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Abstract. Retail food packaging contains information which informs
choice and can be vital to consumer health, including product name, in-
gredients list, allergens, storage and shelf life information (use-by / best
before dates). The presence and accuracy of such information is criti-
cal to ensure a detailed understanding of the product and to reduce the
potential for health risks. In this paper, a multi-source deep learning-
based domain adaptation system is proposed and tested to identify and
verify the presence and legibility of use-by date information from food
packaging images taken as part of the validation process as the products
pass along the food production line. This was achieved by improving the
generalization of the techniques via incorporating new loss functions and
making use of multi-source datasets in order to extract domain invari-
ant representations for all domains and aligning distributions of all pairs
of source and target domains in a common feature space, along with
the class boundaries. Comprehensive experiments on our food packag-
ing datasets demonstrate that the proposed multi-source deep domain
adaptation method significantly improves the classification accuracy and
therefore has great potential for application and beneficial impact in food
manufacturing control systems.
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1 Introduction & Related Work

Europe’s food and drink sector employs 4.57 million people and has a turnover of
e 1.1 trillion, making it the largest manufacturing industry in the EU (Source:
Data & Trends. EU Food & Drink Industry 2018. FoodDrink Europe 2018).
To assure public health, food safety is a legal requirement across the food sup-
ply chain. As part of this control approach all pre-packaged food products are
required to display mandatory information on the food pack label. Labeling mis-
takes can therefore create major food safety problems including: Food poisoning,
caused by the consumption of a product that has exceeded its actual use-by date.

To the best of our knowledge this is the first study to consider a new multi-
source deep learning domain adaptation approach for retail food packaging con-
trol, further supporting automation towards industry 4.0 and with high potential
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Fig. 1. Overview of our proposed Multi-Source Deep Domain Adaptation model, show-
ing the Feature Extractor, Classifier and the Class Activation Maps.

to reduce errors and their related costs to the consumer and food business oper-
ators. Previous studies to consider deep learning (DL) techniques for OCV have
primarily focused on one domain and/or using transfer learning (TL) to enhance
the performance and generalization of the developed techniques [10], [11], [9].
In recent years, many single source domain adaptation methods have been
proposed. Discrepancy-based approaches rely on aligning the distributions in
order to minimize the divergence between the Maximum Mean Discrepancy
(MMD) [8], Correlation Alignment (CORAL) [12]. The approach in [3] tries
to minimize the feature distributions by integrating a gradient reversal layer.
Rather than minimizing divergence, the method in [4] learns joint representa-
tions to classify the labeled source data, while reconstructing the target domain.

Learning from multiple different sources has originated from early theoretical
analysis [1], [2], and has many practical applications. Initially many shallow
models were proposed in order to tackle the multi-source domain adaptation
problem [6] [7]. Deep Cocktail Network [13] proposed a multi-way adversarial
learning to minimize the discrepancy between the target and each of the multiple
source domains. The work most related to ours has been the one in [15].

2 Methodology

As shown in Figure 1, our model comprises a feature extractor and a classification
part. The feature extractor part learns useful representations for all domains,
whereas its sub-network learns features specific to each source-target domain
pairs. The classification part of the model learns domain-specific attributes for
each target image and provides N categorization results.

2.1 Multi-Source Domain Adaptation

The proposed approach comprises a feature extractor and source specific classifi-
cation parts, aiming at minimizing the feature discrepancy, for learning domain-
invariant representations; the class boundary discrepancy, for minimizing the
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mismatch among classifiers; and improving source data classification by reduc-
ing the classification loss, leading to better generalization on the target dataset.

Feature Discrepancy Loss: We reduce the feature discrepancy by min-
imizing both MMD and CORAL loss in order to align higher order statistics
along with the first and second order statistics. MMD [5] defines the distance
between the two distributions with their mean embeddings in the Reproducing
Kernel Hilbert Space (1)

LossMMD =
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where φ(x) denotes the kernel associated with the feature map φ, N and M are
the total number of items in the source and target respectively.

CORAL loss [12] is also used to minimize the discrepancy between source
and target data by reducing the distance between the source and target feature
representations (2),

LossCORAL =
1

4d2
||Cs − Ct||2F (2)

||.||2F denotes the squared matrix Frobenius norm, Cs and Ct are the source
and target covariance matrices. The total feature discrepancy loss is therefore
given by the equation (3),

LossFD = LossMMD + LossCORAL (3)

Class Discrepancy Loss: Classifiers are likely to misclassify the target sam-
ples near the class boundary as they are trained using different source domains,
each having different target prediction. Therefore we aim at minimizing the dis-
crepancy among all classifiers by making their probabilistic outputs similar. The
class discrepancy is calculated by equation (4),

LossCD =

(
N

2

)−1 N−1∑
j=1

N∑
i=j+1

[|E(Xi)− E(Xj)|] (4)

where N is total number of classifiers.
Classification Loss: The network reduces the discrepancy among classifiers

by minimizing the classification loss. We train the network with labeled source
data and calculate the empirical loss through minimizing cross-entropy loss as

LossCL =
1

N

N∑
i=1

V (f(xsi ), y
s
i ) (5)

where V (., .) is the cross-entropy loss function and f(xsi ) is the conditional prob-
ability that the CNN assigns to label ysi .

Our total loss is made up of classification loss (CL), feature discrepancy loss
(FD) and class discrepancy loss (CD). By jointly minimizing these three losses,
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Table 1. Classification accuracy (%) and loss functions used for each method, per
target for source - target combinations*

Method
Loss

Functions
S → T
(Wi)

ACC
S → T
(Ab)

ACC
S → T
(Bo)

ACC
S → T
(Bu)

ACC
S → T
(Os)

ACC
S → T
(Li)

ACC

TL CL Ab 77.9 Bu 79.4 Ab 78.2 Ab 79.2 Ab 80.1 Ab 77.6

SS-DA CL, FD Ab 83.2 Bu 84.6 Ab 82.6 Ab 83.5 Ab 84.7 Ab 86.2

SC-DA2 CL,FD

Ab,Bo 84.5 Bu,Bo 82.3 Ab,Bu 84.8 Ab,Bo 84.1 Ab,Bo 85.2 Ab,Bo 84.4
Ab,Bu 85.6 Bu,Li 86.6 Ab,Li 83.5 Ab,Li 84.7 Ab,Bu 86.1 Ab,Bu 87.4
Ab,Li 82.1 Bu,Os 83.8 Ab,Os 86.3 Ab,Os 88.3 Ab,Li 85.3 Ab,Os 87.6
Ab,Os 80.9 Bu,Wi 87.9 Ab,Wi 84.2 Ab,Wi 82.7 Ab,Wi 84.6 Ab,Wi 88.3

SC-DA3 CL,FD

Ab,Bu,Li 83.6 Bu,Bo,Wi 83.7 Ab,Bu,Li 86.2 Ab,Bo,Wi 84.9 Ab,Bo,Wi 86.2 Ab,Bo,Wi 85.2
Ab,Bu,Os 86.1 Bu,Li,Os 87.5 Ab,Bu,Os 84.9 Ab,Li,Os 85.4 Ab,Bu,Li 85.4 Ab,Bu,Os 88.6
Ab,Bu,Bo 86.3 Bu,Li,Bo 88.2 Ab,Bu,Wi 85.2 Ab,Li,Bo 85.1 Ab,Bu,Bo 86.6 Ab,Bu,Bo 88.1
Ab,Li,Os 84.1 Bu,Li,Wi 87.2 Ab,Li,Os 86.9 Ab,Li,Wi 84.9 Ab,Bu,Wi 87.2 Ab,Bu,Wi 88.7
Ab,Li,Bo 84.6 Bu,Os,Bo 85.6 Ab,Li,Wi 84.1 Ab,Os,Bo 88.6 Ab,Li,Bo 85.6 Ab,Os,Bo 82.1
Ab,Os,Bo 83.7 Bu,Os,Wi 88.3 Ab,Os,Wi 86.8 Ab,Os,Wi 87.9 Ab,Li,Wi 87.3 Ab,Os,Wi 90.2

MS-DA2
CL, FD,

CD

Ab,Bo 90.3 Bu,Bo 89.1 Ab,Bu 90.2 Ab,Bo 90.6 Ab,Bo 88.7 Ab,Bo 89.6
Ab,Bu 89.5 Bu,Li 88.7 Ab,Li 91.1 Ab,Li 88.7 Ab,Bu 90.9 Ab,Bu 92.1
Ab,Li 91.6 Bu,Os 90.6 Ab,Os 90.3 Ab,Os 92.9 Ab,Li 89.9 Ab,Os 91.3
Ab,Os 92.8 Bu,Wi 90.2 Ab,Wi 91.2 Ab,Wi 90.2 Ab,Wi 91.9 Ab,Wi 90.5

MS-DA3
CL, FD,

CD

Ab,Bu,Li 92.8 Bu,Bo,Wi 91.3 Ab,Bu,Li 94.2 Ab,Bo,Wi 91.4 Ab,Bo,Wi 93.6 Ab,Bo,Wi 91.2
Ab,Bu,Os 93.2 Bu,Li,Os 91.5 Ab,Bu,Os 92.6 Ab,Li,Os 92.6 Ab,Bu,Li 91.5 Ab,Bu,Os 92.3
Ab,Bu,Bo 92.7 Bu,Li,Bo 91.9 Ab,Bu,Wi 92.1 Ab,Li,Bo 92.9 Ab,Bu,Bo 91.8 Ab,Bu,Bo 92.2
Ab,Li,Os 93.1 Bu,Li,Wi 92.1 Ab,Li,Os 92.3 Ab,Li,Wi 91.3 Ab,Bu,Wi 92.7 Ab,Bu,Wi 92.6
Ab,Li,Bo 92.5 Bu,Os,Bo 92.3 Ab,Li,Wi 92.9 Ab,Os,Bo 93.4 Ab,Li,Bo 93.5 Ab,Os,Bo 92.1
Ab,Os,Bo 93.2 Bu,Os,Wi 92.6 Ab,Os,Wi 92.4 Ab,Os,Wi 93.2 Ab,Li,Wi 92.6 Ab,Os,Wi 93.7

*SS-DA:Single source Domain Adaptation, SC-DA2:Source Combined Domain Adaptation with 2 sources combined
into a single source, SC-DA3:Source Combined Domain Adaptation with 3 sources combined into a single source,
MS-DA2:Multi Source Domain Adaptation with 2 sources combined into a single source, MS-DA3:Multi Source

Domain Adaptation with 3 sources combined into a single source.S → T: Source → Target .

our network can learn features that generalize and adapt well on the target
dataset. The overall objective of our network can be formulated as:

LossTotal = LossCL + λLossFD + γLossCD (6)

where λ and γ are penalty parameters.

3 Experiments and Results

Our dataset as shown in Figure 2 includes 30,000 images from six UK loca-
tions (equal split), namely Abbeydale (Ab), Burton (Bu), Bourne (Bo), Listowel
(Li),Windmill-Lane (Wi) and Ossett (Os), with two classes per location, i.e.
OK (legible) vs NOT-OK (illegible). The combinations tested included all six
locations and were conducted in the following manner: a) Transfer Learning,
b) Single Source to Single Target, c) Combined Source to Single Target and d)
Multi Source to Single Target (proposed method).

In the transfer learning setting, the labeled source and the unlabeled tar-
get images have been fed through the ResNet50 pre-trained on ImageNet which
only uses the classification loss. In the Single-Source Domain Adaptation (SS-
DA) setting, the labeled source and the unlabeled target images have been fed
through the model where the discrepancy between the pair of datasets was min-
imized by jointly reducing the feature discrepancy and the classification losses.
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Fig. 2. (a) Acceptable Quality (OK) vs (b) Unacceptable Quality (NOT-OK) images.
First row: raw images; second row: the images with class activation map [14].

Table 2. Comparison of average classification accuracy across all methods

Method Loss Functions Avg-ACC

TL CL 78.77
SS-DA CL, FD 84.14
SC-DA2 CL, FD 85.05
SC-DA3 CL, FD 86.13
MS-DA2 CL, FD, CD 90.53
MS-DA3 CL, FD, CD 92.50

In the source combined setting, all the source domains are combined into a sin-
gle domain, and the experiments are conducted in a traditional single domain
adaptation manner. We have combined and experimented using a) Two sources
combined and b) Three sources combined.

In our proposed Multi-Source Domain Adaptation (MS-DA) method, the
labeled sources and the unlabeled target images are fed through the model where
the discrepancy between the pair of datasets was minimized by jointly reducing
the FD, CD and the classification losses using the techniques described in section
3. We performed various experiments per location as target domain with the
results presented in Table 1 and Table 2. We categorized the experiments as
a) Multi-Source with two datasets and b) Multi-Source with three datasets;
our proposed approach significantly outperforms the baseline methods with an
average classification accuracy improvement by more than 6%.

4 Conclusions

In this paper a multi-source domain adaptation methodology is proposed that
attempts to adapt and generalize information from one dataset to another for
automating the verification of the use-by dates on food packaging datasets. The
results presented illustrate that the performance of the food packaging classi-
fication improved significantly with our proposed approach compared to both
the baseline approach (transfer learning) and the common approach of single
source/source-combined. The proposed approach can also be applied to other
aspects of food packaging control, such as ingredients and allergen information.
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