
1

Random Sketch Learning

for Deep Neural Networks in Edge Computing

Bin Li1,2B, Peijun Chen1, Hongfu Liu1, Weisi Guo3,4, Xianbin Cao5B, Junzhao Du6, Chenglin Zhao1,

Jun Zhang2,5

Abstract—Despite the great potential of deep neural networks
(DNN), they require massive weights and huge computational re-
sources, creating a vast gap when deploying artificial intelligence
(AI) at low-cost edge devices. Current lightweight DNN, achieved
by high-dimensional space pre-training and post-compression,
presents challenges when covering the resources deficit, making
tiny AI hard to be implemented. Here, we report an architecture
named random sketch learning, or Rosler, for computational-
efficient tiny AI. We build a universal compressing-while-training
framework, which, for the first time, learns directly a compact
model and, most importantly, enables computational efficient on-
device learning. As validated on different models and datasets,
it attains substantial memory reduction of 50∼90× (16-bits
quantization), compared to full-connected DNN. We demonstrate
it on low-cost hardware, whereby the computation is accelerated
by >180× and the energy consumption is saved by ∼10×. Our
method paves the way for deploying tiny AI in many scientific
and industrial applications.

I. INTRODUCTION

Deep learning is a powerful tool for solving complex

problems [1], whereby the analytical models are not suffi-

ciently representative to describe real world complexities [2,

3]. Deploying deep neural network (DNN) on edge devices

that are remote from a center server is critical for many

scientific/industrial applications [4, 5, 6], e.g. remote observ-

ing [7, 8], autonomous instruments [9, 10], and mission critical

diagnostics [11, 12]. In such tiny artificial intelligence (AI), a

large number of distributed devices (e.g. edge analytic, smart

sensors) have limited power budget (e.g. tens of milliwatt)

and storage size (∼100 KB on-chip memory) [13, 14, 15,

16, 17]; whilst the cloud server would be inaccessible [4].

Thus, the radical incompatibility between the computation-

intensive DNN (e.g. >2 MB weights, >400 mW power even

for a moderate DNN in handwriting recognition [18]) and the

restricted memory/energy resources presents a substantial chal-

lenge [14, 19, 20]. In this respect, there exists a fundamental

gap in energy efficiency and on-chip memory (related also to

the complexity) when loading AI to low-cost hardware.

1. School of Information and Communication Engineering, Beijing Univer-
sity of Posts and Telecommunications, Beijing, 100876, China.

2. School of Information and Electronics, Beijing Institute of Technology,
Beijing, 100081, China.

3. The Alan Turing Institute, 96 Euston Road, London NW1 2DB, UK.
4. Centre for Autonomous and Cyberphysical Systems, Cranfield University,

MK43 0AL, UK.
5. School of Electronic and Information Engineering, Beihang University,

Beijing, 100191, China.
6. The 6th Research Institute of China Electronics Corporation, Beijing,

102209, China.
Corresponding authors: Bin Li (Binli@bupt.edu.cn) and Xianbin Cao

(xbcao@buaa.edu.cn).

To tackle this challenge, one potential way is to combine co-

efforts from hardware design (e.g. near-data processing [21],

non-von Neumann architectures [22, 23]) and algorithm de-

velopment (e.g. new compression methods [20]). As reported

[24], the Moore’s law-based hardware scaling was largely

blocked, owing to the movement of large weights between

central processing unit (CPU) and off-chip memory [19].

Thus, the computation capacity and energy efficiency of low-

cost devices cannot be rapidly improved to keep up with

the explosive increase of DNN. Recently, lightweight deep

learning has received great attention [20, 19], aiming to reduce

a large model via: (1) network pruning [25, 26, 27, 28, 29],

(2) low-rank approximation (LRA) [30, 31, 32, 33], (3) weight

quantization [34, 27], and (4) network architecture transform

(NAT) [35, 36]. Parallel to the hardware advances [20], such

algorithmic innovations boost the widespread use of DNN.

But still and all, current lightweight DNNs are far from

computational-efficient for tiny AI. First, almost all methods

follow a classical framework, i.e. high-dimensional space pre-

training + post-compression (Figure 1-a, 1-d) [32, 33, 25,

26, 27]. Even if a heavy network was reduced, the effective

compression ratio (or the memory reduction ratio) is severely

restricted by a pre-trained model [32, 33, 37], which may

be inadequate to cover the deficit in hardware resources. So,

how to break the current limit in model compression, thus

maximally ease the storage/computation burden, remains one

open question. Second, the computational pre-training/fine-

turning is challenging to low-cost hardware [33, 28]. Thus,

how to directly find a compact network, e.g. beyond the

bondage of pre-training, is another fundamental unsolved

problem, which is critical to the on-device federated learning

in many privacy/latency sensitive scenarios [38, 39, 40].

Here, we report an architecture named random sketch learn-

ing, or Rosler, for hardware-friendly tiny AI. We build a uni-

versal compressing-while-training framework, which, for the

first time, learns directly the tiny representation by removing

computational pre-training/fine-tuning. To achieve this, we de-

velop an approximate rank-restricted back-propagation (aRes-

BP) algorithm. The attainable compression ratio is extended

substantially by Rosler (Figure 3), after its depth is stretched

via a butterfly-unfolding (BUFF) structure, which represents

each dense layer of DNN with three cascading layers. Each

cascading layer thus corresponds to a small weight matrix

(referred also as sketch), see Figure 1-e.

The learned tiny model has the lower rank and higher

equivalent sparsity, compared to one pretrained large DNN.

As tested on different models/datasets, it substantially reduces

e805814
Text Box
Nature Computational Science ,Volume 1, March 2021, pp. 221–228DOI: 10.1038/s43588-021-00039-6

e805814
Text Box

e805814
Text Box
Copyright © The Authors. Published by Nature. This is the Author Accepted Manuscript. Creative Commons Attribution Non-Commercial License (CC:BY:NC 4.0). Please refer to any applicable publisher terms of use.

e805814
Text Box

2

the storage of model weights by 25 ∼ 45× (float-point; Figure

2-e, 2-f, 3-f and 3-h), which suffices to cover the hardware

deficit. We demonstrate our method for machinery diagnosis

on low-cost hardware. The computation is accelerated by

> 180× (16 bits fixed-point; ∼ 50× for float-point), and

the consumed energy is saved by > 10×; whilst its accuracy

is only degraded by ∼ 1%. Most importantly, it allows

for the computational-efficient on-device training that was a

challenging task, thus enabling the privacy-sensitive and low-

latency federated learning[41]. As such, our method makes

tiny AI available to the resource-constrained platforms.

II. RESULTS

A. Random Sketch Learning

In principle, Rosler seeks for one tiny representation of each

layer in DNN, by identifying multiple small sketches. Here,

a sketch refers to one random sampling version of the weight

W ∈ R
M×N ; M and N are the input and output sizes of

the layer. For example, a column sampling sketch is C =
W(:,Sc) ∈ R

M×s, whilst a row sampling sketch is R =
W(Sr, :) ∈ R

s×N ; Sc and Sr are two indexing sets of the

sampled columns and rows. For clarity, we assume |Sc| =
|Sr| = s, with s ≪ min{M,N}. Then, each large weight is

represented by one BUFF structure of 3 sub-layers – a left-

sketch C, a central-body U ∈ R
s×s and a right-sketch R,

i.e. we approximate the full-connected (FC) layer with W ≃
CUR (Figure 1-a, 1-e).

We thus directly learn the tiny stretched model (Figure 1-f),

by removing computational pre-training and post-compression.

Although it was difficult for classical back-propagation (BP)

method[30], this can be achieved by our sketch learning

algorithm (Figure 2-b, 2-c, see details in the Method section

A), which constitutes a universal approximate rank-restricted

BP (aRes-BP). That means, the rank of a BUFF structure is

restricted in each training iteration, i.e. rank(CUR) ≤ s. A

distinctive feature of aRes-BP is that three small sketches are

firstly updated as a whole, and then trained one by one (Figure

2-c). The convergence of this random sketch learning is also

demonstrated numerically (Figure 2-d and 2-e).

B. Application to Multi-layer Perceptron

We start from the learning of tiny sketched model for

multi-layer perceptron (MLP). Here, we consider a machinery

diagnose problem [12], i.e. using the recorded time series to

predict five operation states of industrial bearing. The public

data of Case Western Reserve University is used [12]; each

input contains 500 randomly truncated data samples from the

time series. In the benchmark FC DNN, the number of nodes

of input layer is 500; the number of nodes of 2 hidden layers

are 300 and 100; the numbers of nodes of output layer is 5;

3000 samples for training and 2000 for test, resulting in a test

accuracy 0.996. We evaluate various sparse pruning methods,

e.g. weight pruning [25], single-shot pruning (SNIP) [29] and

lottery ticket hypophysis (LTH) [28]; as well as low-rank

compression methods [32, 33], see Figure 3-a. For a slightly

degraded accuracy 0.99, the compression ratio of Rosler is

0.022 (the learned tiny model has 8 layers; the number of

nodes of input layer is 500; the numbers of nodes of 6 hidden

layers are 4, 4, 300, 3, 3, 200; the number of nodes of output

layer is 5). Similar results are attained in the MINIST data for

handwritten numeral recognition (Figure 3-c, 3-d). In the FC

network, the numbers of nodes of input layer, 2 hidden layers

and output layers are 784, 512, 256 and 10, respectively.

With the compressed model, one immediate result is that the

on-chip memory of edge device will be reduced. Compared to

the FC DNN, a classical pruning method saves the memory

by ∼ 3.4× (Figure 3-b, float-point; see the Method section

D). The LTH method [28] reduces the storage by ∼ 6.5× (its

memory size is 3× of the number of non-zero weights in order

to record the row/column indexes of sparse elements; one-

shot mode was used to balance the training complexity, see

the Method section D). Another SNIP method [29] reduces the

memory size by ∼ 16.7× (attaining a compression ratio 0.02).

In comparison, our method reduces the on-chip storage by

> 40×. Incorporating a novel BUFF structure, Rosler allows

to store the model weights (∼ 20 KB) in on-chip random-

access memory (RAM), which is more efficient for data

movement. As reported [20], the accessing of large dynamical

RAM (DRAM) consumes orders of magnitude higher energy

than small on-chip RAM of a few kilobytes.

Accompanied by our tiny model, the computational com-

plexity is reduced and edge inference would be substantial-

ly accelerated, see details in the Method section B. When

inferring the bearing states at edge devices, the required

computation is reduced by ∼ 38.5× (Figure 3-b). Focusing on

the sparse structures, both SNIP and LTH may incur the much

higher computation cost. For example, without the hardware-

inefficient sparse matrix computation, Rosler would be faster

than SNIP by > 4× (Supplementary Figure 1), even if they

acquire the same compression ratio (Figure 3-b and 3-d).

Most importantly, by removing the computational pre-

training with a huge memory/power burden, the complexity

of Rolser in edge training is also reduced, see details in the

Method section B. Taking the machinery diagnose problem for

example, the time complexity of on-device training would be

reduced by >20×, compared to the FC DNN. Although the

popular SNIP method also simplifies the computational pre-

training [29], its sparse structure is incompatible to efficient

hardware storage/computation. Thus, our method makes edge

learning at low-cost devices computationally efficient, when

learning in the place where the data was observed.

C. Application to Convolution Neural Network

For another convolution neural network (CNN), the kernel

weights have both sparse and low-rank properties [33]. Fortu-

nately, our method enables a unified sketch learning, no matter

what the underlying deep learning model is, e.g. MLP or CNN.

It reconciles two different aspects of deep representation. For

one thing, the learned BUFF model is low ranked; and for

another, the equivalent weight W̃ = CUR would be sparse.

We examine the learned tiny model with both convolution

and FC layers (the aRes-BP algorithm is the same as for

MLP, when computing convolution via matrix multiplication;

Supplementary Figure 2-a). We consider the CNN for MINIST,

3

with 3 convolution layers (kernel 3 × 3, max-pooling) and 1

FC layers (the numbers of channels in 3 convolution layers are

32, 64 and 128; while the number of nodes of output layer

is 10). When a test accuracy is 0.98 (the benchmark accuracy

of classical CNN is 0.99), the attained compression ratio of

Rosler is 0.039 (Figure 3-e), with regards to a classical CNN.

Accordingly, it reduces the memory size by ∼ 16.4×, and

meanwhile accelerates the computation by ∼ 18.7× (Figure

3-f). As such, the model weights can be also stored in the

on-chip RAM (Supplementary Figure 2-b).

We further evaluate our method in large CNN, i.e. VGG-

A model (8 convolution layers + 3 FC layers) [42]. Since

we focus on tiny AI on edge devices (whereby the size

of feature maps would be largely limited), we consider the

popular CIFAR-10 dataset for the image recognition of 10

objects [29, 43, 28]. From Figure 3-g, the compact tiny model

learned by our method again achieves a low compression ratio

of 0.0387, while achieving a slightly degraded accuracy 0.858

(a classical CNN has an accuracy 0.868; the learned feature

maps are illustrated in Supplementary Figure 3). Although the

sparsity-based approach, e.g. SNIP [29], attains a comparable

compression ratio, Rosler is more efficient in both storage and

computation (Figure 3-h).

In addition to a compression of model weights, Rosler also

enables the reduction of large feature maps that are ineffective

for data movement (Supplementary Figure 2-c, 2-d; see the

Method section C). We evaluate the CNN on another Cat-Dog

dataset for image recognition of 2 objects (cat and dog); 4

convolution layers (3×3 kernel) with 3 FC layers (the numbers

of channels in 4 convolution layers are 32, 64, 128 and 128;

while the numbers of nodes of 3 FC layers are 1024, 512

and 1). As shown, the accessing of off-chip DRAM can be

reduced by 4.3× (Supplementary Table 1). Unlike classical

pruning methods focusing only on model weights, Rosler is

capable of reducing the time/space complexity of both model

weights and feature maps in CNN.

D. Application in On-device Federated Learning

In many scenarios of data analytics, e.g. remote monitoring

[4, 8], internet of things (IoT) for intelligent sensing [9, 11]

and digital twin [44], the centralized machine learning will be

barely feasible [38]. First, the local user data would become

privacy sensitive, especially for medial and industrial data

[40, 45, 39]. Second, it needs to respond to real-time events

in many latency-critical applications [4, 14, 44]. Third, the

communication cost of massive raw data is expensive, or

even impractical [41]. To address such problems, federated

learning at local devices whereby data was generated presents

a promising new way [38].

Our method can be directly applied to computational and

communication efficient on-device training (e.g. at low-cost

hardware). We compare Rosler with FC DNN and SNIP in

the context of federated learning for industrial IoT [44]; the

bearing data is used [12]; 4 layer FC DNN (the numbers

of nodes of input layer, 2 hidden layers and output layer

are 500, 300, 100 and 5); the number of local clients is 3;

the number of local training epochs in each round is 5. By

removing the computational pre-training, our method enables

the lightweight deep learning at local devices, thus forwarding

a trained model (Ct, Rt) rather than massive data to a central

entity (Figure 4-a, 4-b). Meanwhile, it significantly reduces

the model weights (∼ 37×, Figure 4-e), and alleviates the

clients-server communication cost (Figure 4-d and 4-e). Most

importantly, in contrast to existing pruning methods, Rosler

enables the cooperatively parallel update of each local model

via two processors/nodes (Figure 4-c), further reducing the

computation by 2×. I.e. two nodes update small sketches Ct

and Rt respectively, by exchanging the latest results (Ct−1

and Rt−1) via proximate communication. As seen, Rosler

reduces the computation complexity of on-device training by

∼7× (Supplementary Figure 1), and the total communication

cost by ∼2×, even compared to the state-of-the-art SNIP

method. For SNIP, although its communication cost of each

round is comparable to our method (Figure 4-f), the total

epochs of model aggregation is ∼2× of Rosler (Figure 4-d).

Similar results are attained on a large VGG model (Supple-

mentary Table 2, CIFAR-10 dataset).

E. Hardware Demonstration of Edge Inference & Learning

We implement our method on low-cost digital signal pro-

cessor (DSP) platform – CPU 375 MHz, on-chip RAM

256 KB, off-chip DRAM 256 MB (Figure 5-f). Enabled by

the computational-efficient on-device learning, our tiny AI

would excite the widespread interest in scientific/industrial

applications. Here, we consider again the machinery diagnose

problem – it represents a family of low latency computing

tasks in industrial IoT [8, 11, 12].

The experiment setting of edge inference for industrial

machinery diagnosis is illustrated in Figure 5-a. In Rosler, its

network parameters (∼20 KB, compression ratio ∼ 0.023) are

stored in on-chip memory, which can be efficiently accessed

by the multiplication-and-accumulation (MAC) unit. While for

the dense DNN, its large weights (∼1 MB) can be only put in

off-chip DRAM. As found, Rosler accelerates the hardware in-

ference by ∼50× (Figure 5-b, float-point). If further combined

with fixed-point computation, the hardware inference of Rosler

would be accelerated by >180× (16 bits quantization, Figure

5-b; the program is stored in on-chip RAM). In this case, the

average latency in analyzing the sensor data (500 samples) is

around 300 µs; whilst a dense DNN requires around 60 ms

which would be inadequate for many industrial applications

emphasizing the real-time response (<1ms in the low-latency

remote control).

The energy consumption of Rosler is then evaluated. From

Figure 5-c, the full-load instantaneous power of Rosler and

FC network are comparable, P= 426.9 mW (see details in

the Method section E). Even so, the full-load time of Rosler

is around ∼ 1/50 of FC network (float-point; TRosler=1.205

ms and TFC=61.92 ms; K=1). From Figure 5-d, the averaged

power of Rosler is reduced by ∼ 9.6× (float-point); an

interrupt sleep mode is used and the stand-by power is 36.3

mW. Thus, the averaged power consumption of edge device

is greatly reduced in Rosler (∼ 40 mW).

Finally, we examine on-device training at low-cost hard-

ware, as in the emerging federated learning [38, 39, 41]. For

4

Rosler, when a batch size is relatively small (K < 20), the

input/output of each layer (Xl,Yl), the network weights and

the program are all stored in on-chip RAM (Figure 5-e). For

the pre-training of FC network, however the weights and K
input samples can be only put into off-chip DRAM. We find

the training latency of Rosler is reduced by > 20× (float-point;

K = 10), even compared to a pre-training of dense FC net-

work. Meanwhile, the consumed energy is reduced by ∼ 8×
(Figure 5-f). If further taking the computational fine-tuning

(of sparse models) into account, the whole latency would be

shortened by > 30×. When a batch size is relatively large

(K>100), the input/output of each layer and the program may

be moved to off-chip DRAM; in this case the training latency

is still greatly reduced (Supplementary Figure 4, bearing and

MINIST data).

III. DISCUSSION

We report a computational-efficient deep learning frame-

work for resource-constrained data analytic, which directly

learns a compact model without complex pre-training. Com-

pared to state-of-the-art pruning methods, e.g. SNIP [29] and

LTH [28], it attains a comparable compression ratio on various

models/datasets, yet subject to a greatly reduced training

complexity. Different from most current methods emphasizing

sparse structure, our compact tiny model involves only dense

matrices, which is hence more efficient for hardware storage

and computation. Some recent methods, e.g. PruneTrain [43],

obtain also dense weights (e.g. by invoking Lasso regulariza-

tion); however they call for computational pretraining and can

be hardly applied to on-device learning on low-cost hardware.

The success of our method is attributed that, for one

thing, the designed aRes-BP would learn in another high-

dimensional space with a low rank constraint (Figure 2-c

Top); and for another, it actually implements the network

architecture transform (NAT), by unfolding an original L-

layer fat DNN into another 3L-layer thin DNN. Despite the

recently great interest on NAT [35, 36], an iterative search of

network structures incurs the extremely high computation. Our

method, in contrast, constitutes another way for implementing

the computational efficient NAT, by adapting the depth and

width in a systematic manner.

At the current stage, one limitation of our method is that

the setting of the sampling lengths in different layers is less

flexible, compared to sparsity-based pruning methods (e.g.

given the compression ratio). To overcome this, a promising

solution is to combine the sketch learning with a dynamic

search of the sampling lengths, as in NAT. For example,

starting from one compact tiny model, the network width

can be further refined iteratively. Another open question is

that, although our method directly learns the compact tiny

model, whether it reaches the limit of deep model compression

remains unknown, which may deserve further assessment.

Author contributions

B. Li conceived the idea. B. Li, P. J. Chen and H. F. Liu

designed and implemented the source code. B. Li, P. J. Chen,

H. F. Liu, W. S. Guo and X. B. Cao analyzed the data. All the

authors together interpreted the findings and wrote the paper.

P. J. Chen and H. F. Liu are contributed equally.

Acknowledgement

This work was supported by the Major Scientific Instrument

Development Plan of National Natural Science Foundation of

China (NSFC) under Grant No. 61827901, NSFC under Grant

No. U1805262, Major Research Plan of NSFC under Grant

No. 91738301, and Project of Basic Science Center of NSFC

under Grant No. 62088101.

REFERENCE

[1] Yann Lecun, Yoshua Bengio, and Geoffrey E Hinton.

“Deep learning”. In: Nature 521.7553 (2015), pp. 436–

444.

[2] David Silver et al. “Mastering the game of Go with deep

neural networks and tree search”. In: Nature 529.7587

(2016), pp. 484–489.

[3] Markus Reichstein et al. “Deep learning and process

understanding for data-driven Earth system science”. In:

Nature 566.7743 (2019), pp. 195–204.

[4] Park Jihong et al. “Wireless network intelligence at

the edge”. In: Proceedings of the IEEE 107.11 (2019),

pp. 2204–2239.

[5] Doyu Hiroshi and Morabito Roberto. TinyML as-a-

Service: What is it and what does it mean for the IoT

Edge? https : / /www.ericsson .com/en /blog /2019 /12 /

tinyml-as-a-service-iot-edge.

[6] O Vaughan. “Working on the edge”. In: Nature Elec-

tronics 2 (2019), pp. 2–3.

[7] Benjamin Burger et al. “A Mobile Robotic Chemist”.

In: Nature 583 (2020), pp. 237–241.

[8] Jinjiang Wang et al. “Deep learning for smart man-

ufacturing: Methods and applications”. In: Journal of

Manufacturing Systems 48.C (2018), pp. 144–156.

[9] Frederik J. Simons et al. “On the potential of recording

earthquakes for global seismic tomography by low-cost

autonomous instruments in the oceans”. In: Journal

of Geophysical Research: Solid Earth 114.B5 (2009),

pp. –.

[10] B Ravi Kiran et al. “Deep Reinforcement Learning

for Autonomous Driving: A Survey”. In: arXiv (2020),

pp. 1–18.

[11] B A Weiss et al. “Measurement Science

Roadmap for Prognostics and Health Management

for Smart Manufacturing Systems”. In:

National Institute of Standards and Technology

(2016, http://dx.doi.org/10.6028/NIST.AMS.100-2).

[12] Wade A Smith and R B Randall. “Rolling element

bearing diagnostics using the Case Western Reserve

University data: A benchmark study”. In: Mechanical

Systems and Signal Processing 64 (2015), pp. 100–131.

[13] D. Hiroshi, M. Roberto, and Jan Höller. “Bringing

Machine Learning to the Deepest IoT Edge with

TinyML as-a-Service”. In: IEEE Internet of Things

(IoT) Newsletter (May, 2020).

5

[14] Doyu Hiroshi and Morabito Roberto. TinyML as a

Service and the challenges of machine learning at the

edge. https : / / www. ericsson . com / en / blog / 2019 / 12 /

tinyml-as-a-service.

[15] Sally Ward-Foxton. Adapting the Microcontroller for AI

in the Endpoint. https://www.eetimes.com/adapting-the-

microcontroller-for-ai-in-the-endpoint/.

[16] Mike Loukides. TinyML: The challenges and opportuni-

ties of low-power ML applications. https://www.oreilly.

com/radar/tinyml-the-challenges-and-opportunities-of-

low-power-ml-applications/.

[17] Vijay Janapa Reddi. “Enabling Ultra-low Power Ma-

chine Learning at the Edge”. In: Presented in tinyML

Summit 2020 (February 12-13, 2020).

[18] Gregor Koehler. MNIST Handwritten Digit Recognition

in Keras. https : / / nextjournal . com / gkoehler / digit -

recognition-with-keras. 2020.

[19] Xiaowei Xu et al. “Scaling for edge inference of deep

neural networks”. In: Nature Electronics 1.4 (2018),

pp. 216–222.

[20] Vivienne Sze et al. “Efficient Processing of Deep Neural

Networks: A Tutorial and Survey”. In: Proceedings of

the IEEE 105.12 (2017), pp. 2295–2329.

[21] Mingyu Gao et al. “TETRIS: Scalable and Efficient

Neural Network Acceleration with 3D Memory”. In:

in Proc. of the 22 International Conference on Ar-

chitectural Support for Programming Languages and

Operating Systems 45.1 (2017), pp. 751–764.

[22] Can Li et al. “Analogue signal and image processing

with large memristor crossbars”. In: Nature Electronics

1.4 (2018), pp. 52–59.

[23] Mirko Prezioso et al. “Training and operation of an

integrated neuromorphic network based on metal-oxide

memristors”. In: Nature 521.7550 (2015), pp. 61–64.

[24] “NVIDIA TESLA P100 (NVIDIA, 2017)”. In:

www.nvidia.com/object/tesla-p100.html ().

[25] Song Han et al. “Learning both weights and connec-

tions for efficient neural networks”. In: in Prof. of

Neural Information Processing Systems (NIPS) (2015),

pp. 1135–1143.

[26] Wei Wen et al. “Learning Structured Sparsity in Deep

Neural Networks”. In: in Prof. of Neural Information

Processing Systems (NIPS) (2016), pp. 2074–2082.

[27] Song Han, Huizi Mao, and William J Dally. “Deep

Compression: Compressing Deep Neural Networks with

Pruning, Trained Quantization and Huffman Coding”.

In: in Prof. of International Conference on Learning

Representations (ICLR) (2015).

[28] Jonathan Frankle and Michael Carbin. “The Lottery

Ticket Hypothesis: Finding Sparse, Trainable Neural

Networks”. In: in Prof. of International Conference on

Learning Representations (ICLR) (2018).

[29] Namhoon Lee, Ajanthan Thalaiyasingam, and Philip HS

Torr. “SNIP: Single-shot network pruning based on con-

nection sensitivity”. In: in Prof. of International Con-

ference on Learning Representations (ICLR) (2019).

[30] Misha Denil et al. “Predicting Parameters in Deep

Learning”. In: in Prof. of Neural Information Processing

Systems (NIPS) (2013), pp. 2148–2156.

[31] Max Jaderberg, Andrea Vedaldi, and Andrew Zisser-

man. “Speeding up Convolutional Neural Networks

with Low Rank Expansions”. In: arXiv: Computer Vi-

sion and Pattern Recognition (2014).

[32] Tianyi Zhou and Dacheng Tao. “GoDec: Randomized

Low-rank & Sparse Matrix Decomposition in Noisy

Case”. In: in Prof. of International Conference on

Machine Learning (ICML) (2011), pp. 33–40.

[33] Xiyu Yu et al. “On Compressing Deep Models by

Low Rank and Sparse Decomposition”. In: in Prof.

of International Conference on Computer Vision and

Pattern Recognition (CVPR) (2017), pp. 67–76.

[34] Edward H Lee et al. “LogNet: Energy-efficient neural

networks using logarithmic computation”. In: (2017),

pp. 5900–5904.

[35] Xuanyi Dong and Yi Yang. “Network pruning vi-

a transformable architecture search.” In: in Prof. of

Neural Information Processing Systems (NIPS) (2019),

pp. 760–771.

[36] Yong Guo et al. “NAT: Neural architecture transformer

for accurate and compact architectures”. In: in Prof. of

Neural Information Processing Systems (NIPS) (2019),

pp. 737–748.

[37] Davis W Blalock et al. “What is the State of Neural

Network Pruning”. In: arXiv: Learning (2020).

[38] Q. Yang et al. “Federated machine learning: Concept

and applications”. In: ACM Transactions on Intelligent

Systems and Technology 10.2 (2019), pp. 1–19.

[39] K. Bonawitz et al. “Practical Secure Aggregation for

Federated Learning on User-Held Data”. In: in Prof. of

Neural Information Processing Systems (NIPS) (2016).

[40] Santiago Silva et al. “Federated Learning in Distributed

Medical Databases: Meta-Analysis of Large-Scale Sub-

cortical Brain Data”. In: Proc. of IEEE International

Symposium on Biomedical Imaging. 2019.

[41] H. Brendan Mcmahan et al. “Communication-Efficient

Learning of Deep Networks from Decentralized Data”.

In: Proceedings of the 20th International Conference on

Artificial Intelligence and Statistics (AISTATS). 2017,

pp. 1–11.

[42] K. Simonyan and A. Zisserman. “Very Deep Convolu-

tional Networks for Large-Scale Image Recognition”.

In: International Conference on Learning Representa-

tions (ICLR). 2015.

[43] Sangkug Lym et al. “PruneTrain: fast neural network

training by dynamic sparse model reconfiguration”. In:

In Proceedings of the International Conference for

High Performance Computing, Networking, Storage and

Analysis (2019), pp. 1–13.

[44] Yunlong Lu et al. “Low-latency Federated Learning and

Blockchain for Edge Association in Digital Twin em-

powered 6G Networks”. In: IEEE Transactions on In-

dustrial Informatics 10.1109/TII.2020.3017668 (2020),

pp. 1–10.

6

[45] Theodora. S. Brisimi et al. “Federated learning of

predictive models from federated Electronic Health

Records”. In: International Journal of Medical Infor-

matics 112 (2018), pp. 59–67.

Fig. 1. Rosler directly learns one compact tiny model. In current
lightweight DNN, a full-connection network (a) is pre-trained firstly. (b) This
pre-trained model is low-ranked (x-axis is the index number of singular values,
y-axis is the amplitude of singular values), (c) and/or sparse (x-axis is the
amplitude of pretrained weights, and y-axis gives their histogram). Model
compression (e.g. network pruning), then attains a reduced model (d), which
is further iteratively fine-tuned. In Rosler, a larger layer is represented by a
BUFF structure (e), consisting of 3 sub-layers – a left flank C, a central body
U and a right flank R. After a direct training, a compact tiny network is
obtained (f), by removing computational pre-training/post-compression.

Fig. 2. Computational-efficient model training. In contrast to a classical
BP (a), our method first updates three cascading layers as a whole (b); Wt

and ∆Wt are the weight and the gradient of a large layer in the t-th epoch;
{Ct,Ut,Rt} are the sketched weights of 3 cascading sub-layer, ∆Ct and
∆Rt are their gradients; g(Ct,Rt) is one nonlinear function to compute Ut

(see the Method section A); α is a learning step. (c) Relying on the designed
aRes-BP, the BUFF structure is learned via the parallel training (Top) and the
successive (Bottom) updating. (d) Convergence of test accuracy of random
sketch learning (compression ratio of 0.022 and 0.053); the bearing dataset;
50 independent trials. (e) Convergence of loss function using the same dataset.

Fig. 3. Test accuracy and computation/storage cost of Rosler. (a)

Accuracy of MLP model on bearing data; (b) the gains in memory reduction
and hardware acceleration (float-point), with regards to FC network. (c)

Accuracy of MLP model on MINIST data; (d) the gains in memory reduction
and hardware acceleration (float-point). (e) Accuracy of CNN model on
MINIST data; (f) the gains in memory reduction and hardware acceleration
(float-point), with regards to classical CNN. (g) Accuracy of VGG model on
CIFAR-10 data; (h) the attained memory reduction and hardware acceleration
(float-point). Sparse pruning methods (SNIP, LTH, weight pruning) and low-
rank compression methods (SVD, low-rank + sparse) are used for comparison.

Fig. 4. On-device federated learning in industry IoT. On-device federated
learning in industrial IoT (a). Each device uploads the trained model to
center entity, which aggregates multiple local models and distributes a global
model to edge devices for the next round training (b). In Rosler, a parallel
training can be implemented (c), whereby two processors cooperatively update
multiple sketches of a local model. (d) Test accuracy of different epochs
of model aggregation; the compression ratio of both SNIP and Rosler is
0.027. (e) Communication cost (normalized by the amount of data of FC
DNN, i.e. 824.23 KB; for SNIP the row/column indexes of sparse weights
are not delivered). (f) Communication & computation reduction of Rosler
(float-point).

Fig. 5. Hardware demonstration of computational-efficient edge infer-

ence/training. (a) Experimental setting of machinery health diagnosis on low-
cost embedded platform. (b) Latency of the edged inference. Green triangles:
the program is stored in off-chip DRAM; Yellow circles: the program is stored
in on-chip RAM. (c) Full-load time and instantaneous power of FC network
and Rosler, see details in the Method section E. The averaged power of edge
inference (d)-Top, and the test accuracy (d)-Bottom. (e) Illustration of weights
storage on DSP C6478 in edge training. (f) Latency and averaged power in
edge training.

Method

A. Random Sketch Learning

The proposed sketch learning algorithm involves the follow-

ing three stages.

1. Initialization At time t = 0, we initialize the weight of

the l-th layer, W̃0
l ∈ R

M×N , with the Xavier method [46]. Its

low rank representation, denoted as W0
l , is further attained, i.e.

rank(W0
l) = s (s is one user-specific parameter related to the

compression ratio). This is achieved by applying the singular

value decomposition (SVD) on it, W̃0
l = ŨW Σ̃ΣΣW ṼT

W .

In order to construct a compact BUFF structure, we abstract

two sketches C0
l ∈ R

M×sc and R0
l ∈ R

sr×N from W0
l ,

respectively by means of random column and row sampling,

C0
l = W0

l (:,Sc), R0
l = W0

l (Sr, :), (1)

where Sc ⊂ {1, 2, · · · , N} (|Sc| = sc) and Sr ⊂
{1, 2, · · · ,M} (|Sr| = sr) are two indexing sets, whereby

random indexes are generated from two probability densities

Pc = {pc(j)}
N
j=1 and Pr = {pr(i)}

M
i=1. For simplicity, we

assume sr = sc = s ≪ min{M,N} (in more general cases

we have sr 6= sc). Here, a leverage score sampling is applied,

i.e. the probabilities of selecting i and j are determined by

pr(i) = ||ŨW (i, :)||22/||ŨW ||2F , for i ∈ Sr;

pc(j) = ||ṼW (j, :)||22/||ṼW ||2F , for j ∈ Sc.

As a variation of leverage-score sampling, the indexes can be

selected directly via the s largest leverage scores.

On this basis, we compute an initial central-body sketch

U0
l , by minimizing the whole approximation error [47, 48],

i.e.

U0
l = arg min

U∈Rs×s

∥

∥W0
l −C0

lU
0
lR

0
l

∥

∥

2

F
,

and one simple solution of this optimization problem is [47,

48, 49, 50]

U0
l = W0

l (Sr,Sc)
†, (2)

where X† is the pseudo-inverse of X; || · ||2F is the F -norm. In

the case sc = sr = s, we further have U0
l = W0

l (Sr,Sc)
−1,

and X−1 is the inverse of X.

2. Parallel training In contrast to classical BP which

updates the cascading sub-layers successively, i.e. Ct
l−1 →

Rt
l → Ut

l → Ct
l → Rt

l+1 → · · · , we tend to update Rt
l and

Ct
l in a parallel manner (see Figure 2-b), respectively based

on R
(t−1)
l and C

(t−1)
l of the previous time (t− 1), i.e.

Ct
l = C

(t−1)
l + α∆C

(t−1)
l , (3)

Rt
l = R

(t−1)
l + α∆R

(t−1)
l , (4)

where α denotes the learning step, which can be adaptively

tuned, for example, via the Adam optimizer [51]. In the above,

two weight gradients are calculated via:

∆C
(t−1)
l = XT

l (δδδ
′
l+1

(t−1)
R

(t−1)
l

T

U
(t−1)
l

T

)−

1/2 · SrU
(t−1)
l

T

(C
(t−1)
l

T

XT
l δδδ

′
l+1

(t−1)
R

(t−1)
l

T

)U
(t−1)
l

T

,
(5)

∆R
(t−1)
l = U

(t−1)
l

T

C
(t−1)
l

T

XT
l δδδ

′
l+1

(t−1)
−

1/2 ·U
(t−1)
l

T

(C
(t−1)
l

T

XT
l δδδ

′
l+1

(t−1)
R

(t−1)
l

T

)U
(t−1)
l

T

ST
c ,

(6)

where Xl ∈ R
K×M is the input matrix (with a batch size K);

7

Sc ∈ R
N×s and Sr ∈ R

M×s are two equivalent sampling

matrices, i.e., WSc = W(:,Sc) and ST
r W = W(Sr, :); δδδ

t
l is

an error matrix of the l-th layer; δδδ′l
t

is obtained by passing δδδtl
through the derivative of nonlinear activation function. In the

L-th output layer, the loss function is cross entropy. For the

other case sr 6= sc, the computation of gradients may be more

complex, which however can be determined automatically in

Python platform [52]. Then, the other sketch is updated by

Ut
l = 2×

[

Ct
l(Sr, :) +Rt

l(:,Sc)
]†
. (7)

3. Successive training In this stage, a trained BUFF struc-

ture would be further updated, as one 3L-layer network. That

is to say, three sub-layers in a BUFF structure would be

updated one by one, as in classical BP (Figure 2-c).

Note that, for the L-th layer an output size NL is usually

small (e.g., we have NL = 5 in a DNN model for bearing

data), and thus the matrix sketching was not used in the 2nd

stage. However, a sparsity-based pruning can be applied to the

L-th layer in this stage (see details in the Method section D).

B. Computational Complexity

We consider the time complexity in the inference process.

In the l-th layer (l = 1, · · · , L), each input xl ∈ R
1×Ml

successively passes 3 sub-layers of a BUFF model. Rather

than yl = f(xlWl + B) (Figure 1-a), the output is computed

by yl = f(xlClUlRl + b), where f(·) is nonlinear activation

(i.e. the Rule activation is used) and bl ∈ R
1×Nl is the bias

vector. When measured by the number of multiplications, the

time complexity of Rosler is O(KMls+Nls
2+KNls) (s ≪

min{Ml, Nl}) in the l-th layer, which is significantly lower

than FC DNN with a complexity O(KMlNl).
For the training process, the time complexity comes mainly

from the calculation of ∆C
(t−1)
l and ∆R

(t−1)
l . Accordingly,

the complexity of Rosler is O{nE [KMls+KNls+(Ml+Nl+
K)s2+s3]}; whilst for the FC network its training complexity

is O(nEKMlNl) (nE is the number of training epochs).

C. Random Sketch Learning of CNN

1) Approximation of input feature: Given an input feature

matrix Xl ∈ R
M×N (e.g. after unfolding a tensor to a

matrix), two column/row sketches are obtained, i.e. Xc,l =
XlSc = Xl(:,Sc) ∈ R

M×sc and Xr,l = ST
r Xl = Xl(Sr, :) ∈

R
sr×N . Then, the other sketch Xu,l is computed via Xu,l =

(ST
r XlSc)

† = Xl(Sr,Sc)
†. Note that, when abstracting the

column sketch Xc,l, we ample sc columns of Xl according

to the uniform distribution. When determining the row sketch

Xr,l, the probability of sampling sr rows is proportional to

the row norm of Xc,l, i.e. pr(i) ∝ ||Xc,l(i, :)||
2
2 for i ∈ Sr.

Thus, we have Xl ≃ Xc,lXu,lXr,l.

2) Sketch learning of CNN with approximated feature maps:

When the input feature and model weight are both approxi-

mated by multiple small sketches, the output of convolution

layer is yl = f(Xc,lXu,lXr,lClUlRl + bl). On this basis,

the training of sketched CNN is similar to that of MLP.

For example, the gradients (∆Cl and ∆Rl) of two sketched

weights (i.e. Cl and Rl) are obtained, and then Ul is updated.

In the case of sc 6= sr, such two gradients can be computed

automatically in the Python platform, based on a directed

acyclic graph (DAG) of the matrix operations.

However, since an input feature map now has been replaced

by multiple sketches, the propagation of the error matrix δδδl,
which is related to the input matrix, would be different. For

clarity, in the following analysis we denote W̃l = ClUlRl.

After updating three sketches {Cl,Ul,Rl}, then the error

matrix δδδl will be computed before it is propagated to the

previous layer, i.e. δδδl = δδδc,l + δδδu,l + δδδr,l, whereby the three

components are computed via:

δδδc,l = δδδ′l+1[W̃
T
l X

T
r,lX

T
u,l]S

T
c ,

δδδr,l = Sr[X
T
u,lX

T
c,lδδδ

′
l+1W̃

T
l],

δδδu,l = Sr

{

[(Isr×sr −Xv,lXu,l)G
TXu,lX

T
u,l]+

XT
u,l[Xu,lG

T (Isc×sc −Xu,lXv,l)]−XT
u,lGXT

u,l

}

ST
c ,

whereby Xv,l , ST
r XlSc, G , XT

c,lδδδ
′
l+1W̃

T
l X

T
r,l; Is×s is the

s×s identity matrix; δδδ′l+1 is obtained by passing δδδl+1 through

the derivative of nonlinear activation function.

D. Simulation Settings

Rosler: The initial learning rate is 1×10−3 in Adam in the

2nd stage, and 3× 10−4 in the 3rd stage; a mini-batch size is

100. In MLP model, we assume sr = sc. For a given sampling

length of the l-th layer (i.e. sl), the overall compression ratio

is computed via β =
∑L

l=1 Mlsl + s2l + slNl)/
∑L

l=1 MlNl

(Ml and Nl are the input and output size of the l-th layer).

For CNN model, sr may differ from sc; in principle we may

have sc/sr ∼ O(N/M)). In the 3rd stage, the sparse pruning

can be applied to the last output layer (e.g. with a compression

ratio 0.15). For the large VGG-11 model (as well as federated

learning), the last stage was removed for simplicity.

LTH: We adopt the one-shot mode [28], in order to balance

the training complexity. We also evaluate the 4-shot LTH,

which acquires the more promising performance (Supplemen-

tary Figure 5-c), yet at the cost of the largely increased

computation. An initial learning rate is 1 × 10−3 in the

stochastic gradient descent (SGD) process; the mini-batch size

is 100. Following the standard setting [28], in the L-th layer

the pruning ratio is (1 − β)/2; β is the compression ratio of

the other (L − 1) layers. For a large VGG-11 model (Figure

3-g and 3-h), the 1st convolution layer is uncompressed.

SNIP: The connectivity score is firstly evaluated by passing

a small set of samples [29], with a mini-batch size of 20. Then,

n weights (corresponding to the first n largest connectivity

scores) are reserved, n = β
∑L

l MlNl. The initial learning

rate is 1×10−3 in SGD; a mini-batch size 100. When applied

to federated learning, one local device attains an initial model,

and reports it to a center entity which then directly broadcasts

it to multiple local devices, as the global initializer.

Low-rank + sparse: For the GreBdec method [33], a

learning rate in SGD is 1×10−3 and a mini-batch size is 100.

For the large VGG-11 model, the compression ratio of low-

rank and sparse components are equal [33]. The compression

ratio of convolution layers is 5× of FC layers (where only the

8

sparse weights are used). In MLP model, the ratio between

low-rank and sparse components is 9, in order to improve

the accuracy. To even things up, we exclude the iterative re-

training which incurs a high computation [32, 33].

Pruning: For a classical pruning method, we directly re-

move small weights based on a pretrained model [25]. The

same learning rate and mini-batch size are used. Meanwhile,

we assume the computational fine-tuning was not applied.

E. Measurement of Consumed Energy

In the experiment, we use the low cost embedded platform

– DSP C6478. The measured operation voltage of DSP core

is v = 1.0 ∼ 1.2 voltage. To determine the effective current,

a resistance of r = 6 Ω is cascaded to the input voltage (i.e.

5 voltage). Then, the operation current is calculated by i =
∆V/r; and then the instantaneous power is Pins = v × i.

The full-load operation time of Rosler, TRosler, is measured

via the Digital Phosphor Oscilloscope (DPO). On this basis,

the consumed energy of Rosler in a time duration ∆T is:

Erosler = PinsTRosler + Psleep(∆T − TRosler).

Here, the interrupt sleep mode is used in the remaining time

(∆T −TRosler), whereby the stand-by power is Psleep (for DSP

C6478, Pins = 426 mW and Psleep = 36.3 mW). For FC

network, we similarly have EFC = Pins∆T , and ∆T = TFC is

its full-load operation time (for the bearing diagnose task, the

measured duration TFC is 61.92 ms, see Figure 5-c).

Data Availability

The bearing data (http-

s://csegroups.case.edu/bearingdatacenter), the MINIST

data (http://yann.lecun.com/exdb/mnist/), the CIFAR-10 data

(https://www.cs.toronto.edu/ kriz/cifar.html), and the Cat-dog

data (https://www.kaggle.com/c/dogsvs-cats/data) can be all

downloaded from the corresponding websites. Source Data

for Figures 2-5 is also available with this manuscript.

Code Availability

A Python implementation of Rosler is available in Code

Ocean [52].

[46] Xavier Glorot and Yoshua Bengio. “Understanding the

difficulty of training deep feedforward neural network-

s”. In: Proceedings of the thirteenth international con-

ference on artificial intelligence and statistics. JMLR

Workshop and Conference Proceedings. 2010, pp. 249–

256.

[47] Shusen Wang and Zhihua Zhang. “Improving CUR ma-

trix decomposition and the Nyström approximation via

adaptive sampling”. In: Journal of Machine Learning

Research 14.1 (2013), pp. 2729–2769.

[48] Petros Drineas, Michael W. Mahoney, and S. Muthukr-

ishnan. “Relative-Error CUR Matrix Decompositions”.

In: SIAM Journal on Matrix Analysis and Applications

(2008).

[49] Bin Li et al. “Randomized Approximate Channel Es-

timator in Massive-MIMO Communication”. In: IEEE

Communications Letters 24.10 (2020), pp. 2314–2318.

[50] Bin Li, Shuseng Wang, and et.al. “Fast-MUSIC for Au-

tomotive Massive-MIMO Radar”. In: ArXiv 1911.07434

(2019), pp. 1–14.

[51] Diederik P Kingma and Jimmy Ba. “Adam: A Method

for Stochastic Optimization”. In: in Prof. of Interna-

tional Conference on Learning Representations (ICLR)

(2015), pp. 1–15.

[52] Bin Li, Hongfu Liu, and Peijun Chen. “Random S-

ketch Learning for Tiny AI [Source Code]”. In: http-

s://doi.org/10.24433/CO.5227764.v1 (2021).

a

e

Weight amplitude

Compressed networkFull-connected layer W

Initial Butterfly-unfolding structure

cb

of singular values

H
is

to
gr

am

Si
ng

ul
ar

 v
al

ue
s

d

Center trunk U
Left sketch C Right sketch R

Pretraining Pruning

Fine-
tuning

Direct Training

Learned Compact Network

fMatrix sketching

10 20 30 40 50
Epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50
Epoch

0

0.2

0.4

0.6

0.8

1

1.2
e

a

c

Training of full network W

b

dt
l

W
1
t
l

W
2

t
l

W

 ll

t

l
, UC , R 11 1l

t

ll
C ,RU, 22 2l

t

ll
C ,RU,

t
l

C t
l

Rt
l

U
1

t
l

C
1

t
l

R
1

t
l

U
2

t
l

C
2

t
l

R
2

t
l

U

Sketch learning of BUFF structure

 1(1) tt t W W W (1) (1)t t t C C C 1(1) tt t R R R ,t t tgU C R

Successive
training

Parallel
training

Successive
training

Parallel
training

Compression ratio 0.053

Compression ratio 0.023

Compression ratio 0.053

Compression ratio 0.023

Pa
ra

lle
l

tr
ai

ni
ng

Su
cc

es
si

ve

tr
ai

ni
ng

0 5 10 15 20 25

Computation
Memory

0 10 20 30 40

Computation
Memory

0 5 10 15 20 25

Computation
Memory

0 5 10 15 20

Computation
Memory

0.05 0.1 0.15 0.2
Compression ratio

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Full netwrok
Rosler
SNIP
Lottery Ticket: one shot
Low-rank + sparse
Pruning

0.05 0.1 0.15 0.2
Compression ratio

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

FC
Rosler
SNIP
Lottery Ticket: one-shot
Low rank + sparse
Pruning

he f g

Gain Gain

0.05 0.1 0.15 0.2
Compression ratio

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FC
data1
SINP
Lottery Ticket: one-shot
Low-rank + Sparse
SVD
Low rank
Pruning

0.05 0.1 0.15 0.2
Compression ratio

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

FC
Rosler
SINP
Lottery Ticket: one-shot
SVD
Low-rank + sparse
Low rank
Pruning

dba c

Gain Gain

0

5

10

15

20

25

30

35

40

Computation Communication

Rolser

SNIP

Dense model

5 10 15
Model aggregation epoch

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Federated Learning: Rosler
Federated Learning: SNIP
Centralized Learning: FC

10-2 10-1

Normalized communication cost

0.75

0.8

0.85

0.9

0.95

1

Rosler
SNIP

b
M

od
el

1

M
od

el
 2

M
od

el
 3

Local
device

Local
device

Local
device

A
gg

re
ga

te
d

M
od

el

Initialization

Edge
training

Aggregation
Distribution

Edge
training

Aggregation
Distribution

Edge
training

Aggregation
Output

a c �������� ���� ��
��

������������
��

����
����

��
compute update exchange

d

Center
Entity

e f

Re
la

tiv
e

G
ai

n

Private Dataset 1 Private Dataset 2 Private Dataset 3

20 40 60 80 100 120 140
Batch size K

10-1

100

101

102

103

104

Dense DNN: float-point
Rosler: float-point
Rosler: fixed-point
Rosler: fixed-point

0

2

4

6

8

10

12

14

16

18

0

50

100

150

200

250

300

350

400

 25 8

A
ve

ra
ge

d
po

w
er

 /
m

W

Tr
ai

ni
ng

 la
te

nc
y

/s
ec

50
 180

0

200

400

Float point 16 bits

FC Rosler

 9.6

 11.1

0

0.2

0.4

0.6

0.8

1

Float point 16 bits

A
ve

ra
ge

d
po

w
er

 /
m

W
A

cc
ur

ac
y

cb

fe

d

, ,
L L L
C U R

L L
 C R，

,
L L
b b

deriv
ative
bias

intermedi
ate

DDR2 SDRAM
256 MB

CPU 456/375MHz

RAM 256K

1
EError

Input/output

D
SP

 C
or

e

1 1 1
, ,C U Rweight

derivative

bias

1
2

L
3

1 2
 C R，

1 1
,b b

1 1
,X Y

L
E

,
L L
X Y

DRAM
MAC

RAM

W

a

X

X

Embedded
platform

Sensor Data

Methods
Reference

oscilloscope
time start

Reference
oscilloscope

time end

Full-load
duration

Instantaneous
power

FC DNN -2.67 ms 59.25 ms 61.92 ms 426.9 mw

Rosler -355 s 850 s 1.205 ms 426.9 mw

	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5

