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Abstract—This paper addresses the source location problem by 

using time-difference-of-arrival (TDOA) measurements. The two-

stage weighted least squares (TWLS) algorithm has been widely 

used in the TDOA location. However, the estimation accuracy of 
the source location is poor and the bias is significant when the 
measurement noise is large. Owing to the nonlinear nature of the 

system model, we reformulate the localization problem as a 
constrained weighted least squares problem and derive the 
theoretical bias of the source location estimate from the maximum-
likelihood (ML) estimation. To reduce the location bias and 

improve location accuracy, a novel bias-reduced method is 
developed based on an iterative constrained weighted least squares 
algorithm. The new method imposes a set of linear equality 
constraints instead of the quadratic constraints to suppress the 

bias. Numerical simulations demonstrate the significant 
performance improvement of the proposed method over the 
traditional methods. The bias is reduced significantly and the 
Cramér–Rao lower bound accuracy can also be achieved. 

 
Index Terms—TDOA, Bias reduction, weighted least squares, 

maximum-likelihood estimation. 

 

I. INTRODUCTION 

Source location via time-difference-of-arrival (TDOA) 

measurements has drawn considerable attention thanks to its 

importance in the applications of sensor networks, radar, and 

underwater navigation[1][2]. Compared with the location method 

based on the time-of-arrival (TOA), the TDOA-based 

localization has the advantage that there is no need to 

synchronize sensor clocks with that of the target[3]. 

The TDOA-based target localization problem is essentially 

an optimization problem. It suffers from high nonlinearity and 

many linear methods have been used in the source location[4]. 

Among the existing methods, the two-stage weighted least 

squares (TWLS) algorithm is well known for its low 

computational complexity and proven approximate efficiency[5]. 

In recent years, some improved methods have been proposed. 
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An improved algebraic solution for TDOA localization in the 

presence of sensor position errors was proposed by Liu et al.[6] 

An efficient estimator for TDOA-based source localization was 

proposed[7]. It could achieve the Cramer-Rao lower bound 

(CRLB) accuracy with the minimum number of sensors. 

Besides, the hybrid systems that combine TDOA and other 

noisy measurements also draw considerable attention. A two-

step least-square location estimator was developed for a hybrid 

TDOA/angle-of-arrival (AOA) location scheme and it gives a 

much higher location accuracy than TDOA only location[8]. For 

the frequency difference of arrival (FDOA)/TDOA-based 

localization system, a weighted least-squares minimization 

method was employed, which did not require initial solution 

guesses to obtain a location estimate[9]. Noroozi et al[10] 

proposed an improved algebraic solution using TDOA and 

FDOA and their solution was proved to be less time-consuming 

than the traditional method. Passive coherent locator (PCL) is 

usually used in the radar system. A new fusion strategy was 

performed at the signal processing level based on the 

TDOA/PCL measurements[11]. The theoretical performance of 

the above hybrid systems gains achievable over the localization 

technique using only one kind of measurements. All of these 

methods can lead to a closed-form solution and attain the CRLB 

performance at low and moderate noise levels. 

However, the performance of the closed-form solution will 

rapidly degrade as the measurement noise increases. The 

maximum-likelihood (ML) estimation is optimal for the 

TDOA-based localization problem. The challenge of the ML 

estimation lies in its nonlinear and nonconvex nature. One 

resolution to the problem is the linearization based on Taylor 

expansion[12]. Some efficient iteration-based weighted least 

squares methods were proposed[13][14]. These iteration-based 

methods heavily depend on the quality of the initial estimate. 

The convergence of the ML estimation is not guaranteed and a 

local minimum solution could be attained if bad initial estimates 

are selected. Another resolution to the high nonlinearity issue 
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in the ML problem is the use of the Lagrange multiplier 

technique[15][16][17]. It achieves remarkably better performance 

than the TWLS approach especially for the higher measurement 

noise level[15]. Convex relaxation methods are also applied to 

the TDOA-based source location problem[18][19][20]. They 

generally outperform the closed-form solution methods when 

the noise is considerable. Besides, the semidefinite 

programming (SDP) methods combined with reformulation 

linearization (RLT)[21] and the mixed SDP/ second-order cone 

program(SOCP)[22] were proposed to improve the location 

accuracy. Both of the methods show superior performance over 

the TWLS method. However, the SDP method is more costly in 

terms of computational complexity. 

According to the analysis in [23], the noisy measurement will 

lead to a bias in the closed-form solution. It is necessary to 

reduce the bias to improve the estimation accuracy when the 

measurement noise is large. The weighted total least squares 

(TLS) technique was used to handle the noise correlation 

between the regressor and regressand[24][25]. The bias can be 

reduced significantly but the estimation variance is higher than 

the original solution. In 2012, two methods, namely, “BiasSub” 
and “BiasRed”, were proposed[26]. Some researchers follow the 

idea of [26] and bias-reduced methods considering the sensor 

errors were proposed [27][28]. A bias-reduced nonlinear weighted 

least squares (WLS) method was proposed in [29]. It derived 

the bias of the WLS solution and subtracted it from the solution. 

Generally speaking, the bias-reduced methods can be divided 

into two types: direct deviation refinement (DDR) and 

constrained deviation refinement (CDR). DDR method, such as 

“BiasSub” and the method in [29], requires the covariance 

matrix of the measurements to be known perfectly and the bias 

is subtracted from the WLS solution. CDR method, such as 

“BiasRed”, only needs to know the structure of the noise. Thus, 

“BiasRed” is more practical in the TDOA-based location. To 

our knowledge, the BiasRed method still suffers from the 

nonlinear nature of the ML problem. The framework of the 

BiasRed method is the same as TWLS. It is essentially a two-

stage weighted least squares method. The difference is that a 

quadratic constraint is imposed on the first stage in the  BiasRed 

method. The rest of the algorithm is the same as that of the 

TWLS. The result from the first stage will have bad 

performance when the measurement noise is large and the bias-

reduced method will lead to a worse solution. To mitigate the 

issue, we will explore a method to deal with the problem of the 

nonlinear nature and the bias simultaneously. 

This paper proposes a new bias-reduced method. The bias of 

the ML has been investigated in many papers[29][30][31]. We will 

first analyze the theoretical bias of the ML problem. Note that 

the derivation of theoretical bias here is different from that of 

[30], in which the measurement noise is considered. Then, an 

iterative constrained weighted least-squares algorithm is 

developed to handle the nonlinear and bias-reduced problem. 

Our goal is to improve the performance of the TDOA-based 

localization in the case of large measurement noise. The main 

contributions of the paper are twofold. One is that we derive the 

theoretical bias of the source location estimate from the ML 

estimation. The other is that we propose a bias-reduced method, 

which outperforms the traditional methods especially in the 

case of large measurement noise. 

The structure of the paper is as follows. The first section is 

the introduction and includes the current research status and the 

contributions of the paper. The second section analyzes the 

TDOA positioning method and bias. The third section gives the 

detailed derivation of the bias-reduced method. The fourth 

section verifies the effectiveness of the proposed algorithm 

through simulation. The last section presents summary and 

future prospects. The main symbols and notations used are 

shown bellows. 
TABLE I  

NOMENCLATURE 

Symbol Explanation 

M Number of sensors 𝒔𝑖 Position of the ith sensor 𝐮𝑜 The true source location N The system dimension 𝑟𝑖1 
Range difference between sensor i and the 

reference sensor 𝑟𝑖 Range between sensor i and the source 𝒏 TDOA noise vector 𝑛𝑖1 Measurement noise with respect to 𝑟𝑖1 𝑸 Covariance matrix of  𝒏 �̂�𝟎 The estimated source location 

CRLB the Cramer-Rao lower bound 

tr(*) The trace of the matrix * 

E(*) the expectation of parameter * 𝐼NxN The identity matrix with dimension of N 𝜕 ∗ Differential of the parameter * ⊙ The element-by-element product 𝑾 the weighted matrix ∆ ∗ The matrix * with noise term  𝐽 Cost function of the WLS formulation 𝑩1 
Coefficient matrix relating the noise to the 

residual vector 𝒉, 𝒉𝟏 Regressand of the WLS formulation 𝑮, 𝑮𝟏 Regressor of the WLS formulation 𝒚, 𝜽, 𝑽 Augmented vector 𝒁 Augmented matrix 𝜆 Lagrange multiplier 

 

II. TDOA POSITIONING ANALYSIS 

A. System model 

Consider a scenario of M passive sensors with known 

positions to locate the source position in N-dimensional (N = 2 

or 3) space. The position of the ith sensor is known and denoted 

by 𝒔𝑖  (𝑖 = 1,2,3, … 𝑀). The source location is unknown and 

denoted by 𝒖𝑜 . In general, the first sensor (𝒔1 ) is usually 

selected as the reference. The actual TDOA measurement, 

denoted by 𝑟𝑖1, between sensor pairs i and 1 is 𝑟𝑖1 = 𝑟𝑖 − 𝑟1 + 𝑛𝑖1 (1) 

where 𝑟𝑖 = ‖𝒖𝑜 − 𝒔𝑖‖, (𝑖 = 2,3, … 𝑀). 𝑛𝑖1 is the measurement 
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noise. It is assumed that the TDOA noise vector 𝒏 =[𝑛21 ⋯ 𝑛𝑖1]  is zero-mean Gaussian distributed with 

covariance matrix 𝑸 = 𝐸𝑛(𝒏𝒏𝑻). Note that 𝑟𝑖1  is actually the 

range difference which is the TDOA multiplied by the known 

signal propagation speed c. We shall use time differences and 

range differences interchangeably throughout the paper as they 

are differed by a constant scaling factor. 

According to the analysis in [5], the squared distance 

between the source and sensor i can be simplified as 𝑟𝑖12 + ‖𝒔1‖2 − ‖𝒔𝑖‖2 + 2(𝒔𝑖 − 𝒔1)𝑇𝒖𝑜 + 2𝑟𝑖1‖𝒖𝑜 − 𝒔1‖= 2‖𝒖𝑜 − 𝒔𝑖‖𝑛𝑖1 + 𝑛𝑖12  
(2) 

Taking all the TDOA measurements into consideration, (2) 

can be extended as follows. 𝒉 − 𝑮𝒚 = 𝑩1𝒏+ 𝒏 ⊙ 𝒏 (3) 

where 𝒉 = [ 𝑟212 + ‖𝒔1‖2 − ‖𝒔2‖2⋮𝑟𝑀12 + ‖𝒔1‖2 − ‖𝒔𝑀‖2], 

𝑮 = −2 [ (𝒔2 − 𝒔1)𝑇 𝑟21⋮ ⋮(𝒔𝑀 − 𝒔1)𝑇 𝑟𝑀1], 𝒚 = [𝒖𝑜𝑇 𝑟1]𝑻, 𝑩1 = 2𝑑𝑖𝑎𝑔([𝑟2 … 𝑟𝑀]) . 

and “⊙” denotes the element-by-element product. 

Let the weighted matrix 𝑾 = (𝑩1𝑸𝑩1𝑇)−1  and define the 

cost function 𝐽(𝑦) as follows. 𝐽(𝒚) ≜ (𝒉 − 𝑮𝒚)𝑇𝑾(𝒉 − 𝑮𝒚) (4) 

In (4), the unknown parameter in 𝑩1 can not be obtained in 

advance. We adopt an iterative approach. The matrix 𝑩𝟏  is set 

as an identity matrix. Then a rough solution 𝒚 can be obtained 

With the solution 𝒚 , then 𝑩1  and 𝑾  can be determined. In 

general, obtaining an approximation of the weighted matrix 𝑾 

is sufficient to obtain the exact final solution. As the minimum 

cost function (4) is not sensitive to the noise in the weighted 

matrix. 

Considering the relationship between 𝒖𝑜 and 𝑟1, (4) can be 

reformulated as a constrained optimization problem. 𝑚𝑖𝑛(𝒉 − 𝑮𝒚)𝑇𝑾(𝒉 − 𝑮𝒚) 

s.t. 𝑟1 = ‖𝒖𝑜 − 𝒔1‖ 
(5) 

B. Constrained weighted least squares solution 

A general solution to (5) is the two-stage weighted least 

squares[5]. However, it suffers from high nonlinearity and large 

measurement noise. A constrained weighted least-squares 

solution will be analyzed. 

To be able to combine the constraint with the cost function 

in (5), (𝒖𝑜 − 𝒔1)  in the constraint should be treated as one 

vector. The first estimated parameter in 𝒚 should be changed 

from 𝒖𝑜 to 𝒖𝑜 − 𝒔1. 

Thus, we rewrite (3) as 𝒉𝟏 − 𝑮𝟏𝜽 = 𝑩1𝒏+ 𝒏 ⊙ 𝒏 (6) 

where 𝜽 = [(𝒖𝑜 − 𝒔1)𝑻 𝑟1]𝑻. 𝒉𝟏 = [ 𝑟212 − (𝒔2 − 𝒔1)𝑇(𝒔2 − 𝒔1)⋮𝑟𝑀12 − (𝒔𝑀 − 𝒔1)𝑇(𝒔𝑀 − 𝒔1)], 
𝑮𝟏 = −2 [ (𝒔2 − 𝒔1)𝑇 𝑟21⋮ ⋮(𝒔𝑀 − 𝒔1)𝑇 𝑟𝑀1] 

Then, the optimization problem given in (5) can be 

reformulated as follows. 𝐽(𝜽) = 𝑚𝑖𝑛(𝒉𝟏 − 𝑮𝟏𝜽)𝑇𝑾(𝒉𝟏 − 𝑮𝟏𝜽) 

s.t. 𝜽𝑻𝚺𝜽 = 0 
(7) 

Where 𝚺 = diag(1 1 −1). (𝑁 = 2)  

or 𝚺 = diag(1 1 1 −1). (𝑁 = 3) 

We apply the Lagrange multiplier technique to find the 

solution to the optimization problem given in (7). It can be 

reformulated as follows. 𝐿(𝜽, 𝜆) = (𝒉𝟏 − 𝑮𝟏𝜽)𝑇𝑾(𝒉𝟏 − 𝑮𝟏𝜽) + 𝜆𝜽𝑻𝚺𝜽 (8) 

The estimate of θ is obtained by differentiating 𝐿(𝜽, 𝜆) 

respect to θ and then equating the results to zero: 𝜕𝐿(𝜽, 𝜆)𝜕𝜽 = 2(𝑮1𝑇𝑾𝑮𝟏 + 𝜆𝚺)𝜽 − 2𝑮1𝑇𝑾𝒉𝟏 = 𝟎 (9) 

The solution to (9) is �̂� = (𝑮1𝑇𝑾𝑮𝟏 + 𝜆𝚺)−1𝑮1𝑇𝑾𝒉𝟏 (10) 

where �̂� is the estimated solution of (9). 𝑮1𝑇𝑾𝑮𝟏 + 𝜆𝚺 is a symmetric matrix. Substituting (10) into 

the constraint 𝜽𝑻𝚺𝜽 = 0 yields. 𝒉𝟏𝑻𝑾𝟏𝑻𝑮𝟏(𝑮1𝑇𝑾𝑮𝟏 + 𝜆𝚺)−1𝚺(𝑮1𝑇𝑾𝑮𝟏 + 𝜆𝚺)−1𝑮1𝑇𝑾𝒉𝟏= 𝒉𝟏𝑻𝑾𝑇𝑮𝟏𝚺−𝟏(𝑮1𝑇𝑾𝑮𝟏𝚺−𝟏+ 𝜆𝑰)−1(𝑮1𝑇𝑾𝑮𝟏𝚺−𝟏 + 𝜆𝑰)−1𝑮1𝑇𝑾𝒉𝟏= 0 

(11) 

where 𝑰 is a (𝑁 + 1) × (𝑁 + 1) identity matrix. 𝜆  is calculated by eigenvalue factorization method and 𝑮1𝑇𝑾𝑮𝟏𝚺−𝟏 can be factorized as follows. 𝑮1𝑇𝑾𝑮𝟏𝚺−𝟏 = 𝑼𝚲𝑼−1 (12) 

where 𝚲 = diag(𝜂1 … 𝜂𝑁+1). 

Substituting (12) into (11), the polynomial equation 

concerning 𝜆 can be obtained as follows. 𝑓(𝜆) = ∑ 𝑝𝑖𝑞𝑖(𝜆 + 𝜂𝑖)2𝑁+1
𝑖=1  (13) 

where 𝒑 = [𝑝1 … 𝑝𝑁+1] = 𝑼𝑇𝚺−𝑻𝑮1𝑇𝑾𝒉𝟏  

and 𝒒 = [𝑞1 … 𝑞𝑁+1] = 𝑼−1𝑮1𝑇𝑾𝒉𝟏. 

It can be efficiently solved by finding the roots of a 

polynomial equation[15]. Substituting the real 𝜆  into (10) 

provides the estimated value of 𝜽, which is the optimal solution 

that minimize 𝐽(𝜽) while satisfying the constraint. 

C. Bias analysis 

According to the analysis in [23], the bias is mainly caused 

by two factors. One is the nonlinearity issue in the ML problem 

and the other is the noisy measurement. Both of them will be 

considered in the paper. 

The detailed derivation process is shown in the appendix. 

The bias of the constrained weighted least-squares solution 

is as follows. 𝐸𝑛(∆𝒖𝟎) = 𝐸𝑛(𝜶) + 𝐸𝑛(𝜷) (14) 

where 𝐸𝑛(𝜶) is given by (44) and 𝐸𝑛(𝜷) is given by (48). 

From (14), the bias of the constrained weighted least-squares 

solution is significant when the measurement noise is large. 

To improve the positioning accuracy, the estimation bias 

should be reduced. 

III. ITERATIVE CONSTRAINED WEIGHTED LEAST SQUARES 

METHOD FOR BIAS REDUCTION 

The bias of the ML problem is theoretically analyzed in 
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section II. In the case of large measurement noise, the bias is 

significant. We will introduce a novel bias-reduced method, 

which is different from the existing methods. 

The original closed-form solution minimizes 𝑚𝑖𝑛(𝒉𝟏 − 𝑮𝟏𝜽)𝑇𝑾(𝒉𝟏 − 𝑮𝟏𝜽) 

s.t. 𝜽𝑻𝚺𝜽 = 0 
(15) 

We introduce an augmented matrix 𝒁 and 𝑽. 𝒁 = [−𝑮𝟏 𝒉𝟏] 𝑽 = [𝜽𝑻 1]𝑇 
(16) 𝒁 contains measurement noise and it is decomposed as. 𝒁 = ∆𝒁 + 𝒁0 (17) 

where 𝒁0 is a matrix without any measurement noise. ∆𝒁 is the 

noise term, which can be expressed as follows. ∆𝒁 = 2[𝟎(𝑀−1)×𝑁 𝒏 �̃�1𝒏] �̃�1 = 𝑑𝑖𝑎𝑔(𝑟21 … 𝑟𝑖1) 
(18) 

Substituting (18) into (15) yields the cost function 𝐽(𝜽) = 𝑽𝑇𝒁0𝑇𝑾𝒁0𝑽 + 𝑽𝑇∆𝒁𝑇𝑾∆𝒁𝑽 + 2𝑽𝑇∆𝒁𝑇𝑾𝒁0𝑽 (19) 

The third term 2𝑽𝑇∆𝒁𝑇𝑾𝒁0𝑽 vanishes in the expectation 

because ∆𝒁  is zero-mean. Take the expectation of 𝐽(𝜽) to 

obtain the cost function on the average. 𝐸[𝐽(𝜽)] = 𝑽𝑇𝒁0𝑇𝑾𝒁0𝑽 + 𝑽𝑇𝐸[∆𝒁𝑇𝑾∆𝒁]𝑽 (20) 

We regard the second term on the right-hand as a constant 

constraint to the cost function. Thus, we find 𝑽 by 𝑚𝑖𝑛𝑽𝑇𝒁𝑇𝑾𝒁𝑽 

s.t. 𝑽𝑇𝛀𝑽 = 𝑘 
(21) 

where 𝛀 = 𝐸[∆𝒁𝑇𝑾∆𝒁] and constant k can be any value. 𝛀 = 𝐸[∆𝒁𝑇𝑾∆𝒁] = [𝟎𝑁×𝑁 𝟎𝑁×2𝟎2×𝑁 �̃� ] 
(22) 

and �̃� = 4 [ 𝑡𝑟(𝑾𝑸) 𝑡𝑟(𝑾�̃�𝟏𝑸)𝑡𝑟(�̃�𝟏𝑾𝑸) 𝑡𝑟(�̃�𝟏𝑾�̃�𝟏𝑸)] (23) 

The traditional bias-reduced method is based on (21). The 

solution to (21) neglects the constraint relationship between 𝒖𝑜 

and 𝑟1 in the first stage. A second step to reduce the nonlinear 

error is necessary. The drawback of the traditional method is 

that the source location in the first stage suffers from the 

measurement noise and an inaccurate result will lead to a local 

minimum solution in the second stage. 

Thus, an iterative approximation method is developed to 

solve the bias-reduction problem. The new iterative technique 

follows the idea given in [32]. But a different solution to the 

iterative approximation problem is designed in the paper, which 

takes the constant constraint caused by the noisy measurements 

into consideration. 

According to (7) and (21), it can be obtained 𝑚𝑖𝑛𝑽𝑇𝒁𝑇𝑾𝒁𝑽 

s.t. 𝑽𝑇𝛀𝑽 = 𝑘 𝑽𝑻𝚺𝟏𝑽 = 0 

(24) 

where { 𝚺𝟏 = 𝑑𝑖𝑎𝑔([1 1 −1 0]) 𝑁 = 2𝚺𝟏 = 𝑑𝑖𝑎𝑔([1 1 1 −1 0]) 𝑁 = 3 

By using Lagrange multiplier λ, we obtain the auxiliary cost 
function 𝑚𝑖𝑛𝑽𝑇𝒁𝑻𝑾𝒁𝑽 + 𝜆(𝑘 − 𝑽𝑇𝛀𝑽) 

s.t. 𝑽𝑻𝚺𝟏𝑽 = 0 
(25) 

It is difficult to obtain a globally optimal solution. If we 

replace one of the variable 𝑽 with a known estimate �̂�, the non-

convex constraint becomes a linear equality constraint.  𝑚𝑖𝑛𝑽𝑇𝒁𝑇𝑾𝒁𝑽 + 𝜆(𝑘 − 𝑽𝑇𝛀𝑽) 

s.t. �̂�𝑻𝚺𝟏𝑽 = 0 
(26) 

(26) shows the main difference between the proposed method 

and the traditional method. The linear equality constraint in (26) 

can be reformulated as follows. 𝑷𝑽 = 0 (27) 

where 𝑷 = �̂�𝑻𝚺𝟏 and  �̂� is a known vector. 

Based on the generalized inverse theory of a matrix [33], the 

solution to (27) can be obtained as follows 𝑽 = (𝑰 − 𝑷+𝑷)𝝃 (28) 

where 𝝃 ∈ 𝑹𝑁+1 is any vector. 𝑷+ = 𝑷𝑇(𝑷𝑷𝑇)−1. 

The general solution to (27) can be expressed as 𝑽 = 𝑼𝝃 (29) 

where𝑼 = (𝑰 − 𝑷+𝑷). 

Substituting (29) into (25) yields the cost function 𝐽(𝝃) = 𝑚𝑖𝑛(𝑼𝝃)𝑇𝒁𝑇𝑾𝒁𝑼𝝃 + 𝜆(𝑘 − (𝑼𝝃)𝑇𝛀𝐔𝝃) (30) 

It is an ML problem and the optimal solution 𝝃 satisfies 𝜕𝐽(𝝃)𝜕𝝃 = 2𝑼𝑇𝒁𝑇𝑾𝒁𝑼𝝃 − 2𝜆𝑼𝑇𝛀𝐔𝝃 = 0 (31) 

We have the following relationship 𝑼𝑇𝒁𝑇𝑾𝒁𝑼𝝃 = 𝜆𝑼𝑇𝛀𝐔𝝃 (32) 

We need to minimize 𝜆. Through generalized singular value 

decomposition (GSVD) theory, the optimal solution 𝝃 is the 

eigenvector that corresponds to the minimum generalized 

eigenvalue of the pair (𝑼𝑇𝒁𝑻𝑾𝒁𝑼 𝑼𝑇𝛀𝐔).  

When 𝝃 is obtained, substitute it into (29) and we will have 

the optimal solution 𝑽. 

From the above discussion, we finish the derivation of the 

bias-reduced method. However, there are two problems with 

the above method. 

a) Since 𝑟𝑖  in the matrix 𝑩𝟏  is unknown, 𝑩𝟏  cannot be 

obtained. 

b) The initial value  �̂� in (26) is important and it can not 

be obtained. 

To solve the above problems, we adopt an iterative approach. 

The matrix 𝑩𝟏  is set as an identity matrix. Then a rough 

solution 𝜽 can be obtained through the method in Section II. In 

general, obtaining an approximation of the weighted matrix W 

is sufficient to obtain the exact final solution. As the minimum 

cost function (7) is not sensitive to the noise in the weighted 

matrix. 

When the rough value of 𝜽 is obtained, the matrix 𝑩𝟏 can be 

obtained as follows. { 𝑩1 = 2𝑑𝑖𝑎𝑔([𝑟2 … 𝑟𝑖])𝑟𝑖 = ‖𝜽(1: 𝑁) + 𝒔1 − 𝒔𝑖‖ 𝑖 = 2, … 𝑀 (32) 

The rough value can be selected as an initial value in (26). 

The iterative constrained weighted least squares method is 

formally presented in Algorithm 1. 

Sometimes, the iterative method cannot guarantee 

convergence to the global solution of the ML problem. A 

divergence factor 𝜎 is adopted in the iterative method. If the 

equation diverges, the estimated value will be far from the 

initial estimate and we will take the solution in section II-B as 

step 8 shows. 
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Algorithm 1: A bias-reduced method based on iterative constrained 

weighted least squares 

Step 1. Set 𝑩𝟏 = 𝑰𝑴−𝟏  and solve the constraint WLS optimization 

problem (7) by (9)-(13). A rough value 𝜽𝟎 can be obtained. 

Step 2. Initialize k = 0. Define a convergence threshold 𝜀, a divergence 

threshold 𝜎 and a maximum number of iterations 𝜏 .Reformulate the 

weighting matrix W with 𝜽𝟎. Set the initial value �̃�𝒌 = 𝜽𝟎 and �̂� =[�̃�𝒌𝑻 1]𝑇 

Step 3. Set k=k+1. formulate the approximate linear constraint WLS 

optimization problem (26) with �̂�. 

Step 4. Solve the approximate problem (30) based on GSVD to obtain the 

estimated value of 𝝃. 

Step 5. Obtain the estimate �̃�𝒌+𝟏with 𝝃 according to (29). 

Step 6. Reformulate the weighting matrix W with �̃�𝒌+𝟏. Set �̂� =[ �̃�𝒌+𝟏𝑻 1]𝑇. 

Step 7. If ‖�̃�𝒌+𝟏 − �̃�𝒌‖ < 𝜀 or k> 𝜏, go to step 9, otherwise, go to step 3. 

Step 8 If ‖�̃�𝒌+𝟏 − 𝜽𝟎‖ > 𝜎, set �̃�𝒌+𝟏 = 𝜽𝟎. 
Step 9. 𝒖𝑜 = �̃�𝒌+𝟏(1: 𝑁) + 𝒔𝟏. 

 

IV. SIMULATION TEST AND ANALYSIS 

To verify the effectiveness of the proposed algorithm, 

simulations are performed in this section. We apply the 

proposed algorithm to two localization scenarios and the results 

are compared with that of several existing methods. 1000 Monte 

Carlo simulations are performed for each test. 

Symbols used for the simulations are as follows: 

1) ‘TWLS’ denotes the two-step weighted least squares 

algorithm described in [5]. 

2) ‘BiasRed’ denotes the bias-reduced method described 

in [26]. 

3) ‘L-WLS’ denotes the Lagrange- weighted least squares 

described in section II without reducing the bias. 

4) ‘Proposed method’ denotes the proposed bias-reduced 

method described in section V. 

5) ‘TheoryBias’ denotes the theoretical bias norm 

calculated by ‖Δ𝑢𝑡ℎ𝑒𝑜𝑟𝑦‖  and Δ𝑢𝑡ℎ𝑒𝑜𝑟𝑦  is obtained 

from (14). 

Note: The CDR method has an advantage over the DDR 

method in that it only requires the structure of Q[26]. The 

‘BiasRed’ and ‘The proposed’ both belong to the CDR method. 

Thus, the method in [26] and the proposed method are mainly 

used for comparison. 

The localization accuracy is evaluated in terms of the root 

mean square error (RMSE) and the bias norm of the source 

position, which is defined as follows. RMSE = √∑ ‖�̂�𝑜 − 𝒖𝑜‖2𝐿𝑖=1 𝐿  

BiasNorm=‖∑ �̂�𝑜𝐿𝑖=1𝐿 − 𝒖𝑜‖ 

(33) 

where 𝒖𝑜  denotes the true source position. L=1000 is the 

number of ensemble runs. 

The TDOA noise is Gaussian and its covariance matrix is 

equal to the noise power times 𝑸 = (𝑰𝑁 + 𝟏𝑁𝟏𝑁𝑇 )/2. At a given 

SNR, the noise power is obtained as follows with the signal 

propagation speed 𝑠𝑒𝑐 = 3 × 108m/s. 𝜎𝛿2 = 18𝜋2𝑆𝑁𝑅(16 × 1018) 𝑠𝑒𝑐2 (34) 

A. Scenario 1- The impact of the measurement noise 

We will compare the location performance under the 

condition of different measurement noise. We consider the 

sensor-source geometry, where the sensor network has an array 

of eight sensors and their positions are given by 𝑠𝑖 =[12𝑐𝑜𝑠 (𝜋6 (𝑖 − 2)) 12𝑠𝑖𝑛 (𝜋6 (𝑖 − 2))]𝑇
, (𝑖 = 2, … 8) . The 

reference sensor is located at 𝑠1 = [0 0]𝑇 . The source is 

located at 𝑢0 = [250𝑐𝑜𝑠 ( 𝜋16) 250𝑠𝑖𝑛 ( 𝜋16)]𝑇
.The noise 

power is varied from -15 to 10 dB. 

Comparison of the RMSE and bias norm with different 

measurement noise is shown in Fig. 1 and Fig. 2. 

 
Fig. 1 Comparison of bias norm in the TDOA source location 

 
Fig. 2 Comparison of the RMSE with different measurement noise. 

In Fig. 1, the black line is the theoretical bias calculated by 

(28). Fig. 1 indicates the bias of the location increases with the 

decrease of SNR. The bias of the BiasRed and the proposed 

method can be significantly reduced. For example, when SNR 

= -10 dB, the bias norm from BiasRed and the proposed method 

is 2.60m and 1.76m respectively. The proposed method 

outperforms the BiasRed method in terms of bias-reduction in 

the given condition. When SNR = -15 dB, the bias norm from 
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BiasRed is larger than the theoretical bias norm. However, the 

bias norm of the proposed method is still the lowest among 

these methods. In Fig. 2, the black line is the trace of the CRLB. 

It indicates the proposed method achieves the CRLB accuracy 

very well no matter what value is the SNR. The proposed 

method has the smallest RMSE among all the methods, e.g., 

when SNR=-15dB, the RMSE of the proposed method is 80.3m, 

which is smaller than the TWLS (99.4m), BiasRed (18847.7m), 

and L-TWLS (91.4m). It has an 11.1-m reduction in RMSE as 

compared with the L-TWLS. The RMSE of BiasRed rapidly 

increases when SNR=-15dB. It indicates the BiasRed method 

suffers from the large measurement noise. The result is 

consistent with the analysis in section V. Thus, the proposed 

method has better performance. 

Fig. 3 compares the theoretical and simulation bias norm 

values. The actual bias norm is from the L-TWLS method. The 

bias theoretically found matches very well with the actual bias 

norm. It can be seen in the figure that the proposed method can 

reduce the bias significantly, e.g., when the SNR is -10 dB, the 

proposed method has a 27-m reduction in bias compared to the 

L-TWLS method. It demonstrates the superb performance 

of the proposed bias reduction procedure. 

 
Fig. 3 Theoretical and simulation bias values of TDOA source location 

estimate from the proposed method 

The proposed method is superior to the traditional methods 

especially in the condition of large measurement noise. It can 

reduce the bias significantly and achieve the CRLB accuracy 

very well. 

B. Scenario 2- The impact of the sensor numbers 

This section compares the location performance under the 

condition of different sensor numbers. The sensor network has 

an array of several sensors and their positions are given by 𝑠𝑖 =[12𝑐𝑜𝑠 (𝜋6 (𝑖 − 2)) 12𝑠𝑖𝑛 (𝜋6 (𝑖 − 2))]𝑇
. In this scenario, the 

sensor number (𝑖) is varied from 8 to 12. The reference sensor 

is located at 𝑠1 = [0 0]𝑇 . The source is located at 𝑢0 =[350𝑐𝑜𝑠 ( 𝜋16) 350𝑠𝑖𝑛 ( 𝜋16)]𝑇
.The noise power is set as -6 dB.  

A comparison of the RMSE and bias norm with different 

sensor numbers are shown in Fig. 4 and Fig. 5. 

 
Fig. 4 Comparison of bias norm in TDOA source location estimates from 

different solution methods 

 
Fig. 5 Comparison of the RMSE with different sensor numbers 

Fig. 4 compares the bias norm of the proposed method and 

other methods. The bias of the BiasRed and the proposed 

method can be significantly reduced. However, the bias from 

the BiasRed method is larger than that of the proposed method. 

For example, when the sensor number is 9, the bias norm from 

BiasRed and the proposed method is 3.78m and 1.58m 

respectively. Fig. 5 compares the RMSE of the proposed 

method and other methods. All the algorithms perform exhibit 

reasonable performance when the sensor number is large. The 

proposed method achieves the CRLB performance best no 

matter how the sensor number changes. However, traditional 

methods such as TWLS, BiasRed, and L-TWLS cannot achieve 

the CRLB performance when the sensor number decreases. In 

comparison, the proposed method provides a more stable 

performance both in terms of RMSE and bias. 

Fig. 6 compares the theoretical and simulation bias norm 

values. The actual bias norm is from the L-TWLS method. The 

theoretical bias norm matches very well with the actual bias 

norm. It can be seen in the figure that the proposed method can 

reduce the bias significantly, e.g., when the sensor number is 9, 

the proposed method has a 24.29-m reduction in bias. 
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Fig. 6 Theoretical and simulation bias values of TDOA source location 

estimate from the proposed method 

From the above figures, the proposed method has a more 

stable performance both in bias-reduction and RMSE. The 

RMSE of the proposed method is always closer to the CRLB 

accuracy.  

To analyze the overall computational complexity of these 

methods, the running times of different methods are compared. 
In general, the higher the computational complexity, the longer 

the running time. 

The average running times of different methods as sensor 

number varies are compared. The average running times, using 

MATLAB in a personal computer with core (TM) i5-4460, and 

the main frequency is 3.2 GHz are plotted in Fig. 7. 

 
Fig. 7 Comparison of the average running times of different methods 

It can be seen from Fig. 7 that the traditional TWLS method 

requires the least running time but its estimation accuracy is the 

worst. The proposed method and the traditional BiasRed 

method require the same order of magnitude of running time, 

that is, around 0.7ms and 0.3ms, respectively. Although the 

proposed method requires the most running time, its estimation 

accuracy is the highest. In the engineering aspect, if the 

algorithms are implemented on some chips with high 

configurations, which will meet the requirements of the 

computational efficiency, the proposed method is a suitable 

choice. 

V. CONCLUSION 

We have presented a novel bias-reduced method in the paper. 

The bias of the ML problem is theoretically analyzed in the 

paper. Traditional bias-reduced methods suffer from the high 

nonlinearity of the ML problem and the noisy measurement. 

The CDR methods are usually based on the assumption that the 

estimation parameters are irrelevant and a further step is carried 

out to reduce the nonlinear error. However, the error will 

rapidly increase if the measurement noise is large. The 

proposed method can handle the issue with the problem of the 

nonlinear nature and the bias simultaneously and it is more 

robust as it tolerates better noisy measurements. Several 

scenarios have been illustrated to verify the effectiveness of the 

proposed algorithm. Our algorithm outperforms traditional 

methods especially in the condition of large measurement noise. 

It can reduce the bias significantly and achieve the CRLB 

accuracy very well.  

Although the study proves to be more effective than 

traditional methods when the measurement noise changes, there 

are still many challenges in its practical application. Our future 

work includes the robust localization method in the presence of 

TDOA measurement outliers and the successful application on 

the real scenarios, such as the underwater passive navigation[2]. 

APPENDIX 

According to (7), the ML problem can be expressed as 

follows. 𝐽(𝜽) = 𝑚𝑖𝑛(𝒉𝟏 − 𝑮𝟏𝜽)𝑇𝑾(𝒉𝟏 − 𝑮𝟏𝜽) (35) 

The solution �̂�𝟎 satisfies 𝑃(�̂�𝟎) = 𝜕𝐽(𝜽)𝜕𝒖𝟎 |𝒖𝟎=�̂�𝟎 = 0 (36) 

Due to the nonlinear nature of the estimation problem, the 

Taylor series expansion of 𝑃(�̂�𝟎) at 𝒖𝟎 is 𝑃(�̂�𝟎) ≜ 𝜕𝐽(𝜽)𝜕𝒖𝟎 + 𝜕2𝐽(𝜽)𝜕𝒖𝟎𝜕𝒖𝟎𝑻 (�̂�𝟎 − 𝒖𝟎) = 0 (37) 

Form (35), 𝜕𝐽(𝜽)𝜕𝒖𝟎  can be obtained as 𝜕𝐽(𝜽)𝜕𝒖𝟎 = −2𝑭1𝑇𝑾(𝒉𝟏 − 𝑮𝟏𝜽) (38) 

where 𝑭1 = −2 [ 𝑟21𝝆𝑇 + (𝒔2 − 𝒔1)𝑇⋮𝑟𝑀1𝝆𝑇 + (𝒔𝑀 − 𝒔1)𝑇], 𝝆 = (𝒖𝑜−𝒔1)‖𝒖𝑜−𝒔1‖. 

According to (38), 
𝜕2𝐽(𝜽)𝜕𝒖𝟎𝜕𝒖𝟎𝑻 can be obtained as follows. 𝑯 = 𝜕2𝐽(𝜽)𝜕𝒖𝟎𝜕𝒖𝟎𝑻 = 𝑨 − 𝑩 (39) 

where  𝑨 = 2𝑭1𝑇𝑾𝑭1.             𝑩 = 2 ( ∑ ∑ 𝑿𝑖𝑗𝑛𝑗1𝒇𝑖𝑀−1
𝑗=1

𝑀−1
𝑖=1 + ∑ ∑ 𝑾𝑖𝑗𝜺𝑗𝒇𝑖𝑀−1

𝑗=1
𝑀−1
𝑖=1 ) 

       𝑿 = 𝑾𝑩1, 𝒇𝑖 = −2𝑟𝑖1 𝑰𝑁×𝑁−𝝆𝝆𝑻‖𝒖𝑜−𝒔1‖ , 𝜺 is a column vector formed by the diagonal elements of Q. 𝑯−1 can be approximated as follows[30]. 𝑯−1  = (𝑨 − 𝑩)−1 ≈ 𝑨−1 + 𝑨−1𝑩𝑨−1 (40) 

According to (6), the bias can be expressed as follows. 
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∆𝒖𝟎 = �̂�𝟎 − 𝒖𝟎 ≈ −𝑯−𝟏 𝜕𝑱(𝜽)𝜕𝒖𝟎= 2𝑨−𝟏𝑭𝟏𝑻𝑾(𝑩𝟏𝒏 + 𝒏⨀𝒏)+ 2𝑨−𝟏𝑩𝑨−𝟏𝑭𝟏𝑻𝑾(𝑩𝟏𝒏 + 𝒏⨀𝒏)= 𝜶 + 𝜷 

(41) 

where 𝜶=2𝑨−1𝑭1𝑇𝑾(𝑩𝟏𝒏 +  𝒏 ⊙ 𝒏), 𝜷 = 2𝑨−1𝑩𝑨−1𝑭1𝑇𝑾(𝑩𝟏𝒏 +  𝒏 ⊙ 𝒏). 

Note that 𝑭1 is correlated to the measurement noise 𝒏, which 

should be considered in evaluating the expectation. Thus, we 

can express {𝑭1 = ∆𝑭10 + 𝑭10𝑨 = ∆𝑨 + 𝑨0  (42) 

where ∆𝑨 = ∆𝑭10𝑇𝑾𝑭10 + 𝑭10𝑇𝑾∆𝑭10, 𝑭10 = −2 [𝑟210 𝝆𝑇 + (𝒔2 − 𝒔1)𝑇⋮𝑟𝑖10 𝝆𝑇 + (𝒔𝑖 − 𝒔1)𝑇 ] ,  𝑟𝑖10  (𝑖 = 2, … 𝑀)  is the true 

TDOA measurement. ∆𝑭10 = −2 [ 𝑛21𝝆𝑇⋮𝑛2𝑖1𝝆𝑇] = −2𝒏𝝆𝑇. 

First, consider the measurement noise and 𝜶  can be 

expressed as follows. 𝜶 = 2𝑫𝑩𝟏𝒏 + 2𝑫𝒏 ⊙ 𝒏 − 2𝑨0−1∆𝑨𝑫𝑩𝟏𝒏 +2𝑨0−1∆𝑭10𝑇𝑾𝑩𝟏𝒏  
(43) 

where D=𝑨0−1𝑭10𝑇𝑾. 

Thus, the expectation of 𝛼 is  𝐸𝑛(𝜶) = 2𝑫𝐸𝑛[𝒏 ⊙ 𝒏] − 2𝑨0−1𝐸𝑛[∆𝑨𝑫𝑩𝟏𝒏]+ 2𝑨0−1𝐸𝑛 [∆𝑭10𝑇𝑾𝑩𝟏𝒏]= 2𝑫𝐸𝑛[𝒏 ⊙ 𝒏]− 2𝑨0−1𝑭10𝑇𝑾𝐸𝑛[∆𝑭10𝑹𝒏]+ 2𝑨0−1𝐸𝑛 [∆𝑭10𝑇𝑺𝒏] 
(44) 

where 𝑹 = 𝑫𝑩𝟏, 𝑺 = 𝑾𝑩𝟏 − 𝑾𝑭10𝑫𝑩𝟏. 

Then 𝐸𝑛(𝜶) can be expressed as follows. 𝐸𝑛(𝜶) = 2𝑫𝜺 − 2𝑨0−1𝑭10𝑇𝑾𝜶1 + 2𝑨0−1𝜶2 (45) 

where 𝜶1 = −2 [∑ 𝝆𝑇𝑹𝒊𝑸𝟏,𝒊𝑀−1𝑖=1 ⋮∑ 𝝆𝑇𝑹𝒊𝑸𝑵,𝒊𝑀−1𝑖=1 ],  𝜶2 = −2𝝆𝑇𝑟(𝑺𝑸).  𝜺 is a column vector formed by the diagonal elements of Q. 𝑹𝒊, 𝒒𝑖 and 𝑺𝒊 are the ith column of R, S, and Q. 

Considering the measurement noise, 𝜷 can be expressed as 

follows. 𝜷=2(∆𝑨 + 𝑨0)−1(𝑩0 + ∆𝑩)(∆𝑨 + 𝑨0)−1(∆𝑭10 +𝑭10)𝑇𝑾(𝑩𝟏𝒏 +  𝒏 ⊙ 𝒏) 
(46) 

where 𝑩 = 𝑩0 + ∆𝑩, ∆𝑩 is the noise term. 

Ignoring the third-order and high-order noise term, 𝛽 can be 

expressed as. 𝜷 = 2𝑨0−1𝑩𝒙𝟎𝑨0−1𝑭10𝑇𝑾𝑩𝟏𝒏 (47) 

where 𝑩𝑥0 = 2 ∑ ∑ 𝑿𝑖𝑗𝑛𝑗1𝒇𝑖𝑀−1𝑗=1𝑀−1𝑖=1 . 

Thus, the expectation of 𝛽 can be expressed as follows. 𝐸𝑛(𝜷) = 4𝑨0−1 ∑ 𝑪𝑖𝑀−1
𝑖=1  (48) 

where 𝑪𝑖 = ∑ 𝑿𝑖𝑗𝒇𝒊𝑀−1𝑗=1 𝑨0−1𝑭10𝑇𝑾𝑩𝟏𝑸(𝑗),  𝑸(𝑗) is the ith column of Q. As the high-order noise term in 

(46) is neglected, (48) is not related to the noise in the matrix 𝒉𝟏 and matrix 𝑮𝟏. 

From the above analysis, the bias can be expressed as follows. 𝐸𝑛(∆𝒖𝟎) = 𝐸𝑛(𝜶) + 𝐸𝑛(𝜷) (49) 
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