 (2016)

11. Carrano, E.G., Wanner, E.F., Takahashi, R.H.C.: A multicriteria statistical based
comparison methodology for evaluating evolutionary algorithms. IEEE Trans.
Evol. Comp. 15(6), 848–870 (2011)

12. Carrano, E.G., Takahashi, R.H.C., Fonseca, C.M., Neto, O.M.: Nonlinear network
optimization – an embedding vector space approach. IEEE Trans. Evol. Comp.
14(2), 206–226 (2010)

13. Chicano, F., Alba, E.: Exact computation of the expectation curves of the bit-flip
mutation using landscapes theory. In: Proc. Genetic Evol. Comp. Conf. (GECCO
2011). pp. 2027–2034. Dublin, Ireland (2011)

14. Cioppa, A., De Stefano, C., Marcelli, A.: Where are the niches? Dynamic fitness
sharing. IEEE Trans. Evol. Comp. 11(4), 453–465 (2007)

15. Cully, A., Demiris, Y.: Quality and diversity optimization: A unifying modu-
lar framework. IEEE Transactions on Evolutionary Computation 22(2), 245–259
(2018)

16. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evol. Comp. 6, 182–197 (2002)

17. Garcia-Najera, A., Bullinaria, J.A.: An improved multi-objective evolutionary al-
gorithm for the vehicle routing problem with time windows. Comp. & Oper. Res.
38, 287–300 (2011)

18. Ginley, B.M., Maher, J., O’Riordan’, C., Morgan, F.: Maintaining healthy popula-
tion diversity using adaptive crossover, mutation, and selection. IEEE Trans. Evol.
Comp. 15(5), 692–714 (2011)

19. Goldberg, D.E., Lingle, R.: Alleles, loci, and the traveling salesman problem. In:
Proc. Conf. Genetic Algorithms Appl. pp. 154–159 (1985)

20. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1st edn. (1989)

21. Grötschel, M., Jünger, M., Reinelt, G.: Optimal triangulation of large real world
input-output matrices. Statistische Hefte 25, 261–295 (1984)



12 Carrano et al.

22. Krishnamoorthy, M., Ernst, A.T., Sharaiha, Y.M.: Comparison of algorithms for
the degree constrained minimum spanning tree. J. Heuristics 7, 587–611 (2001)

23. Landa Silva, J.D., Burke, E.K.: Using diversity to guide the search in multi-
objective optimization, chap. 30, pp. 727–751. World Scientific (2004)

24. Luke, S.: Essentials of Metaheuristics. Lulu,
https://cs.gmu.edu/ sean/book/metaheuristics/Essentials.pdf (2016)

25. Martins, F.V.C., Carrano, E.G., Wanner, E.F., Takahashi, R.H.C., Mateus, G.R.,
Nakamura, F.G.: On a vector space representation in genetic algorithms for sensor
scheduling in wireless sensor networks. Evol. Comp. 22, 361–403 (2014)

26. Montgomery, D., Runger, G.: Applied Statistics and Probability for Engineers.
John Wiley and Sons (2003)

27. Moraglio, A.: Towards a geometric unification of evolutionary algorithms. Ph.D.
thesis, University of Essex (2007)

28. Neumann, A., Gao, W., Wagner, M., Neumann, F.: Evolutionary diversity op-
timization using multi-objective indicators. In: Proceedings of the Genetic and
Evolutionary Computation Conference. ACM (2019)

29. Pfund, M., Fowler, J.W., Gupta, J.N.D.: A survey of algorithms for single and
multi-objective unrelated parallel-machine deterministic scheduling problems. J.
Chinese Inst. Industrial Engineers 21, 230–241 (2004)

30. Reinelt, G.: LOLIB. http://comopt.ifi.uni-heidelberg.de/software/LOLIB/, last
accessed at 2020-Sep-20

31. Segura, C., Coello Coello, C.A., Miranda, G., Leon, C.: Using multi-objective evo-
lutionary algorithms for single-objective optimization. 4OR 11(3), 201–228 (2013)

32. Segura, C., Coello Coello, C.A., Segredo, E., Miranda, G., Leon, C.: Improving
the diversity preservation of multi-objective approaches used for single-objective
optimization. In: Proc. IEEE Cong. Evol. Comp. (CEC 2013). pp. 3198–3205.
Cancun, Mexico (2013)

33. Soak, S., Corne, D.W., Ahn, B.: The edge-window-decoder representation for tree-
based problems. IEEE Trans. Evol. Comp. 10, 124–144 (2006)

34. Subtil, R.F., Carrano, E.G., Souza, M.J., Takahashi, R.H.C.: Using an enhanced
integer NSGA-II for solving the multiobjective generalized assignment problem.
In: Proc. IEEE World Cong. Comput. Intell. Barcelona, Spain (2010)

35. Syswerda, G.: Uniform crossover in genetic algorithms. In: Proc. 3rd Int. Conf.
Genetic Algorithms. pp. 2–9 (1989)

36. Toffolo, A., Benini, E.: Genetic diversity as an objective in multi-objective evolu-
tionary algorithms. Evol. Comp. 11(2), 151–167 (2003)

37. Wessing, S., Preuss, M., Rudolph, G.: Niching by multiobjectivization with neigh-
bor information: Trade-offs and benefits. In: Proc. IEEE Cong. Evol. Comp. (CEC
2013). pp. 103–110. Cancun, Mexico (2013)

38. Zhang, X., Tian, Y., Cheng, R., Jin, Y.: An efficient approach to nondominated
sorting for evolutionary multiobjective optimization. IEEE Transactions on Evo-
lutionary Computation 19(2), 201–213 (2015)


