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Abstract 50 

A societal shift toward plant dominant diets and a reduction in livestock rearing could have broad 51 

social, environmental and conservation benefits. Livestock husbandry, however, has a wealthy 52 

cultural history, strong support and high consumer demand. It is therefore likely to continue as a 53 

major land use and conservation issue for predators. From a producer’s perspective, the primary goals 54 

of livestock protection are maximising, or at least maintaining, production by minimising losses and 55 

mitigating detriment to stock welfare. Lethal removal of predators remains a commonplace solution. 56 

Such management measures are questionable as they raise animal welfare and conservation concerns, 57 

risk inhibiting ecological processes, are often expensive, and in some circumstances, exacerbate 58 

livestock predation problems. Non-lethal alternatives can facilitate co-existence between livestock 59 

farmers and predators, ideally reducing the ecological impact of pastoralism and achieving 60 

conservation goals. The need for rigorous study of non-lethal approaches has however been recently 61 

highlighted. Tools and methods involved in livestock protection, as well as the theoretical basis of 62 

how we perceive and manage the problem, require deeper consideration. Non-lethal approaches 63 

require knowledgeable implementation and an effective decision making system is a prerequisite for 64 

successful practice. Livestock predation and its prevention are fundamentally influenced by the 65 

underlying principles of foraging ecology and risk theory. We propose that manipulating elements of 66 

Brown’s (1988) quitting harvest rate model provides a useful conceptual framework for reducing 67 

livestock predation and encouraging coexistence. 68 

 69 
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Introduction 75 

While perhaps politically and industrially unfavourable, there is justifiable discourse and concern 76 

regarding the social and environmental footprint of the livestock industry (Westhoek et al. 2014; 77 

Hallström, Carlsson-Kanyama & Börjesson 2015). Public concern with livestock welfare presents a 78 

longstanding contention (Deemer & Lobao 2011). Resource efficiency and issues relating to health 79 

and nutrition present direct concerns for effectively meeting nutritional needs of a growing human 80 

population through livestock products (Baroni et al. 2007; Westhoek et al. 2014; WWF 2016). 81 

Disease transmission and antibiotic resistance pose additional health concerns for humans, livestock 82 

and wildlife (Thompson 2013; Gottdenker et al. 2014; Hudson et al. 2017). Pastoralism’s freshwater 83 

consumption and land use are also intensive, with habitat modification, ecological degradation, 84 

emissions, effluent and contribution to climate change all providing grave concerns (Baroni et al. 85 

2007; Westhoek et al. 2014; Hallström, Carlsson-Kanyama & Börjesson 2015). Alongside indirect 86 

implications for wildlife conservation, livestock directly compete with and have replaced much wild 87 

biodiversity (Bar-On, Phillips & Milo 2018). 88 

Some champion the potential conservation benefits of well managed livestock but often neglect to 89 

place such benefits in context, failing to draw comparisons with unmodified systems (Franzluebbers 90 

et al. 2012). The overall benefits for wildlife conservation are however contentious; livestock grazing, 91 

for example, can adversely affect species conservation, ecosystem structure, function and composition 92 

(Reading & Jofre 2015; Eldridge et al. 2016; Sharps et al. 2016). Livestock biomass now far exceeds 93 

that of wild mammals and competition for forage can negatively impact both wild herbivores and their 94 

predators (Latham 1999; Bar-On, Phillips & Milo 2018). 95 

Native predators can be completely excluded from pastoral landscapes or exterminated altogether, e.g. 96 

large carnivores in the British Isles (Brown, McMorran & Price 2011). Cultural and social bias against 97 

predators may often exist in rural areas, regardless of personal experience with livestock predation 98 

(Chavez, Gese & Krannich 2005). Actual impacts can be small relative to other factors including 99 

disease, birthing problems, weather and accidents (Breck & Meier 2004; Dar et al. 2009). A small 100 
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proportion of producers in predation hotspots may, however, absorb the majority of losses, increased 101 

husbandry costs and decreased animal performance (Breck & Meier 2004; Shelton 2004). Damage to 102 

livelihoods can reduce support for conservation initiatives (Anthony 2007; Anthony, Scott & Antypas 103 

2010). Livestock predation often results in disproportionate deaths of the animals deemed responsible 104 

and persecution of predators is common (Meriggi & Lovari 1996; Shivik 2006; Eggermann et al. 105 

2011). Lethal control of predators to pre-empt or in response to livestock predation has become 106 

common management in many contexts (Macdonald & Baker 2004; Treves et al. 2006).  107 

The simplest way to resolve many of these problems would be to substantially reduce livestock 108 

production and move to plant dominant diets on a societal level (Eshel et al. 2014; Poore & Nemecek 109 

2018). Changing consumer habits should not be overlooked as a potential nature conservation tool. 110 

Suitable damage related taxation may offer some assistance to this end (Springmann et al. 2017). 111 

Discouraging unnecessary consumption and encouraging financial divestment by consumers offers an 112 

additional route to achieving sustainability (Ripple et al. 2017). Such a large-scale transition may, 113 

however, prove difficult where habitat, technology, international trade, culture, affluence or 114 

knowledge makes livestock products one of few viable food production methods or an easily 115 

accessible dietary option. Livestock farming also has a long and enduring cultural significance 116 

(McClure 2015; Holmes 2016; Pitikoe 2017). High levels of meat, egg and dairy consumption are 117 

prevalent in many societies and a global shift away from this is currently unlikely, with human 118 

populations and demand for animal products increasing globally (Kearney 2010; Westhoek et al. 119 

2014). Livestock production is likely to continue as a major land use and livestock predation remains 120 

an issue for both pastoralists and conservationists.  121 

The ecological impacts, efficiency and morality of lethal control are questionable (Treves, Krofel & 122 

McManus 2016). Lethal control of predators and decline in their numbers can result in loss of 123 

ecological services and stability (Wallach et al. 2010; Ripple et al. 2014). Lethal control may not 124 

always be economically viable if loss of regulatory services by predators results in high costs where 125 

wild herbivores compete for forage with domestic stock (Wicks & Allen 2012). Lethal control can 126 

also disrupt social structure, exacerbating livestock predation problems (Wallach et al. 2009), or lead 127 
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to compensatory reproduction, thereby minimising the effect of control (Minnie, Gaylard & Kerley 128 

2016; 2017). A range of non-lethal alternatives exist that can assist mitigation of livestock predation 129 

problems and encourage coexistence (Shivik 2006; Stone et al. 2017). Societal preference for 130 

coexistence has led to greater adoption of such approaches (Chapron et al. 2014). Non-lethal livestock 131 

predation management can, although may not always, be equally or more effective than lethal control 132 

of predators (McManus et al. 2015; Stone et al. 2017; van Eeden et al. 2018a). Some non-lethal tools 133 

have been well tested but further robust experimentation is required to assess efficacy, encourage 134 

producer adoption and guarantee return on investments (Eklund et al. 2017; Scasta, Stam & Windh 135 

2017; van Eeden et al. 2018b).  136 

We refer readers to van Eeden et al. (2018b) for a useful synthesis of the current evidence base but 137 

recognise that in practice, one approach is rarely used in isolation of others, effectiveness will be 138 

context dependent and action is still required while the necessary testing of tools is conducted. 139 

Practitioners require a holistic and adaptive management system to more easily and effectively 140 

implement non-lethal programmes across a broad range of contexts. Applying existing scientific 141 

theory to real world issues should prove productive for both study and practice. The predation and 142 

protection of livestock are fundamentally influenced by the principles of both foraging and risk 143 

theory. We propose that Brown’s (1988) quitting harvest rate model provides a useful theoretical 144 

framework for managing livestock predation and achieving conservation goals. 145 

Brown’s (1988) quitting harvest rate model as a management framework 146 

Foraging theory suggests animals attempt to make the best of foraging scenarios by trading-off costs 147 

against benefits (Emlen 1966; MacArthur & Pianka 1966; Charnov 1976). Decisions to prey upon 148 

livestock instead of wild prey may be based in energetics (Polisar et al. 2003), but there is little 149 

evidence of predators preferentially hunting livestock where it has been tested (Lyngdoh et al. 2014; 150 

Hayward et al. 2017). Brown’s (1988) quitting harvest rate model provides a useful framework with 151 

which to examine the mitigation of livestock harvest by predators. Where food patches are depletable, 152 

animals should abandon patches once gains (H) become equal to or fall below costs (Brown 1988; 153 
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Brown & Kotler 2007). The concept is described in the equation H = C + P + MOC, where H = 154 

harvest rate (food gain per unit time), C = energetic costs (to obtain food), P = predation costs 155 

(cost/likelihood of losing fitness by interacting with predators) and MOC = missed opportunity costs 156 

(food or fitness enhancing benefits available elsewhere) (Brown 1988; Brown & Kotler 2007). Like 157 

Berger-Tal et al. (2009), we also included risk of injury (RI) or mortality (e.g. from objects like 158 

electric fencing, terrain ruggedness, the stock themselves, or a device worn by stock) as an additional 159 

cost that may be incurred during livestock predation but discuss it alongside P for ease of discussion 160 

and implementation.  161 

From a producer’s perspective, the primary goals of livestock protection are maximising, or at least 162 

maintaining, production by minimising losses and mitigating detriment to stock welfare. Practitioners 163 

and wildlife managers should aim to manipulate predator foraging behaviour to reduce livestock 164 

predation; intentionally causing predators to quit livestock patches more quickly and harvest less, or 165 

ideally, no stock (Table.1). Ideally, livestock could be made so unprofitable comparable to wild prey 166 

that they become less preferable and are rarely preyed upon. Here we highlight considerations that 167 

may offer some utility but should be contemplated only in relation to individual context by giving 168 

thought to all model components.  169 

Harvest rate (H) 170 

Initial harvest rate (H) of livestock patches could be reduced to increase how quickly predators give 171 

up on livestock patches. Predators can be attracted to anthropogenic food subsidies, adapting their 172 

behaviour to utilise them (Ciucci et al. 1997; Newsome et al. 2014; Morehouse & Boyce 2017). 173 

Refuse sites in pastoral areas are likely to attract predators and lead to increased conflict (Wilson et al. 174 

2006; Kolowski & Holekamp 2008). Removal of carcasses, livestock pits or waste dumps in the 175 

vicinity of livestock would provide sensible starting points to reducing patch attractiveness. Herd size 176 

(i.e. food availability) may also provide an attractant. Farms with larger herds may be more likely to 177 

experience livestock predation (Treves et al. 2004; Bradley & Pletscher 2005; Pimenta et al. 2017). 178 
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Herd size could potentially be reduced, although there is likely an economic disincentive to do so 179 

(Pimenta et al. 2017).  180 

Missed opportunity costs (MOC) 181 

Costs to predators of foraging in livestock patches can also be increased. Raising or ensuring high 182 

missed opportunity costs (MOC) relative to livestock patches should accelerate giving up on 183 

livestock. Often overlooked as a mitigation measure, ensuring viable wild prey populations (e.g. via 184 

harvest regulations, habitat restoration, reinforcement or reintroduction) is pivotal in sustaining large 185 

carnivore populations and minimising livestock predation (Meriggi & Lovari 1996; Polisar et al. 186 

2003; Barja 2009). Predators will increasingly target livestock, which increase in relative value, as 187 

wild prey decline (Kolowski & Holekamp 2006). Low energy state foragers also tend to take higher 188 

risks (Brown 1988; Brown, Morgan & Dow 1992). Ensuring higher predator energy states by 189 

maintaining suitable wild prey stocks could reduce the marginal value of livestock as a food source. 190 

Livestock production and the maintenance of wild prey stocks are however most likely best kept 191 

somewhat apart. Abundant wild prey in pastoral areas could cause increased livestock predation 192 

(Stahl et al. 2001; Bradley & Pletscher 2005; Amirkhiz et al. 2018). Carnivores are attracted to high 193 

quality habitat and conflicts may be more likely to occur where human activities, including livestock 194 

farming, overlap (Wilson et al. 2006; Odden et al. 2008). Livestock could be kept away from 195 

preferable wildlife habitat or better protected where this is not feasible. Habitat improvement and 196 

suitable limitation to wild herbivore harvest could also be employed in areas set aside from 197 

pastoralism. Excepting large land owners, this will require regional level intervention. Livestock 198 

producers can however make their properties less attractive to wild herbivores, e.g. protecting hay 199 

supplies, using livestock guardian dogs, Canis lupus familiaris, or hazing habituated wildlife (Bradley 200 

& Pletscher 2005; Kloppers, St. Clair & Hurd 2005; Gehring et al. 2010).  201 

Seasonal declines in wild prey availability (MOC) driven by environmental conditions, seasonal 202 

migrations and prey habitat use, especially if coinciding with increased stock availability can lead to 203 

prey switching and increased livestock predation (Cavalcanti & Gese 2010; Valeix et al. 2012). In a 204 
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similar fashion the relative value of livestock may increase following seasonal predator food demand 205 

and decreases in wild prey vulnerability due to maturing young (Ciucci & Boitani 1998). Practitioners 206 

should accordingly increase other costs (C, P or RI) and avoid increasing potential attractants (e.g. 207 

young livestock) during these more vulnerable periods.  208 

Energetic cost (C) 209 

The energetic cost (C) of preying on livestock could be increased, especially during periods of 210 

vulnerability. Fencing can provide an energetically costly barrier for carnivores to overcome. Fencing, 211 

albeit a barrier to wildlife movements, likely reduces losses; however its general efficacy will depend 212 

on the problem carnivore’s abilities, fence maintenance and the presence of other fence damaging 213 

wildlife (Breitenmoser et al. 2005; McManus et al. 2015). Keeping livestock in predator proof corrals 214 

at night can efficiently minimise losses, although crowding can necessitate additional health care, and 215 

poor maintenance risks severe losses (Breitenmoser et al. 2005; Schiess-Meier et al. 2007; Weise et 216 

al. 2018). Corrals and fencing can also be made more disruptive through the addition of perceived or 217 

real injury related risk via fladry (Fig.1) and/or electric current (Musiani et al. 2003; Lance et al. 218 

2011).  219 

Livestock attributes could also affect the energetic costs of predation. Young, sick and injured animals 220 

may incur minimal energetic costs to hunt and can thus be more vulnerable to predation (Chavez & 221 

Giese 2006; Cavalcanti & Gese 2010). Producers should monitor and be mindful of herd vulnerability 222 

relative to alternative wild prey sources, targeting additional interventions accordingly. Vulnerable 223 

livestock, such as sheep, Ovis aries, can also be bonded to or housed with herd animals possessing 224 

better defensive capabilities (greater aggression, size, strength, armament). For example, llama’s, 225 

Lama glama, long-horned cattle, Bos taurus, or donkeys, Equus africanus, can provide protective 226 

services by increasing injury related risk (RI) and the energetic costs (C) of accessing livestock (Smith 227 

et al. 2000b). Stock breed could perhaps be altered by selecting more agile or defensive breeds, which 228 

retain anti-predator behaviour. Anti-predator defence could also be encouraged within current stocks, 229 

for example, some producers attribute fewer wolf, Canis lupus, related livestock losses 230 
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to keeping protective mother cows and encouraging defensive herding behaviour, instead of removing 231 

protective mothers and allowing herds to fragment across remote areas (H.Z. Anderson, Tom Miner 232 

Basin Project, Pers comm).  233 

Predation risk (P) and risk of injury (RI) 234 

There is good evidence to suggest that animals assess and respond to risk (Lima & Dill 1990; Creel & 235 

Christianson 2008; Heithaus et al. 2009). Fear ecology suggests such interactions may affect 236 

landscape use and foraging (Brown, Laundré & Gurung 1999; Brown & Kotler 2007; Laundré, 237 

Hernández & Ripple 2010). The mesopredator release hypothesis suggests predators too have things 238 

to fear (Crooks & Soulé 1999; Ritchie & Johnson 2009; Newsome et al. 2017). Humans are a key 239 

factor that alters the context within which predators exist (Haswell, Kusak & Hayward 2017). 240 

Humans may be viewed as super predators whose presence provides substantial risk to carnivores, 241 

consequently modifying predatory behaviour (Smith et al. 2017). 242 

Increase in perceived or actual predation costs (P), as well as risk of injury (RI) from other causes, 243 

have received most attention in the development of non-lethal mitigation strategy (See Breitenmoser 244 

et al. (2005) and Shivik (2006) for comprehensive reviews). Wild animals, especially predators, can 245 

be particularly sensitive to new stimuli; scare devices using disruptive mechanisms such as 246 

neophobia, irritation or pain have consequently been utilised as primary repellents (Shivik, Treves & 247 

Callahan 2003; Shivik 2006). Secondary repellents establish a link between a behaviour and a 248 

negative outcome through aversive conditioning, e.g. electronic training collars worn by predators or 249 

taste aversion collars worn by livestock (Shivik, Treves & Callahan 2003; Shivik 2006). Excessive 250 

use of primary repellents risks habituation whereas secondary repellents can require substantial 251 

logistical effort and may need to be regularly reinforced to remain effective (Smith et al. 2000a; 252 

Shivik 2006).  Harassment (e.g. rubber bullets) may offer simple implementation but linking aversion 253 

and behaviour might prove difficult and thereby limit effectiveness; consistent secondary repellents 254 

such as electrified fladry may however prove more efficacious in both application and reinforcement 255 
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(Shivik 2006). Use of primary and secondary repellents will depend on local laws, additional 256 

conservation concerns, and the ethical views of the practitioner.  257 

Manipulating risk perception could still prove useful alongside the provision of direct threats. Visual 258 

assessment of habitat and its interaction with escape strategies provides one means by which animals 259 

may assess and respond to risk (Wirsing, Cameron & Heithaus 2010; Kuijper et al. 2013; Camacho 260 

2014). Landscape characteristics, such as vegetative cover or woodlands adjacent to pastures, can be 261 

associated with higher levels of livestock predation (Ciucci & Boitani 1998; Stahl et al. 2001). 262 

Mapping risk hotspots could provide an effective decision making tool (Treves et al. 2004).  263 

Animals also assess risk through auditory means (Berger, Swenson & Persson 2001; Lynch et al. 264 

2015). Many technological scare devices work through visual or auditory disruptive stimuli, e.g. 265 

flashing lights, high beam lights, air horns, propane cannons, and sometimes through a combination, 266 

e.g. radio activated guard (RAG) boxes. Repellents such as flashing lights can significantly reduce 267 

predation but may not be effective against all carnivores (Ohrens, Bonacic & Treves 2019). 268 

Practitioner strategy will need to be context specific as well as adaptive. For example, when 269 

nocturnally flashing lights were applied to livestock bomas (protective night pens) in Kenya, Lions, 270 

Panthera leo, switched to attacking bomas where intervention was not implemented, and 271 

subsequently, when installation of lights increased, shifted to diurnal attacks (Lesilau et al. 2018).  272 

The scent of dominant predators can communicate increased risk to carnivores (Leo, Reading & 273 

Letnic 2015; Haswell et al. 2018). Manipulation of scent could be useful in manipulating predator 274 

landscape use but may not always yield intended outcomes due to the context in which scent is 275 

encountered (Jones et al. 2016). Placement of scent manipulations could ideally be optimised if 276 

context relations are understood, i.e. what scent to place, when, where and how much. Identifying 277 

effective components of olfactory communication such as producer diet or social status and their 278 

associated compounds could also improve effectiveness (Parsons et al. 2018).  279 

Direct presence of predation and injury risk are likely to elicit stronger responses than cues such as 280 

olfaction alone (Scheinin et al. 2006; Vanak, Thaker & Gompper 2009). Livestock guardian animals 281 
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may provide multiple benefits through olfactory and auditory risk cue provision as well as direct 282 

presence (van Bommel & Johnson 2012; McManus et al. 2015). Livestock guardian dogs (Fig.2) can 283 

increase predation risk (P) and intimidate predators by protecting stock directly or creating landscapes 284 

of fear when used in a patrolling manor (Rigg 2001; Hansen, Staaland & Ringso 2002; Rigg et al. 285 

2011). Guardian dogs may protect livestock without entirely excluding predators from foraging 286 

nearby (Allen et al. 2017). In some circumstances, the use of dogs may be spatially or seasonally 287 

problematic depending on wildlife sensitive periods, farming practices and other landscape users e.g. 288 

hikers or hunters. Livestock guardian dogs show good potential in mitigating pastoral wildlife conflict 289 

but the most effective methods for their use requires further investigation (Gehring, VerCauteren & 290 

Landry 2010; Gehring et al. 2010; Lescureux & Linnell 2014).  291 

 292 

Conclusions 293 

Scientific theory can offer useful frameworks for applied conservation issues. Understanding patterns 294 

and processes involved in livestock predation, developing effective ways to mitigate predation and 295 

rigorously testing non-lethal deterrents have been identified as areas requiring advancement (Breck & 296 

Meier 2004; Purcell et al. 2012; Eklund et al. 2017). All could be assisted by inclusion of foraging 297 

theory and risk ecology frameworks as part of study design and theoretical underpinning for 298 

management decision making. 299 

It is important to understand that there is no ‘silver bullet’ strategy (Treves et al. 2006). Interactions 300 

between species are context-dependent (Haswell, Kusak & Hayward 2017). Success of non-lethal 301 

tools will vary in time and space depending on the structure of the quitting harvest rate model in a 302 

given scenario. There will of course also be scenarios where animals don’t follow the model or non-303 

lethal tools aren’t applied correctly. Habituation to repellent devices can also prove problematic 304 

(Musiani et al. 2003; Shivik 2006; Lance et al. 2011). Adaptive, location and time specific 305 

management strategies are likely to prove most effective in ensuring protection techniques do not lose 306 

risk value (Stone et al. 2017; van Eeden et al. 2018a). Understanding changes in model components 307 
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will also help with timing management interventions, e.g. increase in P in unison with seasonal 308 

fluctuations of MOC and predator nutritional needs. Identifying areas where predation likelihood is 309 

higher and circumstances tip the equation in favour of harvest will prove additionally useful (Treves 310 

et al. 2004; Treves & Rabenhorst 2017). Foraging theory can provide a useful framework for studying 311 

and managing livestock predation. If components of  Brown’s (1988) model are understood and can 312 

be manipulated through management practices then it should be feasible to tip the equation in favour 313 

of coexistence. 314 
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foraging elsewhere, we also add RI = risk of injury. Predators should give up foraging from patches of livestock when the available gains (H) are equal to or 630 

less than the costs (C + P + RI + MOC). Managers can manipulate and alter components of the model in order to manipulate predator behaviour, reducing 631 

livestock harvest or preventing it beginning in the first place. 632 
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642 

Livestock predation management 

Decrease H 
Reduce herd size, remove carcasses, remove anthropogenic food sources, any intervention which increases the time taken for predation 

Increase MOC Increase P or RI Increase C 

Ensure wild prey stocks 
- Ensure suitable habitat and access to 

forage 
- Decrease wild herbivore harvest 
- Keep wild prey and livestock separate 

- Deter wild prey from pastoral areas 

Monitor seasonal fluctuations in wild prey 
- Increase P, RI or C if wild prey stocks 

decline, become less accessible to 

predators or if predator food needs 

increase e.g. when predator young are 

weaned 

Guardians 
- Use when possible. Humans, dogs or 

other animals e.g. donkeys 
- Use stock with natural defences 
- Ensure appropriate numbers and 

behaviour  
- Increase use when needed e.g. during 

mobile grazing 
Scare devices / risk cues  e.g. air horn 
- Avoid predator habituation 
- Use sporadically and when most needed 
- Ensure stock are not startled by devices 

and are habituated 
Aversive conditioning e.g. taste aversion 

collars worn by stock 
- Ensure reinforcement  

Fencing 
- Use corrals when vulnerable e.g. at night 

or during lambing 
- Consider solid stationary or electric 

mobile corrals as well as positioning 
- Apply additional deterrents (P or RI) 

when needed e.g. fladry 
Livestock attributes 
- Use more agile & less docile livestock 
- Use stock with natural defences e.g. 

armament or behaviour 
- Breed for attributes 
- Herding regime, dispersed or herded 
Guardian patrols 
- Increase when needed e.g. when predator 

young are weaned 

Additional considerations 

Terrain 
- Avoid known hotspots or landscape contexts where livestock 

predation is more likely 
- If unavoidable increase P, RI or C 

Predator monitoring 
- Avoid areas well visited by predators e.g. known breeding sites 
- Increase P, RI or C when predators are in the vicinity 



 

27 
 

 643 

Fig 1. Sheep in a temporary night time corral made of electrified fladry as part of the wood river wolf 644 

project in Blaine County, Idaho. 645 
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 654 

Fig 2. Livestock guardian dogs can be raised with and kept with stock or used in a patrolling capacity 655 

with a handler or range rider. Karakachan female pictured, a rare breed being conserved by S. 656 

Sedefchev, Bulgarian Biodiversity Preservation Society, Semperviva. 657 


