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Thesis Summary 
 

 

The S100 family of proteins are calcium-binding proteins expressed in a wide variety of tissues that 
participate in both intracellular and extracellular activities. One family member, S100P, has gained 
attention primarily in the context of promotion of carcinogenesis. Containing no enzymatic activity of 
its own, it interacts with multiple target proteins to regulate motility and invasion of cancer cells. Little 
is known about the role of S100P in trophoblast cells of the placenta, but our initial work has shown 
that it plays a crucial role in regulating both cellular motility and invasion. In this work, we sought to 
first establish the cellular localisation of S100P using different fractionation analysis. We first 
demonstrated the strictly cytoplasmic and membrane-associated localisation of S100P in different 
trophoblast cells including JEG-3, BeWo and HTR8, as well as cancer cells, regardless of the levels of 
S100P or any other changes such as excess calcium, addition of a non-ionic detergent, or the use of 
nuclear export inhibitors (Leptomycin B). Interestingly, tagging S100P with the fluorescent marker YFP 
led to a relocalisation of S100P from the cytoplasm/membrane fractions to nuclear fractions, 
suggesting the fusion protein had differential properties and cellular localisation. Further cellular 
compartmentalisation allowed us to determine that some of the S100P pools were also found in the 
plasma membrane fraction in both trophoblasts and in cancer cells. S100P was detectable at the 
extracellular surface using plasma membrane purification and biotinylation experiments. Analysis of 
the S100P structure suggests the presence of possible membrane-interacting residues. The C-terminal 
polybasic domain, in combination with potentially lipid-modified residues, may promote the 
association of S100P with negatively-charged membrane structures. Blockade of extracellular S100P 
through use of an S100P antibody or with cromolyn, a molecule shown to interact with helix 4 of S100P, 
results in decreases in both migration and invasion of choriocarcinoma cell line JEG-3, EVT-like 
HTR8/SVneo cells and EVT cells isolated from first trimester placenta, but did not lead to any changes 
in the formation of focal adhesions. This is in contrast to changes in total cellular levels of S100P in 
JEG-3 and HTR8 cells where a decrease in paxillin-containing focal adhesions can be seen. These studies 
therefore show that different pools of S100P, either intracellular or membrane-associated, promote 
trophoblast motility and invasion through two independent pathways. Further analysis in order to fully 
characterise the S100P interactome demonstrated the presence of S100P in high molecular weight 
complexes in trophoblast cells, and mass spectrometry analysis presented a number of proteins with 
increased abundance in S100P-expressing cells, although characterisation of specific S100P interactors 
remains to be fully explored.  
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1.1. S100 Proteins 

1.1.1. S100 protein family 

The S100 family consists of at least 25 different members with a high degree of structural similarity 

and tissue specific expression and distribution (Figure 1.1.1). They are characterised by EF-hand 

domains at both the N-terminal and C-terminal regions, separated by a hinge region, which are highly 

conserved among members of this family. The EF-hands present within S100 proteins, otherwise 

known as helix-loop-helix domains, have the role of binding calcium, an intracellular second messenger 

that is required to regulate a number of different cellular processes, including cellular proliferation, 

motility and protein phosphorylation (Donato, 2001). Members of the S100 family are not known to 

contain any intrinsic enzymatic activity, and instead modulate the activities of their binding partners 

(Yammani 2012).  

The presence of the S100 protein family was first discovered in brain tissue by J.W Moore, with this 

member of the S100 family later being named S100B (Moore 1965). All members of the S100 family 

are small 10-12kDa proteins that have a role in the regulation of both intracellular and extracellular 

processes in a variety of tissues and cell types. For example, S100A1 is present in high concentrations 

within cardiac muscle, and has been shown to regulate titin-actin interactions (Duarte-Costa et al. 

2014). Purified S100A1 has been shown to prevent the assembly of brain microtubule proteins, 

subsequently affecting cellular migration (Donato, 1988). S100B is localised to glial cells in the brain, 

and has been documented to be involved in several processes, including but not limited to apoptosis, 

differentiation and cell migration (Donato et al. 2009).  

Each EF-hand present within the S100 proteins have differing affinities for calcium ions. The C-terminal 

canonical EF-hand, spanning around 12 amino acids, demonstrates a high calcium binding affinity 

ranging between 10 and 50µM, compared to the N-terminal pseudo EF-hand, spanning 14 amino acids, 

which has a much weaker calcium binding affinity of between 200 and 500µM for each of the different 

S100 proteins (Donato, Rosario 1986). These EF-hand regions display a high level of conservation 

between different members of the S100 family, signifying their importance in S100 protein 

functionality. Binding of calcium ions to the loop regions of S100 proteins results in structural changes, 

generally within helices 3 and 4 (Gross et al. 2014). Calcium-induced conformational changes 

consequently lead to exposure of a number of hydrophobic residues present within the C-terminal 

helices of this family, which in turn allows for S100 protein target binding (Becker et al. 1992). In many 

cases, target protein binding leads to the activation of said target protein. Since each S100 monomer 

has a hydrophobic cleft, which allows the binding of two target proteins that can either be identical or 
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heterogeneous (Donato, 2001). Only minor changes occur in the N-terminal EF hand structure upon 

binding of calcium ions (Capozzi et al. 2006).  

The multifunctionality and diversity of S100 proteins can perhaps be attributed to several features. 

This includes their ability to be localised to a variety of cellular compartments, in addition to their 

ability to bind a range of metal ions, primarily Ca2+, but also including Zn2+, Mg2+ and Cu2+ (Gilston et al. 

2016). A combination of these features leads to S100 proteins being able to interact with a wide variety 

of target proteins (Heizmann, Claus W. 2002). Most family members can bind 4 calcium ions per dimer 

formed, even though each member may have varying affinities for calcium ions (Zimmer et al. 2003). 

For example, S100B has a moderate affinity for calcium ions (KD = 2-20µM), and a high affinity for zinc 

ions (KD = 0.1-1µM) (Leclerc et al. 2009). Interestingly, one member of the S100 protein family, 

S100A10, contains mutations in its EF-hand regions, rendering it unable to bind calcium ions (Réty et 

al. 1999). Gribenko and Makhatadze (1998) demonstrate that binding of magnesium ions to the N-

terminal EF hand of S100P causes the calcium-binding affinity of the C-terminal EF hand to increase. 

Zinc ions in particular have been shown to influence oligomerisation state of S100 proteins in vitro 

(Moroz et al. 2009). The extracellular space contains a significantly higher concentration of calcium 

ions than the intracellular environment, suggesting the promotion of certain calcium-binding S100 

proteins into higher order oligomeric states (Heizmann, Claus W. 2002). The effects of oligomeric S100 

proteins and their capacity for target protein interaction has yet to be fully explored.  

S100 protein family members also exhibit differences in their dimerisation capabilities. Some family 

members can form both hetero- and homodimers, whereas others can only form one or the other. For 

example, S100A8 and A9 heterodimers have been shown to be released from monocytes and 

neutrophils in order to modulate the inflammatory response (Pruenster et al. 2016). Spratt et al. (2019) 

showed that S100A1 and S100B heterodimers are preferentially formed over their respective 

homodimers. One member of the S100 family, calbindin-D9k (S100G), cannot form dimers, most likely 

due to the amphiphilicity of helix 4 in comparison to other S100 proteins (Potts et al. 1996). 

Given the wide variety of roles S100 proteins play in both intracellular and extracellular processes, it is 

unsurprising that they can be found in a multitude of cell types and subcellular localisations.  
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Figure 1.1.1: Comparison of S100 family protein sequences 

Multiple alignment of S100 protein sequences using CLUSTALW software. Protein accession numbers used for alignment are as follows: S100A1, P23297; S100A2, 

P29034; S100A3, P33764; S100A4, P26447; S100A5, P33763; S100A6, P60703; S100A7, P31151; S100A8, P05109; S100A9, P06702; S100A10, P60903; S100A11, P31949; 

S100A12, P80511; S100A13, Q99584; S100A14, Q9HCY8; S100A15, Q86SG5; S100A16, Q96FQ6; S100B, P04271; S100G, P29377; S100P, P25815; S100Z, Q8WXG8. 

Alignment output from CLUSTALW was shaded using BOXSHADE, in which conserved residues in each member of the S100 family are highlighted in black, and similar 

residues are highlighted in grey. Adapted from Gross et al. (2014) 
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1.1.1.1 Extracellular S100 proteins 

Extracellular actions of several S100 proteins have been reported by multiple groups. Their reported 

effects are wide, ranging from stimulating secretion of nitric oxide (NO) by neurons and astrocytes to 

propagation of inflammation (Donato, Rosario 2003). Below, the various modes of extracellular S100 

protein activity, either by secretion or through binding to cell surface receptors, is discussed. 

 

1.1.1.1.1 S100 protein secretion 

Secretion of several S100 proteins have been investigated. S100 proteins lack a signal peptide for their 

secretion, suggesting that their secretion through canonical pathways does not take place. Whether 

S100 proteins are actively or passively secreted from cells is still under debate (Bresnick et al. 2015). 

Secretion of S100B through canonical pathways have been ruled out, as its mRNA does not encode an 

N-terminal secretion signal. However, S100B has been detected in the extracellular fluid of the brain, 

in addition to conditioned media from glioma cells (Barger et al. 1992).  

Prior investigations concerning the S100A8/A9 heterodimer have posited that active S100A8/A9 

secretion in neutrophils occurs through a novel pathway (Rammes et al. 1997). Classical protein 

secretion involves transport through the endoplasmic reticulum/Golgi complex, directed by the 

presence of a signal sequence within the protein (Kim, Jiyoon et al. 2018). Rammes et al. (1997) 

concluded that secretion of S100A8/A9 occurred was an energy-dependent process involving 

activation of protein kinase C (PKC). Labelling of S100A8/A9 with [38S] methionine demonstrated their 

selective, steady secretion from monocytes. In addition, colocalisation analysis of S100A8/A9 

heterodimers with microtubules suggested that their secretion was dependent on an intact 

microtubule network; by inhibiting tubulin polymerisation by use of nocodazole, release of S100A8/A9 

into monocyte supernatants was inhibited. Following treatment of monocytes with 4β-phorbol 12-

myristate 13-acetate (PMA), a phorbol ester known to stimulate S100A8/A9 secretion, S100A8/A9 was 

localised to the filamentous tubulin network. In contrast, depolymerisation of tubulin by nocodazole 

led to a diffuse S100A8/A9 localisation. Presence of the S100A8/A9 heterodimer has been observed in 

serum from patients with inflammatory conditions, such as rheumatoid arthritis, cystic fibrosis and 

bronchitis (Kerkhoff et al. 1998), although its exact role in these conditions have yet to be elucidated. 

Kim et al. (2017) characterised the role of the S100A4 protein in osteoblast differentiation and 

function. Through in vitro recombinant S100A4 treatment, the authors demonstrated that exogenous 

S100A4 had no effects on osteoblast differentiation, with levels of a key transcription factor in 
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osteoblast differentiation, Runx2, remaining unchanged following treatment. However, the group did 

find inhibitory effects on matrix mineralisation by osteoblasts in culture. This was not due to changes 

in cellular proliferation or survival, but due to a decrease in levels of the transcription factor of osterix, 

a necessary transcription factor in the process of mineralisation. In addition, the authors reported 

S100A4-induced activation of the NFκB pathway, with increased phosphorylation of IKKα and IκBα 

detected, and attenuation of S100A4-dependent decreases in matrix mineralisation following 

treatment with a NFκB inhibitor.  

Serum levels of certain S100 proteins have been implicated in disease progression. Cai et al. (2011) 

found increased levels of S100B, S100A6 and S100P in serum from patients suffering acute coronary 

syndrome compared to those with stable angina. S100A4 has been found to be significantly increased 

in serum from patients suffering from epithelial ovarian cancer compared to serum from both healthy 

patients, and those with benign ovarian disease (Lv et al. 2018). The authors also demonstrated a 

correlation between high serum S100A4 and metastasis to lymph nodes, in addition to cancer 

recurrence, making serum S100A4 levels a useful diagnostic and prognostic biomarker for epithelial 

ovarian cancer. Significantly elevated serum levels of S100A8/9 and S100A12 were found in patients 

with giant cell arteritis, a form of large vessel vasculitis, compared with healthy controls (Springer et 

al. 2018). Serum levels of S100A9 were found by to be significantly increased in prostate cancer 

patients compared to either healthy patients or benign prostate cancer patients (Hermani et al. 2005). 

In addition, S100A9 serum levels demonstrated a higher sensitivity between benign and malignant 

prostate cancers than the best current diagnostic marker for prostate cancer, prostate specific antigen, 

suggesting serum S100A9 may be a more reliable diagnostic marker for these patient groups. High 

levels of S100P in serum from cholangiocarcinoma patients were detected by Wu et al. (2016), a 3-fold 

increase in comparison to healthy individuals. S100P was also detected in serum from colorectal cancer 

patients, with the authors of the study establishing that colorectal cancer patients with normal S100P 

serum levels had a significantly more favourable prognosis than those with elevated serum levels 

(Wang et al. 2012). In addition, Peng et al. (2016) highlighted a correlation between high plasma S100P 

levels and poor survival in metastatic breast cancer patients. These works together suggest the 

potential for either serum or plasma levels of S100P as a biomarker for diagnosis and prognosis for 

various cancers.  
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1.1.1.1.2 S100 proteins and receptors  

S100 proteins have been reported to bind several cell surface receptors, with the most thorough 

investigations surrounding S100 proteins binding to the receptor for advanced glycation end products 

(RAGE). RAGE is a member of the immunoglobulin superfamily, and is a transmembrane cell surface 

receptor that interacts with a variety of different ligands, including a number of the S100 proteins 

(Leclerc et al. 2009). RAGE ligation and activation is known to lead to activation of several cell signalling 

pathways, such as the ERK1/2 pathway (Lander et al. 1997), Cdc42/Rac pathway (Huttunen et al. 1999), 

and the p38 MAPK pathway, the latter of which was shown by Taguchi et al. (2000) to be suppressed 

following inhibition of RAGE-amphoterin interaction in glioma cells.  

RAGE comprises an extracellular domain, containing one variable (V) domain, and two constant (C1 

and C2) domains, in addition to a transmembrane domain that anchors RAGE to the plasma 

membrane, and a cytoplasmic tail that transduces signals intracellularly (Schmidt 2015). Two forms of 

soluble RAGE (sRAGE) have also been detected in circulation. These forms comprise a variant in which 

MMPs cleave RAGE present on the extracellular surface (cRAGE) leaving only domains V-C1-C2, and a 

differential mRNA splice variant termed endogenous secretory RAGE (esRAGE) which contains a unique 

amino acid sequence in its C2 domain and lacks both the cytosolic and C-terminal domains (Detzen et 

al. 2019). Interestingly, the soluble forms of RAGE are thought of as protective forms, due to their 

competition with RAGE ligands, therefore inhibiting RAGE-ligand interactions (Bucciarelli et al. 2006; 

Yan, Ramasamy and Schmidt, 2010). However, the consequences of sRAGE-S100 protein interactions 

in particular are yet to be characterised.   

The binding of S100 proteins with different domains of RAGE has been explored by several authors. 

The majority of S100 proteins, such as S100A1, S100A2, S100A5, S100A12 and S100P have been shown 

to interact with RAGE’s V domain  (Leclerc et al. 2009). S100B interacts with the V and V-C1 domains 

with high affinity (KD V = 0.5-0.6µM, KD VC1 = 11nM-0.2µM). In contrast, S100A6 specifically interacts 

with the C1 and C2 domains (KD VC1 = 0.6µM-5.8µM, KD C2 = 28nM-1µM) (Leclerc et al. 2007), and its 

interaction with the V domain of RAGE was undetectable. In addition, both S100B and S100A6 proteins 

were found by Leclerc et al. (2007) to interact with sRAGE with high affinity.  

Interestingly, oligomers of S100 proteins have been shown to bind to RAGE. Analytical 

ultracentrifugation studies suggest that the S100B tetramer can bind to two RAGE molecules 

(Ostendorp et al. 2007). This, in turn, could potentially lead to RAGE multimerisation and subsequent 

signal transduction. S100A12 is known to form a hexameric structure to enable its binding to RAGE 

tetramers (Moroz et al. 2002). 
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S100B and S100A12 were the first members of the S100 family demonstrated to interact with RAGE, 

with the latter originally named EN-RAGE (Hofmann et al. 1999). S100B has been demonstrated to act 

in concert with S100A1 and amphoterin to activate NFκB, in addition to promoting cellular survival 

through increased expression of Bcl-2, an anti-apoptotic protein. S100B and S100A1 together can 

induce the outgrowth of neurites in a RAGE-dependent manner (Huttunen et al. 2000). S100A12 

secreted from inflammatory cells in vitro has been shown to interact with RAGE, leading to the 

production of NF-κB and pro-inflammatory cytokines such as IL-6 and IL-8 (Yang et al. 2007). 

Interaction of RAGE with S100P has also been explored by several groups. Marcado-Pimentel et al. 

(2015) showed that addition of exogenous S100P to colon cancer cells leads to upregulation of miRNA-

21, and that blocking RAGE by use of an anti-RAGE antibody abrogated S100P-dependent miRNA-21 

upregulation. Much of the work surrounding S100P and RAGE occurs in the context of pancreatic 

cancer, where S100P stimulates cell proliferation and survival in vitro through RAGE (Arumugam et al. 

2004). Downstream consequences of S100P-RAGE interactions will be discussed in further detail in 

1.1.2.2. 

Several receptors other than RAGE have been demonstrated to interact with S100 proteins. For 

example, regulation and expression of CC chemokine receptor 10 (CCR10), a member of a subfamily of 

GPCRs, on the surface of melanocytes is in fact regulated by S100A10, and S100A10 binds directly to 

the C-terminal cytoplasmic tail of CCR10 (Hessner et al. 2016). S100A10 also regulates the cell surface 

localisation of the serotonin receptor 5HT1B and of TRPV5, a protein involved in calcium reabsorption. 

In fact, overexpression of S100A10 results in increased 5HT1B at the cell surface and modulates signal 

transduction (Warner-Schmidt et al. 2009). S100A10 has also been implicated in Toll-like receptor (TLR) 

signalling, where S100A10 deficiency seemingly enhances signalling through TLR in macrophages. (Lou 

et al. 2019). The group observed enhanced phosphorylation of several kinases such as ERK and p38, in 

addition to phosphorylation of transcription factor IRF3, as determined by ELISA.  

A subset of other S100 proteins also bind to TLRs. S100A12, expressed by granulocytes (Orczyk and 

Smolewska 2018), was found to be overexpressed in patients experiencing acute sepsis, and promoted 

the activation of monocytes through activation of TLR4 in vitro (Foell et al. 2013). S100A8 has been 

documented to stimulate formation and function of osteoclasts, again mediated by TLR4. The S100A8-

dependent stimulation of osteoclast function was suggested to occur by stimulating the formation of 

actin rings, which have been shown to be a key marker of osteoclast capacity for bone resorption 

(Grevers et al. 2011). 
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1.1.1.1.3 Extracellular S100 protein interactions 

The presence of S100A10 at the cell surface, in complex with annexin A2 as the S100A10-annexin A2 

heterotetramer (AIIt) has been documented in fibrosarcoma cells (Choi et al. 2003). In addition, its 

expression at the cell surface was correlated with increases in invasion and degradation of the 

extracellular matrix (ECM).   

The interaction of S100A10 with annexin A2 is well documented, however other S100 proteins such as 

S100A4, S100A6 and S100A11 have also been shown to bind to annexin A2. The S100A4-AnnexinA2 

complex was suggested to be responsible induction of angiogenesis through formation of plasmin from 

plasminogen, through activation of tissue plasminogen activator (tPA) (Semov et al. 2005). 

Additionally, the authors demonstrated the importance of the C-terminal lysine residues of S100A4, 

which like S100A10, were also shown to be essential for plasminogen activation, as mutant S100A4 

with two C-terminal lysines mutated to leucines retained only 15% of its activity in comparison to WT 

S100A4.  

Interaction of S100A11 with the N-terminal region of annexin A2 was demonstrated by Rintala-

Dempsey et al. (2006) through NMR experiments. S100A11 has also been shown to bind annexin A1 

(Réty et al. 2000), however this interaction is at a much-reduced affinity to that of annexin A2. 

Regarding the biological consequences of the S100A11-annexinA2 complex, Jaiswal et al. (2014) have 

shown that S100A11 in complex with annexin A2 can direct membrane repair following external cell 

injury. The authors proposed that the S100A11-annexin A2 complex accumulates at the site of injury, 

binds to F-actin, and prevent its depolymerisation which in turn preserves levels of F-actin at the site 

of injury. 

Binding of S100A6 to annexin A2 has been demonstrated in pancreatic cancer cells in vitro by mass 

spectrometry and reciprocal immunoprecipitation (Nedjadi et al. 2009). In addition, depletion of 

S100A6 by siRNA treatment led to a significant decrease in annexin A2 at the plasma membrane, 

together with impairment of pancreatic cancer cell motility assessed by Boyden chamber migration 

assays, suggesting a correlation in levels of S100A6 and annexin A2.   

 

1.1.1.2 S100 proteins in cell motility and invasion 

The role of S100 proteins in the processes of cellular motility and invasion have been covered 

extensively by Gross et al. (2014). Almost all S100 proteins discovered thus far have been implicated 
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in either progression or inhibition of cellular motility and invasion of a wide variety of cell types, in 

both physiological and pathophysiological tissues, through various pathways and effector proteins. 

S100A4 has been extensively studied in regards to its role in migration and invasion. Expression of 

S100A4 has been demonstrated to enhance the migration of breast cancer cell lines MDA-MB-231 and 

MDA-MB-468 through promotion of EMT. Equally, knockdown of S100A4 induced expression of 

epithelial markers E-cadherin and vimentin (Xu et al. 2016). Through its interaction with non-muscle 

myosin IIA (NMIIA), S100A4 promotes disassembly of NMIIA filaments and inhibits the assembly of 

NMIIA monomers into filaments (Li et al. 2003) inhibiting cell migration. Overexpression of S100A4 has 

been observed in metastatic cells and tissues, where its expression level correlates with increased 

levels of motility and invasion of mammary tumour cells through Boyden chambers (Jenkinson et al. 

2004). Transfection of MCF-7 breast cancer cells with anti-sense S100A4 led to decreased cellular 

motility mediated through connective tissue growth factor (CTGF), a protein whose expression is also 

seen to be elevated in advanced breast cancer (Chen et al. 2007).   

Another well studied member of the S100 family that has been implicated in cellular motility and 

invasion is S100A10. Its localisation is cytosolic, however binding to is ligand annexin A2 leads to the 

formation of a S100A10-annexin A2 heterotetramer (AIIt), which results in the translocation of 

S100A10 to the plasma membrane, and its presence on the extracellular surface (O’Connell et al. 

2010). The S100A10 subunit of AIIt is responsible for binding of plasminogen and tPA, and can regulate 

plasminogen activation by tPA. Silencing of S100A10 expression by use of siRNA in colorectal cancer 

cell line Colo 222 led to the abrogation of plasmin binding and generation, consequently leading to 

significant decreases in cellular invasion (Zhang, Libo et al. 2004). Similar observations regarding 

S100A10 expression and consequent changes in cellular motility and invasion were made by O’Connell 

et al. (2010). Macrophage migration across the peritoneal membrane in S100A10-deficient mice was 

significantly decreased compared to WT mice, in addition to a reduction in invasion through Matrigel-

coated Boyden chambers that is dependent on plasmin. The authors found that macrophages from 

S100A10-deficient mice had lowered production of plasmin in addition to decreased activation of 

MMP-9, suggesting that the generation of plasmin by macrophages, and consequent invasion, is 

dependent on S100A10 expression.  

Many S100 proteins have been associated with the invasive process in cancer, sometimes through 

mediating transcription or expression of MMPs. For example, the S100A14 protein can influence 

cellular migration and invasion of oesophageal squamous cell carcinoma cells through Boyden 

chambers through regulating the transcription of matrix metalloprotease 2 (MMP-2), assessed by the 

use of a transwell assay system (Chen et al. 2012). This process was shown to be mediated through 
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tumour suppressor protein p53, and increased MMP-2 expression was observed with a significant 

reduction in p53 expression and transcriptional activity in S100A14-overexpressing oesophageal 

squamous cell carcinoma cells.  

Previous work by Rammes et al. (1997) demonstrated the colocalisation of the S100A8/A9 heterodimer 

with microtubules following monocyte activation. Vogl et al. (2004) further characterised this 

interaction through the use of spin-down binding assays, and found that the interaction with tubulin 

was calcium-dependent and did not depend on phosphorylation of S100A9 (KD = 0.14 ± 0.05µM). 

Further analysis by the group found that the S100A8 subunit was principally responsible for the 

interaction with tubulin. Granulocytes from S100A9 knockout mice (S100A9-/-) were found to express 

less tubulin, in addition to decreased levels of Rac1 and Cdc42. Transendothelial migration of 

granulocytes from S100A9-/- mice did not increase following activation of p38 MAPK by use of arsenite. 

Conversely, S100A9+/+ mice demonstrated a significant 1.2-fold increase in their transendothelial 

migration capabilities following arsenite treatment. Activation of the MAPK pathway in granulocytes 

was dependent on S100A9 phosphorylation, suggesting the association of increases in transendothelial 

migration with both S100A9 phosphorylation and p38 MAPK activation.   

 

1.1.1.3 Cellular localisation of S100 proteins  

The subcellular localisations of proteins are essential for protein function; it determines the access of 

proteins to their target interactors, and consequently their effects. Protein mis-localisation has been 

demonstrated in several disease states (Hung and Link 2011) suggesting the importance of protein 

localisation to specific subcellular compartments. 

The diverse nature of S100 protein expression and interaction partners allows for their diverse 

subcellular localisations in different tissues. The ability of S100 proteins to bind calcium is one key 

regulator of their localisation, as changes in cellular calcium concentration have been shown to lead 

to the alteration of S100 protein subcellular distribution.  

Prior investigations of the localisation of several S100 proteins have been carried out by Mandinova et 

al. (1998). Immunolocalisation studies of two separate smooth muscle cell lines derived from human 

aorta showed that S100A1 was found to be primarily cytosolic and firmly associated with both actin 

stress fibres and sarcoplasmic reticulum. Similar results were demonstrated with S100A4 in the same 

cell lines; S100A4 colocalised with stress fibres in the cell periphery in addition to cytosolic staining. 

Staining of the same cell lines for S100A6 demonstrated that 90% of cells showed a cytoplasmic 
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staining, with the remaining 10% showing a strong nuclear staining with weak cytoplasmic signals. 

S100A2 staining, once again with the same cell lines, was shown to be confined to the nucleus of all 

cells studied. The authors compared the in vitro staining with in vivo arterial smooth muscle, finding 

identical patterns of immunostaining for all S100 proteins studied. 

Orre et al. (2007) studied the immunolocalisation of S100A6 following irradiation in A549 human lung 

adenocarcinoma cells. Prior to irradiation, A549 cells demonstrated a nuclear localisation of S100A6. 

However, 24 hours post-irradiation, S100A6 was primarily cytosolic in nature and was colocalised with 

tropomyosin, a suggested cytoplasmic interaction partner of S100A6.  

The specific localisations of S100A6, S100A4 and S100A2 in tumour cell lines MDA-MB-231 and HeLa 

have also been investigated (Mueller et al. 1999). Following immunostaining, S100A6 was localised to 

the cytosol in both cell lines, and low-level translocation to the rough endoplasmic reticulum and 

plasma membrane was observed after stimulation of intracellular calcium with thapsigargin (TG). 

Perinuclear localisation of S100A4 was observed in HeLa and MDA cells along with diffuse cytosolic 

staining, with TG treatment leading to relocation of perinuclear S100A4 to the cytoplasmic region. The 

S100A2 protein was found to be primarily nuclear in both cell lines, forming punctate structures. TG 

treatment did not drastically alter its cellular localisation, unlike the other S100 proteins studied. No 

differences in localisation of any S100 proteins studied were observed when using several other agents 

to increase intracellular calcium, such as ionophore A23187 or cyclic ADP-ribose.   

Immunohistochemical analysis of adenocarcinoma tissue found that patients with membrane and 

nuclear S100A16 staining showed better prognostic outcomes in contrast to patients that 

demonstrated only membranous S100A16 staining (Kobayashi et al. 2018).  

S100A4 has been observed by immunofluorescence to localise to the leading edge of migrating MDA-

MB-231 breast cancer cells, and was demonstrated to colocalise at this location with NMIIA (Kim and 

Helfman 2003). Colocalisation of S100A4 with N-WASP, a regulator of actin polymerisation, was also 

observed at the lamellipodial region by the same group, suggesting a role for S100A4 in mediating 

processes of motility in these cells through interaction proteins in various subcellular compartments.  

Post-translational modifications (PTMs) have also been demonstrated to alter S100 protein subcellular 

localisation. In human articular chondrocytes, S100A4 translocated from the cytosol to the nucleus 

following stimulation by interleukin-1β, however this translocation was dependent on sumoylation of 

S100A4’s C-terminal lysines by sumo-1 (Miranda et al. 2010). Sumoylation and S100A4 translocation 

were prevented by mutating these C-terminal lysine residues, highlighting the importance of PTMs in 

modulating protein localisation.  
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1.1.2 S100P  

The S100P protein, originally isolated from the placenta (Becker et al. 1992), is a 10.4kDa member of 

the S100 protein family that mediates a variety of processes, including cellular invasion, cell 

proliferation, drug resistance and differentiation (Dakhel et al. 2014). S100P is expressed in 

vertebrates, namely humans, chimpanzees, opossums and dogs. Interestingly, S100P is not expressed 

in rodent species such as mice and rats (Shang et al. 2008).  

S100P has been shown to be expressed in normal tissues, such as in the placenta during embryo 

implantation, but the majority of literature on S100P explores its relation to cancer progression (Prica 

et al. 2016). 

 

1.1.2.1 Structure of S100P 

S100P, like all members of the S100 family, consists of two EF-hand domains at either end of the 

protein, connected by a hinge region (Figure 1.1.2). Each EF-hand domain consists of a “helix-loop-

helix”, in which a calcium-binding loop is surrounded by an alpha helix on each side. S100P has the 

ability to bind to multiple divalent cations, including Ca2+, Zn2+ and Mg2+. Zn2+ ions only bind to the C-

terminal EF-hand of S100P, whereas Mg2+ only binds to the N-terminal EF-hand (Gribenko and 

Makhatadze 1998). Interestingly, both EF-hand domains have differing affinities for calcium; the N-

terminal EF-hand of S100P has a lower affinity for calcium ions than the canonical C-terminal domain 

(Kd C-terminal EF hand ~ 10-7 M; Kd N-terminal EF hand ~ 10-4 M, Gribenko and Makhatadze, 1998). This 

may be due to the N-terminal domain binding calcium through main-chain carbonyl groups 

(Santamaria-Kisiel et al. 2006), or the limited structural changes S100P showcases upon binding 

calcium ions compared to the C-terminal domain (Marenholz and Heizmann, 2004). Changes in calcium 

ion concentration lead to a significant change in the tertiary structure of S100P, namely the orientation 

of the helical regions (Gribenko and Makhatadze 1998).  

Koltzscher and Gerke (2000) characterised the residues involved in forming the dimer interface 

between S100P homodimers, demonstrating the importance of the F15 residue in this process, as 

although F15A S100P can be expressed and purified, no interaction with WT S100P was detected. 

When both monomers contain a F89A mutation, dimerisation is significantly limited. Austermann et 

al. (2008), on the other hand, concluded that the C-terminal extension of S100P, residues 88-95, are 

in fact dispensable for dimerisation. A crystal structure of S100P generated by Zhang et al. (2003) 

seems to confirm the limited contribution of these residues to the dimer interface.  
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The secondary structure of S100P consists of a pseudo EF-hand (N-terminus), a canonical EF-hand 
(C-terminal), two loop regions capable of binding calcium ions, each of which are surrounded by two 
alpha helices. A linker domain connects both EF-hands between helix 2 and helix 3.  

 

Figure 1.1.2 Secondary structure of S100P 
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Ribbon model of the S100P dimer generated by X-ray crystallography, with PDB accession number 

1J55. Adapted from Zhang et al. (2003).  

Figure 1.1.3: Ribbon model of S100P dimer 
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1.1.2.2 Intracellular interacting partners of S100P  

A variety of different proteins have been documented to associate with S100P to elicit different 

responses mainly, if not exclusively using cancer cell lines (Figure 1.1.4).  

Ezrin is one such protein; it is a member of the ERM protein family that serves as a cross-linking protein 

between F-actin and the plasma membrane. (Austermann et al. 2008). This interaction is dependent 

on calcium and requires dimerised S100P. Austermann et al. (2008) characterised a variety of S100P 

mutants and their ability to interact with ezrin, and found that truncated versions of S100P at the C-

terminus (S100P 91aa and S100P 87aa) could be expressed, form dimers, and demonstrated similar 

properties to WT S100P. However, binding of ezrin to the S100P 87aa mutant alone was abrogated, 

suggesting  key contact residues for ezirn-S100P interactions are present within this region. In addition, 

the stimulatory effects of S100P-ezrin interactions on transendothelial migration were prevented 

following treatment with the S100P 87aa mutant, but not S100P WT or the S100P 91aa mutant. 

Another protein observed to interact with S100P is IQGAP1. The actin binding protein IQGAP1 is 

ubiquitously expressed and has been shown to play a role in actin cytoskeleton regulation and 

microtubule reorganisation (Heil et al. 2011). Interestingly, IQGAP1 was found to bind to the N-

terminal domain of S100P and does not require the higher affinity C-terminal EF-hand domain to elicit 

its function unlike other S100P target proteins. A number of other actin binding proteins have been 

documented to interact with IQGAP1, including but not limited to Arp2/3, N-WASP and Cortactin 

(White et al. 2013). The interaction between S100P and IQGAP1 requires S100P dimerisation and is 

calcium dependent. Colocalisation of the two proteins was found at the plasma membrane/cell cortex 

by immunofluorescence following stimulation with EGF, which is known to stimulate intracellular 

calcium levels. It was also found that S100P prevented EGF-induced tyrosine phosphorylation of 

IQGAP1, leading to impaired interaction between IQGAP1 and B-Raf, a part of the MAPK cascade.  

Calcium-bound S100P has also been documented by Du et al. (2012) to interact with different isoforms 

of non-muscle myosin II (NMII) with differing affinities. One isoform, NMIIA, has been associated with 

a number of cytoskeletal elements linked to Rho kinase, including focal adhesion and stress fibre 

organisation (Even-Ram et al. 2007), and induction of S100P expression in HeLa cells leads not only to 

a change in distribution of NMIIA to the cellular periphery, but also decreases the number of vinculin-

containing focal adhesion sites. The implication of S100P induction in this cell line, and its effects on 

NMIIA, was increased cell migration.  

A novel protein was characterised by Dowen et al. (2005) through in vitro far western screening and 

found to interact with S100P, once again in a calcium dependent manner. It was consequently named 
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S100P binding protein (S100PBP) and was observed to be localised to the nucleus in transfected HeLa 

cells transiently transfected with GFP-tagged S100PBP. Endogenous expression of S100P in HeLa cells 

was localised to both nuclear and cytoplasmic regions, and it was suggested that S100PBP interacts 

with S100P in the nuclear compartment. Later work by the group determined the differential 

expression of S100PBP between healthy and tumour tissues; healthy prostate, lung and breast tissues 

demonstrated increased S100PBP expression compared to their relative cancerous tissues, whereas 

healthy liver and thyroid tissues were observed to express much lower levels of S100PBP than their 

cancerous counterparts (Lines et al. 2012). Interestingly, expression of S100PBP and S100P in either 

normal pancreas or pancreatic ductal carcinoma (PDAC) samples were found to be inversely 

correlated. In normal tissues, S100P was undetectable in all samples, whereas S100PBP exhibited 

strong immunoreactivity in 85% of samples. Regarding PDAC samples, high levels of S100P 

immunoreactivity were found in 82% of samples, compared to 9% of samples exhibiting strong 

S100PBP staining. The same study demonstrated that silencing of S100PBP in Panc1 cells by siRNA led 

to significant increases in their invasion, but not their migration. Furthermore, the authors found that 

upon S100PBP overexpression, the FA6 pancreatic cancer cell line demonstrated significant decreases 

in cell adhesion to various ECM proteins, including fibronectin and vitronectin. The same reduction in 

adhesion was not observed in non-S100P expressing pancreatic cancer cell line Panc1, suggesting a 

role for both S100PBP and S100P in mediating these processes.  

A recent study suggests that interaction between S100P and αβ-tubulin occurs both in vitro and in vivo 

(Du et al. 2020). This interaction leads to a decrease in tubulin polymerisation and enhances cellular 

migration of COS-7 and HeLa cell lines. In addition, disruption of microtubule organisation by addition 

of colchicine led to suppression of S100P-dependent migration, suggesting a potential mechanism for 

S100P-enhanced cell migration.  

Co-immunoprecipitation experiments by Filipek et al. (2002) led to the detection of complex formation 

between recombinant S100P and Calcyclin-binding protein, otherwise known as Siah-1-interacting 

protein (CacyBP/SIP). CacyBP/SIP was found to form complexes with other S100 proteins, including 

S100B in rat brain extract. The consequences of the interaction are not characterised; however, it has 

been proposed that since CacyBP is a component of a ubiquitinylation pathway involved in β-catenin 

degradation, S100P may play a role in or modulate this process.   

Another component of ubiquitinylation pathways, CHIP (C-terminus of Hsc70-interacting protein), has 

also been observed to interact with S100P (Shimamoto et al. 2013). CHIP functions as an E3 ubiquitin- 

ligase, with the role of targeting misfolded proteins for proteasomal degradation in concert with 

chaperone proteins Hsc70 and Hsp90 (Murata et al. 2001). The tetratricopeptide (TPR) domain of CHIP 
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is responsible for CHIP’s interactions with the above chaperone proteins, and it is this domain through 

which S100P can bind to CHIP. The study by Shimamoto et al. (2013) found that interaction of S100P 

with CHIP led to the prevention of its interaction with both Hsp90 and Hsc70 in a calcium-dependent 

manner and preventing their ubiquitinylation.  

 

1.1.2.3 Extracellular interacting partners of S100P  

The target proteins of S100P mentioned thus far are intracellular in nature. However, S100P has also 

been reported to act extracellularly by a number of studies (Arumugam et al. 2005, Fuentes et al. 2007) 

through its interaction with the receptor for advanced glycation end products (RAGE). RAGE 

overexpression has been documented in a variety of cancers, including pancreatic cancer (Kang et al. 

2017), and its overexpression was shown to promote survival of these cells. S100P secreted from 

pancreatic cancer cells was shown to act through RAGE on the cell surface, stimulating the activation 

of NFκB and activating the MAP kinase pathway (Arumugam and Logsdon, 2011). The activation of 

these proteins and their pathways influences the progression of these cancers, as NFκB has been 

shown to stimulate cell proliferation and survival (Rayet and Gelinas, 1999). 

In addition to RAGE, Clarke et al. (2017) demonstrated the interaction with and activation of tissue 

plasminogen activator (tPA) by S100P in vitro. Once again, this interaction is dependent on calcium 

ions, and it has been proposed that this interaction occurs through the C-terminal lysine of S100P, as 

mutation or deletion of residue K95 in S100P results in a significant reduction in tPA activation. tPA-

dependent activation of plasminogen was also reduced in the presence of the above S100P mutants. 

In addition, binding of WT recombinant S100P to both tPA and plasminogen was significantly reduced 

upon the addition of 6-aminocaproic acid (6-ACA), a lysine analogue, seemingly confirming the 

involvement of S100P’s lysine residues in tPA and plasminogen activation. Activation of tPA by another 

S100 family member, S100A10, has also been observed, leading to enhanced invasion of macrophages 

(O’Connell et al. 2010). 

S100P has also been found by Kazakov et al. (2015) to interact with interleukin 11 (IL-11) in vitro in a 

calcium-dependent manner through surface plasmon resonance. IL-11 contains two binding sites for 

S100P with differing affinities, with the study suggesting that serum S100P may associate with 

circulating IL-11 and its associated receptor.  However, the details of this interaction, namely the 

residues involved in the interaction and the biological consequences of said interaction, are yet to be 

elucidated.  
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Hsu et al. (2015) pulled down S100P from CL1-0 cancer cell membranes and detected presence of 

integrin α7 by mass spectrometry, and later confirming their interaction by coimmunoprecipitation. 

The interaction between these two proteins led to increased focal adhesion kinase (FAK) activation, in 

addition to the activation of transcription factor protein kinase B (PKB, otherwise known as AKT).  This 

study highlights a role for S100P in the FAK/AKT pathway in lung cancer, however the relevance of this 

interaction in other cell types has not been explored.  
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Known interaction partners of S100P, and their associated cellular processes due to interaction with/regulation by S100P, are presented in relation to their cellular 

location, namely intracellular (green), cell surface receptors (purple), or extracellular (orange).  

Figure 1.1.4: Interaction partners of S100P 
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1.1.2.4 Tissue and subcellular distribution of S100P 

S100P expression has been observed in both healthy and malignant tissues. Among healthy tissues, 

S100P is found to be expressed in the placenta, oesophagus, stomach, duodenum, large intestine, 

prostate and leukocytes (Parkkila et al. 2008). The highest levels of S100P protein expression in healthy 

organs has been seen in the placenta, stomach and bladder. Parkkila et al. (2008) also studied mRNA 

expression of S100P in a variety of normal and healthy tissues, finding that placental tissues 

demonstrate a 10-fold increase in S100P mRNA expression when compared to the next highest mRNA-

expressing tissue, the oesophagus, and over 90 times the level of S100P mRNA expression found in 

housekeeping genes. Parkkila et al. (2008) suggest that differences in S100P mRNA and protein levels 

detected in various tissues may be due to changes in post-transcriptional regulation of S100P, or due 

to the presence of extracellular S100P through its interaction with RAGE. The half-life of several S100 

proteins in NIH3T3 was found to be between 90-140 hours (Schwanhüusser et al. 2011), suggesting 

the potential for the S100P protein to have an equally long half-life which could also contribute to 

differences seen between mRNA and protein levels of S100P. In regards to malignant tissues, S100P 

has most commonly been implicated in tumour progression in a variety of cancer subtypes, mostly 

those of epithelial origins. Such carcinomas include that of the breast, lung, prostate and pancreas 

(Dowen et al. 2005; Schor et al. 2006; Rehbein et al. 2008). Much of the current knowledge about 

S100P has been gathered through the study of carcinomas, which will be detailed below (1.1.2.5 S100P 

in cancer). 

The subcellular distribution of S100P has been studied using cell lines and tissues, mainly through the 

use of indirect immunofluorescence and immunohistochemistry, or through the use of 

overexpression/fluorescent tag systems. Through these studies, it is widely accepted that S100P is 

localised in either the nucleus, cytoplasm, or both in a variety of tissues and cell types. For example, 

Rehbein et al. (2008) demonstrated both cytoplasmic and nuclear localisation of S100P in a human 

lung adenocarcinoma cell line stably expressing GFP-S100P.  In contrast, immunofluorescence analysis 

of human endometrium biopsies by Tong et al. (2010) found nuclear S100P expression in endometrial 

stroma. Contradictory data by (Zhang et al. 2012) found accumulation of S100P in the cytoplasm of 

primary endometrial stromal cells by immunofluorescence, suggesting variations in S100P detection.  

Interestingly, so far, the majority proteins reported to interact with S100P are cytoplasmic or 

membrane-localised proteins, whilst most of the reports looking at its cellular localisation seem to 

suggest a predominantly nuclear segregation.  
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1.1.2.5 S100P in cancer 

Expression of S100P has been documented in other healthy tissues apart from the organ of its origin, 

the placenta, including the stomach and oesophagus (Parkkila et al. 2008). However, the S100P protein 

has gained considerable attention in relation to its expression in various neoplasms (Table 1.1.1). 

S100P overexpression in several different types of cancers, including prostate, lung, and breast, has 

been demonstrated to correlate with increased tumour grade and poor patient prognosis (Wang et al. 

2006). It was reported by Dowen et al. (2005) that as pancreatic neoplasm severity increased, the 

number of S100P positive neoplasms increased; 92% of the pancreatic ductal adenocarcinoma samples 

tested by the group were positive for S100P expression. Györffy et al. (2006) found that the S100P 

gene was associated with resistance against multiple anticancer drugs, whilst Surowiak et al. (2007) 

showed that malignant ovarian tumour cases associated with death displayed a higher level of S100P 

expression. Poor prognosis of patients with metastatic breast cancer was found to correlate with high 

levels of S100P in the blood plasma (Peng et al. 2016). Overexpression of S100P was found in lung 

adenocarcinoma samples in comparison to healthy samples, suggesting the usefulness of this protein 

as a biomarker for lung adenocarcinoma (Kim et al. 2007). The increased presence of S100P within 

tissues from a neoplastic origin suggest a role for this protein in the promotion of carcinogenesis. 

This selection of studies demonstrates the potential for S100P to be used as a prognostic or diagnostic 

marker of various cancer subtypes. In addition, one study by Dakhel et al. (2014) has shown the 

potential of a specific function-blocking monoclonal S100P antibody in the treatment of pancreatic 

cancer, work which was demonstrated through blocking extracellular S100P activities in pancreatic 

tumour mice models using the BxPC3 cell line. In this way, S100P could be seen as a potential 

therapeutic target in the treatment of several types of carcinoma.  

S100P has also been found to regulate motility and invasion in particular by its interaction with a 

variety of target proteins, once again in mostly cells of a cancerous background. Exogenous addition 

of S100P protein has been shown to enhance the invasion of Rama 37 cells in vitro (Clarke et al. 2017), 

in addition to induction of metastasis in rats injected with S100P-expressing cells (Wang et al. 2006). 

Stimulation of migration was observed by Fuentes et al. (2007) following exogenous S100P treatment 

of SW480 colon cancer cell line. Such work suggests exogenous addition of S100P, rather than 

endogenous expression or overexpression, is sufficient to induce changes in cellular migration and 

invasion in cells of a cancer background.  

S100P overexpression in Panc1 cells, pancreatic cancer cell line, led to increases in transendothelial 

migration, whereas targeted knockdown of S100P in the same cell line by use of small interfering RNA 
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(siRNA) led to a significant decrease in the ability of Panc1 cells to migrate (Barry et al. 2013) . The 

same effect of S100P knockdown by siRNA technology was also observed in the BxPC3 cell line. A study 

by Arumugam et al. (2005) found similar results for both migration and invasion. Driving S100P 

expression in Panc1 cells led to significant increases in their invasion, and knockdown of S100P in BxPC3 

cells led to invasive defects. S100P overexpression has also been demonstrated to lead to both 

increased cell migration and invasion in the Panc1 cell line by  Whiteman et al. (2007), which was found 

in part to be mediated by upregulation of proisoforms of cathepsin D.  

All of the above studies confirm a role for S100P in both motility and invasion of cells from a cancer 

background. Furthermore, these studies suggest S100P plays a part in promoting carcinogenesis, either 

by its involvement in the processes of cellular motility and invasion, or through its interaction with 

target proteins.  
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Cell type Target 

protein 

Cellular consequences Reference 

CL1-0 (human lung 

adenocarcinoma cell 

line) 

Integrin α7 Increase in migration, 

invasion and EMT 

Hsu et al. 

(2015) 

COS-7 (African green 

monkey kidney cell line) 

and HeLa (human 

cervical carcinoma cell 

line) 

Tubulin Increase in cell migration Du et al. 

(2020) 

HMEC-1 (human 

endothelial cell line) 

Ezrin Increase in 

transendothelial 

migration 

Austermann et 

al. (2008) 

NIH3T3 RAGE Increased cell 

proliferation and survival 

Arumugam et 

al. (2004) 

HeLa (human cervical 

carcinoma cell line) 

NMIIA Redistribution of focal 

adhesion sites leading to 

enhanced migration 

Du et al. 

(2012) 

   Table 1.1.1: Table of S100P-target protein interactions and their outcomes 
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1.2 The placenta 

1.2.1 The role of the placenta 

The placenta is a transient foetomaternal organ formed from the outer layer of cells of the blastocyst, 

the trophectoderm. The trophectoderm will go on to differentiate into the different trophoblast cell 

lineages that together facilitate the remodelling of maternal spiral arteries, the exchange of nutrients 

and waste products, and the production of hormones required for a successful pregnancy (Gamage et 

al. 2016).  

Implantation of the blastocyst begins with the degradation of the surrounding zona pellucida (Figure 

1.2.1). The outer cells of the blastocyst, the trophectoderm, develops roughly 4-5 days after 

fertilisation (Knöfler et al. 2019). The polar trophectoderm, which is adjacent to the inner cell mass of 

the blastocyst, interacts with the endometrial epithelium and leads to the implantation of the embryo 

into the maternal endometrium (Gude et al. 2004). However, in order to facilitate implantation of the 

blastocyst, the maternal endometrium must go through several changes in a process known as 

decidualisation. During decidualisation, the production of the hormones oestradiol and progesterone 

by the ovaries occurs in response to implantation of the blastocyst in the secretory phase of the 

endometrial cycle (Plaisier 2011). This is followed by the formation of decidual cells from endometrial 

stromal cells, and vascular remodelling including angiogenesis (Dunn et al. 2003). 

Defects in placental formation can lead to diverse complications. For instance, abnormally shallow 

implantation, due to inadequate trophoblast invasion, can lead to intrauterine growth restriction 

(IUGR), whereas preeclampsia is thought to be multifactorial in its causes. Early onset preeclampsia, 

which generally comprises the most serious of cases, can be characterised by increased resistance in 

maternal spiral arteries leading to abnormal blood flow (Huppertz 2008).  
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Following degradation of the zona pellucida, trophoblasts develop from the trophectoderm and begin the 

process of implantation into the maternal endometrium after its decidualisation. The inner cell mass 

(ICM) goes on to give rise to the foetus.     

 

Figure 1.2.1: Structure of a human blastocyst 
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1.2.2 Trophoblasts 

Following decidualisation and implantation of the blastocyst, the trophectoderm begins to 

differentiate into early trophoblast lineages (Figure 1.2.2). 

Multinucleate primitive syncytium is formed from the trophectoderm at around 8 days post-

fertilisation. This represents the earliest stage of placentation, where the primitive syncytium digests 

and expands towards the maternal decidua (Knöfler et al. 2019). Invasion of the decidua by primary 

syncytium aids in the formation of lacunar networks, in which uterine vessels are eroded and maternal 

blood can perfuse and establish uteroplacental circulation at day 12-13 post-fertilisation (Turco and 

Moffett, Ashley 2019).  

During the expansion of the primitive syncytium, mononuclear cytotrophoblasts invade through the 

primitive syncytium leading to the formation of primary villi. Primary villi transform through pregnancy 

into secondary and tertiary villi, characterised by their levels of vascularisation, extension of the villi 

and extent of migration of extraembryonic mesoderm into the villi (Knöfler and Pollheimer 2013). 

Along with this transformation comes differential expression of certain ECM proteins, in addition to a 

lack of cell-associated ECM; Damsky, Fitzgerald and Fisher (1992) were unable to detect fibronectin or 

laminin A in association with the surface of uterine trophoblasts.  

Mononuclear cytotrophoblasts, otherwise known as trophoblast stem cells, can differentiate into 

different populations of trophoblasts via the villous or extravillous pathways (Li, Zhuosi et al. 2019). 

The fusion of villous cytotrophoblasts (vCTB) results in the formation of multinucleate 

syncytiotrophoblasts (STBs) surrounding the primary villi surface. The STB layer, due to its proximity to 

placental vessels, are involved in nutrient and gas exchange between the maternal endometrium and 

the foetus (Fuchs and Ellinger, 2004). STBs are also responsible for the secretion of hormones such as 

human chorionic gonadotropin (hCG) (Handschuh et al. 2007), a hormone important in immune 

tolerance at the foetal-maternal interface in addition to stimulation of trophoblast invasion, mediated 

by secretion of MMPs by cytotrophoblasts (Fluhr et al. 2008).  

Mononuclear cytotrophoblasts form a mass at the distal end of the villi, known as the cytotrophoblast 

cell column (CCC). STBs are not present at this site, allowing the CCC to make contact with the maternal 

decidua and spread outwards to form the cytotrophoblastic shell (CTS). The CTS provides an anchor 

for the placenta to attach to the maternal endometrium (Burton, Graham J. and Jauniaux 2017). 

Following CTS formation, the outer cell layer of the CTS at the distal end of the villi differentiates into 

invasive extravillous trophoblasts (EVTs), the main invasive population of trophoblasts (Gude et al. 

2004). 
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A depiction of the differentiation of the trophectoderm into the different trophoblast 

lineages, around 4 days after fertilisation. The extravillous pathway of differentiation is 

highlighted in green, whereas the villous pathway is highlighted in blue. 

Figure 1.2.2: Human trophoblast differentiation 
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Cells at the distal tip of the villi begin to differentiate into invasive EVTs, penetrating the 

maternal decidua and underlying maternal myometrium.  

STB, syncytiotrophoblast; EVT, extravillous trophoblast. 

Figure 1.2.3: Differentiation of trophoblasts at the foetal-maternal interface 
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1.2.2.1 Extravillous trophoblasts 

vCTBs at the proximal end of the villi are highly proliferative, however EVTs at the distal end of the villi 

eventually cease to proliferate. Instead, EVTs differentiate into one of two populations; endovascular 

trophoblasts or interstitial trophoblasts. As of yet, the specific signals driving the differentiation 

pathways of EVTs into either endovascular or interstitial trophoblasts is not known (Turco and Moffett, 

Ashley 2019). 

Endovascular trophoblasts are primarily responsible for invading uterine spiral arteries to establish a 

blood supply to the growing foetus. The maternal spiral arteries are transformed by endovascular 

trophoblasts to a low-resistance high-capacity state, leading to increased placental perfusion and 

increased nutrient uptake by the growing foetus (Kaufmann et al. 2003).  

The other differentiation pathway for extravillous trophoblasts is the interstitial trophoblasts. 

Interstitial trophoblasts must penetrate into the decidua and underlying endometrium, acting as an 

anchor to link the placental and maternal tissues (Davies et al. 2016). Interstitial trophoblasts secrete 

several proteases, including MMP-2 and MMP-9, to facilitate degradation of the ECM. Expression of 

PLAC8 in interstitial trophoblasts was recently found to promoting both motility and invasion of this 

trophoblast subset by increasing the activity of Cdc42 and Rac1 leading to the formation of filopodia, 

a structure characteristic of migratory cells  (Chang et al. 2018). 

After interstitial trophoblasts have completed their migration through the decidua into the 

myometrium, they terminally differentiate and fuse into multinucleated placental bed giant cells - 

these are thought to have no invasive activity (Knöfler et al. 2019). Both urokinase and plasminogen 

activator inhibitors 1 and 2 were found to be localised in cytoplasmic and membrane regions of 

interstitial trophoblasts, suggesting fine control of their invasion (Hofmann et al. 1994). Placental giant 

bed cells also express HLA-G, which may facilitate their interaction with maternal immune cells and 

prevent their attack by the maternal immune system (Al-Lamki et al. 1999). 

Controlled EVT invasion is an important aspect of establishing a successful pregnancy. Invasion must 

be confined both spatially (in the decidua/myometrium) and temporally (at the early stages of 

pregnancy). Invasion by EVTs is thought to be at its maximum between 10-12 weeks, with EVTs not 

normally invading beyond the first third of the myometrium (Zhu, J.-Y. et al. 2012). Abnormalities in 

the invasive process in EVTs can lead to a wide array of complications. For example, shallow invasion 

of EVTs has been implicated in intrauterine growth restriction (IUGR) and early onset preeclampsia, in 

which endovascular trophoblasts fail to remodel spiral arteries leading to insufficient placental 

perfusion (Kaufmann et al. 2003). 
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In order for implantation to occur successfully, EVTs must maintain an invasive and highly motile 

phenotype. There are numerous striking similarities between the process of implantation (particularly 

in respect to invading EVTs) and malignant cells during cancer metastasis. Both cell subsets require 

proliferative and invasive capabilities, as well as the ability to evade the immune system, as the foetus 

is immunologically distinct from the mother (Holtan et al. 2009). Both trophoblasts and malignant 

tumours express proteases; EVTs have been shown in vitro to secrete several MMPs (Staun-Ram et al. 

2004), and likewise MMPs have been implicated in cancer progression due to alteration of cell-cell and 

cell-extracellular matrix interactions (Gialeli et al. 2011). Several growth factors, their receptors, and 

signalling cascades have been demonstrated to be required for both placental development and cancer 

progression, including the MAPK and PI3K/AKT pathways (West, R. C. et al. 2018). 

Differentiation of CTB to EVT is vital for successful implantation to occur. It has been hypothesised by 

Dasilva-Arnold et al. (2015) and several others that this differentiation is a form of epithelial-to-

mesenchymal transition (EMT). The EMT process is well characterised in cancer (Roche 2018), in which 

cells of epithelial origin can convert into a mesenchymal phenotype. Disruption of cell-cell and cell-

matrix contacts, in addition to cytoskeletal remodelling, enables increased cellular migration which, in 

cancer, aids the formation of secondary metastases. 

With regards to trophoblast differentiation, Dasilva-Arnold et al. (2015) found downregulation of 

several epithelial markers, including occludin, which maintains stable tight junctions between cells. In 

addition, the group also found upregulation of several mesenchymal markers in EVT compared to CTB, 

namely vimentin and fibronectin1. Expression of proteases MMP-2 and MMP-9 were also found to be 

upregulated, suggesting the increased invasive capabilities of EVT compared to CTB that is required for 

breaking down ECM components. However, unlike cancer, trophoblast migration and invasion must 

be carefully regulated, both spatially and temporally.  

 

1.2.3 S100 proteins in the placenta 

The presence of several S100 proteins have been detected in placental tissues. Immunohistochemical 

studies of placental tissues have demonstrated the presence of S100A10 in syncytiotrophoblast brush 

border vesicles (Kaczan-Bourgois et al. 1996), and in syncytiotrophoblast microvillous plasma 

membranes by both confocal laser scanning microscopy and flow cytometry (Kristoffersen and Matre 

1996). More recent studies by Abd El-Aleem and Dekker (2018) have observed high levels of expression 

of the S100A10/annexin A2 complex in amniotic membranes and endothelial cells lining blood vessels 

by use of proximity ligation. In addition, low levels of the complex were found in syncytiotrophoblast 
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brush borders and in trophoblasts. Non-complexed S100A10 was also found in similar locations within 

placental tissue, with higher expression documented in placental villi. S100A10 is also found within 

human endometrium, with decreased expression of S100A10 seen in the endometrium of infertile 

women compared to fertile women, suggesting that S100A10 plays a part in endometrial receptivity 

(Bissonnette et al. 2016). It was also established that silencing of S100A10 by siRNA reduced migration 

of human epithelial endometrial cells and resulted in decreased mRNA expression of prolactin and 

connexin 43, both markers of decidualisation, further suggesting a role for S100A10 in promoting the 

decidualisation process leading to successful pregnancies.  

In addition to S100A10, S100A11 has been detected in apical microvillus membranes from 

syncytiotrophoblasts through proteomic analysis (Paradela et al. 2005). Furthermore, (Liu et al. 2006) 

identified a decrease in expression of S100A11 in placental villous tissues from patients suffering early 

pregnancy loss through the use of MALDI-TOF mass spectrometry. This finding was further validated 

by immunohistochemistry, where reduced cytoplasmic staining of both syncytiotrophoblasts and 

cytotrophoblasts was observed. S100A11 has also been detected in both human endometrium and 

stroma, with healthy control subjects expressing higher levels of S100A11 than those who suffered 

from early pregnancy loss (Liu et al. 2012). Further work by the authors found that knockdown of 

S100A11 using siRNA reduced mouse embryo implantation, suggesting that S100A11 may have a role 

in mediating the implantation process.  

The S100A8/A9 heterodimer has also been implicated in early pregnancy loss (Nair et al. 2013). RT-

PCR analysis demonstrated a significant increase in S100A8 and S100A9 mRNA in endometrial tissue 

of patients experiencing recurrent loss of pregnancy in early states when compared to healthy 

controls. Given the role of these proteins in enhancing the recruitment of immune cells to sites of 

inflammation, it may be that overexpression of S100A8/A9 at the maternal-foetal interface interferes 

with placental perfusion, consequently leading to loss of the pregnancy as part of the maternal 

immune response.  

Expression of S100A6 in placental tissue was studied by (Schol et al. 2014) through 

immunohistochemistry. The group found a highly significant increase in expression of S100A6 in pre-

eclamptic patients compared to healthy controls, with expression of S100A6 seen in predominantly in 

syncytiotrophoblasts, but also in cytotrophoblasts. Stromal cells did not exhibit significant differences 

in S100A6 expression between healthy and pre-eclamptic patients.  
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1.2.4 S100P in the placenta 

Expression of S100P in the placenta was first documented by Becker et al. (1992), and it is the placenta 

in which S100P is found at the highest levels in the human body (Parkkila et al. 2008). Given its high 

expression level in the placenta, it is striking that little is known about its physiological role in this 

location. S100P has been detected in in ex vivo samples by Zhu et al. (2015a), with a significant 

decrease in S100P expression seen in villi obtained from spontaneous abortion versus normal 

pregnancy. 

Zhu et al. (2015b) have studied the localisation of S100P in the placenta by immunohistochemistry, 

observing S100P protein in STBs, vCTBs and cytotrophoblast columns during the first trimester of 

pregnancy. The level of S100P expression was found to decrease as pregnancy progressed from first 

to third trimester. Interestingly, this mimics the proliferative and invasive capabilities of trophoblasts, 

which seem to diminish following the 12th week of gestation (Fisher et al. 1989). Our recent work 

(Tabrizi et al. 2018)  supports these findings by Zhu et al. (2015), in which S100P expression decreases 

throughout gestation. Furthermore, we demonstrated the presence of S100P in EVTs from first 

trimester ex vivo placental tissues, work that is corroborated by genome-wide expression profiling of 

EVTs by Apps et al. (2011). We additionally characterised a role for S100P in enhancing both the 

migration and invasion of model trophoblast cell lines, suggesting that S100P may play a role in 

trophoblast motility and invasion in vivo.  

Given the high levels of S100P expression detected in a variety of cancers, in addition to the high levels 

of expression seen in trophoblast cells of the placenta, it is understandable to assume that there may 

be a link between S100P expression and the invasive/motile processes undertaken by EVTs during 

placentation. Curiously, placentation in the mouse is deemed to be shallow (Carter 2007). The lack of 

invasion by trophoblast cells into spiral arteries means that mice may not be the optimal choice for 

studies of placentation. Mice also do not express S100P; whether there is a link between levels of 

S100P expression in vertebrates and shallow implantation is yet to be fully elucidated.  
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1.3 Project aims 

The aim of the first section of this thesis is to demonstrate the localisation of the S100P protein in a 

variety of cell backgrounds, including that of trophoblast cells, using a biochemical technique known 

as subcellular fractionation (Chapter 3). 

Following the establishment of S100P’s localisation in trophoblasts, we set out to characterise the role 

of membrane-associated S100P in the processes of motility and invasion by either gain or loss of 

function studies. In addition, we undertake analysis of the S100P structure that may lead to its 

membrane association capabilities (Chapter 4). 

Finally, we aim to characterise changes in protein abundance as a result of S100P expression in 

trophoblast cells using a mass spectrometry-based approach, with the overall aim of identifying either 

possible interaction partners of S100P, or proteins that may be involved in the S100P-dependent 

processes either intracellularly or at the cell membrane (Chapter 5).  
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2.1 Materials 

 

2.1.1 Equipment 

0.1-10µl tips (Sarstedt, Germany) 

0.2µm filters (Sarstedt, Germany) 

1.5ml microfuge tubes (Eppendorf, Germany) 

2.0ml microfuge tubes (Fisher Scientific, Loughborough, UK) 

35mm dishes (Sarstedt, Germany) 

60mm dishes (Sarstedt, Germany) 

10cm dishes (Thermofisher, UK) 

10ml glass pipettes (Sarstedt, Germany) 

1000µl tips (Starlab, UK) 

24 well plates (Appleton Woods, UK) 

96 well plates (Fisher Scientific, Loughborough, UK) 

25ml glass pipettes (Fisher, UK) 

30ml polypropylene universal containers (Starlab, UK) 

5ml glass pipettes (Sarstedt, Germany) 

60mm dishes (Thermofisher, UK) 

96 well plates (Fisher, UK) 

AcclaimTM, PepMapTM C18, 3 µm, 100 Å, 75 µm × 150 mm analytical column (ThermoScientific, UK) 

Acetonitrile (Fisher, UK) 

Autoclave tape (Fisher, UK) 

Autoclave bags (Fisher, UK) 

Biosafety cabinet (Thermofisher Scientific, UK) 

Cavitation bomb chamber (Parr Instruments, UK) 

Cell culture flasks (Fisher Scientific, Loughborough, UK) 

Centrifuge (2-6E, Sigma Aldrich, UK) 

Centrifuge tubes, 15ml (Appleton Woods, UK) 
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Centrifuge tubes, 50ml (Corning, Sigma-Aldrich, Dorset, UK). 

Cryotubes (Fisher Scientific, Loughborough, UK) 

CytoFLEX flow cytometer (Beckmann Coulter, California, US) 

Eppendorf tubes, 1.5ml (Fisher Scientific, Loughborough, UK) 

Gauze, sterile (Boots, UK) 

Gel tank (Bio-Rad Laboratories Ltd, UK) 

Gel loading tips (Sarstedt, Germany) 

Glass coverslips (Fisher, UK) 

Gloves (Appleton Woods, UK) 

Graduated 1ml Pasteur pipettes (Starlab, UK) 

Incubator (Sanyo) 

Mini LabRoller (LabNet) 

Microflow Class II Biosafety Cabinet (Laboratory Analysis Ltd., Exeter, UK) 

Microscope (Nikon Eclipse T5100) 

Microcentrifuge (1-14, Sigma Aldrich, UK) 

Mr Frosty freezing container (Fisher Scientific, Loughborough, UK) 

Optima XPN-100 Ultracentrifuge (Beckmann Coulter, California, US) 

PicoTipTM emitter (New Objective, Germany) 

Pipettes (HTL Lab solutions, Poland) 

Pipette filler (Bel-Art, SP Scienceware) 

Plate Reader EL800 (Biotek, US) 

Power pack (Bio-Rad Laboratories Ltd, UK) 

Rocker, Gyratory, SSL3 (Stuart, UK) 

Semi-dry Trans-Blot SD cell (Bio-Rad Laboratories Ltd, UK) 

Tissue homogeniser, 1ml (GPE Scientific, UK) 

ThinCertTM Transwell 24 well plate inserts (Greiner Bio-One, UK) 

TripleTOF 5600 system (AB Sciex, UK) 

Water bath (Clifton, Weston-Super-Mare, UK) 

Western blot tank (Bio-Rad, UK) 
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2.1.2 Reagents  

α-2-antiplasmin (Sigma, UK) 

2-(n-morpholino) ethanesulfonic acid (Sigma, UK) 

Acetic Acid (Fisher, UK) 

Acrylamide (Melford, UK) 

Aminocaproic acid (ACA) (Sigma, UK) 

Ammonium Bicarbonate (Sigma, UK) 

Ammonium Persulfate (APS) (Melford, UK) 

Amphotericin B (Melford, UK) 

Aprotinin (Sigma, UK) 

Β-mercaptoethanol (Sigma, UK) 

Bis-Acrylamide (Melford, UK) 

Bis-Tris (Melford, UK) 

Bovine Serum Albumin ((Melford, UK) 

Bromophenol Blue (Sigma, UK) 

Calcium chloride (Melford, UK) 

Coomassie Brilliant Blue G250 (Thermofisher, UK) 

Cromolyn (Sigma, UK) 

Dionex 3000 nLC system (ThermoScientific, UK) 

Disodium hydrogen orthophosphate (Scientific Laboratory Supplies, UK) 

DMSO (Fisher, UK) 

Doxycycline hydrochloride (Melford, UK) 

DTT (Melford, UK) 

Dulbecco’s Modified Eagle’s Medium With 4500 mg/L glucose and sodium bicarbonate, without L-

glutamine and sodium pyruvate (Sigma, UK) 

EDTA (Sigma, UK) 

EGTA (Melford, UK) 

Ethanol (Fisher, UK) 

Fibronectin, from human plasma (Sigma, UK) 
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Filter paper, extra thick (Bio-Rad, UK) 

Foetal Bovine Serum (Sigma, UK) 

Formic acid (Fisher, UK) 

Gentamicin Sulfate (Melford, UK) 

Giemsa stain (Sigma, UK) 

Glacial Acetic Acid (VWR, UK) 

Glucose (Fisher, UK) 

Glycerol (Melford, UK) 

Glycine (Melford, UK) 

Goat Serum (Sigma, UK) 

Ham’s F12 medium with sodium bicarbonate, without L-Glutamine (Sigma, UK) 

Ham’s F12 Medium without L-Glutamine and Phenol Red (Pan Biotech, Germany) 

HDAC2 primary antibody (Abcam,  

HEPES powder (Sigma, UK) 

Hygromycin B powder (Melford, UK) 

INTERFERin siRNA Transfection Reagent (Polyplus, UK) 

L-Glutamine solution 200mM (Sigma, UK) 

Leptomycin B powder (Santa Cruz, Texas, USA) 

Lipofectamine 3000 Transfection Kit (Invitrogen, UK). 

Industrial Methylated Spirits (CEAC, Aston University, UK) 

Magnesium Chloride (Melford, UK) 

May-Grϋnwald solution (Sigma, UK) 

Methanol (Fisher, UK) 

Minimum Essential Medium Eagle, with Earle’s salts, non-essential amino acids and sodium 

bicarbonate (Sigma, UK) 

Native PAGE gels (Life Technologies, UK) 

Non-Essential Amino Acids (Sigma, UK) 

NP-40 (Sigma, UK) 

OptiMEM (Sigma, UK) 

PageRuler Prestained Protein Ladder (Thermofisher, UK) 
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Pancoll (Pan Biotech, Germany) 

Paraformaldehyde (Sigma, UK) 

PBS Tablets (Melford, UK) 

Penicillin/Streptomycin solution, 10,000 units penicillin and 10mg streptomycin/ml (Sigma, UK) 

Pierce Cell Surface Isolation Kit (Thermofisher, UK) 

Potassium chloride (Melford, UK) 

Potassium dihydrogen orthophosphate (Fisher, UK) 

Progenesis QI for proteomics software (Version 4, Nonlinear Dynamics, UK) 

Protease inhibitor cocktail III (Melford, UK) 

PVDF membrane (Thermofisher, UK) 

Reagent A (Fisher, UK) 

Reagent B (Fisher, UK) 

RPMI 1640 medium, with L-Glutamine (Sigma, UK) 

SDS (Melford, UK) 

siRNA sequences (Qiagen, UK) 

Sodium chloride (Fisher, UK) 

Sucrose (Melford, UK) 

TEMED (Melford, UK) 

Transwell inserts (Greiner Bio-One, Austria) 

Tricine (Melford, UK) 

Tris (Melford, UK) 

Triton X-100 (Sigma, UK) 

Trypan Blue (Sigma, UK) 

Trypsin powder (Pan Biotech, Germany) 

Trypsin-EDTA 10x solution (Sigma, UK) 

Trypsin Gold, Mass Spectrometry Grade (Promega, UK) 

Type F immersion oil (Leica, Germany) 

Vectashield hard set mounting medium containing 4’-6-diamino-2-phenylindole (DAPI) (Vector 

Laboratories, UK) 
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2.2 Methods 

 

2.2.1 Cell culture 

2.2.1.1 JEG-3 

 The JEG-3 cell line is a human placental-derived trophoblastic choriocarcinoma cell line. This cell line, 

along with the BeWo cell line, is adherent with epithelial morphology, and has been widely used as a 

model for the placenta in vitro. JEG-3 cells endogenously express S100P (Tabrizi et al. 2018). 

 JEG-3 cells were cultured at 37⁰C in an atmosphere of 5% (v/v) CO2 and 20% (v/v) O2, in Minimum 

Essential Medium (MEM) supplemented with 10% (v/v) foetal bovine serum, 1% (v/v) non-essential 

amino acids, 1x Penicillin/Streptomycin solution (100 units and 0.1mg/ml respectively), and 2mM L-

Glutamine. 

 

2.2.1.2 BeWo 

The BeWo cell line is another human placental-derived trophoblastic choriocarcinoma cell line. They 

are adherent with epithelial morphology. This cell line expresses S100P endogenously, at a higher level 

than that of the JEG-3 cell line (Tabrizi et al. 2018). 

BeWo cells were cultured at 37⁰C in an atmosphere of 5% (v/v) CO2 and 20% (v/v) O2, in Ham’s F12 

medium supplemented with 10% (v/v) foetal bovine serum, 1x Penicillin/Streptomycin solution (100 

units and 0.1mg/ml respectively), and 2mM L-Glutamine. 

 

2.2.1.3 HTR8/SVneo 

The HTR8/SVneo cell line are a first trimester extravillous trophoblast cell line that is regularly used as 

a model for implantation (Hannan et al. 2010). This cell line does not express S100P endogenously, and 

was therefore transfected with a wild type S100P protein (Tabrizi et al. 2018). 

The HTR8 clones were kindly generated by Dr Thamir Ismail (University of Liverpool, UK), with levels 

of S100P in each clone confirmed by western blotting. The HTR8 cell clones used are as follows:  
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1) control cells transfected with the empty vector (Empty plasmid Clone 3), 2) cells transfected with 

plasmid SGB217, which was obtained by combining the pcDNA3.1 Hygro plasmid with a PCR amplified 

S100P product (SBG217 Clones 3, 5, 7, 9 and 10).  

All HTR8 cell lines were cultured at 37⁰C in an atmosphere of 5% (v/v) CO2 and 20% (v/v) O2, in RPMI 

1640 medium supplemented with 5% (v/v) foetal bovine serum, 1x Penicillin/Streptomycin solution 

(100 units and 0.1mg/ml respectively), 2mM L-Glutamine and 50µg/ml Hygromycin B. 

 

2.2.1.4 COS-7 and HeLa cells 

The COS-7 cell line, derived from African green monkey kidney, and the HeLa cell line, derived from 

human cervical carcinoma, express S100P under the control of a doxycycline inducible promoter. The 

doxycycline inducible cell system has been previously described by Du et al. (2012) and Du et al. (2020). 

The tetracycline induction system, Tet-On, utilises two plasmids. The first plasmid, pBTE, contains the 

rtTA2(S)-M2 regulatory element. The second plasmid, pTRE-ins, expresses the target protein (S100P), 

and is under the control of the tetracycline-response element (TRE). Both plasmids are required for 

target protein expression, and expression of the protein is initiated by tetracycline or its derivative, 

doxycycline. Doxycycline binds to the rtTA regulatory element, which allows it to bind to the TetO 

operator sequence upstream of the minimal promoter. This in turn allows for initiation of gene 

transcription (Figure 2.2.1). One inducible clone per cell line was utilised, named COS-7 s10 and HeLa 

A3 respectively. Induction of S100P expression in COS-7 s10 and HeLa A3 cells were promoted using 

1µg/ml doxycycline, added to the culture media every 48 hours to maintain S100P expression. 

Both COS-7 and HeLa cells were cultured at 37⁰C in an atmosphere of 5% (v/v) CO2 and 20% (v/v) O2, 

in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% (v/v) foetal bovine serum, 1x 

Penicillin/Streptomycin solution (100 units and 0.1mg/ml respectively), and 2mM L-Glutamine. 
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Cells were transfected with two plasmids, one of which expresses the regulatory element (rtTA) and one of which expresses the gene of interest (Gene X). 

In the presence of doxycycline (Doxy), rtTA can interact with a rtTA responsive promoter to drive the expression of the protein. 

Figure 2.2.1: The Tet-On system 
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2.2.1.5 MDA-MB-231 cells 

The MDA-MB-231 cell line is an invasive breast cancer cell line with endogenous S100P expression 

(Bigelow et al. 2009). MDA-MB-231 cells were cultured at 37⁰C in an atmosphere of 5% (v/v) CO2 and 

20% (v/v) O2, in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% (v/v) foetal 

bovine serum, 1x Penicillin/Streptomycin solution (100 units and 0.1mg/ml respectively), and 2mM L-

Glutamine. 

 

2.2.1.6 Passaging of cells 

Cells were grown to at least 80% confluency in a T25 flask. Cells were washed with warm PBS before 

incubation with warm trypsin (0.025% for JEG-3, BeWo, and HTR8 cell lines, and 0.25% for COS-7, HeLa 

and MDA-MB-231 cell lines) and 2.5mM EDTA for 5 minutes at 37⁰c. Following their detachment, cells 

were resuspended in 4ml supplemented media and spun at 1000rpm for 5 minutes. The supernatant 

was removed and cells were resuspended in the same volume of fresh media. 1ml of the cell 

suspension was placed into a T25 flask and 6ml fresh media added. Excess cells were utilised in 

experiments. 

 

2.2.1.7 Cryopreservation 

Cells were grown to confluency and trypsinised as mentioned above (2.2.1.6). Following centrifugation, 

the supernatant was removed and cells were resuspended in 4ml freezing mix (10% DMSO in FBS). 1ml 

of the cell suspension was placed into one cryovial each and placed into the Mr Frosty container at -

80⁰c. The following day, the cryovials were transferred into liquid nitrogen for long term storage. 

 

2.2.1.8 Cell thawing 

Frozen cells were removed from liquid nitrogen and defrosted in a water bath. Following thawing, cells 

were transferred into a T25 cell culture flask and 6ml of culture media was added drop by drop. The 

culture media was changed the following day. 
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2.2.2 Cell counting  

Prior to every experiment involving cultured cells, the number of cells present in the suspension were 

calculated. Following cell passaging (see 2.2.1.6), 10µl of excess cell suspension was added to a 

haemocytometer chamber. An average of four separate cell counts were taken, and the number of 

cells counted was multiplied by 104 to give the total amount of cells in 1ml of suspension.  

 

2.2.3 Preparation of total cell lysate 

Cells were grown to confluency in 2x 60mm dishes. Cell culture media was then removed, and cells 

were washed with 1x PBS before being collected by scraping into 1x PBS with 1x protease inhibitor 

cocktail. Lysates were collected in Eppendorf tubes and sonicated on the lowest power setting for 10 

seconds with an interval of 30 seconds for three times. Lysates were spun for 20 seconds at 3000rpm 

to remove cell debris. 10µl of the lysate was used for protein quantification, and the rest of the lysate 

was frozen at -80⁰c. 

 

2.2.4 Protein Quantification 

The amount of protein present within each sample was calculated using a modified protein assay based 

on the Lowry method (Lowry et al. 1951). 

A BSA standard solution between the ranges of 0 and 10mg/ml and 2µl of samples were added in 

triplicate to a 96 well plate. 25µl of Reagent A and 250µl of Reagent B was added to each well, with 

care taken to avoid creating air bubbles. The samples were mixed and incubated for 10-15 minutes 

before being read at 750nm using a BioTek EL800 plate reader to produce a standard curve. Protein 

level in each sample was quantified by calculating the amount of protein in µg/µl.  

 

2.2.5 SDS-PAGE 

4x Laemmli buffer (200mM Tris pH 6.8, 40% (v/v) glycerol, 4% (v/v/) β-mercaptoethanol, 4% (w/v) SDS, 

0.04% (w/v) bromophenol blue) was added to lysates before loading 15µg of protein lysates on a 16% 

(w/v) polyacrylamide tricine gel (Table 2.2.1). The voltage was set at 70V for 15 minutes, followed by 
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100V for 30 minutes and 150V for the remaining time. Reagents required for SDS-PAGE and western 

blotting are listed in Table 2.2.2. 

 

 

 

 

 

 

 

 

 

 

 

 16% Separating gel 4% Stacking gel 

3x Gel Buffer 3.3ml 1.2ml 

Acrylamide/bisacrylamide 3.3ml 0.4ml 

Water 1.36ml 3.36ml 

50% Glycerol 2ml 0ml 

10% Ammonium Persulphate (APS) 50µl 40µl 

TEMED 6µl 4µl 

Acrylamide/Bisacrylamide (48%:1.5%) 24g acrylamide and 0.75 bisacrylamide in 50ml dH2O 

Anode buffer 12.11g Tris in 1 litre dH2O (pH 8.9) 

Cathode buffer 12.11g Tris, 17.92g Tricine, 1g SDS in 1 litre dH2O (pH 

8.25) 

3x Gel buffer 18.16g Tris, 0.75ml 20% SDS in 50ml dH2O (pH 8.45) 

Sealing gel 1ml of 16% separating gel, 20µl 10% APS and 2µl 

TEMED. 

4x Laemmli buffer 20ml 0.5M Tris base (pH 6.8), 20ml Glycerol, 2ml β-

mercaptoethanol, 2g SDS and 0.02g Bromophenol blue 

10x Electroblot transfer buffer 30.25g Tris Base, 144g Glycine in 1 litre dH2O (pH 8.3) 

1x Electroblot transfer buffer 50ml 10x electroblot transfer buffer, 100ml 100% 

Methanol, 350ml dH2O  

ECL detection reagent 6ml dH2O, 1.5ml 0.5M Tris (pH 8.5), 19µl 50mM 

Coumaric acid, 37µl 250mM Luminol, 2.2µl 37% H2O2 

Table 2 

 

Table 2.2.1: List of reagents required to make 16% SDS-PAGE tricine gels 

Table 2.2.2: List of buffers used in SDS-PAGE and western blotting 
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2.2.6 Western blotting 

Proteins were transferred onto polyvinylidene fluoride (PVDF) membranes at 35mA per gel for 2 hours. 

Membranes were blocked in 3% (w/v) BSA in PBS, before incubating in the appropriate primary 

antibodies (Table 2.2.5) diluted in 3% (w/v) BSA in PBS overnight at 4⁰c. Membranes were washed in 

PBS before incubation in secondary antibodies conjugated to horseradish peroxidase (HRP) diluted in 

3% BSA for 2 hours. Membranes were developed using ECL detection reagent.  

 

2.2.6.1 Blot stripping 

Membranes containing proteins were subjected to blot stripping. Membranes were incubated in 

stripping buffer (Table 2.2.3) for 30-45 minutes at 50⁰c with minimal agitation. Membranes were 

subsequently washed with distilled water for 2 minutes, before being washed with 1x PBS three times 

for 5 minutes each. Blots were subjected to blocking with 3% BSA prior to incubation with primary 

antibody. 

 

 

 

 

 

 

 

2.2.6.2 Quantification of band intensity 

Intensity of the protein bands detected by western blotting were quantified with Image Studio Lite. 

The intensity of the protein bands of interest were normalised to the band intensity of their respective 

loading controls. Protein expression and isolation of subcellular cellular compartments were calculated 

following normalisation.  

 

Stripping buffer (100ml) 20ml 10% (w/v) SDS 

12.5ml 0.5M Tris HCl pH 6.8 

0.8ml B-mercaptoethanol 

66.7ml distilled water  

  Table 2.2.3: List of reagents required for western blot stripping buffer 
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2.2.7 Indirect immunofluorescence  

Cells were seeded at a density of 20,000 cells per well in a 24 well plate containing fibronectin-coated 

glass coverslips. Cells were incubated for 48 hours before washing with 1x cytoskeleton buffer (CB, see 

table 2.2.4 for recipe) and treatment with 4% paraformaldehyde in 1xCB for 10 minutes at 37⁰c.  4% 

paraformaldehyde was removed and cells were incubated in 30mM glycine in 1x CB at room 

temperature, before permeabilising and solubilising the cells in 0.1% Triton X-100 in 1x CB for 10 

minutes. Following this, cells were washed 3 times for 5 minutes each in 1x CB and blocked in 10% goat 

serum in 1x CB for 30 minutes. Cells were consequently incubated with the appropriate primary 

antibodies in 1x CB and 1% goat serum at room temperature for 45 minutes. Following primary 

antibody incubation, cells were washed 3 times for 5 minutes each in 1x CB and incubated with the 

appropriate secondary antibody labelled with a fluorophore (FITC or TRITC) as well as rhodamine 

phalloidin (dilution 1:100) to visualise F-actin when required in 1x CB and 1% goat serum at room 

temperature for 45 minutes. Cells were washed 3 times for 5 minutes each in 1x CB. Coverslips were 

washed in distilled water and mounted and fixed onto microscope slides with mounting medium, and 

sealed. Cells were visualised using the Leica DMI4000B microscope, and pictures taken with the DFC 

360FX camera.  

 

 

 

1x Cytoskeleton Buffer 150mM NaCl, 5mM MgCl2, 5mM EGTA, 5mM 

glucose, 10mM 2-(n-morpholino) ethanesulfonic 

acid pH 6.1 

Rhodamine Phalloidin 1:100 dilution in 1x cytoskeleton buffer 

 

 

 

 

 

  Table 2.2.4: List of reagents required for indirect immunofluorescence staining 
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2.2.8 Subcellular fractionation using a Dounce homogeniser 

Cells were fractionated as depicted in figure 2.2.2. Cells were grown to confluency in 2x 60mm dishes. 

Cell culture media was then removed, and cells were washed with 1x PBS before being collected by 

scraping into subcellular fractionation buffer (see table 2.2.5). The cell suspension was passed through 

a Dounce homogeniser 10 to 15 times to lyse cells. The homogenate was centrifuged at 720 x g for 5 

minutes to pellet nuclei. The supernatant containing cytoplasm, membrane and mitochondria was 

removed and placed into a fresh Eppendorf tube kept on ice. The nuclear pellet was washed with 

subcellular fractionation buffer before being passed through the Dounce homogeniser another 10 to 

15 times. This was centrifuged at 720 x g for 10 minutes. The supernatant was discarded and the 

nuclear pellet resuspended in a final volume of 150µl subcellular fractionation buffer. The supernatant 

containing cytoplasm, membrane and mitochondria fractions was centrifuged at 10,000 x g for 5 

minutes to pellet the mitochondria. The supernatant containing cytoplasm and membrane fractions 

was removed and placed into a fresh Eppendorf tube. All fractions were sonicated and a small volume 

was taken for protein quantification, prior to storage at -80⁰c. 

 

 

 

 

Subcellular fractionation 

buffer 

5µM CaCl2 Subcellular 

fractionation buffer 

250mM Sucrose 250mM Sucrose 

20mM HEPES pH 7.4 20mM HEPES pH 7.4 

10mM KCl 10mM KCl 

2mM MgCl2 2mM MgCl2 

1mM EDTA 1x protease inhibitors 

1mM EGTA 1mM DTT 

1x protease inhibitors 5µM CaCl2 

1mM DTT  

  Table 2.2.5. Recipe for various subcellular fractionation buffers for use with a Dounce homogeniser. 
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 Figure 2.2.2: Flow chart depicting steps taken in subcellular fractionation protocol. Fractions of interest are marked with a red border. 
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2.2.8.1 Quantification of protein in cellular fractions 

Following western blotting of subcellular fractions, densitometric analysis was carried out on bands of 

interest using Image Studio Lite. The relative densities of both nuclear and cytoplasmic fractions were 

taken as a proportion of their sum (eg. % of nuclear S100P = density of nuclear S100P/ [density of 

nuclear S100P + density of cytoplasmic S100P] x 100).  

 

2.2.9 Subcellular fractionation using NP-40 detergent 

Cells were fractionated as depicted in Figure 2.2.3. Cells were grown to confluency in 2x 10cm dishes. 

Cell culture media was then removed, and cells were washed with 1x PBS before being collected by 

scraping into 500µl of Buffer A on ice (see table 2.2.6). The cell suspension was transferred into an 

Eppendorf tube before centrifugation at 10,000 x g for 2 minutes at 4⁰C. The supernatant containing 

the cytosolic extract was centrifuged at 14500 x g for 10 minutes at 4⁰C, following which the 

supernatant was transferred into a new tube and labelled as the “cytosolic” fraction. 

The pellet left from the first centrifugation was resuspended in 500µl of Buffer A and incubated on a 

rocker, on ice, for 30 minutes. Following incubation, the sample was spun at 10,000 x g for 2 minutes 

at 4⁰C and the pellet was once again resuspended in 500µl Buffer A. The nuclear fraction was sonicated 

for 5 seconds at minimum power.  

 

Reagents required for Buffer A 

10mM HEPES pH 8 

1.5mM MgCl2 

10mM KCl 

200mM Sucrose 

0.5mM DTT 

0.5% NP-40 

1x protease inhibitors 

 Table 2.2.6: Reagents required to make Buffer A 
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 Figure 2.2.3: Flow chart depicting steps taken in the subcellular fractionation protocol utilising NP-40 detergent. Fractions of interest are marked with a red 

border. 
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2.2.10 Transient transfection 

Depending on the experiment to be carried out, cells were first seeded at the appropriate density onto 

a variety of culture dishes/plates (either 24 well plates for immunofluorescence or 60mm dishes for 

western blotting). After 24 hours, the culture media was removed, discarded, and replaced with the 

antibiotic-free equivalent for 1-2 hours prior to transfection. Cells were transfected using the 

Lipofectamine 3000 Transfection Reagent according to the manufacturer’s instructions.  

Plasmid SGB214 contains the N-terminal YFP-tagged S100P. 500ng of plasmid DNA (SGB214) was used 

per well of a 24 well plate, and 2.5µg of plasmid DNA was required per 60mm dish. Tubes containing 

the transfection reagents were added dropwise to each well and left to incubate for 48 hours before 

cell fractionation or fixation.  

 

2.2.10.1 Calculation of transfection efficiency 

Round glass coverslips were coated with fibronectin at a concentration of 10µg/ml. Coverslips were 

covered and left to incubate for 1 hour at room temperature before being washed twice with 1x PBS 

and lifted into a 24 well plate. The plate was exposed to UV light for 10 minutes before cells were 

seeded at the required density. Cells were transfected as previously (2.2.10) and left for 24 hours. 

Following the 24-hour incubation, cells were washed once with PBS before fixation with 4% (w/v) 

paraformaldehyde in PBS for 10 minutes at 37⁰c. PFA was removed and replaced with 30mM glycine 

in PBS to neutralise the leftover PFA. Cells were mounted onto glass microscope slides with DAPI 

mounting medium and sealed with clear nail varnish. Images of the transfected cells were taken with 

an inverted epifluorescence microscope (Leica DM14000B) using 63 x oil objective. The total cell count 

was obtained per field by counting the number of DAPI-stained nuclei. The transfection efficiency was 

calculated as an average of the percentage of cells expressing the YFP-tagged S100P out of the total 

cell count per field.  

 

2.2.11 Quantification of S100P nuclear to cytoplasmic ratio 

Following transfection, fixation and staining of cells (see 2.2.7 and 2.2.10), images were taken on the 

Leica DM14000B epifluorescence microscope and quantified with the program ImageJ. A region of 

interest was drawn in either cytoplasmic or nuclear regions of the cell and the pixel intensity was 

recorded. Multiple regions of interest were recorded per cell, and at least 50 cells were examined.  
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2.2.12 Leptomycin B treatment 

For experiments requiring Leptomycin B (LMB), cells were treated at varying concentrations (0, 5 and 

10ng/ml) in order to calculate the optimal dosage. LMB was dissolved into 100% ethanol at a 

concentration of 5µg/ml and further diluted to the required concentrations (0, 5 and 10ng/ml) in cell 

culture media. 

To treat cells, culture media was removed and replaced with LMB-containing media for either 3 or 6 

hours prior to fixation or subcellular fractionation. 

 

2.2.13 Plasma membrane extraction by nitrogen cavitation 

Plasma membranes were isolated from cell lines using adapted protocols (Kaoutzani et al. 1993; 

Simpson, 2010, see figure 2.2.4 for flow chart). Cells were grown to confluency in between 4 and 8 

10cm dishes. Cell culture media was removed before washing cells twice with 1x PBS. Cells were 

scraped into 1 x PBS before centrifugation at 300 x g for 5 minutes. Following removal of the 

supernatant, the pellet was resuspended in homogenisation buffer (250mM sucrose, 50mM Tris, 

0.25mM CaCl2 pH 7.4), and centrifuged at 600 x g for 5 minutes, twice. The cell pellet was resuspended 

in homogenisation buffer and passed through the cell disruption bomb chamber at 4⁰C. Cells were 

equilibrated in the cell disruption bomb chamber at 800-1000 PSI for 20 minutes. Following release 

from the bomb, the suspension was centrifuged at 550 x g for 10 minutes to remove remaining whole 

cells and nuclei. The supernatant was collected and layered over 35% (w/v) sucrose/50mM Tris and 

spun at 100,000 x g for 1 hour. The interface was collected and topped up with 25mM sucrose/50mM 

Tris pH 7.4 before spinning at 100,000 x g for 30 minutes. The pellet containing plasma membranes 

was resuspended in 250mM Sucrose/50mM Tris pH 7.4. 
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Figure 2.2.4: Flow chart depicting steps taken in nitrogen cavitation protocol. Fraction of interest is marked with a red border. 
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2.2.14 Biotinylation of cell surface proteins 

Cell surface proteins were biotinylated and extracted using the Pierce Cell Surface Isolation Kit 

according to the manufacturer’s instructions (Jang and Hanash 2003). Cells were grown to 90% 

confluency in 2x T75 flasks. Cell media was removed and cells were washed twice with ice-cold PBS. 

Sulfo-NHS-SS-Biotin solution was prepared at a concentration of 250µg/ml. 10ml of the biotin solution 

was added per T75 flask and flasks were incubated on a rocking platform, on ice, for 30 minutes. 500µl 

of quenching solution was added to each flask and swirled around to stop the reaction. Cells were then 

scraped into solution and transferred to a 50ml tube. Each flask was washed with 10ml TBS, which was 

then added to the same 50ml tube containing the cell suspension. Cells were centrifuged at 500 x g for 

3 minutes and the supernatant discarded. The cell pellet was resuspended in 5ml TBS, and was again 

centrifuged at 500 x g for 3 minutes. The supernatant was discarded and 250µl of lysis buffer, 

containing protease inhibitor, was added to the cell pellet. Cells were resuspended and sonicated on 

ice for 10 seconds using 1 second bursts. Cells were incubated on ice for 30 minutes, and were vortexed 

every 5 minutes for 5 seconds. The lysate was then centrifuged at 10,000 x g for 2 minutes at 4⁰C.  

NeutrAvidin agarose was prepared by adding 250µl of NeutrAvidin slurry to a column and spinning at 

1000 x g for 1 minute. The flow through was discarded before adding 250µl wash buffer, followed by 

centrifugation at 1000 x g for 1 minute. This step was repeated twice. The lysate was added to the 

capped column and left for 60 minutes at room temperature in a rotating platform. Following 

incubation, the caps were removed from the column and the column was placed into a fresh collection 

tube. The column was centrifuged at 1000 x g for 1 minute, and the flow through discarded. The 

column was then washed with wash buffer (containing protease inhibitors). The column was inverted 

several times to fully mix the sample. The column was then centrifuged again at 1000 x g for 1 minute. 

The washing step was repeated three times before beginning the elution of cell surface proteins. 

To elute proteins bound to the Sulfo-NHS-SS-Biotin, 200µl of sample buffer (62.5mM Tris HCl pH 6.8, 

1% (w/v) SDS, 10% (v/v) glycerol, 50mM DTT) was added to the column and heated on a heat block for 

5 minutes at 95⁰C. The column was then added to a new collection tube, the totality of which was 

centrifuged for 2 minutes at 1000 x g. A trace amount of bromophenol blue was added to the eluate 

following protein quantification. Samples were stored at -20⁰C prior to analysis via western blotting, 

where 1/10th of the final sample volume was loaded onto the gel.  
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2.2.15 Flow cytometry of cell surface S100P 

Cells were resuspended at a concentration of 400,000 cells/ml. 250µl of the cell suspension, containing 

100,000 cells, was required per condition and pipetted into Eppendorf tubes. The tubes were 

centrifuged at 1000 rpm for 5 minutes to pellet the cells. The supernatant was discarded and the pellet 

resuspended in P2 (2% (v/v) FBS in PBS). The tubes were vortexed for 5 seconds before repeating 

centrifugation. The supernatant was again discarded before adding S100P primary antibody (see table 

4.2.1) at a concentration of 1µg/ml. The samples were vortexed for a few seconds before being 

incubated for 30 minutes at 4⁰C. 500µl of P2 was then added to each sample before vortexing and 

centrifuging at 1000 rpm for 5 minutes, following which the supernatant was discarded. This step was 

repeated twice more. The supernatant was removed and a secondary antibody (see table 4.2.1) at 

dilution 1:10 was added to each sample. The samples were vortexed before incubating at 4⁰C for 30 

minutes. 500µl of P2 was added to each sample before vortexing and centrifugation as previously. The 

supernatant was removed and samples were run through the CytoFLEX flow cytometer. 

 

 
 

 

 

 

 

 

 

Antibody Type Clone Supplier Dilution Incubation Buffer 

S100P primary 

antibody 

Monoclonal IgG 

Rabbit 

Abcam 

(EPR6143) 

1µg/ml 30 minutes at 

4⁰C 

P2 

α- Rabbit FITC 

secondary 

antibody 

Polyclonal 

 

Swine 

polyclonal 

Dako (F0054) 1:10 30 minutes at 

4⁰C 

P2 

 Table 2.2.7 List of antibodies required for flow cytometry of cell surface S100P 
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2.2.16 siRNA transfection of JEG-3 cell line 

Two siRNA sequences were selected to allow for knockdown of S100P; siRNA 4 (sequence 

TAGCACCATGACGGAATAGA) and siRNA 6 (sequence TAGGCTGAGCCTGCTCATGTA). JEG-3 cells were 

seeded in 24 well plates and grown to 50% confluency before changing the medium. The plate was 

incubated at 37⁰c for 30 minutes to allow cells to settle. A mixture containing 100µl Opti-MEM, 2µl 

INTERFERin and 0.5µl 5µM siRNA (either 4 or 6) was added to each well after mixing. Control wells 

contained only Opti-MEM, mock-treated wells contained only Opti-MEM and INTERFERin. Cells were 

left to grow for 2 days before changing medium.  

 

2.2.17 Transwell assay for motility and invasion 

In order to assess the migration and invasion of cell lines, Boyden chamber assays were utilised (Justus 

et al. 2014). In this technique, cells are seeded into an 8µm polycarbonate Boyden chamber placed 

into a well of a 24 well plate. The cells are left to migrate through the membrane, following which the 

transwells are fixed and the cells counted.  

Following 24 hours of serum deprivation by growing cells in 0.5% (v/v) FBS -containing medium, cells 

were seeded at a density of 25,000 cells into each transwell containing fully supplemented medium 

(5% (v/v) FBS). For invasion experiments, transwells were coated with Matrigel (diluted 1:3 into serum 

free RPMI) and left to set for 2 hours prior to seeding cells. For motility experiments, cells were seeded 

directly onto the transwells. Cells were then incubated for 24 hours to allow the cells to migrate/invade 

through the membrane. 

Following 24 hours, media was removed from the transwells prior to incubation in 4% (w/v) PFA, 

diluted in PBS, for 10 minutes at room temperature. PFA was removed and cells were gently washed 

with PBS twice.  Cells on the transwell membrane were permeabilised using 0.1% (v/v) triton in PBS 

for 10 minutes at room temperature. Cells were washed twice further with PBS before staining the 

cells with May-Grϋnwald solution for 10 minutes at room temperature. Following this, cells were again 

washed twice with PBS prior to staining the cells with Giemsa for 10 minutes at room temperature. 

The transwells were then washed gently with distilled water before removing any stained cells on the 

upper surface of the transwell membrane with a cotton bud. Cells on the lower side of the membrane 

were counted using a Nikon Eclipse TS100 inverted microscope and a 40x objective lens in at least 5 

random fields per transwell.  
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2.2.17.1 S100P antibody treatment 

To assess the effect of the S100P in the cell surface/membrane on cell migration or invasion, addition 

of S100P antibody was carried out as previously done in the context of cancer cells (Clarke et al. 2017; 

Ismail et al. in preparation). Cells were seeded as above (see section 2.2.17) into the transwells, and 

S100P antibody was added to the culture media in both the transwells and the outer wells at dilution 

1:1000. Following 24 hours of incubation, the transwells were processed as above (see section 2.2.17). 

 

2.2.17.2 Cromolyn treatment 

To assess the effect of the cromolyn on cell migration or invasion as previously done by Arumugam, 

Ramachandran and Logsdon (2006), cells were seeded as above (see section 2.2.17) into the 

transwells, with cromolyn added into the transwell and outer well at a concentration of 10µM and 

100µM. Following 24 hours of incubation, the transwells were processed as above (see section 2.2.17). 

 

2.2.18 Quantification of focal adhesion complexes 

Following indirect immunofluorescent staining of cells for paxillin (see section 2.2.7), pictures were 

taken of cells with the Leica DMB400 using a 63x oil objective. The number of focal adhesions per cell 

(randomly selected) were counted for each condition, with an excess of 50 cells being counted per 

condition.  

 

2.2.19 Isolation of extravillous trophoblasts from first trimester placenta 

Written informed consent was obtained from all women recruited into the study. Samples of placental 

tissues for EVT isolation were obtained immediately after elective termination of pregnancy from first 

trimester of gestation (8-12 weeks). Placental samples were collected with approval of Health Research 

Authority - West Midlands, Edgbaston Research Ethics Committee (NHS REC 15/WM/0284 and AHRIC 

REF 1245-SG). 

All work was carried out with sterile equipment in a sterile tissue culture hood. Blood clots were 

removed from the placental tissue before washing with Ham’s F12 (without phenol red) for 10 minutes 

whilst stirring gently. Pieces of tissue were sorted through to obtain chorionic villi. The chorionic villi 
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were scraped using forceps and a scalpel, and excess placental membrane was removed. Several 

millilitres of pre-warmed 0.25% trypsin solution (0.03% glucose, 1.2% NaCl, 0.03% KCl, 0.1725% 

disodium hydrogen orthophosphate, 0.03% potassium dihydrogen orthophosphate, 0.2% trypsin 

powder, 0.02% EDTA) was poured onto the scraped material. The placental tissue mixed with trypsin 

was transferred into a 250ml bottle with a magnetic stirrer using a cut Pasteur pipette. The solution 

was mixed along with 75ml 0.25% trypsin for 9 minutes on a heat stirrer at 37⁰c. A funnel and gauze 

were assembled over a fresh sterile 250ml bottle filled with 25% newborn foetal calf serum in Ham’s 

F12, and after 9 minutes of digestion, the placental tissue was filtered into this bottle, allowing for 

neutralisation of the trypsin solution. The bottle was rinsed with 15ml Ham’s F12, and the gauze 

twisted, to obtain as many cells as possible. The filtrate was aliquoted into universal tubes and 

centrifuged for 5 minutes at 450 x g. The supernatant was discarded and the pellets were resuspended 

by flicking the tubes. Pellets were pooled and resuspended in a total volume of 15ml Ham’s F12. 

Universal tubes were rinsed with 5ml Ham’s F12 which was then added to the 15ml of pooled pellets. 

8ml of Pancoll was aliquoted into two fresh sterile universal tubes, and equal volumes of sample were 

layered over the Pancoll (Figure 2.2.5, panel A). The tubes were spun at 750 x g for 20 minutes with 

the brake off. Following centrifugation, a white band of cells should be visible at the interface (Figure 

2.2.5, panel B). 4-5ml of the interface was aspirated using a Pasteur pipette and collected into clean 

universal tubes. The universal tubes were topped up with Ham’s F12 and spun at 500 x g for 5 minutes. 

The supernatant was discarded and pellets were resuspended by flicking the tube. All cell pellets were 

pooled into one tube and 1ml of Trophoblast Complete Medium (TCM: Ham’s F12 without Phenol red, 

20% FBS, 1x Pen/Strep solution, 2mM L-Glutamine, 6.25µg/ml amphotericin, 50µg/ml gentamicin 

sulfate) was added before performing a viable cell count. Cells were seeded onto fibronectin coated 

35mm dishes (20µg/ml) and left to settle. Cells were left overnight before changing the media with 

fresh TCM, both to allow EVT cells to settle and to wash away other contaminating cells (placental 

macrophages, foetal red cells, mesenchymal core cells). The yield of EVT cells was calculated 

immunofluorescent staining for HLA-G.  
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Trophoblast layer 

 

A) Schematic representing layering of cell filtrate onto Pancoll to allow for separation of EVT cells from 

other cell types 

B) Resulting interface containing EVT cells following centrifugation at 720 x g for 20 minutes.  

 

A 

B 

Figure 2.2.5: Isolation of EVT cells from first trimester placenta 
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2.2.20 Antibodies   

 

Primary 

Antibodies 

Experiment Supplier Species Type Dilution Reference 

Actin WB Sigma-Aldrich 

(Dorset, UK) 

Mouse Monoclonal 1:3000 A2228 

Lamin WB Sigma-Aldrich 

(Dorset, UK) 

Rabbit Polyclonal 1:1000 SAB4501764 

S100P WB R&D Systems 

(Oxford, UK) 

Goat Polyclonal 1:2000 AF2957 

Tubulin WB Sigma-Aldrich 

(Dorset, UK) 

Mouse Monoclonal 1:5000 T5168 

HDAC2 WB Abcam (Cambridge, 

UK) 

Rabbit Monoclonal 1:2000 ab32117 

Paxillin WB Invitrogen 

(Altrincham, UK) 

Mouse Monoclonal 1:2000 MA5-13356 

Caveolin I WB Santa Cruz (Texas, 

USA) 

Rabbit Monoclonal 1:750 N-20, sc-894 

S100PBP WB Sigma-Aldrich 

(Dorset, UK) 

Rabbit Polyclonal 1:1000 HPA027328 

S100P IF Abcam (Cambridge, 

UK) 

Rabbit Monoclonal 1:200 EPR6143 

Paxillin IF Invitrogen 

(Altrincham, UK) 

Mouse Monoclonal 1:100 AH00492 

HLA-G IF Abcam (Cambridge, 

UK) 

Mouse Monoclonal 1:100 4H84 

Secondary 

Antibodies 

 Supplier Species Type Dilution Reference 

Anti-mouse 

IgG, HRP-

linked 

WB New England 

Biolabs 

(Hertfordshire, UK) 

Horse Polyclonal 1:3000 7076S 
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Anti-goat 

IgG, HRP-

linked 

WB Dako (California, 

US) 

Rabbit Polyclonal 1:3000 P0449 

Anti-rabbit 

IgG, HRP-

linked 

WB New England 

Biolabs 

(Hertfordshire, UK) 

Gat Polyclonal 1:3000 7074S 

α- Mouse 

FITC 

secondary 

antibody 

IF Dako (California, 

US) 

Rabbit Polyclonal 1:100 F0261 

α- Rabbit 

FITC 

secondary 

antibody 

IF Dako (California, 

US) 

Swine Polyclonal 1:100 F0205 

 

2.2.21 Blue Native PAGE 

Cell lysates and fractions were added to native gel loading buffer with a final concentration of 50% 

(v/v) glycerol (Table 2.2.9). Electrophoresis equipment was assembled before pouring 1x BN blue 

cathode running buffer and 1x BN anode running buffer into the inner and outer chambers of the tank 

respectively. 30µg of cell lysates and fractions were loaded on a NativePAGE 4-16% (w/v) Bis-Tris gel 

and run for 60 minutes at 150V. After 60 minutes, the 1x BN blue cathode running buffer was replaced 

with 1x BN colourless cathode running buffer and run for another 60 minutes. After 60 minutes, the 

voltage was increased to 250V and run until the blue front reached the bottom of the gel. The gel was 

then transferred to PVDF membrane prior to western blotting for S100P (see 2.2.6) or mass 

spectrometric analysis. 

 

WB, Western blotting; IF, immunofluorescence 

Table 2.2.8: List of primary and secondary antibodies used in these studies 
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2.2.22 Mass spectrometry analysis 

 

All mass spectrometry work was performed by Ms Ivana Milic following the methodology of 

Shevchenko et al. (2007) with minor modifications, as described by Pallett et al. (2019).  

Following separation of cell lysates and fractions by BN-PAGE (see section 2.2.21), gels were 

disassembled from the gel apparatus and stained with Coomassie G250 blue (0.5% (w/v) in 40% 

methanol and 10% glacial acetic acid) for 1 hour. Gels were subsequently destained in 10% ethanol 

and 7.5% glacial acetic acid. 

For the in-gel digestion of proteins, each sample was divided into 4 fragments per lane according to 

their approximate molecular weight (Figure 2.2.6). Each gel fragment was excised and diced in a clean 

Eppendorf tube using a sterile scalpel. Gel pieces were consequently destained with 50% acetonitrile 

in 50 mM ammonium bicarbonate, after which they were dehydrated with acetonitrile and vacuum 

dried. In-gel digestion of proteins was carried out using trypsin Gold in 3 mM ammonium bicarbonate 

using a 25:1 protein:trypsin ratio on a shaking platform at 550 rpm at 37 °C overnight. The next day, 

peptides were extracted for 15 minutes in an ultrasonic bath using acetonitrile, with the volume used 

equivalent to 50% of the sample volume. Peptides were washed twice with 150µl of 50% acetonitrile 

in 50mM ammonium bicarbonate. Full dehydration of the gel pieces and maximisation of peptide 

extraction was achieved using 400µl of acetonitrile. Peptide extracts were pooled into the appropriate 

Eppendorf tubes, vacuum dried and stored at −20 °C prior to analysis. 

BN loading buffer 750mM ACA, 50mM bis-tris pH7, 5% (w/v) CBB 

G250, stored at -20⁰c 

10x BN blue cathode running buffer 500mM tricine, 150mM bis-tris pH7, 0.2% (w/v) 

CBB G250, stored at 4⁰c 

10x BN colourless cathode running 

buffer 

500mM tricine, 150mM bis-tris pH7, stored at 

4⁰c 

10x BN anode running buffer 500mM tricine, stored at 4⁰c 

 Table 2.2.9 List of reagents required for blue native PAGE electrophoresis 
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Sample reconstitution was achieved by resuspension of peptides in 50µl 3% aqueous acetonitrile, 0.1% 

formic acid prior to liquid chromatography-coupled tandem mass spectrometry analysis (LC-MS/MS). 

Separation and analysis of peptides was carried out using the nLC system coupled to the TripleTOF 

5600 system operation in information dependent mode (IDA). The peptide solutions were injected 

onto a PepMap column using 2% Eluent B (98% acetonitrile in 0.1% formic acid) at a 30µL/minute flow 

rate. Separation of peptides on the PepMap column was carried out under the following gradient 

conditions: 0-3 minutes 2% B, 3–48 minutes 2–45% B, 48–52 minutes 45–90% B, 52–55 minutes 90% 

B, 55–70 minutes 2% B.  

To form the electrospray, nLC eluate was sprayed at 2500V using a PicoTip emitter, and the 10 most 

intense ions from each MS survey scan were selected for MS/MS. Acquired ions were temporarily 

excluded from acquisition by MS/MS for 30 seconds. Calibration of the mass spectrometer was carried 

out prior to ion acquisition to ensure high mass accuracy of <10 ppm on both MS and tandem mass 

spectrometry (MS/MS) levels. Relative quantification of unique peptides was done using Progenesis QI 

for proteomics software. The acquired MS/MS data was then searched against the SwissProt database 

using MascotDaemon software (version 2.5) using the following search parameters: mass tolerance of 

0.1 Da for MS and 0.6 Da for MS/MS spectra, a maximum of 2 trypsin miscleavages, Homo 

Sapiens  taxonomy, variable modifications of methionine oxidation and cysteine 

carbamidomethylation. 
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NativePAGE 4-16% (w/v) Bis-Tris gel was stained with InstantBlue to allow for visualisation of 

total protein within each lane prior to cutting the gel into 4 fragments.  

Figure 2.2.6: Representative image depicting slicing of NativePAGE gels prior to mass spectrometry 

analysis of cytoplasm/membrane fractions from S100P-negative and S100P-positive cells for changes in 

protein abundance  
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2.2.23 Data analysis 

Statistical analysis of significant changes of protein abundance was carried out using multiple T-tests 

in GraphPad 6.0 software, and evaluated at a 95% confidence interval where p<0.05. Gene Ontology 

(GO) enrichment analysis was performed using the Database for Annotation, Visualisation and 

Integrated Discovery (DAVID) v6.8 (Huang et al. 2007).  

 

2.2.24 Statistical Analysis 

Data presented within this work are listed as mean ± SEM (standard error) or ± SD (standard deviation). 

All statistical analysis, either one-way/two-way ANOVA or Student’s T test, was carried out using 

GraphPad v 6.0 software, and evaluated at a 95% confidence interval where p<0.05. Data was 

considered statistically significant when represented with * where p<0.05, ** p<0.01, *** p<0.001, or 

**** p<0.0001.  
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3.1 Introduction 

The S100P protein, first isolated from the placenta, has been the focus of several groups due to its high 

expression in many diverse tumour types, and its role in a myriad of cellular processes (Prica et al. 

2016). Whilst much has been reported regarding the expression of S100P in numerous tissues, 

significantly less is known about the specific localisation of S100P at the subcellular level, with only a 

small number of studies highlighting this (Table 3.1.1). The majority of tissues and cell lines that have 

been assessed for S100P subcellular localisation in previously published literature happen to be of 

pathophysiological origin, largely from a cancer background (Whiteman et al. 2007; Hsu et al. 2015). 

Whilst the knowledge of S100P subcellular localisation in a disease background is important, few 

studies exist that report the localisation of S100P in a normal physiological background. In addition, 

the localisation of the S100P protein in cells could lead to more information about its role or interacting 

partners. Several previous studies have examined or isolated a variety of different proteins that 

interact or associate with S100P (Austermann et al. 2008; Heil et al. 2011; Du et al. 2012). This research 

has utilised mainly, if not exclusively, cancer cell lines, again highlighting the lack of research into S100P 

in normal healthy tissues. Several of the S100P interacting partners, namely IQGAP1 and ezrin, play a 

role in cytoskeletal organisation and regulation and act as key signalling intermediates in a variety of 

pathways (Heil et al. 2011; Neisch and Fehon, 2011). Others, such as RAGE, are present on the cell 

surface suggesting S100P has extracellular activities (Arumugam et al. 2004).  

What is puzzling nonetheless, is the fact that in most cases up to date, assessments of S100P 

localisation have been carried out using immunohistochemistry, which has the disadvantage of 

variance in both specificity and sensitivity in addition to a lack of a standard scoring system (Kim, S.-W. 

et al. 2016, Johnson, C. W. 1999). These studies highlighted in the table below suggest that S100P is 

predominantly found in the nucleus without clear explanation for such localisation in the context of its 

interactome, which consists of mostly cytoplasmic/membrane associated proteins.  

In this chapter, we aim to assess the specific subcellular localisation of the S100P using biochemical 

subcellular fractionation, a direct biochemical technique that allows for separation of cells into their 

constituent compartments using differential centrifugation. This will be achieved by the use of cell 

lines endogenously expressing S100P, as well as those that have regulatable expression. We also aim 

to assess the effect of modifications to the fractionation assay, including the addition of excess calcium, 

removal of calcium chelators, and the use of a non-ionic detergent (NP-40). In addition, the effect of 

both a YFP tag on the N-terminus of S100P, and the nuclear export inhibitor leptomycin B on S100P 

subcellular localisation will be evaluated. 
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Tissue type S100P localisation Technique used Reference 

Breast cancer (primary 

stage II tumours) 

Predominantly nuclear 

(strong) 

Cytoplasmic (weak)  

Immunohistochemistry Maciejczyk  

et al. (2013) 

Breast cancer (typical 

and atypical ductal 

hyperplasia epithelial 

cells) 

Cytoplasmic (accumulation 

in apical and supranuclear 

regions) 

Immunohistochemistry Russo and 

Russo (2004) 

Breast cancer (invasive 

ductal carcinoma) 

Cytoplasmic Immunohistochemistry Russo and 

Russo (2004) 

Pancreatic ductal 

adenocarcinoma 

Nuclear and cytoplasmic Immunohistochemistry Dowen et al. 

(2005) 

Lung adenocarcinoma 

(stably expressing GFP-

S100P) 

Nuclear and cytoplasmic Immunofluorescence 

following transfection 

Rehbein et 

al. (2008) 

Epidermoid carcinoma 

(expressing GFP-S100P) 

Nuclear and cytoplasmic Immunofluorescence 

following transfection 

Koltzscher et 

al. (2003) 

Colorectal cancer Low-grade adenomas: 

Nuclear (strong) 

High-grade adenomas: 

Nuclear (strong) and 

cytoplasmic (moderate)  

Immunohistochemistry Chiang et al. 

(2015) 

Placenta First trimester 

syncytiotrophoblasts: 

Nuclear and cytoplasmic 

(strong) 

Immunohistochemistry Zhu et al. 

(2015) 

First trimester villous 

cytotrophoblasts and 

cytotrophoblast columns: 

Cytoplasmic 

Third trimester trophoblasts: 

Nuclear (strong) and 

cytoplasmic (weaker) 

Immunohistochemistry Zhang et al. 

(2011) 
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Human oesophageal 

epithelium 

Cell membrane and 

cytoplasm 

Immunohistochemistry Sato and 

Hitomi 

(2002) 

Duodenum Enterocytes: Nuclear Immunohistochemistry Parkkila et 

al. (2008) 

Urothelial carcinoma Nuclear (strong) and 

cytoplasmic 

Immunohistochemistry Gulmann et 

al. (2013) 

Human endometrium  Nuclear Immunofluorescence Tong et al. 

(2010) 

Primary human 

endometrial epithelial 

cells 

Cytoplasm Immunofluorescence Zhang et al. 

(2012) 

Primary human 

endometrial stromal 

cells 

Cytoplasm Immunofluorescence 

Low differentiation 

endometrial cancer 

Cytoplasm Immunohistochemistry Guo et al. 

(2014) 

Bladder cancer tissues 

and T24/KK47 cell lines 

(urinary bladder 

carcinoma) 

Nuclear Immunohistochemistry, 

immunofluorescence and 

fractionation 

Shiota et al. 

(2011) 

HeLa cell line  Nuclear and cytoplasmic Immunofluorescence Dowen et al. 

(2005) 

Nuclear and cytoplasmic Immunofluorescence  Heil et al. 

(2011) 
Nuclear, cytoplasmic, and in 

membrane ruffles following 

EGF stimulation 

Human breast 

carcinoma 

Predominantly nuclear, 

cytoplasmic  

Immunocytochemistry Wang et al. 

(2006) 

 

 

  Table 3.1.1: Table of tissues and their subcellular distribution of S100P 
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3.2 Results 

3.2.1 S100P is expressed by various cell lines of differing origin 

Prior to assessing the subcellular localisation of S100P, a variety of different cell lines were first tested 

to establish the levels of S100P expression (Figure 3.2.1). To this end, we used a panel of cell lines; 

some non-tumourigenic (COS-7), as well as cancer systems (HeLa and MDA-MB-231), and models 

where S100P is known to be expressed (JEG-3 and BeWo). In some cases, S100P was endogenously 

produced by cell lines to a certain level without intervention (JEG-3, BeWo and MDA-MB-231), whilst 

in others, S100P levels can be regulated (COS-7 and HeLa). Western blotting for S100P and tubulin of 

total cell lysates was performed after separation on a 16% (w/v) SDS-PAGE on several different cell 

lines; trophoblast model cell lines JEG-3 and BeWo, cancer cell line MDA-MB-231, and two cell lines 

transfected with the inducible system HeLa A3 and COS-7 s10 (Figure 3.2.1, panel A). Quantification of 

the band intensity for both S100P and tubulin was carried out on all cell lines (Figure 3.2.1, panel B). 

Results demonstrated that levels of S100P across these cell lines was somewhat variable, with the JEG-

3 cell line exhibiting on average the lowest levels of S100P expression. The invasive breast cancer cell 

line MDA-MB-231 showed the highest level of S100P expression which was 80% higher than that of 

JEG-3 cells (±78.99 SD), followed by the BeWo choriocarcinoma cell line, which was on average almost 

50% higher than JEG-3 cells (±28.73 SD). HeLa A3 and COS-7 s10 inducible cell lines showed similar 

levels of S100P expression to each other (both 31% higher S100P expression than JEG-3 cells; COS-7 

s10 ±78.13 SD; HeLa ±37.75 SD). Levels of S100P expression in these five cell lines were not found to 

be statistically significantly different from each other (p>0.89, one-way ANOVA). 
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A) Cell lysates from JEG-3, BeWo, MDA-MB-231, COS-7 s10+ and HeLa A3+ cells were collected and 

separated on a 16% (w/v) SDS-PAGE before western blotting for S100P and tubulin.   

B) Levels of S100P within cell lysates were quantified by densitometry using Image Studio Lite and 

normalised to tubulin. Data represents the mean ±SD from at least 3 independent replicates (one-way 

ANOVA).  

 

A 

B 

Figure 3.2.1: Levels of S100P in a wide variety of cell lines 
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As mentioned, several cell lines were utilised in which S100P levels could be regulated. S100P 

expression in the HeLa A3 and COS-7 s10 cell lines could be variable depending on the length of 

treatment with 1µg/ml doxycycline. To assess the variability of S100P expression in the two cell lines 

transfected with the inducible system, western blotting was performed on HeLa A3 and COS-7 s10 cell 

lysates that had been treated with 1µg/ml doxycycline, the gene expression-inducing agent, for 

different lengths of time, ranging from 24 to 336 hours. Cells were collected prior to separation on a 

16% (w/v) SDS-PAGE, followed by western blotting for S100P and tubulin (Figure 3.2.2, panel A). 

Quantification of band intensity for both tubulin and S100P was carried out on each sample (Figure 

3.2.2, panel B). 

Data from these experiments show that S100P levels in the HeLa A3 cell line gradually increase with 

longer doxycycline treatment up to 120 to 144 hours, to a level that is statistically significantly different 

than non-induced HeLa A3 lysates (p<0.01). The HeLa A3+ lysates induced for 144 hours demonstrated 

an S100P expression level over 5.5-fold higher than that of HeLa A3+ lysates induced with doxycycline 

for 24 hours (p<0.034). Following the 144-hour time point, there is a general decrease in the level of 

S100P expression, in which the 336-hour HeLa A3+ lysate demonstrated 45% less S100P expression 

than the 144-hour HeLa A3+ lysate.  

In the COS-7 s10 cell line, there is a sharp increase in S100P expression between COS-7 s10 lysates 

induced with 1µg/ml doxycycline for 24 hours until the 72-hour time point (p<0.04). Induction of S100P 

expression for 96 hours or longer does not generate the same level of S100P expression seen in COS-

7 s10 cell lysates induced for 72 hours; on average, there is a 30% decrease in S100P expression 

following 96 hours of induction with doxycycline when compared to COS-7 s10 lysates induced for 72 

hours. COS-7 s10 lysates induced for 96 or 120 hours exhibit a statistically significantly different level 

of S100P expression compared to the non-induced COS-7 s10 lysates (p<0.03). However, COS-7 s10 

lysates induced for 96 hours or longer do not demonstrate a statistically significant difference in S100P 

expression when compared to their 24-hour counterpart (p>0.5).  

Both HeLa A3 and COS-7 s10 cell lines showed a 2.6-fold or 4.3-fold increase, respectively, in their 

S100P expression level following induction with 1µg/ml doxycycline for 72 hours compared to the 24-

hour counterpart. As a result, for fractionation experiments utilising the inducible cell lines, it was 

decided to induce cells with 1µg/ml doxycycline for 72 hours to ensure that S100P expression was at a 

sufficiently high level for localisation studies using both HeLa A3 and COS-7 s10 cell lines. 
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A) Cell lysates from COS-7 s10+ and HeLa A3+ cells induced for different lengths of time (from 0 to 336 

hours) were collected and separated by 16% (w/v) SDS-PAGE before western blotting for S100P and 

tubulin.   

B) Levels of S100P within cell lysates were quantified by densitometry using Image Studio Lite and 

normalised to tubulin. Data represents the mean ±SEM from at least 3 independent replicates (one-way 

ANOVA, * p<0.05, ** p<0.01, *** p<0.001) 

B 

Figure 3.2.2: Induction of S100P expression over time leads to increased S100P expression in HeLa A3 

and COS-7 s10 cell lines 
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In addition to the cell lines previously mentioned and used to study S100P expression, the HTR8/SVneo 

trophoblast cell line was utilised. Despite the work we have done showing that S100P appears to play 

an important role in trophoblast cell motility and invasion, this first trimester extravillous trophoblast 

cell line does not express S100P at detectable levels (Figure 3.2.3, see Tabrizi et al. 2018). Therefore, a 

HTR8 cell line stably expressing S100P was created, generating a range of clones with varying levels of 

S100P expression. HTR8 clone lysates were collected prior to separation on 16% (w/v) SDS-PAGE and 

western blotting for S100P and tubulin (Figure 3.2.3 panel A). Quantification of the band intensity was 

carried out on S100P and tubulin for each HTR8 clone (Figure 3.2.3 panel B). As expected, HTR8 cells 

transfected with the control plasmid showed no S100P expression. Out of the clones transfected with 

plasmid containing S100P, HTR8 clones 3 and 5 demonstrated the lowest levels of S100P expression, 

with clone 5 exhibiting on average a 30% higher level of expression than S100P-expressing clone 3. 

S100P-expressing clones 7, 9 and 10 showed similar levels of expression to each other, in which S100P 

expression in clones 7, 9 and 10 was 349%, 359% and 393% higher respectively than S100P expression 

seen in clone 5. HTR8 clones 7, 9 and 10 demonstrated a statistically significant difference in S100P 

expression compared to S100P-expressing clone 3 (p<0.0021) and S100P-expressing clone 5 

(p<0.0035). There is no statistically significant difference in S100P expression between HTR8 clones 7, 

9 and 10 (p>0.81). The HTR8 stable cell line is therefore an invaluable tool for assessing the impact of 

expression level on S100P subcellular localisation, as it removes the requirement of inducing cells with 

doxycycline. Most importantly, the HTR8 cell line is a model first trimester extravillous trophoblast cell 

line, and therefore more relatable to the role of S100P in placenta, unlike the inducible cell lines HeLa 

A3 and COS-7 s10.  
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A) Cell lysates from different HTR8 clones generated by transfection with a plasmid containing S100P, 

SGB217, were collected and run on 16% (w/v) SDS-PAGE before western blotting for S100P and tubulin. 

HTR8 cells transfected with a non-S100P containing plasmid, SGB16, were utilised as a negative control. 

B) Levels of S100P within cell lysates were quantified by densitometry using Image Studio Lite and 

normalised to tubulin. Data represents the mean ±SEM from at least 3 independent replicates (one-way 

ANOVA, ** p<0.01, *** p<0.001) 

 

B 

A 

Figure 3.2.3: S100P is stably expressed by HTR8 clones following transfection 
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3.2.2 S100P immunofluorescence demonstrates nuclear and cytoplasmic 

localisation 

Many studies, including our own work (Tabrizi et al. 2018), have shown the presence of S100P in the 

nucleus and the cytoplasm through immunostaining and immunofluorescence of different cell lines 

and tissues (see table 3.1.1 for references). In order to assess the localisation of S100P, HeLa A3+ cells 

were fixed and stained with an antibody to S100P by indirect immunofluorescence (see Table 2.2.8 for 

antibody dilutions). Cells were also stained for actin and DAPI to visualise the cellular cytoskeleton and 

nuclei respectively (Figure 3.2.4, panel A). 

Immunostaining of non-induced HeLa A3 cells for S100P demonstrated a small level of background 

staining. Concurrent immunostaining of HeLa A3+ cells showed a fairly homogenous, non-specific 

distribution of S100P, with a generally higher intensity of staining within the nuclear and perinuclear 

regions (Figure 3.2.4). Overall, the signal achieved for S100P appears to be quite diffuse and perhaps 

somewhat non-specific, even though no significant signal for S100P can be detected in non-induced 

HeLa A3 cells.   

In order to gain further information regarding the cellular localisation of the staining, image analysis 

was carried out using integrated density in ImageJ (figure 3.2.4, panel B). The distribution of S100P 

signal in HeLa A3+ cells was found to be 74.11% nuclear, and 25.89% cytoplasmic (±5.23 SD). 
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A) Following induction with 1µg/ml doxycycline for 48 hours, non-induced HeLa cells and HeLa A3+ cells 

were seeded onto glass coverslips and grown for 24 hours prior to fixation with 4% (w/v) PFA, followed by 

permeabilization with 0.1% Triton X-100 in CB buffer. Cells were stained for S100P (green) using a FITC-

conjugated secondary antibody, and actin (red) using rhodamine phalloidin at a concentration of 0.6µM. 

Focused regions of cytoplasmic and nuclear S100P staining are highlighted with a white box. Cells were 

mounted onto glass slides with DAPI and viewed using an epifluorescence microscope.  

B) HeLa A3+ cells from Figure 3.2.4 panel A were stained with S100P and quantified to calculate the ratio of 

nuclear to cytoplasmic S100P using ImageJ. Data represents the mean ±SD from 3 independent replicates 

(Student’s unpaired t-test, **** p<0.0001).  

Figure 3.2.4: S100P is mainly nuclear in HeLa A3 cells when studied by immunostaining 
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Whilst the S100P staining was found to be specific, we wanted to see how expression and localisation 

would vary between cell lines and in relation to their different levels of S100P.  

In this view, one cell line that endogenously expresses S100P (JEG-3) was compared against HeLa A3+ 

cells at a variety of different time points following induction of S100P expression, including non-

induced cells as a negative control. Cells were stained for S100P as previously (see Table 2.2.8 for 

antibody dilutions), as well as for actin and DAPI to visualise the cellular cytoskeleton and nuclei 

respectively before viewing with an epifluorescence microscope (Figure 3.2.5). 

The resulting S100P staining showed similar distributions of S100P between all cell lines; both JEG-3 

and induced HeLa A3 cells showed a high proportion of S100P within the nuclear region, and a diffuse 

presence of S100P within the cytoplasm. As expected, the non-induced HeLa A3 cells (HeLa A3-) 

showed no signal for S100P.   

The S100P images from each cell line were further analysed to quantify the respective level of S100P 

in relation to their expression. This was performed as previously, using ImageJ to calculate the 

integrated density of a selected region of interest encompassing the stained area for multiple cells. 

The resulting quantification demonstrated that JEG-3 cells had a lower intensity of S100P staining; this 

is in agreement with previous data acquired by western blot, in which JEG-3 express on average 30% 

less S100P than HeLa A3+ cells (see figure 3.2.1). However, HeLa A3+ cells induced for 24 hours 

demonstrated a 2.8% increase in fluorescence intensity than HeLa A3+ cells induced for 96 hours; an 

unexpected increase that was not deemed statistically significant (p=0.994). This data suggests that 

intensity of S100P staining between HeLa A3+ cells induced with 1µg/ml doxycycline for either 24 hours 

or 96 hours are almost equal, as their respective increases in fluorescence when compared to JEG-3 

are 48% and 45%. This is in direct contrast with previously generated data that showcases an almost 

4-fold increase in S100P expression between HeLa A3+ samples induced for 24 and 96 hours 

respectively (Figure 3.2.2). A 4-fold increase in fluorescence intensity between HeLa A3+ cells induced 

for 24 and 96 hours is not detected when immunostaining for S100P. 
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A) JEG-3 and HeLa A3+ cells induced with doxycycline for 24 or 96 hours were seeded onto glass coverslips 

and grown for 24 hours prior to fixation, permeabilization, and staining for S100P and actin. Cells were 

mounted onto glass slides with DAPI and viewed using an epifluorescence microscope. Non-induced HeLa 

A3 cells were used as a negative control for S100P. 

B) Cells stained with S100P were quantified to calculate fluorescence intensity using ImageJ. HeLa A3+ 96 

hours sample was set to 100% as a positive control, with each sample being a percentage of the positive 

control. Data represents the mean ±SD from 3 independent replicates (one-way ANOVA, **** p<0.0001). 

Figure 3.2.5: S100P fluorescence intensity in HeLa A3 cells induced for 24 or 96 hours are almost 

equivalent 
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To confirm the discrepancy between the immunofluorescence intensity data and the initial western 

blot work, cell lysates were taken concurrently from JEG-3 cells and HeLa A3+ cells at 24 hour and 96-

hour time points following induction of S100P expression with 1µg/ml doxycycline. Lysates were 

separated on a 16% (w/v) SDS-PAGE, alongside a non-induced HeLa A3 negative control, followed by 

western blotting for tubulin and S100P to analyse S100P levels (Figure 3.2.6). Quantification of the 

band intensity achieved for both S100P and tubulin was carried out using Image Studio Lite. 

Western blotting for S100P demonstrated once again that JEG-3 cells express a lower level of S100P 

than induced HeLa A3 cells, with HeLa A3+ cells induced for 24 hours demonstrating a 2.5-fold increase 

in S100P expression over JEG-3 cells. No signal for S100P was obtained in HeLa A3 cells that were not 

induced with doxycycline.  

Following induction over a 4-day time course, a higher level of S100P was seen in HeLa A3 cells induced 

for 96 hours than in cells induced for 24 hours, with the HeLa A3+ lysates induced for 96 hours 

demonstrating a 3-fold increase in S100P expression compared with the 24 hours counterpart. This is 

in line with previous western blot data (see figure 3.2.2), but contrasts to immunostaining of HeLa A3+ 

cells presented in figure 3.2.5, in which S100P levels in cells induced for both 24 hours and 96 hours 

are almost equivalent. These results highlight a degree of unspecificity and non-linearity when staining 

cells for S100P using indirect immunofluorescence, when compared with western blotting. 

 

 

 

 

 

 

 

 

 



102 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

A) JEG-3 and HeLa A3+ cells lysates induced with 1µg/ml doxycycline for 24 or 96 hours were collected 

before running samples on SDS-PAGE and western blotting for S100P. Non-induced HeLa A3 cells were used 

as a negative control for S100P. 

B) S100P expression in cell lysates from JEG-3, HeLa A3-, HeLa A3+ 24 hours and HeLa A3+ 96 hours was 

quantified using ImageJ. Levels of S100P were normalised to tubulin. The HeLa A3+ 96 hours was set to 

100% as a positive control, with each sample being a percentage of the positive control. Data represents 

the mean ±SD from 3 independent replicates (one-way ANOVA, * p<0.05, ** p<0.01, *** p<0.001, **** 

p<0.0001) 

B 

A

B 

Figure 3.2.6 Western blotting for S100P does not correlate with S100P immunostaining 
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3.2.3 Fractionation of cell lines show cytoplasmic and membrane S100P 

localisation 

Cellular distribution of S100P suggests that it is majoritarily found in the nuclear region when studied 

by immunostaining (see Chapter 3.1 Introduction and figure 3.2.5). Having highlighted a discrepancy 

between its levels when using immunostaining compared to western blot analysis, we next sought to 

gain further understanding about its specific physiological subcellular localisation in various cell lines, 

using biochemical subcellular fractionation. Cell lysates were passed through a Dounce homogeniser, 

followed by the separation of cellular compartments by differential centrifugation. This technique is 

possible as the cellular compartments differ in both size and density. The fractions of particular interest 

were the nuclear fraction and the fraction containing cytoplasm and membrane. Following 

fractionation of cell lines, the cell fractions were subjected to 16% (w/v) SDS-PAGE prior to western 

blot analysis for S100P, as well as for nuclear and cytoplasmic protein markers (lamin A/C and HDAC2, 

and tubulin, respectively) (Barbetti et al. 2014; Vanli, Cuesta-Marban and Widmann, 2017; Flather et 

al. 2018). These protein markers make it possible to assess the level of contamination within each 

fraction (Figure 3.2.7). 

Lamin A/C is a component of the nuclear envelope and should therefore not be present within the 

cytoplasm and membrane fractions. Several bands are detected by western blot in the nuclear fraction; 

a band at around 70kDa indicates the presence of lamin-A, with the second lower molecular weight 

band being attributed to lamin-C. 

Tubulin is a major component of microtubules, cytoskeletal filaments that form the structure of the 

cell. Microtubules are formed from the association of α and β tubulin monomers, and form part of the 

cell cytoskeleton. α-tubulin was utilised as a cytoplasmic marker protein, since α-tubulin is not present 

within the nucleus and has only been found in the cytoplasm (Akoumianaki et al. 2009). 

Another nuclear marker, HDAC2, was utilised as it is a small, soluble protein, and not a structural 

marker. HDAC2 is a soluble enzyme that is responsible for the removal of acetyl groups on histones. 

HDAC2 has mostly been found to be localised to the nucleus, but has also been documented to be 

present within the cytoplasm (Liu et al. 2014). The HDAC2 protein was used to demonstrate that 

soluble nuclear proteins are retained in nuclei during the process of fractionation. Evidence of high 

levels of HDAC2 in the cytoplasm and membrane fractions would demonstrate potential damage to 

nuclear structures and invalidate the results. 

Quantification of the band intensity achieved by western blotting for all proteins (lamin A/C, tubulin, 

HDAC2 and S100P) was carried out using Image Studio Lite.  
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HeLa A3+ cells were fixed as above (see figure 3.3.4) and stained for nuclear envelope protein lamin 

A/C (A), soluble nuclear marker protein HDAC2 (D), and cytoplasmic marker protein tubulin (B). 

Example western blots are shown for each of the protein markers depicting the expected localisation 

of each protein, allowing for assessment of potential contamination within each isolated fraction.  

A B C 

D E F 

Figure 3.2.7: Visualisation of nuclear marker proteins lamin A/C and HDAC2, and cytoplasmic 

marker protein tubulin by indirect immunofluorescence and western blotting 
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Western blotting for lamin A/C (Figure 3.2.8a) in JEG-3, BeWo, MDA-MB-231, HeLa A3 and COS-7 s10 

cell lines demonstrated that nuclei were properly isolated with negligible traces in other cell 

compartments.  

The JEG-3 cell line had 97.31% (±2.11 SD) of the total cellular proportion of lamin A/C within the nuclear 

fraction with the remaining 2.69% found within the cytoplasm and membrane fraction. The BeWo cell 

line by comparison contained 89.87% (±9.57 SD) of the total cellular proportion of lamin A/C within 

the nuclear fraction, the HeLa A3+ nuclear fraction contained 99.33% (±0.41 SD) of the total cellular 

proportion of lamin A/C, and the nuclear fraction isolated from the COS-7 s10+ cell line contained 

98.55% (±0.79 SD) of the total lamin A/C. The MDA-MB-231 nuclear fraction contained 92.76% (±5.62 

SD) of the total cellular lamin A/C. 

Western blotting for HDAC2 in the five cell lines showed almost solely a nuclear localisation, with JEG-

3 cells containing 91.93% (±7.52 SD) of the total cellular proportion of HDAC2 in the nuclear fraction. 

BeWo and HeLa A3+ cell lines were shown to contain a similar percentage of total HDAC2 within their 

nuclear fractions (92.08%, ±10.79 SD and 93.96%, ±10 SD respectively). The nuclear fraction isolated 

from COS-7 s10+ cells contained 97.47% (±2.3 SD) of the total cellular HDAC2, and the MDA-MB-231 

cell line contained 96.61% of the total cellular HDAC2 in its nuclear fraction. 

In these cell lines, tubulin was present at high levels within the total cell lysate and the cytoplasm and 

membrane fraction. There are small traces of tubulin detected within the nuclear fraction of the 

majority of cell lines tested, indicating a small level of cytoplasmic contamination within the nuclear 

fraction. This is somewhat to be expected due to the high titre of the tubulin antibody used within 

these studies. The cytoplasmic fraction isolated from JEG-3 cells contained on average 94.71% (±3.99 

SD) of the total cellular tubulin, similarly to the COS-7 s10+ cytoplasmic fraction which contained on 

average 93.64% (±5.47 SD) of the total cellular proportion of tubulin. The BeWo cytoplasmic fraction 

on average contained a lower total proportion of tubulin (87.35%, ±10.75 SD), whereas the HeLa A3+ 

and MDA-MB-231 cell lines contained 75.78% (±8.75 SD) and 75.98% (±3.38 SD) of the total cellular 

proportion of tubulin within the cytoplasmic fractions respectively. 

Having confirmed the suitable fractionation of the different cellular compartments through use of 

marker proteins lamin A/C and tubulin, it was possible to analyse the levels of S100P within each cell 

fraction by the same methodology. Western blots for S100P across all cell lines showed a strong signal 

within both the total cell lysate and the cytoplasm and membrane fractions. However, only barely 

detectable traces of S100P were detected in the nuclear fraction of any cell line tested. It was possible 

to confirm that this minute level of S100P was due to the cytoplasmic contamination of the nuclear 

fraction using densitometry analysis (Figure 3.2.8.b). The JEG-3 cell line on average contained 96.81% 
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(±2.11 SD) of the total cellular proportion of S100P within the cytoplasmic fraction, with the remaining 

3.2% contained within the nuclear fraction. Total S100P within the BeWo cell line was found to be 

96.2% cytoplasmic (±1.93 SD) and 3.79% nuclear. The cytoplasmic fraction isolated from HeLa A3+ cells 

contained 98.73% (±0.99 SD) of the total cellular pool of S100P, and the COS-7 s10+ cell line contained 

on average 97.33% (±3.06 SD) of the total proportion of S100P within the cytoplasmic fraction. 

Cytoplasmic fractions isolated from MDA-MB-231 cells contained on average 93.25% (±4.98 SD) of the 

total cellular proportion of S100P.  

Densitometry allows for the quantification of all proteins of interest within each fraction; therefore, 

following this analysis, it was established that the level of tubulin within the nuclear fractions was in 

fact greater than the level of S100P within the nuclear fractions. This suggests that then small levels of 

S100P that are sometimes present within the nuclear fractions are in fact due to cytoplasmic 

contamination of the nuclear fraction. Regardless, S100P is present at high levels (between 93-99% of 

the total pool of S100P) in the cytoplasm and membrane fraction under these conditions. 
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A) Lysed cells (JEG-3, BeWo, MDA-MB-231, HeLa A3+ and COS-7 s10+) were homogenised using a Dounce 

homogeniser before differential centrifugation. Samples were run on 16% (w/v) SDS-PAGE followed by 

western blotting to detect S100P, cytoplasmic marker tubulin, and nuclear markers lamin A/C and HDAC2 

within each fraction. Fractions were isolated from cell lines that endogenously express S100P or cell lines 

that have been engineered to express S100P after induction of expression using doxycycline.  

B) The cellular proportion of the various proteins were quantified by densitometry using Image Studio Lite. 

Data represents the mean ±SD from at least 3 independent replicates.  

 

A 

B 

Figure 3.2.8: S100P is localised to the cytoplasm/membrane fraction of cell lines. 
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Western blotting confirms that nuclear marker proteins lamin A/C and HDAC2 are present within the 

nuclear fraction, but not that the nuclei themselves are still intact and undamaged. To confirm that 

the isolated nuclei were intact, a small sample of the nuclear fraction was mixed with DAPI for 

visualisation under the Leica DMI400B epifluorescence microscope (Figure 3.2.9). Imaging confirmed 

that the nuclei isolated from various cell lines were intact, further demonstrating that S100P was not 

leaked out due to their destruction.   
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Isolated nuclei from COS-7 cells were stained with DAPI before imaging at 40x and 63x 

magnifications.  

 

40x 

63x 

DAPI 

Figure 3.2.9: Subcellular fractionation using a Dounce homogeniser allows for isolation of 

intact nuclei from cell lines 
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To verify whether levels of stable and long term S100P expression had any effect on S100P localisation, 

we used different S100P stably expressing HTR8 clones. The HTR8 clones were also fractionated using 

a Dounce homogeniser (Figure 3.2.10). Cell fractions were separated on a 16% (w/v) SDS-PAGE, 

followed by western blotting for S100P and the various marker proteins. Quantification of the band 

intensity was carried out using Image Studio Lite.  

As before, detection of lamin A/C in all HTR8 cell clones illustrated the correct isolation of all nuclear 

fractions. The control cell line, SGB16 Clone 3, contained 96.27% (±3.91 SD) of the total proportion of 

lamin A/C in the nuclear fraction, with the remaining 3.73% found in the cytoplasmic fraction, The 

nuclear fraction isolated from SGB217 Clone 3 contained 98.84% (±1.36 SD) of total cellular lamin A/C, 

and the nuclear fraction from SGB217 Clone 5 contained 99.36% (±0.25 SD) of the total cellular 

proportion of lamin A/C. The clone 7 nuclear fraction contained 99.59% (±0.41 SD) of the total cellular 

lamin A/C, and clones 9 and 10 contained 98.16% (±1.65 SD) and 98.42% (± 0.36 SD) of the total cellular 

lamin A/C in their nuclear fractions respectively.  

Further confirmation of the isolation of the nuclear fractions was given by detection of the soluble 

nuclear protein, HDAC2, in each cell fraction isolated from the HTR8 clones. The control SGB16 Clone 

3 contained 98.07% of the total cellular proportion HDAC2, with the remainder found in the 

cytoplasmic fraction. Similar results were seen for the rest of the HTR8 clones, with the nuclear 

fractions of SGB217 Clone 3 and Clone 5 containing 99.82% and 87.2% of the total cellular proportion 

of HDAC2 respectively. The nuclear fractions of SGB217 Clones 7, 9 and 10 contained 98.32%, 99.79% 

and 72.36% of the total cellular HDAC2, once again confirming that the nuclear fractions isolated from 

these cell lines demonstrate minimal leakage of nuclear proteins and that cell nuclei have been 

correctly isolated.  

Isolation of cytoplasmic and membrane fractions was confirmed by western blotting for tubulin, a 

cytoplasmic marker protein. The cytoplasmic fraction of the control cell line SGB16 Clone 3 contained 

74.31% of the total cellular tubulin (±3.78 SD), with the remaining 25.69% detected within the nuclear 

fraction. The cytoplasmic fraction of SGB217 Clones 3 and 5 contained 76.7% (±22.42 SD) and 81.69% 

(±10.24 SD) of the total cellular proportion of tubulin respectively, similar to SGB217 Clones 7, 9 and 

10 which contained 80.39% (± 4.09 SD), 73.85% (±4.88 SD) and 75.96% (±5.89 SD) of the total cellular 

proportion of tubulin respectively. The level of cytoplasmic contamination in the nuclear fractions of 

the HTR8 clones, as detected by the tubulin antibody, is to be expected due to the high titre of the 

tubulin antibody. 

As expected, the non-S100P expressing cell line, SGB16 Clone 3, demonstrated no detectable S100P 

within any cell fraction. SGB217 Clone 3 contained 98.09% (±2.44 SD) of the total cellular S100P within 
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the cytoplasmic and membrane fraction, with the remaining 1.91% found in the nuclear fraction. The 

majority of S100P was found in the cytoplasmic and membrane fraction of SGB217 Clone 5 (99.25%), 

with 0.75% (±0.59 SD) being detected in the nuclear fraction. The cytoplasm and membrane fraction 

of Clone 7 contained 93.67% of the total cellular proportion of S100P, and the nuclear fraction 

contained on average 6.33% (±3.93 SD) of the total cellular proportion of S100P. The cytoplasm and 

membrane fractions of clones 9 and 10 contained 96.27% (±4.21 SD) and 92.9% (±4.53 SD) of the total 

cellular proportion of S100P respectively. In a similar fashion to previous fractionation experiments, 

these results demonstrate that S100P is not present in the nucleus of any of the HTR8 clones, 

regardless of S100P expression levels. This is in line with results obtained using other S100P-expressing 

cell lines, and suggests that cellular S100P level does not have an effect on its localisation within cells.  
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A) Lysed cells from each HTR8 clone cell line were passed through a Dounce homogeniser before differential 

centrifugation. Cell fractions were isolated from HTR8 clones transfected with plasmid SGB217 or control 

plasmid SGB16. Samples were run on SDS-PAGE before Western blotting to detect S100P, cytoplasmic 

marker tubulin, and nuclear markers lamin A/C and HDAC2 within each cell fraction. 

B) The cellular proportion of the various proteins were quantified by densitometry using Image Studio Lite. 

Data represents the mean ±SD from at least 3 independent replicates. 

Figure 3.2.10: S100P is localised to the cytoplasm/membrane fraction of stably S100P-expressing HTR8 

clones 
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3.2.4 Differential fractionation methods do not alter S100P localisation 

To assess the specificity of the Dounce homogeniser-based fractionation assay, modifications to the 

existing assay and an alternative fractionation assay were employed. Calcium is a requirement for 

S100P function, and the absence of calcium in the buffers could have the propensity to interfere with 

S100P function, and therefore its localisation as a consequence. In addition, the fractionation buffer 

contained EDTA and EGTA; these reagents are calcium chelators and would therefore sequester free 

calcium within the sample. To this end, the Dounce homogeniser-based fractionation assay was altered 

to include a concentration of 5µM calcium chloride, and calcium chelators EDTA and EGTA were 

removed. 5µM was chosen as the desired concentration of calcium chloride to be used in this assay, 

as this value is fifty times greater than the concentration of free calcium inside the cell (Bagur and 

Hajnóczky 2017), and should therefore facilitate interactions between S100P and its target proteins 

that could affect its localisation.  

Following these modifications, the assay was performed on JEG-3 and HeLa A3 cell lines prior to the 

separation of cell fractions on a 16% (w/v) SDS-PAGE and western blotting for S100P and the various 

protein markers (Figure 3.2.11, panel A). Quantification of the band intensity was characterised by 

Image Studio Lite (Figure 3.2.11, panel B). 

As before, correct isolation of the cellular fractions was confirmed using the marker proteins lamin 

A/C, HDAC2 and tubulin. In untreated JEG-3 nuclear fractions, 97.4% (±1.74 SD) of the total cellular 

lamin A/C was detected, whilst 2.6% of total cellular lamin A/C was detected in the cytoplasm and 

membrane fraction. A similar level of lamin A/C was detected in cellular fractions of JEG-3 cells treated 

with 5µM calcium chloride; 91.4% (±5.22 SD) of total cellular lamin A/C was detected in the nuclear 

fraction, with the remainder being detected in the cytoplasm and membrane fraction. 95.64% of total 

cellular HDAC2, the soluble nuclear marker protein, was detected in the nuclear fraction of untreated 

JEG-3 cells, compared to 76.12% detected in the nuclear fraction of JEG-3 cells treated with 5µM 

calcium chloride. High levels of tubulin were detected in the cytoplasm and membrane fraction of both 

treated (93.16%, ±4.51 SD) and untreated JEG-3 cells (83.83%, ±8.45 SD), demonstrating minimal 

cytoplasmic contamination of the nuclear fractions. Densitometric analysis of S100P within each 

fraction was performed following detection of the required marker proteins. In untreated JEG-3 cells, 

95.46% (±2.92 SD) of the total cellular S100P was detected within the cytoplasm and membrane 

fraction. Similarly, 94.89% (±2.24 SD) of the total cellular proportion of S100P was detected within the 

cytoplasm and membrane fraction of JEG-3 cells treated with 5µM calcium chloride.  

Western blotting of induced HeLa cells was carried out as above. In untreated HeLa cells, the nuclear 

fraction contained on average 97.96% (±1.06 SD) of the total cellular lamin A/C, with the remainder 
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being detected in the cytoplasm and membrane fraction. The total cellular proportion of lamin A/C 

found in the nuclear fraction of induced HeLa cells treated with 5µM calcium chloride was 97.81% 

(±2.56 SD). Western blotting for the soluble nuclear marker, HDAC2, found that the nuclear fraction of 

untreated HeLa cells contained 88.94% of the total cellular proportion of HDAC2, whereas the 5µM 

calcium chloride-treated HeLa nuclear fraction contained 98.84% of total cellular HDAC2. The 

cytoplasmic fraction of untreated HeLa cells contained 78.15% (±18.07 SD) of the total cellular 

proportion of tubulin, the cytoplasmic marker protein, whilst the treated counterpart contained 

74.28% (±16.22 SD) of total cellular tubulin. Western blotting of untreated HeLa cell fractions for S100P 

found that 95.79% (±1.85 SD) of total cellular S100P was detected in the cytoplasm and membrane 

fraction, with the remaining 4.21% detected within the nuclear fraction. Likewise, in the HeLa cell 

fractions treated with 5µM calcium chloride, 91.81% (±3.2 SD) of the total cellular S100P was detected 

within the cytoplasm and membrane fraction, compared to the 8.19% detected in the nuclear fraction.  

This data suggests that regardless of the presence of calcium or its chelators, S100P is not found 

associated with the nuclear fraction and can only be found within the cytoplasm and membrane 

fractions of cells fractionated using this assay.  
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JEG-3 

0µM 5µM 

HeLa A3+ 

0µM 5µM 

 

A) Lysed cells from JEG-3 and HeLa A3+ cell lines were passed through a Dounce homogeniser with and 

without the addition of calcium chloride, before differential centrifugation. Samples were run on SDS-PAGE 

before western blotting was carried out to detect S100P, cytoplasmic marker tubulin, and nuclear markers 

lamin A/C and HDAC2 within each cell fraction. 

B) The cellular proportion of the various proteins were quantified by densitometry using Image Studio Lite. 

Data represents the mean ±SD from at least 3 independent replicates. 

B 

A 

Figure 3.2.11: Addition of 5µM calcium chloride does not alter S100P subcellular localisation 
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Whilst the physical destruction of cells has been shown not to affect, microscopically, nuclear structure 

and organisation (Figure 3.2.9) or the correct localisation of the specific nuclear markers such as lamin 

A/C and HDAC2, and is therefore not thought to be responsible for the absence of S100P in the nuclear 

fraction, we sought to lyse cells and release the different compartments by utilising an alternative 

methodology, through use of a low concentration of the non-ionic detergent NP40 to lyse cell 

membranes instead. Cell fractions isolated using the detergent-based assay were collected and 

separated on a 16% (w/v) SDS-PAGE prior to western blotting (Figure 3.2.12, panel A). Quantification 

of the band intensity was carried out using Image Studio Lite (Figure 3.2.12, panel B).  

As with the Dounce homogeniser-based fractionation assay, it was imperative to assess the purity of 

each isolated fraction by performing a western blot for cell compartment-specific marker proteins 

tubulin, lamin A/C and HDAC2 in addition to S100P. The western blot was performed alongside samples 

from Dounce homogeniser-based assays (henceforth referred to as manual fractionation) in order to 

compare each method to one.  

Detergent-based fractionation of HeLa A3+ cells show an increased level of tubulin within the nuclear 

fraction compared to the manual fraction assay; nuclear tubulin was found to be 19.76% using manual 

fractionation, but showed an increased level of 37.86% in the detergent-based assay. The total cellular 

proportion of tubulin within the cytoplasmic fraction is 80.24% when using manual fractionation, 

whereas it is 62.14% whilst using the detergent-based fractionation assay. There does not appear to 

be much difference in the purity of the nuclear fraction between both assays, as both nuclear fractions 

achieved a high signal for lamin A/C (99.33% and 95.92% for manual and detergent-based assays 

respectively) and HDAC2 (98.06% and 97.43% for manual and detergent-based assays respectively), 

with little to no signal achieved in the cytoplasmic compartments. There is an increase in the intensity 

of S100P in the nuclear fraction of the detergent-based assay, from 0.91% of the total cellular 

proportion of S100P to 19.38% in the detergent-based assay. However, as with the manual 

fractionation assay, the higher level of tubulin within the nuclear fraction is most likely responsible for 

the increased nuclear S100P levels. Therefore, this experiment illustrates using two different assays 

generates the same result; that S100P is solely localised to the cytoplasm and membrane fractions and 

is not a part of the nucleus.  

Both manual and detergent-based fractionation assays were also performed on the trophoblast cell 

line JEG-3 to assess if results obtained with HeLa A3+ cells were cell line specific. Cell fractions from 

both manual and detergent-based fractionation assays were separated on a 16% (w/v) SDS-PAGE gel 

prior to western blotting for cell compartment-specific marker proteins tubulin, lamin A/C and HDAC2, 

in addition to S100P (Figure 3.2.13). 
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In a slight departure from results obtained with the HeLa A3+ cell line, both fractionation assays 

resulted in a similar level of tubulin detected within the cytoplasm and membrane fraction; 92.46% 

(±1.08 SD) of total cellular tubulin was detected in the cytoplasm and membrane fraction of JEG-3 cells 

when using manual fractionation methods, compared to 96.26% (±2.77 SD) when using detergent-

based fractionation.  

Isolation of nuclear fractions from JEG-3 cells showed slight differences when utilising the two different 

fractionation methods. 83.5% of the total cellular lamin A/C (±5.36 SD) was detected in the nuclear 

fraction of manually fractionated JEG-3 cells, and 80.98% of total cellular lamin A/C (±11.71 SD) was 

detected in the nuclear fraction when using detergent-based fractionation. Similar levels of lamin A/C 

were detected in the nuclear fractions in both assays, suggesting appropriate separation of cellular 

components. Levels of the soluble nuclear marker, HDAC2 were also assessed. When utilising a manual 

fractionation method, 93.59% (±8.29 SD) of total cellular HDAC2 was detected within the nuclear 

fraction of JEG-3 cells. In contrast, 75.98% (±20.96 SD) of total cellular HDAC2 was detected in the 

nuclear fraction of JEG-3 cells fractionated using the detergent-based method.  

Levels of S100P within each cell fraction were assessed by densitometry in order to assess differences 

in S100P localisation due to fractionation methods. Following manual fractionation, 93.88% (±5.4 SD) 

of total cellular S100P was detected within the cytoplasm and membrane fraction of JEG-3 cells, with 

the remainder being detected within the nuclear fraction. 96.89% (±3.71 SD) of total cellular S100P 

was detected in the cytoplasm and membrane fraction of JEG-3 cells fractionated using the detergent-

based method.  The level of S100P detected in the nuclear fraction using both fractionation methods 

is at a lower level than the percentage of total tubulin detected within the nuclear fractions. Both 

fractionation assays, in both HeLa A3+ and JEG-3 cell lines, demonstrate the cytoplasmic and 

membrane localisation of the S100P protein, and illustrate the lack of its presence within isolated 

nuclear fractions.  
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A) Cell fractions were isolated from HeLa A3+ cells using two different assays (Dounce homogenisation, 

referred to as “manual fractionation”, and fractionation using NP-40 detergent, referred to as “detergent-

based fractionation”). Samples were run on 16% (w/v) SDS-PAGE before western blotting to detect S100P, 

cytoplasmic marker tubulin, and nuclear markers lamin A/C and HDAC2 within each cell fraction. 

B) The cellular proportion of the various proteins were quantified by densitometry using Image Studio Lite.  

B 

A 

Figure 3.2.12: Two different subcellular fractionation assays show S100P is localised to the cytoplasm 

and membrane fraction in HeLa A3+ cells 
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A) Cell fractions were isolated from JEG-3 cells using two different assays (Dounce homogenisation, referred 

to as “manual fractionation”, and fractionation using NP-40 detergent, referred to as “detergent-based 

fractionation”). Samples were run on 16% (w/v) SDS-PAGE before western blotting to detect S100P, 

cytoplasmic marker tubulin, and nuclear markers lamin A/C and HDAC2 within each cell fraction. 

B) The cellular proportion of the various proteins were quantified by densitometry using Image Studio Lite.  

B 

A 

Figure 3.2.13: Two different subcellular fractionation assays show S100P is localised to the cytoplasm and 

membrane fraction in JEG-3 cells 
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3.2.5 Addition of a YFP tag to S100P disturbs its localisation 

Whilst we have shown that there is a poor correlation between S100P expression levels using western 

blotting and immunostaining, other studies have shown nuclear localisation of S100P using GFP-

tagging as a reporter system (Rehbein et al. 2008 and Koltzscher et al. 2003). In order to elucidate if 

adding a fluorescent tag to S100P can affect its subcellular localisation, HeLa A3 cells, already 

expressing S100P under the control of an inducible system, were transiently transfected with a plasmid 

containing YFP-S100P (SGB214), where S100P expression is driven by the rtTA inducible promoting 

element. HeLa A3+ cells were seeded onto glass coverslips and fixed using 4% PFA to assess 

transfection efficiency and YFP-S100P localisation (Figure 3.2.14). Upon the addition of doxycycline, 

induction of both the wild type (WT) S100P as well as that of the YFP-fusion were obtained.   

Immunostaining of HeLa A3+ cells transfected with the YFP-S100P-containing plasmid demonstrated a 

somewhat similar distribution to that of WT S100P; high intensity S100P staining was seen in the 

nuclear and perinuclear regions of a large number of cells, with diffuse staining throughout the cell 

cytoplasm.  
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A) HeLa A3+ cells were transfected with plasmid SGB214, containing YFP-S100P, using Lipofectamine 3000 

prior to seeding onto glass coverslips. Cells were left to grow for 24 hours prior to fixation with 4% PFA. Cells 

were visualised using an epifluorescence microscope. 

Figure 3.2.14: YFP-S100P demonstrates a mainly nuclear localisation within transiently transfected HeLa 

A3+ cells when studied by immunostaining 
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Following visual confirmation that YFP-S100P has been transfected into HeLa A3+ cells, it was 

necessary to assess if tagging the N-terminus of S100P with YFP could alter its localisation within cells.  

To this end, non-induced HeLa cells (HeLa A3-), non-induced HeLa cells transfected with the YFP-S100P 

containing plasmid (HeLa A3- +SGB214), induced HeLa cells (HeLa A3+) and induced HeLa cells 

transfected with the YFP-S100P containing plasmid (HeLa A3+ +SGB214), were fractionated with a 

Dounce homogeniser and separated by 16% (w/v) SDS-PAGE before western blotting for S100P and 

other marker proteins (Figure 3.2.15). Quantification of band intensity for all proteins of interest was 

carried out using Image Studio Lite. 

Western blotting of all cell fractions for lamin A/C showed that nuclei were properly isolated in each 

condition with minimal contamination in the cytoplasmic fractions. The total cellular proportion of 

lamin A/C found in the nuclear fraction of each of the conditions are as follows: HeLa A3- fraction 

contained 92.48%, HeLa A3- + SGB214 fraction contained 96.78%, HeLa A3+ fraction contained 99.71%, 

and HeLa A3+ + SGB214 nuclear fraction contained 96.73%. This confirms the retention of the cell 

nuclei within the nuclear fraction, as more than 95% of the total cellular proportion of lamin A/C is 

found in each of the nuclear fractions in each condition. 

Western blotting was also carried out for tubulin to ascertain the correct isolation of the cell fractions. 

Tubulin is present at high levels in both the total cell lysates and in the cytoplasm and membrane 

fractions of all conditions; 88.79% of total cellular tubulin was found within the cytoplasm and 

membrane fraction of HeLa- cells, 85.09% within HeLaA3- + SGB214 cells, 97.29% within the HeLa A3+ 

cells, and 92.2% within the cytoplasm and membrane fraction of HeLaA3+ +SGB214 cells.  

As expected, non-induced HeLa cells (HeLa A3-) did not show any expression of S100P in any fraction. 

Non-induced HeLa cells that have been transfected with a plasmid containing YFP-S100P (HeLa A3- 

+SGB214) also do not express S100P, as induction of expression using doxycycline is required not just 

for WT S100P expression, but also for YFP-S100P expression. This is because the introduced plasmid is 

under the control of a rtTA inducible promoter.  

S100P is detected in HeLa A3 cells induced with doxycycline (HeLa A3+), both in the total cell lysate 

and the cytoplasm and membrane fraction, at a molecular weight of 10kDa. This form of S100P 

corresponds to the non-tagged, native form of S100P (WT) that is expressed once cells are induced 

with doxycycline. No S100P could be detected within the nuclear fraction of these cells, which is in line 

with previously recorded data.  

Induced HeLa A3+ cells that have been transfected with the plasmid containing YFP-S100P (denoted 

HeLa A3+ + SGB214) show comparatively a lower signal for 10kDa S100P in the total cell lysate 
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compared to HeLa A3+ cells. 10kDa S100P is found within the cytoplasm and membrane fraction within 

HeLa A3 + SGB214 cells, but not within the nuclear fraction. This again is in line with previously 

obtained data. 

The molecular weight of the YFP tag is roughly 27kDa, and therefore the addition of a YFP tag to S100P 

increases its molecular weight from 10kDa to 37kDa. As a result, the YFP-tagged S100P can be found 

in HeLaA3+ + SGB214 at 37kDa. YFP-S100P is found within the total cell lysate, and in the cytoplasm 

and membrane fraction, as shown previously. However, in addition to this there is also a significant 

signal found for YFP-S100P within the nuclear fraction. There is a band detected by the S100P antibody 

at around 47kDa in each of the fractions of HeLa A3+ +SGB214 cells; this most likely corresponds to 

dimer formation between the WT 10kDa form of S100P and the YFP-tagged S100P. The signal for S100P 

in the nuclear fraction at around 47kDa is much fainter in comparison to the cytoplasm and membrane 

fraction. 

Densitometry analysis allows for the quantification of S100P distribution in each of the cell fractions, 

in addition to quantification of YFP-S100P distribution. Figure 3.2.15, panel B, summarises the 

densitometry analysis carried out on HeLa A3+ cell fractions and on HeLa A3+ +SGB214 cell fractions, 

as these are the only experimental conditions which express S100P. The HeLa A3+ cytoplasmic and 

membrane fraction contains 99.63% of the total cellular S100P, reinforcing that S100P is only present 

within the cytoplasm and membrane fraction of HeLa A3+ cells. These cells were not transfected with 

YFP-S100P, so no quantification of YFP-S100P distribution was carried out on this experimental 

condition. The cytoplasmic and membrane fraction of HeLa A3+ +SGB214 cells contained 98.77% of 

the total cellular S100P, much like HeLa A3+ cells. For YFP-S100P quantification purposes, the density 

of only the 37kDa bands were assessed as these pertain to YFP-S100P alone. Densitometry analysis 

confirmed that 76.84% of the total proportion of YFP-S100P was present within the cytoplasm and 

membrane fraction, whereas 23.16% was present within the nuclear fraction. The total proportion of 

tubulin found within the nuclear fraction of HeLa A3+ +SGB214 cells was 7.8%, which is much lower 

than the level of YFP-S100P found in the nuclear fraction. 

This data illustrates that the addition of a YFP tag can either facilitate shuttling of S100P into the 

nucleus, or at least perturb its cellular localisation in some way.  
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A) HeLa A3 cells transfected with the rtTA-S100P plasmid, either induced or non-induced, were 

transfected with another plasmid containing YFP-S100P (rtTA-YFP-S100P) prior to fractionation with a 

Dounce homogeniser. Samples were run on 16% (w/v) SDS-PAGE before western blotting to detect 

S100P, cytoplasmic marker tubulin, and nuclear marker lamin A/C within each cell fraction. 

B) The cellular proportion of the various proteins were quantified by densitometry using Image Studio 

Lite.  

A 

B 

Figure 3.2.15: The addition of a YFP tag to S100P disturbs its subcellular localisation 
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3.2.6 Leptomycin B does not induce S100P nuclear accumulation 

Previous experiments have shown that S100P is exclusively found in the cytoplasm and membrane 

fraction of cell lines when fractionated using two different assays and alterations in calcium 

concentration, and that despite all our best efforts, we have been unable to establish S100P as a 

nuclear protein.  To confirm that S100P is not being actively transported out of the nucleus during the 

fractionation process, Leptomycin B (LMB) was utilised. LMB is antibiotic and antifungal produced by 

streptomyces (Hamamoto et al. 1983). LMB directly binds to and inhibits chromosomal maintenance 

1 (CRM1), otherwise known as exportin 1, which is required for export of cellular proteins out of the 

nucleus that contain leucine-rich nuclear export signal (NESs). 

Nucleocytoplasmic transport is a process which involves exchange of molecules between the nucleus 

and the cytoplasm. This exchange is facilitated by 50nm channels known as nuclear pore complexes 

(NPCs) which are embedded in the nuclear envelope. NPCs provide two primary modes of molecular 

exchange; passive diffusion of small molecules, and active transport of molecules across the NPC.  

Passive diffusion is the movement of small, inert molecules between the nucleus and the cytoplasm, 

without the need for a chaperone. Currently, it is thought that the nuclear pore complex has a limit on 

passive diffusion; macromolecules exhibit decreased passage through the nuclear pore complex as a 

function of their molecular mass. In addition, there is competition between macromolecules for 

volume within the nuclear pore cavity, another factor that can limit their transport through NPCs 

(Timney et al. 2016). There is some debate over the size of the NPC channel radius; several studies 

assert that the passive diffusion can take place only when molecules are less than 5nm in diameter, 

however Mohr et al. (2009)  have observed the passive transport barrier of NPCs to be 2.6nm.  

Active nuclear transport, on the other hand, is the guided transport of macromolecules by proteins 

known as transport receptors. Many proteins that are transported across the NPC into the cytoplasmic 

space contain a NES that is recognised by transport receptors. Regulation of transport receptors is 

possible through Ran GTPase; for nuclear export in particular, RanGTP, which is present at a high 

concentration in the nucleus, binds to transport receptors and alters their affinity for cargo. This cargo-

transport receptor-RanGTP complex can cross the NPC into the cytoplasmic space, where the presence 

of Ran GTPase facilitates the conversion of Ran GTP into Ran GDP, thus dissociating the protein cargo 

complex (Güttler and Görlich 2011).  

To firstly show the efficacy of LMB as a potent inhibitor of nuclear export, it was necessary to document 

its effect on a protein known to be affected by LMB. To this end, paxillin was chosen as a control as 

this protein has previously been reported to be affected by LMB treatment (Burgess and Gray 2012). 
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Cells were treated with differing concentrations of LMB (from 0 to 10ng/ml) and for either 0, 3 or 6 

hours, to establish the optimal concentration and time required to prevent protein export. This 

optimisation was carried out in the COS-7 s10+, JEG-3 and BeWo cells.  

Following treatment with LMB, cells were fixed, permeabilised and stained with an antibody to paxillin. 

Immunofluorescent staining of COS-7 s10+ cells demonstrate that paxillin is by default present within 

the perinuclear region and the cytoplasm at a high level, with small background staining within the 

nucleus (Figure 3.2.16). There are also distinct paxillin foci observed within the cytoplasmic regions of 

the cell, denoting focal adhesion plaques. Following LMB treatment for 3 hours at 5ng/ml, paxillin is 

seen within the nuclei of COS-7 S10+ cells at a high level. There does not seem to be an obvious 

difference in the nuclear localisation of paxillin between the 5ng/ml and 10ng/ml doses at 3 hours 

post-LMB treatment. There also does not seem to be distinct differences in paxillin localisation 

between 3 hours and 6 hours of treatment with LMB.  
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COS-7 s10+ cells were induced and seeded onto glass coverslips, and grown for 24 hours prior to treatment 

with LMB at either 0, 5 or 10ng/ml for 3 (A) or 6 (B) hours. Cells were fixed, permeabilised and stained for 

paxillin and actin. Cells were mounted onto glass slides with DAPI and viewed using an epifluorescence 

microscope. 

 

  

Figure 3.2.16: Leptomycin B prevents nuclear export of paxillin in COS-7 s10+ cells 
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JEG-3 and BeWo cell lines without LMB treatment were observed to show a comparable localisation 

of paxillin to untreated COS-7 s10+ cells (figures 3.2.17 and 3.2.18). Paxillin is also present within the 

cytoplasm and in distinct foci mostly around the borders of the cell cytoskeleton, but without an 

increased perinuclear localisation as was seen in COS-7 s10+ cells. Nevertheless, following LMB 

treatment for 3 hours, paxillin was observed in the nucleus after treating with either 5ng/ml or 10ng/ml 

of LMB. However, the presence of paxillin in the nucleus is slightly increased following 6 hours of 

treatment with LMB at a concentration of 10ng/ml. There does not seem to be a marked increase in 

nuclear paxillin between 5ng/ml and 10ng/ml in either cell line.  

The results of this study indicate that the optimal time and dosage of LMB treatment is 6 hours at a 

concentration of 10ng/ml, as this concentration was effective at preventing nuclear export of paxillin 

in all cell lines tested.  
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JEG-3 cells were seeded onto fibronectin-coated coverslips and grown for 24 hours prior to treatment with 

LMB at either 0, 5 or 10ng/ml for 3 (A) or 6 (B) hours. Cells were fixed, permeabilised and stained for paxillin 

and actin. Cells were mounted onto glass slides with DAPI and viewed using an epifluorescence microscope. 

 

Figure 3.2.17: Leptomycin B prevents nuclear export of paxillin in JEG-3 cells 
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BeWo cells were seeded onto fibronectin-coated coverslips and grown for 24 hours prior to treatment with 

LMB at either 0, 5 or 10ng/ml for 3 (A) or 6 (B) hours. Cells were fixed, permeabilised and stained for paxillin 

and actin. Cells were mounted onto glass slides with DAPI and viewed using an epifluorescence microscope. 

B 

A 

Figure 3.2.18: Leptomycin B prevents nuclear export of paxillin in BeWo cells 
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Having optimised the dosage and treatment time of LMB for each cell line, we sought to fractionate 

cell lysates by Dounce homogenisation in order to assess if S100P localisation is influenced in response 

to this drug.   

Figure 3.2.19 presents western blotting of JEG-3 cell fractions following LMB treatment (10ng/ml for 6 

hours) and Dounce homogenisation to separate cellular compartments. Western blotting for lamin A/C 

found that 91.04% (±0.34 SD) of total cellular lamin A/C was detected in the nuclear fraction of 

untreated JEG-3 cells, compared to 89.48% (±1.87 SD) detected in the nuclear fraction of cells treated 

with LMB. 90.35% (±10 SD), of the total cellular HDAC2 was detected within the nuclear fraction of 

untreated JEG-3 cells, compared to 90.12% (±9.56 SD) detected in the nuclear fraction of the LMB-

treated JEG-3 cells. The total cellular proportion of tubulin detected in untreated JEG-3 cell cytoplasm 

and membrane fractions was 92.17% (±5.72 SD), whereas JEG-3 cells treated with LMB contained 

78.96% (±2.89 SD) of total cellular tubulin within the cytoplasm and membrane fraction. Paxillin was 

detected by western blotting to ensure that LMB was working as previously established. Without LMB 

treatment, 92.28% (±1.69 SD) of total cellular paxillin was detected within the cytoplasm and 

membrane fraction of JEG-3 cells. However, upon treatment with LMB, 74.03% (±8.11 SD) of paxillin is 

detected within the cytoplasm and membrane fraction, with the remaining 25.97% detected in the 

nuclear fraction. This suggests that paxillin export from the nucleus is being inhibited by LMB, as levels 

of paxillin present in the nuclear fraction following LMB treatment (25.97%) exceed the levels of 

tubulin (21.04%). After confirming that LMB treatment sufficiently inhibits nuclear export of paxillin, it 

was possible to analyse S100P levels in the respective cell fractions to assess if S100P is also exported 

following treatment. Without LMB treatment, 99.06% of S100P was detected within the cytoplasm and 

membrane fraction (±1.33 SD). Following LMB treatment, 84.99% of total cellular S100P was detected 

within the cytoplasm and membrane fraction by densitometry, with the remaining 15.01% being 

detected in the nuclear fraction (±4.42 SD). However, 21.04% of total cellular tubulin was detected in 

the nuclear fraction of treated JEG-3 cells, suggesting the 15.01% of total S100P detected in the nuclear 

fraction is a by-product of contamination of the nuclear fraction with cytoplasmic proteins. This data 

suggest treatment of JEG-3 cells with LMB at a commonly used concentration of 10ng/ml does not 

influence S100P localisation by preventing its export from the nucleus.  
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JEG-3 cells (A) were treated with 10ng/ml LMB for 6 hours prior to fractionation with a Dounce homogeniser 

and differential centrifugation. Cell fractions were run on SDS-PAGE followed by western blotting to detect 

S100P, cytoplasmic marker tubulin, and nuclear markers lamin A/C and HDAC2 within each fraction. Paxillin 

was also detected by western blot as confirmation of LMB efficacy. The cellular proportion of the various 

proteins were quantified by densitometry using Image Studio Lite (B). Data represents the mean ±SD from 

at least 3 independent replicates.  

 

Figure 3.2.19: Leptomycin B does not alter the subcellular localisation of S100P in trophoblast cell line 

JEG-3 
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The BeWo cell line was also fractionated with and without LMB treatment, followed by western 

blotting for marker proteins of cellular compartments (Figure 3.2.20). The nuclear fraction of untreated 

BeWo cells contained on average 88.76% of the total cellular lamin A/C (±8.28 SD) and 84.52% of the 

total cellular HDAC2 (±0.11 SD). The nuclear fraction of BeWo cells treated with LMB contained on 

average 85.47% of the total cellular lamin A/C (±10.45 SD) and 89.75% of the total cellular HDAC2 

(±14.09 SD), confirming the correct isolation of nuclear fractions in both treated and untreated 

conditions. Western blotting for tubulin demonstrated that 94.83% of the total cellular tubulin was 

detected within the cytoplasm and membrane fraction of untreated BeWo cells (±4.43 SD), whereas 

92.62% of total cellular tubulin was detected within the cytoplasm and membrane fraction of BeWo 

cells treated with LMB (±4.41 SD). Western blotting for paxillin showed that the cytoplasm and 

membrane fraction of untreated BeWo cells contained 98.54% of cellular paxillin (±2.06 SD). Upon LMB 

treatment, the level of paxillin detected in the cytoplasm and membrane fraction was 88.48% (±3.02 

SD). 

Without any treatment, the total cellular proportion of S100P detected within the cytoplasm and 

membrane fraction was on average 95.64% (±5.32 SD). For BeWo cells treated with LMB for 6 hours, 

the cytoplasm and membrane fraction contained 95.75% of the total cellular proportion of S100P 

(±1.38 SD). Like the JEG-3 cells, the proportion of tubulin within the nuclear fraction was greater than 

the level of S100P within the nuclear fraction, once again suggesting that S100P is found in the 

cytoplasm and membrane fraction, even when blocking nuclear export in both of the trophoblast cell 

lines.  
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BeWo cells (A) were treated with 10ng/ml LMB for 6 hours prior to fractionation with a Dounce homogeniser 

and differential centrifugation. Cell fractions were run on SDS-PAGE followed by western blotting to detect 

S100P, cytoplasmic marker tubulin, and nuclear markers lamin A/C and HDAC2 within each fraction. Paxillin 

was also detected by western blot as confirmation of LMB efficacy. The cellular proportion of the various 

proteins were quantified by densitometry using Image Studio Lite (B). Data represents the mean ±SD from 

at least 3 independent replicates.  
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Figure 3.2.20: Leptomycin B does not alter the subcellular localisation of S100P in trophoblast cell line 

BeWo 
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Non-trophoblast cell lines, including COS-7 s10+, were also fractionated following LMB treatment. 

Figure 3.2.21a shows the resulting western blot for nuclear marker proteins lamin A/C and HDAC2, 

cytoplasmic marker tubulin, paxillin, and S100P. Nuclei were sufficiently fractionated from treated and 

non-treated cells, as the total cellular proportion of lamin A/C found in the nuclear fraction was 96.24% 

(±5.31 SD) and 92.03% (±5.13 SD) in non-treated and LMB-treated COS-7 s10+ cells respectively. The 

total cellular proportion of HDAC2 in the nuclear fraction of non-treated and LMB-treated COS-7 cells 

was 94.5% (±6.48 SD) and 90.18% (±2.8 SD) respectively, again confirming the proper isolation of cell 

nuclei. On average, western blotting and densitometry for tubulin showed that the total cellular 

proportion of tubulin found in the cytoplasm was 79.64% in non-treated cells (±10.92 SD), and 76.51% 

in LMB-treated cells (±10.38 SD), with the remainder of tubulin being found in the cell nuclei. The small 

traces of tubulin detected within the nuclear fraction indicates a small level of cytoplasmic 

contamination within the nuclear fraction, which is somewhat to be expected due to the high titre of 

the tubulin antibody used within these studies. The paxillin protein is known to be responsive to LMB 

treatment, in which paxillin export from the nucleus is prevented. This was confirmed by western 

blotting for paxillin, which demonstrated a ratio of 77.93% cytoplasmic to 22.07% nuclear in non-

treated cells (±16.36 SD). Upon treatment with LMB, this ratio shifts in favour of cell nuclei, where 

43.38% of the total cellular paxillin is now nuclear, and the remaining 56.62% is cytoplasmic (±10.74 

SD). This confirms the cells’ responsiveness to LMB and the ability of LMB to disrupt the nuclear export 

process. Western blotting of all marker proteins allowed for the analysis of S100P levels in each cellular 

compartment, with the ability to quantify if S100P has been retained in the cell nuclei following 

treatment with LMB. Non-treated COS-7 s10+ cells contained 93.45% of the total proportion of S100P 

within the cytoplasmic fraction (±4.78 SD). Following treatment with LMB, the cytoplasmic fraction of 

COS-7 s10+ cells contained 96.14% of the total cellular S100P (±3.57 SD). Despite treating COS-7 S10+ 

cells with LMB, S100P localisation does not shift from the cytoplasm and membrane fraction to the 

nuclear fraction as paxillin does, suggesting S100P export from the nucleus, if it were to be localised 

there, is not dependent on CRM1.  
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COS-7 s10+ cells (A)were treated with 10ng/ml LMB for 6 hours prior to fractionation with a Dounce 

homogeniser and differential centrifugation. Cell fractions were run on SDS-PAGE followed by western 

blotting to detect S100P, cytoplasmic marker tubulin, and nuclear markers lamin A/C and HDAC2 within each 

fraction. Paxillin was also detected by western blot as confirmation of LMB efficacy. The cellular proportion 

of the various proteins were quantified by densitometry using Image Studio Lite (B). Data represents the 

mean ±SD from at least 3 independent replicates.  
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Figure 3.2.21: Leptomycin B does not alter the subcellular localisation of S100P in the COS-7 s10+ inducible 

cell line 
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HeLa A3+ cells were fractionated as above, with and without LMB treatment at a dose of 10ng/ml for 

6 hours. Figure 3.2.22a shows the resulting western blot for nuclear marker proteins lamin A/C and 

HDAC2, cytoplasmic marker tubulin, paxillin, and S100P. Without any treatment, the total cellular 

proportion of lamin A/C detected in the nuclear fraction was 96.2% (±5.37 SD). In comparison, the total 

cellular proportion of lamin A/C detected in the nuclear fraction of HeLa A3+ cells treated with LMB 

was 99.05% (±0.8 SD). For soluble marker HDAC2, the average total cellular proportion detected within 

the nuclear fraction of untreated HeLa A3+ fractions was 90.89% (±8.78 SD). In LMB-treated HeLa A3+ 

cells, the total cellular proportion of HDAC2 found in the nuclear fraction was on average 89.18% 

(±12.52 SD). The total cellular proportion of tubulin, the cytoplasmic marker protein, detected in the 

cytoplasm and membrane fraction of untreated HeLa A3+ cells was 87.9% (±0.1 SD), compared to 

74.53% (±2.19 SD) in the respective cytoplasmic fraction of LMB-treated cells.  

Following western blotting for paxillin on both treated and untreated HeLa A3+ cells, the average total 

cellular proportion of paxillin present in the cytoplasmic fraction of untreated HeLa A3+ cells was found 

to be 64.03% (±3.92 SD), with the remaining 35.96% detected within the nuclear fractions. Upon 

treatment of HeLa A3+ cells with LMB, the total average proportion of cytoplasmic paxillin was found 

to be 25.86% (±0.31 SD), a decrease of almost 40%. The remaining cellular paxillin, 74.14%, was 

detected within the nuclear fraction. This suggests once again that paxillin export from the nucleus can 

be inhibited by LMB. 

After detection of the various marker proteins present within HeLa A3+ cell fractions by western 

blotting, it was possible to quantify levels of S100P in both treated and untreated HeLa A3+ cells in 

order to assess if LMB treatment leads to accumulation of nuclear S100P. In untreated HeLa A3+ cells, 

90.37% of total cellular S100P was detected in the cytoplasm and membrane fraction (±13.58 SD), 

whereas in LMB-treated HeLa A3+ cells, the total cellular proportion of S100P detected in the 

cytoplasm and membrane fraction was 91.58% (±11.93 SD). The difference in cytoplasmic S100P 

localisation between treated and non-treated samples, a small level of less than 1%, is most likely due 

to cytoplasmic contamination of the nuclear fraction. 
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HeLa A3+ cells (A) were treated with 10ng/ml LMB for 6 hours prior to fractionation with a Dounce 

homogeniser and differential centrifugation. Cell fractions were run on SDS-PAGE followed by western 

blotting to detect S100P, cytoplasmic marker tubulin, and nuclear markers lamin A/C and HDAC2 within each 

fraction. Paxillin was also detected by western blot as confirmation of LMB efficacy. The cellular proportion 

of the various proteins were quantified by densitometry using Image Studio Lite (B). Data represents the 

mean ±SD from at least 3 independent replicates.  
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Figure 3.2.22: Leptomycin B does not alter the subcellular localisation of S100P in the HeLa A3+ inducible 

cell line 
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Nuclei isolated from COS-7 s10+ cells were stained with DAPI to assert that minimal rupturing of 

nuclear membranes had taken place (Figure 3.2.23). These images demonstrate intact nuclear 

membranes with minimal disruption.  

All in all, the data obtained shows that treatment of cell lines, both trophoblast and non-trophoblast 

in nature, with LMB at a concentration of 10ng/ml leads to the nuclear accumulation of paxillin, due 

to prevention of nuclear export by blocking the CRM1 pathway. Most importantly, LMB treatment 

does not alter the subcellular localisation of S100P in any of the cell lines tested, suggesting that S100P 

is not exported from the nucleus and is instead localised to the cytoplasm and membrane.  
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40x 

63x 

DAPI 

 

COS-7 s10+ cells were treated with 10ng/ml LMB for 6 hours prior to fractionation.  A small aliquot of the 

nuclear fraction from COS-7 cells were stained with DAPI before imaging at 40x and 63x magnifications.  

 

Figure 3.2.23: Subcellular fractionation using a Dounce homogeniser following LMB treatment allows for 

isolation of intact nuclei from cell lines 
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3.2.7 S100P Binding Protein has a mainly nuclear localisation when studied by 

subcellular fractionation 

S100P binding protein (S100PBP) was discovered by Dowen et al. (2005) as a novel S100P interactor 

through co-immunoprecipitation of HEK 293 cell lysates. The same study found that GFP-tagged 

S100PBP was localised to the nuclei of HeLa cells. Following this work, we sought to assess the 

localisation of S100PBP by subcellular fractionation. 

To this end, JEG-3 and BeWo cells lysates were passed through a Dounce homogeniser, followed by 

the separation of cellular compartments by differential centrifugation. Following fractionation of cell 

lines, the cell fractions were subjected to 16% (w/v) SDS-PAGE prior to western blot analysis for 

S100PBP, nuclear marker lamin A/C and cytoplasmic marker tubulin. Quantification of the band 

intensity was carried out using Image Studio Lite.  

Isolation of the nuclear fraction was confirmed by western blotting for lamin A/C, in which the nuclear 

fraction of JEG-3 cells contained 97.46% of total cellular lamin A/C. The cytoplasmic fraction of JEG-3 

cells contained 72.93% of the total cellular proportion of tubulin, the cytoplasmic marker protein. 

Analysis of S100PBP within each cell fraction by densitometry found that 73.03% of total cellular 

S100PBP was detected within the nuclear fraction, with the remainder present in the cytoplasm and 

membrane fraction. 

Correct isolation of nuclei from BeWo cells was confirmed, as the nuclear fraction contained 99.29% 

of total cellular lamin A/C. The cytoplasm and membrane fraction of BeWo cells contained 79.99% of 

total cellular tubulin. 57.01% of S100PBP was found in the nuclear fraction of BeWo cells, with the 

remaining 42.99% detected in the cytoplasm and membrane fraction.  

This experiment confirms the predominantly nuclear localisation of S100PBP that was observed 

through immunofluorescence assays using a biochemical technique.  
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A) Lysed cells (JEG-3 and BeWo) were homogenised using a Dounce homogeniser before differential 

centrifugation. Samples were run on 16% (w/v) SDS-PAGE followed by western blotting to detect S100PBP, 

cytoplasmic marker tubulin, and nuclear marker lamin A/C.  

B) The cellular proportion of the various proteins were quantified by densitometry using Image Studio Lite.  
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Figure 3.2.24: S100PBP is mainly nuclear when studied by subcellular fractionation 
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3.3 Discussion 

Expression of S100P has been detected in a number of tissues, with a large focus on its role in 

malignancies. S100P was first purified from the placenta (Becker et al. 1992), but has also been found 

within the oesophagus and stomach, albeit at very much reduced levels in comparison. Expression of 

the S100P protein has also been seen at high levels within a multitude of different tumour types 

(Parkkila et al. 2008), and has been demonstrated to affect different cellular behaviours including cell 

proliferation (Arumugam et al. 2004), invasion (Arumugam et al. 2005; Tabrizi et al. 2018) and 

migration (Hamada et al. 2009; Tabrizi et al. 2018). It is however important to note that these cellular 

behaviours are not only required for tumour development, but also for embryo implantation to occur.  

Whilst the majority of reports have linked S100P expression to pathophysiological conditions, much 

less is known about the physiological role of S100P. Given that S100P has been shown to be expressed 

in the placenta and mainly trophoblast cells within, we sought to first expand our understanding of the 

subcellular localisation of this protein within these cells, as well as in better characterised systems such 

as cancer cells of both breast (MDA-MB-231) and cervical (HeLa) origins. Previous studies have shown 

S100P localisation in a wide variety of cell and tissue types (see table 3.1.1). In this chapter, it was first 

demonstrated that cell lines from varying origin express S100P at differential levels. Two of these cell 

lines, JEG-3 and BeWo, are human choriocarcinoma cell lines that have been widely used as a model 

system for placental trophoblasts, due to the limited availability of primary trophoblasts. BeWo cells 

are commonly used as a model to mimic villous trophoblast fusion into syncytiotrophoblast (Orendi et 

al. 2010), therefore assessment of the subcellular localisation of S100P within this cell line would be 

beneficial. Zhu et al. (2015) determined through immunohistochemistry that S100P localisation in 

syncytiotrophoblasts was both cytoplasmic and nuclear. However, although BeWo cells are used as a 

syncytiotrophoblast model, they are still choriocarcinoma in origin. 

Interestingly, the HTR8/SVneo cell line does not express S100P. The HTR8 cell line are a first trimester 

extravillous trophoblast cell line, and are therefore used as a model cell line for work involving 

trophoblasts, including migration, invasion and implantation (Hannan et al. 2010; Verma, Pal and 

Gupta, 2018). However, a study by Abou-Kheir et al. (2017) has reported that the HTR8/SVneo cell line 

contains a mixed population of cells; compared to JEG-3 and JAR cell lines, HTR8 cells showed 

heterogeneous expression of cytokeratin 7 and HLA-G, markers for trophoblast cells. Cultured HTR8 

cells also contained a mixed population of cells expressing vimentin, a marker of mesenchymal cells, 

and E-cadherin, a marker of epithelial cells. Therefore, while HTR8 cells are used as a model first 

trimester trophoblast cell line, it is not necessarily surprising that they do not express S100P, since the 
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typical EVT markers are heterogeneously expressed in this cell line, along with markers of 

mesenchymal origin that should not be present.  

Work within this chapter has also demonstrated the high levels of S100P expression by inducible cell 

lines COS-7 s10+ and HeLa A3+ following induction with doxycycline over a period of hours or days. 

The level of S100P in these inducible cell lines is highly regulatable over time. It was therefore thought 

that there was potential for very high levels of S100P expression to influence its localisation in cells. 

HeLa A3+ cells demonstrated peak S100P expression at 120-144 hours post initial induction, and COS-

7 s10+ cells at 48-72 hours post initial induction. The half-life of doxycycline in cell culture medium  is 

24 hours (Gomez-Martinez et al. 2013), therefore doxycycline was administered to HeLa A3 and COS-

7 s10 cells every 48 hours to prevent any reduction in the activity of the inducible system. It is not 

certain why S100P expression levels in HeLa A3+ and COS-7 s10+ cells decrease somewhat after the 

peak S100P expression time points previously mentioned, given that doxycycline was continuously 

administered. Work relating to the activity of the tetracycline-responsive promoter under constant 

administration of doxycycline could give an insight into biological mechanisms at play behind this 

decrease in expression. 

Immunofluorescent staining of HeLa A3+ cells was undertaken to assess the specific physiological 

localisation of the S100P protein. The results, demonstrating both a nuclear and cytoplasmic staining, 

are in line with data published by Du et al. (2012) which also shows this pattern of S100P localisation. 

However, comparative immunofluorescent staining of S100P in JEG-3 and HeLa A3+ cells at different 

time points following induction of S100P expression do not correlate with western blotting data 

obtained in this chapter (Figures 3.2.5 and 3.2.6). Western blotting shows an almost 50% decrease in 

S100P expression in HeLa A3+ cells induced for 24 hours versus HeLa A3+ cells induced for 96 hours. -

This is not reflected in the immunofluorescent staining, in which both 24-hour and 96-hour induction 

time points display the same levels of fluorescence intensity. This data suggests a potential flaw within 

the detection of S100P by immunofluorescence, which could be due to unspecific binding of the 

antibody used for immunofluorescence. The S100P antibody is specific to S100P, as HeLa A3- cells do 

not display any S100P staining, however it seems that using immunofluorescence as a tool for S100P 

staining is insufficient, as the intensity of S100P staining does not correlate to what is known regarding 

the level of S100P in the inducible cell line HeLa A3. 

To further study this discrepancy, subcellular fractionation was carried out. Subcellular fractionation is 

a technique that has been utilised to characterise a number of proteins, including smoothelin, a 

cytoskeletal protein exclusive to smooth muscle cells (Van der Loop et al. 1996). Subcellular 

fractionation has also recently been utilised by Jana et al. (2020) in establishing the cellular localisation 
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of Atox1, a 7.4 kDa protein involved in copper homeostasis in colorectal cancer.  Such studies suggest 

that subcellular fractionation is a valid methodology for characterisation of cellular localisation of 

proteins, including low molecular weight proteins. Subcellular fractionation by differential 

centrifugation was performed both in trophoblast cell lines endogenously expressing S100P (JEG-3, 

BeWo and MDA-MB-231) and in COS-7 s10 and HeLa A3 cells that were engineered to have regulatable 

levels of S100P expression. In addition, it was possible to assess S100P localisation in HTR8 cells that 

have been stably transfected with S100P, producing a variety of cell clones that express a different 

level of S100P. 

Fractionation of all cell lines (JEG-3, BeWo, MDA-MB-231, COS-7 s10+, HeLa A3+ and HTR8 clones) into 

their cellular compartments (a cytoplasm and membrane fraction, and a nuclear fraction) showed 

undoubtably that S100P is solely localised to the cytoplasm and membrane fraction, with S100P being 

virtually undetectable in nuclear fractions. This data was confirmed by densitometry analysis with 

respect to various marker proteins, namely tubulin, lamin A/C and HDAC2. It was interesting to note 

that HDAC2 present within the nuclear fractions of all cell lines was observed to generate a slightly 

higher band than in the total cell lysates. This could be due to its phosphorylation state within the 

nucleus, as previous studies have shown in vivo phosphorylation of HDAC2 in HeLa cells (Galasinski et 

al. 2002).  

This data concerning S100P localisation is much at odds with many previously published studies (see 

table 3.1.1), however this is the first time the localisation of S100P has been studied using a 

biochemical fractionation technique rather than immunohistochemistry or immunofluorescence. One 

such study is that of Dowen et al. (2005), who demonstrated the presence of S100P in the nucleus and 

cytoplasm of HeLa cells using immunofluorescence, but also showed colocalisation of S100P and 

S100PBPR (S100P binding protein) within the nucleus. S100PBPR was characterised by Dowen et al. 

(2005) as a novel S100P binding partner, and was shown to be localised solely to the nuclei of HeLa 

cells transfected with GFP-tagged S100PBPR. A nuclear localisation of S100P would suggest it has a role 

in the activation of transcription factors to regulate gene expression, however nuclear S100P has not 

been reported to bind to any nuclear transcription factors as of yet, nor is it believed to actively 

regulate the expression of genes/proteins in highly overexpressing cell model systems (personal 

communications with P. Rudland and R. Barraclough, Liverpool University); only extracellular S100P 

binding to RAGE has been shown to activate NFκB (Arumugam et al. 2004).  

Assessment of the localisation of S100PBP was also undertaken using subcellular fractionation, in order 

to observe similarities or differences in localisation between the immunofluorescence data obtained 

by Dowen et al. (2005) and further confirm the specificity of the biochemical assay utilised within these 
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studies. This work was carried out using trophoblast cell lines JEG-3 and BeWo. The predominantly 

nuclear localisation of S100PBP reported by Dowen et al. (2005) in HeLa cells was also found to be true 

in both JEG-3 and BeWo cells, although interestingly JEG-3 cells seemed to contain a higher nuclear to 

cytoplasmic ratio of S100PBP than BeWo cells. Purity of the JEG-3 and BeWo fractions, as assessed by 

presence of lamin A/C and tubulin within each cell fraction, were similar to each other, suggesting 

differences in fraction purity may not be the cause for such differences in the nuclear to cytoplasmic 

ratio of S100PBP between both cell lines.  

There are very few papers assessing the localisation of S100PBP, however Clawson et al. (2017) 

assessed its localisation in macrophage-tumour cell fusions isolated from the blood of patients with 

pancreatic ductal adenocarcinoma, and detected S100PBP in both nuclear and cytoplasmic regions 

using immunofluorescence. This perhaps suggests a differential localisation of S100PBP dependent on 

cell or tissue type. Regardless, S100PBP was found to be predominantly nuclear in both JEG-3 and 

BeWo cells when using a biochemical technique such as subcellular fractionation. The soluble nature 

of the S100PBP protein suggests that subcellular fractionation is a viable technique for studying protein 

localisation. 

S100P is a protein containing EF hands that bind calcium ions in order to allow S100P to interact with 

target proteins. The buffer used in Dounce homogeniser-based fractionation assays utilises EDTA and 

EGTA, which are calcium chelators. It was thought that the presence of these reagents in the 

fractionation buffer could be preventing S100P from interacting with target proteins. S100P can form 

dimers in both the presence and absence of calcium ions (Koltzscher and Gerke,2000), however, it is 

the binding of calcium ions to the loop regions of S100P that allows a conformational change in the 

protein to take place, exposing residues involved in target protein interaction. Thus far, all 

characterised target proteins of S100P bind to S100P in a calcium-dependent manner. For example, 

Clarke et al. (2017) found that chelation of calcium using EGTA completely abrogated binding of S100P 

to tissue plasminogen activator when measured by surface plasmon resonance. Interaction of S100P 

with its target proteins could be taking place in a variety of cell compartments, and preventing S100P-

protein interactions could have an effect on S100P subcellular localisation. In addition, the intracellular 

concentration of free calcium has been reported as roughly 100nM, however this number can increase 

to 1-10µM as a consequence of cellular functions, for example nerve impulse transmission and cell 

membrane stability (Südhof 2012). Therefore, 5µM calcium chloride-containing buffers were used for 

fractionation experiments to test the hypothesis that protein interactions can facilitate changes to 

S100P localisation. 
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There is the possibility of S100P localisation being a dynamic process within trophoblast cells, as 

translocation of S100P to different cellular locations has been documented by several others in 

different cell types, for example binding of S100P to ezrin leads to the recruitment of S100P to the cell 

periphery in epidermoid carcinomas cells (Koltzscher et al. 2003). It is also plausible that the 

localisation of interacting partners of S100P dictates its own subcellular localisation. The presence of 

binding partners in the cytoplasm, for example, could stimulate the translocation of S100P from other 

subcellular locations. In addition, there is a possibility that changes in calcium concentration inside the 

cell can alter the localisation of S100P, as has been seen in other S100 proteins (Mueller et al. 1999). 

For example, Mandinova et al. (1998) found that S100A6 was localised to the nucleus and sarcoplasmic 

reticulum in vascular smooth muscle cells, in contrast to S100A1 and S100A4 which were mainly 

localised to the cytosol. 

In addition to Dounce homogenisation as a tool to allow further separation of cell components, an 

alternative assay was also employed to ensure that the specific S100P subcellular localisation seen 

when using a Dounce homogeniser is not an artefact of the assay. NP-40 is a non-ionic and non-

denaturing detergent that lyses cell membranes, and has been used to fractionate cells and tissues in 

other studies (Rosner and Hengstschlager 2008, Holden and Horton 2009). These particular studies 

have utilised NP-40 at a concentration of 1%, however it was decided that the optimal final 

concentration of NP-40 should be low (0.5%) to prevent any rupture of nuclear membranes and the 

release of nuclear proteins into the cytosol. Following either the inclusion of 5µM calcium chloride or 

NP-40 detergent for cell lysis, it is apparent that S100P is still localised to the cytoplasm and membrane 

fraction, with only trace levels attributed to contamination present within cell nuclei. In addition, the 

methodology of fractionation with NP-40 can lead to increased background, as demonstrated by the 

increased levels of tubulin within the isolated nuclear fraction of HeLa cells fractionated with 0.5% NP-

40. This may be due to the fact that a low final concentration of NP-40 may not lyse all cells, leading to 

whole cells being pelleted along with nuclei. This again is most likely responsible for S100P detected 

within the nuclear fraction of cells fractionated using this method. Despite the number of sources 

utilising NP-40 within their fractionation experiments, there is little in the literature about its use in 

determining the localisation of low molecular weight proteins. However, Kimberly et al. (2001) were 

able to detect a small, 8kDa fragment of the β-amyloid precursor protein (APP) in nuclear extracts 

using 0.1% NP-40, in addition to detecting a 6kDa fragment of the same protein within a membrane 

extract using the same methodology. These results suggest using low concentrations of NP-40 for 

subcellular fractionation assays is sufficient to determine the subcellular localisation of low molecular 

weight proteins.  



148 
 

In addition to immunofluorescence and immunohistochemical analysis, several studies have 

demonstrated the localisation of S100P using a GFP-tagged fusion protein. Rehbein et al. (2008) stably 

transfected lung adenocarcinoma cells with S100P that had been tagged with GFP on its N-terminus, 

as did Koltzscher et al. (2003), who transfected epidermoid carcinoma cells with a S100P fusion protein 

tagged in the same manner. A recently published paper by Du et al. (2020) utilises a YFP-S100P (Yellow 

Fluorescent Protein-S100P) fusion protein within COS-7 cells, in which its clear nuclear and perinuclear 

localisation can be observed by immunofluorescence.   

GFP has long been utilised as a fusion tag to monitor protein localisation (Tsien, 1998), ideally 

maintaining the localisation and function of the protein of interest. However, it is worth mentioning 

that GFP, at 26.9kDa, is over twice as large as S100P which is 10.4kDa, and therefore it is conceivable 

to think that tagging S100P with GFP may alter its subcellular localisation. There is a need to validate 

if the presence of a GFP tag will alter S100P’s subcellular localisation, which can be achieved through 

a combination of techniques. Results from this chapter suggest that the addition of a fluorescent tag, 

such as YFP, to the N-terminus of S100P can disturb its subcellular localisation. Tagging of proteins with 

fluorescent tags generates fusion proteins; these proteins, naturally, are different from their native 

conformation and could therefore have several effects on the tagged protein, including but not limited 

to impaired activity or loss of binding partners (Weill et al. 2019). In addition, the location of the 

fluorescent tag on the protein can also affect function and localisation. Disruption of protein 

localisation due to the addition of fluorescent tags has previously been documented by Cui et al. 

(2016), who show the incorrect localisation of protein EMP12 from Arabidopsis due to the addition of 

a GFP tag. All in all, the data produced in this chapter demonstrates that a fluorescent tag, such as YFP, 

can alter the localisation of the S100P protein, potentially due to its small size. 

With results from this chapter leading to the conclusion that S100P is only present within the 

cytoplasm and membrane of cell lines JEG-3, BeWo, COS-7 s10+, HeLa A3+ and HTR8, it was deemed 

necessary to show that S100P is not being exported out of the nucleus during the process of 

fractionation. Nuclear export receptors known as exportins are required for active transport of 

molecules across the nuclear envelope into the cytoplasm. The most well-known exportin is exportin 

1, otherwise known as CRM1, which recognises leucine-rich NESs on the protein cargo, allowing 

binding and facilitating nuclear export (Kudo et al. 1999). 

To assess if S100P is being actively transported out of the nucleus, Leptomycin B (LMB) was utilised as 

an inhibitor of this type of nuclear transport. LMB is a potent antibiotic produced by Streptomyces, 

whose role in nuclear export was first studied by Wolff, Sanglier and Wang (1997), and was found to 

block the nuclear export of Rev, a HIV-1 regulatory protein. LMB has been demonstrated to block the 



149 
 

nuclear export of a several of different proteins, including but not limited to CYFIP2 (Jackson et al. 

2007), IκBα (Castro-Alcaraz et al. 2002), and paxillin (Burgess and Gray 2012). 

Fornerod et al. (1997) showed that LMB directly interacts with CRM1, however the mechanism of 

action behind this inhibition was not clear until Kudo et al. (1999) described a S. pombe mutant which 

showed very high resistance to LMB. This mutant contained a single amino acid change at cysteine 

residue 529 in CRM1 that is near to CRM1’s cargo-binding domain. This mutation allowed the 

conference of resistance to LMB on the wild type a S. pombe. As a consequence, the alteration of this 

sole amino acid residue at position 529 was found to be solely responsible for the interaction between 

LMB and CRM1, which has the effect of preventing the association of CRM1 with a NES-containing 

cargo protein, therefore blocking nuclear export. 

As mentioned, active nucleocytoplasmic shuttling of proteins depends on specific localisation 

sequences within the protein. S100P does not contain a nuclear localisation sequence (NLS) or a 

nuclear export signal (NES). Most cargoes that bind to CRM1 contain a NES, however there are 

exceptions; it was found that the 60S ribosomal subunit expressed in yeast instead binds to an adapter 

protein containing a NES rather than containing its own NES (Hung et al. 2008). 

Following the prevention of active nucleocytoplasmic shuttling using LMB, cell lines were fractionated 

and assessed for their presence of S100P in the different cellular compartments. The localisation of 

paxillin was also determined, as Burgess and Gray (2012) found that following treatment with LMB, 

paxillin is found at a high level in the nucleus of HeLa cells compared to the untreated counterparts. 

Paxillin was therefore used as a tool to assess that LMB was working as previously documented. 

Densitometry analysis of LMB treated fractions in comparison to their untreated controls allowed for 

the determination of S100P localisation in different cell lines, and whether S100P as a protein is a 

target of LMB and therefore has the potential to be actively shuttled out of the nucleus during 

fractionation assays. Treatment with 10ng/ml LMB was sufficient to see the retention of paxillin in the 

cell nuclei for all cell lines. This is in line with Burgess and Gray (2012), who found that treating HeLa 

cells with 5ng/ml LMB was sufficient to prevent nuclear export of paxillin. Regardless of treating cell 

lines with or without LMB, there was no change in the localisation of S100P.  

This work has established that S100P is not exported from the nucleus in a CRM1-dependent manner. 

LMB has so far only been found to interact with CRM1, and CRM1 is the only export receptor yet to be 

inhibited, thus experimental identification of receptors involved in nuclear protein export is limited.  

Nuclear transport of proteins through the use of nuclear import/export receptors falls under the 

category of active transport. LMB is capable of blocking active transport through blockade of such 
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receptors, however there is still potential for S100P to passively diffuse out of the nucleus without the 

need for a transport receptor. Passive nuclear diffusion, however, is bidirectional in nature (Kumeta et 

al. 2012). If S100P were to passively diffuse out of the nucleus, it would be expected that S100P could 

also passively diffuse into the nucleus, due to the bidirectionality of passive transport through nuclear 

pore complexes, and reach a dynamic equilibrium.  

In conclusion, the data obtained through this chapter suggests that S100P can be detected in 

cytoplasmic and membrane fractions in all cell lines, regardless of S100P expression level or through 

prevention of active nucleocytoplasmic shuttling. 
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4.1 Introduction 

S100P has been shown to promote motility and invasion in a large spectrum of cell types, but 

principally in disease states (Whiteman et al. 2007; Hsu et al. 2015, see section 1.1.2.5). However, the 

molecular mechanisms behind both cellular migration and invasion remain unknown. In the context of 

cells from a malignant background, prior research has suggested that interaction of S100P with a 

variety of target proteins is at least in part responsible for these processes, as presented in section 

1.1.2.5. For example, Du et al. (2012) report that interaction of S100P with nonmuscle myosin IIA 

(NMIIA) in HeLa cells leads to redistribution of NMIIA and subsequent reduction in the levels of focal 

adhesion sites formed, leading to increases in cellular motility. Reduction of cellular invasion of 

pancreatic cancer cell lines has been reported by Arumugam, Ramachandran and Logsdon (2006) 

through blocking the interaction of S100P with RAGE by use of an anti-allergy drug, cromolyn. We have 

recently further demonstrated, for the first time, a role for S100P in promoting cellular motility and 

invasion in a non-pathophysiological background, in that of trophoblasts of the placenta, but little is 

known about the molecular pathways involved.   

Motility and invasion of a subset of cells present within the placenta, extravillous trophoblasts (EVTs), 

is required for the establishment of the blood supply from mother to foetus through invasion of the 

primed maternal endometrium, known as decidua. Remodelling and reorganisation of the maternal 

spiral arteries by EVTs to a reduced resistance state leads to increased blood flow to the foetus, 

allowing unrestricted growth of the foetus (Ji et al. 2013). Absence or obstruction of these processes 

are believed to lead to pathologies including intrauterine growth restriction (IUGR) and preeclampsia. 

Zhu et al. (2015a) found reduced expression of S100P in first trimester placenta obtained from patients 

with spontaneous abortion, further suggesting a role for S100P in placental development. We have 

also shown that S100P is a key regulator of both motility and invasion in trophoblast cells (Tabrizi et 

al. 2018) but the clear mechanisms behind this process are lacking and need further analysis. 

The subcellular localisation of S100P within cell lines of both malignant (HeLa, JEG-3, BeWo) and 

normal physiological backgrounds (COS-7, HTR8) was previously established by utilising a biochemical 

assay known as subcellular fractionation (Chapter 3). Results established the sole presence of S100P 

within cytoplasm/membrane fractions of all cell lines studied, regardless of their origin or of alterations 

to the assay. Much of the literature focuses on either the nuclear or cytoplasmic localisation of the 

S100P protein, however there is a dearth of literature concerning potential membrane localisation of 

this protein.  One study by Sato and Hitomi (2002) has reported the presence of S100P in the cell 

membrane and cytoplasm in normal human oesophageal epithelium through the use of 

immunohistochemistry. As previous fractionation experiments led to isolation of cytoplasm and 
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membrane cellular compartments in tandem (Chapter 3), it was necessary to fully isolate purified 

plasma membrane from all cell lines studied to assess its specific localisation in the plasma membrane 

alone. 

In this chapter, we aim to investigate whether S100P is associated with the plasma membrane in a 

variety of cell lines (either expressing endogenous S100P or stably transfected cell lines) through the 

use of biochemical isolation by sucrose density gradient and biotinylation studies. We also shed new 

light on the consequences of S100P localisation at the membrane on cellular motility and invasion, and 

the molecular mechanisms at play behind these processes. In addition, we aim to explore expression 

and plasma membrane localisation of S100P in primary first trimester extravillous trophoblasts (EVTs), 

and establish if elements of the S100P structure suggest how S100P may come to be associated with 

the plasma membrane.   
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4.2 Results 

4.2.1 S100P is detected within the isolated plasma membrane fractions of cell 

lines 

Many studies have assessed the specific physiological localisation of S100P using a variety of 

techniques (see Table 3.1.1). However, the presence of S100P within the plasma membrane of various 

cell types has yet to be fully assessed and has not been discussed within the scientific literature. As 

previous fractionation experiments led to isolation of cytoplasm and membrane cellular 

compartments in tandem (Chapter 3), it was necessary to establish a different methodology to fully 

isolate purified plasma membrane from all cell lines studied to assess its specific localisation.  

To achieve this aim, plasma membrane fractions of cells were isolated using nitrogen cavitation and a 

sucrose cushion, followed by SDS-PAGE western blotting to assess the presence of S100P within these 

fractions (Figure 4.3.1). In a similar fashion to Chapter 3, it was necessary to utilise marker antibodies 

to confirm the correct isolation of the plasma membrane with minimal contamination with proteins 

from other cell compartments. To this end, Caveolin I was used as a marker for the plasma membrane 

fractions. Caveolin I is a scaffolding protein that is a component of caveolae; these are invaginations 

of the cell membrane that form in many processes, and are important sites in many cell regulatory 

processes such as endocytosis (Codrici et al. 2018). Tubulin was once again used as a marker for 

cytoplasmic proteins, in order to detect the presence of any contaminating proteins within the plasma 

membrane fraction which could lead to the generation of a false signal for S100P (Vanli et al. 2017). 

Following western blotting of total cell lysates and isolated plasma membrane fractions from JEG-3, 

BeWo, MDA-MB-231, HTR8 Clone 7, COS-7 s10+ and HeLa A3+ cell lines, caveolin I was found to be 

significantly enriched in all isolated plasma membrane fractions compared to their relative total cell 

lysates, confirming the appropriate isolation of plasma membrane (Figure 4.2.1, panel A). In addition, 

tubulin was detected at very low levels in each isolated plasma membrane fraction compared to their 

relative cell lysates, demonstrating little to no cytoplasmic contamination of plasma membrane 

fractions. When studying the levels of S100P detected in these six cell lines, it was observed that the 

majority of cellular S100P was detected in total cell lysates, comprising of both cytoplasmic and nuclear 

compartments. However, presence of S100P was also observed in isolated plasma membrane fractions 

in all cell lines studied, as each of these fractions exhibited a clear band for S100P. Interestingly, S100P 

detected in the plasma membrane fractions of all cell lines appears to run slightly slower on the gel 

than S100P detected in total cell lysates.  
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In a bid to quantify relative S100P levels in isolated plasma membrane fractions, the raw densities of 

both S100P and tubulin obtained in either total cell lysates or isolated membrane fractions were taken 

and the ratio of S100P to tubulin in either the total cell lysate or the isolated membrane fractions were 

calculated. Finally, the fold difference between membrane signal versus total cell lysate signal was 

calculated (Figure 4.2.1, panel B). 

All cell lines demonstrated an increased ratio of S100P to tubulin in the membrane fractions compared 

to the relative ratio of the two proteins in their respective cell lysates, of which the fold change is 

reported in Figure 4.2.1, panel B. This data suggests that S100P detected within isolated membrane 

fractions is due to endogenous S100P localisation, and not contamination of the plasma membrane 

fraction with cytoplasmic proteins.  
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Cell line 
Ratio of S100P to tubulin 

in total cell lysate (±SD) 

Ratio of S100P to tubulin in 

membrane (±SD) 

Fold 

increase  

JEG-3 1.03 2.97 2.88 

BeWo 1.54 (±0.8) 5.57 (±0.02) 3.63 

HTR8 Clone 7 4.18 (±1.18) 7.54 (±0.36) 1.80 

COS-7 s10+ 1.08 (±0.16) 1.54 (±0.08) 1.42 

HeLa A3+ 0.43 1.13 2.60 

 

 

A) JEG-3, BeWo, MDA-MB-231, HTR8 Clone 7, HeLa A3+ and COS-7 s10+ cell lines were lysed by nitrogen 

cavitation, followed by ultracentrifugation to allow separation of the plasma membrane fraction. 10µg and 

30µg of total cell lysates and membrane fractions respectively were loaded and run on SDS-PAGE followed 

by western blotting to detect S100P, plasma membrane marker caveolin I and cytoplasmic marker tubulin 

within each fraction.  

B) Quantification of the ratio of S100P to tubulin in both total cell lysate and membrane samples is 

presented, in addition to the fold difference between the two ratios calculated. Data represents the mean 

±SD from at least 2 independent replicates, apart from JEG-3 and HeLa A3+ where n=1. 

 

A 

B 

Figure 4.2.1: S100P is localised to the plasma membrane fraction of cell lines 
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Presence of the S100P protein has been demonstrated in various cell lines by western blotting, 

including those of trophoblast origin. In addition, previous immunohistochemistry studies have 

illustrated high levels of S100P in first trimester placental tissue, with levels of S100P expression at 

their highest levels within first trimester placenta and decreasing in expression throughout gestation 

(Tabrizi et al. 2018). Therefore, we wanted to assess the potential membrane presence of S100P within 

in vivo samples. To this end, matched and serial first trimester placental tissue slices were stained for 

HLA-G and S100P, and images were studied for colocalisation of these two proteins. HLA-G is a protein 

that is highly expressed in extravillous trophoblast placental membranes (Patel et al. 2003), and is 

therefore an appropriate marker to assess presence of S100P within the plasma membrane of this cell 

subset of the placenta. This work was carried out by Ms Maral Tabrizi. A representative image of an 

anchoring villi from stained first trimester placental tissue slices is presented in figure 4.2.2. The 

presence of HLA-G denotes extravillous trophoblasts. 

ImageJ software was utilised to study the colocalisation of HLA-G and S100P at the cell membrane, 

using the plot profile function. Matched images were taken and a region of interest was drawn across 

cell membranes for both images. The region of interest for both HLA-G and S100P images was of the 

same size to allow for correct matching (Figure 4.2.3, panel A). The gray value of the pixels in the 

selected region of interest was measured for both HLA-G and S100P, and could therefore be plotted 

versus the length of the region of interest. A higher gray value (on a scale of 0 to 255) designates white 

pixels, whereas a grey value of 0 pertains to black pixels. Therefore, the lower the gray value, the 

darker the pixel at the selected region of interest, and therefore the more intense the staining. The 

midpoint of the region of interest was always selected to be the cell membrane of the cells to allow 

for quantification, and therefore the mid-point on the graph pertains to the cell membrane (Figure 

4.2.3, panel B).  

Measurements of multiple regions of interest were taken using at least 3 different matched slices, and 

at least 30 cells, the totality of which is summarised in figure 4.2.4. Results from this colocalisation 

analysis using immunostained first trimester placental tissue confirms the presence of HLA-G at the 

cell membrane in anchoring villi. In addition, the analysis demonstrates the presence of S100P in the 

cell membrane of EVT cells, colocalising with HLA-G expressed by this cell subset.  
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Matched immunohistochemical staining of S100P and HLA-G within first trimester placental tissue.  

Scale bar = 25µM. CC, cytotrophoblast columns; EVT, extravillous trophoblasts; STB, syncytiotrophoblasts. This work was carried out by Ms Maral Tabrizi. 

Figure 4.2.2: HLA-G and S100P are expressed by extravillous trophoblasts within first trimester placental tissue 
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A) Matched slices of placental tissue were stained for HLA-G and S100P. Regions of interest were drawn 

(blue line) to allow for analysis of membrane localisation of S100P, using HLA-G as a marker. Scale = 25µM. 

This work was carried out by Ms Maral Tabrizi. 

B) Representative example of the graphical output from ImageJ of the region of interest, displaying the gray 

value of the pixels plotted against the length of the region of interest for both HLA-G (black) and S100P 

(red). 

 

A 

B 

Figure 4.2.3: S100P and HLA-G colocalise at the plasma membrane in placental sections. 
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A graphical summary of HLA-G (black) and S100P (red) colocalisation at the plasma membrane. Over 30 cells 

were examined using 3 different matched samples for their membrane localisation of S100P. The midpoint 

of the graph (at which the region of interest crosses the plasma membrane) is marked by a dotted line.  

 

Figure 4.2.4: S100P and HLA-G colocalise at the plasma membrane in placental sections. 
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To further confirm the presence of S100P within the cell surface/plasma membrane, samples 

containing cell surface proteins were isolated using a commercial kit (Pierce Cell Surface Isolation Kit). 

This kit contains a form of cell-impermeable, cleavable biotin (Sulfo-NHS-SS-Biotin) which allows for 

the labelling of molecules present on the cell surface (Jang and Hanash 2003). Cell lines JEG-3, BeWo, 

HTR8 clone 7, COS-7 s10+ and HeLa A3+ were subjected to biotinylation prior to running alongside 

total cell lysates on a 16% (w/v) SDS-PAGE and western blotting for S100P.  

The resulting western blots for S100P demonstrate the presence of S100P within the biotinylated 

samples (figure 4.2.5) for all cell lines with the presence of S100P being seen in different forms. Bands 

were detected at roughly 17kDa in JEG-3 and HeLa A3+ biotinylated samples, and a band at roughly 

40kDa was detected in the BeWo biotinylated sample. The COS-7 s10+ cell line, in contrast to every 

other cell line, exhibited more than two bands for S100P in the biotinylated sample.  

To highlight potential differences in cell surface localisation of S100P between cell lines, we sought to 

compare the density of the S100P band obtained in the biotinylated sample with the S100P band 

obtained in their respective total cell lysates (Figure 4.2.6). For analysis purposes, densities of the 

10kDa bands alone were taken, as these were present in all cell lines.  

Interestingly, the JEG-3, BeWo and HTR8 clone 7 trophoblast cell lines demonstrated remarkably 

similar levels of S100P within their biotinylated membrane extracts when compared to their relative 

total cell lysates, at a level of over 13-16%.  

The densities of the 10kDa S100P band detected in biotinylated samples from HeLa A3+ and COS-7 

s10+ cell lines were at 45% and 59%, respectively, of the level of their respective total cell lysates, 

suggesting a greater presence of cell surface S100P in these cell lines when compared to endogenously 

expressing trophoblast cells. This is also in line with figure 4.2.1, in which the inducible cell lines seem 

to demonstrate higher levels of S100P present within their isolated plasma membrane fractions.  
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JEG-3 (A), BeWo (B), HTR8 Clone 7 (C), HeLa A3+ (D) and COS-7 s10+ (E) cell lines were biotinylated using the Pierce Cell Surface Isolation Kit according to 

the manufacturer’s instructions, and 1/10th of the final eluted volume was loaded and run on 16% (w/v) SDS-PAGE, alongside their respective total cell 

lysates, followed by western blotting to detect S100P.   

 

D E 

Figure 4.2.5: Biotinylation experiments using the Pierce Cell Surface isolation kit reveal S100P can be detected at the cell surface 
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Cell line Density of total cell 

lysate band (% ±SD) 

Density of biotinylated 

membrane band (% ±SD) 

JEG-3 100 (±4.78) 15.8 (±4.3) 

BeWo 100 (±2.07) 13.54 (±1.18) 

HTR8 clone 7 100 15.45 

COS-7 s10+ 100 (±3.92) 58.93 (±25.24) 

HeLa A3+ 100 (±5.85) 45.22 (±18.01) 

 

A) Densities calculated by Image Studio Lite for either total cell lysates or biotinylated membranes from either 

JEG-3, BeWo, HTR8 clone 7, COS-7 s10+ or HeLa A3+ cell lines were compared to calculate the percentage of 

signal detected for the biotinylated membranes against their respective total cell lysates. Data represents 

the mean ±SD from at least 2 independent replicates, apart from HTR8 clone 7 where n=1. 

B) Average densities of total cell lysates and biotinylated membranes presented as a percentage of the 

control (total cell lysate). Data represents the mean ±SD from at least 2 independent replicates, apart from 

HTR8 clone 7 where n=1. 

 

A 

B 

Figure 4.2.6: Comparison of signal densities between total cell lysates and biotinylated membrane samples 

for multiple cell lines 
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An alternative method of assessing cell-surface S100P was attempted; flow cytometry. This is due to 

the fact that flow cytometry only requires a small number of cells to detect a fluorescent signal, 

whereas nitrogen cavitation requires many millions of cells. Flow cytometry would therefore allow for 

high throughput analysis of cell surface S100P. 

COS-7 s10 and HeLa A3 cells, both induced and non-induced, were incubated with an antibody to S100P 

prior to being subjected to flow cytometry (Figures 4.2.7 and 4.2.8). Results from these experiments 

show that there is generally a small increase in the mean fluorescence intensity (MFI) of cells induced 

to express S100P to high levels, compared to cells not expressing S100P. Induced COS-7 s10 cells 

demonstrated a 10% increase in MFI compared to non-induced COS-7 s10 cells, whereas induced HeLa 

A3 cells demonstrated on average a 8.5% increase in MFI compared to their non-induced counterparts. 

However, the increase seen in the MFI of induced COS-7 s10 and HeLa A3 cells is not reproducible 

between experiments, and the secondary antibody used creates a large amount of background that 

hinders true detection of S100P. The differences in MFI between the induced and non-induced samples 

is not statistically significant enough in either cell line (p=0.996) to consider making flow cytometry the 

primary method for detecting cell surface S100P.   
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A) COS-7 s10 cells were subjected to flow cytometry following staining of the cell surface with an antibody 

to S100P. The mean fluorescence intensity (MFI) was calculated for each condition using FlowJo X software. 

Data represents ± SEM from 3 independent replicates (one-way ANOVA). 

B) Histogram of S100P fluorescence showing cells alone (blue), primary antibody alone (red), secondary 

antibody alone (orange), non-induced COS-7 s10 cells (dark green) and induced COS-7 s10+ cells (light green). 

A 

B 

Figure 4.2.7: Cell surface S100P cannot be consistently detected by flow cytometry in COS-7 S10 cells 
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A) HeLa A3 cells were subjected to flow cytometry following staining of the cell surface with an antibody to 

S100P. The mean fluorescence intensity (MFI) was calculated for each condition using FlowJo X software. 

Data represents ± SEM from 3 independent replicates (one-way ANOVA). 

B) Histogram of S100P fluorescence showing cells alone (blue), primary antibody alone (red), secondary 

antibody alone (orange), non-induced HeLa A3 cells (dark green) and induced HeLa A3+ cells (light green). 

A 

B 

Figure 4.2.8: Cell surface S100P cannot be consistently detected by flow cytometry in HeLa A3 cells 
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4.2.2 Treatment of JEG-3 cells with an S100P antibody or siRNA technology 

leads to decreases in migration and invasion 

Previously published work has demonstrated that regulation of S100P expression by siRNA treatment 

significantly reduces both the motility and invasion of trophoblasts (Tabrizi et al. 2018). Having shown 

the presence of S100P at the extracellular membrane surface using a combination of techniques, we 

wanted to determine if inhibiting cell surface/extracellular S100P had any effect on trophoblast 

motility or invasion. This work was carried out by Ms Maral Tabrizi. 

To this end, JEG-3 cells were subjected to a motility or invasion assay with the addition of the S100P 

antibody, or an siRNA sequence targeted to S100P to compare levels of motility/invasion inhibition 

(Figure 4.2.9). Whilst JEG-3 cells treated with goat serum showed no defects in their ability to migrate 

across a Boyden chamber membrane (p=0.99), JEG-3 cells treated with an S100P antibody 

demonstrated a statistically significant reduction in their migration by 25% (p=0.0002). JEG-3 cells 

treated with an siRNA sequence targeted to S100P, on the other hand, demonstrated an even more 

significant reduction in their migratory capacity, by almost 65% (p<0.0001). In addition, the decrease 

in migration of JEG-3 cells treated with siRNA was statistically significantly different than migration 

exhibited by cells treated with the S100P antibody (p<0.0001). 
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A) JEG-3 cells were seeded in triplicate onto Boyden chambers and treated with S100P antibody diluted 

1:1000, or with 5nM S100P siRNA. Cells were left to migrate for 24 hours before fixing and staining the 

transwells. The number of cells migrated per field was counted, for 5 fields per well. Data represents the 

mean ±SEM from at least 3 independent replicates (one-way ANOVA, **** p<0.0001). This work was carried 

out by Ms Maral Tabrizi. 

B) Pictures of one stained transwell per condition were taken at 20x magnification using a Nikon Eclipse 

TS100 inverted microscope.  

Figure 4.2.9: Treatment with an S100P antibody or siRNA targeted to S100P partially abolishes S100P-

dependent migration of JEG-3 cells 
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The invasive capabilities of JEG-3 cells following S100P antibody or siRNA treatment was also assessed 

(Figure 4.2.10). Following treatment with a negative control, goat serum, JEG-3 showed no significant 

changes in their invasion across a Boyden chamber membrane (p>0.99). Following treatment with an 

S100P antibody, JEG-3 cells demonstrated a statistically significant reduction in invasion by 40% 

(p<0.0001). The reduction in JEG-3 invasion was even greater following treatment with siRNA targeted 

to S100P, in which invasion was reduced by 70% (p<0.0001). The difference in migration exhibited 

between siRNA treated JEG-3 cells and S100P antibody treated JEG-3 cells was statistically significantly 

different (p=0.0001). 
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A) JEG-3 cells were seeded in triplicate onto Matrigel-coated Boyden chambers and treated with S100P 

antibody diluted 1:1000, or with 5nM S100P siRNA. Cells were left to invade for 24 hours before fixing and 

staining the transwells. The number of cells migrated per field was counted, for 5 fields per well. Data 

represents the mean ±SEM from at least 3 independent replicates (one-way ANOVA, **** p<0.0001). This 

work was carried out by Ms Maral Tabrizi. 

B) Pictures of one stained transwell per condition were taken at 20x magnification using a Nikon Eclipse 

TS100 inverted microscope.  

Figure 4.2.10: Treatment with an S100P antibody or siRNA targeted to S100P partially abolishes S100P-

dependent invasion of JEG-3 cells 
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4.2.3 JEG-3 cells exhibit an increase in focal adhesion formation following 

treatment with S100P siRNA 

Previously published work has demonstrated that regulation of S100P expression by siRNA treatment 

significantly reduces both the motility and invasion of trophoblasts. Prior to establishing the role of 

membrane-associated S100P in these processes, it was deemed necessary to explore some of the 

potential molecular mechanisms behind the reduction seen in motility and invasion. To this end, 

trophoblast cell line JEG-3 were treated with siRNAs of 2 different sequences that were targeted to 

S100P (henceforth referred to as siRNA 4 and siRNA 6). Treatment with siRNAs 4 and 6 resulted in a 

decrease in S100P expression by around 90% in JEG-3 cells (Tabrizi et al. 2018) as detected by western 

blotting for S100P.  

Following treatment with siRNA sequences targeted to S100P, cells were fixed and stained with an 

antibody to paxillin, a marker of focal adhesions, and with rhodamine-phalloidin to visualise F-actin. 

Focal adhesions are sites at which clusters of membrane-spanning integrins engage with proteins such 

as fibronectin and vitronectin within the ECM (Turner 2000), providing a structural link to the 

cytoskeleton. The cytoplasmic tail of integrins can recruit adapter proteins such as paxillin to 

membrane regions, leading to their phosphorylation by focal adhesion kinase (FAK). Following 

phosphorylation, paxillin can recruit signalling molecules to activate intracellular pathways involved in 

restructuration of the actin cytoskeleton, thereby regulating the process of cell migration and 

attachment (López-Colomé et al. 2017). Paxillin can also bind to other adapter proteins, such as 

vinculin and talin, which upon phosphorylation can bind to F-actin and other components of the cell 

cytoskeleton. 

To quantify the effects of S100P knockdown on focal adhesions, the number of focal adhesions per cell 

were counted for at least 60 cells for each condition. Control and mock-treated JEG-3 cells were 

characterised by small, clustered focal adhesions that were mostly localised at the cellular periphery. 

Upon treating JEG-3 cells with siRNA 4 and 6, cells began to show focal adhesions of an increased size 

(Figure 4.2.11 panel A). Quantification of the number of focal adhesions present in each cell 

demonstrated that treatment with either siRNA 4 or 6 generated a significant increase by 77% 

(p<0.0001) and 90% (p<0.0001) respectively in the average number of focal adhesions present per cell 

in comparison to mock-treated or control JEG-3 cells (Figure 4.2.11 panel B). There was no significant 

difference between the average number of focal adhesions counted per cell between the control and 

mock conditions (p=0.37) or between each of the siRNA treatments (p=0.49).  



174 
 

Treatment of JEG-3 cells with siRNA 4 or 6 also resulted in changes to the actin cytoskeleton. Control 

and mock-treated cells stained with rhodamine phalloidin showed highly motile features, including the 

presence of a leading edge (otherwise known as lamellipodia). In contrast, cells treated with siRNA 4 

or 6 on average did not display these motile features and instead showed the presence of highly 

organised actin filaments known as stress fibres. 

These results establish that reduction of S100P expression by siRNA technology leads to an increase in 

focal adhesion size and formation by JEG-3 cells, in addition to changes to the actin cytoskeleton 

suggesting cell motility and migration are inhibited to an extent.  
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A) JEG-3 cells treated with 5nM siRNA 4 and 6 were grown for 48 hours prior to fixation with 4% (w/v) PFA 

and permeabilization with 0.1% triton. Cells were stained for focal adhesion marker paxillin and cytoskeletal 

marker actin, and DAPI to stain nuclei.  

B) Average number of focal adhesions containing paxillin per cell, presented as a percentage of the control. 

Data represents the mean ±SEM from 3 independent replicates (one-way ANOVA, **** p<0.0001) 

 

B 

A 

Figure 4.2.11: Knockdown of S100P in JEG-3 cells results in an increased number of focal adhesions per cell 
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4.2.4 Treatment of EVT-like HTR8/SVneo cells with an S100P antibody 

partially abolishes S100P-dependent migration and invasion 

The results obtained so far demonstrate that S100P can be detected in plasma membrane fractions 

isolated from six different cell lines (section 4.2.1) and that inhibiting its activity using a specific 

antibody leads to changes in both cellular motility and invasion in cancer cells, such as choriocarcinoma 

JEG-3 cells (section 4.2.3) and others (Clarke et al. 2017; Ismail et al. 2020, submitted). We now wanted 

to determine if such changes could also be seen in non-cancerous and more EVT-like cell models that 

we have recently established (Tabrizi et al. 2018).  

The HTR8/SVneo clones were utilised in the Transwell system for several reasons. Firstly, they are a 

model first trimester trophoblast cell line, and are therefore considered a physiologically relevant 

placental cell line. Secondly, and given the absence of S100P expression in the HTR8 cell background 

acting as a sufficient negative control, they can easily be compared to the S100P expressing clones, i.e. 

HTR8 clone 7. This allows for the assessment of purely S100P-specific and dependent processes and 

reduces potential artefacts introduced by utilising physiologically distinct cell lines.  

The S100P antibody has the ability to block cell surface and extracellular S100P (Clarke et al. 2017), 

allowing for the determination of the role of this particular cellular pool of S100P in the cellular 

processes of migration and invasion. It was necessary to first assess if treating HTR8 cells with the 

S100P antibody causes changes in cell proliferation, as this could potentially influence cell motility and 

invasion. HTR8 Clones 3 and 7 were treated with the S100P antibody for either 24 or 48 hours before 

trypsinisation and counting. Figure 4.2.12 displays the effect of the S100P antibody on HTR8 cell 

proliferation, in which both HTR8 Clones 3 and 7, with and without S100P antibody treatment, show a 

similar growth pattern over the course of 48 hours, with all conditions showcasing statistically 

significant growth between 24 and 48 hours (p<0.0001). The addition of the S100P antibody did not 

cause any significant changes in cell proliferation in either Clone 3 or Clone 7 (p>0.99). Therefore, it 

can be said that any changes in motility or invasion that may arise due to treatment with the S100P 

antibody are not due to changes in cell proliferation, as proliferation of both clones is unaffected by 

addition of the S100P antibody.  
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HTR8 Clones 3 and 7 were seeded at a density of 20,000 cells per well and left to grow for either 24 or 

48 hours prior to trypsinisation and counting. Data represents the mean ±SEM from at least 3 

independent replicates (one-way ANOVA, **** p<0.0001) 

Figure 4.2.12: Treatment with an S100P antibody does not affect cell proliferation of HTR8 clones 
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As treatment of HTR8 cell lines with the S100P antibody has no effect on their proliferation, each of 

the clones were subjected to a motility or invasion assay with the addition of the S100P antibody. 

Figure 4.2.13 outlines the effect of S100P antibody treatment on the migration of the two HTR8 Clones 

(control HTR8 Clone 3 and S100P-expressing Clone 7).  

In the absence of the S100P antibody, there is a significant, more than 2-fold increase in motility 

between clone 3 and clone 7 (p<0.0001), suggesting that S100P has a role in promoting motility in this 

cell line. Following treatment with the S100P antibody, the motility of the clone 3 cell line is unaffected 

when compared to its control (p=0.63). In contrast, the motility of the HTR8 clone 7 cell line is 

significantly reduced by 1.5-fold when compared to its untreated counterpart (p<0.0001). The motility 

of the clone 7 cell line, however, is not reduced to the levels of the control clone 3 cell line, and remains 

over 80% higher than that of clone 3. This data shows that treatment with the S100P antibody only 

partially abolishes migration of these cells, and suggests that S100P may be acting via another pathway 

to influence cellular motility. 
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A) HTR8 Clones (control Clone 3, and S100P-expressing Clone 7) were seeded in triplicate onto Boyden 

chambers and treated with S100P antibody diluted 1:1000. Cells were left to migrate for 24 hours before 

fixing and staining the transwells. The number of cells migrated per field was counted, for 5 fields per well. 

Data represents the mean ±SEM from at least 3 independent replicates (one-way ANOVA, **** p<0.0001) 

B) Pictures of one stained transwell per condition were taken at 20x magnification using a Nikon Eclipse 

TS100 inverted microscope.  

A 

B 

Figure 4.2.13: Treatment with an S100P antibody partially abolishes S100P-dependent migration of S100P-

expressing HTR8 cells 
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The invasive capabilities of HTR8 clones 3 and 7 were also assessed using the Boyden transwell system, 

both with and without the S100P antibody (Figure 4.2.14). In the absence of the S100P antibody, the 

clone 7 cell line exhibited an almost 6-fold increase in invasion in comparison to its non-S100P-

expressing counterpart, clone 3 (p<0.0001). Once again, following antibody treatment, the invasion of 

clone 3 cells was unchanged when compared to its untreated control (p=0.99). On the other hand, 

treatment of clone 7 cells with the S100P antibody reduced their invasion by 1.5-fold, by almost 40%, 

compared to their untreated counterpart (p<0.0001). Again, as with HTR8 clone 7 cell motility, this is 

a partial reduction in cell invasion that is not at the level of untreated Clone 3 cell invasion, suggesting 

that extracellular S100P is only partially responsible for effects on cell invasion.  

Together, the data presented in figures 4.2.13 and 4.2.14 demonstrate that S100P has a greater impact 

on the process of cell invasion than on cell motility in HTR8 cells. However, treatment with the S100P 

antibody reduced S100P-dependent migration and invasion both by 1.5-fold. The similarity in the fold 

decrease between motility and invasion following antibody treatment suggests that the S100P 

antibody is acting in a similar fashion on both motility and invasion, as motility is not reduced more 

than invasion and vice versa. This data indicates that cell-surface or extracellular S100P has a role in 

the migration and invasion of trophoblasts, but blockade of extracellular S100P does not fully abolish 

all of its motility inducting activities. 
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A) HTR8 Clones (control Clone 3, and S100P-expressing Clone 7) were seeded in triplicate onto Matrigel-

coated Boyden chambers and treated with S100P antibody diluted 1:1000. Cells were left to invade for 24 

hours before fixing and staining the transwells. The number of cells migrated per field was counted, for 5 

fields per well. Data represents the mean ±SEM from at least 3 independent replicates (one-way ANOVA, 

**** p<0.0001) 

B) Pictures of one stained transwell per condition were taken at 20x magnification using a Nikon Eclipse 

TS100 inverted microscope. 

A 

B 

Figure 4.2.14: Treatment with an S100P antibody partially abolishes S100P-dependent invasion of S100P-

expressing HTR8 cells 
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It has previously been established that knockdown of S100P through the use of siRNA technology in 

trophoblast cell line JEG-3 leads to an increase in focal adhesion formation, leading to defects in cellular 

motility and invasion (see figures 4.2.9 to 4.2.11). In order to assess the molecular mechanisms behind 

cell motility and invasion that may be taking place as a consequence of S100P expression at the 

membrane, HTR8 Clones 3 and 7 were again treated with S100P antibody for 24 hours prior to being 

fixed and stained for paxillin. Figure 4.2.15 illustrates the differences in focal adhesion formation 

between control Clone 3 and Clone 7, both with and without the addition of the S100P antibody. In 

the absence of the S100P antibody, there is a significant 25% decrease in the number of focal adhesions 

between Clones 3 and 7, respectively (Figure 4.2.15, panel B, p=0.006) demonstrating that S100P has 

a role in regulating the formation, or disassembly, of focal adhesions.  

Changes to the actin cytoskeleton were observed between HTR8 clones 3 and 7. S100P-expressing 

HTR8 clone 7 cells stained with rhodamine phalloidin, highlighting F-actin structures, showed highly 

motile features, including the presence of a leading edge (focused regions). In contrast, HTR8 clone 3 

cells not expressing S100P did not display these motile features and instead showed the presence of 

highly organised stress fibres. 

Upon treating each clone with an antibody to S100P, there is no change in the average number of focal 

adhesions counted per cell in either cell line, respective to their controls (p=0.99). This suggests that 

the S100P antibody may be decreasing migration and invasion in HTR8 cells by another mechanistic 

pathway that is not dependent on the regulation of focal adhesion formation.  
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A) HTR8 Clones (control Clone 3, and S100P-expressing Clone 7) were seeded onto fibronectin-coated 

coverslips and treated with S100P antibody diluted 1:1000. Cells were incubated for 24 hours before 

fixing and staining for paxillin (green) and actin (red). 

B) Average number of paxillin stained focal adhesions per cell were counted for around 100 cells, with 

values presented as a percentage of the control Clone 3. Data represents the mean ±SEM from at least 3 

independent replicates (one-way ANOVA, * p<0.05, ** p<0.01)  

 

B 

Figure 4.2.15: Treatment with an S100P antibody does not affect the number of focal adhesions formed 

by HTR8 cells 



185 
 

4.2.5. Cromolyn partially inhibits S100P-dependent migration and invasion 

Our earlier work has revealed that an antibody to S100P, added extracellularly in the culture media, 

reduces the motility and invasion of HTR8 cells. In the context of extracellular interactions of the S100P 

protein, one such protein that S100P interacts with, RAGE, is a receptor that is present on the cell 

surface. In order to examine if any of the reported defects in cell motility and invasion are RAGE-

dependent, it was decided to treat HTR8 cells with cromolyn. Cromolyn is an anti-allergy drug that is 

known to have a direct interaction with S100P. Cromolyn binds to S100P dimers at its linker region, 

helix 4 of one S100P monomer, and helix 1 of another S100P monomer. This is also within the region 

of the RAGE-S100P binding site, effectively blocking interaction of S100P with RAGE (Penumutchu et 

al. 2014b). Prior to assessing the motility and invasion of HTR8 clones when treated with cromolyn, it 

was first necessary to see if cromolyn demonstrates any toxicity or has any effect on cell proliferation. 

Non-S100P expressing HTR8 clone 3 and S100P-expressing HTR8 clone 7 were treated with two 

different doses of cromolyn (10 and 100µM) over the course of 48 hours prior to trypsinisation and 

cell counting. These doses were chosen as they are featured prominently in the literature (Arumugam 

et al. 2006). 

Figure 4.2.16 shows the effect of cromolyn at different concentrations on HTR8 clone proliferation. 

HTR8 Clone 3 cells do not demonstrate any differences in proliferation at the 24-hour time point when 

treated with either 10µM or 100µM cromolyn (p>0.99). HTR8 clone 7 cells, on the other hand, seem 

to show a slight decrease in cell proliferation when treated with 10µM cromolyn, but not 100µM 

cromolyn, at the 24-hour time point. However, this difference in cell proliferation is not statistically 

significant (p>0.18). After 48 hours of treatment with cromolyn at either 10µM or 100µM dosages, 

HTR8 clone 3 demonstrate no defects in proliferation (p>0.99). Upon treating HTR8 clone 7 with 10µM 

or 100µM cromolyn, there seems to be a slight decrease in cell proliferation by about 20% on average, 

however this is not deemed statistically significant (p>0.2). When comparing the proliferation of clone 

3 to clone 7 at the 48-hour time point, there is no statistically significant difference between their 

proliferation rates (p>0.85). However, there is a statistically significant decrease in proliferation 

between HTR8 clone 3 and HTR8 clone 7 treated with 10µM cromolyn or 100µM cromolyn respectively 

at the 48-hour time point (p<0.001) by almost 25%.  
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HTR8 Clones 3 and 7 were seeded at a density of 20,000 cells per well and either left untreated, or treated 

with 10 or 100µM cromolyn. Cells were trypsinised and counted at either 24 or 48 hours to assess changes 

in cellular proliferation. Data represents the mean ±SEM from at least 3 independent replicates (one-way 

ANOVA, ** p<0.01) 

 

 

Figure 4.2.16: Treatment with cromolyn does not significantly decrease proliferation of HTR8 cell clones 3 

and 7 
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After confirming the effects of cromolyn on HTR8 clone viability, HTR8 clones 3 and 7 were seeded into 

transwells for motility or invasion assays, and treated with either 10µm or 100µM cromolyn. Figure 

4.2.17 outlines the effect of cromolyn on the migratory capabilities of the two HTR8 Clones. 

Results demonstrate a highly significant 2-fold increase in motility between the non-s100P expressing 

HTR8 Clone 3 and the S100P-expressing HTR8 Clone 7 (p<0.0001). This is similar to results previously 

obtained whilst assessing the effects of the S100P antibody, again suggesting a role for S100P in 

trophoblast cellular motility as well as previously published data (Tabrizi et al. 2018). Treatment of 

clone 3 cells with either 10µM or 100µM cromolyn does not have a significant effect on motility 

(p<0.54), whereas in contrast, clone 7 cells treated with both 10µM and 100µM cromolyn show a 

marked decrease in motility by around 1.5-fold when compared to their untreated counterpart 

(p<0.0001). This decrease in motility showcased by Clone 7 cells following cromolyn treatment is 

shown to be partial, as levels of motility following cromolyn treatment at any dose are not reduced to 

the levels of motility shown by the non-S100P expressing Clone 3.  

The ability of cromolyn to alter the process of invasion was also assessed using transwell assays (Figure 

4.2.18). Once again, the invasive capabilities of HTR8 cells expressing S100P were shown to be stronger 

than motility, as the level of invasion seen in HTR8 clone 7 cells exceeds the level of motility in relation 

to their controls. There is, on average, an almost 3-fold increase in invasion when comparing Clone 3 

to Clone 7 (p<0.0001). Treatment of clone 3 cells with cromolyn at both 10µM and 100µM had no 

significant effect on invasion compared to the untreated control (p>0.65). HTR8 clone 7 cells treated 

with 10µM cromolyn demonstrated an almost 10% decrease in invasion compared to untreated clone 

7 cells, however this decrease is not statistically significant (p=0.55). Treatment of HTR8 clone 7 with 

100µM cromolyn led to a statistically significant decrease in cell invasion of 20% when compared to 

their untreated counterpart (p=0.003).  

Previous work demonstrated an equal reduction in cellular motility and invasion upon treatment with 

an S100P antibody by 1.5-fold when compared to untreated controls. What is interesting to note, is 

that cromolyn treatment of HTR8 cells at 100µM reduced their motility by 30%, but only decreased 

their invasion by 20%. This may suggest that cromolyn has greater effect on cellular motility rather 

than invasion, and that this effect is only partial. 
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A) HTR8 Clones (control Clone 3, and S100P-expressing Clone 7) were seeded in triplicate onto Matrigel-

coated Boyden chambers and treated with cromolyn at concentrations of 10µM and 100µM. Cells were left 

to migrate for 24 hours before fixing and staining the transwells. The number of cells migrated per field was 

counted, for 5 fields per well. Data represents the mean ±SEM from at least 3 independent replicates (one-

way ANOVA, **** p<0.0001) 

B) Pictures of one stained transwell per condition were taken at 20x magnification using a Nikon Eclipse 

TS100 inverted microscope. 

 

A 

B 

Figure 4.2.17: Treatment with cromolyn partially abolishes S100P-dependent migration of S100P-

expressing HTR8 cells 
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A) HTR8 Clones (control Clone 3, and S100P-expressing Clone 7) were seeded in triplicate onto Matrigel-

coated Boyden chambers and treated with cromolyn at concentrations of 10µM and 100µM. Cells were left 

to migrate for 24 hours before fixing and staining the transwells. The number of cells migrated per field was 

counted, for 5 fields per well. Data represents the mean ±SEM from at least 3 independent replicates (one-

way ANOVA, ** p<0.01, **** p<0.0001) 

B) Pictures of one stained transwell per condition were taken at 20x magnification using a Nikon Eclipse 

TS100 inverted microscope. 

 

A 

B 

Figure 4.2.18: Treatment with cromolyn has an effect on the invasive capabilities of S100P-expressing HTR8 

cells 
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After establishing the ability of 100µM cromolyn to inhibit both motility and invasion of HTR8 cells 

expressing S100P, albeit to different degrees, we sought to understand if this drug had any effects on 

the membrane-association capabilities of S100P. To this end, HTR8 clone 7 cells were grown with and 

without the presence of 100µM cromolyn prior to isolation of plasma membrane fractions using 

nitrogen cavitation. Isolated membrane fractions were equally loaded and run on 16% (w/v) SDS-PAGE 

prior to western blotting for S100P and plasma membrane marker caveolin I (Figure 4.2.19, panel A). 

Quantification of the band intensity for both S100P and caveolin I was carried out, with S100P band 

intensity being normalised to caveolin I (Figure 4.2.19, panel B).  

The resulting western blot demonstrated a statistically significant difference in the levels of S100P 

detected by western blot between samples. After normalisation to caveolin I, plasma membranes 

isolated from cromolyn-treated HTR8 Clone 7 cells demonstrate on average a 30% decrease in 

detectable S100P (p=0.03) when compared to untreated plasma membrane fractions. Interestingly, 

this decrease is directly proportional to the level of motility defects seen in HTR8 clone 7 following the 

addition of 100µM cromolyn (see Figure 4.2.17). 
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A) HTR8 Clone 7 cells were grown either with or without 100µM cromolyn for 48 hours prior to plasma 

membrane isolation using nitrogen cavitation. Isolated plasma membranes were run on a 16% (w/v) SDS-

PAGE prior to western blotting for S100P and caveolin I.  

B) Levels of S100P within isolated plasma membrane fractions were quantified by densitometry using Image 

Studio lite, and were normalised to caveolin I. Data represents the mean ±SD from 3 independent replicates 

(one-way ANOVA, * p<0.05). 

 

B 

Figure 4.2.19: Treatment of HTR8 Clone 7 with 100µM cromolyn results in reduced detection of S100P in 

isolated plasma membrane fractions 

A 
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4.2.6 Residues within S100P may interact with the plasma membrane as 

predicted by Membrane Optimal Docking Area (MODA)  

Protein function can be influenced by subcellular localisation. By controlling access of proteins to 

different cellular compartments, or by targeting a certain protein to a particular location within the 

cell, a variety of protein interactions can either take place or be inhibited. As such, proteins can be 

targeted to membrane regions to facilitate processes including protein trafficking and cytoskeletal 

reorganisation (Szymanski et al. 2015). Many proteins are amphitropic in nature, meaning they bind 

reversibly to membranes in order to regulate their functionality (Johnson, J. E. and Cornell 1999).  

Previous work within this chapter has demonstrated the presence of S100P within the plasma 

membrane fraction isolated from a variety of cell lines (Figure 4.2.1). It is not possible to assert from 

these results alone if S100P is an integral part of the membrane, or if S100P is a transient, reversible 

membrane-binding protein. One way of predicting the potential for membrane interaction of a given 

protein is the Membrane Optimal Docking Area method (MODA). This method was developed by 

Kufareva et al. (2014) by improving a previously generated method known as the PIER algorithm, and 

has the ability to detect membrane interactive proteins. MODA does not use homology modelling of 

known peripheral proteins, but instead uses 3D structural data and protein curvature analysis. MODA 

alone is not sufficient to fully predict membrane-interacting residues or novel peripheral proteins, and 

therefore any predictions must be fully validated with experimental studies, such as NMR 

spectroscopy. Training of the MODA algorithm was achieved by submitting structures of previously 

validated peripheral membrane proteins in which the residues interacting with the membrane were 

already established by several methods, including but not limited to surface plasmon resonance (SPR), 

NMR, or mutagenesis studies. Submission of a protein sequence in PDB format to the MODA server 

(http://molsoft.com/~eugene/moda/modamain.cgi) generates a list of scores for each residue, usually 

between 0 and 50, which give the propensity for a particular surface residue to be involved in 

membrane interaction. Higher values suggest a higher propensity for membrane interaction.  

For S100P, the crystal structure PDB file generated by Zhang et al. (2003) was utilised, as the structure 

has a sufficiently high resolution of 2 Å. A list of residues and their scores were given as an output by 

MODA (Table 4.2.1). Certain residues (46-51, 95) were not present within the PDB file as they were not 

observed. This stretch of internal residues at positions 46 to 51 are present within the linker region of 

S100P between helices 2 and 3. This linker region, otherwise known as a hinge region, is known to be 

highly dynamic when bound to calcium ions (Tutar 2006). Zhang et al. (2003) suggest that the linker 

region may be responsible for interacting with target proteins, as several other S100 proteins are able 

http://molsoft.com/~eugene/moda/modamain.cgi
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to form complexes with targets such as annexins I and II at their relative linker domains, as shown by 

X-ray and NMR structural studies (Réty et al. 1999). 
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Res Name Sel NonStandard Counted plainMODA curvIndex curvMODA 

1 met 1j55.a/^M1 0 1 0 0.955511 0 

2 thr 1j55.a/^T2 0 1 0 0.955511 0 

3 glu 1j55.a/^E3 0 1 0 0.955511 0 

4 leu 1j55.a/^L4 0 1 47.0802 0.955511 44.9857 

5 glu 1j55.a/^E5 0 1 0 0.955511 0 

6 thr 1j55.a/^T6 0 1 0 0.919408 0 

7 ala 1j55.a/^A7 0 1 0 0.782268 0 

8 met 1j55.a/^M8 0 1 294.444 0.703179 207.047 

9 gly 1j55.a/^G9 0 1 0 0.651195 0 

10 met 1j55.a/^M10 0 1 0 0.612843 0 

11 ile 1j55.a/^I11 0 0 0 0.433145 0 

12 ile 1j55.a/^I12 0 1 177.364 0.436693 77.4538 

13 asp 1j55.a/^D13 0 1 0 0.483244 0 

14 val 1j55.a/^V14 0 1 0 0.349849 0 

15 phe 1j55.a/^F15 0 0 0 0.276789 0 

16 ser 1j55.a/^S16 0 1 0 0.394417 0 

17 arg 1j55.a/^R17 0 1 0 0.395656 0 

18 tyr 1j55.a/^Y18 0 1 0 0.31316 0 

19 ser 1j55.a/^S19 0 1 0 0.343842 0 

20 gly 1j55.a/^G20 0 1 0 0.490825 0 

21 ser 1j55.a/^S21 0 1 0 0.496672 0 

22 glu 1j55.a/^E22 0 1 0 0.522791 0 

23 gly 1j55.a/^G23 0 1 0 0.567202 0 

24 ser 1j55.a/^S24 0 1 0 0.518284 0 

25 thr 1j55.a/^T25 0 1 6.89818 0.5446 3.75675 

26 gln 1j55.a/^Q26 0 1 25.3825 0.434977 11.0408 

27 thr 1j55.a/^T27 0 1 0 0.376997 0 

28 leu 1j55.a/^L28 0 0 0 0.263268 0 

29 thr 1j55.a/^T29 0 1 0 0.369117 0 

30 lys 1j55.a/^K30 0 1 0 0.339837 0 

31 gly 1j55.a/^G31 0 1 0 0.33217 0 

32 glu 1j55.a/^E32 0 1 0 0.320752 0 

33 leu 1j55.a/^L33 0 0 0 0.265444 0 

34 lys 1j55.a/^K34 0 1 0 0.34775 0 

35 val 1j55.a/^V35 0 1 0 0.357802 0 

36 leu 1j55.a/^L36 0 0 0 0.279353 0 

37 met 1j55.a/^M37 0 1 0 0.379091 0 

38 glu 1j55.a/^E38 0 1 0 0.487106 0 

39 lys 1j55.a/^K39 0 1 9.66757 0.443454 4.28712 

40 glu 1j55.a/^E40 0 1 33.5363 0.384567 12.8969 

41 leu 1j55.a/^L41 0 1 256.403 0.46325 118.779 

42 pro 1j55.a/^P42 0 1 89.7261 0.636076 57.0726 

43 gly 1j55.a/^G43 0 1 331.812 0.699377 232.062 
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44 phe 1j55.a/^F44 0 1 294.713 0.560114 165.073 

45 leu 1j55.a/^L45 0 1 146.824 0.542691 79.6802 

46 Residue not present in PDB file 

47 Residue not present in PDB file 

48 Residue not present in PDB file 

49 Residue not present in PDB file 

50 Residue not present in PDB file 

51 Residue not present in PDB file 

52 asp 1j55.a/^D52 0 1 0 0.66251 0 

53 ala 1j55.a/^A53 0 1 0 0.566379 0 

54 val 1j55.a/^V54 0 1 0 0.398489 0 

55 asp 1j55.a/^D55 0 1 0 0.465729 0 

56 lys 1j55.a/^K56 0 1 0 0.542961 0 

57 leu 1j55.a/^L57 0 1 0 0.38589 0 

58 leu 1j55.a/^L58 0 1 0 0.349721 0 

59 lys 1j55.a/^K59 0 1 0 0.499533 0 

60 asp 1j55.a/^D60 0 1 0 0.456767 0 

61 leu 1j55.a/^L61 0 1 0 0.336152 0 

62 asp 1j55.a/^D62 0 1 0 0.45714 0 

63 ala 1j55.a/^A63 0 1 0 0.528976 0 

64 asn 1j55.a/^N64 0 1 0 0.615191 0 

65 gly 1j55.a/^G65 0 1 0 0.624166 0 

66 asp 1j55.a/^D66 0 1 0 0.557337 0 

67 ala 1j55.a/^A67 0 1 0 0.481125 0 

68 gln 1j55.a/^Q68 0 1 0 0.396957 0 

69 val 1j55.a/^V69 0 0 0 0.268973 0 

70 asp 1j55.a/^D70 0 1 0 0.355254 0 

71 phe 1j55.a/^F71 0 1 337.124 0.288314 97.1974 

72 ser 1j55.a/^S72 0 1 220.162 0.361599 79.6104 

73 glu 1j55.a/^E73 0 1 0 0.332232 0 

74 phe 1j55.a/^F74 0 0 0 0.236306 0 

75 ile 1j55.a/^I75 0 1 558.426 0.334884 187.008 

76 val 1j55.a/^V76 0 1 232.709 0.391634 91.137 

77 phe 1j55.a/^F77 0 1 0 0.332038 0 

78 val 1j55.a/^V78 0 0 0 0.389408 0 

79 ala 1j55.a/^A79 0 1 74.9814 0.539688 40.4665 

80 ala 1j55.a/^A80 0 1 0.994625 0.565276 0.562238 

81 ile 1j55.a/^I81 0 1 178.702 0.579071 103.481 

82 thr 1j55.a/^T82 0 1 0 0.701509 0 

83 ser 1j55.a/^S83 0 1 1.02148 0.823259 0.840942 

84 ala 1j55.a/^A84 0 1 55.7153 0.853008 47.5256 

85 cys 1j55.a/^C85 0 1 222.573 0.916535 203.996 

86 his 1j55.a/^H86 0 1 0 0.955511 0 

87 lys 1j55.a/^K87 0 1 2.31926 0.955511 2.21608 
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88 tyr 1j55.a/^Y88 0 1 1408.26 0.955511 1345.61 

89 phe 1j55.a/^F89 0 1 1084.6 0.955511 1036.35 

90 glu 1j55.a/^E90 0 1 0 0.955511 0 

91 lys 1j55.a/^K91 0 1 192.028 0.955511 183.485 

92 ala 1j55.a/^A92 0 1 800.641 0.955511 765.021 

93 gly 1j55.a/^G93 0 1 301.54 0.955511 288.125 

94 leu 1j55.a/^L94 0 1 425.82 0.955511 406.876 

95 Residue not present in PDB file 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table listing residues in the PDB file 1j55 (S100P crystal structure) along with their scores generated by the 

MODA server. Residues not present within the PDB file (46-51, 95) cannot be analysed.  

Res, residue; Name, residue name; Sel, selected residue; NonStandard, presence of nonstandard residues; 

Counted, surface residues; plainMODA, MODA score; curvIndex, curve index of residue; curvMODA corrected 

MODA score where plainMODA/curvIndex = curvMODA. 

Table 4.2.1: List of MODA scores for each amino acid of the 1j55 PDB file suggest membrane-interacting 

residues 
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Regardless of missing residues, the S100P amino acid sequence was plotted against the curvMODA 

scores obtained from the MODA server in order to visualise the propensity for each amino acid to form 

a contact interface with the membrane (Figure 4.2.20). Results from the MODA server suggest two 

potential sites of membrane interaction within the S100P sequence. Residues 41 to 45 demonstrate 

curvMODA scores over 50, suggesting a potential membrane binding interface is present. In addition, 

clusters of residues from position 71 onwards have very high curvMODA scores, from the region of 200 

to almost 1350. It is important to note that the MODA server does not employ a cut-off value for any 

score, meaning that there is no particular threshold for which a residue is deemed to definitively 

interact with membranes. As a consequence, these scores can only be used as a predictor of membrane 

interaction, with the highest scores representing the residue with the highest likelihood of membrane 

interaction. The creators of the MODA server have asserted, through empirical evidence, that scores 

of 40 and above are correlated with membrane interaction.  
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The curvMODA score for each amino acid residue present in the S100P PDB file, 1j55, was visualised (red line). Patches of residues with scores above 50 (marked by a 

black dotted line) are likely to interact with membrane bilayers. Residues 46-51 and 95 are not visualised, due to their absence from the 1j55 PDB file.  

  

Figure 4.2.20: Graph depicting curvMODA scores for each amino acid of the 1j55 PDB file suggest membrane-interacting residues 
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Data generated by MODA was exported as an ICB file and visualised using ICM-Browser (figures 4.2.21 

and 4.2.22). Visualisation of the S100P protein through the ICM-Browser software highlighted residues 

suggested by MODA to have a role in membrane interaction; these residues are highlighted in red. The 

ribbon model of S100P makes apparent a potential membrane-binding interface across one axis of 

helix 4, involving residues I81, A84, C85, Y88, F89, K91, A92, G93 and L94 (Figure 4.2.21, panel A). Upon 

visualisation of the space-filling S100P model, it becomes apparent that several residues within the 

linker region of S100P (L41 to L45) may also be a part of the same binding interface (Figure 4.2.21, 

panel B). Another set of residues are present on the opposite side of the protein, namely residues L4, 

M8 and I12 from helix 1, that have been highlighted by MODA as potential membrane-interacting 

residues (Figure 4.2.22, panel A). The space-filling model also visualises residues F71, S72, I75, V76 and 

A79 that are spatially opposed to the highlighted residues from helix 1, potentially suggesting the 

presence of another continuous binding interface for interaction with the membrane (Figure 4.2.22, 

panel B).  
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A) Ribbon model of S100P monomer obtained from PDB file 1j55. Residues predicted to interact with the 

membrane by MODA are highlighted in red. 

B) Space-filling model of S100P monomer obtained from PDB file 1j55. Residues predicted to interact with 

the membrane by MODA are highlighted in red. 

 

 

A 

B 

Figure 4.2.21: Models of S100P highlight potential membrane-interacting residues 
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A) An alternative viewpoint of the ribbon model of S100P monomer obtained from PDB file 1j55. Residues 

predicted to interact with the membrane by MODA are highlighted in red. Red dotted line indicates missing 

residues.  

B) An alternative viewpoint of the space-filling model of S100P monomer obtained from PDB file 1j55. 

Residues predicted to interact with the membrane by MODA are highlighted in red. 

. 

 

 

A 

B 

Figure 4.2.22: Models of S100P highlight potential membrane-interacting residues 
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4.2.7 S100P may undergo lipid modifications, as predicted by Group Prediction 

Servers  

Prior data has demonstrated that S100P detected in plasma membrane fractions of all cell lines runs 

slower on SDS-PAGE gel than expected in comparison to total cell lysate fractions (Figure 4.2.1) This 

could either be due to the high lipid content within the plasma membrane fractions, or due to a post-

translational modification (PTM).  

PTMs are characterised as an alteration of molecules by the covalent attachment of amino acids or 

functional groups (Zhou et al. 2006). There are over 300 different types of post-translational 

modification that have a key role in a variety of processes, including but not limited to phosphorylation, 

nitrosylation, glycation, methylation and acetylation. The experimental identification of PTM sites is a 

laborious process, and therefore utilisation of a prediction server to identify potential PTMs based on 

sequence data is a viable alternative. Certain types of PTM allow for increased association of a given 

protein with the plasma membrane, namely lipidation. Lipidation involves the covalent attachment of 

specific lipid groups to proteins, allowing for interaction with the membrane bilayer and providing an 

anchor to which the protein can attach to the membrane (Hang and Linder 2011).  

In order to ascertain the likelihood of S100P being post-translationally modified, it was necessary to 

employ group prediction servers. Such prediction servers allow for identification of potential PTM sites 

based on data sets of proteins that contain known PTMs, along with the sequence information for the 

protein of interest. Due to the presence of S100P in the plasma membrane fraction of cell lines, there 

was a focus on prediction servers that assessed the likelihood of PTMs that confer membrane-

association of a protein. To this end, GPS-Lipid 1.0 was utilised. This server predicts the presence of 

lipid modification sites on a protein, including potential sites of palmitoylation, myristoylation, 

prenylation and geranylgeranylation.  

Following the entry of the S100P FASTA sequence into the GPS-Lipid 1.0 server, the server predicted 

two possible sites of modification (Figure 4.2.23). The first site of potential lipid modification is the 9th 

residue of S100P, a glycine residue, in which N-myristoylation is predicted. The other site is the sole 

cysteine residue of S100P at position 85, in which S-farnesylation is predicted. Both of the predictions 

are based in non-consensus sequences, meaning that the classical motifs for such modifications are 

not present within S100P, however the server still deemed there to be a likelihood of these 

modifications taking place within S100P. High thresholding was utilised on the server to make the 

prediction process more stringent with a lower false positive rate.  
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A) The FASTA sequence of S100P was entered into the GPS-Lipid 1.0 program and assessed for potential lipid 

modification sites. Both predicted modification sites are displayed.  

B) Schematic representation of possible PTM sites in S100P sequence responsible for membrane association. 

 

A 

B 

Figure 4.2.23: GPS-Lipid 1.0 predicts N-myristoylation and S-Farnesylation sites within S100P that do not 

follow a consensus sequence 
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Literature on the topic of lipid modifications and membrane association of proteins suggests that a 

lipid modification alone is not sufficient for membrane association. Studies have suggested that along 

with a lipid anchor, a polybasic domain within the protein is also necessary, as this domain can interact 

with negatively charged phospholipids at the plasma membrane. This has been seen by Fivaz and 

Meyer (2005) who found that the KRas protein required a polybasic region along with a palmitoylated 

residue in order to be targeted to the membrane.   

With regards to S100P, a stretch of basic residues were found to be present at the C-terminus of the 

protein, namely lysine residues (Figure 4.2.24). These lysine residues were also suggested to be 

involved with membrane interaction when using the MODA server.  
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A) Amino acid sequence of S100P. Basic residues of interest at the C-terminus are highlighted in red. 

B) Full length S100P is presented with both EF hand regions (residues 12 to 47, and residues 49 to 84) and 

the polybasic domain (residues 86 to 95), which are highlighted in red. 

 

 

A 

B 

Figure 4.2.24: Schematic representation of the polybasic domain of S100P 
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Given that the x-ray structure provided by Zhang et al. (2003) is missing several residues, a protein 

model of dimeric S100P was generated using Robetta, a protein structure prediction server. This server 

uses comparative modelling to predict the structure of a given protein by treating individual domains 

as independent folding units, after which each unit can be assembled into a full chain model (Kim, D. 

E. et al. 2004). Following structure prediction, the model was downloaded and imported into PyMol to 

better visualise the polybasic domain (Figure 4.2.25). The C-terminal lysine residues were highlighted, 

along with the predicted sites of lipid modification (Figure 4.2.26). Interestingly, the two lysine residues 

at the C-terminus of S100P (K87 and K91) are aligned together on one face of the protein, with K95 

extending outwards, forming a potential binding interface. This latter lysine residue, K95, is most likely 

highly mobile.  

In addition, visualisation of the potentially lipid modified residues G9 and C85 highlights their close 

proximity to the lysine residues; G9 of one S100P monomer is within close vicinity to the lysine residues 

of another monomer, again highlighting the potential for the possible involvement of these residues 

in the membrane-association of S100P.  
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A full-length structure of the S100P dimer was generated by Robetta and imported into PyMol. Lysine 

residues at the C-terminus have been highlighted (blue), along with potential lipid modification sites (red for 

G9, and purple for C85). Each monomer is highlighted in green and orange. 

 

 

Figure 4.2.25: Modelling of S100P structure highlights a potential binding interface 
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Images of the C-terminal portion of S100P generated by Robetta and imported into PyMol. Lysine residues 

at the C-terminus have been highlighted (blue, panel A), along with potential lipid modification sites (red for 

G9, and purple for C85, panel B). Each monomer is highlighted in green and orange. 
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Figure 4.2.26: Modelling of S100P structure highlights a potential binding interface 
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4.2.8 Primary first trimester extravillous trophoblasts express high levels of 

S100P 

Previous work within Chapter 3 has shown that expression of S100P can be seen in a variety of cell 

lines, including those of trophoblastic origin. In order to bring S100P expression into a more 

physiologically relevant background, we sought to isolate extravillous trophoblasts (EVTs) from first 

trimester placental tissue and establish its levels of S100P. The isolated EVTs were first examined for 

expression of HLA-G, a marker that is highly specific to EVTs.  

EVTs were seeded onto fibronectin-coated coverslips for 48 hours before completing an 

immunofluorescent stain for HLA-G (Figure 4.2.27). Pictures were taken at a 10x magnification to allow 

quantification of the proportion of cells that are expressing HLA-G. Following the counting of over 400 

cells, 82.7% were found to express HLA-G, demonstrating the isolation of EVTs was successful. 

Counterstaining of F-actin using rhodamine phalloidin demonstrated the highly motile nature of these 

cells, with lamellipodia clearly visible at the edges of the cells in a large majority of the sample. 

After confirming that the correct cell type was isolated from placental tissue, we sought to assess the 

expression level of S100P in EVTs. EVT cells were collected and their corresponding lysates run on SDS-

PAGE before western blotting for S100P alongside a positive control, HTR8 clone 7 (Figure 4.2.28). 

Results from western blotting of EVT cells showed high levels of S100P expression, which was over 17-

fold higher than the positive control HTR8 clone 7 after normalisation for tubulin was carried out. 

These results confirm that S100P is highly expressed in isolated first trimester EVTs. 
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EVT cells isolated from first trimester placental tissue were seeded at a density of 20,000 cells per well onto 

fibronectin-coated coverslips and left for 48 hours prior to fixation, permeabilization and staining for HLA-G 

(green) and F-actin (red). Pictures were taken at 10x and 63x magnification with the Leica DMB4100 

microscope.  

Figure 4.2.27: EVTs isolated from first trimester placental tissue express HLA-G 
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A) EVT cells isolated from first trimester placental tissue were collected and separated on a 16% (w/v) SDS-

PAGE alongside a positive control, HTR8 Clone 7, prior to western blotting for S100P and tubulin.  

B) Densitometry analysis of S100P expression by HTR8 Clone 7 and EVTs using Image Studio Lite. S100P 

levels were normalised to tubulin. Raw density of S100P detected is presented above each bar. Data 

represents n=1. 

 

A 

Figure 4.2.28: EVTs isolated from first trimester placental tissue express S100P at very high levels 
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4.2.9 S100P is detected at the cell surface of EVTs using biotinylation 

Previous work within this chapter demonstrates the presence of S100P with isolated plasma 

membrane fractions within cell lines. This work was carried out using a variety of methods, namely 

nitrogen cavitation to isolate plasma membranes, or by using a cell surface protein isolation kit. This 

kit employs a cell impermeable form of biotin, Sulfo-NHS-SS-Biotin, that allows for isolation of cell 

surface molecules. 

Large numbers of cells are required for plasma membrane isolation by nitrogen cavitation, which 

makes the isolation of plasma membranes from EVTs unfeasible. This is due to the limited number of 

EVT cells acquired when working with first trimester placental samples, with 1 to 2 million cells being 

obtained at the absolute maximum. However, it is possible to assess the presence of S100P on the cell 

surface using the cell surface protein isolation kit, in which cell surface material is biotinylated and 

pulldown is achieved using NeutrAvidin agarose slurry. Biotinylated cell surface proteins were eluted 

from the NeutrAvidin agarose slurry and subjected to separation on a 16% (w/v) SDS-PAGE prior to 

western blotting for S100P (Figure 4.2.29). 

Presence of S100P at the cell surface was clearly demonstrated by western blotting, with bands being 

detected at around 10kDa and 17kDa. This data suggests that previous observations of S100P’s 

presence at the cell surface within cell lines is conserved in primary cells isolated from first trimester 

placental tissue. 
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A) EVT cells isolated from first trimester placenta were seeded onto a 35mm fibronectin-coated dish 

(20µg/ml) and left to settle for 24 hours prior to biotinylation of cell surface proteins using the Pierce Cell 

Surface Isolation Kit. The resulting eluate was mixed with bromophenol blue and separated on a 16% (w/v) 

SDS-PAGE prior to western blotting for S100P.  

 

 

Figure 4.2.29: S100P is detected at the surface of EVT cells using a cell surface protein isolation kit 
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4.2.10 Treatment of primary EVTs with an S100P antibody reduces their 

migration and invasion 

Prior experiments have confirmed the expression of S100P in EVTs isolated from first trimester 

placental samples, as well as the presence of S100P at the cell surface. In order to assess if presence 

of S100P on the outside of EVT cells has an influence on their motility or invasion, isolated EVTs were 

seeded in a transwell assay system to measure their motility (Figure 4.2.30) and invasion (Figure 

4.2.31), both with and without the presence of the S100P antibody. The S100P antibody will block 

extracellular S100P, allowing for the assessment of the importance of this cellular pool of S100P on 

motility and invasion. 

Treatment of EVTs with an S100P antibody (diluted 1:1000) significantly reduced their motility by 

almost 35% (p<0.0001). Treatment of EVTs with a negative control, goat serum (diluted 1:1000) did 

not significantly reduce EVT motility (p=0.13). This data supports previous results obtained with HTR8 

Clone 7, in which motility is also reduced by almost 40% upon treatment with the S100P antibody. 

These results suggest that extracellular S100P contributes to EVT motility. However, blocking 

extracellular S100P does not fully abrogate EVT motility, further suggesting the importance of 

intracellular S100P in the motility process.  

In regards to EVT invasion, EVTs treated with the S100P antibody demonstrated a reduced ability to 

invade; EVT invasion was reduced by 40% (p<0.0001) when compared to the untreated control. A 

small, non-significant 5% decrease in invasion was detected when treating EVTs with goat serum 

(p=0.62). These results are once again very similar to results obtained to reciprocal experiments using 

HTR8 clone 7, in which invasion was reduced by 40% upon treating the cells with the S100P antibody. 

These experiments with EVTs confirm the reduction of S100P-dependent motility and invasion 

following blocking of extracellular S100P, once again suggesting a role for two separate pools of the 

S100P protein.  
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A) EVT cells isolated from first trimester placenta were seeded in triplicate onto Boyden chambers at a 

density of 20,000 cells per well, and treated either with goat serum diluted 1:1000 or with S100P antibody 

diluted 1:1000. Cells were left to invade for 24 hours before fixing and staining the transwell inserts. The 

number of cells migrated per field was counted, for 5 fields per well. Data represents the mean ±SEM from 

at least 3 independent replicates. 

B) Pictures of one representative stained transwell per condition were taken at 40x magnification using a 

Nikon Eclipse TS100 inverted microscope. 

 

 

A 

B 

Figure 4.2.30: Treatment of EVTs with an S100P antibody reduces their motility 
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A) EVT cells isolated from first trimester placenta were seeded in triplicate onto Matrigel-coated Boyden 

chambers and treated either with goat serum diluted 1:1000 or with S100P antibody diluted 1:1000. Cells 

were left to invade for 24 hours before fixing the transwells with 4% PFA and staining them with Giemsa. The 

number of cells migrated per field was counted, for 5 fields per well. Data represents the mean ±SEM from 

at least 3 independent replicates. 

B) Pictures of one stained transwell per condition were taken at 40x magnification using a Nikon Eclipse 

TS100 inverted microscope. 

 

 

A 

B 

Figure 4.2.31: Treatment of EVTs with S100P antibody reduces their invasion 
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4.2.11 Treatment of primary EVTs with an S100P antibody does not affect 

focal adhesion formation 

Following treatment of isolated primary EVTs with an S100P antibody for 24 hours, an S100P-

dependent decrease in both EVT cell invasion and motility was detected through Boyden chamber 

assays. In order to assess some of the possible molecular mechanisms behind the decreased motility 

and invasion taking place as a consequence of blocking extracellular S100P, isolated EVTs were treated 

with an S100P antibody for 24 hours prior to being fixed and stained for paxillin, a marker for focal 

adhesions. EVTs were also treated with goat serum as a negative control, as previous experiments 

showed goat serum had no effect on either the motility or invasion of EVTs (Figures 4.2.30 and 4.2.31). 

Figure 4.2.32 illustrates the differences in focal adhesion formation between EVTs both prior to and 

following treatment with the S100P antibody and the negative control, goat serum. 

Upon treatment of EVTs with either goat serum or the S100P antibody, there is no significant increase 

or decrease in the average number of focal adhesions formed by EVTs compared with untreated EVTs 

(p>0.92). This is once again in agreement with data previously obtained using HTR8 clone 7, where no 

changes in focal adhesion formation/maturation were detected. Staining for F-actin demonstrated no 

changes in overall actin organisation or structuration. 

This data suggests that motility and invasion decreases seen in EVTs upon treatment with the S100P 

antibody are not reliant on alteration of focal adhesion formation, and perhaps that the S100P 

antibody alters EVT migration and invasion by another mechanistic route yet to be uncovered.  

 

 

 

 



218 
 

 

 

 

 

 

A 



219 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A) Isolated first trimester EVT cells, either untreated, treated with goat serum diluted 1:1000 or with 

S100P antibody diluted 1:1000, were seeded onto fibronectin-coated coverslips. Cells were incubated for 

24 hours before fixing with 4% PFA, permeabilization with 0.1% triton, and staining for paxillin (green) 

and actin (red). 

B) Average number of paxillin stained focal adhesions per EVT cell were counted for around 100 cells, 

with values presented as a percentage with respect to EVTs.  Data represents the mean ±SEM from at 

least 2 independent replicates. 

 

 

 

B 

Figure 4.2.32: Treatment with an S100P antibody does not affect the number of focal adhesions formed 

by first trimester EVT cells 
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4.3 Discussion 

Previous work within chapter 3 has illustrated the presence of S100P in cytoplasm and membrane 

fractions isolated from multiple cell lines expressing S100P. Therefore, it was deemed necessary to 

further dissect cellular compartments into a plasma membrane only fraction to ascertain if S100P is 

present within the plasma membrane.  

Colocalisation of S100P and its target proteins at the internal plasma membrane regions of multiple 

cell lines has been reported. For example, research by Heil et al. (2011) demonstrated colocalisation 

of IQGAP1 and S100P at membrane ruffles or in close proximity to the plasma membrane of HeLa cells 

stimulated with EGF. EGF stimulation leads to a signalling cascade resulting in increased intracellular 

calcium (Bryant et al. 2004), therefore suggesting that colocalisation of these two proteins at this 

specific subcellular location requires calcium. The same could be said for ezrin, which is also found to 

be colocalised with S100P in or near the internal plasma membrane regions of A431 cells following 

increases in intracellular calcium (Koltzscher et al. 2003). There have not, as of yet, been any reports 

of S100P being detected, either alone or colocalised with other proteins, within the external plasma 

membrane of any cells, including trophoblast cells.  

Knowing the high levels of expression of S100P within trophoblast cells of first trimester placenta, we 

sought to assess the localisation of S100P within in vivo tissue using first trimester placental tissue 

previously stained for S100P, along with matched tissue that was stained for HLA-G. HLA-G is a protein 

primarily expressed by EVT cells of the placenta (Tilburgs et al. 2015), and is therefore utilised as a 

marker of EVT cells within placental sections. The main functionality of HLA-G is thought to involve 

immune tolerance; membrane-bound HLA-G is an inhibitory ligand for natural killer cells at the 

maternal-foetal interface, thus preventing natural killer cell-mediated cell death of EVTs and the 

subsequent rejection of the foetus by the maternal immune system (Mandelboim et al. 1997).  

The matched nature of the placental sections allowed for analysis of co-localisation of HLA-G and 

S100P, both confirming the presence of EVT cells and also giving an insight into regional localisation of 

S100P in EVT cell membranes. Analysis of these stained sections found quite a sufficient overlap of 

HLA-G and S100P at the plasma membrane of EVT cells within first trimester placental sections. No 

studies have specifically looked at membrane S100P by immunohistochemistry, however Zhu et al. 

(2015b), who have carried out similar immunohistochemical stainings on first trimester placenta, 

presented data showing a strong staining for S100P at the syncytiotrophoblast membranes, although 

this was not commented on by the authors.  
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Following analysis of in vivo human placental samples for membrane localised S100P, we sought to 

directly analyse the presence of S100P within the plasma membrane of cell lines. This was carried out 

using nitrogen cavitation and sucrose gradient, using a method that has been used by numerous 

groups (Chibber and Castle 1983, Noland et al. 1983, Zhou, M. and Philips 2017). Nitrogen cavitation 

of cells involves the dissolution of nitrogen within the cytoplasmic compartment, coupled with high 

pressure. After exposing cells to atmospheric pressure, nitrogen bubbles form within the cytoplasmic 

space, breaking open the cells (Simpson, 2010) thereby allowing full separation of plasma membrane 

fractions following differential centrifugation onto a sucrose cushion. Through the use of nitrogen 

cavitation to isolate plasma membranes, it is also possible to isolate proteins that are peripherally 

associated with the membrane (Zhou, M. and Philips 2017). This is as cavitation does not require 

detergents, which can lead to the presence of membrane proteins within the soluble fraction and loss 

of detectable protein within isolated plasma membrane fractions.  

Following detection of S100P in isolated plasma membrane fractions in multiple cell lines, it was 

observed that S100P detected within plasma membrane fractions ran slower on the SDS-PAGE gel, and 

is detected at a higher molecular weight level than the respective cell lysate fractions by western blot. 

There could be several reasons for this, one of which being the high lipid content within the plasma 

membrane leading to slower separation of proteins (Rath et al. 2009). Given the fact that other marker 

proteins, tubulin and caveolin I, are not detected at this higher molecular weight level, this scenario 

was deemed unlikely, as high lipid content should affect the migration of all proteins within the sample, 

not just S100P. The other possible reason for the shift in molecular weight could therefore be due to a 

post-translational modification (PTM).  

In order to predict potential PTMs of S100P that may be responsible for membrane-association, a 

group prediction server of lipidation was employed (Xie et al. 2016). This computational prediction 

process offers an alternative to the long process of experimental identification and reduces the 

amount of experimental testing required to identify a particular PTM. Knowledge of a PTM site can aid 

the understanding of various biological processes, or even allow for experimental manipulation for a 

desired biological effect. In order to generate prediction servers, such as the one utilised within this 

work, data sets of proteins with previously known PTMs are utilised, along with the local  sequence 

information of the protein (Zhao et al. 2014; Deng et al. 2016). The prediction server GPS-Lipid 1.0 was 

employed in this study to predict potential sites of lipid modification within the S100P amino acid 

sequence. Previously, Shen et al. (2018) identified a post translationally modified residue within the 

BRAF protein using the GPS-Lipid 1.0 server, which was then experimentally confirmed by the group.  
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Lipid modification of proteins, known as lipidation, is the covalent attachment of lipid groups to a 

protein which can regulate its function and localisation (Hang and Linder 2011). There are several types 

of lipid that can be covalently attached to proteins. The addition of a 14-carbon saturated fatty acid 

myristate onto N-terminal glycine residues, known as myristoylation, has been documented in 

MARCKS, which in combination with its positively charged effector domain leads to its reversible 

insertion into the plasma membrane (Brudvig and Weimer 2015). The hydrophobicity of the myristoyl 

group facilitates membrane association due to the negatively charged nature of membrane 

phospholipids. Mutation of myristoylated residues can prevent association of proteins with cell 

membranes; for example, a G2A mutation in Lck tyrosine kinase results in a shift from membrane to a 

cytosolic localisation (Yasuda et al. 2000). 

Prenylation is another class of lipidation, involving covalent attachment of either 15-carbon (farnesyl) 

or 20-carbon (geranylgeranyl) isoprenoid lipids to a cysteine residue (Wang and Casey, 2016). Most 

prenylated proteins contain a CAAX motif at their carboxyl terminus, and modification with a prenyl 

moiety can, like myristoylation, lead to association of a protein with the plasma membrane (Zhang and 

Casey, 1996). Such proteins include the Rho family GTPases, which when modified with a prenyl group 

at the C-terminus leads to their association with the membrane, and as a consequence of this, the 

activation of their effector proteins (Bishop and Hall, 2000). For proteins that lack membrane-binding 

capabilities, prenylation is thought to increase protein hydrophobicity and therefore membrane 

association.  

The literature suggests that a single myristoyl or prenyl moiety is not sufficient to permanently anchor 

a protein to the plasma membrane. Proteins may require an additional lipid modification, or a stretch 

of polybasic amino acids as found in K-Ras4B (Hancock et al. 1990). The positively charged polybasic 

domain can interact with the inner leaflet of the plasma membrane, which contains acidic 

phospholipids, such as phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Phosphorylation of serine 

residues in the positively charged effector domain of MARCKS leads to its reduced affinity for the 

plasma membrane (Kim et al. 1994). This mechanism of reversible binding of proteins to the plasma 

membrane is known as an electrostatic switch (McLaughlin, Stuart and Aderem 1995). Lipidation of 

proteins can therefore provide a way for their reversible localisation with the plasma membrane, 

influencing their interaction with other target proteins.  

With prediction server GPS-Lipid 1.0 demonstrating sites of potential myristoylation (G9) and 

farnesylation (C85) in S100P, the combination of one of these modifications with the polybasic domain 

present at the C-terminus of S100P could lead to its targeting to the plasma membrane in a reversible 

manner. 
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Plasma membrane isolation and subsequent western blotting does not confirm if S100P that is present 

within this isolated fraction is localised to the outer or inner surface of the plasma membrane. To this 

end, it was possible to isolate cell surface proteins using a biotinylation kit. The biotin reagent, Sulfo-

NHS-SS-Biotin, contains a sulfonate group, which is negatively charged and therefore cannot permeate 

the cell membrane. Sulfo-NHS-SS-Biotin also has high reactivity with primary amine groups, and 

therefore the longer the amide chain, the higher the chance of isolating a particular protein of interest. 

S100P as a protein consists of over 10% lysine residues (containing an amide chain), in theory meaning 

that the isolation of S100P on the cell surface, if it happens to be localised to the outer membrane, 

should be feasible.  

Isolation of cell surface proteins using the aforementioned biotin reagent yielded a signal for S100P in 

all cell lines. Interestingly, multiple bands were detected in each cell line, with the COS-7 s10+ and 

HeLa A3+ cell lines demonstrating increased intensity of higher molecular weight S100P bands when 

compared to trophoblast cell lines. This data together suggests that S100P is present on the outer 

membrane/extracellularly in cell lines. As the biotin reagent is cell impermeable, there is the potential 

for it to bind to free amine groups on proteins outside of the cell that were not washed sufficiently, 

namely proteins that are part of the extracellular matrix (ECM). Several groups have reported the 

presence of extracellular S100P. Arumugam et al. (2005) detected S100P in the culture media of 

NIH3T3 and Panc-1 cells stably expressing S100P, and also in wild-type cell lines HPAC and BxPC3. The 

secreted S100P was hypothesised to activate autocrine signalling mechanisms and act as a ligand for 

RAGE in these cell lines. S100P was also detectable in the plasma of two different xenograft tumour 

models (Dakhel et al. 2014). In addition, prior research by Clarke et al. (2017) has demonstrated the 

ability to detect S100P on the surface of live Rama 37 cells by quantitative ELISA. Such data suggests 

that S100P is secreted from cells, however, no signal peptide has been predicted to be present within 

S100P, leading to the question of how S100P is able to be excreted from cells. Further work must be 

carried out to elucidate the pathway/pathways leading to secretion of S100P. 

Through a variety of techniques, we established the presence of a pool of S100P associated with 

isolated plasma membrane fractions. However, the physiological relevance of membrane S100P, or 

how S100P came to be associated with the plasma membrane, has yet to be elucidated. It has been 

demonstrated that S100P expression stimulates the motility and invasion of different cell lines 

(Arumugam et al. 2005), including trophoblast cell lines (Tabrizi et al. 2018).  

The marked decrease in both motility and invasion of JEG-3 and HTR8 cells following treatment with 

an S100P antibody suggests a role for S100P in these processes. S100P has been shown to interact with 

several proteins of an extracellular nature, including RAGE (Arumugam et al. 2004), and IL-11 (Kazakov 
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et al. 2015). Although interaction of IL-11 with S100P has been detected through surface plasmon 

resonance with purified proteins, no in vitro or in vivo interaction in cell lines and tissues has been 

demonstrated as of yet. IL-11 expression has been identified in the decidua, and its receptor, IL11 

receptor alpha, has been identified on EVTs in vivo (Paiva et al. 2009). The authors found that 

treatment of HTR8 cells and primary EVTs with IL-11 significantly reduced EVT invasion, but not their 

adhesion, through the STAT3 pathway. It may be that by blocking S100P through use of an antibody, 

free IL-11 is left to circulate extracellularly, leading to the reported decreases in invasion. Interestingly, 

IL-11-mediated decreases in invasion were not abrogated through inhibition of MAPK pathways, 

suggesting a role for several signalling pathways in EVT invasion.  

Few papers have characterised the effects of the addition of S100P antibodies on various cells. Dakhel 

et al. (2014) showed that multiple S100P antibodies generated by the group had the ability to 

neutralise the proliferative effect of recombinant S100P on the BxPC3 cell line, which was both time 

and dose dependent. Incubation with these antibodies was also able to block the phosphorylation of 

IκBα that is generated by S100P. Interestingly, the proliferative effect of S100P seen by Dakhel et al. 

(2014) has not been observed within the stably-expressing S100P HTR8 clones or JEG-3 cell line used 

within our studies. No differences in proliferation were detected between the non-S100P expressing 

HTR8 clone 3 or the S100P-expressing HTR8 clone 7, either before or after treatment with an S100P 

antibody (see figure 4.3.10). In contrast to our studies, Dakhel et al. (2014) utilised monoclonal 

antibodies to block the extracellular effects of S100P. It is not certain whether the use of a monoclonal 

versus a polyclonal antibody to S100P could lead to differences in cellular proliferation, motility or 

invasion. Clarke et al. (2017) further characterised the effect of the addition of an S100P antibody on 

cell invasion. S100P antibody added to the culture medium of Rama 37 cells expressing S100P reduced 

their invasion by almost 60% compared to untreated controls. In contrast, cells not expressing S100P, 

or expressing a C-terminal S100P mutant, showed no significant differences in their invasive 

capabilities following treatment with the S100P antibody, suggesting that the C-terminal portion of 

S100P is required for its motility- and invasion-promoting abilities. 

We also sought to bring work completed with cell lines into a more physiologically relevant context by 

isolating EVT cells from first trimester placenta. Isolated EVTs were found to express high levels of 

S100P, over 17-fold the level expressed by HTR8 clone 7. This is somewhat interesting, given that a 

model first trimester EVT cell line, HTR8/SVneo, do not express S100P, and S100P is not detectable by 

either western blotting or qPCR in this cell line (Tabrizi et al. 2018). Szklanna et al. (2017) completed a 

comprehensive proteomic analysis of model trophoblast cell lines BeWo and HTR8/SVneo, with S100P 

being detected only in the BeWo cell line. In contrast, Zhou et al. (2016) were able to detect S100P by 

western blot in HTR8/SVneo. These studies suggest differential detection of S100P in HTR8 cells, 
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potentially due to the cells being obtained from different sources. In addition to detection of S100P in 

EVT cell lysates, S100P was also detectable in biotinylated membrane samples. Two bands at roughly 

10kDa and 18kDa were detected by western blotting, the latter of which most likely relates to dimer 

formation. Taken together, this data strongly suggests S100P is present extracellularly, not just in cell 

lines, but that extracellular S100P localisation is conserved in isolated EVT cells. 

Isolated EVTs were treated with an S100P antibody to assess if the response generated by trophoblast 

cell lines is conserved ex vivo. In much the same way as trophoblast cell lines, EVTs that were treated 

with an S100P antibody exhibited a significant reduction in both motility and invasion. Comparison of 

the effects on different pools of S100P, intracellular and extracellular, on motility and invasion was 

achievable through the use of siRNA technology and S100P antibody respectively. The degree of 

inhibition of both motility and invasion following siRNA treatment in JEG-3 cells is much greater than 

that seen by blockade of extracellular S100P through use of an S100P antibody, suggesting different 

pools of S100P have differential effects on motility and invasion, as inhibiting intracellular S100P has a 

greater effect on motility and invasion than that of extracellular S100P.  

We sought to understand the molecular mechanisms at play behind the expression/reduction of S100P 

and its effects on cellular motility and invasion. Cellular motility and invasion are processes regulated 

and orchestrated by a wide variety of different proteins. The adhesion of cells to the substratum relies 

of the formation of focal adhesions, one component of which is paxillin. Our previously published work 

with choriocarcinoma cell lines JEG-3 and BeWo demonstrates an increase in focal adhesion formation, 

demonstrated through paxillin staining upon knockdown of S100P using siRNA targeted sequences 

(Tabrizi et al. 2018). 

S100P-directed siRNA treatment of JEG-3 cells led to an increase in not only focal adhesion number, 

but their size. This is in line with the observation that fewer focal adhesions are consistent with 

migratory cells, as are smaller, less mature focal adhesions. Du et al. (2012) have shown a reduction in 

focal adhesion site disassembly in S100P-expressing HeLa cells following treatment with a FAK 

phosphorylation inhibitor. In addition, S100P-stimluated cell migration was abolished when HeLa cells 

were treated with the FAK phosphorylation inhibitor, suggesting S100P-mediated migration requires 

FAK. FAK redistribution and phosphorylation has been observed in EVTs following treatment with 

insulin-like growth factor-binding protein (IGFBP-1), mediated through α5β1 integrin binding. The 

phosphorylation of FAK leads to activation of the MAPK pathway through ERK-1 and ERK-2 

phosphorylation (Gleeson et al. 2001). 

One paper has characterised the interaction between S100P and integrin α7 leading to increased 

migration of lung cancer cells through activation of FAK and AKT signalling pathways (Hsu et al. 2015). 
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FAK is an important mediator of integrin signalling and has been shown in its activated form to 

colocalise with integrin α5 and MMP2 in EVT cells (MacPhee et al. 2001). Although the work by Hsu et 

al. (2015) concentrated on the interaction of these two proteins in a cancer background, Klaffky et al. 

(2001) have demonstrated expression of integrin α7 in mouse trophectoderm basement membranes 

and in trophoblast giant cells. In addition, integrin α7 null mice exhibit partial embryonic lethality at 

the early stages of pregnancy (Welser et al. 2007). As integrin α7 is a transmembrane receptor that 

binds to ECM components, such as laminin, it may be that loss of this receptor potentiates loss of 

adhesion to the decidual ECM, and therefore leading to poor embryo implantation. 

In addition to changes observed in focal adhesions, S100P knockdown also leads to changes in the actin 

architecture of JEG-3 cells. The remodelling of the actin cytoskeleton is a key process linked to changes 

in cellular migration. Formation of key structures, including lamellipodia and filopodia at the edge of 

the cell, promote cellular motility (Blanchoin et al. 2014). Untreated JEG-3 cells show clear formation 

of lamellipodia, suggesting the cells are quite motile.  Upon treatment with two different siRNA 

sequences targeted to S100P, JEG-3 cells demonstrate a lack of lamellipodia and changes in overall 

actin architecture, which includes the formation of actin stress fibres. Stress fibres are formed from 

bundles of actin filaments held together by actin crosslinking proteins, with the role of mediating 

cellular contraction (Pellegrin and Mellor 2007). These stress fibres in siRNA treated JEG-3 cells seem 

to terminate in focal adhesions, linking the cell to the substratum. An interaction partner of S100P, 

ezrin, has been shown to enhance tumour cell migration in concert with S100P (Austermann et al. 

2008). It may be that S100P knockdown prevents activation of ezrin, which in turn inhibits cellular 

migration, leading to the formation of stress fibres as observed in section 4.3.3.  

We aimed to understand the role of extracellular/membrane-associated S100P in focal adhesion 

formation through the use of an S100P antibody. Interestingly, treatment of both S100P-expressing 

and non S100P-expressing HTR8 cells, and primary EVT cells, with an S100P antibody led to no changes 

in focal adhesion number or size. Such observations lead to the suggestion that intracellular S100P and 

extracellular S100P regulate motility and invasion of cells through different pathways. Previous work 

by Du et al. (2012) has shown that the loss of focal adhesion sites induced by S100P can be reversed 

through treating cells with a FAK inhibitor, suggesting that S100P-dependent changes in migration 

require functional FAK. Growth factors such as epidermal growth factor (EGF) can activate FAK through 

its phosphorylation (Tapia et al. 1999). Phosphorylated FAK has been detected in plasma membrane 

regions of interstitial trophoblasts (differentiated EVTs), and is at its highest levels within the first 

trimester of pregnancy. Knockdown of FAK led to decreased invasion of CTBs from explanted anchoring 

villi in culture, as well as decreasing in vitro invasion of isolated CTBs (Ilić et al. 2001). FAK in complex 

with Src phosphorylates paxillin, leading to the generation of binding sites for various other adapter 
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proteins, and consequently the binding and activation of Rho guanine nucleotide exchange factors 

(Rho-GEFs). Subsequent activation of the Rho family GTPases, including RhoA, Rac and Cdc-42 can lead 

to activation of further downstream molecules known to regulate the cytoskeleton (Ferretti et al. 

2007). One such downstream effector of this pathway, p21-activated kinase (PAK) can modulate Rho-

associated kinases (ROCKs). Shiokawa et al. (2002) have treated isolated CTBs with a specific ROCK 

inhibitor and noted suppression of migration, suggesting that ROCK signalling is involved in trophoblast 

migration. Rac and Cdc-42 have been demonstrated to interact with IQGAP1, an interaction partner of 

S100P (Heil et al. 2011). Through interaction with these two GTPases, their GTP-bound forms are 

maintained which leads to induction of actin polymerisation through interactions with their effector 

proteins (Noritake et al. 2005). Binding of S100P to IQGAP1 has been shown by Heil et al. (2011) to 

have no effect on IQGAP1’s interaction with Rac or Cdc-42, suggesting no negative regulation of S100P 

on cellular motility through its interaction with IQGAP1. 

Another interaction partner of S100P, ezrin, directly interacts with FAK through ezrin’s N-terminal 

domain (Poullet et al. 2001). In addition, activation of FAK by overexpressed ezrin did not require 

stimulation by external growth factors. FAK is critical in the turnover of focal adhesions (Ren et al. 

2000), and interestingly, depletion of ezrin in breast cancer cells leads to an inhibition of focal adhesion 

turnover, and, in addition, an increase in the number and size of focal adhesions (Hoskin et al. 2015). 

Given that intracellular S100P knockdown leads to an increase in focal adhesions, whereas blockade 

of extracellular S100P by use of an antibody does not, it is possible that the actions of the extracellular 

pool of S100P occurs via a different pathway, perhaps without the involvement of FAK.  

We sought to understand if the effects of extracellular S100P on motility and invasion are dependent 

on RAGE, a previously characterised extracellular binding partner of S100P. Penumutchu, Chou and Yu 

(2014) characterised the interaction between RAGE and S100P, which occurs through RAGE’s V domain 

and S100P’s C-terminal hydrophobic patch (Y88, F89, A92, G93) in combination with its linker region 

(L41, P42, G43, F44) and several residues in helix 1. As one of the only known extracellular binding 

partners for S100P, we sought to understand if activation of RAGE through S100P plays a part in the 

reported extracellular actions of S100P in trophoblasts. Cromolyn is an anti-allergy drug that has been 

documented to block interaction between S100P and RAGE, through direct binding to S100P within its 

C-terminal hydrophobic patch (Arumugam et al. 2006). Binding of other S100 proteins to cromolyn has 

previously been reported; both S100A12 and S100A13 bound to cromolyn in a calcium dependent 

manner (Shishibori et al. 1999), however the consequences of these interactions have not been fully 

established; Shishibori et al. (1999) hypothesised that cromolyn, through interaction with its binding 

partners, inhibits IgE-mediated degranulation of basophils and mast cells, although the exact 

mechanism of cromolyn’s actions are not fully understood. Arumugam, Ramachandran and Logsdon 



228 
 

(2006) found that cromolyn treatment of BxPC3 cells led to a dose-dependent inhibition of NFκB 

activity, with later experiments confirming this inhibition in vivo. Namba et al. (2009) found that 

cromolyn did not, however, affect the mRNA expression of S100P in transfected gastric 

adenocarcinoma cell line AGS.  

To understand the role of potential S100P-RAGE interaction in trophoblasts, and to assess if previous 

defects in motility and invasion following treatment of cells with an S100P antibody is dependent on 

RAGE, non-S100P expressing HTR8 clone 3 and S100P-expressing HTR8 clone 7 were treated with 

cromolyn and their proliferation was assessed at 24 and 48 hours following administration.  This work 

demonstrated no significant anti-proliferative effect of cromolyn on HTR8 clones either expressing or 

not expressing S100P, as growth of both cell lines in the presence of cromolyn were not statistically 

different from their untreated counterparts. This outcome somewhat contrary to Arumugam, 

Ramachandran and Logsdon (2006) who found that defects in cell proliferation of pancreatic cancer 

cells expressing endogenous S100P, but not in pancreatic cells that do not express endogenous S100P. 

It is possible that the cellular background could contribute to differences observed in proliferation. In 

addition, this study utilised an MTS reagent which measures differences in cell metabolism, a contrast 

to our work which uses cell counting with trypan blue exclusion. In addition, significant differences in 

cell proliferation, as measured by the MTS assay, were only reported at the 72-hour time point 

following cromolyn treatment. Cell migration and invasion assays on HTR8 clones took place over a 24-

hour time period, a point at which no significant differences in cell proliferation between 100µM 

treated and untreated samples were detected by the group. Whether the effect of cromolyn on cell 

proliferation is dependent on cell background is not yet known.  

Treatment of non-S100P expressing HTR8 clone 3 with cromolyn led to no significant changes in cell 

migration or invasion. In contrast, S100P-expressing HTR8 clone 7 demonstrated a 30% decrease in 

motility and a 20% decrease in invasion following treatment with 100µM cromolyn. The level of 

reduction in S100P-expressing HTR8 motility following cromolyn treatment is at a similar degree to 

that exhibited by S100P-expressing HTR8 cells treated with S100P antibody, in which a 35% decrease 

in motility was observed. This suggests the potential for RAGE to be responsible for S100P-dependent 

motility. However, it is perhaps the case that cromolyn may just be preventing interaction of S100P 

with its target proteins, as cromolyn’s binding site on S100P appears to coincide with binding sites of 

other S100P target interactors, namely within the C-terminal region of S100P.   

The S100P antibody has a greater effect on cell invasion than cromolyn, suggesting the involvement of 

other S100P target proteins, either characterised or yet to be discovered, in the invasive process. The 

level of motility and invasion exhibited by S100P-expressing cells following treatment with 100µM 
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cromolyn was still above basal levels of migration and invasion demonstrated by S100P-negative HTR8 

clone 3, suggesting that S100P-RAGE interactions are only partially responsible for S100P-dependent 

differences in motility and invasion. 

There is very little in the literature concerning cromolyn’s effects on cellular motility. Skedinger et al. 

(1987) found that treating neutrophils with cromolyn decreased their chemotaxis towards serum. 

Stimulation of intracellular free calcium by the serum utilised was also inhibited by treating cells with 

cromolyn. Cromolyn’s effects on cell invasion, on the other hand, have been explored by Arumugam, 

Ramachandran and Logsdon (2006), who treated S100P-expressing BxPC3 cells with cromolyn and 

reported a significant 60% decrease in cell invasiveness. This effect was S100P dependent, as Panc-1 

cells not expressing endogenous S100P did not exhibit the same reduction in cell invasion following 

cromolyn treatment. Namba et al. (2009) treated S100P-expressing AGS cells with cromolyn and found 

a decrease in their invasion. Reduced invasion was not seen with non S100P-expressing AGS cells, 

confirming the inhibitory effect of cromolyn on S100P-expressing cell invasion in this cellular 

background. 

These findings may be somewhat limited due to the specificity of cromolyn. Cromolyn could be 

interacting with other target proteins aside from S100P, evidenced by the fact that cromolyn can also 

bind to other S100 proteins, such as S100A12 and S100A13 (Shishibori et al. 1999). Its use as an anti-

allergy and anti-asthmatic drug further implicates cromolyn in other potential target protein 

interactions. 

To assess how cromolyn may interfere with S100P’s membrane-association capabilities, HTR8 clone 7 

cells were treated with 100µM cromolyn prior to membrane extraction. With results demonstrating a 

decrease in detectable membrane-associated S100P, it suggests that cromolyn may be interfering with 

S100P’s ability to associate with plasma membranes. Cromolyn binds to residues in helices 1 and 4 

within S100P, in addition to S100P’s linker region, a region that was predicted to have a high probability 

of associating with membrane regions (Figure 4.3.19). Given this information, it seems likely that 

binding of S100P to cromolyn prevents its association with membranes. In addition, binding of several 

protein targets by S100P is facilitated by residues in the linker region (RAGE) or in helix 4 (ezrin), 

suggesting that binding of cromolyn to S100P may perturb S100P’s interaction with several target 

proteins.  

With the biological implications of extracellular S100P having been investigated, we sought to 

understand the biochemical and structural nature of S100P that lead to its detection in isolated plasma 

membrane fractions, and whether S100P detected in these fractions is membrane integral or 

peripherally linked. Work within this chapter employed the use of MODA, a methodology in which 
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submission of a protein sequence to an online MODA server leads to the prediction of residues which 

have the potential to interact with membranes (Kufareva et al. 2014). MODA predicted two interfaces 

of potential membrane-binding residues, one of which is present within the linker region of S100P.  

The linker region of S100 proteins, from roughly residues L41 to K51 within S100P, is highly diverse 

(Zhang et al. 2003), and is therefore thought to be involved in potential binding of target proteins. For 

example, Réty et al. (1999) found that interaction between S100A10 and annexin II involves this region. 

Penumutchu, Chou and Yu, (2014) characterised the binding interface between cromolyn and dimeric 

S100P, in which G43, F44 (within S100P’s linker region), A84, F89 and G93 residues from one monomer 

and residues within helix 1 from another monomer comprise the binding region. This confirms at least 

one molecule utilises residues within the linker region of S100P to form a complex.  

The other patch of residues within S100P that could be involved in forming a membrane interaction 

interface involves a spread of residues spanning the entirety of helix 4 at the C-terminus of the protein, 

from F71 to L94. This region is also said to be part of S100P’s dimerisation interface; Koltzscher and 

Gerke (2000) conducted a detailed study on the residues involved in dimer formation in S100P. Within 

helix 4, the sole cysteine residue, C85, was replaced with alanine and was found to still interact with 

wild type S100P. This is similar to the S100A4 protein, in which Tarabykina et al. (2000) found that 

replacing two C-terminal cysteine residues (C76 and C81) with serine residues did once again not 

prevent homodimerisation, but did prevent interaction of S100A4 with S100A1. Mutation of C84S in 

S100B leads to an increase in tau phosphorylation, suggesting certain members of the S100 family rely 

on cysteine residues for S100-target protein interactions (Landar et al. 1997). Further studies on S100P 

dimerization through the use of chemical cross-linking experiments by Austermann et al. (2008) 

showed that residues 88-95 are not necessary for homodimer formation, but are required for calcium-

dependent interactions with the N-terminal ERM association domain (N-ERMAD) of ezrin. 

These studies raise the question as to whether membrane-associated S100P is in fact monomeric or 

dimeric. If the C-terminal residues predicted using MODA are in fact dispensable for S100P dimer 

formation, but are required for target protein interaction, then it is possible that both monomeric and 

dimeric S100P could be membrane associated. Monomeric activities of S100P have only recently 

gained attention, as previous literature suggests that dimer formation is obligatory for S100P’s 

functionality (Koltzscher and Gerke, 2000).  Kazakov et al. (2018) recently characterised the interaction 

with human serum albumin (HSA) with monomeric S100P, evidenced to be specific due to lack of HSA 

binding to other S100 proteins. Further research by several of the same authors identified an 

interaction between monomeric S100P and interferon beta (IFN-β). Cell viability defects in MCF-7 cells 
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following IFN-β treatment were in fact rescued following treatment with purified S100P (Kazakov et al. 

2020).  
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5.1 Introduction 

Work within the previous chapter has demonstrated the presence of S100P primarily in isolated 

plasma membrane fractions, as well as cytoplasmic, and has established the role of this pool of S100P 

in promoting both motility and invasion through an alternative pathway to that of intracellular S100P. 

As of yet, only few extracellular or membrane-bound interaction partners of S100P have been 

characterised. Much is known about the implications of RAGE activation by S100P in a cancer 

background, with S100P binding to RAGE leading to increased proliferation and invasion of pancreatic 

cancer cell lines (Arumugam et al. 2004). Other binding partners of S100P that are localised to the 

extracellular space include IL-11, whose interaction with S100P is yet to be characterised either in cell 

lines or in vivo (Kazakov et al. 2015). More recently, interaction of tPA with S100P was observed by 

Clarke et al. (2017), who established that activation of tPA by S100P is dependent on the presence of 

C-terminal lysine residues in the S100P structure. In addition, Clarke et al. (2017) were able to detect 

S100P on the outside of S100P-expressing Rama 37 cells by quantitative ELISA, supporting our findings 

that S100P can be detected in this location.  

Our previous work has centred on the role of S100P in trophoblasts (Tabrizi et al. 2018), in which both 

gain and loss of S100P expression led to increases or decreases in migration and invasion respectively. 

However, the binding partners and pathways regulated that mediate this response in concert with 

S100P are yet to be elucidated in cells of trophoblastic origin. Given that the above studies were carried 

out on cells of a cancer background, we sought to identify either previously characterised or novel 

interactors of the S100P protein solely in trophoblasts.   

In this chapter, we wanted to further characterise whether S100P would be integrated into different 

complexes in cell lysates or cytoplasm/membrane compartments using blue native PAGE (blue native 

polyacrylamide gel electrophoresis, or BN-PAGE). Proof of the presence of S100P in different 

complexes would offer further opportunities to establish differences in S100P expressing cells, and 

would allow us to determine the composition of cytoplasm/membrane fractions of trophoblast cells, 

previously separated by subcellular fractionation, using mass spectrometric analysis of BN-PAGE gels. 

Finally, we aimed to assess the effects of S100P expression on changes in protein abundance, with the 

goal of identifying enriched biological themes within samples and potential regulators/interactors of 

S100P that may facilitate its interactions either intracellularly or extracellularly in trophoblasts.  
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5.2 Results 

5.2.1 S100P is detected as part of a high molecular weight complex in cell 

lysates and cytoplasm/membrane fractions by western blotting 

Previous work has characterised a new, membrane associated pool of S100P present within multiple 

cell lines, including EVT cells isolated from primary tissue. We sought to gain further understanding 

about the S100P interactomes in these cells in an effort to shed new light into the recently 

characterised role of S100P in cellular migration and invasion of trophoblast cells, be it either in the 

intracellular or extracellular compartments. 

To initiate this process, cell lysates and cell fractions from multiple cell lines, both of cancer and 

trophoblastic origin, were separated on a blue native PAGE gel, with a gradient of 4-16% (w/v). Blue 

native PAGE (blue native polyacrylamide gel electrophoresis, or BN-PAGE) allows for separation of 

proteins under native conditions, without denaturation of protein complexes. Any protein complexes 

formed within cells will therefore retain their native structure, and allows for assessment of complex 

sizes and composition within the cell fractions of multiple cell lines (Wittig et al. 2006). Furthermore, 

western blotting of blue native PAGE gels for S100P allows for the determination of S100P-containing 

complexes present within cell lysates and isolated cell fractions, along with their size.  

Cell lysates and cell fractions were collected from cell lines COS-7 s10+, HeLa A3+, JEG-3, BeWo and 

HTR8 clone 7 prior to separation on a NativePAGE 4-16% (w/v) Bis-Tris gel and western blotting for 

S100P (figure 5.2.1). In both non-trophoblast cell lines, COS-7 s10+ and HeLa A3+, low molecular-

weight bands estimated at 20 to 60kDa were detected by the S100P antibody in both cell lysate and 

cytoplasm and membrane fractions. These bands are thought to relate to S100P dimer, trimer or 

tetramer formation. This band is absent in the nuclear fraction of both cell lines. A smear at around 

480 to 1000kDa was detected by the S100P antibody in both HeLa A3+ and COS-7 s10+ cell lysates, and 

was found to be enriched in their respective cytoplasm and membrane fractions.  

Low molecular weight complexes, most likely corresponding to S100P dimers, were found in cell 

lysates and cytoplasm and membrane fractions in trophoblast cell lines JEG-3, BeWo and HTR8 clone 

7. A faint band for S100P was detected below 146kDa in the nuclear fraction of the BeWo cell line, 

however, previous results from fractionation experiments suggest this band is a contaminant from 

cytoplasmic proteins, or an overspill from neighbouring lanes, and not a true representation of S100P’s 

presence within this fraction. Similar to non-trophoblast cell lines, a smear was detected by the S100P 

antibody at around 480 to 1000kDa in the cell lysates of JEG-3, BeWo, and HTR8 clone 7 cell lines. As 
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seen before with both HeLa A3+ and COS-7 s10+ cell lines, this smear is enriched within the cytoplasm 

and membrane fractions, suggesting this fraction is the source of this high molecular-weight complex 

containing S100P.  

In addition to the high-molecular weight complex that appears to contain S100P at 480 to1000kDa in 

each of the trophoblast cell lines, S100P was detected at the bottom of each well (arrows). These bands 

are most prominent within the cell lysate and cytoplasm and membrane fractions, especially in HTR8 

clone 7.  All in all, these results suggest that S100P is part of a high molecular weight complex within 

cytoplasm and membrane fractions that appears to somewhat be more enriched within trophoblast 

cell lines in comparison to inducible cell lines COS-7 s10+ and HeLa A3+. 

 

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



237 
 

 

 

 

 

 

 

 

 

Cell lysates and cell fractions (nuclei, cytoplasm and membrane) from COS-7 S10+, HeLa A3+, JEG-3, BeWo and HTR8 Clone 7 cell lines were collected and 

separated on a NativePAGE 4-16% (w/v) Bis-Tris gel prior to western blotting for S100P. Non-migratory S100P was detected (arrows) in multiple cell lines.  

 

Figure 5.2.1: S100P forms high molecular weight complexes in the cytoplasm and membrane fractions of trophoblast and non-trophoblast cell lines 
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5.2.2 S100P expression in trophoblast cell lines leads to significant changes in 

global protein abundance 

As a means to shed more light on the overall protein composition of S100P-expressing cells versus non 

S100P-expressing cells, cytoplasm and membrane fractions of non-S100P expressing HTR8 SGB16 

Clone 3, and S100P-expressing HTR8 SGB217 Clones 5 and 7 were separated on a NativePAGE 4-16% 

(w/v) Bis-Tris gel in triplicate prior to mass spectrometry analysis. Mass spectrometry was utilised to 

assess the quantity and natures of all proteins present within these fractions. As the cytoplasm and 

membrane fractions from each cell line contain many different proteins, it was necessary to cut the 

gel into four fragments according to their approximate molecular weight (Figure 2.2.6). This allows for 

filtering of proteins by their presence in each gel fragment, as well as increasing the level of protein 

digestion by trypsin. Proteins detected only in the lowest molecular weight fraction, fraction 1, were 

excluded, as these are most likely to contain contaminants and give a greater possibility of false 

positive results.  

Following tryptic digestion of gel fragments from each of the three HTR8 clones, a total of 663 proteins 

were identified across all samples by mass spectroscopy.  The normalised abundance for each protein 

in the triplicate samples for each of the three cell lines was averaged. At this point, results from HTR8 

Clones 5 and 7 were merged to allow for analysis of “S100P negative” (HTR8 SGB16 Clone 3) versus 

“S100P positive” (HTR8 SGB217 Clones 5 and 7) cell lines, in addition to giving a clearer picture of how 

abundance of certain proteins may be affected by S100P expression. Normalised abundances from 

S100P negative and S100P positive samples were input into GraphPad 6.0 for statistical analysis using 

multiple unpaired T-tests, one T-test per protein detected. Of 663 proteins detected, differences in 

abundance of 232 proteins between S100P negative and S100P positive samples were detected at a P 

value below 0.05. These 232 proteins were then analysed for fold changes in abundance between 

S100P negative and S100P positive samples, and those which were above 1.5-fold difference in 

abundance between S100P negative and S100P positive samples, a total of 73 proteins, were used for 

further analysis (Table 5.2.1). 
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Name 

 

 

Gene 

Name 

Accession Fraction P value S100P 

Negative 

Mean 

S100P 

Positive 

Mean 

Difference Normalised 

S100P 

Negative  

Normalised 

S100P 

Positive 

L-lactate dehydrogenase B chain LDHB LDHB_HUMAN 1;2;3 0.000855 5492.89 8279.11 -2786.22 1 1.507241179 

Eukaryotic translation initiation 

factor 2A 

EIF2A EIF2A_HUMAN 4 0.008372 207.617 313.549 -105.931 1 1.510227968 

40S ribosomal protein S2 RPS2 RS2_HUMAN 2;3;4 0.000385 1214.94 1856.7 -641.765 1 1.528223616 

Small nuclear ribonucleoprotein Sm 

D3 

SNRPD3 SMD3_HUMAN 2 0.001145 8724.82 13365.8 -4640.98 1 1.531928452 

Calpain-2 catalytic subunit CAPN2 CAN2_HUMAN 2 0.017409 206.954 317.32 -110.366 1 1.53328759 

Protein phosphatase 

methylesterase 1 

PPME1 PPME1_HUMAN 1;2;3;4 0.000761 2985.24 4605.46 -1620.22 1 1.542743632 

Trifunctional purine biosynthetic 

protein adenosine-3 

GART PUR2_HUMAN 3;4 0.008763 358.817 557.582 -198.766 1 1.553945326 

Importin-5 IPO5 IPO5_HUMAN 2;4 0.032778 121.983 189.728 -67.7442 1 1.555364272 

Ubiquitin-conjugating enzyme E2 

variant 1 

UBE2V1 UB2V1_HUMAN 1;4 0.010705 512.987 807.82 -294.833 1 1.574737761 

Heterogeneous nuclear 

ribonucleoprotein Q 

SYNCRIP HNRPQ_HUMAN 2;3;4 0.003218 346.806 570.254 -223.449 1 1.644302578 

Moesin MSN MOES_HUMAN 2 0.015336 671.878 1106.34 -434.462 1 1.646638229 

40S ribosomal protein S4, X isoform RPS4X RS4X_HUMAN 1;2;4 0.006731 1019.81 1689.25 -669.442 1 1.656436003 

Tubulin-folding cofactor B TBCB TBCB_HUMAN 1;2;4 0.015494 576.963 979.541 -402.578 1 1.697753582 

Protein RTF2 homolog RTFDC1 RTF2_HUMAN 1;4 0.000552 154.289 262.995 -108.706 1 1.704560921 

Tropomyosin alpha-4 chain TPM4 TPM4_HUMAN 1;2;3 0.009974 901.84 1592.53 -690.694 1 1.76586756 
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14-3-3 protein eta YWHAH 1433F_HUMAN 1;4 < 0.0001 557.065 984.699 -427.634 1 1.76765548 

Deoxynucleoside triphosphate 

triphosphohydrolase SAMHD1 

SAMHD1 SAMH1_HUMAN 3 0.006289 26.6896 47.232 -20.5424 1 1.769678077 

S-adenosylmethionine synthase 

isoform type-2 

MAT2A METK2_HUMAN 2 0.000348 444.92 790.059 -345.14 1 1.775732716 

60S ribosomal protein L24 RPL24 RL24_HUMAN 3;4 0.007937 66.2423 119.123 -52.8803 1 1.798292028 

DNA-(apurinic or apyrimidinic site) 

lyase 

APEX1 APEX1_HUMAN 1;4 0.013116 126.197 232.926 -106.729 1 1.845733258 

Exosome RNA helicase MTR4 MTREX MTREX_HUMAN 2;3;4 0.018437 470.192 897.052 -426.86 1 1.907841903 

Proteasome activator complex 

subunit 3 

PSM PSME3_HUMAN 1;4 0.006825 424.231 817.813 -393.582 1 1.927753983 

Structural maintenance of 

chromosomes protein 4 

SMC4 SMC4_HUMAN 3;4 0.014771 155.792 303.938 -148.146 1 1.950921742 

Dynamin-1 DNM1 DYN1_HUMAN 4 0.010563 128.034 253.066 -125.032 1 1.976553103 

Heat shock 70 kDa protein 1A HSPA1A HS71A_HUMAN 2;3;4 0.005755 795.736 1584.78 -789.04 1 1.991590176 

Eukaryotic initiation factor 4A-I EIF4A1 IF4A1_HUMAN 1;2;3;4 0.008175 1019.72 2051.24 -1031.52 1 2.011571804 

Tropomyosin alpha-1 chain TPM1 TPM1_HUMAN 1;2 0.021547 226.728 459.413 -232.685 1 2.026273773 

High mobility group protein B1 HMGB1 HMGB1_HUMAN 1;2 0.008281 2404.9 4879.07 -2474.17 1 2.028803692 

40S ribosomal protein S17 RPS17 RS17_HUMAN 1;4 0.000272 228.609 487.704 -259.095 1 2.13335433 

Copine-1 CPNE1 CPNE1_HUMAN 2 < 0.0001 473.668 1049.23 -575.558 1 2.215116917 

Purine nucleoside phosphorylase PNP PNPH_HUMAN 2 0.008218 204.542 459.423 -254.881 1 2.246105934 

Glycine--tRNA ligase GARS1 GARS_HUMAN 2 0.029892 117.989 267.252 -149.263 1 2.265058607 

60S ribosomal protein L18a RPL18A RL18A_HUMAN 3;4 0.046122 180.963 411.043 -230.08 1 2.271420125 

High mobility group protein B2 HMGB2 HMGB2_HUMAN 1;2 0.003837 747.219 1727.25 -980.026 1 2.311571306 
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Heat shock protein beta-1 HSPB1 HSPB1_HUMAN 1;2;3;4 0.020571 293.303 680.996 -387.693 1 2.32181737 

Histone H2B type 1-B HIST1H2BB H2B1B_HUMAN 1;2 0.038916 53.3656 129.224 -75.8587 1 2.421485002 

60S ribosomal protein L10 RPL10 RL10_HUMAN 4 0.039013 71.7055 176.813 -105.107 1 2.465822008 

Hsc70-interacting protein ST13 F10A1_HUMAN 2 0.005894 275.609 699.77 -424.161 1 2.538995461 

RNA-binding protein 8A RBM8A RBM8A_HUMAN 1;2 < 0.0001 91.8645 244.848 -152.983 1 2.665316853 

Far upstream element-binding 

protein 2 

KHSRP FUBP2_HUMAN 1;2 0.021134 99.2664 278.644 -179.378 1 2.80703239 

60S ribosomal protein L10a RPL10A RL10A_HUMAN 4 0.005901 321.053 907.043 -585.99 1 2.82521266 

Ribonuclease inhibitor RNH1 RINI_HUMAN 1;4 0.046374 41.894 119.048 -77.1539 1 2.841647969 

Ribonucleoside-diphosphate 

reductase large subunit 

RRM1 RIR1_HUMAN 2 0.000353 46.1987 136.644 -90.4457 1 2.957745564 

Eukaryotic peptide chain release 

factor subunit 1 

ETF1 ERF1_HUMAN 2;4 0.021393 183.13 548.224 -365.094 1 2.993632938 

Ubiquitin carboxyl-terminal 

hydrolase 14 

USP14 UBP14_HUMAN 1;2;4 < 0.0001 95.3841 308.088 -212.704 1 3.229972291 

Annexin A6 ANXA6 ANXA6_HUMAN 2;3 0.001288 696.281 2514.13 -1817.85 1 3.610797939 

Eukaryotic translation initiation 

factor 3 subunit F 

EIF3F EIF3F_HUMAN 4 0.049199 11.8955 46.7365 -34.841 1 3.928922702 

Heterogeneous nuclear 

ribonucleoprotein F 

HNRNPF HNRPF_HUMAN 2 0.007531 56.8723 236.654 -179.782 1 4.161146991 

26S proteasome regulatory subunit 

6A 

PSMC3 PRS6A_HUMAN 4 0.026945 17.2391 73.638 -56.3989 1 4.271568701 

Xaa-Pro dipeptidase PEPD PEPD_HUMAN 2 0.0026 47.675 212.465 -164.79 1 4.456528579 
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Basic leucine zipper and W2 

domain-containing protein 1 

BZW1 BZW1_HUMAN 4 0.031188 8.60153 39.1805 -30.579 1 4.555061716 

Multidrug resistance-associated 

protein 6 

ABCC6 MRP6_HUMAN 4 0.007995 16.6521 84.8963 -68.2442 1 5.098233856 

Peptidyl-prolyl cis-trans isomerase 

FKBP4 

FKBP4 FKBP4_HUMAN 2 0.03322 24.0511 125.636 -101.585 1 5.223711182 

Heat shock protein 105 kDa HSPH1 HS105_HUMAN 2;3 0.000776 191.952 1257.83 -1065.88 1 6.552836126 

Phosphoribosylformylglycinamidine 

synthase 

PFAS PUR4_HUMAN 2 0.008212 89.0063 623.704 -534.698 1 7.007414082 

UV excision repair protein RAD23 

homolog A 

RAD23A RD23A_HUMAN 2 0.049831 18.9983 137.558 -118.559 1 7.240542575 

Protein SET SET SET_HUMAN 2 0.022668 12.6042 102.891 -90.2865 1 8.163231304 

Ubiquitin-conjugating enzyme E2 Z UBE2Z UBE2Z_HUMAN 4 0.007609 4.5762 37.4343 -32.8582 1 8.180215026 

Acetyl-CoA carboxylase 1 ACACA ACACA_HUMAN 4 0.020754 6.26821 52.9685 -46.7002 1 8.450339092 

Tryptophan--tRNA ligase, 

cytoplasmic 

WARS SYWC_HUMAN 2 0.003399 20.5259 179.499 -158.973 1 8.745000219 

ATP synthase subunit beta, 

mitochondrial 

ATP5B ATPB_HUMAN 2;3;4 0.010755 27.1124 271.115 -244.003 1 9.999668049 

Nascent polypeptide-associated 

complex subunit alpha, muscle-

specific form 

NACA NACAM_HUMAN 2 0.000242 56.9245 587.191 -530.267 1 10.31525969 

Nicotinamide 

phosphoribosyltransferase 

NAMPT NAMPT_HUMAN 2 0.024536 19.5602 208.854 -189.294 1 10.67749819 

S-formylglutathione hydrolase ESD ESTD_HUMAN 2 < 0.0001 22.5858 304.272 -281.686 1 13.47182743 
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2-hydroxyacylsphingosine 1-beta-

galactosyltransferase 

UGT8 CGT_HUMAN 2 0.003951 18.8423 287.511 -268.669 1 15.25880598 

Obg-like ATPase 1 OLA1 OLA1_HUMAN 2;4 0.023053 8.34395 150.395 -142.052 1 18.02443687 

Quinone oxidoreductase PIG3 TP53I3 QORX_HUMAN 2 0.02953 3.15014 58.6406 -55.4904 1 18.61523615 

60S acidic ribosomal protein P0-like RPLP0P6 RLA0L_HUMAN 4 0.005725 7.50906 195.549 -188.04 1 26.04174158 

Acetyl-CoA acetyltransferase, 

cytosolic 

ACAT2 THIC_HUMAN 2 0.003368 2.84204 92.2642 -89.4221 1 32.4640751 

Vitronectin VTN VTNC_HUMAN 2 0.003236 4.53595 153.562 -149.026 1 33.85442961 

ATP-dependent RNA helicase 

DDX39A 

DDX39A DX39A_HUMAN 4 0.048158 0.290679 19.5081 -19.2174 1 67.11217529 

Cyclin-C CCNC CCNC_HUMAN 2;3 0.002269 1.10937 113.431 -112.321 1 102.2481228 

Activating molecule in BECN1-

regulated autophagy protein 1 

AMBRA1 AMRA1_HUMAN 2 0.002378 0.320286 193.781 -193.461 1 605.024884 

Golgi resident protein GCP60 ACBD3 GCP60_HUMAN 2;4 0.024299 0 89.0982 -89.0982 N/A N/A 

Cytoplasmic dynein 1 intermediate 

chain 2 

DYNC1I2 DC1I2_HUMAN 2 0.029646 0 20.4781 -20.4781 N/A N/A 

Nicotinamide 

phosphoribosyltransferase 

RCC2 RCC2_HUMAN 2 0.02449 0 46.4637 -46.4637 N/A N/A 

 Table 5.2.1: List of proteins detected by mass spectrometry that demonstrate at least a 1.5-fold increase in normalised abundance between S100P negative 

(HTR8 SGB16 Clone 3) and S100P positive (HTR8 SGB217 Clones 5 and 7) cytoplasm and membrane fractions. Raw normalised means and calculated fold changes 

are shown. 
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Each of the 73 proteins with a fold change of over 1.5 between S100P negative and S100P positive 

samples were submitted to DAVID. DAVID (The Database for Annotation, Visualization and Integrated 

Discovery) contains a set of web-based tools that allow for the understanding of biological meaning 

behind gene sets. To this end, DAVID was utilised to identify enriched biological themes based on the 

submitted proteins and by consequence their associated genes. These biological themes are explored 

in GO (Gene Ontology) terms, which describe various biological functions, molecular pathways and 

cellular locations where certain genes and proteins come into play. Upon submission of the 73 gene 

names to DAVID, a functional annotation chart was generated, displaying a number of enriched terms 

associated with the submitted set of genes (Table 5.2.2). The chart displays the database from which 

terms originate from (either GO or Uniprot), the number of genes associated with each term, and the 

percentage of involved genes out of the total genes submitted.  

A large range of cellular components, processes and molecular functions were associated with the 73 

submitted proteins, suggesting the wide variety of processes these proteins are involved in. For 

example, 85% of the submitted genes were associated with the “phosphoprotein” key word, and 78% 

were associated with the “acetylation” key word. This does not necessarily mean the detected proteins 

have undergone these processes, rather that the proteins submitted can be found in 

phosphorylated/acetylated forms or associated with these processes. These enriched terms were 

generated alongside p values, and another value called Benjamini. This parameter is a multiple testing 

correction technique that allows for global correction of enrichment values to control the rate of false 

discovery (Huang, D. W. et al. 2009). All p values generated from the enriched terms by DAVID were 

deemed statistically significant, however after applying the Benjamini correction, 11 of the 39 terms 

were deemed below the 0.05 threshold. These terms include both cellular components and keywords 

such as “nucleus”, “mitochondrion”, and “hydrolase”, among others.  
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Category Term Count % P value Benjamini 

UP_KEYWORDS 
 

Phosphoprotein 63 85.1 3.00E-15 2.50E-13 

GOTERM_MF_DIRECT protein binding 61 82.4 2.60E-08 3.00E-06 

UP_KEYWORDS Acetylation 58 78.4 8.10E-31 1.30E-28 

GOTERM_CC_DIRECT cytoplasm 47 63.5 1.00E-09 6.10E-08 

UP_KEYWORDS Cytoplasm 45 60.8 1.70E-11 9.10E-10 

GOTERM_CC_DIRECT cytosol 41 55.5 2.20E-12 3.90E-10 

GOTERM_CC_DIRECT extracellular exosome 37 50.0 1.10E-11 1.00E-09 

GOTERM_CC_DIRECT nucleus 33 44.6 7.20E-03 8.70E-02 

GOTERM_CC_DIRECT nucleoplasm 28 37.8 4.50E-06 1.30E-04 

UP_KEYWORDS Nucleus 27 36.5 3.50E-02 2.10E-01 

GOTERM_CC_DIRECT membrane 25 33.8 2.50E-06 1.10E-04 

GOTERM_MF_DIRECT poly(A) RNA binding 24 32.4 1.30E-10 2.90E-08 

UP_KEYWORDS Ubl conjugation 18 24.3 7.50E-05 1.80E-03 

UP_KEYWORDS Isopeptide bond 17 23.0 1.70E-06 5.60E-05 

UP_KEYWORDS Nucleotide-binding 17 23.0 4.40E-04 6.60E-03 

GOTERM_MF_DIRECT ATP binding 17 23.0 4.60E-04 2.10E-02 

UP_KEYWORDS ATP-binding 16 21.6 9.10E-05 1.70E-03 

UP_KEYWORDS Hydrolase 13 17.6 1.40E-02 1.10E-01 

UP_SEQ_FEATURE mutagenesis site 13 17.6 8.90E-02 9.80E-01 

UP_KEYWORDS Ribonucleoprotein 11 14.9 9.10E-08 3.70E-06 

GOTERM_MF_DIRECT RNA binding 11 14.9 1.00E-04 5.90E-03 

UP_KEYWORDS Methylation 11 14.9 2.70E-03 2.80E-02 

GOTERM_CC_DIRECT mitochondrion 11 14.9 3.90E-02 2.90E-01 

GOTERM_BP_DIRECT translational initiation 10 13.5 7.70E-09 4.30E-06 

GOTERM_CC_DIRECT focal adhesion 10 13.5 2.50E-05 6.40E-04 

GOTERM_MF_DIRECT identical protein binding 10 13.5 4.40E-03 1.20E-01 

UP_KEYWORDS Cytoskeleton 10 13.5 1.90E-02 1.30E-01 

GOTERM_BP_DIRECT nuclear-transcribed 

mRNA catabolic process, 

nonsense-mediated 

decay 

9 12.2 4.60E-08 1.30E-05 

GOTERM_BP_DIRECT translation 9 12.2 1.40E-05 1.30E-03 

UP_KEYWORDS RNA-binding 9 12.2 2.40E-03 2.60E-02 
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GOTERM_CC_DIRECT nucleolus 9 12.2 2.10E-02 1.90E-01 

UP_SEQ_FEATURE nucleotide phosphate-

binding region:ATP 

9 12.2 2.60E-02 9.30E-01 

UP_KEYWORDS Ribosomal protein 8 10.8 4.20E-06 1.10E-04 

GOTERM_CC_DIRECT ribosome 8 10.8 4.50E-06 1.60E-04 

GOTERM_MF_DIRECT structural constituent of 

ribosome 

8 10.8 4.40E-05 3.30E-03 

GOTERM_BP_DIRECT viral process 8 10.8 3.20E-04 2.50E-02 

UP_KEYWORDS Host-virus interaction 8 10.8 4.30E-04 7.00E-03 

GOTERM_CC_DIRECT perinuclear region of 

cytoplasm 

8 10.8 1.20E-02 1.20E-01 

INTERPRO P-loop containing 

nucleoside triphosphate 

hydrolase 

8 10.8 5.70E-02 8.60E-01 

  

Analysis includes the number of genes involved in each term (Count) and the percentage of involved 

genes out of the total genes submitted (%). Only enriched terms which contained over 10% of the 

total submitted list of genes were included. Benjamini represents corrected P value. 

CC, Cellular Component; MF, Molecular Function; BP, Biological Process; UP, Uniprot  

Table 5.2.2: List of statistically significantly enriched terms associated with the list of 74 proteins 

submitted to DAVID. 
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5.2.3 Identification of enriched terms following mass spectrometric analysis 

of trophoblast cell lines 

Previous results in this chapter suggest that presence of S100P at the plasma membrane may be, at 

least in part, responsible for changes in both motility and invasion that are seen upon treating cells 

with an S100P antibody. To this end, three enriched terms generated by DAVID associated with these 

cellular compartments, or processes related to cellular motility or invasion, were further analysed; 

extracellular exosome, focal adhesion, and membrane (Table 5.2.3). These terms were found to be 

enriched at a statistically significant level after correction of false discovery rate. 

Genes associated with these three terms, containing a select number of the 73 proteins submitted to 

DAVID, are listen in Tables 5.2.4, 5.2.5 and 5.2.6, in addition to their fold change in protein abundance 

detected by mass spectrometry. These three tables list a wide variety of proteins detected by mass 

spectrometry analysis of S100P negative and S100P positive cells that are linked by three terms; 

extracellular exosome, focal adhesion, and membrane. The proteins in these tables, although while 

associated with the terms listed above, are also involved in many other cellular processes and 

functions, for example chaperone-mediated processes and translational initiation (Modelska et al. 

2015). 
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Category Enriched 

terms 

% involved 

genes 

P value Benjamini 

GOTERM_CC_DIRECT Extracellular 

exosome 

50 1.1E-11 1.0E-9 

GOTERM_CC_DIRECT Focal 

adhesion 

13.5 2.5E-5 6.4E-4 

GOTERM_CC_DIRECT Membrane 33.8 2.5E-6 1.1E-4 

  Table 5.2.3: Selected enriched terms of interest from the DAVID functional annotation chart 

(Table 5.2.2) generated by submission of 73 proteins to DAVID. 
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GOTERM_CC_DIRECT Extracellular exosome 

UNIPROT_ID PROTEIN NAME Fold change in 

abundance (S100P 

negative to S100P 

positive) 

ATPB_HUMAN ATP synthase, H+ transporting, mitochondrial F1 

complex, beta polypeptide (ATP5B) 

9.999668049 

FKBP4_HUMAN FK506 binding protein 4(FKBP4) 5.223711182 

OLA1_HUMAN Obg like ATPase 1(OLA1) 18.02443687 

UB2V1_HUMAN Ubiquitin-conjugating enzyme E2 variant 1 1.574737761 

THIC_HUMAN acetyl-CoA acetyltransferase 2(ACAT2) 32.4640751 

ACACA_HUMAN acetyl-CoA carboxylase alpha (ACACA) 8.450339092 

ANXA6_HUMAN annexin A6(ANXA6) 3.610797939 

CAN2_HUMAN calpain 2(CAPN2) 1.53328759 

CPNE1_HUMAN copine 1(CPNE1) 2.215116917 

DYN1_HUMAN dynamin 1(DNM1) 1.976553103 

ESTD_HUMAN S-formylglutathione hydrolase 13.47182743 

IF4A1_HUMAN eukaryotic translation initiation factor 4A1(EIF4A1) 2.011571804 

HSPB1_HUMAN heat shock protein family B (small) member 

1(HSPB1) 

2.32181737 

HS105_HUMAN heat shock protein family H (Hsp110) member 

1(HSPH1) 

6.552836126 

LDHB_HUMAN lactate dehydrogenase B(LDHB) 1.507241179 

MOES_HUMAN Moesin (MSN) 1.646638229 

NACAM_HUMAN nascent polypeptide-associated complex alpha 

subunit (NACA) 

10.31525969 

NAMPT_HUMAN nicotinamide phosphoribosyltransferase (NAMPT) 10.67749819 

PEPD_HUMAN peptidase D(PEPD) 4.456528579 

PUR4_HUMAN phosphoribosylformylglycinamidine 

synthase(PFAS) 

7.007414082 

PUR2_HUMAN Trifunctional purine biosynthetic protein 

adenosine-3 

1.553945326 

PNPH_HUMAN purine nucleoside phosphorylase(PNP) 2.246105934 

RINI_HUMAN ribonuclease/angiogenin inhibitor 1(RNH1) 2.841647969 
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RIR1_HUMAN ribonucleotide reductase catalytic subunit 

M1(RRM1) 

2.957745564 

RL10A_HUMAN ribosomal protein L10a(RPL10A) 2.82521266 

RL24_HUMAN ribosomal protein L24(RPL24) 1.798292028 

RS17_HUMAN ribosomal protein S17(RPS17) 2.13335433 

RS2_HUMAN ribosomal protein S2(RPS2) 1.528223616 

RS4X_HUMAN ribosomal protein S4, X-linked (RPS4X) 1.656436003 

SMD3_HUMAN small nuclear ribonucleoprotein D3 polypeptide 

(SNRPD3) 

1.531928452 

F10A1_HUMAN suppression of tumorigenicity 13 (colon carcinoma) 

(Hsp70 interacting protein) (ST13) 

2.538995461 

TPM4_HUMAN tropomyosin 4(TPM4) 1.76586756 

SYWC_HUMAN tryptophanyl-tRNA synthetase (WARS) 8.745000219 

QORX_HUMAN tumor protein p53 inducible protein 3(TP53I3) 18.61523615 

1433F_HUMAN tyrosine 3-monooxygenase/tryptophan 5-

monooxygenase activation protein eta (YWHAH) 

1.76765548 

UBP14_HUMAN ubiquitin specific peptidase 14(USP14) 3.229972291 

VTNC_HUMAN Vitronectin (VTN) 33.85442961 

 

 Table 5.2.4: List of proteins under the GOTERM_CC_DIRECT Extracellular exosome identifier out of 73 

submitted proteins. List generated by DAVID. 
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GOTERM_CC_DIRECT Focal adhesion 

UNIPROT_ID GENE NAME Fold change in abundance 

(S100P negative to S100P 

positive) 

ANXA6_HUMAN annexin A6(ANXA6) 3.610797939 

CAN2_HUMAN calpain 2(CAPN2) 1.53328759 

HS71A_HUMAN heat shock protein family A (Hsp70) 

member 1A(HSPA1A) 

1.991590176 

HSPB1_HUMAN heat shock protein family B (small) 

member 1(HSPB1) 

2.32181737 

MOES_HUMAN moesin(MSN) 1.646638229 

RL10A_HUMAN ribosomal protein L10a(RPL10A) 2.82521266 

RS17_HUMAN ribosomal protein S17(RPS17) 2.13335433 

RS2_HUMAN ribosomal protein S2(RPS2) 1.528223616 

RS4X_HUMAN ribosomal protein S4, X-linked(RPS4X) 1.656436003 

TPM4_HUMAN tropomyosin 4(TPM4) 1.76586756 
      

  Table 5.2.5: List of proteins under the GOTERM_CC_DIRECT Focal adhesion identifier out of 73 submitted 

proteins. List generated by DAVID. 
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GOTERM_CC_DIRECT Membrane 

UNIPROT_ID GENE NAME Fold change in abundance 

(S100P negative to S100P 

positive) 

ATPB_HUMAN ATP synthase, H+ transporting, 

mitochondrial F1 complex, beta 

polypeptide (ATP5B) 

9.999668049 

DX39A_HUMAN DExD-box helicase 39A(DDX39A) 67.11217529 

FUBP2_HUMAN KH-type splicing regulatory protein (KHSRP) 2.80703239 

OLA1_HUMAN Obg like ATPase 1(OLA1) 18.02443687 

ANXA6_HUMAN annexin A6(ANXA6) 3.610797939 

BZW1_HUMAN basic leucine zipper and W2 domains 

1(BZW1) 

4.555061716 

CPNE1_HUMAN copine 1 (CPNE1) 2.215116917 

EIF3F_HUMAN eukaryotic translation initiation factor 3 

subunit F(EIF3F) 

3.928922702 

IF4A1_HUMAN eukaryotic translation initiation factor 

4A1(EIF4A1) 

2.011571804 

HNRPF_HUMAN heterogeneous nuclear ribonucleoprotein 

F(HNRNPF) 

4.161146991 

IPO5_HUMAN importin 5(IPO5) 1.555364272 

LDHB_HUMAN lactate dehydrogenase B(LDHB) 1.507241179 

PRS6A_HUMAN proteasome 26S subunit, ATPase 3(PSMC3) 4.271568701 

PSME3_HUMAN proteasome activator subunit 3(PSME3) 1.927753983 

RL10_HUMAN ribosomal protein L10(RPL10) 2.465822008 

RL10A_HUMAN ribosomal protein L10a(RPL10A) 2.82521266 

RL18A_HUMAN ribosomal protein L18a(RPL18A) 2.271420125 

RL24_HUMAN ribosomal protein L24(RPL24) 1.798292028 

RS17_HUMAN ribosomal protein S17(RPS17) 2.13335433 

RS2_HUMAN ribosomal protein S2(RPS2) 1.528223616 

RS4X_HUMAN ribosomal protein S4, X-linked (RPS4X) 1.656436003 

 TPM4_HUMAN tropomyosin 4(TPM4) 1.76586756 
      

  Table 5.2.6: List of proteins under the GOTERM_CC_DIRECT Membrane identifier out of 73 submitted 

proteins. List generated by DAVID. 
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5.2.4 Identification of Annexin A6 and its potential involvement in S100P-

dependent processes  

 

Upon assessment of the three enriched term tables generated by DAVID, one protein in particular 

stood out as a potential target for involvement in S100P-dependent processes for a variety of reasons; 

annexin A6. Abundance of the annexin A6 protein was found to be increased by over 3.6-fold in S100P 

positive samples when compared to S100P negative samples, and was identified in gel fragments 2 

and 3, suggesting that annexin A6 has potential to be a part of the high molecular weight complex 

containing S100P. In addition, annexin A6 was listed in each of the three enriched term tables, 

solidifying its presence and role in the compartments of interest.  

To determine whether annexin A6 expression differs between S100P-expressing and non S100P-

expressing cells, as observed using mass spectrometry, cell lysates from S100P negative HTR8 Clone 3 

and S100P positive HTR8 clones 5 and 7 were separated on a 16% (w/v) SDS-PAGE gel prior to western 

blotting for annexin A6, S100P and tubulin (Figure 5.2.2, panel A). Quantification of band intensity for 

annexin A6, S100P and tubulin was carried out on each sample, and band intensity of annexin A6 and 

S100P in each cell line were normalised to tubulin (Figure 5.2.2, panels B and C) 

The resulting western blot for S100P once again confirmed the variance in S100P expression seen in 

the transfected HTR8 clones; S100P expression by HTR8 clone 7 was significantly increased in 

comparison to non-S100P expressing HTR8 Clone 3, which demonstrated no S100P expression 

(p<0.029). Western blotting of cell lysates for annexin A6 demonstrated a 56% increase in annexin A6 

expression between HTR8 clone 7 and S100P negative HTR8 clone 3. However, this increase in 

expression was not deemed statistically significant (p=0.067). Moreover, the increase in annexin A6 

expression seen between clones 7 and 3 is not in line with data obtained using the mass-spectrometry 

based approach, and is in fact 7-fold lower than the expected 3.6-fold (360%) increase in expression in 

annexin A6 between S100P-negative and S100P-positive cell lines. Western blot data therefore 

suggests that annexin A6 may not likely be a target for regulation by S100P, at least in this cell 

background. 
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A) Cell lysates from S100P-negative HTR8 Clone 3 and S100P-positive HTR8 Clones 5 and 7 were collected 

and run on 16% (w/v) SDS-PAGE before western blotting for annexin A6, S100P and tubulin.  

B) Levels of annexin A6 present within cell lysates was quantified by densitometry using Image Studio Lite, 

normalised to tubulin. Data represents the mean ±SEM from 4 independent replicates. 

C) Levels of S100P present within cell lysates was quantified by densitometry using Image Studio Lite, 

normalised to tubulin. Data represents the mean ±SEM from 3 independent replicates (one-way ANOVA,   

* p=0.029) 

 

A 

B C 

Figure 5.2.2: Expression of Annexin A6 in HTR8 clones 5 and 7 stably expressing S100P is not significantly 

different from S100P-negative HTR8 SGB16 Clone 3 
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5.3 Discussion 

We have previously characterised the role of S100P in trophoblast cell motility and invasion (Tabrizi et 

al. 2018). Following the detection of a novel pool of S100P in isolated plasma membranes of 

trophoblasts, and its role in promoting motility and invasion, we sought to understand the target 

proteins through which S100P exerts its effects, either those previously characterised or novel 

interactors.  

To this end, we utilised BN-PAGE, a technique that allows for separation of complexes (Swamy et al. 

2006). BN-PAGE is well suited for complex analysis, as the absence of SDS prevents the denaturation 

of protein complexes that would otherwise be denatured when running samples on SDS-PAGE (Jha et 

al. 2017). The anionic dye Coomassie Brilliant Blue G250 (CBB G250) was added to samples, and binding 

of CBB G250 to proteins leads to a charge shift, causing proteins to migrate. As the BN-PAGE gel is a 

gradient gel, from 4-16% acrylamide concentration, proteins are not separated by charge to mass ratio 

but by their size, as the size of the pores formed by the acrylamide prevent proteins within complexes 

from migrating due to particle size (Wittig et al. 2006). BN-PAGE has been used by Jha, Wang and 

Auwerx, (2017) to isolate supercomplexes from mitrochondrial membranes, as well as complexes from 

both Gram-positive and Gram-negative bacteria (Dresler et al. 2011).  

Western blotting of cell lysates and cell fractions from multiple cell lines, either those engineered to 

express S100P by means of an inducible system (COS-7 s10+, HeLa A3+) or those endogenously 

expressing S100P (JEG-3 and BeWo) led to the detection of low molecular weight S100P complexes in 

all cell lines. It is assumed that these complexes are primarily dimers or higher order oligomers of 

S100P, as S100P must form dimers to interact with target proteins (Santamaria-Kisiel et al. 2006). 

Gribenko and Makhatadze (1998) have shown that the oligomerization state of S100P can vary 

depending on calcium concentration, leading to the formation of higher order oligomers, namely 

trimers or tetramers.  

To observe the localisation of these high molecular weight complexes containing S100P, western 

blotting of cytoplasm/membrane fractions and nuclear fractions, isolated by subcellular fractionation 

with a Dounce homogeniser, was undertaken alongside their respective cell lysates. Detection of S100P 

in HeLa A3+ and COS-7 s10+ cell lysates showed the formation of both high and low molecular weight 

complexes, with the former exhibiting a more intense signal in the cytoplasm/membrane fraction 

when compared to its respective cell lysate, signifying enrichment of the S100P-containing complex in 

this fraction. Interestingly, two low molecular weight bands were detected in the COS-7 s10+ 

cytoplasm/membrane fractions, potentially relating to the higher order oligomers mentioned above. 
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Western blotting for S100P also led to the detection of a high molecular weight complex (between 

480-1000kDa) in the cytoplasm and membrane fraction of trophoblast cell lines JEG-3 and BeWo, in 

addition to the stably-transfected S100P-expressing HTR8 clone 7 cell line. Interestingly, the intensity 

and definition of the band obtained in the cytoplasm and membrane fraction of HTR8 clone 7 is much 

stronger than those obtained in JEG-3 and BeWo cytoplasm/membrane fractions, and is also of a much 

stronger intensity than their respective lower molecular weight (predicted) oligomers. The implications 

of this could be that more S100P within the HTR8 clone 7 cell line could be involved in high molecular 

weight complexes compared to the choriocarcinoma cell lines JEG-3 and BeWo. Proteins including 

vimentin 3 and N-cadherin, for example, were found to be present in HTR8/SVneo cells but absent in 

BeWo cells (Szklanna et al. 2017). It may be that differences in the proteome profiles of certain 

trophoblast cell lines lead to differences in complex formation involving S100P.  

COS-7 s10 cells do not express non-muscle myosin IIA (NMIIA) (Bao et al. 2005), a target protein of 

S100P. NMMIIA is formed of two heavy chains, two essential light chains and two regulatory light 

chains, forming a hexamer of roughly 450kDa (Althaus and Greinacher 2009). The lack of defined high 

molecular weight bands containing S100P in COS-7 s10+ cells in comparison to other cell lines could 

potentially therefore be as a result of differences in target protein expression such as NMIIA. It is 

thought that S100 proteins can form dimers to allow their interaction with two either homologous or 

heterologous proteins, with the each binding surface on opposite regions of the dimer (Donato, 

Rosario 2001). If S100P could form this type of interaction, with multiple different target proteins in 

one multiprotein complex, this might further explain differences seen in S100P-containing complexes 

in each cell line. In addition to the high molecular weight complex containing S100P detected in 

trophoblast cell lines, another band was detected at the top of the gel, mainly in cell lysates or 

cytoplasm/membrane fractions. This suggests the presence of S100P in a non-soluble environment, 

given that this material has not migrated out of the well in which it was placed.  

This non-soluble environment could be lipid material present in plasma membranes. However, the 

presence of CBB G250 coats proteins in a negative charge, suggesting negatively charged proteins 

within the sample will repel each other. This leads to decreased aggregation of membrane proteins, 

allowing for their migration into the gel due to their increased solubility (Wittig et al. 2006). The 

addition of aminocaproic acid into the sample buffer maintains the solubility of protein complexes 

(Schägger and von Jagow 1991), however proteins can precipitate in the gel pocket with CBB G250, 

leading to samples not entering the gel. In addition, salt concentration in samples can interfere with 

protein migration through BN-PAGE (Wittig et al. 2006), meaning that efforts to dialyse protein 

samples prior to running on BN-PAGE may alleviate this issue. Several groups have included the use of 

weak, non-ionic detergents to solubilise membrane complexes, including dodecylmaltoside and 
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digitonin (Krause, F. 2006). Addition of a mild detergent prior to running samples on BN-PAGE may also 

aid the sample to enter the gel, although the exact detergent to use and the concentration required 

to extract lipids from membranes, without denaturing protein complexes, would require extensive 

optimisation.  

In order to gain an understanding of proteins involved in this high molecular weight complex formed 

in each cell line, and to assess global protein differences between S100P-positive and S100P-negative 

cells, we sought to separate both S100P-positive (HTR8 clones 5 and 7) and S100P-negative (HTR8 

clone 3) samples by BN-PAGE prior to mass spectrometric analysis in triplicate to detect increases in 

normalised abundances. 633 proteins were detected between each of the three cell lines, of which 

232 were detected at statistically significant increased abundances between S100P-negative and 

S100P-positive cells. This is quite a large number of proteins, representing over one third of total 

proteins detected by mass spectrometry. To narrow down this list and to enable characterisation of 

only the most significant changes in protein abundance, only those proteins which demonstrated at 

least a 1.5-fold increase in S100P-positive samples compared to their negative counterparts were 

analysed. This led to a total of 73 proteins being submitted to DAVID to glean enriched terms that are 

associated with this subset of proteins.  

Given that S100P has been detected in solely in the cytoplasm and in isolated membrane fractions, we 

specifically targeted further analysis towards terms associated with these cellular compartments to 

further narrow down proteins that may potentially play a role in S100P-mediated processes of motility 

and invasion. Three terms were selected for further analysis; “extracellular exosome”, “membrane” 

and “focal adhesion”. A wide variety of proteins comprised these three terms, including but not limited 

to proteins involved in protein transport, ribosomal proteins, and several heat shock proteins. After a 

careful analysis of these proteins, their roles, and their potential for mediating S100P-dependent 

processes, one protein was selected for analysis; annexin A6. 

Annexin A6 is a 68kDa member of the annexin family, with many documented roles including 

membrane repair, endocytic transport and calcium homeostasis (Bandorowicz-Pikula and Seliga 2018). 

The annexin family of proteins are highly conserved and bind to membrane phospholipids through 

their conserved annexin cores in a calcium-dependent manner (Gerke, Volker and Moss, S. E. 2002). 

Each annexin protein contains modular domains to enable their interaction with a variety of proteins 

or lipids (Gerke, Volker et al. 2005). Upon binding calcium, annexins can translocate from the cytosol 

to membrane structures in a reversible manner dependent on calcium. Annexin A6 is highly expressed 

in many tissues, including smooth muscle, liver and breast, and has been implicated in either 

suppression or promotion of cancer metastasis through MAPK/PI3K signalling pathways (Qi et al. 
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2015). Its expression in breast carcinoma cells was found to enhance both their invasion and motility, 

with elongation of vinculin-containing focal adhesions observed following annexin A6 depletion 

(Sakwe et al. 2011). This suggests that annexin A6 promotes the loss of cell-ECM contacts which in turn 

increases cellular motility.  

Interactions of S100 proteins with members of the annexin family have been studied by various groups. 

For example, the interaction of S100A10 with annexin A2, which does not require calcium, leads to the 

formation of an annexin A2-S100A10 heterotetramer (AIIt). AIIt is present on the cell surface, where 

binding of S100A10’s C-terminal lysine residues to tPA results in production of plasmin from 

plasminogen (Kassam et al. 1998a). The interaction between S100A10 dimers and annexin A2 is 

facilitated by S100A10’s linker region in addition to helix 4 (Réty et al. 1999). Annexin A6 has also been 

documented to interact with other members of the S100 family, namely S100A1 and S100B (Garbuglia 

et al. 1998), however the structure of this complex, or the binding sites on these S100 proteins for 

annexin A6 have not been identified (Miwa et al. 2008). Interestingly, binding of the S100A8/A9 

heterodimer to annexin A6 has been documented by Bode et al. (2008) through affinity 

chromatography, with their colocalisation observed in membrane structures of the SKBR3 breast 

cancer cell line. The authors speculated that upon influx of calcium, SKBR3 cells demonstrated 

exposition of the membrane-associated S100A8/A9 complex on the cell surface, from the inner leaflet 

to the outer leaflet of the plasma membrane, however the authors did not investigate the molecular 

mechanisms behind the membrane-association of this complex.  

Rambotti, Spreca and Donato (1993) have documented the expression and localisation of annexin A6 

in trophoblasts by immunohistochemistry, and found that STBs seem to contain the highest levels of 

annexin A6. Annexin A6 was found associated with multiple cellular membranes, such as the Golgi 

membrane, endoplasmic reticulum, and plasma membrane, as well as dispersed throughout the 

cytoplasm in these cells. The authors suggest a role for annexin A6 in modulating trophoblast 

membrane processes in a calcium-dependent manner. However, Riquelme et al. (2004) have detailed 

the specific localisation in annexin A6 in the apical membrane of STBs, and demonstrated its presence 

at the membrane is both dependent and independent of calcium. The group suggested a role for 

annexin A6 in modulating ion transport across apical STB membranes, specifically through the Maxi-

chloride channel. Another group identified a number of proteins that are associated with microvillus 

membranes of human STBs through mass spectrometry-based methods, including annexin A6, further 

highlighting its presence in this cell subset (Paradela et al. 2005). 

Proteomic analysis of S100P-positive versus S100P-negative cells highlighted differences in annexin A6 

global abundance between these conditions, suggesting the potential for this protein’s involvement in 
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S100P-dependent processes. In addition, its presence in gel fragments 2 and 3 suggest it may be part 

of a high molecular weight complex. Western blotting of HTR8 clones provided somewhat less 

statistically significant differences in annexin A6 abundance in comparison to global abundance 

analysis. It is unknown why this may be, as multiple samples, including those used for mass 

spectrometry analysis, were analysed by western blot, and therefore it would be hoped that the results 

obtained by two different methodologies would be similar. Perhaps it is that the annexin A6 primary 

antibody used for western blotting did not recognise the target epitope, leading to incorrect detection 

of expression levels. Bode et al. (2008) have noted proteolytic digestion of annexin A6 in granulocyte 

lysates, however the annexin A6 antibody used was able to recognise a 55kDa band that was assumed 

to be a degradation product of annexin A6. Use of a variety of protease inhibitors by the authors did 

not prevent this phenomenon.  

Regardless, it may be that S100P could in fact bind to the annexin A6 protein without affecting its levels 

of expression. Rather, their interaction could facilitate the exposure of S100P on the cell surface much 

like the S100A8/A9 heterodimer. Similarities also exist between S100P and S100A10, as the C-terminal 

lysine residues of S100A10 are required for extracellular tPA activation as part of the AIIt. Deletion of 

S100A10’s C-terminal lysine residues as part of the AIIt complex results in a large loss of tPA-dependent 

plasminogen activation compared to its WT counterpart (Kassam et al. 1998b). In addition, the 

formation of this complex enhanced tPA activation when compared to S100A10 alone (Kassam et al. 

1998a). S100P also contains a C-terminal lysine residue, which, when mutated, can no longer activate 

tPA as effectively as its WT counterpart (Clarke et al. 2017). However, no interaction between annexin 

A2 and S100P has been demonstrated in vitro as of yet, suggesting a role for other S100P target 

proteins to facilitate membrane-association of S100P.  
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The S100 proteins are a diverse family of calcium-binding proteins with high levels of structural 

homology. Each member is characterised by a pair of EF-hand calcium-binding motifs, connected by a 

hinge region, with differing affinities for calcium (Donato, R 1999). Upon binding of calcium ions, S100 

protein dimers undergo a conformational change in their C-terminal helix, facilitating their interaction 

with either intracellular or extracellular target proteins (Donato, Rosario 2003). Although the presence 

of several S100 proteins in the extracellular environment have been detected, S100 proteins do not 

contain canonical secretion sequences (Donato et al. 2013), suggesting their secretion occurs via a yet 

uncharacterised non-canonical pathway.  

Several different proteins have been documented to associate with S100P, mainly in cancer cell lines 

and tissues, including ezrin (Austermann et al. 2008), IQGAP1 (Heil et al. 2011), NMIIA (Du et al. 2012) 

and S100PBP (Dowen et al. 2005). Regardless of the large body of work concerning the role of S100P 

in promoting cellular migration and invasion in cancers of varying origins, little research has been 

conducted on the role of S100P in normal physiologically relevant tissues, such as the placenta, or on 

the target proteins in the placenta through which S100P exerts its effects. S100P expression is at its 

highest in the placenta (Parkkila et al. 2008), namely within trophoblasts, a subset of cells that are 

required to migrate and invade in order to aid in nutrient uptake and establish a blood supply, via 

maternal arterial remodelling, to the growing foetus (Zhu et al. 2015a) Furthermore, there is a 

somewhat striking similarity in the migratory and invasive capacity of trophoblasts and of cancer cells 

(Ferretti et al. 2007). Given this link, it seems imperative to understand the role of S100P in 

trophoblasts of the placenta, which could aid in the prevention of certain pregnancy-related disorders; 

insufficient or deregulated invasion and migration of trophoblasts are thought to contribute to 

pregnancy-related disorders including preeclampsia and IUGR (Burton and Jauniaux, 2018; Ridder et 

al. 2019). In addition, Zhu et al. (2015b) documented the dramatic and significant downregulation of 

S100P in isolated placental villi obtained from spontaneous abortion.  

We have recently established a role for S100P in promoting both migration and invasion in trophoblast 

cell lines, through both gain and loss of function studies (Tabrizi et al. 2018). The work presented in 

this thesis firstly examined the localisation of S100P in a variety of cell backgrounds, with a particular 

focus on trophoblast cells of the placenta, using a biochemical technique known as subcellular 

fractionation. Knowledge of a protein’s subcellular localisation is vital, as it underpins potential protein 

functionality. Depending on the localisation of a particular protein, interactions with their target 

partners can either take place or be inhibited, which has consequences on overall biological outcome 

(Hung, M. C. and Link 2011). Several works have observed the localisation of the S100P protein, mainly 

through the use of indirect techniques, including immunohistochemistry and immunofluorescence 

(see section 3.1).  
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Initial work in this study demonstrated discrepancies between detection of S100P through 

immunofluorescence and western blotting, with limited sensitivity of immunofluorescence at 

detecting differences in S100P expression levels. Western blotting, comparatively, offered a more 

sensitive approach to characterising expression levels of S100P in a variety of cell lines, both those 

induced to express variable levels of S100P under the actions of an inducible system or through stable 

transfection, and those of trophoblast origin that endogenously express S100P.  

Analysis of S100P localisation through biochemical fractionation of multiple cell lines of differing 

origins led to the detection of S100P in cytoplasm/membrane fractions, with barely detectable traces 

of S100P in the nuclear fractions of all cell lines examined. The data therefore suggests that S100P is 

undoubtably localised to the cytoplasm/membrane, regardless of S100P expression level. This 

observation is at somewhat at odds with much of the previous work regarding S100P, in which nuclear 

localisation has been observed. For example, Rehbein et al. (2008) conducted immunofluorescence 

analysis on H358 lung cancer cells that had been stably transfected with GFP-S100P and observed both 

its nuclear and cytoplasmic localisation. Differential fractionation methods were utilised, including 

addition of excess calcium and a non-ionic detergent for cell lysis. These strategies yielded almost 

identical results to the original work, further corroborating the reliability of the assay and in addition 

demonstrating that S100P expression level does not influence its subcellular localisation in cells of 

either a cancer background or of trophoblast origin.  

Given the extensive use of fluorescent protein tags in assessing protein localisation (Rehbein et al. 

2008; Koltzscher et al. 2003) we aimed to understand if an N-terminal YFP tag can influence S100P 

subcellular localisation.  Densitometric analysis confirmed that a percentage of YFP-S100P was present 

within isolated nuclear fractions, suggesting that addition of a fluorescent tag to S100P can alter its 

localisation. Depending on the positioning of the fluorescent tag, signal peptides or motifs required for 

the specific subcellular localisation of a protein could be masked, leading to changes in protein 

localisation. For example, Weill et al. (2019) found a large subset of yeast proteins were differentially 

localised when tagged at either the N or C-terminus with GFP. It is therefore understandable to think 

that prior research utilising a fluorescent tag system for S100P, a 10kDa protein that is almost three 

times smaller than YFP, may not yield reliable results. 

Further experiments to block active nuclear export by the use of LMB also did not alter S100P 

localisation. LMB binds to and inhibits CRM1, a protein required for active transport of proteins out of 

the nucleus (Fornerod et al. 1997). Most cargoes that bind to CRM1 contain an NES. S100P itself does 

not contain an NLS or NES, however there are some proteins that instead bind to adapter proteins that 

contain a NES, facilitating their exit from the nucleus (Trotta et al. 2003). IQGAP1, an interaction 



263 
 

partner of S100P, has been shown localise to the nucleus in a CRM1-dependent manner; significant 

increases in nuclear IQGAP1 were observed following overnight LMB treatment (Johnson et al. 2011). 

It may be that S100P binding to a protein containing an NLS, such as IQGAP1, could facilitate a nuclear 

localisation, however the size of such a complex could not passively diffuse out from the nucleus.  

The presence of other S100 proteins in the nucleus has been investigated previously. S100A11, for 

example, is a cytosolic protein in human pulmonary artery smooth muscle cells (HPASMCs). However, 

upon stimulation of these cells with hypoxia-induced mitogenic factor (HIMF), S100A11 translocates 

from the cytosol to plasma membrane structures and the nucleus, suggesting it may in fact regulate 

gene transcription (Fan et al. 2011). High levels of extracellular calcium have also shown to induce 

S100A11 nuclear translocation in keratinocytes (HaCaT cells), whereas a S100A11 mutant without 

calcium-binding abilities was not translocated to the nucleus (Sakaguchi et al. 2003). IL-1β-stimulated 

translocation of S100A4 to the nucleus has also been observed in human articular chondrocytes, 

however this translocation was dependent on sumoylated lysine residues (Miranda et al. 2010). In 

addition, association of S100A4 with the promoter region of MMP-13 suggests that nuclear S100A4 

plays a role in regulating expression of MMP-13, although the authors suggest this interaction is 

indirect as S100 proteins do not contain DNA-binding motifs.  

Passive nuclear diffusion, in contrast to active transport, does not require transport receptors such as 

CRM1 to transport proteins through nuclear pore complexes. It is thought that passive diffusion of 

proteins beyond 60kDa into the nucleus does not occur; for example, 70kDa dextran molecules cannot 

diffuse through HeLa nuclear membranes (Samudram et al. 2016). Such transport is also thought to 

occur in seconds and minutes. Timney et al. (2016) found that GFP, at 27kDa, could equilibrate 

between the nucleus and the cytosol in 15 seconds, in contrast to 67kDa GFP-6PrA, which took roughly 

6-8 minutes. If a molecule such as S100P can passively diffuse out of the nucleus, its presence in the 

cytoplasmic and nuclear compartments would reach an equilibrium, as such passive transport is 

bidirectional (Kumeta et al. 2012). The small size of S100P suggests its equilibration between these 

cellular locations would occur in seconds.  

Prior research has uncovered several S100P interaction partners, mainly those of an intracellular 

nature. Interestingly, only one of the characterised target proteins of S100P, S100PBP, has been shown 

to be predominantly nuclear in nature (Dowen et al. 2005). The authors suggested that interaction of 

S100PBP with S100P possibly occurs in the nucleus. Our studies highlighted the presence of S100PBP 

in both nuclear and cytoplasmic compartments of trophoblast cell lines, suggesting the potential for 

S100P and S100PBP to interact in the cytosol, although the biological outcome of such an interaction 

is not yet clear. Although IQGAP1 has been found to localise to the nucleus (Johnson et al. 2011), 
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interaction of IQGAP1 and ezrin with S100P were both shown in plasma membrane protrusions of HeLa 

cells (Austermann et al. 2008; Heil et al. 2011). However, the colocalisation of S100P with these 

proteins, as well as S100PBP, have not been observed in trophoblast cells.  

Further dissection of cellular compartments into a plasma membrane only fraction enabled the 

detection of S100P in this localisation in all cell lines examined, including trophoblasts. In addition, 

analysis of in vivo first trimester placental tissue further suggested the presence of S100P within this 

location through colocalisation analysis with HLA-G, a protein exclusively expressed by invasive EVTs 

(Tilburgs et al. 2015). Observation of S100P at this location in vivo in close proximity to HLA-G at the 

cell surface has not been reported previously. It is not yet known how S100P is localised to this cellular 

location, although interaction partners of S100P, including IQGAP1 (Heil et al. 2011) and ezrin 

(Austermann et al. 2008) have been shown to be localised to these areas, albeit at the intracellular 

side of the membrane.  

Ezrin, specifically, has been found to colocalise with S100P within protrusions of the plasma membrane 

(Austermann et al. 2008). Ezrin’s role to provide a linkage between F-actin and the plasma membrane, 

or to membrane proteins, is essential for several processes including cell motility and signal 

transduction (Bretscher et al. 2002). Clustering of PI(4,5)P2 within the plasma membrane recruits ezrin, 

in close proximity to Rho kinases (ROCKs). Phosphorylation of T567 in ezrin by ROCKs leads to its 

activation and subsequent recruitment of its target proteins. Prag et al. (2007) reported that activated 

ezrin in vitro can bind to Dbl, a guanine nucleotide exchange factor, and lead to recruitment and 

activation of the Rho GTPase Cdc42 at lipid domains. Cdc42 activation is required for the formation of 

actin protrusions, with its inhibition leading to the prevention of cell polarisation and directional 

migration (Ridley 2015).  

Cell polarisation requires reorganisation of the actin cytoskeleton in a coordinated manner (Raman et 

al. 2018). The GTP-bound form of Cdc42 is a known interactor of IQGAP1, a cytoskeletal regulator that 

can bind to S100P, F-actin, ERK2 and E-cadherin among others (Noritake et al. 2005). Its direct binding 

to F-actin at the leading edge of cells undergoing directional migration facilitates F-actin crosslinking 

(Fukata et al. 1997). IQGAP1 can also bind to and capture microtubules through interaction with CLIP-

170, a protein that accumulates at the plus ends of microtubules (Fukata et al. 2002). This interaction 

at the leading edge leads to stabilisation of microtubules which are required for the stability of the 

cell’s actin meshwork. Inhibition of IQGAP1 expression by use of siRNA technology in MDCKII cells was 

found to lead to reduced accumulation of F-actin and E-cadherin associated with β-catenin at cell-cell 

contact sites, suggesting the necessity of IQGAP1 in cell-cell adhesion (Noritake et al. 2004). IQGAP1 is 
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seen as a scaffolding protein due to the presence of multiple protein-binding domains and its 

consequent ability to in involved in multiprotein complexes.  

S100P’s calcium-dependent interaction with IQGAP1 is somewhat novel, as the binding site in S100P 

was mapped to its N-terminal EF-hand (Heil et al. 2011). No other known S100P interactors have been 

shown to bind to S100P in this manner, with all known targets instead binding to its C-terminal portion. 

Heil et al. (2011) also found that interaction of S100P with IQGAP1 did not affect interactions of IQGAP1 

with Rac1 and Cdc42, but did prevent the phosphorylation of IQGAP1 and subsequent activation of 

MEK, to a lesser extent, triggered by EGF stimulation in HeLa cells. This indicates that interaction of 

S100P with IQGAP1 prevents activation of the MAPK pathway. S100P binding to IQGAP1 is mediated 

by IQGAP1’s IQ domain, a domain which is essential for MEK binding (Roy et al. 2005). Transient 

transfection of WT IQGAP1 in HEK-293H cells significantly lessened the ability of EGF to activate MEK, 

whereas IQGAP1 without its IQ domain did not. Binding of MEK to the IQ domain of IQGAP1 is therefore 

thought to regulate MEK’s activation by EGF. Ultimately, binding and activation of components of the 

MAPK signalling cascade leads to activation of transcription factors involved in the expression of genes 

required in processes including cell proliferation, migration and differentiation (Knight and Irving 

2014). EGF stimulation was found by Heil et al. (2011) to lead to IQGAP1 accumulation in plasma 

membrane regions, in contrast to its diffuse cytoplasmic localisation observed without EGF 

stimulation. As S100P binding to IQGAP1, occurring in plasma membrane protrusions, was not found 

to affect interaction of IQGAP1 with Cdc42 and Rac 1, Heil et al. (2011) suggests that Cdc42-dependent 

actin reorganisation is therefore not mediated through S100P-IQGAP1 interactions. 

Biotinylation of cell surface proteins using a cell-impermeable form of biotin led to detection of S100P 

in both trophoblast and non-trophoblast cell lines (see section 4.3.1). Given that biotinylation is utilised 

for pulldown of cell surface proteins and related extracellular proteins, it is possible that S100P that 

was detected could be present either on the extracellular membrane surface, or in the ECM. Secretion 

of S100P in cancer cells has been shown by Arumugam et al. (2004, 2005), however there is no 

evidence as of yet for this process to occur in trophoblasts. In addition, S100P does not contain a signal 

peptide for secretion, and therefore the pathways regulating this secretion are unknown. Secretion of 

S100A8/A9 was found to take place in an energy-dependent process involving activated PKC and an 

intact microtubule network (Rammes et al. 1997). S100A8/A9 was localised to tubulin filament 

networks, with tubulin filament depolymerisation leading to altered localisation of S100A8/A9. Given 

that the direct interaction of S100P with tubulin was recently demonstrated (Du et al. 2020), it may be 

that S100P is secreted through a similar, non-canonical pathway.  
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Expression of S100 proteins have been detected on the cell surface, including the S100A8/A9 

heterodimer in breast cancer cells (Bode et al. 2008). Following knockdown of annexin A6, S100A8/A9 

was no longer detected in this location, suggesting annexin A6 is required for their presence on the 

cell surface. S100A10 binds to annexin A2 through its C-terminal extension and forms a complex 

present on membrane surfaces, with S100A10 influencing the affinity of annexin A2 with 

phosphatidylserine-containing liposomes (Powell and Glenney 1987).    

Work by Kathir et al. (2007) hypothesised the extracellular release of fibroblast growth factor 1 (FGF-

1) occurred through its interaction with the S100A13 homodimer, which forms a multiprotein complex 

with p65 synaptotagmin at the plasma membrane. S100A13, like other S100 proteins, lacks a classical 

signal sequence but has been shown to be released from NIH3T3 cells in a spontaneous manner 

(Landriscina et al. 2001). It was theorized by Kathir et al. (2007) that interaction of S100A13 with 

phospholipids, alongside membrane-bound annexins, anchors the multiprotein complex, with the 

“flip-flop” action of annexins facilitating the localisation of S100A13 and FGF-1 in the extracellular 

space. In addition, mutant S100A13 lacking its C-terminal extension could not facilitate the 

extracellular export of FGF-1, suggesting the potential for this domain to be involved in this process.  

A study by Deora et al. (2004) showed that annexin A2 in particular was found to translocate to the 

extracellular membrane following temperature-induced stress. In addition, this translocation did not 

require the canonical secretion pathway from the ER to the Golgi apparatus. Further work by Stewart 

et al. (2018) demonstrated the need for lipid scramblases and transbilayer movement of phospholipids 

to enable translocation of both annexins A2 and A5 across the cell membrane. It may be that binding 

of S100P to membrane proteins, such as annexins, facilitates its release into the extracellular space 

through a non-canonical secretion pathway.   

Given that S100P has been shown to enhance the migration and invasion of trophoblasts (Tabrizi et al. 

2018), we aimed to characterise the role of the extracellular/membrane-associated pool of S100P in 

these processes (see section 4.3.4). A S100P-directed antibody was able to significantly reduce both 

the motility and invasion of JEG-3 and EVT-like HTR8 cells, suggesting that this pool of S100P promotes 

these processes. Recent work has shown the ability of extracellular S100P to promote motility and 

invasion in rat mammary cells (Clarke et al. 2017; Ismail et al. 2020 submitted), but this has not yet 

been reported specifically in trophoblasts. Exogenous addition of S100P has been shown to activate 

the NFκB pathway in BxPC3 cells, leading to increased secretion of MMP-9, which may facilitate ECM 

degradation (Dakhel et al. 2014). Activation of this pathway was reduced following the addition of 

several different monoclonal S100P antibodies.  
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Interestingly, reduction of motility and invasion in JEG-3 cells following S100P antibody treatment was 

not as pronounced as the effect of S100P-directed siRNA, suggesting that different pools of S100P 

require two separate pathways to promote these processes to different degrees. This was further 

supported by quantification of focal adhesions; knockdown of presumably intracellular S100P using 

S100P siRNA in JEG-3 cells demonstrated a marked reduction in focal adhesion size and number, in 

contrast to S100P antibody-treated HTR8 cells which no changes in focal adhesion number were 

observed. Given that Du et al. (2012) observed a reversal of loss of focal adhesion sites in S100P-

expressing HeLa cells following treatment with a FAK inhibitor, it seems likely that this pathway 

involving loss of focal adhesions in trophoblasts may also be regulated by FAK. High levels of 

phosphorylated, active FAK have been observed in EVTs within the first trimester of pregnancy (Ilić et 

al. 2001), a time in which cell motility and invasion is required to invade maternal spiral arteries and 

enhance placental perfusion (Knöfler and Pollheimer 2013). FAK has also been shown to directly bind 

to ezrin (Poullet et al. 2001), with overexpression of ezrin promoting activation of FAK without growth 

factor stimulation. Mao et al. (2019) have found that downregulation of ezrin, mediated by increased 

the expression of mir-96-5p following titanium dioxide treatment, led to the disruption of the 

cytoskeleton in human trophoblasts. Consequently, human trophoblast invasion was decreased 

suggesting the importance of ezrin in the invasion of trophoblasts. Downregulation of ezrin was found 

to significantly increase the number and size of focal adhesion complexes and FAK in MDA-MB-231 

cells, in addition to a reduction in focal adhesion turnover (Hoskin et al. 2015). Taken together, it is 

therefore suggested that interaction of intracellular S100P with ezrin, and perhaps other yet 

uncharacterised proteins, may lead to the enhanced motility and invasion of trophoblasts through FAK.  

In regards to the extracellular S100P pathway that regulates motility and invasion in EVTs, there are 

several known extracellular interactors of S100P that may facilitate these processes. Several groups 

have shown the activation of RAGE following the addition of exogenous S100P to pancreatic and colon 

cancer cells, with outcomes of increased migration and invasion (Arumugam et al. 2004; Fuentes et al. 

2007). Our work found a reduction in both EVT motility and invasion following treatment with 

cromolyn, an inhibitor of RAGE-S100P interactions, to a similar degree seen by treatment with an 

S100P antibody. This suggests RAGE-S100P interactions could be responsible for promoting EVT 

motility and invasion through an extracellular pathway, however cromolyn has also been observed to 

interact with other S100 proteins (Shishibori et al. 1999). In addition, cromolyn binding to S100P occurs 

in S100P’s hinge region, as well as helices 1 and 4. These sites are crucial for interaction of S100P with 

various other proteins, including ezrin (Austermann et al. 2008) and S100A1 (Wang et al. 2004). It 

therefore could be that cromolyn is not just preventing interaction of S100P with RAGE, but also with 

other extracellular target proteins that bind to S100P in this manner. However, binding interfaces for 
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S100P’s extracellular interactions with tPA and IL-11 have not yet been characterised. Further work, 

which found a decrease in S100P associated with isolated plasma membrane fractions following 

cromolyn treatment, suggests that cromolyn may bind to and sequester S100P, preventing its 

association with membrane structures or proteins associated with membrane structures.  

S100P’s association with the intracellular side of the plasma membrane could be facilitated by several 

stretches of residues, namely in helices 1 and 4, in addition to S100P’s linker region. The residues 

involved in the interaction between S100P and cromolyn has been characterised by Penumutchu, Chou 

and Yu (2014), who found these same regions are also responsible for cromolyn’s interaction with 

S100P, suggesting the above explanation for reduced detection of S100P following cromolyn treatment 

to be plausible. The data generated by MODA should be interpreted with caution, as such data is a 

prediction and must be fully validated with experimental studies. The data can, however, be used to 

inform mutagenesis studies to ascertain if the suspected residues are in fact involved in a membrane-

binding interface.  

We explored the possibility of a PTM within S100P that could facilitate its interaction with the plasma 

membrane, as S100P from isolated plasma membrane fractions was seen to migrate slower on SDS-

PAGE than S100P obtained from cell lysates (see section 4.3.7). Given the extensive time required to 

identify PTM sites experimentally, we utilised a prediction server for lipid modifications which are likely 

to facilitate protein-membrane bilayer interactions (Xie et al. 2016). Lipid modifications, such as 

myristoylation and prenylation, can confer increased affinity for membranes in a reversible manner 

(McLaughlin and Aderem, 1995; Welman, Burger and Hagmann, 2000; Resh, 2013) in combination with 

a polybasic motif as seen in p21ras (Hancock et al. 1990) and Gγ2 (Noguera-Salvà et al. 2017). The GPS-

Lipid predicted that residues G9 and C85 may undergo N-myristoylation and S-farnesylation, 

respectively.  

The enzyme that catalyses the process of farnesylation, farnesyltransferase, has been previously 

purified from the placenta (Ray and Lopez-Belmonte 1992) and found to be expressed in trophoblasts 

(Rozovski et al. 2007), demonstrating the potential for this process to take place in trophoblast cells. 

Whilst there are no studies that specifically identify expression of N-myristoyltransferase, the catalyst 

for N-myristoylation, in the placenta, one study has found decreases in N-myristoyltransferase 

expression by RT-PCR in endometrial stromal cells following co-culture with trophoblasts (Popovici et 

al. 2006). These lipid modifications alone, however, would likely not be sufficient to strongly anchor 

S100P to the plasma membrane. Given that S100P was isolated from the plasma membrane fraction 

following ultracentrifugation and a sucrose cushion, it seems unlikely that its association with the 



269 
 

plasma membrane fraction is a result of transient interactions with receptors, and suggests that it is 

instead a stable interaction due to its ability to withstand the ultracentrifugation process. 

The presence of a polybasic domain has been shown to enhance membrane-binding capabilities of 

several proteins (Fivaz and Meyer 2005, Hancock et al. 1990). Several lysine residues at the C-terminus 

of S100P (K87, K91, K95) could provide a sufficient positive charge to enable binding to negatively-

charged phospholipids in the plasma membrane, along with the aforementioned lipid modifications, 

to create an anchor. In addition, these lysine residues are predicted by the MODA server to have a high 

probability of membrane-association, further strengthening the likelihood of this scenario. However, 

further mutagenesis studies, involving mutation of potentially lipid-modified residues or the C-

terminal lysine residues of S100P, followed by both detection of S100P in isolated plasma membrane 

fractions and characterisation of the role of the mutants in migration and invasion, would help to 

confirm the contribution of lipidation to S100P’s membrane association.  

In the final chapter, we aimed to characterise if S100P would be integrated into different complexes 

in different cellular compartments. After finding presence of S100P in high molecular weight 

complexes within trophoblast cytoplasm/membrane fractions, we detected many proteins with an 

increased global abundance in S100P-expressing cells in comparison to S100P-negative cells, which 

were further sorted through DAVID to identify enriched themes, including biological functions and 

cellular locations. With a focus on membrane-associated proteins that could mediate S100P’s effects 

on cellular motility and invasion, we identified annexin A6 as a protein with a statistically significant 

increased abundance in S100P-expressing cells. Given that an interaction between S100 proteins and 

annexins at the cell surface has been well documented (Semov et al. 2005; Bode et al. 2008; O’Connell 

et al. 2010), as well as the fact that annexin A6 is expressed in trophoblast membranes (Rambotti, 

Spreca and Donato, 1993; Paradela et al. 2005), we sought to further confirm this finding.  

Increased abundance of annexin A6 in EVT-like HTR8 cells was not detectable by western blotting at a 

statistically significant level, although this does not rule out a direct interaction between S100P and 

annexin A6. Both S100A10 and S100P have the ability to activate tPA through their C-terminal lysine 

residues (Kassam et al. 1998; Clarke et al. 2017), however S100A10 mediates this effect as part of the 

S100A10-annexin A2 heterotetramer. Further analysis of S100P interactions, either through co-

immunoprecipitation or surface plasmon resonance studies with annexin A6 specifically would enable 

characterisation of S100P interaction partners in trophoblasts.  

S100P’s ability to enhance cell motility and invasion has been extensively characterised in cancer cell 

lines. This work shows for the first time that different pools of S100P, either intracellular or membrane-

associated, promote trophoblast motility and invasion through two independent pathways. Studies of 
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S100P’s requirements for membrane association, through the generation of mutants that do not have 

membrane binding capacity, and subsequent analysis of cellular migration and invasion would further 

confirm the role of membrane-associated S100P in these processes. Co-immunoprecipitation of 

purified membranes could also shed light into S100P’s interaction partners in trophoblasts. A 

combination of these approaches may provide insight into the molecular mechanisms behind motility 

and invasion in a physiological process, placental implantation.   
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