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https://doi.org/10.1016/j.mex.2021.101314 

2215-0161/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/395371962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1016/j.mex.2021.101314
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mex
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mex.2021.101314&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:dana.cerna@tul.cz
https://doi.org/10.1016/j.mex.2021.101314
http://creativecommons.org/licenses/by-nc-nd/4.0/
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Specifications table 

Subject Area: Medicine and Dentistry 

More specific subject area: Biomedical Engineering 

Method name: Software for Constructing Wavelet Dictionaries with Application to ECG Signal Modeling 

Name and reference of original 

method: 

L. Rebollo-Neira, D. Černá, Wavelet Based Dictionaries for Dimensionality Reduction of ECG 

Signals Biomedical Signal Processing and Control 54 (2019), article No. 101593. 

doi: https://doi.org/10.1016/j.bspc.2019.101593 . 

Resource availability: MATLAB software for construction of dictionaries and ECG signal modeling: 

www.nonlinear-approx.info/examples/node013.html 

Method details 

The electrocardiogram (ECG) represents electrical activity of human heart and is widely applied to 

the diagnosis of heart diseases. Sparse representation of ECG signals is a subject of interest in different

applications such as analysis, compression, and classification of ECG signals. In [17] we proposed a

method for ECG modeling which proceeds as follows. 

Assuming that the signal is given as an N-dimensional array, this array is partitioned into Q cells

f c { q } , q = 1 , . . . , Q . Thus, each cell f c { q } is an N b -dimensional vector, which is modeled by an ‘atomic

decomposition’ of the form 

f a { q } = 

k ( q ) ∑ 

n =1 

c { q } ( n ) d l { q } ( n ) . (1) 

For each cell q , the atoms d l { q } (n ) 
, n = 1 , . . . , k (q ) are selected from a dictionary through the

greedy OOMP algorithm [18] , [19] . The array � { q } is a vector whose components l { q } (n ) , n = 1 , . . . , k (q )

contain the indices of the selected atoms for decomposing the q -th cell in the signal partition. The

OOMP method, for selecting these indices and computing the corresponding coefficients c{ q } (n ) , n =
1 , . . . , k (q ) in (1) , is fully implemented by the OOMP function included as a tool of the software. 

In this Communication we focus on the details for the construction of the dictionaries giving rise to

the piecewise model (1) for ECG signals. The aim is to support the task of dimensionality reduction.

In this respect, each dictionary improves the results achieved with the wavelet basis of the same

family [17] , [20] . Consequently, using a dictionary the ECG record is represented by significantly fewer

elementary components than those required by the corresponding wavelet basis for reproducing the 

signal at the same quality. The gain in dimensionality reduction enhances compression performance. 

As demonstrated in [17] the results arising from the proposed wavelet dictionaries attain compression

ratios distinctly improving upon previously reported benchmarks [ [13–15] , [24] for compressing the

whole MIT-BIH Arrhythmia data set [8] . The suitability of using dictionaries for ECG signal modeling

goes beyond compression applications. Indeed, in [16] Gabor dictionaries are used with success for

automated recognition of cardiac arrhythmias. In this regard, we expect that our software contribute 

to the development of advanced tools for the automation of ECG interpretation. 

Each of the proposed dictionaries consists of two components. One of the components contains

a few elements, say M c , from a discrete cosine basis. This component allows for the fact that ECG

signals are normally superimposed to a smooth background. It is given as a N b × M c matrix D 

C . The

other component is the wavelet dictionary, which is given as a N b × M w 

matrix D 

W . Thus, the whole

dictionary D is an N b × ( M c + M w 

) matrix obtained by the horizontal concatenation of D 

C and D 

W . 

The paper is organized as follows. First, we give the details for the construction of different wavelet

prototypes and the concomitant wavelet dictionaries generated by those prototypes. Then, we provide 

https://doi.org/10.1016/j.bspc.2019.101593
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etails and examples of the use of the MATLAB software for modeling of ECG signals within the

roposed framework. The software has been made available on a dedicated website [9] . 

avelet dictionaries 

In this section we produce all the pseudo-codes for the construction of wavelets dictionaries, which

an be used to achieve the model of every segment in a signal partition. As already mentioned, each

ictionary is obtained by taking the prototypes from a wavelet basis and translating them within a

horted step than that corresponding to the wavelet basis. 

Throughout the paper we adopt the following notation. Boldface fonts are used to indicate

uclidean vectors and matrices. Standard mathematical fonts are used to indicate components, e.g.,

 ∈ R 

N is a vector of N-components d(i ) ∈ R , i = 1 , . . . , N and D ∈ R 

N×M is a matrix of elements

 ( i, j ) , i = 1 . . . , N, j = 1 , . . . , M. The symbol L 2 (R ) denotes the space of square integrable functions. 

Wavelets are usually constructed starting from a multiresolution analysis , which is a sequence

 V j } ∞ 

j= j 0 of closed subspaces of the space L 2 (R ) which are nested and their union is dense in L 2 (R ) ,

.e. 

V j ⊂ V j+1 ∀ j ≥ j 0 , U 

∞ 

j= j 0 V j = L 2 ( R ) . (2)

We assume that there exists a function φ ∈ L 2 (R ) such that for j ≥ j 0 the functions 

φ j,k ( x ) = 2 j/ 2 φ
(
2 j x − k 

)
, k ∈ Z , (3)

orm uniformly stable bases of the spaces V j , i.e. the bases are Riesz bases with bounds independent

f the level j, see e.g. [4] . The functions φ j,k are called scaling functions and the function φ is called

 generator of scaling functions. Next we present a method for the actual construction of the scaling

unctions. 

eneration of scaling functions 

We assume that φ has a compact support [ 0 , K ] for some K ∈ N . From the nestedness of the

ultiresolution spaces V j , it follows that there exists a scaling filter h = ( h ( 1) , . . . , h ( K + 1 ) ) such that

φ( x ) = 

K+1 ∑ 

k =1 

h ( k ) φ( 2 x + 1 − k ) ∀ x ∈ R . (4)

Out of the several approaches outlined in [22] for solving the scaling Eq. (4) we adopt the one

escribed below, which is equivalent to that appearing in [23] . 

If 
K 
∫ 
0 
φ(x ) dx = c 	 = 0 then, integrating (4) , we obtain 

c = 

K+1 ∑ 

k =1 

h ( k ) 
c 

2 
(5)

hich implies that h has to be normalized such that 

K+1 ∑ 

k =1 

h ( k ) = 2 . (6)

The scaling Eq. (4) enables computing values of the scaling function φ at points k/ 2 u for k =
 , . . . , K 2 u , u ∈ N . First we compute values of φ at integer points. Since supp φ = [ 0 , K ] , we have

(k ) = 0 for k 	 = ( 0 , K ) . Let us define a vector 

� = ( φ( 0 ) , . . . , φ( K − 1 ) ) 
T 
, (7)

here the (. ) T indicates the transpose operation. Substituting x = 0 , . . . , K − 1 , into (4) , we obtain 

�( i ) = φ( i − 1 ) = 

K+1 ∑ 

k =1 

h ( k ) φ( 2 i − 1 − k ) = 

2 i −K−1 ∑ 

j=2 i −1 

h ( 2 i − j ) φ( j − 1 ) = 

2 i −K−1 ∑ 

j=2 i −1 

h ( 2 i − j ) �( j ) . (8)
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We set h (k ) = 0 for k < 1 and k > K + 1 and define a matrix A by 

A ( i, j ) = h ( 2 i − j ) , i, j = 1 , . . . , K. (9) 

Then, (8) is equivalent to 

� = A �. (10) 

This means that � is an eigenvector corresponding to the eigenvalue 1 of the matrix A . If the

multiplicity of this eigenvalue is 1, then � is given uniquely up to a multiplication by a constant. Our

aim is to compute a vector phi such that 

phi ( m ) = φ
(

m − 1 

2 u 

)
, m = 1 , . . . , K 2 u + 1 , (11) 

for a chosen level u ∈ N . From (7) and (11) we have 

phi 
(
2 u ( l − 1 ) + 1 

)
= φ( l − 1 ) = �( l ) , l = 1 , . . . , K. (12) 

We compute values of φ at points l/ 2 . Note that for l even we already know these values. Using

(4) and (12) we obtain 

phi 
(
l 2 u −1 + 1 

)
= φ

(
l 

2 

)
= 

K+1 ∑ 

k =1 

h ( k ) φ( l + 1 − k ) = 

K+1 ∑ 

k =1 

h ( k ) phi 
(
( l + 1 − k ) 2 u + 1 

)
(13) 

for l = 1 , 3 , . . . , 2 N − 1 . Similarly, we compute values of φ at points l/ 4 , and thus we continue until

we determine values at points l/ 2 u . More precisely, for i = 1 , . . . , u we assume that we know values

of φ at l/ 2 i −1 , l = 0 , . . . , K 2 i −1 + 1 , and we compute the values 

phi ( m ) = φ( x ) , m = x 2 u + 1 , x = l/ 2 i −1 + 1 / 2 i . (14)

Using (4) we obtain 

phi ( m ) = φ( x ) = 

K+1 ∑ 

k =1 

h ( k ) φ( 2 x + 1 − k ) = 

K+1 ∑ 

k =1 

h ( k ) phi 
(
( 2 x + 1 − k ) 2 u + 1 

)
. (15) 

Remark 1. Some scaling functions such as spline scaling functions are known in an explicit form

and their values can be evaluated directly. However, an advantage of our approach is that it is more

general and can be used for a large class of wavelet families. 

Construction of wavelet generators from scaling functions 

Let W j be complement spaces such that V j+1 = V j ⊕ W j , where ⊕ denotes a direct sum. Wavelet

functions ψ j,k are constructed in the form: 

ψ j,k ( x ) = 2 j/ 2 ψ 

(
2 j x − k 

)
, k ∈ Z , (16) 

to be a basis for W j and such that 

B = 

{
φ j 0 ,k 

, k ∈ Z 

}
∪ 

{
ψ j,k , k ∈ Z , j ≥ j 0 

}
(17) 

called a wavelet basis , is a Riesz basis of the space L 2 (R ) . 

Since W j ⊂ V j+1 there exists a vector g = ( g( 1) , . . . , g( M + 1 ) ) such that 

ψ ( x ) = 

M+1 ∑ 

k =1 

g ( k ) φ( 2 x + 1 − k ) . (18) 

The vector g is called a wavelet filter . From (18) we have 

supp ψ = 

[ 
0 , 

M + K 

2 

] 
. (19) 

In Algorithm 1 we compute a vector psi such that 

psi ( m ) = ψ 

(
m − 1 

2 u 

)
, m = 1 , . . . , ( M + K ) 2 u −1 + 1 , (20) 
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Algorithm 1 Procedure [ phi , psi ] = WaveletGen( h , g,u) 

Input: 

h scaling filter 

g wavelet filter 

u level (integer) that determines points l/ 2 u 

Output: 

phi vector of scaling function values (c.f. (11)) 

psi vector of wavelet values (c.f. (20)) 

K = length (h ) − 1 {support length of φ} 

h = 2 h / sum (h ) {normalization of h (c.f. (6))} 

{Compute a matrix A using (9)} 

A = zeros (K) 

for i = 1 : K do 

for j = 1 : K do 

if 1 ≤ 2 i − j ≤ K + 1 then 

A ( i, j ) = h ( 2 i − j ) 

end if 

end for 

end for 

{Compute eigenvalues and eigenvectors of the matrix A } 

[V,D] = eig( A ) 

{Find an index of a column corresponding to eigenvalue 1} 

k = 0 { k is the multiplicity of eigenvalue 1} 

for i = 1 : K do 

if | (D ( i, i ) − 1 | < 10 −7 then 

column = i ; k = k + 1 

end if 

end for 

if k 	 = 1 then 

error(‘Impossible to construct scaling function: eigenvalue 1 must have multiplicity 1’) 

else 

phi = zeros ( K 2 u + 1 , 1 ) 

{Eigenvector V ( : , column ) represents values of φ at integer points} 

phi ( 1 : 2 u : ( K − 1 ) 2 u + 1 ) = V ( : , column ) {c.f. (12)} 

{Compute values of φ at points l/ 2 u } 

for i = 1 : u do 

for l = 1 : K 2 i −1 do 

x = 2 −i + ( l − 1 ) 2 −i +1 ; m = x 2 u + 1 {c.f. (14)} 

for k = 1 : K + 1 do 

if 0 ≤ 2 x − k + 1 ≤ K then 

phi (m ) = phi (m ) + h (k ) phi ( ( 2 x − k + 1 ) 2 u + 1 ) {c.f. (15)} 

end if 

end for 

end for 

end for 

M = length (g) − 1 

{Compute psi containing values of ψ at points l/ 2 u } 

psi = zeros ( ( K + M ) 2 u −1 + 1 , 1 ) 

for k = 1 : M + 1 then 

i 1 = ( k − 1 ) 2 u −1 + 1 ; i 2 = ( k − 1 ) 2 u −1 + 1 + K 2 u −1 

psi ( i 1 : i 2 ) = psi ( i 1 : i 2 ) + g(k ) phi ( 1 : 2 : K 2 u + 1 ) {c.f. (25)} 

end for 

end if 

i

 

 

n the following way. Due to (18) and (20) , we have 

psi ( m ) = 

M+1 ∑ 

k =1 

g ( k ) φ
(
( m − 1 ) 2 1 −u + 1 − k 

)
= 

M+1 ∑ 

k =1 

g ( k ) phi 
(
2 m − 1 + ( 1 − k ) 2 u 

)
. (21)

The sum in the last equation is computed as a cyclic sum. For 

m = 1 , . . . , ( M + K ) 2 u −1 + 1 (22)
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Fig. 1. Wavelet functions taken from a basis (left) and a dictionary (right) corresponding to a linear spline-wavelet prototype 

from [6] . 

 

 

 

 

 

 

 

 

 

 

we set psi (m ) = 0 and for k = 1 , . . . , M + 1 we do 

psi ( m ) = psi ( m ) + g ( k ) phi 
(
2 m − 1 + ( 1 − k ) 2 u 

)
, (23) 

if 1 ≤ 2 m − 1 + ( 1 − k ) 2 u ≤ K 2 u + 1 . Using the substitution 

2 m − 1 + ( 1 − k ) 2 u = 2 i − 1 , (24) 

for i = 1 , . . . , K 2 u −1 + 1 , we obtain 

psi 
(
i + ( k − 1 ) 2 u −1 

)
= psi 

(
i + ( k − 1 ) 2 u −1 

)
+ g ( k ) phi ( 2 i − 1 ) . (25) 

Algorithm 1 computes vectors phi and psi for given scaling and wavelet filters. The filters 

corresponding to the wavelet families supported by the software are given in Appendix A

( Algorithm 8 ). 

Construction of wavelet bases and dictionaries 

Hereafter we drop all normalization factors and normalize all the vectors once they has been

constructed. Note that in (17) we used a translation parameter k ∈ Z and since B is a Riesz basis

the functions from B are linearly independent. Now, we choose a parameter b such that b = 2 −m for

some integer m . We define functions 

φ j 0 ,k,b ( x ) = φ
(
2 j 0 x − bk 

)
, k ∈ Z , (26) 

and 

ψ j,k,b ( x ) = ψ 

(
2 j x − bk 

)
, k ∈ Z , j ≥ j 0 , (27) 

which form a redundant dictionary [1] , [2] , [21] . Obviously, b = 1 corresponds to a basis. 

The left graph of Fig. 1 shows two consecutive wavelet functions taken from a linear spline

bases [6] . The right graph of Fig. 1 corresponds to two consecutive wavelet functions taken from the

dictionary spanning the same space which corresponds to b = 1 / 4 . 

Algorithm 2 constructs a discrete dictionary, i.e., a matrix D 

W which contains values of functions

from (26) and (27) at N b equidistant points for some chosen levels determined by the vector j. Since

Algorithm 1 enables us to construct values at points of the form l/ 2 u , we evaluate functions (26) and

(27) at the points 

x = 

l 

2 r 
, l = 0 , . . . , N b − 1 , r = 

⌈
log ( N b − 1 ) 

log ( 2 ) 

⌉
, (28)

where  y � denotes the smallest integer number larger than y . 
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Algorithm 2 Procedure [ D W , ind , col ] = WaveletDict(namef, N b , j, b) 

Input: 

namef name of a wavelet family, for available choices see Appendix A 

N b number of points 

j vector of levels 

b translation factor b = 2 −r b for some integer r b 
Output: 

D W wavelet dictionary 

ind ind (1) is the number of scaling functions at level j(1) , and ind (k ) for k > 1 is the number of wavelets at 

level j( k − 1 ) the number of wavelets at level j( k − 1 ) 

col cell array such that col { n } = { j, k, type , function } if the n -th column of D W corresponds to values of a 

scaling function φ( 2 j x − bk ) or a wavelet ψ( 2 j x − bk ) ; type = ‘inner’or ‘boundary’ characterizes type of a 

function; function = ‘scaling’ or ‘wavelet’ indicates whether the column corresponds to the values of a 

scaling function or a wavelet 

{Compute scaling and wavelet filters using Algorithm 8 from Appendix A } 

[ h , g,correct_name] = Filters(namef) 

{Test if a wavelet family namef is available} 

if correct_name = 0 then 

D W = [ ] ; ind = [ ] ; col = [ ] ; return 

end if 

K = length (h ) − 1 {support length of φ} 

s = ( K + length ( g) − 1 ) / 2 {support length of ψ } 

r =  log ( N b − 1) / log (2) � {level characterizing N b (c.f. (28)} 

{Remove levels from j that contain no inner function} 

j min = log (s 2 r / ( N b − 1 )) / log (2)) {coarsest possible level} 

j = j( j > = j min ) {removing the levels smaller than j min } 

{Test of parameters} 

d j = length ( j) ; r b =  log (1 /b) / log (2) � parameter r b from b = 1 / 2 r b 

if d j = 0 then 

fprintf(‘no inner functions for these values of levels j, increase j’) 

D W = [ ] ; ind = [ ] ; col = [ ] ; return 

else if r < max ( j) + r b then 

fprintf(‘small number of points N b for these values of j and b’) 

D W = [ ] ; ind = [ ] ; col = [ ] ; return 

end if 

{Compute scaling and wavelet generators using Algorithm 1 } 

[ phi , psi ] = WaveletGen( h , g, r − j(1) ) 

{Compute number of scaling functions at level j(1) } 

ind = zeros ( d j + 1 , 1 ) , a = 1 /b;
ind (1) = Ka − 1 +  ( N b − 1 ) 2 j(1) −r /b � {c.f. (34)} 

{Compute number of wavelets for level l} 

for l = 1 : d j do 

ind ( 1 + l ) = sa − 1 +  ( N b − 1 ) 2 j(l) −r /b � {c.f. (35)} 

end for 

{Compute columns of D W corresponding to scaling functions} 

n f = sum ( ind ) ; D W = zeros ( N b , n f ) ; col = cell ( n f , 1 ) 

l s = length ( phi ) ; n 1 = Ka − 1 {c.f. (32)} 

n 2 =  ( N b − 1 ) 2 j(1) −r /b � − � ( ( N b − 1 ) 2 j(1) −r − K ) /b � − 1 {c.f. (33)} 

{Compute columns corresponding to inner scaling functions (c.f. (38))} 

for i = n 1 + 1 : ind (1) − n 2 do 

D W ( b( i − Ka ) 2 r− j(1) + 1 : b( i − Ka ) 2 r− j(1) + K 2 r− j(1) + 1 , i ) = phi 

col { i } = { j(1) , i − Ka, ′ inner 
′ 
, ′ scaling 

′ } 
end for 

{Compute columns corresponding to boundary scaling functions (c.f. (38))} 

for i = 1 : n 1 do 

D W ( 1 : l s − b ( n 1 − i + 1 ) 2 r− j(1) , i ) = phi ( ( n 1 − i + 1 ) b 2 r− j(1) + 1 : l s ) 

col { i } = { j(1) , −n 1 + i − 1 , ′ boundary 
′ 
, ′ scaling 

′ } 
end for 

( continued on next page ) 
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Algorithm 2 ( continued ) 

for i = 1 : n 2 do 

p = ind (1) − n 2 + i {index of column} 

D W ( b ( p − Ka ) 2 r− j(1) + 1 : N b , p ) = phi ( 1 : N b − b( p − Ka ) 2 r− j(1) ) 

col { p} = { j(1) , −n 1 + p − 1 , ′ boundary ′ , ′ scaling ′ } 
end for 

{Compute columns of D W corresponding to wavelets (c.f. (40))} 

n p = ind (1) {number of functions on previous levels} 

for l = 1 : d j do 

n 1 = sa − 1 

k 1 = � ( ( N b − 1 ) 2 j(l) −r − s ) /b � , k 2 =  ( ( N b − 1 ) 2 j(l) −r) /b ) − 1 � 
n 2 = k 2 − k 1 ; n f = n 1 + n 2 + k 1 + 1 ; l w = length ( psi ) 

for i = n 1 + 1 : n f − n 2 do 

D W ( b( i − sa ) 2 r− j(l) + 1 : b( i − sa ) 2 r− j(l) + s 2 r− j(l) + 1 , i + n p ) = psi 

col { i + n p } = { j(l) , i − sa, ′ inner ′ , ′ wavelet ′ } 
end for 

for i = 1 : n 1 do 

D W ( 1 : l w − b( n 1 − i + 1 ) 2 r− j(l) , i + n p ) = psi ( ( n 1 − i + 1 ) b 2 r− j(l) + 1 : l w ) 

col { i + n p } = { j(l) , −n 1 + i − 1 , ′ boundary ′ , ′ wavelet ′ } 
end for 

for i = 1 : n 2 do 

p = n f − n 2 + i 

D W ( b( p − sa ) 2 r− j(l) + 1 : N b , p + n p ) = psi ( 1 : N b − b( p − sa ) 2 r− j(l) ) 

col { n p + p } = { j(l) , −n 1 + p − 1 , ′ boundary ′ , ′ wavelet ′ } 
end for 

psi = psi ( 1 : 2 : length ( psi ) ) , n p = n p + ind ( l + 1 ) 

end for 

 

 

 

 

For a chosen vector of levels j, we define a vector of indices ind such that ind (1) is the number

of scaling functions at level j(1) , and ind (l) is the number of wavelets at level j( l − 1 ) for l = 1 , . . . , J,

where J is the length of j. We have 

supp φ j ( 1 ) ,k,b = 

[
bk 

2 j ( 1 ) 
, 

bk + K 

2 j ( 1 ) 

]
, supp ψ j,k,b = 

[
bk 

2 j 
, 

bk + 

K+ M 

2 

2 j 

]
. (29) 

Comparing the supports of these functions and the interval 

I = 

[ 
0 , 

N b − 1 

2 r 

] 
(30) 

which contains the points from (28) , we find that the number of inner scaling functions, i.e., scaling

functions with the whole support in I, is 

n i = 

⌊
( N b − 1 ) 2 j ( 1 ) −r − K 

b 

⌋
+ 1 , (31) 

where the symbol � y � denotes the largest integer number smaller than y . The number of left

boundary scaling functions, i.e., functions that have only a part of the support in the interior of I

and their support contains 0, is 

n 1 = Ka − 1 , a = 1 /b, (32) 

and similarly the number of right boundary scaling functions is 

n 2 = 

⌈
( N b − 1 ) 2 j ( 1 ) −r 

b 

⌉
−

⌊
( N b − 1 ) 2 j ( 1 ) −r − K 

b 

⌋
− 1 . (33) 

Hence, we have 

ind ( 1 ) = n 1 + n i + n 2 = Ka − 1 −
⌈

( N b − 1 ) 2 j ( 1 ) −r 

b 

⌉
. (34) 
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Algorithm 3 Procedure [ D W , ind , col ] = GenDict(name,pars) 

Input: 

name name of a wavelet family, for available choices see Appendix A 

pars parameters in the form pars = { N b , j, b } 
Description of the parameters: 

N b number of points 

j vector of levels 

b translation factor b = 2 −r b for some integer r b 
Output: 

D W wavelet dictionary 

ind ind (1) is the number of scaling functions at level j(1) , and ind (k ) 

for k > 1 is the number of wavelets at level j( k − 1 ) 

col cell array such that col { n } = { j, k, type , function } , if the n -th 

column of D W corresponds to values of scaling function 

φ( 2 j x − bk ) or wavelet ψ( 2 j x − bk ) ; type = ‘inner’ or ‘boundary’ 

characterizes type of a function; function = ‘scaling’ or ‘wavelet’ 

indicates whether the column corresponds to the values of a 

scaling function or a wavelet 

{Define cell array of names of all available families} 

families = {‘CW2’,‘CW3’,‘CW4’,‘CDF97’,‘CDF97d’,‘CDF53’, 

‘Short4’,‘Short3’,‘Short2’,‘Db3’,‘Db4’,‘Db5’, ‘Sym3’,‘Sym4’,‘Sym5’,‘Coif26’,‘Coif38’} 

{Validate input parameters} 

if nargin 	 = 2 then 

error(‘Need 2 input arguments’) 

end if 

if ~ischar(namef) then 

error(‘Name must be a string’) 

end if 

N b = pars { 1 }; j = pars { 2 }; b = pars { 3 }; j = sort ( j) 

if b ≤ 0 then 

error(‘I expect b > 0 ’) 

end if 

r = log (1 /b) / log (2) 

if | r − round (r) | > 10 −10 then 

fprintf(‘Choose b such that 1 /b = 2 r for some integer r’) 

D W = [ ] ; ind = [ ] ; col = [ ] ; return 

else if ismember( { namef } ,families) then 

{Generate dictionary using Algorithm 2} 

[ D W , ind , col ] = WaveletDict(namef, N b , j, b) 

{Normalize columns of D W using Algorithm 9 from Appendix A } 

D W = NormDict( D W ,1) 

else 

error(‘Unknown name of a wavelet family’) 

end if 

 

 

n

 

f

 

Similarly, the number of wavelet functions on the level j(l) is 

ind ( 1 + l ) = sa − 1 + 

⌈
( N b − 1 ) 2 j ( l ) −r 

b 

⌉
. (35)

The first ind (1) columns of D 

W contain values of scaling functions (26) , which restricted to I are

ot identically zero, at points given in (28) , i.e., 

D 

W ( k, l ) = φ

(
2 j ( 1 ) 

k − 1 

2 r 
− b ( l − Ka ) 

)
(36)

or k = 1 , . . . , N b , l = 1 , . . . , ind (1) . The above equation can be recast: 

D 

W ( k, l ) = φ

(
( k − 1 ) − b ( l − Ka ) 2 r− j ( 1 ) 

2 r− j ( 1 ) 

)
= phi 

(
k − b ( l − Ka ) 2 r− j ( 1 ) 

)
, (37)
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Fig. 2. Vectors of values ϕ j, 0 ,b ( l/ 2 r ) for j = 2 and r = 4 (left) and for j = 3 and r = 5 (right). 

 

 

 

 

 

 

 

 

 

 

 

 

where phi is defined by (11) for the level u = r − j(1) . Using the substitution m = k − b( l − Ka ) 2 r− j(1) ,

we obtain 

D 

W 

(
m + b ( l − Ka ) 2 r− j ( 1 ) , l 

)
= phi ( m ) , m = 1 , . . . , K 2 r− j ( 1 ) + 1 , (38) 

under the assumption that 1 ≤ m + b( l − Ka ) 2 r− j(1) ≤ N b . 

The other columns of D 

W contain values of wavelet functions (27) for levels j = j (1) , . . . , j (J) at

points (28) , i.e., 

D 

W 

(
k, n p + l 

)
= ψ 

(
2 j 

k − 1 

2 r 
− b ( l − sa ) 

)
, s = 

M + K 

2 
, (39) 

for k = 1 , . . . , N b , l = 1 , . . . , ind ( j + 1 ) , and n p = 

j ∑ 

p= j(1) 

ind ( p + 1 − j(1) ) . Similarly as above we obtain

D 

W 

(
m + b ( l − sa ) 2 r− j ( l ) , l + n p 

)
= psi ( m ) , (40) 

where 1 ≤ m + b( l − sa ) 2 r− j(1) ≤ N b and psi is defined by (20) for the level u = r − j(1) . 

The following procedure WaveletDict computes a wavelet dictionary. 

The main procedure GenDict validates input parameters, generates dictionaries D 

W and normalizes 

their columns. 

Remark 2. It is worth remarking that the range of scales, say j = ( j 0 , . . . , J ) depends on length of

the signal partition. For a signal segment of length N b = 2 r + 1 a dictionary contains values of scaling

functions and wavelets at points l/ 2 r for some integer r. For a signal segment of length 2 N b − 1 =
2 r+1 + 1 a dictionary contains values of functions at points l/ 2 r+1 . Thus, we have 

φ j,k,b 

(
l 

2 r 

)
= φ

(
2 j 

l 

2 r 
− kb 

)
= φ

(
2 j+1 l 

2 r+1 
− kb 

)
= φ j+1 ,k,b 

(
l 

2 r+1 

)
(41) 

and 

ψ j,k,b 

(
l 

2 r 

)
= ψ 

(
2 j 

l 

2 r 
− kb 

)
= ψ 

(
2 j+1 l 

2 r+1 
− kb 

)
= ψ j+1 ,k,b 

(
l 

2 r+1 

)
. (42) 

Therefore, nonzero elements of vectors on the level j in a dictionary for R 

N b correspond to nonzero

elements of vectors on the level j + 1 in a dictionary for R 

2 N b −1 . This situation is illustrated in Fig. 2 ,

where vectors of values φ j, 0 ,b ( l/ 2 
r ) are displayed for j = 2 and r = 4 and for j = 3 and r = 5 . Note

that the nonzero elements in these vectors are the same. Therefore, if for the signal segment of length

N b the vector j = ( j 0 , . . . , J ) is used, then we recommend to use the vector j = ( j 0 , . . . , J + 1 ) for the

signal segment of length 2 N b − 1 , and similarly to use levels j = ( j 0 , . . . , J + m ) for the signal segment

of length 2 m N b − 1 . 
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Fig. 3. Plots of 12 vectors from the dictionary D 

W from Example 1 corresponding to scaling functions on the level 2. 
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w  
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d  
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w  

f

 

w  

c

xample 1. To build dictionaries for the wavelet family ‘Short3’ at levels 2 and 3, for translation

arameter b = 1 / 4 , and the number of points N b = 33 , use the procedure TestDict below. 

Algorithm 4 Procedure TestDict 

namef = ‘Short3’; N b = 33 ; j = 2 : 3 ; b = 1 / 4 

[ D W , ind , col ] = GenDict(namef, { N b , j, b } ) 

The output is the matrix D 

W of size 33 × 97 and the vector ind = [ 27 , 27 , 43 ] . This means that

here are 27 scaling functions at level 2, 27 wavelets at level 2, and 43 wavelets at level 3. The cell

rray col characterizes functions corresponding to columns of D 

W . For example 

col { 30 } = 

{
2 , −9 , ′ boundary ′ , ′ wavelet ′ 

}
(43)

hich means that 30th column of the matrix D 

W contains values of a wavelet function

( 2 2 x − b( −9 ) ) . This wavelet is a boundary wavelet, i.e., only a part of its support lies in the interval I

efined by (30) . Some of the vectors from this dictionary corresponding to values of scaling functions

re displayed in Fig. 3 and some ofthe vectors corresponding to values of wavelets are displayed in

ig. 4 . 

onstruction of dictionaries for ECG modeling 

As mentioned above, because ECG signals are usually superimposed to a baseline or smooth

ackground, the full dictionary D we use for ECG modeling is built as follows 

D = 

[
D 

C D 

W 

]
, (44)

here D 

W is the output of Algorithm 5 and D 

C is a matrix containing a few low frequency components

rom a discrete cosine basis. Before normalization D 

C is given as 

D 

C ( k, n ) = cos (π( 2 k − 1 ) ( n − 1 ) / ( 2 N b ) ) , k = 1 , . . . , N b , n = 1 , . . . , M c , (45)

here M c is a small number in comparison to N b . For the numerical examples of the next section we

onsider M c = 10 . Algorithm 5 computes D 

C . 
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Fig. 4. Plots of 12 vectors from the dictionary D 

W from Example 1 corresponding to wavelets on the level 2. 

Algorithm 5 Procedure D C = DCos( N b , M c ) 

Input: 

N b the size of the Euclidean space the vectors should belong to 

M c number of frequencies to use starting from 0 

Output: 

D C matrix whos columns are discrete cosine vectors 

n = 1 : M c ; k = 1 : N b 
D C = cos (π(2 k − 1) T ( n − 1 ) / ( 2 N b )) 

D C = NormDict( D C ,1) 

 

 

 

 

 

 

 

 

Construction of the model 

In this section we present the procedures for constructing the ECG signal model (c.f. Algorithm 6 )

and for calculating the assessment metrics. The quality of the signal approximation is assessed with

respect to the PRD defined as follows 

PRD = 

‖ f − f r ‖ 
‖ f ‖ × 100% , (46) 

where f is the original signal and f r is the signal reconstructed by concatenation of the approximated

segments f a { q } , q = 1 , . . . , Q . 

The local PRD with respect to every segment in the signal partition is indicated as prd (q ) , q =
1 , . . . , Q and calculated as 

prd ( q ) = 

‖ f { q } − f a { q } ‖ 
‖ f { q } ‖ × 100% , q = 1 , . . . , Q . (47) 

For the signal approximation the OOMP method is stopped through a fixed value tol so as to

achieve the same value of prd for all the segments in the records. Assuming that the target prd before

quantization is pr d 0 we set tol = pr d 0 ‖ f q ‖ / 100 . 

The goal of the signal model is to approximate each segment in the signal partition using as few

atoms as possible. Thus, for a fixed value of PRD , the sparsity of the signal representation is assessed

by the sparsity ratio (SR) 

SR = 

N 

K 

, (48) 
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Algorithm 6 Procedure [ f r , �, c, prd , sr , PRD , SR ] = SignalModel( f , N b , pr d 0 , namef , pars , M c ) 

Input: 

f signal 

N b number of points in each segment of the partition 

pr d 0 parameter to control the approximation error 

namef name of a wavelet family 

pars parameters as described in Algorithm 3 

M c number M c of components in the cosine subdictionary 

Output: 

f r approximated signal 

� cell with the indices of the atoms in the atomic decomposition of each element in the partition 

c cell with the coefficients in the atomic decomposition of each element in the partition 

prd vector prd ∈ R Q (cf. (47)) 

sr vector sr ∈ R Q (cf. (49)) 

PRD global PRD 

SR global SR 

{Create the signal partition using Algorithm 10} 

[ f c , Q, f ] = Partition( f , N b ) 

{Construct the wavelet dictionary D W using Algorithm 3 given in Appendix B } 

[ D W , ind] = GenDict( namef , pars ) 

{Construct the component D C using Algorithm 5 given in Appendix B } 

[ D C ] = DCos( N b , M c ) 

{Merge D C and D W to create dictionary D } 

D = [ D C D W ] 

Set f r = [ ] , K = 0 and N = length ( f ) . 

for q = 1:Q do 

tol = pr d 0 ‖ f c { q }‖ / 100 

{Call the OOMP function to construct the model (c.f. (1))} 

[ f a { q } , � { q } , c{ q } ] = OOMP( f c { q } , D , tol , 1 ) 

{Calculate local sr and prd (c.f. (49) and (47))} 

prd (q ) = 

‖ f c { q }− f a { q }‖ 
‖ f c { q }‖ × 100 

k (q ) = length ( c{ q } )) 
sr (q ) = N b /k (q ) 

K = K + k (q ) 

f r = [ f r f a { q } ] 
end for 

{Calculate global SR and PRD (c.f. (48) and (46))} 

SR = N/K

PRD = 

‖ f − f r ‖ 
‖ f‖ × 100 

w  

a  

e

 

 

p

 

N

 

M  

a  

b  

d  
here N is the total length of the signal and K = 

∑ Q 
q =1 

k (q ) , with k (q ) the number of atoms in the

tomic decomposition (1) of each segment of length N b . The corresponding quantity evaluated for

very cell in the partition is the local sparsity ratio 

sr ( q ) = 

N b 

k ( q ) 
, q = 1 , . . . , Q . (49)

This local quantity is relevant to the detection of non-stationary noise, significant distortion in ECG

atterns, or changes of morphology in the heart beats. 

Given an ECG signal f the procedure described in Algorithm 6 constructs the signal approximation,

f r , using the dictionaries introduced in the previous section. 

umerical examples 

We illustrate now the use of the software to approximate records 117, 202, and 231 in the

IT-BIH Arrhythmia database. Each record consists of 650,0 0 0 samples and is partitioned for the

pproximation in segments of N b = 500 points each. Let us remark that, while the size N b should

e adapted to the convenience of the application at hand, for the only purpose of reducing

imensionality, this size is not crucial. Table 1 gives the values of the SR (c.f. (48)) achieved
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Table 1 

SRs achieved using dictionaries with D 

W component as indicated in the first column of the table. 

SR B are values of SR obtained if D 

W is a basis and SR D if D 

W is a dictionary. 

Rec. 117 202 231 

D W SR B SR D SR B SR D SR B SR D 

CW2 17.5 26.5 17.3 24.5 15.7 23.0 

CW3 17.4 28.1 15.9 24.9 15.6 24.0 

CW4 15.7 24.8 14.3 22.5 18.4 21.9 

CDF97 21.5 30.3 21.4 28.4 19.5 27.5 

CDF97d 17.2 23.5 17.3 22.5 15.8 21.9 

CDF53 22.4 29.6 23.6 27.0 20.2 27.0 

Db3 18.5 23.7 18.1 22.7 16.6 22.7 

Db4 19.0 25.7 19.1 24.7 17.7 24.1 

Db5 20.4 26.1 18.7 24.2 17.8 24.1 

Sym3 18.4 23.8 18.1 22.7 16.6 22.7 

Sym4 19.7 27.5 19.5 25.8 17.7 25.1 

Sym5 20.5 28.3 20.6 28.5 18.4 25.4 

Short2 8.2 27.9 8.7 26.3 8.1 24.7 

Short3 19.6 31.8 18.3 27.6 17.8 27.3 

Short4 9.5 29.1 10.1 27.6 9.1 26.6 

Coif26 17.7 23.0 17.7 21.8 16.3 24.7 

Coif38 19.5 28.5 19.7 26.5 17.8 26.1 

Algorithm 7 

Procedure Run_ECG_Approx 

{Read the signal f } 

file = ‘Record_231_11bits.dat’ 

fid = fopen(file,‘r’) 

f = fread(fid,‘ubit11’) 

fclose(fid) 

{Set the required PRD for the approximation} 

pr d 0 = 0 . 53 

{Set the length for each segment in the signal partition} 

N b = 500 

{Set the parameters for the wavelet dictionary} 

namef = ‘CDF97’; b = 0 . 25 ; j = 3 : 7 ; pars = { N b , j, b } 
{Set the number of cosine components} 

M c = 10 

{Construct the signal module} 

[ f r , �, c, prd , sr , PRD , SR ] = SignalModel( f , N b , pr d 0 , namef , pars , M c ) 

{Plote the first 20 0 0 sample points in the signal, the approximation and the error} 

 

 

 

 

 

 

 

 

 

 

 

using wavelet bases, denoted as S R B , and wavelet dictionaries denoted as S R D . The wavelet families

are indicated in the first column of Table 1 . The wavelet dictionary is constructed with scales

j = ( 3 , . . . , 7 ) and translation parameter b = 1 / 4 , whilst the wavelet basis entails to add one more

scale and a translation parameter b = 1 . In all the cases the approximation is realized to obtain

PRD = 0 . 51% . 

Table 1 is produced by running the script ‘Run_ECG_Appox’ and changing the variable ‘namef’ to

the corresponding family option. 

As observed in the Table 1 , the gain in dimensionality reduction (larger value of SR) is significant

when consider a wavelet dictionary, instead of a wavelet basis, as for constructing the component

D 

W of the full dictionary. This results were demonstrated in [17] on the whole MIT-BIH Arrhythmia

database, which motivated this Communication to provide the details and algorithm for the actual 

construction of wavelet dictionaries from different options for the wavelet prototypes. 

The top left graph in Fig. 5 illustrates the first 20 0 0 points in the record 231 and the approximation

for PRD = 0 . 51% . The top right graph represents the values of local sparsity 1 / sr (q ) , q = 1 , . . . , 1300

for the same record. It is noticed that these values can be classified into two well defined bands. The
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Fig. 5. The waveforms in the top left graph are the raw data and the approximations corresponding to 20 0 0 points in the 

records 231 (the bottom line in the same graph is the point-wise error). The top right graph plots the values 1 / sr for record 

231. The bottom left graph is a typical heart beat in a segment for which the values of 1 / sr( q ) belongs to the upper band. In 

the bottom right graph the heart beat corresponds to a frame in the lower band. 
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ottom left graph in Fig. 5 shows a typical heart beat in a frame corresponding to a value 1 / sr in

he upper band, and the bottom right graph to a value in the lower band. The morphologic difference

etween the two heart beats is noticeable at a glance. However, the 1 / sr values provide only a ‘crude’

eature about changes in an ECG record. In order to perform further analysis for classification using

he features produced by the model machine learning techniques would be required [16] . 

onclusions 

Details on the construction of wavelets dictionaries for modeling ECG signals have been provided.

he use of the software, which has been made publicly available on a dedicated website [9] , was

llustrated to reduce the dimensionality of three records from the MIT-BIH Arrhythmia database. The

onclusions coincide with those that were drawn in the previous publication [17] using the whole

atabase. However, regardless of the particular application, the purpose of this paper was to provide a

omplete description of the construction of the wavelet dictionaries, which had not been addressed in

17] . We believe the proposed dictionaries should be of assistance to general applications which relay

n dimensionality reduction at low level distortion as a first step of further ECG signal processing. 
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Appendix A 

In this appendix, we present auxiliary procedures used in algorithms. In the algorithms, ‘namef’ 

denotes a name of a wavelet family, available choices are: 

namef = ‘CW2’ Chui-Wang linear spline wavelets [6] 

‘CW3’ Chui-Wang quadratic spline wavelets [6] 

‘CW4’ Chui-Wang cubic spline wavelets [6] 

‘CDF97’ primal CDF97 wavelets [3] 

‘CDF97d’ dual CDF97 wavelets [3] 

‘CDF53’ primal CDF53 wavelets [3] 

‘Short4’ cubic spline wavelet with short support and 4 vanishing moments [5] , [12] 

‘Short3’ quadratic spline wavelet with short support and 3 vanishing moments [5] , [12] 

‘Short2’ linear spline wavelet with short support and 2 vanishing moments [5] , [12] 

‘Db3’ Daubechies wavelet with 3 vanishing moments [10] 

‘Db4’ Daubechies wavelet with 4 vanishing moments [10] 

‘Db5’ Daubechies wavelet with 5 vanishing moments [10] 

‘Sym3’ symlet with 3 vanishing moments [11] 

‘Sym4’ symlet with 4 vanishing moments [11] 

‘Sym5’ symlet with 5 vanishing moments [11] 

‘Coif26’ coiflet with 2 vanishing moments and the support length 6 that is most regular [11] 

‘Coif38’ coiflet with 3 vanishing moments and the support length 8 that is most symmetrical [11] 

A wavelet basis is determined by its scaling and wavelet filters. Algorithm 8 assigns these filters for

a chosen wavelet family, the values of filters are computed by methods from [3] , [5] , [6] , [7] , [10] –[12] . 

Now, we introduce a simple procedure NormDict for normalization of dictionaries. More precisely, 

this procedure normalizes the columns of dictionary D to have the Euclidean norm equaled to 1 / 
√ 

δ. 
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Algorithm 8 Procedure [ h , g,correct_name] = Filters(namef) 

Input: 

namef name of a wavelet family 

Output: 

h scaling filter for a wavelet family specified by ‘namef’ 

g wavelet filter for a wavelet family specified by ‘namef’ 

correct_name returns 1 if ‘namef’ is a name of an available wavelet family, otherwise returns 0 

correct_name = 1 

switch (namef) 

case ‘CW2’: 

h = [ 1 / 2 , 1 , 1 / 2] ; g = [1 , −6 , 10 , −6 , 1 ] / 12 

case ‘CW3’: 

h = [ 1 / 4 , 3 / 4 , 3 / 4 , 1 / 4] ; g = [1 , −29 , 147 , −303 , 303 , −147 , 29 , −1 ] / 480 

case ‘CW4’: 

h = [ 1 / 8 , 1 / 2 , 3 / 4 , 1 / 2 , 1 / 8 ] 

g = [ 1 , −124 , 1677 , −7904 , 18482 , −24264 , 18482 , −7904 , 1677 , −124 , 1 ] / 2520 

case ‘CDF97’: 

h = [ −0 . 045635881557 , −0 . 028771763114 , 0 . 295635881557 , 0 . 557543526229 , 0 . 295635881557 , −0 . 028771763114 , −0 . 045635881557] 

g = [0 . 026748757411 , 0 . 016864118443 , −0 . 078223266529 , −0 . 266864118443 , 0 . 602949018236 , −0 . 266864118443 , −0 . 078223266529 , 0 . 016864118443 , 

0 . 026748757411] 

case ‘CDF97d’: 

h = [0 . 026748757411 , −0 . 016864118443 , −0 . 078223266529 , 0 . 266864118443 , 0 . 602949018236 , 0 . 266864118443 , −0 . 078223266529 , −0 . 016864118443 , 

0 . 0267487574110 0 0] 

g = [0 . 045635881557 , −0 . 028771763114 , −0 . 295635881557 , 0 . 557543526229 , −0 . 295635881557 , −0 . 028771763114 , 0 . 045635881557] 

case ‘CDF53’: 

h = [ 1 / 2 , 1 , 1 / 2] ; g = [ −1 / 8 , −1 / 4 , 3 / 4 , −1 / 4 , −1 / 8 ] 

case ‘Short4’: 

h = [ 1 / 8 , 1 / 2 , 3 / 4 , 1 / 2 , 1 / 8] ; g = [1 / 8 , −1 / 2 , 3 / 4 , −1 / 2 , 1 / 8 ] 

case ‘Short3’: 

h = [ 1 / 4 , 3 / 4 , 3 / 4 , 1 / 4] ; g = [ −1 / 4 , 3 / 4 , −3 / 4 , 1 / 4 ] 

case ‘Short2’: 

h = [ 1 / 2 , 1 , 1 / 2] ; g = [ −1 / 2 , 1 , −1 / 2 ] 

case ‘Db3’: 

h = [0 . 035226291882101 , −0 . 085441273882241 , −0 . 135011020010391 , 0 . 459877502119331 , 0 . 806891509313339 , 0 . 332670552950957] 

g = [ −0 . 332670552950957 , 0 . 806891509313339 , −0 . 459877502119331 , −0 . 135011020010391 , 0 . 085441273882241 , 0 . 035226291882101] 

( continued on next page ) 
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Algorithm 8 ( continued ) 

case ‘Db4’: 

h = [0 . 162901714025620 , 0 . 505472857545650 , 0 . 44610 0 069123190 , −0 . 019787513117910 , −0 . 132253583684370 , 0 . 021808150237390 , 

0 . 02325180 0535560 , −0 . 0 074 934 94665130] 

g = −fliplr ([0 . 162901714025620 , −0 . 505472857545650 , 0 . 44610 0 069123190 , 0 . 019787513117910 , −0 . 132253583684370 , −0 . 021808150237390 , 

0 . 02325180 0535560 , 0 . 0 074 934 94665130]) 

case ‘Db5’: 

h = [0 . 003335725285002 , −0 . 012580751999016 , −0 . 006241490213012 , 0 . 0775714 93840065 , −0 . 032244 869585030 , −0 . 242294 887066190 , 

0 . 138428145901103 , 0 . 724308528438574 , 0 . 603829269797473 , 0 . 160102397974125] 

g = [ −0 . 160102397974125 , 0 . 603829269797473 , −0 . 724308528438574 , 0 . 138428145901103 , 0 . 242294887066190 , −0 . 032244869585030 , 

−0 . 077571493840 065 , −0 . 0 06241490213012 , 0 . 012580751999016 , 0 . 003335725285002] 

case ‘Sym3’: 

h = [0 . 035226291882101 , −0 . 085441273882241 , −0 . 135011020010391 , 0 . 459877502119331 , 0 . 806891509313339 , 0 . 332670552950957] 

g = [ −0 . 332670552950957 , 0 . 806891509313339 , −0 . 459877502119331 , −0 . 135011020010391 , 0 . 085441273882241 , 0 . 035226291882101] 

case ‘Sym4’: 

h = [0 . 0227851729480 0 0 , −0 . 0 08912350720850 , −0 . 070158812089500 , 0 . 2106172671020 0 0 , 0 . 5683291217050 0 0 , 0 . 3518695343280 0 0 , 

−0 . 020955482562550 , −0 . 0535744507090 0 0] 

g = fliplr ([0 . 0227851729480 0 0 , 0 . 0 08912350720850 , −0 . 070158812089500 , −0 . 2106172671020 0 0 , 0 . 5683291217050 0 0 , −0 . 3518695343280 0 0 , 

−0 . 020955482562550 , 0 . 0535744507090 0 0]) 

case ‘Sym5’: 

h = [0 . 02733306 8345078 , 0 . 0295194 90925775 , −0 . 03913424 9302383 , 0 . 199397533977394 , 0 . 723407690402421 , 0 . 633978963458212 , 

0 . 016602105764522 , −0 . 175328089908450 , −0 . 021101834024759 , 0 . 019538882735287] 

g = [ −0 . 019538882735287 , −0 . 021101834024759 , 0 . 175328089908450 , 0 . 016602105764522 , −0 . 633978963458212 , 0 . 723407690402421 , 

−0 . 199397533977394 , −0 . 039134249302383 , −0 . 029519490925775 , 0 . 027333068345078] 

case ‘Coif26’: 

h = [ 9 −
√ 

( 15 ) , 13 + 

√ 

( 15) , 6 + 2 
√ 

( 15) , 6 − 2 
√ 

( 15) , 1 −
√ 

( 15) , −3 + 

√ 

( 15)] / 32 

g = −fliplr ( [ 9 −
√ 

( 15 ) , −13 −
√ 

( 15 ) , 6 + 2 
√ 

( 15) , −6 + 2 
√ 

( 15) , 1 −
√ 

( 15) , 3 −
√ 

( 15)] / 32) 

case ‘Coif38’: 

h = [ −1 / 32 −
√ 

( 7 ) / 128 , −3 / 128 , 9 / 32 + 3 
√ 

( 7) / 128 , 73 / 128 , 9 / 32 − 3 
√ 

( 7) / 128 , −9 / 128 , 

−1 / 32 + 

√ 

( 7) / 128 , 3 / 128] g = −fliplr ( [ −1 / 32 −
√ 

( 7 ) / 1 28 , 3 / 1 28 , 9 / 32 + 3 
√ 

( 7 ) / 1 28 , 

−73 / 128 , 9 / 32 − 3 
√ 

( 7) / 128 , 9 / 128 , −1 / 32 + 

√ 

( 7) / 128 , −3 / 128]) 

otherwise 

disp(‘wrong name of a wavelet family’) 

correct_name = 0 

end switch 
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Algorithm 9 Procedure D = NormDict( D , δ) 

Input: 

D wavelet dictionary 

δ parameter such that prescribed norm size is 1 / 
√ 

δ

Output: 

D normalized wavelet dictionary such that the Euclidean norm of each column is 1 / 
√ 

δ

tol = 10 −5 

if nargin = 1 then 

δ = 1 

end if 

N= size( D ,2); i = 0 

while i < N do 

i = i + 1 ; nor = 

√ 

δ ‖ D ( : , i ) ‖ 
if nor > tol then 

D ( : , i ) = D ( : , i ) / nor 

else 

D ( : , i ) = [ ] ; N = N − 1 

end if 

end while 

A

 

T  

l

ppendix B 

In this appendix, we present auxiliary procedures used in algorithms for the model construction.

he next procedure Partition creates a partition of the signal f into Q segments of the prescribed

ength N b . 

The procedure for signal approximation using OOMP method is presented below. 
Algorithm 10 Procedure [ f c , Q, f ] = Partition( f , N b ) 

Input: 

f signal 

N b length of each segment in the partition 

Output: 

f c cells f c { q } , q = 1 , . . . , Q with the signal partition 

Q number of cells in the partition 

f resized signal to be of length Q N b 

N = length ( f ) ; Q = | N 
N b 

|; t o = 1 

f ← f ( 1 : Q N b ) 

for q = 1 : Q do 

t = t o : t o + N b − 1 ; t 0 = t 0 + N b 
f c { q } = f (t) 

end for 

Algorithm 11 Procedure [ f a , �, c] = OOMP( f , D , tol , l 1 ) 

Input: 

f signal to be approximated by an atomic decomposition 

D wavelet dictionary 

tol parameter to control the approximation error 

l 1 index of the atom for initializing the OOMP algorithm 

Output: 

f a approximation of the signal f (c.f. (1)) 

� vector whose components are the indices of the selected columns from the input dictionary 

c coefficients c ∈ R N b of the atomic decomposition (c.f. (1)) 

{The method implemented in this function is fully described in the main paper [17] .} 
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