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Abstract Heart failure—either with reduced or preserved ejection fraction (HFrEF/HFpEF)—is a clinical syndrome of multi-
factorial and gender-dependent aetiology, indicating the insufficiency of the heart to pump blood adequately to
maintain blood flow to meet the body’s needs. Typical symptoms commonly include shortness of breath, excessive
fatigue with impaired exercise capacity, and peripheral oedema, thereby alluding to the fact that heart failure is a
syndrome that affects multiple organ systems. Patients suffering from progressed heart failure have a very limited
life expectancy, lower than that of numerous cancer types. In this position paper, we provide an overview regarding
interactions between the heart and other organ systems, the clinical evidence, underlying mechanisms, potential
available or yet-to-establish animal models to study such interactions and finally discuss potential new drug inter-
ventions to be developed in the future. Our working group suggests that more experimental research is required
to understand the individual molecular mechanisms underlying heart failure and reinforces the urgency for tailored
therapeutic interventions that target not only the heart but also other related affected organ systems to effectively
treat heart failure as a clinical syndrome that affects and involves multiple organs.
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..1. Introduction

The concept that heart failure is a clinical syndrome involving numerous
organ systems is not new. However, how organ crosstalk during heart
failure mechanistically develops and may represent an opportunity to
create new treatment paradigms remains a fascinating future area to be
explored. The complex feedback between different organs or even cells
is mediated via mechanical, soluble, and cellular mechanisms.1–3 On the
one hand, there is a need for organ crosstalk to maintain body homeo-
stasis; however, once a pathological state develops in one organ system,
this can lead to functional and structural dysfunction in other organs.
The same organ-interaction concept can also be adopted to the cellular
level, where disease phenotypes within a given cell type can detrimen-
tally affect other cell types, thereby leading to a detrimental vicious cycle
that finally leads to organ dysfunction.4

In this position paper, we provide an overview of interactions be-
tween the heart and several main organs and tissues with a focus on the
kidney, brain, lung, skeletal muscle, intestine, liver, adipose tissue, and fi-
nally innate immunity (Figure 1). Additional interactions between the
heart and other organs systems exist but are beyond the scope of this
review.

We highlight new experimental evidence that heart failure must be
viewed as a multi-organ clinical syndrome with numerous subtypes,
which are based on other organs involved. We also discuss conse-
quences on new diagnostic, prognostic, and therapeutic strategies.
Such strategies must be further developed with the aim of optimizing
a root cause analysis of individual HF patients. This also implies the
need for the development and/or use of new model systems that
aim to study the mechanistic details of such organ interactions during
heart failure. Future treatment strategies of novel yet to be discov-
ered mechanisms either directly in the heart of affected HF patients
or indirectly in organs supporting HF development need to be
developed.

2. The use of HF terminology

The authors of this position paper agree that a certain form of HF sub-
type definitions, such as ‘HFrEF’, ‘HFmrEF’, or ‘HFpEF’, is required.
However, we also agree that such an approach fails to explain the clinical
diversity of HF patients, particularly those that have comorbidities that
contribute to HF. However, in this position paper, we continue to use

Figure 1 Diagram of postulated organ crosstalk in heart disease—namely between the heart, kidneys, brain, lung, skeletal muscle, intestine, liver,
adipose tissue, gonads, and the immune system. Details are elaborated in the respective subsections. RAAS, renin–angiotensin–aldosterone system; BNP,
natriuretic brain peptide; AVP, argininge vasopressin; DAMP, danger associated molecular patterns; PRR, pattern recognition receptors.
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such a terminology, while continually bearing in mind the clinical
diversity.

3. Heart and kidney

Interactions between the heart and the kidney are amongst the best
characterized organ interactions in the human body thus far. Indeed, car-
diac and renal functions are tightly and reciprocally regulated through
several bidirectional pathways, including hemodynamic, neurohormonal,
endocrine, inflammatory, and epigenetic mechanisms.5 Dysregulation of
this complex network leads to the well-described cardiorenal syndrome
(CRS), which includes a series of different clinical phenotypes that under-
line the reciprocal influence of the heart and kidney in pathological con-
ditions.6 Therefore, the identification of cardiac–renal network-activated
signalling through various pathological conditions has an essential thera-
peutic and prognostic value.

The current knowledge regarding CRS mechanisms derive from both
pre-clinical and clinical studies. In the animal model, the clinical cardiore-
nal phenotype can be reproduced by inducing a primary cardiac injury,
primary renal disease, or a simultaneous renocardio/cardiorenal dysfunc-
tion.7 However, murine models do not always recapitulate CRS, thereby
indicating—in particular—limits related to the timeframe required be-
tween the development of HF and the onset of renal failure.

In the pathophysiological context, cardiac output represents the pri-
mary regulator of renal function, as measured by the estimated glomeru-
lar filtration rate (eGFR). As described below in other subchapters, this
also holds true for other organ systems such as the liver, the gut, and the
brain. Indeed, impaired systolic function as observed in congestive heart
failure, particularly in heart failure with reduced ejection fraction
(HFrEF), affects renal function via activation of neurohormonal mecha-
nisms—such as the renin–angiotensin–aldosterone system (RAAS) and
sympathetic nervous system—aimed to maintain adequate organ perfu-
sion, including the kidney.8 In addition to reduced systolic function, path-
ophysiological studies evidenced that other variables, such as resting
heart rate and arterial stiffness, can influence the cardio-renal network,
which may explain the deterioration of renal function in the presence of
preserved or mildly reduced systolic function (HFpEF and HFmrEF). For
example, adequate rhythm control in patients with atrial fibrillation (AF)
improves and preserves eGFR.9 In addition, elevated resting heart rate
appears associated with the deterioration of renal function in the pres-
ence of increased arterial stiffness. This may potentiate the increased pul-
satile flow wave caused by elevated heart rate, thereby leading to
accelerating kidney injury.10 The role of neurohormonal mechanisms in
the cardio-renal network is manifold. The effects of RAAS in the control
of volume load is well-known, as are the long-term effects on cardiac
and vasculature remodelling that lead to chronic heart failure. The natri-
uretic peptide system accounts for the endocrine function of the heart
and enables it to directly modify renal function. Natriuretic Brain Peptide
(BNP), beyond its natriuretic and vasorelaxant effects, can inhibit renin
production and reduce aldosterone synthase (CYP11B2) mRNA ex-
pression with attenuation of cardiac hypertrophy and fibrosis.11 The
contribution of arginine vasopressin (AVP) to the development of the
CRS is also relevant. AVP levels are increased in heart failure, thereby
leading to fluid retention and vasoconstriction.12 Moreover, AVP is part
of a vicious cycle in HF, where renal ischemia secondary to reduced
blood perfusion induces RAAS activation, which stimulates the release
of AVP. of the activation of V1a receptors by AVP causes peripheral va-
soconstriction, contributing to worsening of renal function.13,14

According to recent work, the multifactorial mechanisms causing the
clinical picture do not only include hemodynamic parameters (such as
extracellular fluid volume, cardiac output, and arterial pressure) but also
endothelial injury, imbalance of immunological processes, cell death and
apoptosis, oxidative stress, leucocyte trafficking, and release of extracel-
lular vesicles.15,16

The communication between heart and kidney also follows other
routes involving, for example, immune-mediated mechanisms. Acute
heart damage may release pro-inflammatory factors that extend the
damage to the kidney. While still lacking a model that associates dysregu-
lation of the immune system and alteration of the cardiac–renal network,
the vascular endothelium appears primarily involved in activation of the
innate immunity and inflammatory responses.17

Epigenetics represents another fascinating field to further understand
cardio-renal interaction. The uremic milieu fosters epigenetic gene regu-
lation and promotes arteriosclerosis and cardiovascular disease.18–20 In
particular, non-coding RNA (ncRNA) can facilitate communication be-
tween organs and, thus, participate in the cardio-renal network. Several
miRNAs are also expressed in both and can mediate cardiac and renal
diseases.21 For example, cardiac miR-21 and miR-29b appear oppositely
regulated after lowering uremic toxin levels in a rat model of CRS.22

Further, miR-21 regulates the proliferation of tubular epithelial cells23

and promotes the development of renal fibrosis.24,25 Similarly,
antagomir-21 counteracts atrial fibrosis in experimental postinfarction
HF.26,27 Strikingly, inhibition of miR-21 has been shown to have anti-
fibrotic and protective effects in both kidney as well as cardiac dis-
ease.28,29 Effects of other ncRNAs in both kidney and cardiac diseases
have been recently summarized.21

Collectively, the cardiac–renal network consists of multiple intricated
regulatory systems that are essential for maintenance of cardiac function
and perfusion of organs. Perturbations in these systems are responsible
for the deterioration of both cardiac and renal functions, but also indi-
cate that novel therapeutic strategies targeting common pathways may
improve the functioning of both organs. The anti-fibrotic effects of a
miR-21 inhibitor are currently being tested in a phase II study in patients
with kidney fibrosis (www.clinicaltrial.gov, NCT02855268); however,
the potential benefit of selective kidney targeting of microRNA-21 in
patients with heart failure or other cardiovascular disease remains
unaddressed.

Canagliflozin, a sodium-glucose transport protein 2 inhibitor, has dem-
onstrated the ability to reduce major cardiovascular events and kidney
failure in patients with type 2 diabetes mellitus and chronic kidney dis-
ease.30 A recent co-culture study on the interaction between endothelial
cells and cardiomyocytes indicated a positive effect of empagliflozin. In
the latter experimental study, co-culturing of endothelial cells with cardi-
omyocytes enhanced cardiomyocyte contractility. The positive effect of
endothelial cells on cardiomyocyte function was blunted by exposure of
endothelial cells to tumour necrosis factor-a (TNF-a), and was restored
in the presence of empagliflozin. In addition to recent studies that indi-
cate direct positive effects of empagliflozin on the heart, this illustrates
the potential of a sodium-glucose transport protein 2 inhibitor to target
different cell types and organs.31–33

In summary, it has become necessary to develop a specific model to
deepen the molecular and pathophysiological mechanisms of CRS and
design clinical trials to assess the efficacy of a novel pharmacological
strategy aimed to preserve cardiac and renal functions and improve
patient outcome.
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4. Heart and brain

Several animal models were employed to study the basic mechanisms
that address the link between heart failure (HF) and brain dysfunction.
The most frequently used animal models for studying the effect of HF on
the brain are the transverse aortic constriction (TAC) and the myocar-
dial infarction (MI) model,34,35 which mimic pressure-overload and ische-
mic cardiac disease. Multiple studies were conducted to define cardiac
pathomechanisms in TAC and MI mice, although only a few addressed
brain functioning.

In the TAC mouse model, the aortic arch is partially obstructed in or-
der to induce pressure overload on the heart. This surgical intervention
decreases cerebral blood velocity, increases blood–brain barrier perme-
ability, inflammation, and cognitive dysfunction (reviewed in Ref. 35). A
recent systematic review and meta-analysis highlighted the heterogeneity
between the different functional outcome measurements of the TAC
model,36 thereby emphasizing the need for more robust studies regard-
ing the functional outcome measurements for TAC, which also must be
conducted in relation to the brain.

In the MI model, the left anterior descending coronary artery is per-
manently ligated to induced ischemia and cardiac dysfunction. This
resulted in reduced cerebral blood flow; however, MI did not reveal neu-
ronal damage six weeks after the intervention, while reduction in cere-
bral blood flow was reduced by 4–6 weeks.35,37,38 Vascular
inflammation—more specifically, TNFa—was found to increase in cere-
bral vascular smooth muscle cells of the MI mice six weeks after inter-
vention. Interrupting the TNFa signalling pathway could reverse the
decrease in cerebral blood flow by reversing cerebral artery vasocon-
striction.37 Further, Angiotensin-(1-7) attenuated MI-induced cognitive
impairment after four weeks of treatment.39 These studies emphasize
the therapeutic importance of studying these mice models in relation to
the brain; however, these studies are currently rather sparse.

The most prominent feature of HF on the brain is cerebral hypoperfu-
sion. In order to more specifically study the underlying consequences of
cerebral hypoperfusion, the bilateral common carotid artery stenosis
mouse model, which mimics chronic cerebral hypoperfusion, is
employed as the most promising model.40 In this model, cerebral hypo-
perfusion leads to, among other things, increased blood–brain–barrier
permeability, increased inflammation, white matter lesions and de-
creased cognition; however, underlying mechanisms are currently un-
known. Rats and non-human primates are used as animal models for
cerebral hypoperfusion after an ischemic event as well.41 However,
while hypoperfusion animal models mimic a broad spectrum of human
brain dysfunction after HF, not all pathological and cognitive aspects can
be translated from animals. Moreover, cognitive features, as one of the
most important aspects of brain functioning, is not the same between
animals and humans. Nevertheless, including animal cognitive and patho-
physiological measurements and in-depth molecular pathway analysis in
a robust and comprehensive manner in more HF or HF-related animal
studies is necessary to gain more insight into the basic mechanisms of HF
and brain interaction. Further, thus far, studies have been mainly per-
formed in young animals, while brain disorder in humans is highly age-
related. Therefore, more comprehensive studies in aging mice must be
included.

Both chronic HF and cognitive impairment are common conditions in
the general population and also tend to co-occur. The process of normal
aging is associated with a decline in cognitive abilities. A large proportion
of the elderly experience at least mild to moderate decline in memory
function and mental speed. A large proportion of these patients do not

fulfil the diagnostic criteria for dementia. The symptomatic stage preced-
ing dementia is called ‘mild cognitive impairment’ (MCI) and describes
the presence of cognitive impairment without interference in daily living.
MCI can be a first sign of dementia, but a proportion of the patients have
cognitive impairment due to causes other than neurodegenerative dis-
ease, such as depression, medication, or other (treatable) conditions.
The term vascular cognitive impairment (VCI) has been introduced to
describe the complete spectrum of cognitive impairment, from MCI to
dementia, related to vascular brain injury.42 Patients with heart failure
and other cardiovascular diseases have an increased risk for VCI.
Cognitive impairment in patients with HF has been associated with ad-
verse health outcomes, including poor survival, high mortality, and poor
engagement in self-care.43–45 Moreover, the complex (pharmacological)
management of HF may interfere with cognitive impairment. This under-
lines the importance of detecting the extent and nature of cognitive im-
pairment in HF. Thus far, studies have shown that 14%–70% of patients
with heart failure have cognitive impairment to a certain extent.46–49 In
the Heart-Brain Connection study,50 a Dutch multi-centre observation
study in patients with cardiovascular disease, we found that 18% of
patients with HF had cognitive impairment, in particular in the domains
of memory and attention-psychomotor speed.51 The prevalence of cog-
nitive impairment varies due to differences in neuropsychological tests,
the cut-off scores used to indicate cognitive impairment, and the charac-
teristics and demographics of the population with HF. In most studies,
only a short cognitive screening, such as the Mini-Mental State
Examination (MMSE) or Montreal Cognitive Assessment (MoCA), was
used. These tests are helpful in the identification of patients who are at
risk for cognitive impairment. However, a comprehensive neuropsycho-
logical assessment, performed by a neuropsychologist, can determine
the nature and severity of cognitive impairment.

In patients with HF, global and regional atrophy and vascular brain in-
jury [e.g. white matter hyperintensities (WMH) and (lacunar) infarcts,
microbleeds] are frequently detected on brain MR, which may cause
cognitive impairment.47,52–55 In addition, patients with HF are found to
have an increased risk of symptomatic stroke; however, clinically ‘silent’
lesions are also prevalent. A recent study indicated that cerebral cortical
microinfarcts, a novel marker of vascular brain injury, were found in 17%
of patients with HF and were related to vascular risk factor profile and
severity of cardiac dysfunction.56

Further, chronic cerebral hypoperfusion, primarily related to low car-
diac output, is thought to be the main cause of brain changes in patients
with HF. There is ample evidence that an adequate cerebral blood flow
(CBF) is a prerequisite for optimal cognitive functioning. Reduced CBF is
associated with worse cognitive functioning.57,58 However, a recent
study showed no relation between cerebral blood flow, measured with
arterial spin labelling MRI, and cognitive functioning in patients with HF
and vascular brain injury.59 In two studies comparing patients with HF to
controls, medial temporal lobe atrophy (MTA) was related to cognitive
functioning in patients with HF.47,60 MTA is an early feature of
Alzheimer’s disease (AD) and is associated with an increased risk of pro-
gression to dementia. A probable explanation for this finding could be
that patients with HF are more susceptible to the development of con-
comitant AD. Other potential underlying mechanisms beyond the role
of cardiovascular disease and brain changes, including oxidative stress
and inflammatory factors, are now receiving increasing attention.61 We
need more evidence to understand the interplay between cardiovascular
disease, the development of AD, and brain changes leading to cognitive
decline.
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With regard to therapeutic options, studies on cognitive functioning

in patients with HF are increasingly available, but there is a need for
more prospective longitudinal studies, with longitudinal brain MRI and
neuropsychological assessment. The implementation of ‘heart-brain clin-
ics’ in clinical care—with a multidisciplinary team of cardiologists,
internist-geriatricians, neuropsychologists, and neurologists—results in a
systemic focus on both heart and brain instead of focusing only on one
specific organ. The heart–brain clinic can enable the early detection of
patients at risk for cognitive impairment. This approach could lead to
better risk stratification for cognitive impairment, tailored disease man-
agement, and medical decision-making in patients with HF. Similarly, ani-
mal studies on HF must be performed in older mice over a time span of
several months, as the ageing brain is most likely more sensitive to HF-
induced hypoperfusion.

5. Heart and lung

The cardio-pulmonary continuum has been proposed as a more com-
prehensive therapeutic target due to shared risk factors and the overlap
of pathogenic mechanisms seen in common cardiac and pulmonary dis-
eases.62,63 For example, the observation that heart failure and chronic
obstructive pulmonary disease (COPD) co-exist more frequently than
expected from their inferred prevalence in large populations strongly
supports this concept.64,65 14 million Americans have COPD and 5 mil-
lion have chronic HF.66,67 Unrecognized heart failure has been reported in
up to 46% of COPD patients in the United Kingdom (UK).68,69 Recent
evidence reveals that this continuum may be present in other diseases
with more subtle clinical phenotypes than overt, end-stage heart failure
or COPD: for example, patients with a prior episode of takotsubo car-
diomyopathy have both a heart failure phenotype (albeit with preserved
or mid-range ejection fraction) and alterations in their lung function tests
reduced forced expiratory volume (FEV1) that cannot be explained by
any pre-existent or concurrent pulmonary condition.70 However, the
precise mechanism by which COPD induces cardiovascular events
remains obscure. COPD is characterized by persistent lung and systemic
inflammation, which intensifies during acute exacerbations.71,72 After
such exacerbation, triggered by viral or bacterial infection, COPD
patients have the highest risk of myocardial infarction and stroke within a
period of the first five days compared to later periods.73

On the other hand, acute and chronic lung inflammation is frequently
underrecognized as a risk factor for cardiovascular diseases, while ample
evidence from epidemiological data demonstrates the strong relation-
ship between airway exposures to cigarette smoke, air pollution par-
ticles, or pathogens and cardiovascular morbidity and mortality.74–76

COPD patients indicated a high prevalence of LV systolic dysfunction,
which could be due to the low-grade systemic inflammation that acceler-
ates progression of coronary atherosclerosis as well as microvascular
dysfunction, which eventually results in ischemic cardiomyopathy. This
fits perfectly with the high incidence of LV wall motion abnormalities
seen clinically in patients with COPD and LV dysfunction.77 In addition,
patients with pulmonary hypertension and pulmonary heart disease may
have not a normal left atrial pressure, which is particularly true for the el-
derly, those with obesity, and those with sleep-disordered breathing, all
of whom are characterized with hypertensive left atrial enlargement.
This could even be the predominant cause of pulmonary hyperten-
sion.78,79 The pulmonary venous congestion component in these
patients brings an additional deleterious effect on already compromised
lung mechanics. In numerous clinical scenarios, treatment of both left

heart congestion and COPD exacerbation is the practical option that is
frequently selected by many in order to achieve any clinical improve-
ment. These pathophysiological mechanisms rely on common pro-
inflammatory mediators including C-reactive protein, Interleukins (IL1b,
IL-6, IL-8, IL-12), chemokines, and TNF-a. This inflammation may result
from multiple causes; however, infections are likely to initiate or perpet-
uate such inflammation. Whilst these concepts are only just emerging,
there is little achieved in terms of therapy that is beneficial in tackling
pro-inflammatory pathways in chronic diseases: a recent example of a
monoclonal antibody targeting IL1b showed promising effects in post-
ischemic heart failure;80 however, the medical community has not yet
assessed such therapies by examining multi-organ benefit in clinical trials.

The pathological interplay between the heart and the lungs is com-
plex, bidirectional, poorly defined, and currently orphaned of any ther-
apy. Studies in animal models and human cardiac samples from PAH-
induced right heart failure provided evidence for diastolic dysfunction
due to increased fibrosis, which may be caused by systemic inflamma-
tion.81,82 Potential pathways that could link lung and heart disease are,
for example, systemic infections that may stimulate inflammation and im-
mune activation and thereby worsen lung and heart disease. Microbial
translocation of bacteria or other organisms from the gastrointestinal
tract or other sites could move to the lung or the vasculature and infect
tissues, which in turn may stimulate local and systemic inflammation,
thereby resulting in tissue damage.83 One possibility of how to study this,
one may believe that the distribution of E. coli or other bacteria of inter-
est can be tracked with Green Fluorescence Protein (GFP) in different
organs. Thus, staining the organs and evaluating the localization provides
information regarding the severity of the infection. This can be paired
with well-established protocols for assessing inflammatory cytokines—
such as ILs, VCAM, ICAM, and TNFa—for obtaining insight into local in-
flammatory status. For systemic inflammation, C-reactive protein can be
used in the blood, as it is one of the best inflammation markers available.
Therefore, understanding the mechanistic pathways is mandatory, and
building on robust, complex clinical trials of anti-inflammatory therapy
requires collaboration between cardiologists and chest physicians as well
as significant financial support from research councils and charities. If we
are to understand and treat multi-morbidity this translational approach,
this is the only way forward.

The identification of individual susceptibility of patients is more likely
to develop pathology straddles the cardio-pulmonary continuum in fa-
vour of each single organ, in particular, has been elusive thus far, as only a
few potential candidate genes84 have ever been examined.

In a clinical setting, it is often difficult to differentiate between cardiac
and lung pathologies. There is significant overlapping in the symptom
burden—such as dyspnoea, fatigue, cough, reduced exercise capacity,
muscle weakness, poor sleep, added anxiety, and depression. The inves-
tigations performed in one direction often identify one cause (either pul-
monary or cardiac) and settle the clinical diagnosis with a narrow focus,
occasionally misguiding therapy. A significant example of treatment equi-
poise is the case of beta-blockers therapy, which has indisputable survival
benefits in heart failure85,86 but have traditionally been avoided in
patients with pulmonary disease. For example, bisoprolol provided ben-
efit in an experimental rat model of pulmonary hypertension-induced
right heart failure.87 In addition, more recent registry and meta-analysis
data have poignantly noted that beta-blockers appear to reduce the
number of exacerbations on COPD patients.88,89 However, no benefit
was observed from bisoprolol treatment in a single-centre study in
patients with idiopathic pulmonary arterial hypertension (PAH).90 In ad-
dition, a randomized controlled study did not support a positive effect of
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beta-blocker therapy.80 The ongoing larger study of bisoprolol in COPD
will bring further evidence either in support or to refute the matter of
beta-blockers as the first therapy to be put into trial in the cardiopulmo-
nary continuum, as it will emerge from its mechanistic, cardiac sub-study
(http://www.isrctn.com/ISRCTN10497306; EudraCT No. 2017-002779-
24).

6. Heart and skeletal muscle

Past clinical studies have already indicated that major structural and func-
tional changes occur in the skeletal muscle of patients with either HFrEF
or HFpEF. These changes include (i) decreased number of type I fibres;
(ii) reduced mitochondrial density, oxidative capacity, and cross-
sectional area of type II fibres; and (iii) increased glycolysis.91,92 These re-
sult in muscle atrophy and reduced strength, a condition termed sarco-
penia and largely responsible for exercise intolerance and poor
prognosis.93,94 Breathlessness, muscle weakness, and exercise intoler-
ance are features typically observed in the majority of HF patients, while
cachexia, namely the loss of over 5% of body weight over 12 months,
occurs in 5%–15% of end-stage HF patients. Patients who develop car-
diac cachexia have a devastating prognosis, independently of their car-
diac function.95

While a reduced cardiac output and increased venous pressure have
been traditionally considered as major determinants of skeletal muscle
dysfunction, at least in HFrEF, intrinsic abnormalities of the muscle fibres
are emerging as causative in HF-associated sarcopenia. A recent para-
digm attributes a major role to impaired oxygen diffusion from capillaries
to mitochondria in patients with HF,96 although certain concerns have
been raised on the methodology used to measure oxygen diffusion in
these studies.97

Skeletal muscle alterations are not entirely shared between HFrEF
and HFpEF. Most knowledge is available regarding the pathological fea-
tures of skeletal muscle myopathy associated with HFrEF, which includes
fibre atrophy, isoform shift, and increased levels of pro-inflammatory
cells and cytokines, such as TNFa, IL-1b, IL-6, IL-2, and sphingosine.98,99

These have multiple negative effects on muscle mass and function. For
example, IL6 signalling via STAT3 activates myostatin, an important me-
diator of skeletal muscle catabolism.100 TNF family members—including
TNFa and TWEAK (TNF-like weak inducer of apoptosis)—activate NF-
kB in the muscle, which in turn determines severe muscle wasting, which
is mediated by the ubiquitin ligase MuRF1 and the suppression of insulin-
like growth factor 1 (IGF1) signaling.101–103

HFrEF is also characterized by a systemic mitochondrial deficit, as indi-
cated by reduced mitochondrial energy production in both skeletal and
cardiac muscles. Sex-specific mitochondrial phenotypes in skeletal mus-
cle that predispose an individual towards exercise intolerance have been
reported, as indicated by more prominent alterations in mitochondrial
‘quantity’ in female and mitochondrial ‘quality’ in male patients.104

Mitochondrial deficits are largely consequent to neurohormonal activa-
tion, which represents an adaptive reaction to HFrEF and is defined as
exaggerated sympathetic tone and increased systemic epinephrine, nor-
epinephrine, and angiotensin II levels.105 Chronic epinephrine and nor-
epinephrine exposure results in reduced b2-adrenergic receptor
signalling and persistent b1-adrenergic receptor stimulation, which in
turns activates mitochondrial cAMP/PKA signalling and phosphorylation
of electron transport chain (ETC) complexes. cAMP-dependent phos-
phorylation of specific ETC subunits limits their incorporation into func-
tional super-complexes, thereby reducing overall mitochondrial function

and promoting oxidative stress in skeletal muscle.106–108 Increased
Angiotensin II levels also trigger the generation of damaging reactive oxy-
gen species through direct stimulation of NADPH oxidase,109,110 acti-
vate NF-jB dependent pro-inflammatory gene expression, and suppress
the anti-inflammatory signalling of IGF1 in skeletal muscle
myocytes.111,112

Less information is available on the mechanisms responsible for skele-
tal muscle alterations during HFpEF.113 A single study compared the
modifications in limb and respiratory skeletal muscle upon either ligation
of the left anterior descendent (LAD) coronary artery (as a model of
HFrEF) or high-salt diet (as a model of HFpEF) in rats and detected more
pronounced oxidative stress and mitochondrial dysfunction in the for-
mer group.114 The exacerbated muscle damage in HFrEF was associated
with a different profile of circulating inflammatory cytokines, as TNFa
was higher in HFrEF while IL-1b and IL-12 were particularly elevated in
HFpEF.114 Houstis et al. found that the majority of HFpEF patients (97%)
displayed limitations in multiple components of the O2 pathway during
cardiopulmonary exercise testing, undermining their exercise intoler-
ance and favouring to treat multiple defects simultaneously, as with exer-
cise training. This study also suggests that an important source of disease
heterogeneity stemmed from variation in each patient’s clinical fea-
tures.96 On the other hand, vascular impairment and endothelial dys-
function may be more relevant in HFpEF, resulting in reduced oxygen
transport and vasodilation, particularly during exercise.115–118

While these mechanisms describe the effect of a failing heart on skele-
tal muscle structure and function, the skeletal muscle also possesses an
endocrine function and secretes a variety of small proteins, cytokines,
and peptides, all of which are commonly referred to as myokines. The
prototype myokine, IL-6, is highly expressed and released by both mus-
cle fibre types in response to exercise. Locally, it binds gp130Rb/IL-6Ra,
thereby determining the stimulation of 5’ adenosine monophosphate-
activated protein kinase (AMPK) and/or PI3-kinase to enhance glucose
uptake and fat oxidation, while in the liver and adipose tissue it increases
hepatic glucose synthesis and lipolysis, respectively.119 Plasmatic IL-6 lev-
els are particularly high in patients with unstable angina and have been
proposed as markers of cardiovascular disease outcome and risk.120,121

Other potentially relevant myokines are irisin and follistatin-like protein
1 (FLST-1), which play an essential role in glucose homeostasis and heart
metabolism.122 The possibility that reduced levels of cardioprotective
myokines, as a consequence of HF-induced sarcopenia, might contribute
to worsening the prognosis of HF patients is a plausible but unproven hy-
pothesis that will require further investigation.

In addition to endocrine signalling, during the progression of HF-
induced cachexia, dying myocytes release danger-associated molecular
patterns (DAMPs), including alarmins, nucleotides, bioactive lipids, extra-
cellular matrix fragments, and lectins. These are recognized by pattern
recognition receptors (PRRs), which are abundantly expressed by leuco-
cytes, endothelial cells, and fibroblasts in most organs, including skeletal
muscle and the heart.123 Whether DAMPs derived from skeletal muscle
contribute to the progression of heart failure remains unclear.

Various genetic, pharmacological, and surgical models have been used
to study the cross-talk between the failing heart and skeletal muscle.
These are instrumental to both understanding the molecular players in-
volved in this cross-talk and assessing the efficacy of therapeutic
interventions.

The most commonly used genetic models include calsequestrin
(CSQ)-overexpressing mice and Dahl salt-sensitive rats. Transgenic mice
overexpressing the cardiac isoform of CSQ under the control of the a-
myosin heavy chain (MyHC) promoter were found to develop severe
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.
cardiac hypertrophy beginning at eight weeks of age and leading to
progressive HF and death by weeks 10–16.124,125 In these mice, a sig-
nificant reduction in body weight and exercise tolerance was already
detectable at eight weeks, exclusively in males.126 The Dahl salt-
sensitive rats belong to a particular strain characterized by a marked
genetic susceptibility to develop hypertension following excessive salt
ingestion.127 When fed a high-salt (8% NaCl) diet, they develop hy-
pertension and congestive HF, which usually become apparent at 17–

19 weeks of age. These animals present elevated levels of pro-
inflammatory cytokines, such as TNF-a and IL-1b, and abnormal ex-
pression of genes related to mitochondria function in both cardiac
and skeletal muscles.128,129 More recently, muscle alterations have
been detected in genetic models of familial cardiomyopathies (i.e. car-
diac myosin binding protein-C null mice130), which is consistent with
the appearance of marked muscle wasting in young patients with
symptomatic dilated and hypertrophic cardiomyopathy.131,132

Pharmacological interventions leading to HF that are used to unveil
the consequences of this condition on muscle structure and function are
based on the administration of compounds eliciting either systemic or
pulmonary hypertension. An infusion of 500 ng/kg/min angiotensin II for
up to 14 days is well known to increase blood pressure, thereby leading
to progressive HF and subsequent muscle atrophy in both rats and
mice.111,133–135 With similar mechanisms, monocrotaline administration
at a dose of 60 mg/kg is known to cause pulmonary hypertension, fol-
lowed by the rapid onset of progressive right ventricular failure and ca-
chexia.136 Rats are more sensitive to monocrotaline than mice, but they
become severely anorexic. In contrast, mice progressively lose muscle
mass in the absence of anorexia and, therefore, are the preferred model
to study the mechanisms of muscular dysfunction in pulmonary
hypertension-induced HF without the confounding effect of anorexia.137

The most common and reliable animal models are based on surgical
interventions, inducing either acute myocardial infarction (MI) by LAD li-
gation or decreased left ventricular output through aortic constriction.
LAD ligation is commonly performed in adult mice and rats and leads to
a progressive decline in cardiac function, beginning with a thinning of left
ventricular walls evident after two days and resulting in massive collagen
deposition and scar formation at one week. While in mice, HF is usually
evident at one month, rats take longer to develop cardiac dysfunction. In
both species, hindlimb and diaphragm muscle weakening becomes evi-
dent a few months after the onset of HF.110,138

The other approach, commonly used to study the consequence of HF
on the skeletal muscle, is obtained by constriction of either the ascending
aorta or the aortic arch. Both interventions provide extreme load on the
left ventricle and HF. Depending on the site and degree of the constric-
tion as well as on the species, age, gender, and weight of the animals, the
disease progresses with variable speed, but almost invariably leads to a
significant loss of body weight and muscle mass.139–141

A few studies have investigated the cross-talk between the failing
heart and the skeletal muscle in large animals. Either rapid ventricular
pacing142 or intracoronary microembolization143 in dogs causes conges-
tive HF with skeletal muscle alterations that mimic the human condition.
These models have been instrumental in unveiling the negative effect of
HF on muscle integrity and performance. The other direction of this
cross-talk—namely, the extent to which the muscle can influence the
progression of HF—is much less explored due to the lack of reliable
in vivo models. The implementation of animal models with contextual
cardiac and muscle diseases (i.e. HF and cancer-induced cachexia, HF
and traumatic muscle loss) will be necessary and warranted to define the

bi-directional cross-talk between the failing heart and the skeletal muscle
in greater detail.

7. Heart and intestine

Heart failure (HF) has long been shown to be linked to impaired gut
function.144,145 Impaired systolic function in HF leads to gut ischaemia
with congestion of the splanchnic circulation. This leads to intestinal wall
oedema and damaged activity of the gut barrier (Figure 2). This condition
can increase the overall inflammatory state as well as oxidative stress
due to HF-produced ischaemia and congestion within the gut via en-
hanced bacterial translocation and the presence of bacterial products in
the systemic bloodstream. It has been hypothesized that the leakiness of
the gut barrier may modify the gut environment and affect its resident
microbial population and, consequently, the metabolites generated from
such bacteria.146 The metabolic pathways involve the fermentation of
non-digestible fibres to short-chain fatty acids that confer protective
properties, such as lowering inflammatory processes and oxidative
stress147,148 and ameliorating vessel tone. Dietary sources that include
choline, phosphatidylcholine, l-carnitine, and other methylamine-
containing nutrients provide substrates for microbiota-mediated genera-
tion of trimethylamine (TMA). TMA then accesses the portal circulation
and is transformed into trimethylamine N-oxide (TMAO) by the hepatic
flavin-containing monooxygenase (FMO) family of enzymes. TMAO is
able to trigger atherosclerosis, thrombosis, kidney failure, and HF.
Interestingly, it has been shown that elevated levels of TMAO may pre-
dict mortality and CV mortality in HFrEF but not HFpEF patients, and
TMAO has predictive value in HFrEF patients above and beyond NT-
proBNP.149 In addition, the bacterial transformation of bile acids can lead
to altered bile acid profiles, which in turn can impact systemic inflamma-
tion and fibrosis. All these processes are able to affect the personal sus-
ceptibility to, and severity of, HF.146

These data suggest that intestinal microbiota may function as an endo-
crine organ by producing bioactive metabolites that can directly or indi-
rectly influence host homeostasis. A series of products generated by
intestinal bacteria from dietary metabolism have been associated with
conditions such as atherosclerosis, hypertension, HF, chronic kidney dis-
ease, obesity, and type 2 diabetes mellitus. In particular, short-chain fatty
acids (SCFAs) produced by the gut microbiome may impact the cardio-
circulatory system by indirectly ameliorating the activity of the gut bar-
rier by stimulating mucus production; activating olfactory receptor 51E2
(OR51E2; also known as OLFR78) in the renal juxtaglomerular appara-
tus (JGA) and peripheral vasculature, which in turn leads to enhanced re-
nin generation and increased blood pressure, hence counterbalancing
hypotensive responses mediated by free fatty acid receptor 3 (FFAR3;
also known as GPR41); and stimulating histone acetyltransferases
(HATs) while suppressing histone deacetylases (HDACs), with a conse-
quent decrease in inflammatory processes, balancing gene modulation
(epigenome), and regulating inflammatory cell activation.146–148,150–156

In addition, bacterial transformation of bile acids leads to altered bile
acid profiles, which in turn can affect systemic inflammatory and fibrotic
processes.146 Microbiota-derived peptide mimics may also trigger HF by
promoting lethal inflammatory cardiomyopathy. Cardiac myosin-specific
TH17 cells are being imprinted in the intestine by a commensal
Bacteroides species peptide mimic. These cells induce heart inflamma-
tion and dysfunction in genetically susceptible individuals.157

Importantly, patients with HF exhibit modifications in the composition
and diversity of the intestinal microbiome.146 Indeed, the composition of
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the intestinal microbiota can be affected by various conditions including
individual genetic variability, lifestyle, colonization and delivery at
birth,158–160 changes in diet, presence of diseases and relative treatments,
all of which may hamper reproducibility and translation of results in basic
research in this field.161

Advancements in our understanding of how the intestinal microbiome
affects humans in health and diseases have increased our knowledge of
how microbial composition and function plays a role in the regulation of
the homeostasis of the human host. New therapeutic approaches re-
garding gut microbial metabolic pathways and/or metabolites as well as
modifying the composition of the intestinal microbiota may be able to
regulate HF susceptibility and halt its progression.

8. Heart and liver

An interaction between heart and liver during diseases has been known
since the mid-nineteenth century.162 However, and surprisingly, data re-
garding the reasons and consequences of heart failure on liver function
and vice versa are sparse. One of the first observations of pathohistological
liver abnormalities during heart failure has been correlated to hepatic con-
gestion and/or impaired arterial perfusion.163 In terms of lab chemistry

changes, an elevation of transaminases and cholestatic enzymes was
reported in various forms of heart failure.164–167 In addition to diagnostic
differences, prognostic information can also be achieved by liver lab chem-
istry data; indeed, transaminases, total bilirubin (T-Bil), and c-glutamyl-
transferase (GGT) have been associated with poor outcome in heart
failure.168,169 In a study involving 1032 consecutive ambulatory patients
with chronic heart failure, cholestatic enzymes, but not transaminases,
were significantly associated with the severity of heart failure syndrome
and backward failure. T-Bil, c-glutamyltransferase (GGT), and alkaline
phosphatase (ALP) were associated with adverse outcome in bivariate
models.169 Thus, liver dysfunction is frequent in chronic heart failure and
is characterized by a predominantly cholestatic enzyme profile that is as-
sociated with disease severity and prognosis. Hepatic cardiomyopathy has
been characterized by latent cardiac contractile and diastolic dysfunction
coupled with hyperdynamic circulation.170 This hyperdynamic circulation
begins in the portal venous bed and is a simple consequence of portal hy-
pertension. The dilatation of the portal vein is then linked to increased
blood flow and is, thus, a ‘hyperdynamic circulation’.171 Moreover, an al-
tered diastolic relaxation detected by reduced E: A ratio is of prognostic
value in patients with cirrhotic cardiomyopathy.172

Although a few basic mechanisms of organ interaction have been dis-
covered, a large number of interactions are less clear and only little

Figure 2 Display of the hypothesized interaction between the failing heart and the intestine. TMAO, trimethylamine N-oxide.
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experimental research has been performed until now. Recently, a more
reliable model of hepatic cardiomyopathy in mice was developed.173 In
this model, the detailed haemodynamics of mice with bile-duct ligation
(BDL)-induced liver fibrosis were investigated by monitoring echocardi-
ography and intracardiac pressure–volume (PV) relationships as well as
myocardial structural alterations. BDL induced a massive inflammation,
oxidative stress, microvascular dysfunction, and fibrosis in the liver of
mice. These liver changes were strongly correlated with impaired cardiac
diastolic, systolic, and macrovascular dysfunction; cardiac inflammation;
and oxidative stress. An intervention with a selective cannabinoid-2 re-
ceptor (CB2-R) agonist, known to attenuate inflammation and fibrosis,
improved cardiac dysfunction, myocardial inflammation, and oxidative
stress emphasizing the importance of inflammatory mediators in the pa-
thology of hepatic cardiomyopathy.173 Since no specific therapy is cur-
rently available for hepatic cardiomyopathy, there is an unmet need for
novel pharmacological interventions for the treatment of liver failure-
associated cardiac and vascular complications. Currently, liver transplan-
tation is the only proven treatment with a specific effect on cirrhotic
cardiomyopathy.174

As shown recently by experimental CB2-R agonist treatment, anti-
inflammatory and anti-fibrotic interventions may be used to attenuate
hepatic cardiomyopathies. In addition to small-molecule modulators,
ncRNAs-based intervention could also be used to achieve anti-fibrotic
or anti-inflammatory effects.29,175,176 Interestingly, the liver-specific
microRNA miR-122 is predicting all-cause and cardiovascular mortality
and improved risk stratification of HFrEF patients and, thus, might be a
new biomarker for risk assessment in HFrEF.177,178 However, its value in
stratifying patients with different forms of heart failure appears
limited.179

There are numerous bi-directional effects of the heart and the liver
and both heart failure and liver failure are closely connected. In addition
to circulating cytokines and non-coding RNAs, which may also have
interorgan effects, there is only limited information regarding mechanis-
tic interactions in these two diseases. Thus, we suggest the employment
of novel experimental models (e.g. see Ref. 173) and focus more closely
on hepatic-driven cardiomyopathy as a distinct disease. This would allow
the unravelling of new molecular targets for more tailored and specific
therapeutic approaches.

9. Heart and adipose tissue

In previous decades, the prevalence of metabolic syndrome, obesity, and
its associated risk factors has become a worldwide epidemic that will se-
riously increase the risk of heart failure (HF). Studies reveal that 32%–
49% of patients suffering from HF are obese and 31%–40% are over-
weight.180 This link has been ascribed mostly to the obesity-induced pro-
inflammatory state and results in the so-called ‘obesity cardiomyopathy’.
Apart from inflammation, obesity cardiomyopathy includes features such
as insulin resistance, cardiac hypertrophy, and diastolic dysfunction.
Adipose tissue (AT) is the main ‘organ’ mediating this inflammatory state
and, currently, strong evidence supports the cross-talk between AT (in
particular visceral and epicardial), body metabolism, and the heart. AT
expansion during excessive energy intake is associated with an increase
in adipocyte numbers (hyperplasia) and/or size (hypertrophy), adipocyte
dysfunction with a pro-inflammatory secretory profile, and insulin resis-
tance that elicit impaired metabolic status and increased the risk of HF,
particularly HFpEF.180–183

The biology of AT and its pathophysiological role in obesity-related
complications, such as obesity cardiomyopathy and HF, have been ex-
tensively studied in the previous decade. Indeed, there is increasing evi-
dence of a cross-talk between AT, body metabolism, and the heart;
however, mechanisms remain to be clarified. Strong evidence of this
cross-talk is the so-called ‘obesity paradox’, in which moderately obese
patients with heart failure have a more favourable outcome than lean
counterparts, thereby indicating that ‘AT quality’ rather than its ‘quantity’
differentially impacts cardiac tissue. Several hypotheses have been pro-
posed to explain the beneficial effects of AT in heart failure, most of
which are related to higher metabolic reserves to deal with the catabolic
state and the cardioprotective profile of adipocytokines released by
AT.180

The classic perspective of AT as inert lipid storage has evolved into
perceiving it as a metabolically dynamic endocrine organ capable of re-
motely signalling other tissues to alter their metabolism.182 Moreover, it
comprises multiple cell types, including adipocytes, monocytes/macro-
phages, pericytes, endothelial cells, and various stem cells, which are re-
sponsible for carrying out a diversity of biological functions.183 Apart
from metabolic regulation, other actions of AT on the heart identified
thus far include regulation of inflammation and oxidative stress as well as
cell proliferation, migration, and hypertrophy. Under normal conditions,
AT produces and secretes a variety of bioactive polypeptides,184 includ-
ing adipocytokines,185 that regulate cell metabolism endocrinally or para-
crinally.186 In a pathophysiological context, AT dysregulation switches
the expression pattern of adipocytokines towards a more pro-
inflammatory profile.187 Thus, not surprisingly, dysfunctional AT can di-
rectly affect the heart or indirectly—via its metabolic, pulmonary, renal,
and vascular actions—as it is responsible for precipitating multiple age-
related diseases and leading to premature death from diabetes or HF.180

Figure 3 depicts the cardiovascular impact of dysfunctional AT.
AT can be classified into white or brown AT and, accordingly, into its

distribution (visceral, subcutaneous, epicardial, intramyocardial, and peri-
vascular, among others).188 Apart from its endocrine function, numerous
fat depots serve specialized functions related to their neighbouring
tissues.

Visceral adipose tissue represents approximately 20% of total body
AT. It secretes adipocytokines into the portal vein, which rapidly contrib-
ute to insulin resistance in the liver and subsequently in the peripheral
organs.189,190 This feature, along with its elevated metabolic activity,
associates this fat pad with higher deleterious metabolic consequences
when compared with other fat depots191 (Figure 3).

The subcutaneous adipose tissue (SAT) is the most represented type
of AT that corresponds to approximately 80% of all the fat in the
body.189 Nevertheless, it is clinically less important compared with the
visceral adipose tissue. The different physiological processes triggered
and secretory pattern presented by SAT is the underlying cause of its al-
most insignificant role in the development of metabolic disorders and
CVD. However, recent categorization of this SAT into subcutaneous or
deep SAT has pointed towards distinct roles of these two subtypes.

The epicardial adipose tissue (EAT) is located between the visceral
pericardium and the myocardium, accounting for 20% of total heart
weight.192,193 There is no fascia separating EAT from the myocardium or
coronary arteries.187,188,194–196 Thus, several pieces of evidence suggest
that this proximity provides conditions for direct crosstalk between the
epicardial AT, the coronary arteries, and the myocardium through proin-
flammatory and profibrotic adipocytokines that can modulate, locally,
the endothelial cells and the cardiomyocytes independently of the tradi-
tional risk factors and the other visceral fat depot.
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..Perivascular adipose tissue (PVAT) is defined as the AT located around
blood vessels197,198 with a rather active role in paracrinally regulating vas-
cular tone.199 This regulation has been ascribed to the release of
adipocyte-derived relaxing factors (ADRFs) that diminish the contractile
actions of vasoconstrictors or adipocyte-derived contracting factors
(ADCFs)200 that are increasingly formed under disease conditions such as
obesity and diabetes.201 The PVAT secretory profile contains bioactive
substances which are crucial for regulating vascular tone, remodelling, and
endothelial function and, thus, arterial pressure and blood flow.202 These
bioactive factors establish an important link between body fat and the car-
diovascular system and include adipocytokines, chemokines, gaseous mol-
ecules, prostacyclin, and ROS, among others.203,204

Finally, intramyocardial adipose (IMAT) tissue is represented by intra-
myocellular triglyceride accumulation and closely correlates to insulin-
resistance. IMAT has been shown to contribute to electrophysiological
dysfunction and ventricular tachycardia in large animal models of myo-
cardial infarction, which is consistent with its colocalization with areas of
fibrosis.205,206

Obese animal models for studying AT-myocardial interaction are of-
ten obtained by selectively crossing rats with one out of the two most
significant mutations in leptin receptor, fa (on the fatty gene group) and
cp (corpulent gene mutation). This is true for the Zucker fatty rats that
present an fa mutation194 or JCR: La-cp rats that carry the cp mutation.
Numerous crossings have been made between these two ‘families’,
thereby resulting in the SHROB, the obese spontaneous hypertensive
heart failure rat (SHHF/Mcc-facp rats),195 the obese Zucker diabetic fatty
(ZDF), and the obese ZSF1. From a different lineage, the Otsuka Long-

Evans Tokushima Fatty (OLETF) rat presents with obesity, hyperglycae-
mia, hyperinsulinemia, and chronic diabetes. The cardiac changes and
subtype of HF these rats develop are strain-dependent: (i) the Zucker
fatty or Zucker obese rat exhibits hypertrophy, impaired left ventricular
(LV) shortening, and early diastolic dysfunction (prolonged IVRT);207,208

(ii) the SHROB develop hypertension, cardiac hypertrophy, and de-
creased fractional shortening;209 (iii) the obese SHHF indicate a progres-
sive decrease of ejection fraction, fibrosis, and increased LV volume
progressing towards a dilated hypertrophy, which mostly resembles a
phenotype of HFrEF;210 (iv) the obese ZDF rats exhibit moderate hyper-
tension, impaired LV shortening, and relaxation (decreased E/A) with in-
creased arterial stiffness. Moreover, LV wall thickness is lower and LV
end-systolic wall stress is higher than that in the controls;31,140,208,211 (v)
the obese ZSF1 presents impaired relaxation and increased stiffness
around 20 weeks of age while preserving the ejection fraction.
Moreover, it shows effort intolerance and lung congestion and is, there-
fore, considered a robust animal model of HFpEF,212 and (vi) OLEFT
develops diastolic dysfunction from 20 weeks of age as observed by de-
celeration time of the E-wave and decreased E/A.211 Mice strains with
leptin deficiency (ob/ob mice213) or with a mutation in the leptin receptor
(db/db mice214) are the most used models of obesity. The advantageous
features as models of obesity and metabolic syndrome are hyperglycae-
mia and hyperlipidaemia without hypertension. Both models develop di-
astolic and systolic dysfunction at different time points of the
progression of the disease.

In addition to the transgenic strains, a large number of animal models
of obesity can be induced by the intake of modified diets, such as high-fat

Figure 3 Obesity-induces adipose tissue dysfunction (upper panel). The cardiac consequences of dysfunctional visceral, subcutaneous, epicardial, intra-
myocardial, and perivascular adipose tissue are depicted in the lower panel. Of note, certain cardiovascular actions are shared by distinct fat pads. ADRF,
adipocyte-derived relaxing factors; ADCF, adipocyte-derived contracting factors.
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Table 1 Available animal models to test inter-organ effects during heart failure

Species Model Ref

Surgical/interventional models

Mouse/rat Surgical models:
• LAD! AMI
• AC! decreased left ventricular output
• constriction of either the ascending aorta or the aortic arch! extreme load of the left ventricle; HF

138–141

Mouse Models of VCI:
• bilateral common carotid artery stenosis
• middle cerebral artery occlusion
• asymmetric common carotid artery surgery
• TAC, MI, mixed models

41,34,35

Mouse Model of hepatic cardiomyopathy: mice with bile-duct ligation (BDL)-induced liver fibrosis 173

Rat experimental renal failure (by 5/6 nephrectomy) causing cardiac dysfunction 217,218

Rat Double-hit model of CRS: subtotal nephrectomy followed by NO depletion or surgically induced MI 219,220

Rat Model of VCI:
• Bilateral common carotid artery occlusion

34

Rat Model of pulmonary hypertension:
• By pulmonary artery banding for 7 weeks, different diameters causing mild vs. severe RV dysfunction

81

Dog Model of congestive HF with skeletal muscle alterations achieved by
• rapid ventricular pacing
• sequential intracoronary microembolization

142

143

Sheep Model of VCI:
• Middle cerebral artery occlusion

41

Baboon Model of VCI:
• Three-vessel occlusion (both the internal carotid arteries and the left vertebral artery)

34

Pharmacological and diet-based models

Mouse Doxorubicin-induced cardiomyopathy 140

Mouse Model of pulmonary hypertension, induced by infusion of AT II over 2 weeks (500 ng/kg/min) 134,135

Mouse Diet-based models of obesity:
• C57BL/6 mouse fed with a high-fat diet
• High-carbohydrate diet protocols

221

Rat Genetic/diet-based model of cardiac hypertrophy, the Dahl salt-sensitive rats: a particular strain characterized

by a marked genetic susceptibility to develop hypertension and congestive HF following ingestion of high-salt

diet

127–129

Rat Model of pulmonary hypertension induced by:
• single injection of monocrotaline (60 mg/kg)
• infusion of AT II over 2 weeks (500 ng/kg/min)

81,111,136

Genetic models

Mouse Genetic model of cardiac hypertrophy: transgenic mice overexpressing the cardiac isoform of calsequestrin un-

der the control of the a-myosin heavy chain promoter

124–126

Mouse Genetic model of familial cardiomyopathy:

cardiac myosin binding protein-C null mice

130

Mouse Genetic models of obesity and metabolic syndrome based on the leptin receptor:
• ob/ob mice
• db/db mice

213,214,222

Rat Genetic models for studying AT-myocardial interaction in obese animals:
• obese spontaneous hypertensive heart failure SHHF/Mcc-facp rat
• Otsuka Long-Evans Tokushima Fatty (OLETF) rat

140,194–196,210,223,224

AC, aortic constriction; AMI, acute myocardial infarction; AT, adipose tissue; AT II, angiotensin II; BDL, bile-duct ligation; CRS, cardio-renal syndrome; HF, heart failure; LAD, left an-
terior descending artery; MI, myocardial infarction; NO, nitric oxide; RV, right ventricle; TAC, transverse aortic constriction; VCI, vascular cognitive impairment.
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or high-carbohydrate diets (cp. Table 1). The nutrition-based conditions
may represent more relevant pathophysiological models of the human
disease. However, as in humans, the cardiac impact of diet is highly de-
pendent on its composition and caloric intake.215 For example, if C57BL/
6 mice are fed with a high-fat diet, they develop vascular dysfunction and
atherosclerosis in which the interaction between perivascular AT and
vessels can be easily studied. Additional strains are characterized by ge-
netic modifications that correspond to an entire new range of transgenic
mice, including knock-out and knock-in strains (for more details,
consult140,216).

In the in vitro setting, collecting conditioned medium obtained from
AT provides a useful means to study the impact of factors secreted by
AT on other organs or tissues (vessels, myocardial strips, cardiomyo-
cytes, fibroblasts or endothelial cells, among others) after performing
co-cultures and subsequent functional studies.31,225

It is currently accepted that therapeutic interventions or other strate-
gies that delay or limit AT turnover, redistribution, or dysfunction are as-
sociated with improved lifespan.226 These strategies include dietary and
lifestyle changes, such as increasing physical activity, anti-obesity drugs,
or bariatric surgery.226 A short-term weight loss, for up to six months, is
usually achieved but is more difficult to maintain in the long term. Thus,
weight loss approaches must be individually tailored, taking into account
age, sex, race, the degree of obesity, individual health risks, metabolic
characteristics, and environmental and genetic factors.181

10. The immune system and the
heart

This section summarizes the main directions of how the immune system
may interact with cardiac diseases. Data on elevated levels of inflamma-
tory mediators in heart failure patients and experimental studies repeat-
edly indicate the activation of inflammation to be causally related to left
ventricular remodelling and dysfunction.227 Chronic ischemic heart fail-
ure results in a shift of the immune phenotype of circulating immune cells
with altered transcript profiles, as indicated by single-cell sequencing. An
increase in fatty acid-binding protein-5 (FABP5) and Wnt signalling path-
ways partially contributed to enhanced monocyte activation, as recently
revealed to occur in human heart failure.228 Further, single-cell RNA se-
quencing to map the cardiac immune composition in experimental
mouse models of either pressure-overload induced HF229 or auto-
immune myocarditis230 indicate that a large diversity of cardiac immune
cells—macrophages, B cells, T cells and regulatory T cells, dendritic cells,
Natural Killer cells, neutrophils, and mast cells—is activated in the failing
heart, thereby further potentially widening the therapeutic window in
cardioimmunology.

Although phase III clinical trials antagonizing inflammatory mediators
have been negative thus far, the most recent CANTOS trial indicates
that specific patients with a cardiac inflammatory phenotype may still
positively respond to therapies that target immune cells and inflamma-
tion. In the CANTOS trial, patients with post-myocardial infarction were
treated with canakinumab, an antibody that targets the interleukin-1b in-
nate immunity pathway. This approach led to a significantly lower cardio-
vascular event rate independent of a lipid-level lowering effect.80 In view
of the increased prevalence of heart failure in auto-immune diseases—
with cardiovascular diseases being the number one cause of death in
auto-immune diseases231—understanding the interaction between the
immune system, T cells and monocytes in particular, and the heart is of
outmost importance.

10.1 T cells
Various T-cell subsets play separate roles in the failing heart depending
on the inflammation-triggering event, with specific chemokines and adhe-
sion molecules in the heart, and circulating epitopes activating their car-
diac recruitment. Inhibition of anti-inflammatory T-regulatory cells as
part of anti-cancer treatment with check-point inhibitors leads to de-
repression, or activation, of aggressive inflammatory responses (T cells
and macrophages) against cross-epitopes in the heart. Two percent of
the cancer patients getting check-point inhibitors are likely to develop
heart failure due to fulminant myocarditis.232 Abatacept, an FDA-
approved drug that inhibits T-cell co-stimulation through T-regulatory
cells, reduces severity, and delays progression of pressure overload-
induced cardiac hypertrophy and fibrosis in mice, even when this com-
mences at a later stage of disease.233 Abatacept also prevents this im-
mune checkpoint inhibition—T-reg de-repression-mediated myocarditis
and heart failure.234

In chronic heart failure, a systemic expansion of inflammation-
related cell types (CD4þ and CD8þ T cells, CD4þ Th1, Th2, Th17,
and various Treg subsets) takes place in the failing heart, the circula-
tion, and also in lymphoid organs.235 Activated CD4þ T cells drive
heart failure progression in ischemic HF and, interestingly, CD4þ T-
cell ablation partially halts pathological LV remodelling in ischemic
heart failure.235

10.2 Monocyte/macrophages
A recent review summarizes the ontogeny and function but also specifi-
cally the interplay of both tissue-resident as well as monocyte-derived
macrophages in numerous organs.236

10.3 Resident cardiac macrophages
Resident cardiac macrophages are derived from different embryonic
lineages, are long-lived, and persist independent of blood monocyte
input. Their behaviour is different from the blood-derived macro-
phages. Recent data indicate that those resident macrophages
mainly proliferate upon external pathological stimuli to stimulate
cardiomyocyte regeneration and physiological hypertrophy, prevent
adverse monocyte recruitment, and stimulate vascular expansion.237

As such, those resident macrophages may, therefore, aim to pro-
tect the heart against damage and failure at the initial stage of the
disease.237

10.4 Invading cardiac monocytes
Invading cardiac monocytes, on the other hand, are required to heal the
injured myocardium,238 but they have the negative side effect of stimulat-
ing fibrosis, pathological hypertrophy, and vessel regression, thereby
overall leading to heart failure.239 Whereas others have provided first ev-
idence that indicates a role of resident macrophages in preventing car-
diac systolic failure upon ischemic injury,236,239,240 the implication of
resident macrophages in non-ischemic cardiomyopathy—particularly in
heart failure with preserved ejection fraction (HFpEF)—remains
completely unknown.

Overall, these findings indicate an involvement of the immune system
in cardiac dysfunction and arrhythmias. Future trials with novel therapeu-
tic modalities to target the cardiac immunity are warranted.
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11. Animal models to study cardiac/
extracardiac interactions

Table 1 compiles animal models that are currently available for the study
of cardiac/extracardiac interactions in heart failure. However, despite
the availability of numerous animal models, there is a need to develop
more clinically realistic models. In the case of animal studies, this would
indicate the use of older or aged animals and add ‘risk factors’ or initiate
parallel additional non-cardiac diseases in such models. Importantly,
most current models use ‘acute’ rather than chronic scenarios. This is in
great contrast to clinical reality and may explain weak translational
power. Thus, the use of more chronically acting disease stimuli rather
than acute toxic applications to create an artificial organ failure model
are required. For example, certain drugs may only best work in animals/
patients with a certain disease, as recently proposed.241 But even despite
better developed animal models, they still are animal models with certain
uncertainties for translation to human beings. Thus, importantly, we
must additionally develop better in vitro or ex vivo systems to study inter-
organ interactions. For example, it is now possible to also utilize human
living cardiac tissue to study intercellular interactions in a very clinically
relevant context.242

12. Conclusion

In this position paper, we provided a brief overview of known organ
interactions during heart failure. Of course, there are multiple further
interactions of the heart and other organ systems that are not discussed
in this review, such as interactions with bone marrow, pancreas, and dia-
betes in general, skin, sex hormones, or others. This is illustrated by the
fact that HF prevalence increases after menopause in women and partic-
ularly often results in HFpEF, a fact that has been extensively
reviewed.243 Clearly, heart failure must be viewed as a multifactorial clin-
ical syndrome that affects and involves multiple organs, with numerous
subtypes based on additional leading organs involved. This holds true
particularly in an aging population where HF as a syndrome is more fre-
quent.244 More clinical and experimental research is urgently needed to
understand individual molecular mechanisms and, based on that, the de-
velopment of more tailored therapeutic interventions that not only tar-
get the heart but also other related affected organ systems. This position
paper aims to enable the provision of an overview regarding potential
interactions between the heart and other organ systems, the clinical evi-
dence, their underlying mechanisms, available animal models, and finally
potential new drug interventions to be developed in the future. It also
suggests that new therapeutic strategies aiming at the root of HF—either
directly in heart tissue or indirectly on diseased other organs contribut-
ing to HF—are necessary. We also strongly advise that more research
funds must be generated for HF research not just nationally but also by
the European Union, as HF remains a deadly condition and main cause of
death in industrialized nations.
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Streckfuss-Bömeke K, Hasenfuss G, Maier LS, Hamdani N, Sossalla S. Empagliflozin
directly improves diastolic function in human heart failure. Eur J Heart Fail 2018;20:
1690–1700.

34. Washida K, Hattori Y, Ihara M. Animal models of chronic cerebral hypoperfusion:
from mouse to primate. Int J Mol Sci 2019;20: 6176.

35. Bink DI, Ritz K, Aronica E, van der Weerd L, Daemen MJAP. Mouse models to
study the effect of cardiovascular risk factors on brain structure and cognition. J
Cereb Blood Flow Metab 2013;33:1666–1684.

36. Bosch L, de Haan JJ, Bastemeijer M, van der Burg J, van der Worp E, Wesseling M,
Viola M, Odille C, El Azzouzi H, Pasterkamp G, Sluijter JPG, Wever KE, de Jager
SCA. The transverse aortic constriction heart failure animal model: a systematic re-
view and meta-analysis. Heart Fail Rev 2020 Apr 25. doi:
10.1007/s10741-020-09960-w. Online ahead of print.

37. Yang J, Noyan-Ashraf MH, Meissner A, Voigtlaender-Bolz J, Kroetsch JT, Foltz W,
Jaffray D, Kapoor A, Momen A, Heximer SP, Zhang H, van Eede M, Henkelman RM,
Matthews SG, Lidington D, Husain M, Bolz S-S. Proximal cerebral arteries develop
myogenic responsiveness in heart failure via tumor necrosis factor-a-dependent ac-
tivation of sphingosine-1-phosphate signaling. Circulation 2012;126:196–206.

38. Kaplan A, Yabluchanskiy A, Ghali R, Altara R, Booz GW, Zouein FA. Cerebral blood
flow alteration following acute myocardial infarction in mice. Biosci Rep 2018;38:
BSR20180382.

39. Hay M, Vanderah TW, Samareh-Jahani F, Constantopoulos E, Uprety AR, Barnes
CA, Konhilas J. Cognitive impairment in heart failure: a protective role for angioten-
sin-(1-7). Behav Neurosci 2017;131:99–114.

40. Shibata M, Ohtani R, Ihara M, Tomimoto H. White matter lesions and glial activa-
tion in a novel mouse model of chronic cerebral hypoperfusion. Stroke 2004;35:
2598–2603.

41. Hainsworth AH, Allan SM, Boltze J, Cunningham C, Farris C, Head E, Ihara M, Isaacs
JD, Kalaria RN, Lesnik Oberstein SAMJ, Moss MB, Nitzsche B, Rosenberg GA,
Rutten JW, Salkovic-Petrisic M, Troen AM. Translational models for vascular cogni-
tive impairment: a review including larger species. BMC Med 2017;15:16.

42. van der Flier WM, Skoog I, Schneider JA, Pantoni L, Mok V, Chen CLH, Scheltens P.
Vascular cognitive impairment. Nat Rev Dis Prim 2018;4:18003.

43. Gathright EC, Dolansky MA, Gunstad J, Josephson RA, Moore SM, Hughes JW.
Examination of attention, executive function, and memory as predictors of mortality
risk in adults with systolic heart failure. Eur J Cardiovasc Nurs 2019;18:729–735.

44. Currie K, Rideout A, Lindsay G, Harkness K. The association between mild cogni-
tive impairment and self-care in adults with chronic heart failure: a systematic re-
view and narrative synthesis. J Cardiovasc Nurs 2015;30:382–393.

45. McLennan SN, Pearson SA, Cameron J, Stewart S. Prognostic importance of cogni-
tive impairment in chronic heart failure patients: does specialist management make
a difference? Eur J Heart Fail 2006;8:494–501.

46. Gallagher R, Sullivan A, Burke R, Hales S, Gillies G, Cameron J, Saliba B, Tofler G.
Mild cognitive impairment, screening, and patient perceptions in heart failure
patients. J Card Fail 2013;19:641–646.

47. Frey A, Sell R, Homola GA, Malsch C, Kraft P, Gunreben I, Morbach C, Alkonyi B,
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