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Abstract 

The principle aim of this paper is to document well-preserved field examples of 

sandstone-filled faults in order to raise awareness of these poorly-understood 

structures, and discuss their potential as fault seals within injection-prone, multi-

layered siliciclastic reservoirs. To achieve this goal, we have undertaken a detailed 

field survey in the Panoche and Tumey hills in Central California which has allowed 

us to recognise numerous faults filled by injected sand. In particular, sandstone-filled 

extensional, contractional and strike-slip faults are observed cutting the 

sandstone/mudstone successions. Sandstone-filled faults commonly display small 

offsets and apertures ranging from a few centimetres to some decimetres. Evidence 

of tectonic deformation is usually lacking, meaning that sand injection supported by 

overpressured fluids propped open the fault walls. In this paper we also describe the 

main mechanism leading to the emplacement of sand along a fault plane, and 

propose a predictive model of sandstone-filled fault distributions in different structural 

environments. Finally, we discuss the role of sandstone-filled faults, that although 

relatively small and not adding significant volume to the reservoirs, can markedly 

increase fluid transmissibility and thereby promote better reservoir connectivity. 

One of the most important factors that helps trap hydrocarbons in multi-layered 

siliciclastic reservoirs is the occurrence of sealing faults (Allan 1989; Bouvier et al. 

1989; Knipe 1992; Gibson 1994; Childs et al. 1997; Manzocchi et al. 1999; Fisher et 

al. 2001; Fisher & Knipe 2001; Bailey et al. 2002; Ainsworth 2006; Childs et al. 2007; 
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Jolley et al. 2007). However, it is also recognised that not all faults possess sealing 

properties and that some permeable faults cutting through the reservoir/cap-rock 

boundary may strongly compromise the integrity of the top-seal (Cartwright et al. 

2007). Such faults may provide a conduit which links the reservoir rocks with other 

permeable units overlying the top-seal, or with the Earth’s surface, thereby resulting 

in hydrocarbon leakage. The behaviour of a fault, either as a seal or a conduit, 

strictly depends on the structure of the fault zone and the juxtaposition of reservoir 

and non-reservoir lithologies (Caine et al. 1996; Storti et al. 2003). Understanding 

fault zone structure is therefore key to predicting connectivity and 

compartmentalization, together with hydrocarbon distribution within a reservoir. In 

fact, faults produce a series of fault rocks that control the flow properties and sealing 

capabilities (Yielding et al. 2010). In reservoirs comprising brittle rocks of either low 

porosity/permeability or high porosity/low permeability (i.e. carbonates), faults may 

provide significant connectivity and are often considered the most efficient pathways 

for fluid migration (Aydin 2000). In multi-layered siliciclastic reservoirs, where ductile 

mudstone intervals behave as low permeability membranes, connectivity is typically 

enhanced by the geometry and distribution of high-porosity/permeability lithologies 

such as sandstone, and faults can result in a general reduction in the fluid flow 

transmissibility (Watts 1987). This is due to a number of factors including the 

juxtaposition of permeable and impermeable strata, clay smearing produced during 

fault movement, the creation of fine-grained cataclasites along the fault zone (sensu 

Caine et al. 1996) and, diagenetic processes leading to the occlusion of pores (Watts 

1987; Knipe 1992; Yielding et al. 1997).  

A number of algorithms have been developed to predict the percentage of 

clay smear (and hence the sealing potential) in a fault zone that cuts through multi-

layered siliciclastic reservoir rocks such as the Shale Gouge Ratio (SGR) (Yielding et 

al. 1997), the Clay Smear Potential (CSP) (Bouvier et al. 1989; Fulljames et al. 1997) 

and the Shale Smear Factor (SSF) (Lindsay et al. 1993). Implicit in the estimation of 

SGR, CSP and SSF is that reduction in grain size, and thus pore throat radius, 

reduces permeability. It is recognized that these algorithms are more applicable to 

rocks that consist of alternating lithified sandstone and plastic mudstone, and are not 

well suited for poorly consolidated strata that typically occur at shallow burial depths 

(Lewis et al. 2002). In fact, in this latter case, fault activity may lead to a transfer of 
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sand from fault blocks into the fault core, thereby significantly increasing the porosity 

and permeability characteristics (Palladino et al. 2018).  

In central California, examples of sandstone-filled extensional, contractional 

and strike-slip faults are observed in Mesozoic-Cenozoic sandstone/mudstone 

successions (Fig. 1). These faults provide valuable insights into the potential 

modification of reservoir seal integrity by fault-controlled sandstone intrusions. 

Although sandstone-filled faults do not add large volumes of sand to a reservoir, they 

are important as the occurrence of sand in fault zones significantly alters the fault 

permeability thereby conditioning fluid transmissibility. They must therefore be 

considered when designing models of fluid flow simulation in faulted sand injection-

prone reservoirs. Here we address the role played by sandstone-filled faults on 

reservoir connectivity by investigating well-exposed outcrops in Central California.  

Geological setting 

The sedimentary sequence exposed in the Panoche and Tumey hills area of 

Central California is part of a NE-dipping Monocline Ridge which forms the 

northeastern side of the Tumey Hill Anticline (Dickinson 2002) (Fig. 1). It mainly 

consists of Cretaceous to Quaternary siliciclastic units deposited in different 

transitional to deep-water sedimentary environments varying from deltaic to the base 

of slope depositional settings (Moxon 1988; Johnson & Graham 2007). The 

succession includes two giant sand injection complexes, the Panoche Giant Injection 

Complex (PGIC) and the Tumey Giant Injection Complex (TGIC) hosted respectively 

within the Moreno Formation and Kreyenhagen Shale (Fig. 1). The PGIC is derived 

from the remobilization of turbidite channels that occur near the base of the Moreno 

Formation. Fluidized sand was injected upward through the stratigraphy giving rise to 

a strongly connected dyke and sill network (Vigorito et al. 2008; Hurst et al. 2011). At 

the top of the complex, sand extrudites testify to the localised flow of sand on a 

Danian paleo-sea floor (Vigorito & Hurst 2010). The TGIC formed by sand 

fluidization of turbidite channels occurring at different stratigraphic levels throughout 

the Kreyenhagen Shale (Zvirtes et al. 2019 this volume). The TGIC has a similar 

well-developed network of dykes and sills as the PGIC, but if extrudites were present 

they have been subsequently eroded. The age of the TGIC is therefore poorly 

constrained, although it should range between Middle Eocene and Late 
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Eocene/Early Oligocene (Zimmerman 1944). After emplacement of the TGIC, both 

complexes were subjected to deformation in different tectonic regimes, and younger 

generations of sandstone intrusions were emplaced along tectonic structures. 

Sandstone-filled faults described in this paper are ascribed to these younger suites 

of sandstone intrusions (Palladino et al. 2016, 2018). 

Sandstone-filled faults  

Details of faults, as well as the inner fault zone architecture (Caine et al. 

1996), are generally not imaged on seismic sections as they are below the limits of 

seismic resolution, and general insights are therefore drawn from outcrop analogues. 

Fault zones developing in under-compacted multi-layered siliciclastic deposits 

generally consist of a mix of smeared clay and sand grains (Gibson 1998; Bense et 

al. 2003). In particular, sand can be incorporated along fault zones due to: i) 

shearing processes resulting in deformed ribbons parallel to the fault plane; ii) 

dragging and rotation of sandstone beds along a fault until they become parallel to 

the fault plane; iii) injection processes resulting in fluidized sand being intruded 

directly along the fault zone (Lewis et al. 2002). According to these authors, in the 

first two cases, the incorporation of sand into the fault zone implies deformation and 

the consequent development of fault-parallel anisotropy as well as shear bands, 

multiple slip surfaces and alternating shale/sand stripes. In the third case however, 

the sand is injected under pressure into pre-existing or newly-formed fault surfaces 

by fluid overpressure. Fault-parallel anisotropies are related to lamination and 

banding created by differences in grain alignment and reorganisation occurring as a 

result of the fluid movement.  

In the next sections we describe three representative and very well-preserved 

examples of reverse, normal and strike slip sandstone-filled faults from Central 

California. Although these structures formed in different tectonic contexts, they 

display some common characteristics, which in the multi-layered siliciclastic 

successions generally lead to increasing permeability and connectivity of the 

hydrocarbon system.  

Examples of sandstone-filled faults  

Sandstone-filled faults associated with contractional tectonics 
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In the Monocline Ridge area, a sandstone-filled thrust cutting through the 

Kreyenhagen Shale outcrop (TGIC) consists of an E-W striking blind thrust with up to 

15 cm displacement that dies out towards the fault tip (Figs. 1, 2a). The fault-related 

fold shows an asymmetric geometry with an overturned forelimb indicating 

northwards-directed vergence (Fig. 2b). The sandstone filling the thrust plane is well-

sorted, medium grained, and structureless or poorly laminated. Even though the 

whole thrust is entirely filled by injected sand, the sandstone thickness varies 

laterally from a few millimetres to several centimetres. In particular, thick sandstone 

intrusions occur in the fold hinge in saddle reef cavities, or along releasing steps 

created during thrust movement. Sandstone-filled thrust faults are attributed to 

Eocene to Oligocene contractional deformation (Palladino et al. 2016). 

Sandstone-filled faults associated with extensional tectonics 

Sandstone-filled normal faults are common in the study area. The example 

shown in Fig. 3 is from Tumey Gulch (Fig. 1) where a fault array offsetting the 

Moreno Formation crops out. These structures cut through different sandstone units, 

which include both depositional units (thin-bedded turbidites) and sandstone 

intrusions belonging to the earlier PGIC (Fig. 3a, b). Normal fault kinematics can be 

deduced by offset marker beds and by the dragging of sandstone along fault planes. 

Dip-slip striations are recognized discontinuously along the fault walls. They probably 

formed during the early stage of the fault formation and were partially removed by 

the arrival of the injected sand. Fault offsets range from 10 to 15 cm, and fault 

apertures range from 2 to 10 cm, with infill commonly consisting of structureless or 

poorly laminated sand. Sandstone-filled normal faults developed in this area are 

attributed to outer arc extension of folds formed during the Eocene (Palladino et al. 

2016).  

Sandstone-filled faults associated with strike-slip tectonics 

Sandstone-filled strike-slip faults that cut through the Moreno and 

Kreyenhagen Shale formations are less common than those showing extensional 

and contractional kinematics. A well-preserved example from Silver Creek (Fig. 1) 

consists of a NW-SE trending left-lateral strike-slip fault that displays clear cross-

cutting relationships with an older generation of vertical dikes belonging to the PGIC. 

Fault kinematics, depicted by the offset of pre-existing vertical sandstone intrusions, 
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is best appreciated in plan-view (Fig. 4a, b). Strike-parallel striations are locally 

preserved along the fault walls. The average fault offset is 30 cm while the aperture 

is 15 cm. The sand fills the entire length of the described fault and maintains a 

constant thickness. Internal structures include fault parallel banding. Local releasing 

steps, consistent with left lateral movement of the fault, are also present. The age of 

this fault is uncertain, although given its orientation and position, it may be linked to 

the San Andreas Fault System which shows an average azimuth N324° (Aydin & 

Page 1984). 

Basic conditions and mechanism for sand emplacement along a fault plane 

In order for fluidized sand to be injected along a fault plane, two essential 

preconditions must be met in the faulted sequence: i) high pore-fluid pressure (Pf) 

and ii) occurrence of poorly-consolidated sandstone. The first precondition is 

encountered in siliciclastic-filled sedimentary basins, formed of sandstone bodies 

alternating with mudstones, where overpressure development is related to sealing 

mechanisms, rapid deposition of the sedimentary column, tectonic loading, 

diagenesis, and rapid migration of hydrocarbon gas (Osborne & Swarbrick 1997). 

Deep-water marine turbiditic successions are considered to be the most commonly-

fluidised strata (Jolly & Lonergan 2002).  

The second precondition typically occurs in sedimentary basins that were 

never deeply buried (less than 1 km) or thermally altered (less than 60ºC) so that the 

sandstone has not been subjected to significant diagenetic alteration. Other 

conditions linked to the average net to gross ratio, the thickness and spacing of the 

sandstone units are described by Lewis et al. (2002), who suggest that environments 

characterized by high net to gross ratio and thick sandstone layers are most prone to 

develop sandstone-filled faults.  

The mechanism leading to the emplacement of sand along a fault plane is 

dependent on the behaviour of the overpressured fluids circulating along the fault. 

This behaviour is still a poorly understood phenomenon, although some indications 

are provided by various theoretical and observational studies. Models show that 

fluids moving along faults may intermittently propagate as upwards- or laterally- 

directed pulses, shock waves or ‘burps’ at a rate of m/yr to km/yr (Rice 1992; Nur & 

Walder 1992; Roberts & Nunn 1995; Losh et al. 1999; Finkbeiner et al. 2001; Revil & 
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Cathles 2002; Miller et al. 2004; Haney et al. 2005). Although these fluid velocities 

are considered geologically fast, even higher velocities, of the order of cm/s, are 

needed for sand to be fluidised and injected and for sandstone intrusions to be 

emplaced. Previous studies demonstrate that if the pore-fluid movement reaches the 

minimum fluidization velocity, it imposes a drag force that is able to mobilize sand 

grains (Lowe 1975). For well-sorted, fine-grained sands, similar to those included in 

the Moreno and Kreyenhagen Shale formations, the calculated minimum fluidization 

velocity is estimated to be as low as 0.01 m s−1 (Duranti & Hurst 2004). Therefore, 

sandstone-filled faults described in this study provide evidence for high-velocity fluids 

flowing along fault zones. As the ascent of fluidized sand occurs along all types of 

faults, even compressional faults where the adverse orientation of principal stresses 

should impede fluid flow and sand fluidisation, we believe that the migration of the 

fluidised sand must occur within an open, obstacle-free conduit (the fault plane). This 

condition is encountered only for supra-lithostatic pore pressures which are able to 

prop open the fault. 

A model for fluid transport along a fault plane that could account for rapid fluid 

flow which is able to cause prolonged dilation of the fault and to remobilize the sand 

was proposed by Sibson (1990). According to this model, upward or lateral fluid 

transport occurs along a fault which cuts through a rock sequence composed of 

different lithologies that form pressure cells each characterized by different Pf (Fig. 

5). This situation is commonly observed for sedimentary sequences composed of 

alternating sandstone and mudstone, where there is a general increase in Pf with 

depth. Considering a simple case where two sandstone bodies are separated by a 

low permeability mudstone (Fig. 5a), the pre-faulting Pf profile will follow the 

hydrostatic gradient in the uppermost sand body and rapidly increase through the 

mudstone horizon. Then, it will continue to increase (even if less rapidly) in the 

lowermost sandstone body, following a supra-hydrostatic path. When faulting occurs 

in such a succession (Fig. 5b), it produces an abrupt Pf disturbance, and the fault 

turns into a lower-pressured zone recalling fluids from the lowermost, but higher-

pressured, sand body thereby establishing an upward-directed pressure gradient. 

During the early stage of faulting, elevated Pf will dilate the fault plane thus creating 

space and causing high velocity flow that triggers sand fluidization and transport 

along the fault plane. This mechanism is identical to sand injection into hydraulic 
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fractures in mudstone, the mechanism by which most sandstone intrusions form 

(Vigorito & Hurst 2010). Following the upward discharge of fluid, the pore pressure 

profile in the mudstone and the lowermost sandstone will tend to equilibrate (Fig. 

5b). According to Sibson (1990), if the fault is resealed the system can be recharged 

and the processes can be cyclically repeated with the fault acting as a valve (the 

fault valve mechanism). In sand injection complexes it appears that fluids continue to 

dilate fractures after sand is no longer fluidised, and in some cases provide 

nucleation sites for the formation of mineral veins (Cobbold et al. 2013). 

Impact of sandstone-filled faults on fluid flow 

In hydrocarbon exploration, the sealing potential of a fault is one of the crucial 

factors to take into account when predicting fluid migration scenarios and estimating 

hydrocarbon volumes in faulted siliciclastic reservoirs. Therefore, a good 

understanding of fault behaviour allows the geological risk to be assigned, for 

example if a fault is leaking or sealing.  

Faults may act both as conduits or barriers to hydrocarbon migration by 

favouring, stopping or diverting the migration pathway over geological timescales 

(Allan 1989; Caine et al. 1996; Fisher & Knipe 2001). Whilst faults acting as barriers 

commonly play an important role in trapping hydrocarbons, they may however also 

compartmentalize reservoirs, making hydrocarbon recovery challenging (Corrigan 

1993). Faults acting as conduits may cause leakage, and thereby limit or prevent 

hydrocarbon accumulation (Cartwright et al. 2007). The behaviour of faults as 

conduits or barriers in poorly consolidated siliciclastic successions depends on the 

net to gross characteristics of the deformed successions, fault rock typology created 

during deformation (cataclasite, clay smear, etc.), the magnitude of the fault throw 

and fault activity (active or dormant faults). For faults that do not contain sandstone 

intrusions, two possible scenarios are possible in terms of fluid migration: 

i) For faults affecting sedimentary successions characterized by high net to 

gross values, there is a high probability that once offset reservoir units are still in 

contact, even after large amounts of fault throw (Harding & Tuminas 1989; Knott 

1993). This potentially ensures cross-fault fluid transfer. However, the occurrence of 

fault gouge can still favour along-fault fluid flow. This is because fault gouge which 

mainly consists of a mixture of sand grains and mudstone-derived clasts, can 
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acquire important shear-related, fault-parallel physical anisotropies, which can focus 

fluid movement along the direction of anisotropy. These fault-parallel barriers, 

represented by shear bands and smeared clay, generally form an obstacle for cross-

fault fluid movement thus favouring along-fault fluid transfer (Arch & Maltman 1990). 

Large amounts of permeable sandy clasts, floating in an impermeable fault gouge 

material, ripped up from the fault walls, contribute to an increase in total permeability 

of the fault. In this latter case, connectivity is effective only if the clasts are still 

partially in contact with the wall rocks (Fredman et al. 2007).  

ii) In the case of faults affecting sedimentary successions characterized by low 

net to gross ratios, tectonic structures tend to develop clay smear or juxtapose 

reservoir and sealing units therefore resulting in a general lowering of the fault 

permeability (Fig. 8b). Sandy clasts ripped from the fault walls may eventually be 

surrounded by an impermeable matrix. In this situation, both cross-fault and along-

fault fluid flow becomes markedly reduced. 

When mineralogically-mature sand is injected into faults, according to the 

process described above, the fault permeability may improve dramatically. In an 

environment prone to sand remobilization, sandstone-filled faults represent an 

additional route for fluid migration. This is particularly likely to be the case in low net 

to gross sedimentary successions, as sandstone-filled faults are able to connect 

otherwise isolated reservoir lithologies located at different stratigraphic levels. This 

behaviour explains unexpectedly high levels of hydrocarbon reservoir connectivity 

within thick inter-reservoir seal units (Briedis et al. 2007) and improved connectivity 

in less mudstone-rich reservoirs where intra-reservoir mudstone seals are present 

(Guargena et al. 2007; Satur & Hurst 2007). They only contain faint fault-parallel 

anisotropy represented by banding acquired during the sand emplacement which 

does not represent a major obstacle for fluid migration. 

During sand injection, the movement of fluidized sand inevitably produces an 

abrasive effect on fault walls, which has the potential to “clean” them by removing 

smeared clay-rich fault gouge and fine grained cataclastic material. In the case of 

sandstone-filled faults in high net to gross sedimentary successions, both cross-fault 

and along-fault fluid flow transmissibility are strongly enhanced by the occurrence of 

sand instead of fault gouge material. Hydrocarbons will be free to move across the 
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fault plane from the hanging-wall to the footwall and vice versa without any 

appreciable hindrance. Upward, along-fault fluid flow movement is enhanced in the 

direction of the maximum hydraulic gradient. In the case of sandstone-filled faults 

cutting through low net to gross sedimentary successions, along-fault fluid flow 

transmissibility will be considerably improved allowing the fault to hydraulically link 

isolated reservoir units. 

Predicting orientation and geometry of sandstone-filled faults in different 

geodynamic settings 

Since sandstone intrusions occurring within tectonically-active basins tend to 

be emplaced along newly-formed, structural discontinuities (Winslow 1983; Palladino 

et al. 2016, 2018), it is possible to develop predictive models for their distribution 

(Fig. 6). In particular, as the development of horizontal or vertical tectonic 

discontinuities are determined by the orientation of the regional stress field 

(Anderson 1951), different sandstone intrusion geometries represented by high/low 

angle dykes or sills are potentially predictable. 

In extensional regimes (Fig. 6), the vertical orientation of the maximum 

principal stress promotes the development of high angle dykes which are intruded 

along steeply dipping conjugate shear faults and near-vertical tension fractures, 

whereas the formation of concurrent sills is prevented because of the adverse 

orientation of the maximum principal stress (σ1). Normal faults commonly occur in 

areas subjected to regional extensional tectonics, or locally are associated with 

contractional and strike-slip structures in different tectonic settings (Fossen 2016). 

Some outcrop examples of sandstone-filled extensional faults are documented 

(Taylor 1982; Davison 1987; Audemard & de Santis 1991; Ribeiro & Terrinha 2007; 

Montenat 1991, 2007; Ravier et al. 2015; Palladino et al., 2018) and similar features 

were reproduced in laboratory experiments (Galland et al. 2006). Sandstone 

intrusions associated with normal faults have often been recognized in the 

subsurface by means of seismic profiles and cores (Dixon 1995; Lonergan and 

Cartwright 1999; Shoulders et al. 2007; Koša 2007; Bureau et al. 2013). Sandstone-

filled normal faults in extensional regimes commonly strike parallel to the maximum 

horizontal stress. Resultant sandstone intrusions are arranged as parallel arrays, or 

form conjugate, conical-shaped, injections (Palladino et al. 2018). Sandstone-filled 
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normal faults sometimes also occur in association with contractional folds as a result 

of outer arc extension (Palladino et al. 2016). In this case, they have a radial 

arrangement with the strike oriented parallel to the fold axis. 

In contractional regimes (Fig. 6), the horizontal orientation of the maximum 

principal stress (σ1) allows the development of both sills and dykes since low-angle 

shear faults and near-horizontal tension fractures develop. Sandstone intrusions 

occurring in the hanging-wall of major thrusts were first documented in southern 

Chile by Winslow (1983). Laboratory experiments investigating pluton emplacement 

demonstrate that when contractional deformation is applied to multi-layered 

sequences, flat-lying sills and low- to high-angle dykes propagate along the basal 

detachment surface and develop almost simultaneously (Galland et al. 2003). These 

experimental results prove to be valid for sandstone intrusions along contractional 

faults, as is widely confirmed by outcrop observations (Taylor 1982; Di Tullio & Byrne 

1990; Ujiie 1997; Waldron & Gagnon 2011; Palladino et al. 2016). In contractional 

regimes, vertical sandstone dykes may form swarms striking parallel to the maximum 

principal stress (σ1). It follows that in contractional tectonic settings the simultaneous 

emplacement of both high- and low-angle dykes and sills is possible. Complete and 

incomplete saucer-shaped intrusions, corresponding with double- or single-vergent 

thrusts, respectively are also an expected geometry (not to be confused with 

intrusions having similar geometry described by Jackson et al. (2011) in extensional 

tectonic settings). 

In strike-slip regimes (Fig. 6) sandstone intrusions may occur along the major 

fault plane itself, or along different cavities originating on the fault plane as well as en 

echelon fracture arrays or, in association with fault bends. In the latter case, 

releasing bends are the best suited locations to host sandstone intrusions. Outcrop 

evidence of sandstone intrusions related to strike-slip tectonics are rare within the 

literature (e.g. Macdonald & Flecker 2007). Sandstone-filled strike slip faults are 

expected in zones of active strike-slip tectonics, or in the footwall of thrusts where 

they form conjugate sets of vertical faults with the axis of maximum compressive 

stress (σ1) oriented parallel to the bisector. Sandstone intrusions associated with 

strike-slip faults generally form near-vertical sandstone dykes.  

Discussion and implications for reservoir modelling  
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Modelling sandstone-filled faults when evaluating fault seal potential is 

particularly challenging due to the paucity of published subsurface and outcrop 

datasets. However, greater attention should be given to these structures especially 

when considering intrusive-prone successions, (i.e. alternating mudstones and 

poorly-lithified sandstone successions), that could give rise to intrusive reservoirs. As 

pointed out by Lewis et al. (2002), fault seal analysis methods are often applied to 

multi-layered-siliciclastic reservoirs without considering the possible occurrence of 

sandstone along fault planes which would significantly improve fault permeability and 

reservoir connectivity in general. Ignoring this could lead to overestimation of the 

sealing potential of the system. Conversely, failure to recognise sandstone-filled 

faults, which add new sand to the system, can lead to the underestimation of the 

total volume of hydrocarbon present in a reservoir. 

Sandstone-filled faults in the subsurface are only rarely described in borehole 

cores (Dixon et al. 1995; Kosǎ 2007) although some seismic-based studies may 

enhance the understanding of their geometry/volume (Dixon 1995; Shoulders et al. 

2007; Bureau et al. 2013). The main reason for this is that during faulting the amount 

of sand remobilized is a tiny volume when compared with the huge volumes of sand 

that are mobilised during the formation of giant sand injection complexes (Vigorito et 

al. 2008). Consequently, sandstone intrusions along faults are commonly too narrow 

and too steep to be detected in seismic data (Grippa et al. 2019). Based on our 

outcrop observations, sandstone-filled faults can form closely-spaced fault arrays 

(Fig. 3), sometimes cross-cutting, and often resulting in a dense network of 

sandstone intrusions associated with inferred high permeability. Sandstone intruded 

along faults can either be uniformly distributed within the fault zone, or form porous 

and permeable sand lenses within the less permeable fault rock. 

Including sandstone-filled faults when modelling hydrocarbon reservoirs 

formed by sandstone intrusions entails the following advantages: i) unlike modelling 

‘ordinary’ faults, which commonly involves a number of uncertain factors which are 

directly linked with the fault rock properties as well as the structure (usually strongly 

anisotropic), composition (consisting of a sand-mudstone mixing) and rheology of the 

fault gouge (Hesthammer & Fossen 2000), modelling sandstone-filled faults 

importantly reduces the uncertainties since injected sandstones generally consists of 

ACCEPTED M
ANUSCRIP

T

 at University of Aberdeen on March 2, 2020http://sp.lyellcollection.org/Downloaded from 



clean and well-sorted sand that, based on core data generally have porosities of 30-

40% and permeabilities of more than 1 Darcy (Duranti et al. 2002; Briedis et al. 

2007); ii) fault zones are often free of gouge material (Palladino et al. 2018), as this 

is removed during the sand injection; iii) the concept that fluidized sand is forcibly 

injected along tectonic discontinuities strongly helps in predicting the distribution of 

sand injections in a reservoir subject to tectonic stress. 

Conclusion 

In this paper we use well-preserved outcrops from Central California to 

discuss the fluid flow importance of normal, strike-slip and contractional sandstone-

filled faults, affecting multi-layered, siliciclastic reservoirs. Occurrence of these 

structures shows that sand remobilization is particularly active along fault zones 

where high-velocity fluids are capable of fluidizing and remobilizing poorly lithified 

parent sandstone.  

Using the case study examples, we have also shown that sandstone-filled 

faults common in sand-injection -prone reservoirs, add a new factor in modelling 

poorly consolidated siliciclastic reservoirs. In particular, sandstone-filled faults, which 

tend to form in groups rather than occurring as isolated structures, act as conduits 

for fluid migration and reduce reservoir compartmentalization.  

Sandstone-filled faults are relatively straightforward to model in terms of 

permeability and porosity, as the injected material generally consists of well-sorted 

clean sand. Sandstone emplacement produces an abrasive effect along fault walls 

thereby potentially removing the low permeability fault gouge represented by fine-

grained sand or clay smear. Sandstone-filled fault orientation is also predictable, as it 

is controlled by the local tectonic stress field. Consideration of sandstone-filled faults 

may enhance our understanding of the recovery of oil from newly discovered or 

mature sand-injection prone reservoirs, such as those in the North Sea, which show 

dimensions and architectural characteristics very similar to the injection complexes 

exposed in California. Further advances in understanding the role of sandstone-filled 

faults in reservoir fluid flow transmissibility must necessarily start from the study of 

well-exposed outcrop analogues and then be applied to the evaluation of subsurface 

data. 
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Fig. 1. Geological map (modified from Bartow 1996) of the western margin of the 

San Joaquin Valley in California (see inset map for general location). Outcrop 

locations and places referred to in the text are also shown. The stratigraphic position 

of the Panoche Giant Injection Complex (PGIC) and the Tumey Giant injection 

Complex (TGIC) is also reported. SAFZ-San Andreas Fault Zone. 

Fig. 2. Sandstone-filled faults associated with contractional tectonics: (a) photograph 

and (b) associated line drawing of a meso-scale blind sandstone-filled thrust cutting 

through the Kreyenhagen Shale at Monocline Ridge. Note the occurrence of sand 

throughout the entire fault plane and within saddle reef and releasing step cavities 

(modified from Palladino et al. 2016).  

Fig. 3. Sandstone-filled faults associated with extensional tectonics: (a) photograph 

and (b) associated line drawing of closely-spaced swarms of sandstone-filled normal 

faults cutting through the Moreno Formation at Tumey Gulch. Note post-

emplacement deformation processes represented by vertical fault segmentation and 

anomalous fault planes curvatures (modified from Palladino et al. 2018). 

Fig. 4. Sandstone-filled faults associated with strike-slip tectonics: (a) plan-view 

photograph and (b) associated line drawing of meso-scale sandstone-filled left-

lateral strike-slip faults at Silver Creek. The photograph has been obtained using 

close photogrammetry techniques.  

Fig. 5. Simplified geological model and associated fluid flow profiles consisting of 

two sandstone bodies separated by a low permeability mudstone (modified from 

Sibson 1990). (a) Pre-faulting stage: the low permeability mudstone forms a barrier 

separating hydrostatic and suprahydrostatic fluid pressure regimes. (b) Faulting 

stage: hydrostatic and suprahydrostatic pressure cells are juxtaposed along the fault. 

This generates an upward directed pressure gradient capable of fluidizing and 

remobilizing the sand which is forcibly injected along the fault plane.  

Fig. 6. Cartoon illustrating the conceptual model of sandstone-filled fault orientation 

predicted for different tectonic regimes (see text for explanation).  
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