
 

 
Abstract—Extensive research results have shown that 

animals like pigeons and turtles can use geomagnetic 
information for long-distance migration and homing. This 
article studies the bionic navigation method inspired by 
magnetotaxis behavior without prior knowledge. The 
problem of bionic geomagnetic navigation is generalized 
as an autonomous search of navigation path under the 
excitation of geomagnetic environment. The geomagnetic 
gradient-assisted evolutionary algorithm for long-range 
underwater navigation is proposed. In order to optimize the 
navigation path, the heading angle predicted by the 
geomagnetic gradient is used to constrain the sample 
space in the evolutionary algorithm. Then, according to the 
principle of multi-parameter simultaneous convergence, 
the evaluation function is improved to enhance the 
reliability and accuracy of the navigation path. Simulations 
of the algorithm before and after improvement are carried 
out based on the data retrieved from the Enhanced 
Magnetic Model (EMM). The performance of the improved 
method is evaluated and verified in the case of the area 
with normal geomagnetic field (GF), geomagnetic anomaly 
area and multiple destinations. The simulation results 
show that the search efficiency and the straightness of the 
navigation path are greatly improved. The reason is that 
the constraint of sample space reduces the randomness in 
the process of navigation path search, and the improved 
evaluation function can evaluate the quality of samples 
more accurately. The improved algorithm also has good 
performance in the geomagnetic anomaly area, which 
indicates the potential application in the future.   

 
Index Terms—Evolutionary algorithm, Bionic geomagnetic 

navigation, Multi-objective optimization, Navigation path 
searching, Geomagnetic field 
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I. INTRODUCTION 

UTONOMOUS Underwater Vehicles (AUVs) can carry 

out comprehensive exploration of marine resources and 

other operating in dangerous waters. They have been applied in 
civil and military applications, such as oil resources surveys, 

submarine pipeline surveys, marine environment survey, and 

underwater equipment maintenance [1-3]. The information of 

accurate position, speed, and attitude provided by underwater 

navigation technology is the key to determine whether the AUV 

can reach the desired location accurately, complete the task 

successfully and return safely [4]. Unlike navigation systems of 

land or air carriers, the rapid attenuation of radio waves in the 

underwater environment makes the radio navigation system 

represented by the Global Navigation Satellite System (GNSS) 

no longer suitable for AUV [5]. Navigation has become one of 

the significant challenges in operations AUV.  
At present, the common underwater navigation technologies 

mainly include inertial navigation, underwater acoustic 

positioning and navigation, and geophysical navigation [6-8]. 

Although inertial navigation is an autonomous navigation with 

strong concealment, its positioning error accumulates with time 

due to the error drift of inertial devices, which is not suitable for 

long-distance navigation [9, 10]. Acoustic navigation 

(ultra-short baselines, short baselines, and long baselines) can 

provide the location information and has the advantages of high 

precision and no accumulated error. Nonetheless it requires the 

placement of transponders or signal sources underwater in 
advance, which is not suitable for applications such as ocean 

voyages [11]. Geophysical navigation technologies are based 

on the physical characteristics of the earth, mainly including 

terrain matching, geomagnetic matching and gravity matching, 

with the characteristics of strong autonomy, good concealment, 

and unrestricted by area and time [12-14]. The Terrain-Aided 

Navigation (TAN) algorithms have been reported to be 

successful in many applications. In [15], a novel algorithm 

combined with the terrain contour matching (TERCOM) 

algorithm and particle filter is proposed, which is reliable and 

achieves relatively high positioning accuracy in the case of 

large initial position errors and large altimeter measurement 
noises. Xiaojiao Ma [16] introduces the basic principle, 

composition and technologic application of Geomagnetic 

Aided Inertial Navigation System (GAINS). Gravity matching 

algorithm is a crucial technique of gravity aided navigation for 

underwater vehicles. Bo Wang [17] proposes a vector matching 

algorithm considering the correlation between adjacent sample 

points of INS output position. The single point matching 

algorithm used in the vector matching algorithm is based on 
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particle filter, which is robust to the changes of gravity anomaly 

in the matching areas, with more accurate and reliable matching 

results. A matching algorithm combined with an iterated closest 

contour point (ICCP) algorithm and a point mass filter (PMF) is 

proposed in [18], which is better than that of the conventional 

ICCP algorithm and achieves more reliable result than the PMF. 
However, these navigation technologies strongly depend on the 

priori maps, and the problem is the accuracy and completeness 

of the maps are difficult to be ensured for various reasons. 

In recent years, numerous studies have shown that many 

creatures on earth can locate and navigate according to the 

information of the earth's magnetic field [19]. Wilschko's work 

on the eurasian robin found that birds can use the vector 

direction and inclination of the magnetic field to orient 

themselves [20]. In [21], Lohmann found that the initial 

offshore migration of hatchling turtles can be accomplished 

with a suite of straightforward orientation steps involving 

visual cues, wave cues, and a magnetic compass sense. As 
turtles mature, they gain experience with geographic patterns of 

magnetic variation and learn to find goals based on magnetic 

positional information. Salmons can detect geomagnetic 

information, making the migratory route more predictable and 

facilitating movement into favorable oceanic regions [22]. 

Boles and Lohmann [23] carried out a series of experiments and 

found that lobsters can effectively use geomagnetic information 

to complete homing. During the past two decades, tremendous 

progress has been made in unraveling the mechanisms that 

underlie orientation and navigation in creatures.  

The above studies show that many animals can effectively 

use geomagnetic information for navigation, proving that the 

GF is a reliable information source for long-distance movement 

of animals. It is less likely to store complete geomagnetic maps 

in their brains, which provides a biological basis for navigation 

without prior geomagnetic maps. At the same time, there is 

almost a one-to-one correlation between the GF vector and 

every point in near-earth space, which provides a sufficient 

theoretical basis for geomagnetic navigation. Besides, 

geomagnetic navigation is passive guidance with the 

characteristics of strong concealment, anti-interference, the 

error does not accumulate over time, and magnetic sensors are 

small in size and low in power consumption. Therefore, bionic 

geomagnetic navigation has gradually attracted significant 

attention. 

As the name implies, bionic geomagnetic navigation is to 

simulate the process of animals’ long-distance migration. 

Without the prior geomagnetic map, the destination can be 

reached by autonomous search through real-time sensing of 

geomagnetic information [23]. From the perspective of bionic 

navigation, the GF is a multivariate field containing multiple 

geomagnetic feature quantities, each of which has its own 

change law. Thus, bionic geomagnetic navigation can be 

summarized as a search for the geomagnetic multi-parameter 

and multi-targets when geomagnetic elements change law is 

unknown.  

To address this problem, there have been different bionic 

geomagnetic navigation strategies are proposed in literature. 

References [24] and [25] introduced EKF and KF algorithms to 

find shortcuts in geomagnetic space based on the analysis of 

long-distance migration characteristics of animals such as 

pigeons and turtles using geomagnetic information. The 

simulation results show that geomagnetic navigation can still 

be achieved in various interference environments without the 

help of pre-stored geomagnetic and geographic data. However, 

the performance of the method is poor while passing through 

the geomagnetic anomaly areas. The research works have 

confirmed the feasibility of the underwater geomagnetic 

navigation, but navigation strategy in geomagnetic anomaly 

areas and navigation trajectory need to be further optimized. A 

long-distance geomagnetic navigation method based on model 

predictive control was proposed in [26], which calculates the 

optimal control sequence according to magnetic declination 

and magnetic inclination. However, the actual magnetic 

anomaly areas are often more complex and cannot be treated as 

a constant. The magnetic intensity of the weak abnormal area is 

less than 1nT, and the magnetic intensity of the strong abnormal 

area could even reach several times of the main magnetic field. 

Similarly, inspired by animals’ navigation behavior using 
geomagnetic information, Liu proposed a geomagnetic bionic 

navigation method based on timing evolutionary search 

strategy [27]. The objective function of geomagnetic 

multi-parameter is established based on the principle of animal 

magnetotropism. In the course of navigation, the evolutionary 

search mode is adopted to guide the carrier to approach the 

target point. However, the random navigation search method 

leads to the great fluctuation of the heading angle and zigzag 

path, which brings difficulties in engineering applications [28]. 

Meanwhile, the evaluation function is not accurate enough, 

which leads to the deviation of the navigation path from the 

optimal path, resulting in the waste of time and cost. 

To reduce the randomness of carrier motion and improve the 

anti-interference of navigation algorithm, this article develops 

an enhanced evolutionary search algorithm based on the 

geomagnetic gradient. The bionic geomagnetic navigation is 

reduced to a multi-parameter and multi-objective search 

problem. The navigation path is searched based on the 

constraint relationship between the motion path and the 

geomagnetic parameters. With the aid of the geomagnetic 

gradient, the heading angle is predicted based on the principle 

of multi-parameter simultaneous convergence, which is used to 

constrain the sample space. Search the navigation path with 

constrained sample space can reduce invalid search and 

randomness, and consequently accelerate the convergence rate 

of magnetic elements. To search the optimal navigation path, 

the evaluation function in the evolutionary algorithm was 

improved to make the evaluation of each sample more accurate. 

Furthermore, the performance of the improved algorithm in the 

abnormal geomagnetic area is validated via simulations. 

Simulation results show that the algorithm developed can 

successively guide the carrier through the geomagnetic 

anomaly area with anti-interference capability. 

The remainder of the article is organized as follows. Section 

II introduces the mathematical description of the GF and 

formulates the problem of bionic geomagnetic navigation. 

Section III presents an improved evolutionary algorithm to 

solve the convergence of geomagnetic multi-parameter about 
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navigation for AUV. And the convergence performance of the 

new algorithm is analyzed and validated by simulation in 

Section IV. Conclusions are offered in Section V. 

II. FUNDAMENTALS 

A. Description of the geomagnetic field 

The GF is a basic physical field of the earth. Theoretically, 

the geomagnetic vector at any point corresponds to its 

geographical position one by one in the near-earth space [29]. 

The GF is a weak magnetic field, and the strength of the GF is 

usually measured in nanotesla (nT). The average intensity on 

the ground is 5*104 nT, and only about 7*104 nT at the two 

poles where the GF is strongest. The strength of the GF is 

mainly composed of three parts: 

       , = , , ,
m e d

r t r t r t r t B B B B                  (1) 

where  ,
m

r tB  is the main magnetic field, produced by 

large-scale electric currents in the liquid outer core of the earth 

consisting of highly conductive molten irons [30]. The change 

of the main magnetic field is very slow and the time cycle is 

measured on the scale of a thousand years.  ,
e

r tB  is 

geomagnetic anomaly field, generated from magnetized crustal 
rocks, which decaying with increasing height, and hardly 

changes with time.  ,
d

r tB  is called the disturbed magnetic 

field, originating in the magnetosphere and ionosphere. The 

size ranges from 5 nT to 500 nT, which varies dramatically over 

time and is always associated with solar activity [31]. 

To describe the spatial distribution of the GF, the 

geomagnetic vector is decomposed into seven geomagnetic 

elements  , , , , , ,
F H x y z

B B B B B D I  in the geographic coordinate 

system.  
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Fig. 1.  Seven elements of the GF 

As shown in Fig.1, the x-axis is along with north, the y-axis 

is along with east, and the z-axis conforms to the right-hand 

rule. The total strength of the GF is denoted as 
F

B , and its 

projection on the horizontal plane is the horizontal component, 

denoted as 
H

B . 
x

B  and 
y

B  are the projections of 
H

B  in the north 

direction and east direction respectively, and 
z

B  is the 

projection of 
F

B  in the vertical direction, known as the vertical 

component. D is called the magnetic deviation, which is the 

angle between 
H

B  and 
x

B  in the horizontal plane. The angle 

between 
F

B  and the horizontal plane is called magnetic 

inclination, denoted as I. Given three of the seven elements, all 

of them can be calculated by (2). 
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                                (2) 

The properties of the GF have been extensively investigated 

[32, 33]. In general, the GF model described by IGRF12 

(International Geomagnetic Reference Field 12) provides a 
realistic description of the global GF, including all geomagnetic 

elements. The resolution of the GF intensity is 1 nT, and the 

distance resolution is 0.01° in latitude or longitude. This article 

studies in the geomagnetic environment constructed by 

IGRF12, rather than measuring the real GF. As the basis of 

geomagnetic navigation, the uniqueness of the GF is discussed 

in [26]. 

B. Problem description 

The GF is a mixture of multiple elements, and the 

corresponding relationship between multi-parameter 

characteristics and near-earth spatial location provides a 

reliable physical basis for bionic navigation. The geomagnetic 

elements at a position in space can be described as: 

 1 2, , ,
n

B B BB                                 (3)
 

where 
1 2, , ,

n
B B B  are part or all of the geomagnetic elements. 

The carrier navigation process is the parameter convergence 

process from the initial position to the target position. Hence, 
the objective function is established as shown in (4) to describe 

its convergence process and judge whether the destination is 

reached.  

   2

, , ,i k i k i T
f B B B                            (4) 

where 
,i k

B  and 
,i T

B  are the ith geomagnetic elements at time k 

and destination, respectively. Considering the difference in 

magnitude and unit, the objective function is normalized to: 

   
 

,

2
1

,0 ,

1 n
i k

k

i
i i T

f B
F

n B B




B                          (5) 

where 
,0i

B  is the ith geomagnetic element at the initial position. 

When the carrier arrives at the destination, theoretically, the 

objective function is 0.  

The errors between the current position and the destination 

can be assumed as the geomagnetic trend, while the searching 

process is terminated when the error converges to ε. This is 
expressed as:  

 k
F B                                     (6) 

where   is a minimum quantity close to 0, which is set 

according to the navigation accuracy.  
From the point of view of biological magnetism, bionic 

geomagnetic navigation can be regarded as a search behavior 

under the stimulation of various geomagnetic parameters. The 

navigation path is a search result induced by the variation trend 
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of multiple geomagnetic parameters. There is a strong 

restrictive relationship between geomagnetic parameters and 

navigation path. Therefore, the convergence relation of the 

geomagnetic parameters in the course of navigation is 

established based on the geomagnetic trend sensitivity to the 

geomagnetic parameters at the destination. 

III. Algorithm 

To imitate the animals’ long-distance homing, we assume 

two simple preconditions. First, the geomagnetic elements of 

the destination are known before navigation, as the reference to 

judge if the carrier have approach the destination. Second, the 

geomagnetic elements at any position can be obtained by the 

geomagnetic sensors in real-time. 

First of all, the motion model of the carrier is established. 

The carrier can be regarded as a mass point in the navigation 

process based on GF, and its motion model can be expressed as: 

1

1

cos

sin

k k k

k k k

x x L

y y L








  
                                (7) 

where  ,
k k

x y  represents the carrier position at time k. k
  is 

the heading angle at time k, L  is the movement step of the 

carrier. As can be seen from the above motion model, the 

heading angle and the movement step length are the inputs of 

the motion model to drive the carrier close to the target position. 

Among them, the heading angle, which determines the 

movement direction of the carrier, is the key factor. Thus, the 

multi-parameter search process in geomagnetic space can be 

transformed into solving the carrier heading angle. Meanwhile, 

it can be seen from (5) that the search process of multiple target 

geomagnetic parameters in geomagnetic space is essentially a 

multi-objective optimization problem of peak function. 

The evolutionary strategy is an optimization method for 
multi-objective problems proposed by I. Rechenberg and H. 

Sehwefel, who draw lessons from the idea of survival of the 

fittest in biological evolution. In the search process of 

evolutionary algorithm, it simulates the evolutionary law of 

nature and keeps excellent samples while constantly evolving 

and updating the population. The global optimal solution or 

approximate optimal solution is obtained while maintaining 

reasonable population diversity. Group search strategy and 

information exchange among individuals are the main features 

of evolutionary algorithms. The advantage of this algorithm is 

that the search process is not easy to fall into local optimum. 
Moreover, it adopts the natural evolution mechanism to 

represent the complex phenomenon, which can solve the 

difficult problems quickly and reliably. In addition, it is easy to 

be introduced into the existing models, and has strong 

scalability. Hence, this article adopts the evolutionary 

algorithm to solve the problem of multi-objective convergence 

and search the navigation path.  

Combining with the navigation problem, the heading 

angle is selected as the population sample, which represents the 

search solution space of the multi-objective problem. Based on 

the constraint relationship between the navigation path and 

geomagnetic parameters, an evaluation function is established 
to perform posterior evaluation on the currently executed 

sample to update the population. As the population evolves, 

carrier motion parameters gradually evolve in the right 

direction, guiding the carrier toward the destination until the 

completion of navigation.  

In the evolutionary algorithm, however, the probability of 

each sample being selected is the same. The trend of navigation 

search is determined by the proportion of the same individual.  
Samples in the population are often randomly selected in the 

absence of prior information. Only through continuous trial and 

error and adjustment, the population can converge to the target 

solution. Therefore, the randomness of carrier motion is 

inevitable in the initial navigation phase, which impedes 

practical applications. In order to reduce the randomness in the 

motion process, an evolutionary search algorithm based on 

gradient information is proposed. Fig.2 shows the path search 

strategy in the evolutionary algorithm. 
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Fig. 2  Schematic of the navigation search strategy 

In Fig.2, 
k

B  denotes the geomagnetic vector of current 

position at time k, 
T

B  denotes the geomagnetic vector of the 

destination,    k k
S k x y  is the carrier position at time k, and 

k
  is the angle between vectors of  1k k B B  and  T kB B . 

To avoid the disordered search and make the navigation path 

close to the shortest path, the constraint relationship between 

the navigation path and geomagnetic parameters is established 

as shown in Fig.2. The difference of magnetic parameters 

between the destination and the current position is taken as the 

target vector in movement process. In the procedure of path 

search, it should be satisfied that the magnetic parameter 
difference vector of between adjacent positions tracks the target 

vector. Thus, the carrier trajectory is constrained according to 

(8). 

   1 / /
k k T k  B B B B                     (8) 

Projecting vectors  1k k B B  and  T k
B B  into the 

geographical coordinate system respectively, the following 
results can be obtained. 

, 1 ,, 1 ,

, , , ,

j k j ki k i k

i T i k j T j k

B BB B
=

B B B B

 
 

                        (9) 

Therefore, if different geomagnetic elements 

 , 1,2,
i k

B i n  keep the same ratio close to the target 

geomagnetic elements, invalid searches can be avoided and the 
carrier can reach the destination as soon as possible.  

To represent the relationship between geomagnetic 

elements at two adjacent moments, geomagnetic gradient 

information is introduced [35].  
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, ,

, ,

, 1 ,

, 1 ,

cos sin

cos sin

i k i k

j k j k

i k i k B ,x k B ,y k

j k j k B ,x k B ,y k

B B + g + g
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 
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

  
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           (10) 

where 
, ,

, , ,
i k i k j,kB x B y B x B x

g g g g
j,k

are the gradients of 
,i k

B  and 
,j k

B . 

By substituting (10) into (9), the heading angle can be 

obtained： 

, ,

, ,

, , , ,

, , , ,

( ) ( )
arctan

( ) ( )

j k i k

k

i k j k

i k i T B x j k j T B x

j k j T B y i k i T B y

B B g B B g

B B g B B g


     
 
      

  (11) 

For the convenience of expression, the predicted heading 

angle is denoted as 
k . The gradients are obtained by the 

simple decomposition of the changes of geomagnetism 

elements between two successive sampling locations in the east 

and north directions [26]. Thus, the heading angles at step 1 and 

step 2 are set as 0° and 90° respectively, and the geomagnetic 

gradient was calculated through the geomagnetic elements 

measured by magnetic sensors. 
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                        (12) 

The heading angle can be predicted according to the above 

method. However, as the calculation of the gradient is not 

accurate, the error of the predicted heading angle is inevitable, 

which reduces the navigation accuracy. More importantly, the 

prediction method has poor anti-interference and is prone to be 

trapped in the geomagnetic anomaly area, resulting in 

navigation failure. Hence, an evolutionary search algorithm 

based gradient information method is proposed. The 

evolutionary algorithm is a heuristic search algorithm that 

simulates the process of biological evolution in nature. In the 

evolutionary algorithm, the carrier heading angle is taken as the 

population sample. The probability model of each sample can 
be used to simulate the trending movement behavior to 

construct a trending movement system with self-organizing 

ability.  

Although there are errors in the prediction of heading angle 

based on the geomagnetic gradient, it provides an evolutionary 

trend for the population, which greatly reduces the randomness 

of the navigation path search. Therefore, the sample population 

is constrained based on the predicted heading angle in the 

proposed algorithm to reduce invalid search. Furthermore, a 

novel evaluation method is proposed in terms of the search 

strategy shown in Fig.3, to achieve a more accurate evaluation 
of the sample. In the process of sample updating, good sample 

individuals are retained to improve the efficiency of navigation 

path search. The steps and procedures for the algorithm are 

presented as follows.  

Step 1: Sample initialization 

Different from [28], the population no longer contains all the 

heading angle information. Instead, the population is 

constrained based on the predicted heading angle. Before that, 

it is necessary to evaluate the predicted heading angle. It is 

considered that the predicted heading angle is effective when 

certain requirements are met. The evaluation criteria will be 

explored in more detail below. To avoid contingency, the above 

prediction process is repeated many times. The optimal 

prediction result is selected to constrain the population. 

Through the discrete sampling of the heading angle, the set of 

navigation search schemes can be expressed as: 

 1 2, ,...,

R [( ) / D ,( ) / D ]

N

i i

i o o

D R

 

   


   




 
   

            (13) 

where N is population size, D  is sampling interval.   is the 

threshold to constrain sample space, determined by the 

predicted heading angle. o
  is the optimal prediction result. R

i  

is a random integer within [( ) / D , ( ) / D ]
o o      .  

Step 2: Navigation termination condition 

According to the objective function mentioned in Section II 
to determine whether the carrier has reached its destination. If 

so, the navigation process ends. Otherwise, continue with step 

3. 

Step 3: Sample selection 

The sample is selected from the sample population in a 

non-preference manner and the probability of each sample 

being selected is the same. Thus, the probability of the heading 

angle being selected depends on its proportion of the same 

sample. At time k, the probability of population sample 
i

  

being selected is: 

 
 1 1,

( ,k) ,
0,

N

j i j

j i j

i j i j
p

elseN

  
 

   




   




  

 (14) 

Step 4: Sample evaluation 

In the natural environment of natural selection and 

survival of the fittest, each individual's adaptability to the 

environment affects its probability of reproduction. The 
evolutionary algorithm evaluates each sample by fitness 

function, and the individuals with high evaluation can survive, 

while those with low evaluation are eliminated easily, which 

drives the evolution of the population. Therefore, the 

establishment of sample evaluation mechanism is the key 

operator in the evolutionary algorithms, which directly 

determines the success or failure navigation. In the existing 

evolutionary algorithm, the monotone decline of the objective 

function is taken as the evaluation criterion [27, 28]. If the 

objective function at step k+1 is less than step k, it is considered 

that the selected sample is better, and should be propagated; 
otherwise, it should be replaced.  

To analyze the accuracy of the objective function for sample 

evaluation, the distribution characteristics of the objective 

function are shown in Fig. 3. Fig. 3 shows the distribution 

characteristics of the objective function based on the EMM 

with (5° N, 5° E) as the starting point and (10° N, 10° E) as the 

destination. It is obvious from Fig. 3 that the objective function 

decreases gradually as the carrier approaches the destination. 

The optimal navigation scheme satisfies the characteristic of 

monotonic decreasing of objective function. However, there are 

many feasible navigation schemes to satisfy the feature, as 
shown in Fig. 3, including some inferior navigation schemes, 

which make the navigation path deviate from the optimal path 

and even lead to navigation failure. This is because the 

monotone decreasing of the objective function is a necessary 

condition rather than a sufficient condition for navigation path 
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search. Therefore, a new evaluation method is proposed to 

improve the performance of the algorithm. While completing 

the navigation task, it is necessary to improve navigation 

efficiency and reach the destination with a shorter path. 

 

Fig. 3  The distribution characteristics of objective function 

The above analysis shows that the search strategy in Fig.2 

can avoid invalid search and improve the search efficiency. In 

this circumstance, angle 
k

  is zero or close to zero. Thus, the 

evaluation function can be established on the basis of the above 

principles, that is, the samples can be evaluated by observing 

the angle 
k

 .  

   
arccos

T k k+1 k

k

T k k+1 k

- -
φ =

- -

 
   

B B B B

B B B B

                   (15) 

Then, the heading angle predicted is considered valid 

when 
k

  is less than 15°, which is set by data statistics of 

multiple simulations.  

Step 5: Sample update 

Based on the above evaluation criteria, the updating rules of 

sample space are formulated. 

1 1

1 1

5 15 &

0 5 &

k k k p

k k k p

propagate,P = 0.1

propagate,P = 0.3

else update

  
  

 

 

   
   



   (16) 

where 
p

P  denotes propagation ratio, which has a great 

influence on the convergence rate of the population. In the 

process of path searching, on the one hand, evolutionary 

algorithm should keep the good individuals and converge to the 

global optimal solution by the principle of survival of the fittest. 

On the other hand, it is necessary to keep the population 
diversity, expand the search space and avoid premature 

convergence. For different optimization problems, it is 

common practice to determine 
p

P  through repeated 

experimental analysis. 

Different from other optimization problems, in bionic 

navigation, the carrier is required to adjust the navigation 

search scheme after trial and error due to the sample posterior 

evaluation. Hence, the rapid convergence of population is 

conducive to reduce the randomness of the carrier movement. 

As shown in (15), different reproduction rates are set to 

accelerate population convergence on the basis of sample 

evaluation. 
p

P  is set by data statistics of multiple simulations. 

When the condition    1 1& 15
k k k

      is satisfied, it is 

considered that the carrier approaches the destination, and the 

sample is an excellent search scheme. Furthermore, other 

individuals were randomly selected according to the 

propagation ratio and replaced by the excellent sample. 
Otherwise, the carrier is considered to be far away from the 

destination, and the sample would lead to an inferior search 

path, which is replaced by a randomly generated sample. With 

the search of the navigation path, the sample space also tends to 

evolve in the correct direction. Besides, it's important to note 

that the randomly generated samples are also constrained by 

(13). 

In the course of navigation search, the motion path is not 

only the result of navigation search but also the multi-parameter 

change caused by path search continuously induces carrier to 

the destination. The workflow of the improved evolutionary 
algorithm is shown in Fig.4. 

Start

Predict heading angle

Initialize the 

sample space

Select sample

Save the sample

Replace 

the sample

Update sample space

Y

N

End

N

Y  ?kF B

   1 1& 15 ?k k k    

 

Fig. 4  Flowchart of the improved algorithm 

IV. SIMULATION 

This section performs the simulations to verify the 

performance of the improved algorithm, in which the 

geomagnetic elements are retrieved from the Enhanced 

Magnetic Model (EMM). The standard World Magnetic Model 

uses a spherical harmonic representation to degree and order 12, 

resolving the magnetic field at 3000 km wavelength. In contrast, 

the EMM extends to degree and order 790, resolving magnetic 

anomalies down to 51 km wavelength. The higher resolution of 

the EMM results in significantly improved pointing accuracy. 
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At the beginning of navigation, the heading angles are set as 

0° and 90° respectively, and the geomagnetic gradient is 

calculated from (12). Then, the heading angle is predicted with 

the gradient information. In order to make the prediction more 

accurate, the selected geomagnetic characteristics should have 

distinct statistical characteristics and contain enough 
characteristic information in the navigation search area. 

Reference [36] measured the similarity of the seven 

geomagnetic characteristics by Euclidean distance. In the 

navigation area of the simulations, 
y

B and 
z

B  have the lowest 

similarity. Thus, 
y

B  and 
z

B  are selected to predict heading 

angle by (11). 
x

B , 
y

B  and 
z

B  are selected to search the 

navigation path, which can directly describe the vector 

characteristics of geomagnetism. Meanwhile, the simulation 

parameters are set as shown in Table. 1, in which the settings of 

relevant parameters in the evolutionary algorithm are changed 

for different optimization problems. The influence of each 

parameter on the algorithm performance and the optimal 

selection problem can be referred to [37].  

In the improved algorithm, if the constraint threshold of 

population sample is too large, the randomness of carrier will 
increase, otherwise, the robustness of evolutionary algorithm 

will be reduced. Hence, the population constraint threshold is 

set by data statistics of multiple simulations. In order to get a 

better navigation accuracy, the step size of the carrier is set to 3 

nmile when the objective function  k
F B  is not less than 0.005, 

otherwise, the step size is set to 1.5 nmile. The parameter of 

triggering iteration step reduction can be adjusted according to 

the setting of navigation termination condition. When the 

objective function  k
F B  is less than 0.0001, it is considered 

that the carrier has reached the destination. The setting of 

navigation termination condition is related to the actual 

navigation accuracy requirements.  

To prove the effectiveness of the improved algorithm, in 

addition, simulations are carried out for the navigation 

algorithm before and after improvement. The sample space 

range in the navigation algorithm before improvement is 0 to 

360°, the sample interval is 30°, and the monotone decline of 

the objective function as shown in (5) is taken as the evaluation 

criterion. When  k
F B  is smaller than  -1k

F B , the current 

sample is considered to be a good sample, then the reproduction 

operation is carried out and 
p

P =0.1, otherwise, the sample is 

removed.  

TABLE 1. SIMULATION PARAMETERS 

 
The improved 

algorithm 

The original 

algorithm  

Population size (N) 35 35 

Sampling interval ( D
) 1° 30° 

Threshold for  

ending navigation (  ) 
0.0001 0.0001 

Threshold for constraining 

 sample space (  ) 40° / 

Evaluation function k
   k

F B  

A. Simulation Without Interferences 

In the ideal conditions, the geomagnetic anomaly area is not 

taken into account. In the simulation, the navigation process is 

started from (5° N, 5° E), where geomagnetic components 

 , ,
x y z

B B B are (31349.8 nT, -985.1 nT, -9893.7 nT). The 

destination is (10° N, 10° E), where geomagnetic three 

components are (34052.4 nT, 151.3 nT, -2213.1 nT). The 

improved algorithm is simulated following the flowchart given 

in Fig.4. The carrier moves along the X-axis and Y-axis 

respectively, to calculate the gradient information. Then, 

following to (11) and (15), the heading angle is predicted and 

used as an input to drive the carrier to the next position, and 

then the posterior evaluation of the sample is performed. To 

avoid contingency, repeat the above process three times, that is, 

the first three motion direction of carrier is determined by the 

predicted heading angle. The results are shown in Table 2. 

TABLE 2. PREDICTION AND EVALUATION RESULTS OF HEADING ANGLE 

Heading angle( / ) 45.3473 45.3383 45.3216 

Evaluation results( / ) 8.5303 8.6023 8.6234 

When the evaluation result is less than 15°, the predicted 

value is considered valid. According to the constraint principle 

mentioned in Section III, the sample space initialized 

is: 5 ,85
i
    .  

The simulation results are shown in Fig. 4. Trajectory 1 is the 

search result of the improved algorithm with the destination 

(10.0044° N，9.9631° E), and trajectory 2 is the search path of 

the original algorithm, ending the navigation with (9.9904° N, 

10.0577° E).  

 
Fig. 5  Simulation of geomagnetic navigation without interference 

As expected, trajectory 1 takes a shortcut in navigation 

search and is much flatter than the path searching by the 

algorithm before improvement. As seen in Fig. 5, there are 

some fluctuations in both paths at the initial navigation stage, 

which conforms to the feature of random search without prior 

information. However, due to the constraint of sample space in 

trajectory 1, the fluctuation is far less than trajectory 2, and the 

randomness is greatly improved. Compared to trajectory 2, 
trajectory 1 greatly shortens the navigation path, validating the 

effectiveness and correctness of improved evaluation function. 

To illustrate the effectiveness of the improved algorithm, the 

convergence states of magnetic elements are shown in Fig. 6-7, 
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where Fig. 6 is the convergence curve corresponding to 

trajectory 1, and Fig. 7 is the convergence curve of trajectory 2.  

 

Fig. 6  The convergence curve of geomagnetic elements in trajectory 1 

 

Fig. 7  The convergence curve of geomagnetic elements in trajectory 2 

Three pieces of information can be obtained from the 

convergence curve of the objective function, which are the 

number of iterations, the smoothness of the convergence curves, 

and the convergence speed of each geomagnetic parameter.  
Since the step size of the carrier is the same as shown in (7), 

the length of the search path is determined by the number of 

iteration steps. As can be seen from Fig. 6 and Fig. 7, trajectory 

1 can reach the destination through 261 iterations, while 

trajectory 2 needs 620 iterations. Consequently, the improved 

method can reach the destination with higher search efficiency, 

which is consistent with the results in Fig. 5. 

As the geomagnetism changes slowly, the zigzag search path 

will lead to the convergence curve to be unstable. The sample 

population in the original method contains all the feasible 

solutions. In each iteration, the fitness degree of selected 

individual is evaluated with respect to a given objective 
function. The highly fitted individuals have more opportunities 

to survive, whereas individuals who are less fitted will be 

eliminated. The sample population gradually converges to a 

better state after continuous trial and error adjustment. As 

shown in trajectory 2, however, the trial and error adjustment 

process directly leads to the randomness of path search. This is 

also the reason why the geomagnetic parameter objective 

function in the initial stage of navigation is greater than 1 as 

shown in Fig. 7. 

In the improved method, the sample space is constrained 
based on the geomagnetic gradient information, which 

improves the search efficiency and reduces the randomness of 

path search. Moreover, the smoothness of the path is reflected 

in the convergence of the objective function. Just as the initial 

navigation stage of trajectory 2, the fluctuation of the 

navigation path leads to the uneven convergence of the 

objective function as shown in Fig. 7. Meanwhile, the 

smoothness of the convergence curves corresponds to the 

flatness of trajectory 1, compared with the convergence curves 

in Fig. 6.  

From the constraint relationship between the navigation path 

and the geomagnetic parameters in Fig. 3, it can be seen that if 
the objective function converges along one of the geomagnetic 

parameters, that is, the convergence speed of each magnetic 

parameter is different, the search path will deviate from the 

destination. From Fig. 7, it can be observed that the 

convergence speed of the  y
F B  is significantly faster than the 

other two parameters around 300th step, which corresponding 

to the large deviation of trajectory 2 as shown in the pink dotted 

box in Fig. 4. This is because in the original method, the 

monotone decline of the objective function is taken as the 

evaluation function, which is a sufficient condition for path 

search, but not a necessary condition, as shown in Fig. 3. The 

inaccurate evaluation function directly makes the inferior 

samples remain in the population, which makes trajectory 2 

deviate from the destination. This article improves the 

evaluation function based on the relationship between the 
geomagnetic parameters and the navigation path to achieve the 

simultaneous convergence of the geomagnetic parameters as 

much as possible. As shown in Fig. 6, the uniform convergence 

of each parameter corresponds to a shorter navigation path 

(trajectory 1).  

B. Simulation with geomagnetic anomaly 

The geomagnetic anomaly field is caused by the uneven 

distribution of magnetic rocks in the earth's crust, which leads 

to the different sizes and intensity of the geomagnetism 

anomaly field. The strength of the weak abnormal field is less 
than 1 nT, while the strength of some strong abnormal fields 

can reach to several times of the main EMM. According to the 

superposition principle of magnetic field, the geomagnetic 

anomaly area changes the spatial distribution characteristics of 

normal GF parameters, which may form local extremum area 

and produce strong interference field. It is inevitable to 

encounter geomagnetic anomalies. Therefore, the performance 

of the improved algorithm in the geomagnetic anomaly area is 

analyzed by simulation.  

The variation of geomagnetic anomaly field is complex, 

changeable and unpredictable. According to the influence of 
geomagnetic anomalies on navigation, complex geomagnetic 

anomalies can be divided into two categories: interference with 

geomagnetic features approaching the destination and 

interference with geomagnetic features far away from the 
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destination. Therefore, the geomagnetic anomaly environment 

is constructed by superimposing EMM and multi-modal 

function in this simulation. The multi-peak function selected 

here is the PEAKS function in Matlab, and the geomagnetic 

anomaly area is 6°~8° N and 5.5°~7.5° E. As shown in Fig. 8, 

the geomagnetic anomaly area contains the geomagnetic 
characteristics of approaching and far away from the 

destination respectively, and the intensity of geomagnetic 

anomaly is greater than the geomagnetic intensity of 

destination. 

 

Fig. 8  Variation of geomagnetic strength in navigation area 

The search for the navigation path is shown in Fig. 9, where 

trajectory 1 is the search path of the improved algorithm, 

trajectory 2 is the search path of the original algorithm. 

Trajectory 1 can reach the destination through 296 iterations. In 

trajectory 2, the carrier enters the geomagnetic anomaly area 

after 50 iterations, but the carrier is still in the abnormal area 

when the iteration number has reached 700 times, resulting in 

navigation failure. 

 

Fig. 9  Simulation of geomagnetic navigation with geomagnetic anomaly 

It is obvious from Fig. 8 that the superposition of 

geomagnetic anomaly area and normal geomagnetic field 
results in the change of constraint relationship between 

geomagnetic parameters and navigation path. The objective 

function is no longer monotone decreasing. Therefore, in the 

original algorithm, the samples cannot be correctly evaluated, 

which makes the population no longer converge, and the carrier 

falls into chaotic search state. Instead of falling into the 

abnormal area, the improved algorithm overcomes the 

interference of the abnormal field and leaves the abnormal area. 

In the improved algorithm, the sample space is restricted based 

on the assistance of geomagnetic gradient, which greatly 
reduces the invalid search of the carrier, so that the carrier can 

leave the abnormal area. After the carrier goes out of the 

abnormal area of GF, the correct heading can be quickly 

re-searched to guide the carrier to the destination. 

Similarly, the convergence states of objective function are 

shown in Fig. 10-11. As shown in Fig. 10, objective function no 

longer converges when passing through the abnormal area. It 

can be concluded that the constraint rule between navigation 

path and geomagnetic parameters is not applicable to the 

geomagnetic anomaly area. From the definition of the objective 

function shown in (5), it can be known that the dramatic 

decrease of  x
F B  and  z

F B  in Fig. 10 is due to the fact that 

the characteristics of the geomagnetic anomaly area passed by 
the carrier are closer to those of the destination. The increase of 

 y
F B  is due to the greater difference between the 

geomagnetic characteristics of the anomaly area and that of the 

destination. It is concluded that the performance of the 
objective function varies with the characteristics of the 

geomagnetic anomaly. The objective function of trajectory 2 in 

Fig. 11 is no longer convergent due to the unordered searching. 

The objective function changes with the change of search path. 

 By comparing the convergence curves of Fig.10 and Fig.11, 

it can be found that the key to leaving the abnormal area is 

whether the objective function can break through the limitation 

of evaluation function. In the original algorithm, the samples 

are updated according to the original evaluation criteria. As the 

constraint relationship between geomagnetic parameters and 

the navigation path changes in the geomagnetic anomaly area, 

the evaluation criteria cannot accurately evaluate the samples, 
which makes the original algorithm fall into a disordered search 

state. However, the improved algorithm with the constrained 

sample space can overcome the change of the constraint 

relationship between the geomagnetic elements and the path, so 

as to get out of the abnormal area. 

 

Fig. 10  The convergence curve of geomagnetic elements in trajectory 1 
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Fig. 11  The convergence curve of geomagnetic elements in trajectory 2 

C. Simulation with multi-destination navigation 

In practical applications, there may be multiple destinations 

to visit with varying missions. In the simulation, the feasibility 

and effectiveness of the multi-destinations are verified. In the 
simulation, the navigation is started from (2° N, 2° E), and the 

destinations are (3° N, 8° E), (8° N, 9° E), and (7° N, 3° E), 

respectively. Then the carrier returns to the starting point. In 

simulation, the performances of the improved algorithm with 

the old one are compared, and simulation condition settings are 

shown in Table 1. The simulation results are shown in Fig. 12, 

where trajectory 1 is the search path of the improved algorithm, 

trajectory 2 is the search path of the original algorithm. 

Compared with trajectory 2, trajectory 1 can visit each 

destination under a shortcut path during the navigation. 

Moreover, it’s worth noting that navigation accuracy is related 

to the judgment condition of navigation termination and 
magnetic sensor performance. When the carrier arrives near the 

destination, the method can be combined with other navigation 

methods, such as the gravity-assisted method and terrain-based 

navigation techniques, to improve the navigation accuracy. 

 

Fig. 12  Simulation with multi-destination navigation 

In order to evaluate the performance of the search algorithm 

more accurately, it is very important to give a reasonable 

evaluation index. Since the step length of the carrier is the same 

in the algorithm before and after the improvement, the length of 

the path is determined by the number of iteration steps. 

Moreover, it can be seen from (7) that the search of the 

navigation path depends on the optimization solution of the 

heading angle 
k

 . Therefore, the statistical characteristics of 

the heading angle can reflect the straightness of the navigation 

path. In order to analyze the effectiveness of the improved 

algorithm, 200 simulation results are analyzed, including the 

average of iteration steps, average and variance of heading 

angle, as shown in Fig. 13. It should be noted that the target 

value of heading angle is calculated from the actual 

geographical location. 

 

Fig. 13  The statistical chart of simulation results 

It can be seen from Fig.13 that the number of iteration steps 

of the improved method is smaller than that of the original 

method, and the number of iterative steps is reduced by 27.29% 

through quantitative analysis. From the average chart of the 

heading angle, moreover, it is can be known the optimized 

solution of the heading angle by the improved method is closer 

to the target value. The variance chart of the heading angle 

shows that the improved method has a smaller dispersion of the 

heading angle, which directly determines the stability of the 

navigation path. The improved method not only improves the 
efficiency of path search, but also greatly improves the stability 

of the path, which is more convenient for practical application. 

In conclusion, in the absence of the priori geomagnetic 

information, the bionic navigation algorithm based on 

evolution strategy combines multi-objective solution with 

navigation motion to simulate biological magnetotaxis. In the 

course of navigation path search, the search of favorable 

navigation motion parameters got rid of the limitation that 

geomagnetic navigation must have a priori geomagnetic map. 

The effectiveness of the improved algorithm is verified by 

simulation.  

V. CONCLUSION 

This article proposed a geomagnetic gradient-assisted 

multi-objective evolutionary search algorithm for long-distance 

underwater navigation. Taking the geomagnetic elements of 

destination as the target, the efficient and fast path search is 
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carried out in the absence of a priori geomagnetic information 

to realize long-distance geomagnetic autonomous navigation. 

The feasibility of the improved algorithm is verified based on 

the data retrieved from the EMM in real-time. Aiming at the 

problems of inefficient search and winding navigation path, the 

heading angle predicted by geomagnetic gradient information 
is used to constrain the sample space of the evolutionary 

algorithm. Meanwhile, the evaluation function is improved to 

enhance the search efficiency and anti-interference, to make the 

navigation path more reliable and accurate. The simulation 

results show that the proposed algorithm can successfully guide 

the carrier to the destination and has good performance under 

the interference of geomagnetic anomalies. Compared with the 

evolutionary method before improvement, the search efficiency 

of navigation path is greatly improved, which makes the 

navigation path more straight and convenient for practical 

application. It should be noted that navigation accuracy is 

related to navigation termination conditions and magnetic 
sensor performance. The slow change of geomagnetic 

information with geographic location determines that this 

method is more suitable for long-distance navigation 

applications. When the carrier is close to the destination, 

consider combining it with other navigation methods to obtain 

higher navigation accuracy. The research of bionic navigation 

is not only to reveal the behavior mechanism of birds, fishes 

and other organisms, but also to provide theoretical reference 

for AUV navigation application. It is possible to make the AUV 

navigation system have high autonomy and environmental 

adaptability. Although the algorithm has the ability to represent 
the motion behavior of AUV, it does not explore and reveal the 

internal mechanism deeply. In the future, it can continue to 

improve the algorithm or combine with other navigation 

methods to make AUV complete the navigation task more 

efficiently. 
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