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Abstract—Patient stratification has been studied widely
to tackle subtype diagnosis problems for effective treatment.
Due to the dimensionality curse and poor interpretability of
data, there is always a long-lasting challenge in constructing
a stratification model with high diagnostic ability and good
generalization. To address these problems, this paper propos-
es two novel evolutionary multiobjective clustering algorithms
with ensemble (NSGA-II-ECFE and MOEA/D-ECFE) with four
cluster validity indices used as the objective functions. First, an
effective ensemble construction method is developed to enrich
the ensemble diversity. After that, an ensemble clustering fitness
evaluation (ECFE) method is proposed to evaluate the ensembles
by measuring the consensus clustering under those four objective
functions. To generate the consensus clustering, ECFE exploits
the hybrid co-association matrix from the ensembles and then
dynamically selects the suitable clustering algorithm on that
matrix. Multiple experiments have been conducted to demon-
strate the effectiveness of the proposed algorithm in comparison
with seven clustering algorithms, twelve ensemble clustering
approaches, and two multiobjective clustering algorithms on 55
synthetic datasets and 35 real patient stratification datasets. The
experimental results demonstrate the competitive edges of the
proposed algorithms over those compared methods. Furthermore,
the proposed algorithm is applied to extend its advantages by
identifying cancer subtypes from five cancer-related single-cell
RNA-seq datasets.

Index Terms—Multiobjective optimization, ensemble clus-
tering, patient stratification.

I. INTRODUCTION

ATIENT stratification is a critical task in cancer diagnosis
and treatment, which aims to group patients into disease
subgroups. This will lead to the development of personalised,
preventive or therapeutic strategies by identifying patients who
are more likely to respond positively to a given therapy.
However, there still exists ground challenges in discovering
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cancer groupings due to sample imbalance and experimental
noises [1]. Therefore, it is imperative to design efficient
computational methods to stratify the patient data into cancer
subtypes precisely.

In recent years, several clustering methods have been
proposed to identify patient stratification data. For instance,
Liu et al. [2] proposed a network-assisted co-clustering method
to group cancer data into different subtypes. Wang et al.
[3] introduced a consensus clustering method based on an
optimization process with regularization to aggregate and
differentiate patient outcomes. Ester er al. [4] developed an
integrative Bayesian biclustering method to analyze the patient
stratification datasets. Graim et al. [5] presented a community
detection framework for choosing subtypes out of sparse pa-
tient measurements. However, only one cluster validity index is
evolved in those algorithms. It is difficult for an algorithm with
one internal evaluation function to be robust and interpretive
for almost all datasets.

To capture different characteristics of the datasets, many
multiobjective clustering approaches based on multiple cluster
validity indices have been developed. Mukhopadhyay et al.
[6] developed a novel interactive genetic algorithm-based
multiobjective approach by evolving a set of clustering validity
measures to cluster real-life gene expression datasets; Shi et al.
[7] proposed a transfer clustering ensemble selection algorithm
(TCES) under a multiobjective self-evolutionary process, in
which three objective functions are optimized in a target
dataset transferred from a source dataset; Li and Wong [8§]
proposed a multiobjective clustering method by fast search
of density peaks (MOCDP) with five cluster validity indices
served as the objective functions to stratify the patients into
subtypes; Wang et al. [9] investigated a multiobjective spectral
clustering algorithm (MOSC) for patient stratification based
on decomposition under two clustering validation measures.
Unfortunately, those methods always employ one clustering
algorithm as the basic clustering algorithm. We hardly believe
that any basic clustering algorithm can be the all-time winner
for all those patient stratification data. Moreover, each cluster-
ing algorithm has its own merits and disadvantages.

Ensemble clustering techniques have attracted increasing
attention and emerged as a powerful tool for patient stratifi-
cation by using multiple clustering algorithms to yield better
clustering performance than a single clustering algorithm. Liu
et al. [10] developed an entropy-based consensus clustering
algorithm (ECC) that merges the basic partitions into a con-
sensus one by an entropy-based utility function. Yu et al. [11]
proposed a projective clustering ensemble by combining the
superiority of projective clustering and ensemble clustering to



enhance the clustering quality. Unfortunately, most of them
ignore the importance of the member diversity in an ensemble
to prevent the ensemble algorithm from being trapped into a
local optimum [12]. Meanwhile, in the ensemble clustering
method, current co-association matrices usually focus on one
modality of the ensembles, resulting in the distortion char-
acteristic for the clustering on a single modality [13]. The
data modality is defined as the data representation, which is
produced by a specific process and can be used to define
clusters on its own. Meanwhile, a co-association matrix can
be aggregated from different clusters within the same single
data modality [13]. Moreover, those methods often consider all
samples to be equally important in the similarity matrix. Thus,
it is quite essential to develop a co-association matrix that
involves more than one data modality and weighs each sample
distinctively. In this study, we propose two novel evolutionary
multiobjective clustering algorithms with ensemble (NSGA-II-
ECFE and MOEA/D-ECFE) to address aforementioned limi-
tations. Firstly, an effective ensemble construction method is
proposed to maintain the ensemble diversity. In order to mea-
sure the intrinsic characteristics of the ensembles, an ensemble
clustering fitness evaluation (ECFE) method is developed by
evaluating the consensus clustering that is generated from the
ensemble. In ECFE, a hybrid co-association matrix is proposed
to combine the advantages of different co-association matrices
to exploit the appropriate subtype structure. In addition, we
dynamically select the suitable clustering algorithm to produce
the consensus clustering. To guide the evolution of those
ensemble mechanisms, four cluster validity indices, including
DB, Dunn, cohesion, and stability, are proposed to capture
diverse characteristics of the dataset under two evolutionary
multiobjective optimization techniques, namely nondominated
sorting genetic algorithm II (NSGA-II) [14] and multiobjective
evolutionary algorithm based on decomposition (MOEA/D)
[15]. The efficiency of the proposed method is tested on 55
synthetic datasets and 35 real patient stratification datasets.
The results demonstrate that our proposed algorithm signif-
icantly outperforms other approaches including seven clus-
tering algorithms, twelve ensemble clustering methods, and
two multiobjective clustering algorithms. Meanwhile, sensitive
analysis and extensive experiments are performed to extend the
performance of the proposed algorithm.

The main contributions of this study are summarized as
follows:

o We propose an effective ensemble construction method
to maintain the ensemble diversity. For each ensemble,
we employ the k-means clustering method to generate
half base clusterings; meanwhile we adopt the locus-
based adjacency genetic scheme to produce the rest base
clusterings.

« We propose an ensemble clustering fitness evaluation
(ECFE) to measure the fitness of the ensemble by eval-
uating those four objective functions on the consensus
clustering. In ECFE, to produce the consensus clustering,
first, we propose and design a hybrid co-association ma-
trix for the ensembles to represent the subtype structure of
the patient stratification data. It incorporates the sample

rank into two types of co-association matrix to generate a
similarity matrix for the patient stratification data, which
can exploit the appropriate subtype structure during the
evolutionary multiobjective clustering. Then, we choose
a suitable basic clustering algorithm dynamically using
the multiobjective evolutionary optimization to generate
the consensus clustering from the hybrid co-association
matrix.

o Four cluster validity indices including DB, Dunn, cohe-
sion, and stability are optimized simultaneously to guide
the multiobjective clustering, capturing various character-
istics of the evolved clusterings.

o Experiments on 55 synthetic datasets and 35 real patient
stratification datasets show that the proposed algorithms
significantly outperform compared existing methods.
The rest of this study is organized as follows. The

problem formulation and multiobjective optimization are sum-
marized in Section II. The proposed method is detailed in
Section III. The experimental design and results are presented
in Section IV. The extended application of the proposed
algorithm is outlined in Section V. Finally, the conclusion and
future works are provided in Section VL.

II. PRELIMINARIES
A. Problem Formulation

Let X = {1, 22, ..., %, ..., ¥, } be a patient stratification
dataset of n data samples, where x; = {z},z?, .. 2"},
(¢ € {1,2,...,n}), m is the number of genes. The ensem-
ble clustering problem is to build a consensus clustering
Ty = {Ci,Cf, ey ON } using the information of multiple
base clusterings (ensemble) II, where N is the number of
clusters in the final clustering of X. The ensemble can
be denoted as II = {my,ms,...,m,...,Tar}, Where m; =
{c},q?, CJCN} (i € {1,2, ..., M}) is the i-th base

clustering, Cij (G € {1,2,..,N;}) is the j-th cluster in
m;, and N; is the number of clusters in m;. Given j, k €
{1,2,...,N;},j # k, it holds that C " C¥F = & since each
data point can only belong to one cluster in a base clustering.
Let C = {C"',C?,...,C"N<} be the set of all clusters in II, it
is obvious that N, = Zi\il N;.

B. Multiobjective Optimization

The multiobjective optimization (MOO) considers opti-
mization problems involving more than one objective function
to be optimized simultaneously. It can be characterized as
follows:

min  fi(V), i=1,2,..,1

subject to ¢;(V) <0, j=1,2,..,J (D
he(V)=0, k=12, K

where V' = {v1,v9,...,v,} is a feasible solution with o

decision variables, I is the number of objective functions. An
MOO problem is to find a solution set that optimizes those [
objective functions simultaneously, satisfying all J equality
and K inequality constraints. Considering a minimization
problem, V; is said to dominate V5, if for all ¢, f; (V1) < fi(V2)



and for at least one 4, f;(V1) < fi(Va). V* is termed as a
Pareto-optimal (non-dominated) solution if and only if there
does not exist a solution V' that dominates V*. The set of all
those non-dominated solutions is called the Pareto set (PS).

ITI. PROPOSED METHOD
A. Methodology Overview of ECFE

Population Lo
W . . Objective
m k4 HCM Basic Clustering Consensus Functions
I I n Algorithm  Clustering -
n S o8
o] : - CDPs o
T n : n— e g
noo : e ]
: {0 :
| & . i
™ L i sc P
0 : 1. @
m F : - | —> @ —p —
v 1] s | |
4 - e -
prom u/“"’ . DB
= T ] I KM ™ ;
0 : noH L [ ] -
m n : ﬁ ..........
o [0] ol
Py

Fig. 1: An overview of ECFE.

The ECFE method is proposed to evaluate the en-
sembles in the proposed algorithm. Considering a patien-
t stratification dataset X with n samples and m genes,
to reduce the number of genes in X, we firstly filter
out genes with low variance [16] and retain D genes in
X. Then, a population P = {p1,p2,...,pi,...,pnp} With
NP individuals is constructed. We design each individu-
al with an ensemble including a pool of M base cluster-
ings and a random parameter vector, which is denoted as
p; = {H(i),\p(i)} _ {ng)’,/_réi),'..,Wj(\?’a(i)vﬂgi% éi)’ éz)}
where ¢ € {1,2,..., NP}; 7r§2172,__47M is a base clustering;
a(i),ﬁ]gm’?, € {0,1} 22:1 51(:) = L B}(;) = 0 means
that the k-th basic clustering algorithm in a pool of base
clustering algorithms is chosen; otherwise, it represents that
the k-th basic clustering algorithm is not chosen; « is the
parameter to calculate the similarity between different clus-
tering members in II(Y). An overview of ECFE is depicted in
Fig. 1. From Fig. 1, the purpose of fitness evaluation is to
give a quantitative indicator to determine who is eligible to be
parent solutions in the multiobjective evolutionary algorithm.
This fitness evaluation method is sufficient to investigate the
tendency of the ensemble performance. If ensembles are with
better performance, they will probably be able to generate a
high-quality consensus clustering. In ECFE, the hybrid co-
association matrix (HCM) is proposed to represent the subtype
structure from the fuse information of each individual. Next,
a basic clustering algorithm is selected dynamically using
each individual from a pool of base clustering algorithms,
in which three basic clustering algorithms including spectral
clustering (SC) [17], k-means (KM) [18], and clustering by
fast search of density peaks (CDPs) [19] are considered to

produce the consensus clustering. Finally, we measure the
quality of the ensemble in the population by evaluating the
objective functions on the consensus clustering. It can be
observed that the HCM and the basic clustering algorithm can
be optimized by evolving the population in the multiobjective
evolutionary optimization.

1) Construction of the Ensemble: The base clusterings
generated by any single method in the ensemble are usually
similar. To enhance the performance of ensemble clustering,
diverse ensembles have been proven to be effective for ad-
dressing this issue [12]. In this study, we propose to construct
the ensemble using two generation methods, as depicted in Fig.
2. First, we use the k-means algorithm to produce half of the
base clusterings. The number of clusters is selected randomly
from [2,4/n] [20], where n is the number of samples in the
patient stratification dataset. Then, we adopt the locus-based
adjacency genetic scheme [21] for the other half base cluster-
ings. However, there still exists some redundant clusterings in
the base clusterings, resulting in a loss of diversity. Therefore,
to maintain the diversity of the base clusterings, a relabel
strategy is employed to recode the base clusterings. Given a
base clustering 7 = {C*,C?,...,C™} in the ensemble II that
is divided into NN clusters, the relabel strategy is to align each
partition of the clustering from the numbered cluster 1 to the
numbered cluster n sequentially. For example, given two clus-
terings m = {3,3,3,1,1,2,2} and m = {2,2,2,1,1,3,3}
in the ensemble TI(V), by aligning from 1 to 3 sequentially,
m = {1,1,1,2,2,3,3} and mp = {1,1,1,2,2,3,3} are
shaped over the relabel strategy. Obviously, they are duplicate
clusterings. Once we find the redundant clustering, we will
assign random clusterings to them. The random clustering
provides each sample with a cluster chosen randomly from
1 to N. It is worth noting that the relabel strategy is adopted
to eliminate some redundant clusterings during the evolution
process.
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Fig. 2: Construction of the ensembles. First, dimensionality reduction is adopted based
on the variances of those m genes in the patient stratification dataset X. Then, an
ensemble is constructed from the remaining D genes. For each ensemble, the k-means
method is used to produce half clusterings and the locus-based adjacency genetic scheme
is used to produce the rest clusterings. After that, the relabel strategy is employed on
each ensemble, in which random clusterings are generated to replace those redundant
clusterings in that ensemble.

2) Hybrid Co-association Matrix: In [22], an evidence
accumulation co-association matrix (EACM) was proposed



to cope with ensemble members with different numbers of
clusters, which considers a measure of similarity between base
clusterings, defined as follows:

M Np
o 1 o
EACM(i,j) = MZZF(Z»LCE) )
p=1g¢g=1
where C} is the g-th cluster in the base clustering m,,
['(i,4,C}) is an indicator and can be defined:

1, if x; ECg/\ICj ECS
0, otherwise

D(i,,C8) = { )
However, such co-association matrix ignores the potential
relationship between different clusters. An enhanced co-
association matrix [23] (ECM) was developed to capture
the sample-wise relationship and the cluster-wise similarity
simultaneously, which is defined as:

M N,
ECM(i,7) ZZFE i, J,C. “4)
p 1g=1
. 1 if xie CiNng; € CF
q) — ) [ D 7 D
Tr(i.J, Cp) {zw7 otherwise 3)
R&lf) . Rg;lt)
= [
2 2
<R&1t) Rg)lt)>
\/<R1(}:t) Rq(ﬁ:t)> " <R1(}:t) Rz(ﬁ:t)>
. (6)
R(t) _ {T(t)} _ R, ’Lf t=1
“ S nxn R(t-D . R, Zf t>1
st it
0, if u=wv
S |C* N CY
uv T |Cu U CU‘
where z; € C} and z; € Cp, p € {1,2,..M}u,v €

{1,2,...,N¢}, zyp € [0,1] is the cluster-wise similarity,
(-,+) is the dot product of two vectors, ¢ is the number of
00 = TR R, ... 1)

steps of the random walks, R
(R&t;) = {0 rffﬁ, ) is the random walk trajectory

wd s Tuds o
from step 1 to step ¢ for the random walker that starts from C*,
R® is the multistep transition probability matrix, (] represents
the intersection of two sets, | is the union of two sets, and
|| is the number of elements in a set. Since the entries in
R® are non-negative, z,, is naturally within the range [0,1]
[23]. In particular, z,, is equal to O when RED . RIY _ .
Zuw is equal to 1 when Rl(};:t) = Rq(,}:t), which is proven in
Supplementary Section II.

In fact, a single similarity matrix cannot always represent
the cluster structure of all patient stratification datasets very
well. Moreover, each sample is treated equally in the similarity
matrix, neglecting the demand for non-isometric distances
between pair-wise samples. Therefore, to convey more sample-
wise information of the patient stratification data, a hybrid

co-association matrix (HCM) is proposed in this study by
switching EACM and ECM alternatively:

HCM = diag(W) x (aEACM + (1 — a)ECM)

o My
X MZZF(@]‘,C;)

= diag(W
p—lq—l
ol 7
+ diag(W j,C4) )
p= 1q 1
= diag(W x—xZZFH@j’
p=1qg=1
1, if.’L‘iECgAJJjECg
1(i,5,C8) = 2w, if ~(z; € CIAz; € CY) and o =0
0, if ~(vi€CiNnz; €Cl)anda=1

®)
where « is a binary number that can be obtained from the pa-
rameter vector ¥; x; € Cp and z; € C“ u,v € {1,2,...,N.};
Zup € [0,1] is the cluster-wise s1m11ar1ty, the boundary value
conditions of it are similar to the Eq. (6); diag(W) =
diag(1,2,...,n) is a diagonal matrix that represents the initial
ranks for the samples in the patient stratification data that can
boost the sample-wise distance in the similarity matrix.

B. Objective Functions

The suitable choice of objective functions has an im-
portant role in guiding the multiobjective optimization. For a
majority of multiobjective evolutionary clustering algorithms,
multiple cluster validity indices have been optimized simul-
taneously as objective functions. In this study, four objective
functions are considered to optimize the clustering problem
with ensemble, enabling the proposed algorithm to capture
diverse properties of the clusters in an unsupervised way.
Let 7 = {C',C?,...,C™} be a clustering solution, the first
objective is the Davies-Bouldin (DB) index [24], which can
be described as:

hilm) =4 Z nax( o) ©
where d; and J; are the intracluster distances of cluster '
and cluster C7, d(c?,¢?) is the Euclidean distance between
the cluster centroid ¢ and ¢?. It measures the intracluster sim-
ilarity of 7. Smaller values indicate better clustering results,
namely fi(7) should be minimized.

The second objective is the Dunn index [25]:

~ min {m,in( YECTd(z,y) )}

(2 ] maxpg maxz,yeckd(z’y)

cZ cJ

mingeci

fa(m)

(10)

where d(z,y) is the Euclidean distance between two data
samples = and y. It discovers compact and well-separated
clusters in 7. Clusterings with larger values denote better
clustering results. Therefore, f2(7) should be maximized.
Although DB and Dunn are always used to validate the
clustering performance of different clustering algorithms [26],
they have not taken the cluster connectivity into consideration.
Therefore, to generate a high-quality clustering, we propose to



employ cohesion and stability based on the cluster density to
measure the quality of each clustering.

Cohesion and stability [27], which concentrate on the
density-based connectivity between C? and other clusters in
« and the inner density-based connectivity of 7, are served as
the third and last objectives, which are respectively defined as
follows:

K

fa(m)=>_  max  RSIM(wp,x,Sx,0) (1)
i—1 ‘peCi Tae(m\0t)
K

f4(7r):z min  RSIM(zp,x4,Sci,1)  (12)
i1 Tpecil Toeci?

where RSIM (x;,x;,Sx,1) is the robust minimax similarity
[28], Sx indicates the similarity matrix of X, [ represents the
number of the nearest neighbors, C*' and C*? are two different
clusters. A good clustering is expected to have weak cohesion
and strong stability. Therefore, f5(7) should be minimized and
fa(m) should be maximized to achieve a good clustering.

C. Evolutionary Multiobjective Clustering Algorithm with En-
semble

In this section, we employ the multiobjective evolution-
ary algorithm to optimize those four cluster validity indices
simultaneously, obtaining the appropriate data modality and
the suitable basic clustering algorithm in ECFE. Two effective
evolutionary multiobjective optimization techniques, NSGA-
IT and MOEA/D, are used to evolve the population iteratively.
The proposed algorithms based on ECFE (NSGA-II-ECFE and
MOEA/D-ECFE) are detailed as follows:

1) NSGA-II-ECFE: NSGA-II-ECFE starts with a collec-
tion of N P individuals. Each individual contains an ensemble
with M basic clusterings and a parameter vector. We propose
to evaluate the fitness of each individual by ECFE. In each iter-
ation, a mating pool is generated using the current population
under the binary tournament selection. For each individual,
the uniform crossover operator and the neighborhood biased
mutation operator [29] are undertaken on each clustering of
the ensembles in the population to discover better clusterings
in the ensemble. Those four objective functions are calculated
on the new individual by the proposed ECFE to guide the
multiobjective evolution. After that, a new population is pro-
duced including 2N P individuals. Finally, N P individuals are
chosen by the fast non-dominated sorting and the crowding
distance strategy [14]. The pseudocode of NSGA-II-ECFE is
summarized in Algorithm 1.

2) MOEA/D-ECFE: In MOEA/D-ECFE, it decomposes
the multiobjective clustering problem with those four objective
functions into /N P patient stratification clustering subproblems
using the Tchebycheff method [15]. At each iteration, a popu-
lation with N P subproblems is initialized and assigned a set of
uniformly distributed weight vectors A over the weight space.
For each subproblem, an offspring solution is generated by
employing the uniform crossover operator [29] on two random
subproblems chosen from the current population. Then, the
neighborhood-biased mutation operator [29] is applied to each

Algorithm 1: Pseudocode of NSGA-II-ECFE

Input: (1) Ensemble size (M); (2) Population size (N P); (3) Number of
fitness evaluations (F'E.S);
Output: (1) Normalized Mutual Information (NMI); (2) Adjusted Rand
Index (ARI);
Initialize the population P = {p1,p2, ...
pi = {H<i)7q,<i> —
OO ...,ﬂ;},a(i),5@,/32&”,Bg")} i€ {1,2,..,NP};
F(P) <+ ECFE(P);
Perform fast non-dominated sorting to calculate the rank of individuals in P;
Calculate the crowding distance;
while the stopping criterion is not satisfied do
Generate a mating pool;
fori =1 — NP do
if ¢ < NP then
| i kit

s Pis s PNP

else
| 1« 1Lk« NP;
Select two individuals p; and pj from the mating pool;
Perform crossover and mutation operators on each basic
clustering in o e p; and o) e Py, to obtain a new
ensemble T1("e);
pnew) \I;(i);
Prew — {TIEw) gnew) 1,
F(prew) « ECFE(pnew);
L Prew {P7 pnew};
Perform fast non-dominated sorting on the new population Py, ., With
2N P individuals;
Calculate the crowding distance;
| Choose the population with top N P individuals for the next iteration;

Produce the Pareto set P.S with all non-dominated consensus clusterings
under four objectives;

Return the best NMI (maxie};zv N M1I;) and the corresponding ARI;

basic clustering of the ensemble in the offspring solution
to enhance the exploitation ability of MOEA/D-ECFE. Each
subproblem is optimized using the information from its N.S
nearest subproblems. Finally, a new population with NP
subproblems is produced. The pseudocode of MOEA/D-ECFE
is presented in Algorithm 2.

D. Time Complexity

This section focused on the time complexity of NSGA-
II-ECFE and MOEA/D-ECFE. For each iteration of them,
NSGA-II costs O(I x NP?) and the time complexity of
MOEA/D is O(I x NP x NS) [30], where I is the number
of objective functions, /N P is the number of individuals in the
population, and NS is the size of neighbors. Considering the
computation of ECFE, it costs the worst time O(n?x D x N P)
[31], where n is the number of samples in the given dataset,
D is the number of genes after the dimensionality reduction.
Therefore, the overall worst time complexity of NSGA-II-
ECFE and MOEA/D-ECFE per iteration is O (I x N P2 +n? x
Dx NP)and O(I x NP x NS+n?x D x NP) respectively.

IV. EXPERIMENTS AND RESULTS
A. Data Collection

We collect fifty-five synthetic datasets [10] based on a real
human transcriptional regulation network. They are generated

as follows:
dx;
FPNA(x,y) = 0= mi- fily) = NVA g

dy;
it =iz = Ay

(13)

FiProt (X, y) _



Algorithm 2: Pseudocode of MOEA/D-ECFE

Input: (1) Ensemble size (M); (2) Neighbor size (N .S); (3) Number of
fitness evaluations (F'E.S);
Output: (1) Normalized Mutual Information (NMI); (2) Adjusted Rand
Index (ARI);
Initialization:
Coefficient vectors A = {Al P
A= NN NG AT 26{1 2,
The population P = {p1,p2, .y Pis-
o®, ¢

w0, w, e, B0 80 0} i e (1,2, .,
For each subproblem p;, find NS closest weight vectors
B; = {i1,i2,...,ins};
F(P) «+ ECFE(P);
The reference point z* = {27, z5, 23, z; } with the ideal objective value
found so far for each objective function;
Iteration:
while the stopping criterion is not satisfied do
fori=1— NP do
Randomly select two subproblems p; and pj from P;
Perform crossover and mutation operators on o e p; and
) ¢ P to obtain a new ensemble r(new),
glnew) (i),
Prow — H(‘lzew)’ g (new) };
Update the reference point z™;
for j € B; do

if 9" (PrewlA') < g"(p;j|A") then
Pj < Pnew:
F(pj) <~ F(pncw);

ANP}, where

., NP};
..,pnp} with NP subproblems;

NP};

else
L Generate a new parameter vector ¥/ for Pjs

Produce the Pareto set PS with all non-dominated consensus clusterings
under four objectives;

Return the best NMI (maxzeﬁé N DM1;) and the corresponding ARI;

where m; represents the maximum transcription rate, r; is
the translation rate, A"*V4 and AP are the mRNA and
protein deterioration rates, X and y are the mRNA and protein
concentration level vectors, and f;(-) is the activation function
of the ¢-th gene. The characteristics of those 55 synthetic
datasets are summarized in Supplementary Table S1 [32].
It contains the noise level, the number of knock-out genes,
samples, genes, and clusters. The number of knock-out genes
is ranged from 100 to 500 and the noise level varies from 0
to 0.5.

In addition, all those thirty-five patient stratification
datasets are obtained from [10]. Supplementary Table S2
provides their details [33] including the data source, the
number of samples, clusters, and genes. The minimum number
of samples is 22 and the maximum number of samples is 248;
the number of clusters ranges from 2 to 14; the number of
genes varies in [85, 4553].

Finally, we adopt five cancer-related single-cell RNA
datasets [34] to demonstrate the performance of the proposed
algorithm in real-world applications.

B. Evaluation Metrics

Two widely-used evaluation metrics, called Normalized
Mutual Information (NMI) [35] and Adjusted Rand Index (AR-
I) [7], are used to evaluate the clustering performance. They
can provide a sound indication of the similarities between the
predicted and ground truth label. The clustering results with
higher values indicate better clusterings.

NMI measures the shared information between two clus-
tering results and varies from O to 1; ARI provides the
agreement between two clustering results and ranges from -1
to 1. Given 7. the predicted label and m; the ground truth
label, they are defined as follows:

ne ny Yo i
2it1 2= Nilog b _ (14)

V(0 nilog ) (S nd log %)
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()2 ()R- (5) () / (5)
(15)

where n, n; are the cluster numbers in 7. and 7, respectively.
n? is the number of samples in cluster i of ., n; is the number
of samples in cluster j of 7, and n;; is the intersection sample
size between clusters ¢ and j.

To measure the overall performance of those baseline
methods over those patient stratification datasets, we adopt
an average performance score [10], which can be formulated
as follows:

Z V(Dataset;, ALGO;)
" d &~ maxz; V(Datasetj, ALGO;)

Avg(ALGO;) (16)

where V' (Dataset;, ALGOZ-) denotes the evaluation metric
(NMI or ARI) of the i-th algorithm ALGO; on the j-th dataset
Dataset;, d denotes the total number of benchmark datasets.

C. Parameter Settings

In the proposed algorithm, the ensemble size (M) is set
to 20 and the number of genes after dimensionality reduction
(D) is set to 300. In particular, for NSGA-II-ECFE, we set
the population size NP = 200. For MOEA/D-ECFE, the
population size N P is equal to the number of weight vectors
CII{;lIfl, in which I is the number of objectives 4 and H
is 7. The size of neighbors NS for each weight vector is
2. The discussions about those parameters are presented in
Supplementary Section I. The parameter o of the proposed
algorithms NSGA-II-ECFE and MOEA/D-ECFE is the binary
number, which is discussed in Section III (A). Meanwhile, in
Tables S4-S15, Table S18, and Tables S20-S25, the parameter
« of the proposed algorithms NSGA-II-ECFE and MOEA/D-
ECFE is the binary number. To conduct a fair comparison,
the number of fitness evaluations (F'ES) is taken as the
stopping criterion. We set F'EES as 1000 for each dataset
[36]. Meanwhile, the average NMI and ARI are provided over
30 independent runs on each patient stratification dataset to
exclude the factor of getting lucky occasionally.

For the single clustering algorithms, the following exper-
imental settings are adopted.

e For SC, the similarity graph with the size of n X n is
constructed by the k-nearest neighbor graph method [17].

o For DBSCAN, eps is set to 0.5, and minPts is set to 5
[37].



o For CDPs, the cutoff distance threshold (d.) is set to 2,
and the density is computed using the Gaussian kernel
[19].

To make a fair comparison, for those twelve ensemble
clustering algorithms, the base clusterings are generated by
k-means clustering method, the number of base clusterings
(ensemble size) is set to 20, the number of clusters in each
base clustering is selected randomly from [2,,/n] [20], where
n is the number of samples in the patient stratification dataset,
and the low variance method [16] is adopted to reduce the
dimension for all ensemble clustering baseline algorithms.

D. Baseline Methods

Several methods are adopted to demonstrate the per-
formance of NSGA-II-ECFE and MOEA/D-ECFE. From the
clustering perspective, we compared them against seven clus-
tering methods, including agglomerative hierarchical cluster-
ing with average-linkage (AL) [38], single-linkage (SL) [38],
complete-linkage (CL) [38], KM [18], SC [17], density-based
spatial clustering with noise (DBSCAN) [37], and CDPs [19].
The reason of choosing those clustering approaches is that,
AL, SL, CL, and KM are simple clustering methods usually
applied to analyze data; SC is a graph theory-based clustering
algorithm; DBSCAN is an effective clustering method based
on density; and CDPs uses the density peaks to discover the
cluster centers.

From the ensemble clustering perspective, we com-
pared the proposed algorithms with twelve ensemble cluster-
ing methods, namely, linked-based cluster ensemble (LCE)
[39], cluster-based similarity partitioning algorithm (CSPA)
[40], hypergraph partitioning algorithm (HGPA) [40], meta-
clustering algorithm (MCLA) [40], k-means-based consensus
clustering (KCC) [41], spectral ensemble clustering (SEC)
[42], entropy-based consensus clustering (ECC) [10], locally
weighted ensemble clustering based on evidence accumulation
(LWEA) [43], locally weighted ensemble clustering based
on graph partitioning (LWGP) [43], ultra-scalable ensemble
clustering (U-SENC) [31], ensemble clustering by propagat-
ing cluster-wise similarities based on hierarchical clustering
(ECPCS-HC) [23], and ensemble clustering by propagating
cluster-wise similarities based on meta-clustering (ECPCS-
MC) [23]. LCE employs a linked-based algorithm to underly
similarity assessment; CSPA, HGPA, and MCLA are ensemble
clustering algorithms based on graph partitioning; KCC is a
consensus clustering method based on k-means clustering;
SEC is a spectral ensemble clustering algorithm using co-
association matrix; ECC employs the entropy-based utility
function to merge the basic clustering into a consensus cluster-
ing; LWEA and LWGP utilize local weighting strategy based
on two different consensus functions; U-SENC is an ensemble
clustering framework that integrates multiple clusters generat-
ed by the ultra-scalable spectral clustering; ECPCS-HC and
ECPCS-MC are two ensemble clustering approaches based on
fast propagation of cluster-wise similarities via random walks
with two different consensus functions. Moreover, the time
and space complexity of those different ensemble clustering
methods are summarized in Supplementary Table S3.

From the multiobjective perspective, we compared
NSGA-II-ECFE and MOEA/D-ECFE with two multiobjective
clustering algorithms, including MOCDP [8] and MOSC [9].
They are multiobjective clustering algorithms based on the
CDPs clustering and the spectral clustering, respectively.

E. Synthetic Datasets

In this section, we compare the performance of NSGA-II-
ECFE and MOEA/D-ECFE with those seven clustering meth-
ods and twelve ensemble clustering methods on 55 synthetic
datasets. To conduct a fair comparison, we run each algorithm
30 times on each dataset. Meanwhile, the performance is eval-
uated by the average NMI and ARI score. The experimental
results of all those clustering algorithms are summarized in
Fig. 3. From Fig. 3, it can be found that NSGA-II-ECFE
performs better than other clustering algorithms for all the
datasets while MOEA/D-ECFE is superior to other competitive
methods for most datasets. For 100 knock-out genes, at the
noise level of 0.45, NSGA-II-ECFE can provide NMI and
ARI improvement over MOEA/D-ECFE at about 4.7% and
3.9%. In particular, compared with AL and SL, the proposed
algorithms can provide high-quality results at most of the noise
levels by a large margin.

For ensemble clustering methods, observing the results
summarized in Fig. 4, we can find that NSGA-II-ECFE and
MOEA/D-ECEFE are better than or equal to those methods on
most datasets. For 200 knock-out genes, at the noise level 0.35,
CSPA is superior to NSGA-II-ECFE; while for 400 knock-
out genes, at the noise level 0.45, NSGA-II-ECEFE is slightly
inferior to other ensemble clustering algorithms except LCE,
SEC, U-SENC, and ECPCS-HC. For 500 knock-out genes, at
the noise level 0.45, CSPA surpasses NSGA-II-ECFE. For the
rest datasets, NSGA-II-ECFE achieves promising solutions. It
is worth noting that all those methods enable to group the
datasets at very small noise levels for the low perturbation with
the human transcriptional regulation network. Besides, Supple-
mentary Fig. S1 shows the average scores of those methods to
measure their overall performance concerning NMI and ARI
respectively. It can be observed that the proposed algorithms
outperform all those comparative algorithms and NSGA-II-
ECEFE is slightly competitive to MOEA/D-ECFE. Therefore,
it is empirically validated that the proposed algorithms have
significant advantages on those fifty-five synthetic datasets in
a robust manner.

F. FPatient Stratification Datasets

To further demonstrate the advantages of NSGA-II-ECFE
and MOEA/D-ECFE, we compare them with seven cluster-
ing methods and twelve ensemble clustering methods on 35
patient stratification datasets. Each method runs 30 times on
each dataset for a fair comparison. The average performance
of each algorithm is measured by the average NMI and ARI
score. For statistically rigorous comparisons, Friedman test
[44] is used to show the average ranking of all algorithms.
In addition, the paired Wilcoxon test is calculated to show the
statistical difference between the lowest-ranked algorithm and
other algorithms with a significant level 0.05. H; denotes there
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Fig. 4: Comparison performance of different ensemble clustering algorithms on those
fifty-five synthetic datasets

is significant difference between them while H( represents the
algorithms are statistically equivalent to each other.

1) Comparison with Clustering Methods: Considering
those seven clustering methods, the comparative experimental
results measured by NMI and ARI are summarized in Supple-
mentary Table S4 and Table S5. The last three rows list the
mean ranks and the Wilcoxon test results of those clustering
methods. Meanwhile, Fig. 5 illustrates NMI and ARI results of
those clustering methods on 35 patient stratification datasets
respectively.

In terms of NMI, from Supplementary Table S4, it can
be observed that NSGA-II-ECFE and MOEA/D-ECFE obtain
the best NMI for 28 and 5 datasets out of 35 datasets
respectively. For Alizadeh-2000-v2, CDPs can provide the best
NMI; for Su-2001, SC obtains a slightly better NMI result
than NSGA-II-ECFE. Meanwhile, for Bredel-2005, Lapointe-
2004-v1, and Liang-2005, DBSCAN can achieve the best NMI
results. NSGA-II-ECFE and MOEA/D-ECFE generally reach
the best average NMI result across 35 datasets with the lowest
ranks. In addition, NSGA-II-ECFE and MOEA/D-ECFE are
significantly different from other clustering algorithms. It can
be validated that the proposed algorithms, particularly NSGA-
II-ECFE, have great efficacy in clustering patient stratification
data.

In terms of ARI, from Supplementary Table S5, NSGA-II-
ECFE and MOEA/D-ECFE have a relatively low rank among
all the methods with the performance that is significantly
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Fig. 5: Comparison performance of different clustering algorithms on thirty-five patient
stratification datasets. The performance is measured by NMI in (a) and ARI in (b) in
heatmap colors.

different from other algorithms. For AL, SL, CL, and KM,
they cannot obtain the best AR/ results for any of those patient
stratification datasets; for SC, it can obtain the best ARI results
on Su-2001; for DBSCAN, it achieves the best ARI on Bredel-
2005, Lapointe-2004-v1, and Liang-2005; and for CDPs, it can
provide the best ARI on Alizadeh-2000-v1 and Alizadeh-2000-
v2.

2) Comparison with Other Ensemble Clustering Algo-
rithms: In this section, we will compare our proposed algo-
rithm with other ensemble clustering algorithms on 35 patient
stratification datasets. The experimental results are summa-
rized in Supplementary Table S6 and Table S9 respectively.

Regarding NMI, from Supplementary Table S6, NSGA-
II-ECFE can provide the best NMI results on most datasets
except eleven datasets. In particular, NSGA-II-ECFE can
achieve perfect clustering on Armstrong-2002-v1, Nutt-2003-
v2, Nutt-2003-v3, Pomeroy-2002-v1, Shipp-2002, and Singh-
2002. While MOEA/D-ECFE can perform the same on
three patient stratification datasets including Nutt-2003-v2,
Pomeroy-2002-v1, and Singh-2002. The reason may be that
each of those datasets has only two clusters with a small
number of samples with a clear structure. Moreover, since our
proposed algorithm is a multiobjective evolutionary algorithm,
it applied multiple objective functions to capture diverse char-
acteristics of those datasets, resulting in good performance. To
further analyze such phenomenon, we use two other external
evaluation metrics including clustering accuracy and purity,
and two other internal evaluation metrics including DB and
Dunn, to measure the clustering quality of different clustering
algorithms on those six patient stratification datasets. Purity
[45] is a point-level index that can measure the quality of the
predicted clustering result, which can be defined as follows:
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where T, = {C},C2,...,CY,...,C/} is the predicted cluster-
ing result with J clusters, m = {C},Cf,...,C’tk, ...,CtK} is



the set of K classes in the ground truth label, and n is the
number of samples in the dataset. Each cluster is assigned
to the class that is most frequent in the cluster. Normally,
larger purity values indicate that the predicted clustering result
has better quality. The clustering accuracy is equivalent to the
purity [46]. DB and Dunn are defined in Eq. (9) and Eq. (10).

The results are summarized in Supplementary Table S7
and Table S8 on those six patient stratification datasets respec-
tively. From Supplementary Table S7 and Table S8, in terms
of NMI, ARI, clustering accuracy, and purity, it can be found
that NSGA-II-ECFE can achieve the best results among those
ensemble clustering algorithms and multiobjective clustering
algorithms, which indicates that the proposed algorithm re-
veals significant advantages over all other methods. Besides,
we have added two internal evaluation metrics including DB
and Dunn to analyse this phenomenon. Since the truth labels
are available for all datasets, we calculate the absolute values
of DB and Dunn based on the resulted cluster labels and
ground truth labels. DBy, and Dunng,, denote the DB
and Dunn which are computed on the resulted cluster labels
obtained by a given algorithm while DBy,.,,¢;, and Dunng,.p,
denote the DB and Dunn which are computed on the ground
truth labels. Therefore, a small value indicates a good clus-
tering result close to the ground truth result. We can observe
that the performance of NSGA-II-ECFE is superior to other
clustering algorithms. In particular, the DB;4, and Dunng;g,
of NSGA-II-ECFE are equal to DBy, and Dunng,.,.;, on
those six datasets while those of MOEA/D-ECFE are equal to
DBy;utn and Dunng,.;;, on three patient stratification datasets
including Nutt-2003-v2, Pomeroy-2002-v1, and Singh-2002.
Therefore, we can conclude that the proposed NSGA-II-ECFE,
can achieve promising results on those datasets. NSGA-II-
ECFE has the lowest mean rank across those 35 datasets.
Meanwhile, from the statistical results by the paired Wilcoxon
test, we can find that there is significant difference between the
proposed algorithm and other ensemble clustering algorithms.
In addition, Fig. 6 (a) shows the clustering performance of
those algorithms evaluated by NMI.

Regarding ARI, from Supplementary Table S9, MOEA/D-
ECFE and NSGA-II-ECFE outperform other ensemble cluster-
ing algorithms. Meanwhile, the average ARI score increasing
of NSGA-II-ECFE over LCE, CSPA, HGPA, MCLA, KC-
C, SEC, ECC, LWEA, LWGP, U-SENC, ECPCS-HC, and
ECPCS-MC, is 46.7%, 45.2%, 42.1%, 38.9%, 38.2%, 34.4%,
49.9%, 43.2%, 41.4%, 63%, 46.5% and 46.7% respectively.
For LCE, it obtains the best ARl on 3 datasets including
Alizadeh-2000-v2, Bhattacharjee-2001, and Garber-2001. For
SEC and LWEA, they can achieve the best ARI on 2 out of
35 patient stratification datasets. For HGPA, KCC, LWGP,
U-SENC, ECPCS-HC, and ECPCS-MC, they provide the
best ARI for one dataset. For the rest ensemble clustering
algorithms, they cannot achieve the best ARI on any datasets.
Furthermore, NSGA-II-ECFE provides the lowest rank among
all algorithms. By observing the statistical results of the
paired Wilcoxon test, NSGA-II-ECFE and MOEA/D-ECFE
can accurately group the patient stratification data in a statis-
tically significant manner. Besides, Fig. 6 (b) also depicts their
performance measured by ARI clearly and Supplementary Fig.
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Fig. 6: Comparison performance of different ensemble clustering algorithms on thirty-
five patient stratification datasets. The performance is measured by NMI in (a) and AR/
in (b) in heatmap colors.

S2 shows the ANOVA analysis to demonstrate the robustness
of NSGA-II-ECFE. Based on those observations, we can
conclude that the proposed algorithms can provide better
performance than other methods, which can be served as an
effective technique for clustering patient stratification data.

G. Multiobjective Optimization Methodology Comparisons

To investage the effectiveness of the proposed algorithms
from the multiobjective perspective, we compare the proposed
NSGA-II-ECFE and MOEA/D-ECFE against two multiobjec-
tive clustering algorithms, including MOCDP and MOSC on
35 patient stratification datasets. Each algorithm has been inde-
pendently run for 30 times on each dataset. The experimental
results are measured by NMI and ARI and summarized in
Supplementary Table S10 and Table S11 respectively.

From Supplementary Table S10, we can observe that
NSGA-II-ECFE is the best-performing algorithm with the
lowest rank among all algorithms. Compared with MOCDP,
MOSC, and MOEA/D-ECFE, it can be found that NSGA-
II-ECFE can provide better NMI results on 25, 19, and 29
patient stratification datasets respectively. In addition, from
Supplementary Table S11, our proposed NSGA-II-ECFE can
obtain a better average AR/ score than other three algorithms.
For MOCDP, it achieves the best ARI on two datasets includ-
ing Alizadeh-2000-v2 and Bredel-2005 while it is inferior to
the proposed algorithms on most datasets. MOSC achieves
the best ARl on 15 out of 35 datasets while NSGA-II-ECFE
increases the average ARI score across those datasets by 5.7%
over it. As evidenced by those experimental results, we claim
that our proposed algorithms, in particular NSGA-II-ECFE,
is superior to other multiobjective clustering algorithms in
stratifying those patient stratification datasets into subtypes.

H. Extended Analysis and Comparisons

1) Different Objective Function Subsets: In this section,
to demonstrate the effectiveness of different objective function
combinations for the proposed algorithm NSGA-II-ECFE, we
compare NSGA-II-ECFE under 11 different combinations of
objective functions on 35 patient stratification datasets. Each
objective function combination is chosen from those four



objective functions including DB, Dunn, cohesion, and stabil-
ity. The experimental results are tabulated in Supplementary
Tables S12-S15. The last row of each table summarizes the
average NMI (ARI) score to evaluate the overall performance
of each algorithm over those 35 datasets. Moreover, Fig. 7
visualizes those NMI and ARI results of NSGA-II-ECFE under
different objective functions subsets.

In terms of NMI, from Supplementary Table S12, Table
S14 and Fig. 7 (a), it is pointed out that NSGA-II-ECFE
outperforms other algorithms under different two objective
functions subsets and three objective functions subsets on most
datasets. Besides, NSGA-II-ECFE can provide the best aver-
age NMI score in all the compared algorithms, which indicates
the effectiveness of NSGA-II-ECFE under four objective func-
tions. In terms of AR/, from Supplementary Table S13, Table
S15, and Fig. 7 (b), it can be observed that NSGA-II-ECFE can
yield better performance than other algorithms under different
objective function combinations. The largest and least average
ARI score improvements of NSGA-II-ECFE over the other
algorithms are 31.75% and 1.92% respectively. Based on the
analysis, it can be demonstrated that NSGA-II-ECFE under
those four objective functions exhibits competitive edges over
others on most patient stratification datasets.

Besides, the DB and Dunn tendency under the number
of fitness evaluations (FES) of those thirty-five patient strati-
fication datasets provided by NSGA-II-ECFE are summarized
in Supplementary Fig. S7. As shown in Supplementary Fig.
S7, it can be found that for most patient stratification datasets,
the curve of DB provides a downward trend and the curve of
Dunn has an upward trend. It conforms to the minimization
and maximization optimization of DB and Dunn respectively,
demonstrating the effectiveness of the proposed algorithm.

(@ (b)

Fig. 7: Comparison performance of NSGA-II-ECFE under different objective functions
subsets on thirty-five patient stratification datasets. The performance is measured by NMI
in (a) and AR/ in (b) in heatmap colors.

2) Dimensionality Reduction: To demonstrate the ef-
fect of the dimensionality reduction, we compare NSGA-II-
ECFE with NSGA-II-ECFE without dimensionality reduction
(NSGA-II-ECFE,,,pr) in this section. The performance is
measured by the average NMI over 30 runs on 35 patient
stratification datasets. The experimental results of each algo-
rithm on each dataset and the average NMI score through those

datasets are summarized in Fig. 8. As shown in Fig. 8, the
dimensionality reduction contributes to enhancing the overall
performance of the proposed algorithms.

-3- NSGA-I-ECFE
0.0 - -G~ NSGA-I-ECFE

oR

Fig. 8: Comparison performance of NSGA-II-ECFE with dimensionality reduction and
NSGA-II-ECFE without dimensionality reduction by average NMI across thirty-five
patient stratification datasets.

3) Effect of Ensemble Construction Method: In this sec-
tion, to demonstrate the effectiveness of the proposed ensemble
construction method, we compare NSGA-II-ECFE based on
the proposed ensemble construction method with NSGA-II-
ECFE based on other two ensemble construction methods.
The first comparative method is to construct all clusterings
by k-means clustering method; the other method is only by
the locus-based adjacency method. They are named NSGA-
II-ECFE; and NSGA-II-ECFE; respectively. The comparative
experiment is performed on 35 patient stratification datasets
over 30 runs. The results measured by the average NMI are
summarized in Fig. 9. As depicted in Fig. 9, NSGA-II-ECFE
with the proposed ensemble construction method provides
4% and 12.5% NMI improvement over NSGA-II-ECFE; and
NSGA-II-ECFE; respectively. Therefore, we can conclude that
our proposed ensemble construction method are synergistic
with the proposed algorithm.
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Fig. 9: Performance comparison of NSGA-II-ECFE with three ensemble construction
methods by average NMI across thirty-five patient stratification datasets.

4) Comparison with Different Types of Co-association
Matrix: This section is dedicated to demonstrate the perfor-
mance of the hybrid co-association matrix (HCM) in ECFE
by comparing it with NSGA-II-ECFE using the evidence
accumulation co-association matrix (NSGA-II-ECFEg ac 1)
and NSGA-II-ECFE using the enhanced co-association ma-
trix (NSGA-II-ECFEgc)s) on those 35 patient stratification



datasets. Fig. 10 illustrates the average NMI results over 30
runs for each dataset. As shown in Fig. 10, it can conclude that
NSGA-II-ECFE with HCM can yield better performance than
other co-association matrices on those datasets. The proposed
hybrid co-association matrix is more appropriate for ECFE
to stratify patients into subtypes than other two types of co-
association matrix. In particular, for Pomeroy-2002-v1, Shipp-
2002, and Singh-2002, NSGA-II-ECFE with the hybrid co-
association matrix shows its great superiority to other different
types of co-association matrix by achieving over 70% NMI
improvement.

Furthermore, for Shipp-2002, t-distributed stochastic
neighbor embedding (t-SNE) [47] is implemented to project
the similarity matrix into two dimensions to visualize different
types of co-association matrix. The 2-D visualization of Shipp-
2002 is depicted in Fig. 11. Notably, t-SNE visualizes the
similarity matrix without the ground truth labels; the label
is produced by NSGA-II-ECFE with the corresponding sim-
ilarity matrix and formed in different colors to denote the
results. From Fig. 11, it is shown that the proposed hybrid
co-association matrix can represent the clustering structure
of the patient stratification data more accurately compared
with other two types of co-association matrix. Moreover, to
demonstrate the effectiveness of the proposed HCM in ECFE
further, we set o in HCM to a continuous value chosen from
{0.1,0.3,0.5,0.7,0.9}. The performance of those algorithms
are measured by averaging NMI and ARI over 30 runs on
35 patient stratification datasets. The experimental results are
summarized in Supplementary Table S16 and Table S17. As
observed from those tables, we can observe that NSGA-
II-ECFE with « setting to the binary number can provide
better performance than the other algorithms on those patient
stratification datasets in terms of NMI and ARI.
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Fig. 10: Comparison performance of NSGA-II-ECFE with three different types of co-
association matrix by average NMI across thirty-five patient stratification datasets.

5) Performance Comparison of Different Ensemble Clus-
tering Methods on Runtimes: In this section, the runtime
comparison experiment is conducted between the proposed
algorithm and other ensemble clustering methods. We executed
it on a PC with an i7-7500U CPU and 8GB of RAM in
MATLAB. Supplementary Table S18 summarizes the run-
time comparison results on thirty-five patient stratification
datasets. From Supplementary Table S18, NSGA-II-ECFE and
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MOEA/D-ECFE cost long runtime on multiple datasets. That
is because they are multiobjective iterative algorithms with
hundreds of individuals. As mentioned in the time complexity
analysis in Section III (D), the overall time complexity de-
pends on the number of iterations, individuals, and genes as
tabulated in Supplementary Table S2.

V. APPLICATION

In this section, the proposed algorithms and other meth-
ods, including seven clustering algorithms, twelve ensemble
clustering algorithms, and two multiobjective clustering algo-
rithms, are applied to five cancer-related single-cell RNA-seq
datasets to reveal the biological insights for NSGA-II-ECFE
and MOEA/D-ECFE. Supplementary Table S19 summarizes
the detailed dataset description, including the number of genes,
single cells, and cancer subtypes. We measure the performance
of each method on each dataset by NMI and ARI. The experi-
mental results are tabulated from Supplementary Table S20 to
Table S25. Besides, the comparison performances of different
algorithms are shown in Fig. 12, in which we choose each
top two algorithms from those three perspectives including
the clustering, the ensemble clustering, and the multiobjective
to compare with the proposed algorithms. As shown in Fig.
12 (a), NSGA-II-ECFE and MOEA/D-ECEFE is superior to
those algorithms on three single-cell RNA-seq datasets. For
Pollen, NSGA-II-ECFE and MOEA/D-ECFE is slightly worse
than LWEA, U-SENC, and MOSC; for Ting, MOSC performs
better than the proposed algorithms; for the rest datasets, the
proposed algorithms enhance the clustering performance by
a certain margin, especially Ginhoux with 63% improvement
mostly. Meanwhile, observing from Fig. 12 (b), it can be found
that the proposed algorithms perform better than other methods
on most datasets, except for Pollen and Ting.

To assess the clustering performance of the proposed
algorithms in a visualization manner, we display the heatmap
of Buettner and Deng with the estimated clustering from
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clustering obtained by the NSGA-II-ECFE.

NSGA-II-ECFE in Fig. 13. As can be seen from Fig. 13, we
find that the proposed algorithms can separate those single-cell
RNA-seq data into several cell types by their gene expression
profile, identifying the true data structure. In conclusion, the
proposed algorithms are capable of learning cell-to-cell simi-
larities from the gene expression data and capturing different
representations of various single-cell datasets.

VI. CONCLUSION

In this study, we present a novel evolutionary mul-
tiobjective clustering with ensemble to cluster the patient
stratification data in an effective and robust manner. It inte-
grates an ensemble fitness evaluation (ECFE) method with an
optimization framework (NSGA-II or MOEA/D) to generate
the final consensus clustering. Four cluster validity indices,
including DB, Dunn, cohesion, and stability, are employed
to guide the evolution. In ECFE, to calculate the objective
function fitness of the ensemble, a consensus clustering is
generated from the ensemble. In order to produce the con-
sensus clustering, a hybrid co-association matrix is proposed
to represent the hierarchical structures of the patient strat-
ification data, then, a suitable basic clustering algorithm is
selected dynamically and employed on that similarity matrix.
Several experiments are conducted to verify the performance
of the proposed algorithm. The proposed algorithm provides
significate advantages over other methods in terms of NMI
and ARI, including seven clustering methods, twelve ensemble
clustering methods, and two multiobjective clustering algo-
rithms on fifty-five synthetic datasets and thirty-five patient
stratification datasets. In addition, the time complexity and
sensitivity analysis are analyzed to validate the performance

of NSGA-II-ECFE and MOEA/D-ECFE from various perspec-
tives. Moreover, we also applied them to analyze five cancer-
related single-cell RNA-seq datasets. The results demonstrate
that the proposed algorithms can identify cancer subtypes
clearly. The source code of the proposed algorithm is available
at https://github.com/wangyh082/ECFE.

In our future work, we plan to investigate the selection
strategy in multiobjective optimization to choose the suitable
solutions from those non-dominated consensus clusterings.
Meanwhile, we would like to apply the proposed algorithms
to other biological problems in the real world.
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