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ABSTRACT 

 

 

 

 

 

Advanced seismic effective-stress analysis is used to scrutinize the liquefaction performance of 55 

well-documented case-history sites from Christchurch. The performance of these sites during the 

2010-2011 Canterbury earthquake sequence varied significantly, from no liquefaction manifestation at 

the ground surface (in any of the major events) to severe liquefaction manifestation in multiple events. 

For the majority of the 55 sites, the simplified liquefaction evaluation procedures, which are 

conventionally used in engineering practice, could not explain these dramatic differences in the 

manifestation.  

Detailed geotechnical characterization and subsequent examination of the soil profile characteristics of 

the 55 sites identified some similarities but also important differences between sites that manifested 

liquefaction in the two major events of the sequence (YY-sites) and sites that did not manifest 

liquefaction in either event (NN-sites). In particular, while the YY-sites and NN-sites are shown to 

have practically identical critical layer characteristics, they have significant differences with regard to 

their deposit characteristics including the thickness and vertical continuity of their critical zones and 

liquefiable materials.  

A CPT-based effective stress analysis procedure is developed and implemented for the analyses of the 

55 case history sites. Key features of this procedure are that, on the one hand, it can be fully automated 

in a programming environment and, on the other hand, it is directly equivalent (in the definition of 

cyclic resistance and required input data) to the CPT-based simplified liquefaction evaluation 

procedures. These features facilitate significantly the application of effective-stress analysis for simple 

1D free-field soil-column problems and also provide a basis for rigorous comparisons of the outcomes 

of effective-stress analyses and simplified procedures.  

Input motions for the analyses are derived using selected (reference) recordings from the two major 

events of the 2010-2011 Canterbury earthquake sequence. A step-by-step procedure for the selection 

of representative reference motions for each site and their subsequent treatment (i.e. deconvolution 

and scaling) is presented. The focus of the proposed procedure is to address key aspects of spatial 

variability of ground motion in the near-source region of an earthquake including extended-source 

effects, path effects, and variation in the deeper regional geology.  



Abstract 

 

The ability of the adopted analysis procedure to simulate key aspects of ground response in liquefiable 

deposits including the observed ground motions at several strong motion station sites of Christchurch 

is first demonstrated. Effective stress analyses of the 55 case history sites are then used to identify key 

mechanisms of system response of liquefiable deposits and quantify their effects on the development 

and evolution of liquefaction throughout the deposit including its surface manifestation. The vertical 

continuity of critical zones and liquefiable soils is identified as a key factor in system-response 

mechanisms that intensify liquefaction manifestation (e.g. YY-sites). Conversely, the lack of vertical 

continuity in the case of interbedded deposits of liquefiable and non-liquefiable soils (e.g. NN-sites), is 

identified as a key factor in system-response mechanisms that mitigate liquefaction manifestation. The 

scrutiny of the effective-stress analyses results highlights the important effects of system response of 

liquefiable deposits and demonstrates the potential for significant improvements in liquefaction 

damage assessment when such effects are appropriately considered.  

Overall, this study sets a paradigm for rigorous forensic assessments of ground response including 

comparative analyses and consistent treatment, from model calibration and definition of input motions 

to evaluation and interpretation of results, of a large number of (case-history) sites. It also 

demonstrates how such a comprehensive approach can provide valuable insights into various aspects 

of ground response and seismic performance that enable us to inform and advance current engineering 

practices. 
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1 INTRODUCTION 

1.1 Overview 

Liquefaction assessment including triggering and consequences of liquefaction is routinely 

carried out by geotechnical engineers using semi-empirical simplified procedures which are 

largely based on observations from case histories (e.g. Seed et al. 1985, Robertson and Wride 

1998, Youd et al. 2001, Moss et al. 2006, Idriss and Boulanger 2008, Boulanger and Idriss 

2014). Such liquefaction case histories essentially reflect the overall response of soil deposits 

and associated severity of liquefaction manifestation for a specific earthquake excitation. 

However, despite the intent to capture the overall performance of the deposit at a given site, in 

the simplified procedures each layer is considered in isolation, and a factor of safety against 

liquefaction triggering, maximum shear and volumetric strains are estimated separately for 

each layer, and independently from the response of other layers in the deposit. In other words, 

interactions between different layers in the deposit in the dynamic response, and through the 

excess pore water pressure redistribution and water flow are ignored. Hence, principal 

mechanisms of cross-interactions between layers or system-response effects of liquefying 

deposits that potentially contribute to the severity of liquefaction manifestation and associated 

damage are not accounted for in the simplified procedures. Liquefaction damage indices, such 

as 𝐿𝑆𝑁 (van Ballegooy et al. 2014) and 𝐿𝑃𝐼 (Iwasaki et al. 1978), use specific weight 

functions to quantify the damage potential of liquefying layers depending on their proximity 

to the ground surface, but still, when calculating the cumulative damage index for a given site, 

a simple superposition of independent effects from each layer is used, while cross-interactions 

between layers during the development of liquefaction and post-liquefaction triggering are 

simply ignored.  

In the 2010-2011 Canterbury Earthquake Sequence, widespread and damaging liquefaction 

affected nearly half of the urban area of Christchurch including 60,000 residential buildings 

and properties (van Ballegooy et al. 2014, Cubrinovski et al. 2019). Particularly severe 

liquefaction occurred in the eastern suburbs of Christchurch along the Avon River where 

lateral spreading also occurred (Cubrinovski and Robinson 2016). After the 2010-2011 

earthquakes, several studies were carried out to scrutinize the accuracy of simplified 

liquefaction evaluation procedures in predicting liquefaction triggering (manifestation) and 

associated damage. Green et al. (2014) found that the CPT-based procedures of Idriss and 
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Boulanger (2008), Robertson and Wride (1998), and Moss et al. (2006) accurately predicted 

the liquefaction manifestation for the majority of 25 well-documented case history sites from 

Christchurch and Kaiapoi. van Ballegooy et al. (2014) and Maurer et al. (2014) used the large 

CPT database in Christchurch to find that liquefaction damage indices, such as 𝐿𝑆𝑁 and 𝐿𝑃𝐼, 

were capable of depicting the general trends in liquefaction damage, and provided an 

improved definition and guidance for use of such damage indices. However, these studies also 

found that, in a significant number of cases, predictions from the simplified methods were 

inconsistent with field observations. In particular, systematic over-predictions of liquefaction 

occurrence were observed in specific areas and for certain types of soils and stratification of 

deposits including silts, silty sands with non-plastic or low-plasticity fines, and interbedded 

deposits composed of liquefiable and non-liquefiable soils.  

The reasons for these mis-predictions by the simplified methods can be many including, on 

the one hand, the relatively poor (as compared to clean sands) quality of the material and 

behavioural characterization of silty soils at the element level (element-level response), and on 

the other hand, the neglect in the evaluation of various cross-interactions between layers 

within the deposit (system response). Findings from high-quality laboratory studies (e.g. 

Beyzaei et al. 2018) on the element-level response and associated cyclic resistance of 

Christchurch silty soils are generally consistent with the respective estimates from simplified 

liquefaction triggering procedures. Yet, other studies (Cox et al. 2017, Boulanger et al. 2018, 

Yost et al. 2019) have suggested that the combined effect of: (1) under-prediction of fines 

content, which is a key parameter used in the simplified methods to estimate (adjust) the 

cyclic resistance of fines-containing soils; (2) thin-layer and transition zone effects on the 

measured cone penetration resistance; and (3) a false assumption of fully saturated soils below 

the groundwater table, can lead to a severe under-prediction of the actual in-situ liquefaction 

resistance of silty soils. Although, clearly, addressing some of the above limitations of the 

default practices and assumptions in the application of the simplified method can improve 

predictions, the associated corrections to the element-level response (cyclic resistance of 

individual layers) do not seem to fully explain the large discrepancies (in number of cases and 

significance of mis-prediction) between the predictions of the simplified method and the 

actual observations of liquefaction manifestation from the 2010-2011 Canterbury earthquakes. 

In this context, the present dissertation explores effects of the system response of 

Christchurch deposits based on rigorous back-analyses of 55 well-documented case histories 

of level ground free-field sites that showed vastly different performance during the 

earthquakes, from no liquefaction manifestation to extreme severity of liquefaction. The study 

builds upon previous work by Rhodes (2017) and Cubrinovski et al. (2019) who used seismic 

effective stress analyses to identify key system response mechanisms of representative soil 

profiles from Christchurch and demonstrated that such mechanisms can profoundly impact the 

occurrence and severity of liquefaction manifestation at the ground surface. The aim of the 

present study is twofold: 

(1) To develop a robust methodology for forensic effective stress analysis of sites in the near-

source region which: (a) can be consistently applied across all 55 sites of interest; (b) can 
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accurately simulate the seismic demand induced by the considered earthquakes and the 

associated response of liquefiable soils and deposits; and, (c) will allow for rigorous 

comparisons with the predictions of simplified procedures for liquefaction assessment. 

(2) Using the results from the analyses, to scrutinize the complex system response of 

liquefiable deposits, identify key interaction mechanisms and quantify their effects, and 

examine their combined influence on the development of liquefaction throughout the 

deposit and its severity of manifestation at the ground surface. 

 

1.2 Thesis Organization  

The present thesis is organized in the following chapters. 

This chapter lays out the motivation for the study and briefly describes the main objectives 

and thesis outline. 

Chapter 2 provides a brief but essential background required to better appreciate the key 

research questions and contributions from this study. Key features of the 2010-2011 

Canterbury earthquakes, fundamental aspects of sandy soil behaviour, limitations and 

challenges of liquefaction assessment methods, and past developments in aspects of the 

system response of liquefiable deposits are reviewed.  

Chapter 3 presents a detailed geotechnical characterization and analysis of the 55 investigated 

sites. The near-surface geology and geomorphology of Christchurch and the performed 

investigations at the 55 sites are discussed first. Then, key soil profile characteristics of the 55 

sites are comparatively examined in relation to their associated performance (liquefaction 

manifestation) during the Canterbury earthquakes. Supplementary material to this chapter 

including soil profiles and results from liquefaction triggering analysis for all 55 sites is 

provided in Appendix A. 

Chapter 4 describes the seismic effective stress analysis procedure used to assess the 

performance of the 55 sites. The proposed procedure includes the following main steps: (a) 

determination of a simplified soil profile; (b) determination of characteristic soil behaviour 

and associated constitutive model parameters for each layer of the simplified profile; (c) 

definition of input ground motion; and, (d) definition of numerical model (mesh, initial and 

boundary conditions) and analysis parameters. The procedure is designed with the objective to 

facilitate its practical application by, essentially, using the same input data and the same 

definition of liquefaction resistance as the simplified CPT-based liquefaction evaluation 

procedures. These features also provide a basis for rigorous comparisons of the outcomes of 

effective-stress analyses and simplified procedures. 

Chapter 5 discusses key steps and challenges in defining representative input ground motions 

for the forensic analyses of the 55 near-source sites. Within-event recorded surface ground 
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motions at selected strong motion station sites of Christchurch are used as reference motions 

to derive the respective input ground motions for each site of interest and for each considered 

earthquake. The selection and treatment (i.e. deconvolution and amplitude scaling) of 

reference within-event ground motions are discussed with emphasis on the key factors of 

(near-source) spatial ground motion variability that need to be considered in these processes. 

A novel ‘amplitude-duration’ scaling approach which targets both the amplitude and duration 

of ground motion is introduced. Supplementary material to this chapter is provided in 

Appendix B. 

Chapter 6 evaluates the performance of alternative input motions and associated simulations 

of ground response using the developed effective-stress analysis procedure at 13 strong 

motion station sites of Christchurch. The performance of each simulation is evaluated by 

comparing recorded surface motions to those predicted by the effective-stress analyses. The 

comprehensive evaluation of the simulated responses of the strong motion station sites serves 

as validation for the adopted input motions and effective-stress analysis procedure and 

indicates important factors to consider in the analyses of the 55 Christchurch sites. 

Supplementary results from the analyses of the strong motion station sites are provided in 

Appendix C. 

Chapter 7 presents a comprehensive scrutiny and system-level interpretation of the effective-

stress analyses of the 55 sites. Important effects of system response of liquefiable deposits are 

first illustrated through example responses of selected sites associated with different severity 

of liquefaction manifestation. Based on a systematic analysis and quantification of the 

computed responses of the 55 sites, five principal types of system responses are identified and 

discussed. Limitations of simplified procedures are examined in the context of the identified 

types of system responses, and a new system-response based framework for assessment of 

liquefaction manifestation is introduced. The comprehensive scrutiny of the analyses results 

highlights the important effects of system response of liquefiable deposits and demonstrates 

the potential for significant improvements in liquefaction damage assessment when such 

effects are appropriately incorporated. Characteristic results from the effective-stress analyses 

for all 55 sites are provided in Appendix D. 

Chapter 8 summarizes key findings and contributions from this dissertation and discusses 

future research needs. 
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2 BACKGROUND 

2.1 Introduction 

While the ultimate goal of this research is to elucidate the system response of liquefiable 

deposits and provide a framework for quantification of the relevant mechanisms and effects, a 

variety of requisite tasks, which do not strictly pertain to the main research goal, have been 

addressed. Rather than thoroughly reviewing here the literature relevant to these topics, the 

scope of this chapter is to provide the reader with the essential context needed to understand 

better the key research questions and appreciate the pertinent contributions. Further 

background information and previous work on specific topics is provided in the relevant 

chapters.  

Observations from the 2010-2011 Canterbury Earthquake Sequence (CES) were the key 

motivation for this research, and the evaluation of selected case-histories from these 

earthquakes is at the core of the adopted research methodology. Hence, key aspects of the 

2010-2011 Canterbury earthquakes are discussed first in this chapter. Next, some fundamental 

aspects of the shear response of sandy soils are briefly reviewed. Then, an overview of the 

current state-of-practice and state-of-the-art methods for liquefaction assessment with 

emphasis on the advantages and limitations of each method is presented. Finally, previous 

research findings and current understanding on aspects of the system response of liquefiable 

deposits are discussed. 

 

2.2 The 2010-2011 Canterbury Earthquake Sequence 

In the period between September 2010 and December 2011, Christchurch, New Zealand was 

hit by a series of strong earthquakes, known as the Canterbury Earthquake Sequence (CES) 

(e.g. Elwood et al. 2014). The sequence included four events with moment magnitude Mw ≥ 

5.9 and other five earthquakes with Mw 5.0–5.8. The causative faults of these earthquakes 

were either in the proximity to or within the city boundaries. Surface ground motions from the 

2010-2011 CES were recorded across Christchurch and its environs by a dense network of 

strong motion stations (e.g. Bradley and Cubrinovski 2011, Bradley 2012, Bradley 2015). 

Particularly severe ground motions were recorded during the 22 February 2011 Mw6.2 
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Christchurch earthquake. With spectral accelerations at several locations exceeding the 

regional seismic design spectra at the time, the February 2011 earthquake was devastating, 

causing 185 fatalities, collapse of two multi-storey reinforced concrete buildings, and collapse 

or partial collapse of many unreinforced masonry structures. In total, the 2010-2011 CES 

caused tremendous damage to buildings and infrastructure, and total economic loss of 

approximately 30 billion NZ dollars (or about 15% of New Zealand’s GDP) (Cubrinovski and 

Robinson 2016). 

The geotechnical aspects of the 2010-2011 Canterbury earthquakes were exceptional, both in 

terms of extent and severity of damage. In particular, widespread and damaging liquefaction 

affected nearly half of the urban area of Christchurch including 60,000 residential buildings 

and properties. Liquefaction and lateral spreading also caused heavy damage to several multi-

storey buildings in the Central Business District (CBD), as well as damage to roads, bridges, 

and buried pipe networks of potable and wastewater systems (e.g. Cubrinovski et al. 2010, 

2011, 2012, 2014, Bray et al. 2014, O’Rourke et al. 2014, van Ballegooy et al. 2014). Fig. 2.1 

illustrates the distribution and severity of liquefaction-induced land damage across the urban 

area of Christchurch in the four major events of the sequence (Russell and van Ballegooy 

2015). The documentation of the severity of liquefaction in these maps is based on 

observations of the surface manifestation of liquefaction in the form of soil ejecta and 

differential ground surface settlement (subsidence). The former was documented in detailed 

field inspections on a property-by-property basis. Contours of the estimated peak ground 

accelerations for each earthquake are also shown in this figure. It can be seen that extensive 

and repeated liquefaction was triggered in specific areas of the city, particularly in the eastern 

suburbs along the Avon River, whereas many other areas to the south and west of CBD did 

not manifest liquefaction even when subjected to the severe ground shaking induced by the 22 

February 2011 earthquake. Investigating these differences in the performance among various 

Christchurch sites through interpretation of their system response is the main subject of this 

thesis. 
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Fig. 2.1 Christchurch maps showing the inferred levels of earthquake shaking (𝑃𝐺𝐴) and the observed land 

damage for urban residential properties after the four major events in the sequence: (a) 4 September 2010; (b) 22 

February 201; (c) 13 June 2011; (d) 23 December 2011 earthquakes (Russell and van Ballegooy 2015); the 

illustrated median estimates of 𝑃𝐺𝐴 were obtained on the basis of the prediction from empirical ground motion 

prediction equations, the observations of ground motion intensity at nearby strong motion stations, and the 

within-event spatial correlation of ground motion intensity (Bradley 2014). 

 

 

2.3 Shear Response of Sandy Soils 

2.3.1 Liquefaction resistance 

When granular materials are subjected to monotonic or cyclic shear loads (i.e. primary type of 

loading during earthquake shaking), they exhibit a tendency for volume change due to 

rearrangement of their particles, a phenomenon known as dilatancy in granular materials 

(Reynolds 1885). Under undrained conditions and for soil materials fully saturated with 

water, volume change cannot be realized because of the low compressibility of water; instead, 

it is compensated by an equivalent change in the pore water pressure and, which in turn 

results into a change in the effective stress (i.e. change in the contact forces between soil 

particles). 
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Fig. 2.2 illustrates a typical response of a medium-dense saturated sand to undrained cyclic 

simple shear of constant stress amplitude, under constant total vertical stress (Seed et al. 

2003). In this figure, the bottom left plot (Fig. 2.2c) illustrates the evolution of the excess pore 

water pressure ratio (𝑟𝑢), defined as the ratio of the excess pore water pressure (𝑢𝑒) to the 

initial vertical effective stress (𝜎𝑣𝑜
′ ; 𝜎𝑐

′ in the figure); the bottom right plot (Fig. 2.2d) shows 

the development of cyclic shear strains (𝛾) with the number of loading cycles; the top right 

plot (Fig. 2.2b) shows the normalized shear stress versus shear strain response (𝜏 𝜎𝑣𝑜
′⁄ − 𝛾); 

and the top left plot (Fig.2.2a) shows the effective stress path (𝜏 𝜎𝑣𝑜
′⁄ − 𝜎𝑣

′ 𝜎𝑣𝑜
′⁄ ). It can be 

seen from these test records that the pore water pressure builds up steadily throughout cyclic 

loading and eventually approaches a value nearly equal to the initial vertical effective stress 

(𝑟𝑢 ≈ 1.0). These changes in the pore water pressure are accompanied by a progressive net 

reduction in the vertical effective stress and a progressive softening of the soil as manifested 

in the shear stress–shear strain response. The cyclic shear strains are relatively small for the 

first 25–27 cycles until significant excess pore water pressures have been generated, after 

which the strains start increasing significantly with each additional cycle. Liquefaction 

triggering is said to have occurred in such tests when the excess pore water pressure ratio 𝑟𝑢 

or, more commonly, the shear strain (single amplitude (SA) or double amplitude (DA) strain) 

exceeds a certain threshold (e.g. SA strain > 3% or DA strain > 5-7.5%).  

 

Fig. 2.2 Characteristic response of medium-dense (𝐷𝑟 = 50%) Monterey #30/0 sand (with initial vertical 

effective stress 𝜎𝑣𝑜
′ = 85 kPa) to undrained cyclic simple shear: (a) stress path, (b) stress-strain curve, (c) 

development of excess pore water pressure with number of loading cycles, (d) development of shear strain with 

number of loading cycles. Liquefaction triggering (DA strain in excess of 5%) for the given stress amplitude 

occurs after about 30 loading cycles (modified after Seed et al. 2003). 
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Liquefaction can be triggered by different combinations of applied shear stress amplitude and 

number of loading cycles. In the above example, about 30 cycles of uniform stress amplitude 

𝐶𝑆𝑅 = 𝜏 𝜎𝑣𝑜
′⁄ = 0.20 are required to trigger DA strains (peak-to-peak strains in one cycle) in 

excess of 5%, which is herein adopted as the liquefaction triggering threshold. The 

combination of shear stress amplitude (𝐶𝑆𝑅) and number of cycles (𝑁𝑐) required to cause 

triggering of liquefaction, or a certain level of strain in the soil, are typically represented with 

𝐶𝑆𝑅 − 𝑁𝑐 relationship referred to as a liquefaction resistance curves (LRC), as shown in Fig. 

2.3a.  

 

 

Fig. 2.3 Cyclic stress ratio (𝐶𝑆𝑅) required to cause triggering of liquefaction (DA strain 5%): (a) 𝐶𝑆𝑅 versus 

number of loading cycles for a given initial state (relative density, confining stress, fabric), (b) 𝐶𝑆𝑅 versus 

relative density for a given number of loading cycles, confining stress, and soil fabric (Ishihara 1995).  
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Another format of representing the resistance of a soil to liquefaction triggering is to plot the 

shear stress amplitude required to trigger liquefaction at a given number of cycles against the 

initial relative density of the soil, as shown in Fig. 2.3b. As can be seen from this figure, the 

stress amplitude required to trigger liquefaction in 20 cycles increases with an increasing rate 

as the relative density of the sand increases. The relative density has long been recognized as 

a dominant factor influencing the cyclic liquefaction resistance of sands. 

2.3.2 State concept interpretation of sand behaviour 

The stress-strain behaviour of sand and its resistance against liquefaction triggering depends 

upon several factors including the relative density, confining stress, fabric, fines content, 

initial static shear, age, mineralogy, and others. A convenient way for characterizing the 

influence of some of these factors, and particularly the relative density and confining stress, 

on sand behaviour is through the use of the critical state soil mechanics (e.g. Schofield and 

Wroth 1968) and state concept interpretation (Roscoe and Poorooshasb 1963, Been and 

Jefferies 1985). The critical state, or the nearly synonymous steady state of deformation, 

refers to the conditions that exist in sand when it is being sheared continuously under 

monotonic loading with no changes in volume or stress occurring, and it defines the critical 

state line (CSL) (or steady state line (SSL)), which represents all possible combinations of 

void ratio (𝑒) and confining effective stress (𝑝′) at the critical state (Fig. 2.4). The critical state 

line of a given soil is uniquely defined in the 𝑒 − 𝑝′ plane. In other words, irrespective of the 

initial state, each monotonic shear test of a given sand ends up at its critical state line. 

 

 

Fig. 2.4 Critical (or steady) state line and stress paths for monotonic drained loading with constant mean 

effective stress (𝑝′) and undrained loading (constant volume shearing) of saturated loose-of-critical and dense-

of-critical sands (Idriss and Boulanger 2008). 
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The position of the initial state of a given sand in the 𝑒 − 𝑝′ plane relative to its critical state 

line defines the 𝑒 − 𝑝′ path and stress–strain response, for a given loading and drainage 

conditions. All initial 𝑒 − 𝑝′ states that are ‘loose of critical’ (i.e. above the CSL) will show 

contractive behaviour upon monotonic shearing (i.e. decrease in volume in drained shear or 

decrease in effective stress in undrained shear). On the other hand, all initial 𝑒 − 𝑝′ states that 

are ‘dense of critical’ (i.e. below the CSL) will show dilative behaviour (increase in volume in 

drained shear or increase in effective stress in undrained shear). Moreover, the further the 

initial state is from the critical state line, the more contractive or more dilative the sand 

behaviour is. Stress paths for monotonic drained loading with constant 𝑝′ and undrained 

loading (constant volume shearing) of saturated loose-of-critical and dense-of-critical sands 

are schematically illustrated in Fig. 2.4.  

The state concept can also be used to characterize the behaviour of sand in cyclic shear. In 

this case, dense-of-critical sands can also experience contraction of their soil skeleton in 

drained conditions (i.e. net volume decrease at the end of each half-cycle), or increase in pore 

water pressure and reduction in effective stress in undrained conditions. In both loose and 

dense sands, pore water pressures can build up in the course of undrained cyclic loading and 

eventually reach a state in which a peak pore water pressure equal or nearly equal to the initial 

effective confining stress is attained (‘initial liquefaction’). For loose sands, this condition is 

accompanied by a rapid increase in cyclic shear strains upon further continuation of loading. 

For dense sands, a state of 𝑟𝑢 ≈ 1.0 does not produce such large changes in the deformability 

of the soil, instead, the shear strain increases steadily and gradually with progression of the 

loading cycles. This type of behaviour observed in dense-of-critical sands is known as ‘cyclic 

mobility’ (Castro 1975). Fig. 2.5 shows characteristic stress paths and stress-strain curves for 

loose sand and dense sand obtained from cyclic torsional shear tests (Ishihara 1985).  

 

 

Fig. 2.5 Characteristic stress paths (top row) and stress-strain curves (bottom row) for (a) loose sand and (b) 

dense sand, obtained from cyclic torsional shear tests on Fuji river sand (Ishihara 1985). 
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As it can be seen from Fig. 2.5, both loose and dense sands can develop excess pore water 

pressures and large cyclic shear strains associated with liquefaction triggering, when sheared 

with sufficiently high level of loading for each case, but their response and consequences of 

liquefaction are dramatically different. Loose sands show highly contractive behaviour and 

can produce extremely large deformations following initial liquefaction. On the other hand, 

liquefaction triggering of dense sands results in large but limited strains (cyclic mobility), 

because the sand exhibits dilative behaviour and can mobilize significant shear resistance with 

increasing strains. 

2.3.3 Effects of partial saturation and partial drainage 

So far in this section, it has been assumed that the soil is fully saturated with water and that 

shear loading occurs under fully undrained conditions. However, field conditions may 

actually involve partially saturated soils and water flow into and out of soil elements both 

during and after the earthquake shaking. Partial saturation (i.e. part of voids filled with air) is 

typically encountered in soils above the groundwater table but it may be present also below 

the groundwater table due to groundwater table fluctuations and other natural processes. 

Partial drainage of soil elements (i.e. inflow or outflow of water and change in soil volume) 

can take place both during and after the earthquake shaking as a result of pore water pressure 

redistribution and seepage of water towards the ground surface, as discussed later in this 

chapter. 

Numerous laboratory studies (cyclic triaxial tests) have examined the influence of partial 

saturation on the cyclic (liquefaction) resistance (e.g. Sherif et al. 1977, Yoshimi et al. 1989, 

Grozic et al. 2000, Tsukamoto et al. 2002, Yang et al. 2004, Nakazawa et al. 2004, Okamura 

et al. 2006, Okamura and Soga 2006, Kamata et al. 2009, Tsukamoto et al. 2014). In these 

studies, the increase in liquefaction resistance is typically expressed in 𝐾𝑠 − 𝑉𝑝 relationships, 

where 𝐾𝑠 is the ratio of the cyclic resistance of the partially saturated soil to the cyclic 

resistance of the same soil in fully saturated conditions, and 𝑉𝑝 is used as an indicator of the 

degree of saturation of the soil. The association of 𝐾𝑠 with 𝑉𝑝 is typically adopted for practical 

convenience because, in contrast with the degree of saturation or 𝐵-value, 𝑉𝑝 can be relatively 

easily measured in the field. Fig. 2.6a shows a 𝐾𝑠 − 𝑉𝑝 relationship derived from cyclic 

triaxial tests on Toyoura sand at varying degrees of saturation (Tsukamoto et al. 2002). It can 

be seen from this figure that a substantial increase in liquefaction resistance is possible under 

partially saturated conditions (𝑉𝑝 < 1500 m/s). 

Several laboratory studies have also focused on the shear behaviour of fully saturated sands 

using controlled volumetric strain paths (water injection/volume expansion or water 

extraction/volume contraction) to simulate partial drainage conditions (e.g. Boulanger and 

Truman 1996, Vaid and Eliadorani 1998, Tokimatsu et al. 2001, Sento et al. 2004, Yoshimine 

et al. 2006). Fig. 2.6b illustrates the monotonic stress-strain response of a medium-dense 

Toyoura sand subjected to varying levels of water injection, after initially sheared cyclically 

under undrained conditions until a DA strain of 0.5% is reached (Tokimatsu et al. 2001). The 
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parameter 𝑎 in this plot is proportional to the ratio between volumetric and shear strains and 

increases with increasing volume of water injection. Under undrained conditions (𝑎 = 0) the 

specimen shows a strain-hardening behaviour, but with increasing 𝑎 (increasing water 

injection) the behaviour becomes more contractive until, eventually, with a sufficient amount 

of water injection (𝑎 = 1), the specimen completely loses its shear resistance and undergoes 

flow liquefaction. The experimental evidence suggests that even strongly dilative dense-of-

critical sands can exhibit highly contractive behaviour and flow liquefaction if a sufficient 

amount of pore water is absorbed, but the tendency for reduction in the shear resistance of the 

soil seems to be more pronounced as the soil density decreases and as the maximum cyclic 

shear strain during the undrained loading increases.  

 

Fig. 2.6 (a) Effect of partial saturation (𝑉𝑝 < 1500 m/s) on cyclic resistance (Tsukamoto et al. 2002); (b) 

Monotonic shear stress – shear strain response of medium-dense saturated sand with water injection (𝑎 > 0) 

following undrained cyclic shear to 0.5% DA strain (Tokimatsu et al. 2001). 
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Effects of partial saturation and partial drainage are most often ignored in the liquefaction 

assessment employed in engineering practice. However, it is clear from the above that both 

can have a significant impact on soil response and overall performance evaluation of 

liquefiable deposits. 

 

2.4 Liquefaction Assessment 

Liquefaction assessment including triggering and consequences of liquefaction can be carried 

out using either semi-empirical methods (simplified procedures) (e.g. Robertson and Wride 

1998, Youd et al. 2001, Idriss and Boulanger 2008, Boulanger and Idriss 2014) or advanced 

numerical methods, such as the seismic effective stress analysis. Only the most relevant 

aspects, advantages and limitations of the two approaches are discussed in this section. 

Further discussion on the limitations of the simplified procedures and details of the effective 

stress analysis method are provided in subsequent chapters. 

2.4.1 Simplified procedures 

The current state-of-practice in liquefaction assessment is still largely based on the procedures 

developed by the late Professor Seed and his co-workers in the 1970’s (e.g. Seed and Idriss 

1971, Seed 1979). In these stress-based procedures, earthquake-induced cyclic shear stresses 

(𝐶𝑆𝑅) are compared with the cyclic (liquefaction) resistance (𝐶𝑅𝑅) of the soil. Liquefaction 

triggering is predicted at those depths in the deposit where the induced shear stresses exceed 

the cyclic resistance or the factor of safety against liquefaction triggering is less than 1.0 

(𝐹𝑆𝐿 = 𝐶𝑅𝑅 𝐶𝑆𝑅⁄ ≤ 1.0). 

The cyclic (liquefaction) resistance 𝐶𝑅𝑅 is typically estimated through correlations with some 

in-situ test index, such as the normalized overburden-corrected cone tip resistance 𝑞𝑐1𝑁 (in the 

case of the CPT-based procedures) or the overburden and energy ratio corrected SPT blow-

count (𝑁1)60 (in the case of the SPT-based procedures). 𝑞𝑐1𝑁 (or (𝑁1)60) is used as a proxy 

for the effects of the relative density on 𝐶𝑅𝑅 (Fig. 2.3b), but it also reflects other important 

factors (e.g. fabric, stress history, age) that affect liquefaction resistance. Correlations 

between 𝐶𝑅𝑅 and 𝑞𝑐1𝑁 (in the case of the CPT-based procedures) have been developed based 

on case histories of liquefaction manifestation in which 𝐶𝑆𝑅 − 𝑞𝑐1𝑁 pairs were identified for 

each case history (site). The 𝐶𝑆𝑅 − 𝑞𝑐1𝑁 pairs at each site represent the values of the seismic 

demand (load) and penetration resistance for the critical layer that was considered responsible 

for the liquefaction manifestation at the site. The liquefaction resistance (𝐶𝑅𝑅) as a function 

of 𝑞𝑐1𝑁 is defined from the (approximate) triggering curve in the 𝐶𝑆𝑅 − 𝑞𝑐1𝑁 plane that 

separates case histories in which liquefaction was manifested at the ground surface from case 

histories in which such manifestation was not evident, as illustrated in Fig. 2.7. Note, 

however, that the absence of evidence of liquefaction at the ground surface does not 
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necessarily mean absence of liquefaction in the deposit; in fact, liquefaction may have been 

triggered at depth and not manifested at the ground surface.  

 

 

Fig. 2.7 CPT-based liquefaction triggering correlation of Boulanger and Idriss (2014), for 𝑀𝑤 = 7.5 and 𝜎𝑣𝑜
′ =

1 atm. 
 

Note that as Fig. 2.3b refers to the mobilized 𝐶𝑅𝑅 at a constant number of loading cycles and 

constant confining stress, so does Fig. 2.7 refers to the 𝐶𝑅𝑅 corresponding to a reference 

condition of earthquake magnitude 𝑀𝑤 = 7.5 (used as a proxy for the number of loading 

cycles) and effective overburden stress 𝜎𝑣𝑜
′ = 1 atm. To represent all case-history data of 

varying 𝑀𝑤 and 𝜎𝑣𝑜
′  values onto the same graph of the reference condition, appropriate 

(magnitude scaling 𝑀𝑆𝐹 and overburden stress 𝐾𝜎) correction factors have been applied to 

the estimated 𝐶𝑆𝑅 (Eq. 2-1) for each case-history. The inverse correction factors are used in 

forward applications to estimate 𝐶𝑅𝑅 for conditions different than the reference condition. In 

addition, the penetration resistance 𝑞𝑐1𝑁 is also adjusted to account for the effects of fines 

content (𝐹𝐶) on penetration resistance (e.g. Cubrinovski 2019), thus yielding the reference 

‘equivalent clean sand’ penetration resistance (𝑞𝑐1𝑁𝑐𝑠) plotted in Fig. 2.7.  

The earthquake-induced 𝐶𝑆𝑅 (for either a case-history or forward site liquefaction 

assessment) can be estimated at any depth (𝑧) in the deposit either using ground response 

analysis or, alternatively, approximated as (Seed and Idriss 1971): 

𝐶𝑆𝑅 = 0.65
𝜎𝑣𝑜

𝜎𝑣𝑜
′

𝑎𝑚𝑎𝑥

𝑔
𝑟𝑑(𝑀𝑤, 𝑧)                                             (2-1) 

where 𝜎𝑣𝑜 and 𝜎𝑣𝑜
′  are the initial total and effective vertical stress at depth 𝑧, 𝑎𝑚𝑎𝑥 is the 

maximum ground surface acceleration in g, and 𝑟𝑑 is the shear stress reduction coefficient 

which can be expressed as a function of 𝑀𝑤 and 𝑧. In this relationship, it is assumed that 

𝑎𝑚𝑎𝑥 and 𝐶𝑆𝑅 are not affected by the development of excess pore water pressures during 

earthquake shaking. This means that the 𝐶𝑆𝑅 value calculated from Eq. 2-1 (or through an 
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equivalent linear or total-stress nonlinear ground response analysis) is realistic only for cases 

in which 𝐶𝑆𝑅 < 𝐶𝑅𝑅, i.e. for points below the triggering curve in Fig. 2.7 which do not 

experience enough pore pressure build-up to affect the shear stress-strain response of the soil. 

In cases where 𝐶𝑆𝑅 ≫ 𝐶𝑅𝑅, the actual 𝐶𝑆𝑅 value in the field can be substantially less that the 

value calculated from Eq. 2-1, both within and above the liquefied layer, as a result of 

significant excess pore water pressure build-up and loss in effective stress. In such cases 

(𝐶𝑆𝑅 ≫ 𝐶𝑅𝑅), 𝐶𝑆𝑅 is still used as an index for the seismic demand in the simplified 

procedures but has no physical reality (Dobry and Abdoun 2015). Liquefaction effects on 

seismic demand are further discussed in section 2.5.  

Consequences of liquefaction without considering interactions between layers 

The case histories used in the development of liquefaction triggering correlations essentially 

reflect the overall response of soil deposits and associated severity of liquefaction 

manifestation for a specific earthquake excitation. However, despite the intent to capture the 

overall performance of the deposit at a given site, in the simplified procedures each layer is 

considered in isolation, separately from any other layers in the deposit. Consider, for instance, 

the six-layer soil profile depicted in Fig. 2.8, in which layers 3 and 5 are susceptible to 

liquefaction, whereas layers 1, 2, 4 and 6 are non-liquefiable. In the simplified procedure, the 

estimates of 𝐶𝑅𝑅 (Fig. 2.7) and 𝐶𝑆𝑅 (Eq. 2-1) for each layer are independent of the response 

of the other layers. In other words, potential effects of excess pore water pressures and 

liquefaction of a layer on the seismic demand and shear resistance of other layers in the 

deposit are not considered. A factor of safety against liquefaction triggering (𝐹𝑆𝐿) is defined 

as the ratio between 𝐶𝑅𝑅 and 𝐶𝑆𝑅 for each layer, and it is subsequently used in empirical 

charts (e.g. Ishihara and Yoshimine 1992) to estimate maximum shear strains (𝛾𝑚𝑎𝑥) and 

post-liquefaction reconsolidation volumetric strains (휀𝑣,𝑚𝑎𝑥), again separately for each layer. 

In the final step of the assessment (for free-field level ground sites), liquefaction damage 

indices, such as 𝐿𝑆𝑁 (van Ballegooy et al. 2014) and 𝐿𝑃𝐼 (Iwasaki et al. 1978), are calculated 

using specific weighting functions to quantify the damage potential of liquefying layers 

depending on their proximity to the ground surface. But still, as illustrated in Fig. 2.8, when 

calculating the cumulative damage indices a simple superposition of independent effects from 

each layer is used, while cross-interactions between layers through the dynamic response, 

excess pore water pressures, and water flow are simply ignored. Hence, principal mechanisms 

of interaction or system-response effects of liquefying deposits that potentially contribute to 

the severity of liquefaction manifestation are not accounted for in the simplified procedures.  
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Fig. 2.8 Schematic illustration of liquefaction assessment using simplified approach: (a) factor of safety against 

liquefaction triggering, maximum shear strain, and post-liquefaction volumetric strain are calculated 

independently for each layer, (b) cumulative damage index is calculated for the deposit by superposition of 

individual effects from each layer (modified after Cubrinovski 2019). 
 

2.4.2 Seismic effective stress analysis 

The seismic effective stress analysis is one of the most advanced numerical methods used in 

geotechnical engineering. It allows to simulate many important aspects of the complex 

dynamic behaviour of soils during earthquakes, including pore pressure development, 

reduction in the effective stress and resulting deformations, and their effects on foundations 

and supported structures. Importantly, such analysis considers the response of the deposit as a 

whole allowing for interactions between layers in the dynamic response (e.g. liquefaction 

effects on ground motion) and through pore water pressure redistribution and water flow (e.g. 

partial drainage and seepage-induced liquefaction). On the downside, effective stress analysis 

can be challenging in the application due to the specialized data and skills required, 

commonly including high-quality sampling and laboratory testing of soils, use of appropriate 

input ground motions, complex calibration procedures for sophisticated constitutive models, 

and also in-depth understanding by the user of the phenomena considered, constitutive 

relationships used, and numerical solutions adopted in the analysis. These drawbacks have 

limited the application of the effective stress analysis to critical lifelines and structures where 

the cost and effort to perform the analysis can be generally justified. An objective of this 

thesis is to address some of the above limitations and provide guidance on the application of 
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seismic effective stress analysis for both forensic (historic) and forward (future) site 

liquefaction assessment.  

 

2.5 On the System Response of Liquefiable Deposits 

The importance of system response effects on the seismic response of liquefiable deposits has 

long been recognized in the pertinent literature. For instance, in a review of historic cases of 

earthquake-induced liquefaction, Ambraseys and Sarma (1969) noted that ‘… as soon as 

deeper strata liquefied they ceased to transmit the earthquake vibrations to the overlying 

deposits’. In the same paper, the authors also stated that ‘… an initially stable layer of small 

compressibility may liquefy as a result of the liquefaction of an underlying loose deposit’. 

With these two statements, Ambraseys and Sarma pointed at two important system-response 

and cross-layer interaction mechanisms of liquefiable deposits, namely, (a) liquefaction-

induced ‘seismic isolation’ or, more generally, modification of seismic waves (demand) due 

to ground softening, and (b) liquefaction-induced seepage and associated phenomena. In the 

following, an overview of the current understanding of these phenomena based on previous 

research is presented first, and then, key findings from a previous work on the system 

response of representative soil profiles from Christchurch are discussed. 

2.5.1 Liquefaction effects on seismic demand 

The development of excess pore water pressure in the soil is accompanied by a reduction in 

the effective stress and subsequent softening of the soil (Fig. 2.2). The progressive softening 

of the soil as excess pore water pressure builds up during the seismic loading changes the 

dynamic characteristics of the site (i.e. overall flexibility and damping). In particular, the 

ability of the soil to transmit high frequency waves is generally decreased, whereas its ability 

to transmit low frequency waves is increased. This change in transmission characteristics 

generally occurs relatively gradually as excess pore water pressure builds up, but becomes 

more clearly evident at a time near the initiation of liquefaction, when the excess pore water 

pressure approaches the initial confining stress and the effective stress drops to nearly zero. In 

loose sands, this state is accompanied by a rapid softening of the soil which is manifested 

with an abrupt change in the frequency content of the surface ground motion (Kramer et al. 

2016). Denser sands also exhibit softening and gradual change in the transmission 

characteristics, but the tendency for dilation in these soils and regain of soil stiffness with 

amplitude often result in the manifestation of sharp high-frequency spikes on the surface 

acceleration which are superimposed upon the long-period response of the softened soil (Iai et 

al. 1995, Bonilla et al. 2005, Kramer et al. 2011). A characteristic surface horizontal 

acceleration record from the 22 February 2011 Mw6.2 Christchurch earthquake with such 

‘cyclic mobility spikes’ following initial liquefaction and associated soil softening is 

illustrated in Fig. 2.9.  
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Fig. 2.9 Horizontal component ground motion recorded at the Christchurch Botanical Gardens (CBGS station) 

during the 22 February 2011 earthquake showing characteristic effects of liquefaction on the surface ground 

motion. 

 

With reference to the ground motion that would have occurred at a site in the absence of 

excess pore water pressures (i.e. no liquefaction), liquefaction and associated soil softening 

generally tend to reduce the short-period amplitudes of motion (𝑇 < 1.0 s) and increase the 

long-period ones (𝑇 > 1.0 s) (Youd and Carter 2005, Kramer et al. 2011). Liquefaction 

triggering of dense sands that exhibit cyclic mobility type of behaviour may cause 

amplification also in short periods (𝑇 < 0.05 s) and increase in the peak ground acceleration  

due to the high-frequency spikes described previously (Gingery et al. 2015). Key factors 

influencing the magnitude of liquefaction-induced ground motion amplification or de-

amplification are the time of liquefaction triggering, or, in simplified-method terms, the factor 

of safety against liquefaction triggering (Youd and Carter 2005, Kramer et al. 2011), the 

thickness of the liquefied soil (Kokusho 2014, Bouckovalas et al. 2016), and the relative 

density (e.g. Dashti et al. 2010, Kokusho 2014). Stronger wave attenuation is observed when 

liquefaction of thick and loose soil layers occurs relatively early in the ground motion (or 

when 𝐹𝑆𝐿 is low).  

Needless to say, the aforementioned liquefaction-induced changes in the ground motion also 

affect the cyclic shear stresses (demand) in the soils overlying the liquefied layer, as noted by 

Ambraseys and Sarma (1969). This effect has not yet been quantified and is currently ignored 

by the simplified methods for liquefaction assessment.  

2.5.2 Effects of liquefaction-induced seepage 

Consider the layered soil profile in Fig. 2.10a, in which a liquefiable layer of loose sand is 

overlain by a finer-grained crust, which can be either non-liquefiable by composition (e.g. 

clay or plastic silt) or liquefiable soil at a denser initial state (e.g. dense silty sand or non-

plastic silt). Earthquake shaking induces high excess pore water pressures and eventually 
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triggers liquefaction throughout the loose sand layer, but no significant excess pore water 

pressures have been generated in the crust during the strong shaking. In the loose sand layer, 

the excess pore water pressures are now equal to the initial vertical effective stresses, and they 

increase with depth as the initial vertical effective stress also increases with depth (Fig. 

2.10b). The resulting distribution of excess pore water pressures throughout the soil profile is 

associated with upward hydraulic gradients which result in upward flow of water through the 

soil profile and towards the ground surface (Fig. 2.10c).  

 

 

Fig. 2.10 Liquefaction-induced seepage in layered deposit and associated phenomena. 

 

Fig. 2.10d schematically illustrates three severe complications that may arise from the upward 

seepage of pore water both during and after the earthquake shaking: 

(1) If the overlying finer-grained crust layer is liquefiable, then the upward flow of pore water 

can cause high enough hydraulic gradients in the crust (increase in the excess pore water 

pressures) to buoy up its soil particles and liquefy the initially stable crust soil. Early 
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theoretical work on the mechanism of seepage-induced liquefaction of initially stable surficial 

soils has been presented by Housner (1958), Ambraseys and Sarma (1969), and Yoshimi and 

Kuwabara (1973).  

(2) Another possibility for the seeping pore water is to cause hydraulic fracturing and break 

through at concentrated cracks or piping channels within the crust layer. These may form at 

locations where the crust is thinner that it is in the surroundings or where there are pre-

existing weaknesses in the crust which are further exacerbated under the pressure of the 

seeping water eventually forming tubes or pipes that extend up to the ground surface. The 

water flowing through these pipes may carry suspended soil particles from the liquefied layer 

and/or soil particles from the upper layer which are deposited at the ground surface in the 

form of sand boils. Sand boils is amongst the most commonly observed types of liquefaction 

manifestation in the field and has also been replicated in several experimental simulations of 

liquefaction (e.g. Scott and Zuckerman 1973, Liu and Qiao 1984, Elgamal et al. 1989, Fiegel 

and Kutter 1994).  

(3) If the seeping water from the liquefied layer cannot easily dissipate through the pores or 

cracks of the surficial crust (i.e. when the crust is sufficiently less permeable than the 

liquefied lower layer and relatively homogeneous without any weaknesses), it will start 

accumulating in the upper part of the liquefied layer beneath the interface with the less 

permeable crust. Contraction of the soil skeleton with outflow of pore water will take place in 

the lower parts of the liquefied layer (reconsolidation; decrease in void ratio), and expansion 

(dilation) with net inflow of pore water will occur in the upper parts of the liquefied layer 

(loosening; increase in void ratio). This process has been described as void redistribution 

(Whitman 1985), and it can progress with time to even develop a water film (interlayer) with 

zero shear strength immediately beneath the less pervious crust (e.g. Seed 1987). The 

consequences of void redistribution can be disastrous in the presence of static shear stresses 

acting along the dilation (loosened) zone of the liquefied soil, but void redistribution may 

adversely affect the resisting capacity of soils also during the earthquake shaking. The 

mechanism of void redistribution has been studied extensively using primarily physical model 

tests (e.g. Dobry and Liu 1992, Arulanandan et al. 1993, Fiegel and Kutter 1994, 

Balakrishnan and Kutter 1999, Kokusho 1999, 2000, Kokusho and Kojima 2002, Kulasingam 

et al. 2004, Malvick et al. 2008) and also numerical simulations (e.g. Yang and Elgamal 2002, 

Seid-Karbasi and Byrne 2007, Boulanger et al. 2013).   

It is important to recognize that the above effects do not exclude one another but may occur in 

parallel or in sequence. In any case, all three effects are indicators of severely loosened soil 

near the ground surface and consequent large kinematic demands to engineering structures. 

Features of the liquefied lower layer that can enhance the manifestation of such phenomena 

are a large compressibility and thickness (which increase the total volume of water expelled 

by the liquefied soil), and high hydraulic conductivity (which makes the water available fast) 

(Dobry 1989). On the other hand, a strong coherence, integrity, and large thickness of the 

crust layer can effectively prevent liquefaction manifestation at the ground surface (e.g. Scott 

and Zuckerman 1973, Ishihara 1985), without, however, excluding the possibility of void 



Chapter 2. Background 

 22 

redistribution related failures. In conclusion, it is clear from the above discussion that 

liquefaction manifestation reflects the response of the entire system in which, apart from the 

initial state of the critical layer for liquefaction manifestation, deposit characteristics such as 

the soil stratigraphy (layer thicknesses and sequence), and permeability and compressibility 

contrasts within the deposit may play a very significant role.  

2.5.3 System response of representative Christchurch soil profiles 

Rhodes (2017) performed a series of seismic effective stress analyses to investigate the 

seismic response of representative soil profiles from Christchurch. The simplified 

stratification and  𝑞𝑐1𝑁𝑐𝑠 values for two out of the four representative soil profiles analyzed in 

this study are illustrated in Fig. 2.11. The YY-profile represents the characteristics of sites that 

manifested moderate-to-severe liquefaction in both the two major events of the 2010-2011 

CES, namely the 4 September 2010 Mw7.1 Darfield earthquake and the 22 February 2011 

Mw6.2 Christchurch earthquake (Fig. 2.1). Key features of this soil profile are the presence of 

a critical zone with relatively low penetration resistance at shallow depth immediately below 

the groundwater table, the gradual increase in 𝑞𝑐1𝑁𝑐𝑠 with depth, and the fact that all top 10 m 

of the deposit, which are the most relevant for liquefaction manifestation at the ground 

surface, are composed of liquefiable soils including the nominal crust above the water table 

and the soils below the critical zone. The NN-profile represents the characteristics of sites that 

did not manifest liquefaction in any event of the CES. In this case, a relatively thin critical 

layer of low resistance is identified again at shallow depth, but low tip resistance liquefiable 

layers are present also at greater depths, and, importantly, there is no vertical continuity of 

liquefiable layers as in the YY-profile, rather the critical layer is sandwiched between non-

liquefiable soils.  

Key system response mechanisms identified by the effective stress analyses of the YY- and 

NN-profiles were summarized by Cubrinovski et al. (2019), and are schematically illustrated 

in Fig. 2.11.  

In the YY-deposit (Fig. 2.11a), (1) liquefaction first develops in the loose, shallow, and thick 

critical zone only after a few seconds of shaking. (2) The already liquefied soil in the critical 

zone is then subjected to substantial additional disturbance due to seepage action and upward 

flow of water from the underlying layers into the critical zone. The underlying layers have 

higher resistance and do not liquefy, but develop excess pore pressures higher (in absolute 

numbers) than the excess pore water pressures in the overlying critical zone, hence 

eventuating upward flow toward the critical zone. This water inflow under high pressures 

exacerbates the fluidization and instability of the soil structure in the liquefied critical zone. 

(3) Finally, the soil above the water table at shallow depths below the ground surface, also 

liquefies and loses its effective stress due to an upward water flow from the critical zone 

towards the ground surface (seepage-induced liquefaction). This effectively creates a liquefied 

zone from the ground surface to 6 m depth that receives an additional influx of water from the 



Chapter 2. Background 

 23 

deeper part of the deposit. Arguably, in the system response of the YY-profile the whole 

deposit contributes to the severity of liquefaction manifestation at the ground surface. 

In the NN-deposit (Fig. 2.11b), (1) liquefaction triggering first occurs in the deeper liquefiable 

layer of low penetration resistance. (2) The liquefaction of the deep layer results in a 

substantial reduction of accelerations and seismic demand for all layers above its depth. (3) 

The reduction in the seismic demand in conjunction with beneficial effects of partial 

saturation on the liquefaction resistance of the shallow critical layer prevent occurrence of 

liquefaction in this layer. This effectively results in a non-liquefied crust from the ground 

surface to 8.5 m depth, and therefore, the liquefaction at depth below 8.5 m would be unlikely 

to manifest at the ground surface for the seismic demands imposed by the 2010-2011 

Canterbury earthquakes. 

 

 

Fig. 2.11 Characteristic Christchurch soil profiles and associated system response mechanisms: (a) YY-deposit 

representing sites that manifested liquefaction in both the 4 September 2010 and 22 February 2011 earthquakes, 

(b) NN-deposit representing sites that did not manifest liquefaction in either event (modified after Cubrinovski et 

al. 2019).  
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These initial studies on the response of representative Christchurch soil profiles indicate that 

system response had a governing influence on liquefaction manifestation during the 2010-

2011 CES, sometimes by increasing the severity and consequences of liquefaction through the 

processes described in Fig. 2.11a, and others by contributing to the reduction in the likelihood 

for development of liquefaction and its manifestation at the ground surface through the 

processes of Fig. 2.11b. The present research aims to further elucidate and quantify these 

mechanisms through a comprehensive assessment of the responses of the 55 investigated 

sites. 

 

2.6 Summary  

Key takeaway points from the background presented in this chapter are outlined in the 

following.  

(1) In the 2010-2011 CES, evidence of severe and repeated liquefaction was observed in 

specific areas of Christchurch, whereas many sites in other areas did not manifest liquefaction 

in any of the events. 

(2) Under undrained cyclic shear, liquefaction triggering can occur over a wide range of 

relative densities, but the consequences of liquefaction are vastly different between loose and 

dense sands. The state concept provides a robust and rigorous way to characterize the effects 

of density and confining stress on the stress-strain response and liquefaction resistance of 

soils. 

(3)  Soils in the field may be partially saturated even when located below the groundwater 

table. Partial saturation can result in substantial increase of the cyclic resistance of liquefiable 

soils.  

(4) Partial drainage of soil elements (i.e. inflow or outflow of water and change in volume) 

can take place both during and after the earthquake shaking as a result of pore water pressure 

redistribution and seepage of water towards the ground surface. Experimental evidence and 

field observations suggest that partial drainage with net inflow of water can result in 

significant reduction (and even complete loss) of the shear resistance compared to that a given 

soil would mobilize under fully undrained conditions. The tendency for reduction in shear 

resistance appears to be more pronounced as the soil density decreases and as the maximum 

cyclic shear strain during the undrained loading phase increases. 

(5) Simplified methods for liquefaction assessment consider each layer in isolation and 

separately from any other layer in the deposit. In other words, cross-interactions between 

layers in the dynamic response and through pore water pressure redistribution and water flow 

are ignored in the simplified methods. 

(6) The seismic effective stress analysis method considers the response of the deposit as a 

whole allowing for interactions between layers both during and after the earthquake shaking. 
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This method allows for consideration of key elements in the soil response and field deposits, 

such as build-up of excess pore water pressures, flow of water and realistic modelling of 

stress-strain behaviour of soils under complex earthquake loading. Despite these advantages, 

effective stress analysis can be challenging in the application due to the specialized data and 

skills required, including high-quality sampling and laboratory testing of soils, complex 

calibration procedures for sophisticated constitutive models, and careful selection of 

appropriate input motions for the analysis. 

(7) Soil liquefaction and associated ground softening modify the seismic waves propagating 

through the liquefied layer by generally de-amplifying high-frequency waves and amplifying 

low-frequency waves. Key factors influencing the magnitude of liquefaction-induced ground 

motion amplification or de-amplification include the time of liquefaction triggering (whether 

it occurs early or late in the ground motion), the thickness of the liquefied soil, and its relative 

density.  

(8) Seepage of pore water following liquefaction can cause severe instabilities which may 

include seepage-induced liquefaction of the surficial crust, loss of crust integrity and 

formation of sand boils at the ground surface, and severely loosened zones of liquefied soil 

beneath interfaces with less pervious soils. Permeability and compressibility contrasts and 

layer thicknesses play a key role in the manifestation and severity of these phenomena. 

(9) Initial effective stress analyses of representative Christchurch soil profiles have identified 

important system response mechanisms of liquefiable deposits. The system response of sites 

that manifested moderate-to-severe liquefaction in both major events of the CES (YY-sites) 

involve: (i) rapid liquefaction of a shallow critical layer; (ii) additional disturbance of the 

liquefied critical layer due to seepage action and inflow of water from the underlying soils; 

and (iii) vertically unconstrained water flow, and seepage-induced liquefaction in shallow 

soils above the water table. This sequence of mechanisms increases the severity and 

consequences of liquefaction for the YY-sites. The system response of sites that did not 

manifest liquefaction in any of the CES events (NN-sites) involves: (i) first occurrence of 

liquefaction in a deep layer of low resistance; (ii) isolation or vertical confinement of the 

liquefied layer by capping non-liquefiable layers and reduction of the seismic demand for the 

overlying layers; (iii) increased cyclic resistance of the critical layer at shallow depth due to 

partial saturation. This combination of mechanisms effectively mitigates liquefaction 

manifestation for the NN-sites. 
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3 INVESTIGATED CHRISTCHURCH SITES 

3.1 Introduction 

In the period between September 2010 and December 2011, a series of strong earthquakes 

occurred in the Canterbury region of New Zealand. Four of these earthquakes caused a 

significant seismic demand and liquefaction-induced damage in the urban area of 

Christchurch. The first in the sequence was the 4 September 2010 Mw7.1 Darfield (04Sep10) 

earthquake, which caused peak ground accelerations of about 0.20 g in most of Christchurch, 

and severe liquefaction and lateral spreading along the Avon River (Cubrinovski et al. 2010). 

Fig. 3.1a shows areas of liquefaction-induced land damage in the 04Sep10 earthquake, where 

solid symbols indicate the locations of the 55 sites, which are subject of this thesis. An 

equivalent liquefaction-induced land damage map for the most destructive 22 February 2011 

Mw6.2 Christchurch (22Feb11) earthquake is shown in Fig. 3.1b. As the source of this event 

was practically within the city boundaries (along the southeast perimeter of the city), it 

generated more severe ground motions and triggered more extensive liquefaction in the 

eastern suburbs of Christchurch. In this event, the peak ground accelerations were generally in 

the range from 0.35 g to 0.55 g in the areas affected by widespread liquefaction. Again, the 

most severe liquefaction and lateral spreading were manifested along the Avon River 

(Cubrinovski et al. 2011, Cubrinovski and Robinson 2016).  

At each of the 55 sites, detailed assessment of land damage was conducted by Tonkin&Taylor 

engineers using field inspections, observations from aerial photography, and estimates of 

settlement (subsidence) based on pre- and post-earthquake LiDAR surveys. The severity of 

liquefaction manifestation at the 55 sites during the 04Sep10 and 22Feb11 earthquakes varied 

from no liquefaction manifestation at the ground surface to very severe liquefaction, in which 

case a large area of the site was covered by thick soil ejecta.  

Bases on the observed liquefaction manifestation, the 55 sites were herein classified into three 

groups for the purpose of an initial screening analysis: (i) sites that manifested liquefaction 

(soil ejecta) in both the 04Sep10 and 22Feb11 earthquakes (YY-cases, shown with red 

symbols in Fig. 3.1); (ii) sites that did not manifest liquefaction in the 04Sep10 earthquake but 

manifested liquefaction in the 22Feb11 earthquake (NY-cases; black symbols in Fig. 3.1); 

and, (iii) sites that did not manifest liquefaction in either event (NN-cases; green symbols in 
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Fig. 3.1). Details of the liquefaction manifestation characteristics for the 55 sites are provided 

in Tables 3.1 and 3.2. 

 

 

Fig. 3.1 Locations of 55 investigated sites (circular symbols) and land damage caused by soil liquefaction 

(background colors) in (a) 04Sep10 earthquake; (b) 22Feb11 earthquake (after Cubrinovski et al. 2019) 
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Table 3.1 Geographic coordinates and liquefaction manifestation characteristics for the investigated 55 sites. 

    Liquefaction manifestation 

NZGD IDa Suburb Latitude Longitude 04Sep10 22Feb11 Classification 

21508 Avonside -43.5163 172.6713 Severe Severe YY 

44439 Avondale -43.5148 172.6785 Severe Severe YY 

21509 Avondale -43.5090 172.6837 Moderate Severe YY 

34460 Avondale -43.5088 172.6843 Severe Severe YY 

57354 Avondale -43.5081 172.6872 None Severe NY 

38758 Avondale -43.5093 172.6911 None Moderate NY 

57342 Avondale -43.5055 172.6908 None Severe NY 

29035 Avondale -43.5015 172.6851 Severe Severe YY 

36414 Avondale -43.5011 172.6861 Moderate Severe YY 

34454 Avondale -43.5015 172.6871 Moderate Severe YY 

45 Avondale -43.5028 172.6946 Minor Severe YY 

21506 Bexley -43.5102 172.7215 Minor Severe YY 

158 Bexley -43.5149 172.7247 Minor Minor YY 

175 Bexley -43.5183 172.7213 Severe Severe YY 

57349 Aranui -43.5093 172.7065 Moderate Moderate YY 

57347 Aranui -43.5108 172.7099 None Minor NY 

57348 Aranui -43.5116 172.7114 None Moderate NY 

38797 Aranui -43.5128 172.7120 Minor Severe YY 

57343 North New Brighton -43.5067 172.7214 None None NN 

38742 North New Brighton -43.5021 172.7144 None Moderate NY 

34431 North New Brighton -43.4990 172.7098 None Severe NY 

57350 North New Brighton -43.4952 172.7181 None None NN 

38752 Parklands -43.4755 172.7107 None Moderate NY 

57366 Shirley -43.5104 172.6620 None Severe NY 

57346 Shirley -43.5043 172.6607 None Minor NY 

57362 Shirley -43.5130 172.6461 None Minor NY 

a CPT identification code in New Zealand Geotechnical Database (NZGD 2020). 
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Table 3.1 Geographic coordinates and liquefaction manifestation characteristics for the investigated 55 sites 

 (Continued). 

    Liquefaction manifestation 

NZGD ID Suburb Latitude Longitude 04Sep10 22Feb11 Classification 

57341 Woolston -43.5488 172.6954 None Severe NY 

57360 Woolston -43.5513 172.6882 None Moderate NY 

57365 Hillsborough -43.5606 172.6731 None None NN 

57357 Waltham -43.5446 172.6595 None Severe NY 

57356 Waltham -43.5432 172.6576 None Severe NY 

57355 Sydenham -43.5472 172.6375 None Minor NY 

57353 St Martins -43.5568 172.6522 None Severe NY 

638 Somerfield -43.5605 172.6307 None Minor NY 

37818 Spreydon -43.5540 172.6175 None Minor NY 

57344 Hoon Hay -43.5658 172.6085 Minor Severe YY 

57340 Hoon Hay -43.5715 172.6080 None Minor NY 

36417 Hoon Hay -43.5636 172.6019 None None NN 

36421 Hoon Hay -43.5726 172.6081 None None NN 

57364 Hoon Hay -43.5562 172.5933 None Moderate NY 

57352 Halswell -43.5701 172.5639 None None NN 

36419 Halswell -43.5797 172.5487 None None NN 

57319 Riccarton -43.5361 172.5976 None None NN 

57337 Riccarton -43.5344 172.5903 None None NN 

36418 Riccarton -43.5321 172.5905 None None NN 

57345 Riccarton -43.5299 172.5921 None None NN 

36420 Riccarton -43.5298 172.6037 None None NN 

5567 Fendalton -43.5207 172.6033 None None NN 

57358 St Albans -43.5072 172.6291 None Minor NY 

57359 Papanui -43.5106 172.6149 Moderate Severe YY 

57363 Merivale -43.5061 172.6157 None Moderate NY 

57361 Papanui -43.5000 172.6101 None None NN 

57339 Papanui -43.4921 172.6193 None None NN 

57351 Papanui -43.4945 172.6015 None None NN 

57338 Papanui -43.4922 172.6049 None None NN 
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Most of the sites (32 of 38 sites) that liquefied in the 22Feb11 earthquake manifest 

liquefaction in the subsequent 13 June 2011 Mw6.0 earthquake, and some of these sites also 

re-liquefied during the last in the sequence 23 December 2011 Mw5.9 earthquake. To 

eliminate some of the complexities associated with re-liquefaction, this research focuses on 

the performance of the sites during the first two events. It is worth emphasizing that the 17 

NN-sites did not manifest liquefaction in any event during the CES (2010–2011 earthquakes). 

 

Table 3.2 Summary of liquefaction manifestation at the 55 sites during the 04Sep10 and 22Feb11 Canterbury 

earthquakes. 

Earthquake Liquefaction manifestation 

YY (15 sites) NY (23 sites) NN (17 sites) 

04Sep10 Yes No No 

22Feb11 Yes Yes No 

 

 

In this chapter, similarities and differences between soil deposits that exhibited liquefaction in 

both earthquakes (YY-cases) and those deposits where no liquefaction manifestation was 

observed in either event (NN-cases) are examined. To avoid additional complexities in the 

interpretation, the intermediate NY-cases have been left out from the initial screening analysis 

of this chapter. Characteristics of the near-surface geology and geomorphology of 

Christchurch are discussed first, followed by a description of the performed geotechnical 

investigations at the 55 sites, and, finally, a comprehensive scrutiny of the soil profile 

characteristics of the YY-sites and NN-sites.  

 

3.2 Near-surface Geology and Geomorphology 

Christchurch is primarily situated upon a low relief, alluvial landscape, on the east coast of 

New Zealand’s South Island. Its subsurface is characterized by a complex interbedded 

structure of Quaternary formations, resulting from fluvial deposition of rivers flowing 

eastward from the foothills of the Southern Alps (i.e. the mountain range of the South Island), 

and marine sediments deposited in times of marine transgression (Brown and Weeber 1992). 

Near-surface soils consist of alluvial sands, silts, and drained peat swamps (Springston 

formation), interlayered with beach, estuarine, lagoonal, dune, and coastal swamp deposits 

comprising gravel, sand, clay, shell, and peat (Christchurch formation). The spatial variation 

of these near-surface soils is illustrated in the geological map of Fig. 3.2. A schematic east-

west shallow geological cross-section is presented in Fig. 3.3.  



Chapter 3. Investigated Sites 

 32 

Considering their composition, age, and depositional environment, the near-surface 

Christchurch soils are considered highly susceptible to liquefaction, and in some cases (when 

deposited in a loose state) they may exhibit very low liquefaction resistance (Cubrinovski and 

McCahon 2011). As illustrated in Fig. 3.3, these soft surface deposits have a thickness that 

vary across the city, between about 10 and 40 m, and overlie the denser Riccarton Gravel. The 

latter is the uppermost gravel of a thick sequence (~ 500 m thickness in CBD) of interlayered 

formations of gravels and fine-grained soils of an older age. The water table throughout most 

of urban Christchurch is shallow, from about 1 to 3 m depth from the ground surface, 

meaning, mostly, high degrees of saturation in the liquefiable soils below these depths. 

 

 

Fig. 3.2 Geological map of Christhurch (modified after Brown and Weeber 1992). Black dots indicate the 

locations of the 55 investigated sites.  

 

 

3.3 Geotechnical Characterization 

At the time of the 2010–2011 Canterbury earthquakes, little was known about the details and 

spatial characteristics of the soil stratigraphy, besides the general geological features 

described in the previous section. In the succeeding years, extensive geotechnical 
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investigations were undertaken including a vast number of CPTs (van Ballegooy et al. 2014, 

NZGD 2020) and exploratory soil borings, and also numerous geophysical surveys, 

piezometer measurements, and laboratory tests on retrieved soil samples (Stringer et al. 2015, 

Taylor 2015, Beyzaei et al. 2018, Markham et al. 2018). The ’55 sites’ is a subset of high-

quality field investigation data including CPTs and high-resolution (at 200 mm intervals) 

compression wave and shear wave velocity (𝑉𝑝 and 𝑉𝑠 respectively) measurements obtained 

using the direct-push cross-hole technique (Cox et al. 2018). A large number of disturbed 

samples were recovered from target soils/layers of selected sites for index testing in the 

laboratory to determine the grain-size distribution, fines content, and plasticity of fines. At 

each of the 55 sites, borehole data are also available, at a close but non-intrusive distance 

from the locations of CPT and cross-hole testing. The above site investigation data for the 55 

sites can be openly accessed on the New Zealand Geotechnical Database (NZGD 2020) using 

the CPT ID numbers and coordinates provided in Table 3.1. CPT and 𝑉𝑝 data for the top 11 m 

of the subsurface profiles of the 55 sites are also provided in Appendices A & D of this 

dissertation. 

 

 

Fig. 3.3 Schematic east-west geological cross section of Christchurch, indicating the thickness of surface soils 

(depth to Riccarton Gravel) and depth to groundwater table (modified after Cubrinovski et al. 2010). 

 

 

3.4 Simplified Soil Profiles 

Simplified soil profiles were determined for each of the 55 sites primarily based on the CPT 

data (Appendix A). Two principal advantages of CPT over other in-situ tests are that it 

provides a practically continuous record of the penetration resistance throughout depth, and 

that it allows to infer the soil profile from empirical correlations between soil (behaviour) 

types and the various CPT measurements. In this study, simplified soil profiles were 

determined by first identifying depth intervals over which the normalized overburden 

corrected cone tip resistance (𝑞𝑐1𝑁) and the soil behaviour type index (𝐼𝑐) can be 
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approximated by constant values, as illustrated in Figs. 3.4b and 3.4c for a site in Papanui 

(northwest Christchurch). On this basis, distinct soil layers with representative 𝑞𝑐1𝑁 and 𝐼𝑐 

values were defined. The layers were then classified based on the 𝐼𝑐 value into soil behaviour 

type associated with: coarse sands and gravelly soils (𝐼𝑐 ≤ 1.3), sandy silts and non-plastic 

silts (1.3 < 𝐼𝑐 ≤ 1.8), sands with small amount of fines (1.8 < 𝐼𝑐 ≤ 2.1), sandy silts and non-

plastic silts (2.1 < 𝐼𝑐 ≤ 2.6), and non-liquefiable silt/clayey/peat soils (𝐼𝑐 > 2.6). By and 

large, the soil behaviour types inferred from the CPT data, using the above (approximate) 𝐼𝑐 

boundaries separating soil behaviour type, were consistent with the respective borehole data, 

as indicated in Figs. 3.4a and 3.4b for the example Papanui site. The average 𝑉𝑠 and 𝑉𝑝 values 

within each layer of the simplified profiles were also noted. The 𝑉𝑝 profiles were used as a 

principal indicator for the level of saturation throughout the depth of the deposits in 

conjunction with a detailed groundwater table model for Christchurch (van Ballegooy et al. 

2014). As indicated in Fig. 3.4e, partially saturated soils with 𝑉𝑝 values substantially lower 

than 1500 m/s were often encountered at large depths, up to 5-6 m below the groundwater 

table, particularly at highly stratified sites with interbedded liquefiable and non-liquefiable 

soil layers (Fig. 3.4b).  

 

Fig. 3.4 Determination of a simplified soil profile for a Papanui site: (a) visual (USCS) soil classification based 

on borehole data; (b) 𝐼𝑐 values and 𝐼𝑐-based classification of soil behaviour type; (c) 𝑞𝑐1𝑁 values; (d) 𝑉𝑠 values; 

and, (e) 𝑉𝑝 values. 
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Careful inspection of the CPT data and thereafter determination of a simplified soil profile, as 

above, allow for rigorous soil profile scrutiny and interpretation in various aspects of 

liquefaction assessment, including identification and characterization of critical layers in the 

deposit, identification of potential system-response effects, and also consideration of different 

levels of uncertainties in the estimates of the cyclic resistance associated with varying quality 

of material and behavioural characterization of different soil types (Cubrinovski 2019). The 

importance of this latter point can be elucidated if one considers, for example, the fact that in 

the simplified procedures, a significant adjustment of the measured penetration resistance 

(and consequently, cyclic resistance) is prescribed for soils other than clean sands, based 

solely on the highly uncertain fines content of these soils.  

 

3.5 Critical Layers and Evaluation of Damage Indices 

Current semi-empirical liquefaction triggering procedures have been developed based on case 

histories of liquefaction manifestation in which 𝐶𝑆𝑅 − 𝑞𝑐 pairs (in the case of CPT-based 

procedures) were identified for each case history (site). The 𝐶𝑆𝑅 − 𝑞𝑐 pairs at each site 

represent the values of the seismic demand (load) and penetration resistance for the critical 

layer that was considered responsible for the liquefaction manifestation at the site. In effect, 

the critical layer can be seen as the layer that is most likely to trigger and manifest 

liquefaction at the ground surface of a given site.  

With this background in mind, triggering analyses were performed for the 04Sep10 and 

22Feb11 earthquakes using the Boulanger and Idriss (2014) liquefaction triggering procedure 

to identify the critical layers for each of the 55 sites. In the analyses, equivalent clean sand 

penetration resistances (𝑞𝑐1𝑁𝑐𝑠) were derived using the respective adjustments for fines 

content specified in Boulanger and Idriss (2014), with the fines content (𝐹𝐶) inferred from the 

default correlation between 𝐼𝑐 and 𝐹𝐶 provided therein. Estimates of the conditional 𝑃𝐺𝐴 at 

each site were made using the methodology outlined in Bradley (2014) (see Fig. 3.1 for 

estimated median 𝑃𝐺𝐴 contours across Christchurch). Factors of safety against liquefaction 

triggering (𝐹𝑆𝐿) were computed throughout depth, for the top 10 m of the deposits. 

Subsequently, maximum shear strains, post-liquefaction volumetric strains, and liquefaction 

damage indices, 𝐿𝑃𝐼 and 𝐿𝑆𝑁, were estimated for each site and each earthquake. Typical 

results of such analyses are shown for the Papanui site and the 22Feb11 earthquake in Fig. 

3.5. There are several layers at which liquefaction triggering is predicted at this site. The 

shallowest layer from 1.5 to 2.7 m depth appears to be the most likely critical layer from a 

liquefaction manifestation viewpoint, because it is 1.2 m thick, with low factor of safety, and 

very close to the ground surface (1.5 m depth). The second candidate layer is at depth from 5 

to 6 m, it has slightly lower factor of safety, but it is much deeper and it is also overlaid by a 

thick non-liquefiable soil layer, and therefore its manifestation at the ground surface in the 

absence of liquefaction in the shallow layer is unlikely for the CES events. For the same 

reason, the deeper layers are also eliminated as potential critical layers as they are unlikely to 
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manifest at the ground surface ahead of the shallower critical layers. Hence, in this case, the 

shallowest layer was identified as the critical layer, and the second layer at 5 m depth was 

considered as a possible alternative (contributing) critical layer. The above illustrates that the 

identification of critical layer(s) is not always straightforward, and that in addition to the 

lowest liquefaction resistance, the position of the layer within the soil profile and its thickness 

should be considered in the assessment. In that regard, liquefaction damage indices that 

combine these three features can provide guidance in the selection. As indicated in Figs. 3.5e 

and 3.5f, the largest increments in 𝐿𝑃𝐼 and 𝐿𝑆𝑁 occur within the identified critical layer(s). 

Clearly, shallow critical layers immediately below or close to the ground surface can most 

easily manifest liquefaction at the ground surface. 

 

 

Fig. 3.5 Determination of critical layer(s) for a simplified profile of a Papanui site: (a) characteristic soil 

behaviour type units; (b) 𝐼𝑐 values; (c) 𝑞𝑐1𝑁 values; (d) 𝐹𝑆𝐿 values for the 22Feb11 earthquake; and damage 

indices: (e) 𝐿𝑃𝐼; and, (f) 𝐿𝑆𝑁; potential critical layers are marked with the shading.  
 

Following the above reasoning, critical layers from a liquefaction manifestation viewpoint 

were identified for all 55 sites. For several sites, in addition to the shallowest critical layer, 

one or two additional (alternative) critical layers were also identified, which were at a greater 

depth in the deposit, but showed either similar or slightly lower liquefaction resistance than 

the principal (shallower) critical layer.  

Fig. 3.6 comparatively shows characteristics of the critical layers for the YY-sites (which 

manifested liquefaction in both earthquakes) and NN-sites (which did not manifest 
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liquefaction in either event), with box-and-whisker plots. These are weighted-average values 

for the critical layer for which the thickness of sublayers within the critical layer was used as a 

weighting factor. It is apparent that, in terms of median values there is essentially no 

difference between the critical layers of YY-sites and NN-sites. In fact, the YY-sites and NN-

sites have identical median values of their critical layers for the normalized clean-sand 

equivalent tip resistance (𝑞𝑐1𝑁𝑐𝑠 = 86), soil behaviour type (𝐼𝑐 = 2.15), and depth to top of 

the critical layer (𝑧𝐶𝐿 = 2.1 m). Hence, the dramatic difference in liquefaction manifestation 

between the YY-sites and NN-sites cannot be explained through differences in the 

characteristics of their critical layers. In both cases, the critical layer is shallow, just two 

meters below the ground surface, and has low penetration resistance (𝑞𝑐1𝑁𝑐𝑠 ≈ 86). In view of 

the governing role of the critical layer in determining the outcomes of the prediction by the 

simplified procedures, this implies that current simplified liquefaction assessment procedures 

would not be able to discriminate between the extreme difference in liquefaction 

manifestation observed at the YY-sites and NN-sites.  

 

 

Fig. 3.6 Comparative illustration of critical layer characteristics for YY-sites and NN-sites using box and 

whisker plots: (a) clean sand equivalent cone tip resistance (𝑞𝑐1𝑁𝑐𝑠) of the critical layer; (b) soil behaviour type 

index (𝐼𝑐) of the critical layer; (c) depth to top of the critical layer (𝑧𝐶𝐿).  
 

Fig. 3.7 summarizes the computed 𝐿𝑆𝑁 values in terms of box-and-whisker plots. It is evident 

from this figure that out of the 34 cases for the NN-sites (17 sites for two events), no 

occurrence or minor liquefaction is predicted for only 3 cases (9% of the cases), whereas for 

31 cases (91% of the cases) liquefaction manifestation was heavily overestimated. For most of 

the no-liquefaction manifestation sites (NN-cases) major to severe liquefaction was predicted. 

On the other hand, for the YY-sites, the simplified analyses mis-predicted the observed 

liquefaction manifestation in 47% of the cases (14 out of 30 predictions). A summary of the 

simplified analyses predictions is given in Table 3.3.  
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Fig. 3.7 Box and whisker plots summarizing results from simplified analyses in terms of estimated liquefaction 

damage index 𝐿𝑆𝑁 for YY-sites (red symbols) and NN-sites (green symbols), for the 04Sep10 and 22Feb11 

earthquakes. 

 

Detailed results from the simplified liquefaction triggering analysis and damage index 

evaluation for all 55 sites are provided in Appendix A. 

 

Table 3.3 Summary of results from simplified analysis (LSN predictions). 

𝑳𝑺𝑵-based predictiona YY (15 sites) NN (17 sites) 

Good agreement 53% 9% 

Under-estimation 27% – 

Over-estimation 20% 91% 

a Agreement between predictions and observations. 

 

 

3.6 Critical Zone and Vertical Continuity of Liquefiable Soils 

One of the key motivations behind this research was to investigate the effects of system 

response of liquefiable deposits including interactions between layers at different depths 

through the dynamic response, pore water pressure dissipation and seepage action due to 

water flow. In this context, the critical layer represents only one, albeit a significant 

component in the assessment of liquefiable deposits.  
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To examine further the characteristics of YY- and NN-deposits in relation to their potential 

for liquefaction manifestation at the ground surface, a ‘critical zone’ was also defined for each 

site. The critical zone includes the critical layer but also other layers of low resistance, which 

are vertically continuous (connected) and in contact with the critical layer(s). Fig. 3.8d 

illustrates the definition of the critical zone for a site in Avondale (eastern Christchurch). In 

this site, two critical layers have been identified (Fig. 3.8c); a shallow and thick layer from 2.6 

to 4 m, and an alternative layer at 6.1 m depth from the ground surface, which has lower 

factor of safety but it is much deeper and much thinner (only 0.4 m thick) than the shallowest 

layer. Apart from these two layers, there are several other layers with relatively low 

liquefaction resistance and factor of safety less than one for the 22Feb11 earthquake. In fact, a 

continuous critical zone of relatively low liquefaction resistance is encountered from 2.1 to 

6.9 m depth, practically connecting the shallow and deep critical layers. It is anticipated that 

the critical zone will strongly interact and essentially work as a unit (connected zone) during 

the development of liquefaction and post-liquefaction through water flow and pore water 

pressure redistribution. The development of such relatively thick and vertically connected 

liquefied zone will create conditions for severe liquefaction manifestation through high, 

continuous and vertically unconstrained excess pore water pressures, with strong upward flow 

of water towards the ground surface, and consequent soil ejecta.  

 

Fig. 3.8 Determination of critical zone and zone of liquefiable soils (by composition) for a simplified profile in 

Avondale: (a) characteristic soil behaviour type units; (b) 𝑞𝑐1𝑁𝑐𝑠 values; (c) 𝐹𝑆𝐿 profile for the 22Feb11 

earthquake and critical layers; (d) 𝐹𝑆𝐿 profile for the 22Feb11 earthquake and critical zone; (e) 𝐿𝑆𝑁 values; (f) 𝐼𝑐  

profile and zone of liquefiable material.  
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One may further develop this concept by considering not only a critical zone in the deposit 

that is anticipated to liquefy during the shaking, but also by considering the thickness and 

continuity of potentially liquefiable soils throughout the depth of the deposit. This zone of 

liquefiable materials will encompass the critical zone, but also soils above and below the 

critical zone that are liquefiable by composition. Such soils are expected to develop excess 

pore water pressures either due to cyclic shear stresses induced by the earthquake (e.g. sandy 

soils below the critical zone) or due to water flow inducing seepage-induced liquefaction in 

the shallow soils above the water table. Such zone of liquefiable soils is illustrated in Fig. 3.8f 

for the Avondale profile, where nearly all soils in the top ten meters are potentially liquefiable 

(𝐼𝑐 < 2.6). One may anticipate that liquefiable and pore pressure generating soils above and 

below the critical zone could further exacerbate liquefaction effects and make liquefaction 

manifestation at the ground surface even more severe. 

Figs. 3.9a, 3.9b, and 3.9c comparatively show the thickness of the critical zone, cumulative 

thickness of sand layers with 𝐼𝑐 ≤ 1.8, and cumulative thickness of liquefiable soils (𝐼𝑐 <

2.6), respectively, for the YY-sites and NN-sites. Unlike the identical characteristics of their 

critical layers, there are clear differences between the YY-sites and NN-sites with regard to 

these overall deposit characteristics. While the median value for the thickness of the critical 

zone of the YY-sites is only slightly larger than the respective thickness of the NN-sites, 

about 40% of the YY-sites have nearly double thickness of the critical zone. Moreover, the 

majority of the sites that liquefied in both earthquakes (YY-sites) have a vertically continuous 

zone of liquefiable materials in the top 10 m of the deposit, of which about 6 m (on average) 

consists of clean sands. The respective thickness of the liquefiable materials for NN-sites is 

50% smaller with a median value of approximately 5 m cumulative thickness of liquefiable 

soils, and cumulative clean sand thickness of only 1.2 m in the top 10 m of the deposit. 

Importantly, at the NN-sites the liquefiable layers are vertically discontinuous, interrupted by 

(sandwiched between) non-liquefiable soils, and capped by a non-liquefiable crust.  

 

Fig. 3.9 Comparison of deposit characteristics of YY- and NN-sites: (a) thickness of a continuous critical zone 

(𝐻𝐶𝑍); (b) cumulative thickness of sand layers with 𝐼𝑐 ≤ 1.8 (𝐻𝐼𝑐≤1.8); (c) cumulative thickness of liquefiable 

materials (𝐻𝐼𝑐<2.6). 
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3.7 Partially saturated soils 

The 𝑉𝑝 measurements from the high-resolution cross-hole testing provide important 

observations with regard to the degree of saturation of soils and deposits (Appendix D). Fig. 

3.10 comparatively shows the distribution of the compressional velocities of the critical layers 

for the YY-sites and NN-sites in terms of box-and-whisker plots. It can be seen that a 

considerable portion of the critical layers, more than 25%, for both the YY-sites and the NN-

sites have compressional velocities associated with partial saturation (substantially lower than 

1500 m/s). No significant differences can be observed between the YY-sites and the NN-sites, 

with respect to the saturation conditions of their critical layers. Fig. 3.11 illustrates plots of 𝑉𝑝 

versus depth from the groundwater table for layers from all 55 sites, classified based on their 

soil behaviour type. The moving median, 25th and 75th percentile 𝑉𝑝’s with a sliding (across 

depth) window of 2 m are also shown in this figure. There is a clear distinction in the 

saturation conditions among the various soil types: (i) non-liquefiable soils show 

compressional velocities consistent with partial saturation up to depths of 6 m below the 

groundwater table; (ii) silty soils also show large propensity for partial saturation, with a 

substantial portion of such soils showing partial saturation at depths within 3-5 m from the 

water table; (iii) sands predominantly show full saturation, except for a shallow portion of 

about 1 m immediately below the water table. The above imply that NN-deposits, which are 

largely composed of non-liquefiable soils and non-plastic or low-plasticity silts (Fig. 3.9), 

could actually be partially saturated over a substantial depth below the water table. Fig. 3.12 

comparatively shows the variation of 𝑉𝑝 with depth from the groundwater table for the 

liquefiable soil layers (𝐼𝑐 ≤ 2.6) of the YY- and NN-sites. As expected, a considerable portion 

of the liquefiable soils of the NN-deposits is partially saturated, with 𝑉𝑝 less than 1000 m/s up 

to a depth of about 4 m below the groundwater table. At the YY-sites, partial saturation is 

largely confined within the first meter from the water table. 

 

 

Fig. 3.10 Comparison of the compressional wave velocities of the critical layer (𝑉𝑝,𝐶𝐿) for YY-sites and NN-sites 

using box and whisker plots. 
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Fig. 3.11 𝑉𝑝 versus depth below groundwater table for the layers of the simplified profiles of the 55 sites, 

classified by their corresponding soil behaviour type. The thick continuous lines and the shaded areas represent 

the moving median and interquartile range of the data across depth, respectively. 
 

 

 

Fig. 3.12 Comparative illustration of 𝑉𝑝 versus depth below groundwater table for the layers of the simplified 

profiles of the YY-sites and NN-sites. The thick continuous lines and the shaded areas represent the moving 

median and interquartile range of the data across depth, respectively. 
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Partial saturation is known to increase the liquefaction resistance due to an increased 

compressibility of the soil skeleton and consequent reduction in pore pressure generation 

during cyclic loading (e.g. Tsukamoto et al. 2002). Laboratory testing of Christchurch soils 

has indicated that a substantial increase in the cyclic resistance of partially saturated silty soils 

can, in fact, be achieved at higher compressional velocities than those required to reach the 

same levels of increase in clean sands (Baki et al. 2020). Therefore, not only the NN-deposits 

are often partially saturated over relatively large depths from the water table, but the 

beneficial effects of partial saturation on the cyclic resistance of the (predominant) silty soils 

in such deposits can be very significant.  

 

3.8 Summary     

There are essentially no differences in the characteristics of the critical layers between the 

sites that manifested liquefaction in both earthquakes (YY-sites) and the sites that did not 

manifest liquefaction in either event (NN-sites). For both YY- and NN-sites, the critical layer 

has low tip resistance (𝑞𝑐1𝑁𝑐𝑠 ≈ 85) and is located at shallow depth of approximately 2 m 

below the ground surface. Therefore, simplified triggering analyses and evaluation of damage 

indices were not able to discriminate between the vast difference in the (liquefaction) 

performance of the YY-sites and NN-sites. 

The YY-sites and NN-sites have important differences with regard to their deposit 

characteristics. 

The YY-sites are generally characterized by vertically continuous liquefiable soils in the top 

10 m and shallow water table at about 2 m depth. These deposits are typically composed of a 

shallow silty sand or sandy silt layer in the top 2 – 3 m, overlying a vertically continuous 7 – 

8 m thick sand or fine sand layer up to 10 m depth. Partial saturation, when present at soils 

below the groundwater table, is typically confined within the top 1 m from the water table. 

The vertical continuity of liquefiable sands, absence of non-liquefiable layers, including 

absence of a non-liquefiable crust, are key features of the YY-sites, which manifested 

liquefaction in both earthquakes. A characteristic soil profile for a YY-site is shown in Fig. 

13a.  

The NN-sites, on the other hand, are highly stratified deposits consisting of interbedded 

liquefiable and non-liquefiable soils. A crust of non-liquefiable soil, shallow water table at 

about 1 to 2 m depth, partial saturation of plastic and non-plastic silt layers up to a depth of 

about 4 m below the groundwater table, horizontal ‘grid’ of non-liquefiable layers and vertical 

discontinuity of liquefiable soils are key features of the NN-sites, which did not manifest 

liquefaction in either earthquake. Fig. 13b shows a typical soil profile for an NN-site.  
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Fig. 3.13 General characteristics of the top 10 m of the YY- and NN-deposits: (a) characteristic soil units, 𝑞𝑐 and 

𝑉𝑝 values for a typical YY-profile (manifested liquefaction in both major earthquakes); and (b) characteristic soil 

units, 𝑞𝑐 and 𝑉𝑝 values for a typical NN-profile (did not manifest liquefaction in either event). 

 

The intermediate NY-sites (not discussed in this chapter) have highly varying soil profile 

characteristics, somewhere between those of the NN- and YY-deposits, and their response is 

highly demand-dependent. Characteristic features of the NY-deposits and their effects on the 

system response and liquefaction manifestation are rigorously examined in Chapter 7 using 

the results of seismic effective stress analyses.  
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4 EFFECTIVE STRESS ANALYSIS PROCEDURE 

4.1 Introduction 

As part of this research, a CPT-based effective stress analysis procedure was developed for 

analyzing the responses of the 55 Christchurch sites in a consistent and practical manner that 

would also allow for rigorous comparisons with the predictions by the simplified procedures. 

Besides serving the specific objectives of this study, the developed analysis procedure can be 

seen as a generalized CPT-based 1D effective stress analysis procedure for the liquefaction 

assessment of free-field level ground. One of the key objectives in mind when developing the 

proposed procedure was to facilitate the application of advanced seismic effective stress 

analysis allowing for easy calibration and minimizing the required input and modelling 

decisions from the user. In that regard, a key characteristic of the proposed procedure is that it 

has been automated in a way that it requires the same input data and uses the same definition 

of liquefaction resistance as the simplified CPT-based liquefaction assessment procedures. 

These features of the proposed procedure significantly facilitate its application into practice, 

and also provide a basis for rigorous comparisons of the outcomes of effective-stress analyses 

and simplified procedures.  

The following key steps of the proposed effective-stress analysis procedure are described in 

this chapter. 

(1) Determination of a simplified soil profile from CPT data,  

(2) Determination of characteristic soil behaviour and associated constitutive model 

parameters for liquefiable soil layers,  

(3) Determination of constitutive model parameters for non-liquefiable soil layers,  

(4) Definition of input ground motion(s), and  

(5) Definition of numerical model and analysis parameters.  

In the first step, the nearly continuous CPT profile is discretized into a number of distinct 

layers or depth intervals over which the CPT data can be approximated by constant values. As 

illustrated in the previous chapter, this soil profile ‘simplification’ assists in the identification 

of characteristic layers in the deposit, and allows for more rigorous engineering scrutiny and 

interpretation. Steps 2 and 3 involve the definition of a target soil behaviour and the 
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subsequent determination of constitutive model parameters that can simulate this target 

behaviour. For liquefiable soils, the main objective is to accurately simulate the cyclic 

(liquefaction) resistance for a range of soil densities, confining stresses and number of loading 

cycles of interest. The target liquefaction resistance is determined using the simplified 

procedure for liquefaction triggering based on empirical CPT charts (e.g. Fig. 2.7). For non-

liquefiable soils, the target cyclic stress-strain relationship is defined using strain-dependent 

modulus reduction and damping ratio curves, commonly employed in ground response 

analyses. In the fourth step, the input ground motion is defined. For forward applications, an 

automated ground motion selection algorithm is recommended for selecting ground motions 

representative of the seismic hazard and earthquake scenarios of interest. For back-analyses of 

case-history sites (forensic analyses), a comprehensive discussion on the selection and 

modification of within-event recorded ground motions is provided in the next chapter. In the 

final step of the procedure, the numerical model is defined by selecting appropriate model 

dimensions, mesh (element) size, boundary conditions, and initial stress state of the soil. Also, 

analysis parameters such as computational time increment, integration scheme and numerical 

damping are adopted, and the dynamic effective-stress analysis is then executed. Fig. 4.1 

summarizes the key steps in the proposed CPT-based effective-stress analysis procedure. 

 

 

Fig. 4.1 Key steps in the proposed CPT-based effective stress analysis procedure. 

 

 

4.2 Determination of Simplified Soil Profile (Step 1) 

The determination of a simplified soil profile from the CPT data was thoroughly discussed in 

the previous chapter. The soil profile simplification allowed for rigorous analyses of the soil 

profile characteristics of the 55 sites, which led to important findings regarding the 
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differences in the deposit characteristics between sites that manifested liquefaction in both the 

two major earthquakes of the 2010-2011 CES (YY-sites), and sites that did not manifest 

liquefaction in any of the events (NN-sites). Clearly, this process can substantially enhance 

the engineering interpretation of the overall site characteristics and facilitate the identification 

of potential system-response mechanisms. Furthermore, the determination of a simplified soil 

profile is essential for the numerical model, where the problem domain, the soil deposit in this 

case, needs to be discretized into an assemblage of finite elements with specific model 

properties and constitutive behaviour.  

Determining a simplified profile from the original CPT traces can, however, be quite tedious, 

particularly when a large number of CPT profiles has to be processed. Several approaches for 

automating this process have been proposed in the literature (e.g. Wang et al. 2013, Ching et 

al. 2015). For the purposes of this study, a more practical, yet efficient algorithm for 

automating the determination of simplified CPT profiles was developed and is discussed in 

the following. 

4.2.1 CPT profile discretization algorithm 

Key requirements in the layering definition for liquefaction assessment are that the 

discretization is fine enough to allow detection of thin seams of liquefiable soils and that the 

𝐼𝑐 and 𝑞𝑐1𝑁𝑐𝑠 values (which determine the soil behaviour type and liquefaction resistance, 

respectively) of the simplified profile are as close as possible to the actual CPT traces. These 

were the two key considerations in the development of the algorithm described in the flow 

chart and side notes of Fig. 4.2.  

More specifically, the main goal of the developed algorithm is to identify a simplified profile 

with 𝐼𝑐 and 𝑞𝑐1𝑁𝑐𝑠 step-functions of depth (i.e. piecewise constant), denoted as 𝐼�̅� and �̅�𝑐1𝑁𝑐𝑠, 

respectively, that minimize the dispersion of the actual 𝐼𝑐 and 𝑞𝑐1𝑁𝑐𝑠 data around them. Apart 

from the actual 𝐼𝑐 and 𝑞𝑐1𝑁𝑐𝑠 traces of the CPT, the algorithm requires four input parameters: 

the maximum tolerable coefficients of variation for 𝐼𝑐 and 𝑞𝑐1𝑁𝑐𝑠 within each layer, denoted 

as 𝐶𝑉𝐼𝑐 and 𝐶𝑉𝑞𝑐1𝑁𝑐𝑠, respectively, and the minimum (𝑇𝑚𝑖𝑛) and maximum layer thicknesses 

(𝑇𝑚𝑎𝑥) for the simplified profile. Indicative values for the input parameters are given in the 

flow chart of Fig. 4.2. After inspection of the output of the algorithm (i.e. generated simplified 

profile), these parameters can be adjusted accordingly if a finer or coarser layering is desired 

for the analysis.  
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Fig. 4.2 Flow chart and sidenotes describing the main steps and details of the algorithm for determination of 

simplified soil profiles from CPT data. 
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To assess its effectiveness in determining simplified soil profiles for actual soil deposits, the 

algorithm described in Fig. 4.2 was applied to the 55 Christchurch sites. After a positive 

visual inspection of the obtained simplified profiles for each site, triggering analyses and 

evaluation of liquefaction damage indices (𝐿𝑆𝑁 and 𝐿𝑃𝐼) were performed using both the 

simplified (𝐼�̅� and �̅�𝑐1𝑁𝑐𝑠) and the actual (𝐼𝑐 and 𝑞𝑐1𝑁𝑐𝑠) profiles, for the 04Sep10 and 

22Feb11 earthquakes (i.e. two different combinations of peak ground surface acceleration and 

earthquake magnitude for each site). Results from all analyses for the simplified and actual 

profiles are comparatively shown in Fig. 4.3, in terms of 𝐿𝑃𝐼 (Fig. 4.3a) and 𝐿𝑆𝑁 (Fig. 4.3b). 

The vast majority of the computed damage indices in these plots fall on or close to the 1:1 line 

indicating that the estimated liquefaction performance from the analyses using the simplified 

profiles is consistent with the results of the analyses with the original profiles. This validates 

the use of the proposed algorithm for determination of a representative simplified CPT soil 

profile for liquefaction analysis. That being said, it is important to emphasize that the 

proposed algorithm is intended to assist users and not replace their engineering judgement in 

determining a simplified profile. In particular, prediction of fictitious layers at layer interfaces 

is not uncommon in these automated procedures, and so the user must always review the 

output and make adjustments when deemed necessary. The use of automated procedures for 

correcting CPT data for thin-layer and transition zone effects (e.g. Boulanger and DeJong 

2018) prior to the application of the algorithm can significantly help to avoid such issues. 

 

Fig. 4.3 Comparison between damage index predictions using the actual and simplified profiles for the 55 

Christchurch sites: (a) 𝐿𝑃𝐼 values, (b) 𝐿𝑆𝑁 values.  
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The automated algorithm for the discretization of CPT profiles was used in the development 

of simplified soil profiles for the 55 Christchurch sites, in conjunction with an interface 

(transition zone) detection and correction algorithm, as per Boulanger and DeJong (2018). 

Adjustments were made when necessary. The adopted simplified profiles for all 55 sites are 

illustrated in Appendix A.  

 

4.3 Modelling of Liquefiable Soils (Step 2) 

4.3.1 Stress-Density Model  

An elastic-plastic constitutive model, called the Stress-Density Model (S-D Model) 

(Cubrinovski and Ishihara 1998a, 1998b) which was specifically tailored for analysis of 

liquefaction problems, is employed in the effective-stress analysis. Key assumptions in the 

elastic-plastic formulation of the S-D Model are: (i) continuous yielding or vanishing elastic 

region, (ii) combined isotropic and kinematic hardening plasticity, (iii) dependence of the 

plastic strain increment direction on the stress increment direction (hypoplasticity), (iv) 

modified hyperbolic stress-strain relationship, and (v) an energy based stress-dilatancy 

relationship. In terms of soil behaviour, this translates into a capability of the model to 

accurately simulate highly nonlinear stress-strain behaviour both under monotonic loading 

(from small strains to large strains or steady state of deformation) and irregular cyclic loading.  

Another major feature of the S-D Model is that it utilizes the state-concept approach for 

modelling the combined effects of density and confining stress on stress-strain behaviour of 

sand. In this context, there are two key elements in the model.  

First, the state index (𝐼𝑠) proposed by Ishihara (1993) and Verdugo (1992) is used as a key 

variable in the model controlling the stress-strain behaviour of sand as a function of the 

density and confining stress state of the soil. The definition of 𝐼𝑠 for a sand at an initial void 

ratio 𝑒 and mean normal stress 𝑝′ is schematically illustrated in Fig. 4.4. Two characteristic 

states of sand are employed in its definition, i.e. the quasi steady state (QSS-line) and an 

upper reference state (UR-line). The quasi steady state represents a particular case of phase 

transformation, and occurs following a temporary drop in the shear stress upon undrained 

shearing of loose sands. An advantage of using the QSS-line in the definition of 𝐼𝑠 is that it 

incorporates the effects of fabric of packing, however, because the quasi steady state if often 

difficult to attain in practice, the fabric-independent steady state line (SS-line) is commonly 

used, instead of the QSS-line, to define 𝐼𝑠 in the S-D Model. The UR-line is associated either 

with the threshold void ratio 𝑒0 above which the initial states lead to a zero strength at the 

steady state upon undrained shearing, or with the isotropic consolidation line for the loosest 

state. By definition, 𝐼𝑠 takes values of 1.0 for initial 𝑒 − 𝑝′ states on the QSS-line (or SS-line) 

and 0 for initial 𝑒 − 𝑝′ states on the UR-line.  
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Second, the state index is employed in the model as a current variable rather than an initial 

state parameter. In other words, the stiffness and peak strength of the sand (and, consequently, 

the stress-strain curve) are dependent on the current value of 𝐼𝑠 (i.e. current density and 

normal stress level, at each loading step). This feature of the S-D Model permits modelling of 

strain-softening (or strain-hardening) behaviour for loose (or dense) sands and provides an 

elegant mechanism for modelling complex post-liquefaction phenomena including significant 

change in density/volume such as void redistribution. Importantly, the behaviour of a given 

sand at any density and confining stress can be simulated using the same set of material 

parameters.  

 

 

Fig. 4.4 Definition of state index 𝐼𝑠 for a current state of mean normal stress 𝑝′ and void ratio 𝑒. 
 

The S-D Model has been extensively verified through rigorous simulations of down-hole 

array records at liquefaction sites, seismic centrifuge tests, large-scale shake table tests and 

numerous case histories (e.g. Cubrinovski et al. 2008). The model has been implemented in 

the finite element code DIANA-J and also in an in-house design code of Taisei Corporation 

(Japan), and is currently at the final stage of its verification in FLAC2D and OpenSees. 

4.3.2 Liquefaction resistance 

For liquefaction problems, the key requirement from the constitutive model is to accurately 

simulate the development of excess pore water pressures under irregular cyclic loading 

(earthquake excitation). This ability needs to be demonstrated through a simulation of target 

liquefaction resistance curves in element test simulations. 
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Liquefaction resistance curves (LRCs) represent the combination of shear stress amplitude 

(𝐶𝑆𝑅) and number of cycles (𝑁𝑐) required to cause liquefaction or a certain level of strain in 

the soil, e.g. 3%, 5% or 7.5% double amplitude strain. They are typically expressed as 𝐶𝑆𝑅 −

𝑁𝑐 relationships and are used as a key soil property in the calibration of constitutive models 

for effective-stress analysis. LRCs are commonly derived from a series of liquefaction tests 

on soil samples in the laboratory in which samples of ‘identical’ (or similar) density are 

subjected to cyclic shear stresses of uniform amplitude under undrained conditions. Each 

sample is tested at a different cyclic stress ratio in order to establish the LRC across various 

𝐶𝑆𝑅𝑠 or over a range of approximately 𝑁𝑐 = 1 − 30 cycles, which is the most relevant 

number of cycles for earthquake loading. In this way, multiple sets of LRCs can be derived 

using target soil samples for all different soil types (i.e. soils with different grain-size 

distribution, fines content, grain shape, mineralogy, etc.) present at the site of interest by 

testing each soil at different densities and confining stresses. 

In the absence of experimental data and for generic applications, LRCs can be alternatively 

derived by directly following conventional procedures for liquefaction evaluation based on 

empirical liquefaction triggering charts. This alternative approach treats each different soil 

type as an equivalent clean sand, using a single set of LRCs for the relevant range of densities 

and confining stresses of interest. In the present study, the Boulanger and Idriss (2014) CPT-

based liquefaction triggering procedure was used to determine a set of representative LRCs 

through the following steps:  

1) For a given 𝑞𝑐1𝑁𝑐𝑠 value, the cyclic resistance ratio 𝐶𝑅𝑅 corresponding to earthquake 

magnitude 𝑀𝑤 = 7.5 and effective overburden stress of 𝜎′𝑣𝑜 = 100 kPa is estimated 

using Eq. 4-1: 

𝐶𝑅𝑅𝑀=7.5,𝜎′𝑣𝑜=1 = exp [
𝑞𝑐1𝑁𝑐𝑠

113
+ (

𝑞𝑐1𝑁𝑐𝑠

1000
)
2

− (
𝑞𝑐1𝑁𝑐𝑠

140
)
3

+ (
𝑞𝑐1𝑁𝑐𝑠

137
)
4

− 2.80]      (4-1) 

2) The maximum value of the magnitude scaling factor (𝑀𝑆𝐹𝑚𝑎𝑥) is estimated using Eq. 4-2: 

𝑀𝑆𝐹𝑚𝑎𝑥 = 1.09 + (
𝑞𝑐1𝑁𝑐𝑠

180
)
3

≤ 2.2                              (4-2) 

3) The 𝑏 value describing the slope of the LRC in the 𝐶𝑆𝑅 − 𝑁𝑐 space is computed from 

𝑀𝑆𝐹𝑚𝑎𝑥 using Eq. 4-3: 

𝑏 = 𝑐0 + 𝑐1(𝑀𝑆𝐹𝑚𝑎𝑥) + 𝑐2(𝑀𝑆𝐹𝑚𝑎𝑥)
2 + 𝑐3(𝑀𝑆𝐹𝑚𝑎𝑥)

3 + 𝑐4(𝑀𝑆𝐹𝑚𝑎𝑥)
4         (4-3) 

where 𝑐0 = −3.0176, 𝑐1 = 7.0217, 𝑐2 = −5.7685, 𝑐3 = 2.152 and 𝑐4 = −0.3.  

Eq. 4-3 provides an approximate expression of the 𝑀𝑆𝐹𝑚𝑎𝑥 − 𝑏 relationship presented in 

Fig. A.16 of Boulanger and Idriss (2014). 

4) The number of equivalent cycles corresponding to earthquake magnitude 𝑀𝑤 = 7.5 

(𝑁𝑀=7.5) is then estimated using Eqs. 4-4 and 4-5:  
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𝑁𝑀=7.5 = 𝑁𝑚𝑖𝑛 · (𝑀𝑆𝐹𝑚𝑎𝑥)
1

𝑏                                              (4-4) 

where 

𝑁𝑚𝑖𝑛 = (
1.0

0.65
)

1

𝑏
(
3

4
)                                  (4-5) 

5) Next, for a given effective overburden stress 𝜎′𝑣𝑜, the overburden stress correction factor 

𝐾𝜎 is estimated using Eqs. 4-6 and 4-7: 

𝐾𝜎 = 1 − 𝐶𝜎ln (
𝜎′𝑣𝑜

𝑃𝑎
)                                                     (4-6) 

where 𝑃𝑎 is the atmospheric pressure, and  

𝐶𝜎 =
1

37.3−8.27(𝑞𝑐1𝑁𝑐𝑠)0.264
≤ 0.3                                              (4-7) 

6) For a given number of equivalent loading cycles 𝑁𝑐, the magnitude scaling factor 𝑀𝑆𝐹 is 

estimated using Eq. 4-8: 

𝑀𝑆𝐹 = (
𝑁𝑀=7.5

𝑁𝑐
)
𝑏

                                                           (4-8) 

7) Finally, the cyclic resistance for the given combination of 𝑞𝑐1𝑁𝑐𝑠 and 𝜎′𝑣𝑜 at 𝑁𝑐 cycles is 

estimated using Eq. 4-9: 

𝐶𝑅𝑅 = 𝐶𝑅𝑅𝑀=7.5,𝜎′𝑣𝑜=1 · 𝑀𝑆𝐹 · 𝐾𝜎                                           (4-9) 

Repeating steps 6 and 7 for different 𝑁𝑐 values, over the range of cycles of interest, yields the 

LRC for the soil with penetration resistance 𝑞𝑐1𝑁𝑐𝑠 and effective overburden stress 𝜎′𝑣𝑜, under 

zero static shear stress (level ground conditions). In the same way, empirical LRCs can be 

derived for any given 𝑞𝑐1𝑁𝑐𝑠 − 𝜎′𝑣𝑜 combination which is within the range of applicability of 

the corresponding simplified procedures.  

The above procedure effectively reduces simplified liquefaction triggering procedures to a set 

of LRCs. Such LRCs derived from the Boulanger and Idriss (2014) liquefaction triggering 

procedure following the above steps 1-7, for various 𝑞𝑐1𝑁𝑐𝑠 values and an effective 

overburden stress of 𝜎′𝑣𝑜 = 100 kPa, are shown with solid lines in Fig. 4.5. 

Apart from bypassing the need for laboratory tests of target soil samples, another advantage of 

the above empirical approach for establishing the target LRCs is the fact that it allows for fair 

comparisons of the outcomes of effective-stress analyses and simplified procedures, as the 

same definition of liquefaction resistance is used in both methods. On the other hand, this 

same feature could be seen as a limitation of the procedure because the large uncertainty 

associated with the characterization of liquefaction resistance of soils other than clean sands 

(e.g. silty sands with non-plastic, low-plasticity or plastic fines) in the simplified procedures 



Chapter 4. Effective Stress Analysis Procedure 

 54 

(e.g. Cubrinovski et al. 2019) is carried over to the effective-stress analysis. This is considered 

an acceptable limitation for the purpose of the present study which focuses on explaining 

discrepancies between (liquefaction manifestation) observations and predictions by the 

simplified procedures on the basis of system response rather than through limitations in the 

characterization of the element-level behaviour. Nonetheless, the poor characterization of the 

behaviour of silty soils, relative to that of clean sands, is recognized as a potentially important 

factor contributing to discrepancies between field observations and predictions by simplified 

liquefaction evaluation procedures.  

 

 

Fig. 4.5 Target LRCs (solid lines) obtained using the Boulanger and Idriss (2014) liquefaction triggering 

procedure, and S-D Model (SDM) simulated LRCs (open symbols) for different 𝑞𝑐1𝑁𝑐𝑠 values (i.e. different void 

ratios in S-D Model) and 𝜎𝑣𝑜
′ = 100 kPa. 

 

 

4.3.3 S-D Model calibration for liquefiable soils 

The goal is now to determine S-D Model parameters that can reproduce the target LRCs 

(defined as above) in element test simulations. The S-D Model has four groups of input 

parameters: elastic parameters, reference states, stress-strain parameters and dilatancy 

parameters. Cubrinovski and Ishihara (1998b) have established a set of S-D Model parameter 

values for dry-pluviated Toyoura sand, after a series of laboratory tests, including drained and 

undrained, monotonic and cyclic (liquefaction) tests. As Toyoura sand is often used as a 

representative clean sand for liquefaction studies, these values were used as a basis for the 

determination of a set of new S-D Model parameters that can simulate the target (empirical) 

liquefaction resistance curves. In this process, the stress-strain parameters were kept the same 
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as for Toyoura sand, whereas other parameters of the model were varied in a trial-and-error 

process to identify the best-fit values providing the most accurate simulation for the whole set 

of the target LRCs. The new S-D Model parameter values resulted from the above calibration 

process are listed in Table 4.1. For reference, the original S-D Model parameters for dry-

pluviated Toyoura sand are also shown in this table. It is important to note that changes in 

elastic, dilatancy, and reference line parameters were relatively small and definitely within an 

acceptable range of variation.  

Table 4.1 Stress-Density Model parameters. 

Material parameter Toyoura sanda Generic sandb 

Elastic parameters   

Shear constant,  A 250 310 

Poisson’s ration,  ν 0.20 0.25 

Exponent,  n 0.60 0.80 

Reference lines   

UR-line (Void ratios  

and normal stresses in kPa),  (eU, pU) (0.895, ≤ 400) (0.895, ≤ 400) 

QSS-line (Void ratios  

and normal stresses in kPa),  (eQ, pQ) (0.877, 1) (0.875, 1) 

 (0.877, 10) (0.874, 10) 

 (0.873, 30) (0.873, 30) 

 (0.870, 50) (0.872, 50) 

 (0.860, 100) (0.871, 100) 

 (0.850, 200) (0.868, 200) 

 (0.833, 400) (0.860, 400) 

Stress-strain parameters   

Peak stress ratio coefficients,  a1, b1 0.592, 0.021 0.592, 0.021 

Max. shear modulus coefficients,  a2, b2 291, 55 291, 55 

Min. shear modulus coefficients,  a3, b3 98, 13 98, 13 

Degradation constant,  f 4 4 

Dilatancy parameters   

Dilatancy coef. (small strains),  μ0 0.22 0.22 

Dilatancy coef. (cyclic loading),  μcyc 0.00 -0.02 

Critical state stress ratio,  M 0.607 0.620 

Dilatancy strain,  Sc 0.0055 0.0040 
a Model parameters from Cubrinovski and Ishihara (1998b). 
b Compatible with Boulanger and Idriss (2014).   

 

Fig. 4.5 shows with open symbols the LRCs obtained using simulations with the new set of S-

D Model parameters. These S-D Model simulated LRCs are established through a series of 

element test simulations in which a soil element, at an initial stress-density state, is subjected 

to a given amplitude of uniform stress cycles. Liquefaction triggering is assumed to occur in 

the simulation cycle at which the double amplitude (DA) shear strain exceeds 5%. The 

number of cycles required to cause liquefaction and develop 5% DA strain is then used 
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together with the applied level of cyclic stress to define the soil resistance (i.e. one symbol in 

Fig. 4.5) at the given stress-density state.  

The simulation of the target LRCs shown in Fig. 4.5 is considered sufficiently accurate for 

liquefaction analysis. Small discrepancies do occur at higher stress ratios, but overall, 

simulated and target curves show a reasonably good agreement across 𝑁𝑐 = 1 − 50 cycles. In 

addition, the adopted S-D Model parameter values provide a reasonably accurate simulation 

of the tail of the target LRCs, at low cyclic stress amplitudes, which defines the threshold 𝐶𝑆𝑅 

separating between liquefaction and no-liquefaction. This detail is particularly important, as 

underestimation of the liquefaction resistance for low shear stresses can lead to substantial 

overprediction of pore water pressures in the seismic effective stress analysis.  

It is important to note that, a single set of values for the S-D Model parameters was used to 

simulate the target LRCs across different 𝑞𝑐1𝑁𝑐𝑠 values (i.e. soil densities), by only adjusting 

the initial void ratio 𝑒 in the S-D Model to achieve a good fit. The use of a single set of 

parameter values across various densities is a distinctive feature of the S-D Model which 

comes as a result of the incorporation of the state-concept characterization of soil behavior 

into the model. To facilitate the application of the S-D Model over a range of different 𝑞𝑐1𝑁𝑐𝑠 

values that may result from the profile simplification process, an expression for estimating the 

void ratio 𝑒 that provides the best fit of the LRC for a given 𝑞𝑐1𝑁𝑐𝑠 value was developed as 

follows: 

𝑒 = −0.315[1 + exp(−0.128𝑞𝑐1𝑁𝑐𝑠 + 18.8)]
−0.142 + 0.931               (4-10) 

For a target LRC associated with a specific 𝑞𝑐1𝑁𝑐𝑠 value, this expression was used to derive 

the respective 𝑒 value for the S-D Model in the element test simulations shown in Fig. 4.5. 

Using the minimum and maximum void ratios for the reference Toyoura sand, 𝑒𝑚𝑖𝑛 = 0.616 

and 𝑒𝑚𝑎𝑥 = 0.988, respectively, Eq. 4-10 can be rewritten in terms of relative density 𝐷𝑟 as: 

𝐷𝑟 = 0.847[1 + exp(−0.128𝑞𝑐1𝑁𝑐𝑠 + 18.8)]
−0.142 + 0.153       (4-11) 

Fig. 4.6 shows the relationship of Eq. 4-11 together with three common empirical 𝐷𝑟 − 𝑞𝑐1𝑁𝑐𝑠 

expressions for clean sands (Tatsuoka et al. 1990, Idriss and Boulanger 2008, Robertson and 

Cabal 2012). It can be seen that Eq. 4-11 slightly underestimates 𝐷𝑟 for 𝑞𝑐1𝑁𝑐𝑠 between 60 

and 100 compared to the empirical estimates, whereas it overestimates 𝐷𝑟 for 𝑞𝑐1𝑁𝑐𝑠 greater 

than 130. Nevertheless, given the large uncertainty in these empirical expressions, expected 

differences between laboratory-based and field-based LRCs, and the success of Eqs. 4-10 and 

4-11 in simulating the target LRCs across a wide range of 𝑞𝑐1𝑁𝑐𝑠 values, while using the same 

set of values for the S-D Model parameters, which was the primary goal in this calibration 

exercise, these small deviations of Eq. 4-11 from the range of empirical 𝐷𝑟 − 𝑞𝑐1𝑁𝑐𝑠 

correlations are considered acceptable. 
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Fig. 4.6 Comparison between empirical 𝐷𝑟 − 𝑞𝑐1𝑁𝑐𝑠 relationships and Eq. 4-11 used in the calibration of the S-D 

Model. 
 

Another benefit from the embodiment of the state-concept modelling to the S-D Model is that 

it accounts for the combined effects of density and confining stress on the liquefaction 

resistance and cyclic stress-strain behaviour of sand. In the simplified methods, the effect of 

confining stress on liquefaction resistance is addressed through the use of the 𝐾𝜎 factor (Eqs. 

4-6 and 4-7), defined as: 

𝐾𝜎 =
𝐶𝑅𝑅𝜎′𝑣𝑜

𝐶𝑅𝑅𝜎′𝑣𝑜=1
                                                            (4-12) 

where 𝐶𝑅𝑅𝜎′𝑣𝑜 is the 𝐶𝑅𝑅 of a soil under a specific value of 𝜎′𝑣𝑜, and 𝐶𝑅𝑅𝜎′𝑣𝑜=1 is the 𝐶𝑅𝑅 

of the same soil for a reference value of 𝜎′𝑣𝑜 = 1 atm. Fig. 4.7 shows (with solid lines) a set 

of 𝐾𝜎 − 𝜎′𝑣𝑜 curves obtained using the Boulanger and Idriss (2014) expressions (Eqs. 4-6 and 

4-7), and the corresponding S-D Model simulated relationships (dashed lines with open 

symbols) using the generic parameters from Table 4.1, for 𝑞𝑐1𝑁𝑐𝑠 values of 70, 100 and 140, 

and 𝜎′𝑣𝑜 from 20 to 400 kPa. The two sets of curves (target and S-D Model simulated) show 

a reasonably good agreement, with the S-D Model simulated curves manifesting a slightly 

stronger effect of confining stress on liquefaction resistance, particularly near the boundary 

values of the 𝑞𝑐1𝑁𝑐𝑠 principal range of interest (i.e. 𝑞𝑐1𝑁𝑐𝑠 ≈ 50 − 150) where the largest 

discrepancies occur. However, it is important to note that the trends with respect to the 

influence of 𝑞𝑐1𝑁𝑐𝑠 on 𝐾𝜎 − 𝜎′𝑣𝑜 are well captured in these simulations. 

In summary, the above calibration of the S-D Model provides a reasonably accurate 

modelling of target liquefaction resistance curves over the relevant range of cyclic shear 

stresses for earthquake engineering (𝑁𝑐 = 1 − 30 cycles), including the threshold 𝐶𝑆𝑅 

separating between liquefaction and no-liquefaction, and across all densities or penetration 

resistances (𝑞𝑐1𝑁𝑐𝑠 ≈ 50 − 150) and confining stresses of interest (𝜎′𝑣𝑜 ≈ 20 − 400 kPa). 

The above are considered key requirements for the calibration of any constitutive model for 
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dynamic analysis targeting liquefaction problems. Finally, note that 𝑞𝑐1𝑁𝑐𝑠 and 𝜎′𝑣𝑜 are the 

only input parameters required by the model. 

 

 

Fig. 4.7 Comparison between Boulanger and Idriss (2014) (solid lines) and S-D Model (SDM) simulated (dashed 

lines with open symbols) 𝐾𝜎 − 𝜎𝑣𝑜
′  relationships for various 𝑞𝑐1𝑁𝑐𝑠 values. 

 

4.3.4 Modelling of partial saturation effects on cyclic (liquefaction) resistance 

The effects of partial saturation on the cyclic resistance of liquefiable soils can also be 

incorporated in the proposed calibration of the S-D Model by modifying key model 

parameters affecting the cyclic resistance. In this case, a lab-based model for the increase in 

liquefaction resistance due to partial saturation, proposed by Hossain et al. (2013), is adopted 

as the target model. In this model, the ratio of the 𝐶𝑅𝑅 of the partially saturated soil 

(𝐶𝑅𝑅𝑝𝑠,𝑁=20) to the respective 𝐶𝑅𝑅 of the same soil in fully saturated conditions 

(𝐶𝑅𝑅𝑓𝑠,𝑁=20), for a reference number of 𝑁𝑐 = 20 loading cycles, is given as a sole function of 

𝑉𝑝, as indicated in Fig. 4.8. An appropriate correction factor is then used to account for the 

effects of density and number of loading cycles on the reference ratio (𝐶𝑅𝑅𝑝𝑠 𝐶𝑅𝑅𝑝𝑠⁄ )
𝑁=20

. 

Modifying the dilatancy strain parameter (𝑆𝑐) of the S-D Model with 𝑉𝑝, while keeping all 

other S-D Model parameters unchanged, as in Table 4.1, was shown to provide reasonably 

good simulations of the corresponding 𝐶𝑅𝑅 increase, in accordance with the Hossain et al. 

(2013) model, for various initial stress and density states, and number of loading cycles. Eq. 

4-13 is suggested for calibration of the 𝑆𝑐 parameter of the S-D Model based on the assigned 

𝑉𝑝 value of the corresponding soil layer: 

𝑆𝑐 = 0.03 ∙ 1.005−𝑉𝑝 + 0.0040                                        (4-13) 
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where 𝑉𝑝 is in units of m/s. Note that for large values of 𝑉𝑝 (𝑉𝑝 ≥ 1400 m/s), Eq. 4-13 yields 

𝑆𝑐 ≈ 0.0040, which is equal to the suggested parameter value for fully saturated conditions 

(Table 4.1). The performance of Eq. 4-13 in element test simulations of the liquefaction 

resistance of partial saturated soils against the predictions of the target Hossain et al. (2013) 

model, for various initial densities of soil (i.e. 𝑞𝑐1𝑁𝑐𝑠), is illustrated in Fig. 4.8. For all 

practical purposes, the calibration of the 𝑆𝑐 parameter in accordance with Eq. 4-13 yields 

liquefaction resistances for partially saturated soils that are in reasonable agreement with 

those predicted by the target model. With the above extension of the proposed methodology 

to allow for incorporation of partial saturation effects on LRC, three input parameters, namely 

𝜎′𝑣𝑜, 𝑞𝑐1𝑁𝑐𝑠, and 𝑉𝑝, are required for the semi-empirical modelling of liquefiable soils using 

the S-D Model.  

 

 

Fig. 4.8 Modelling of partial saturation effects on 𝐶𝑅𝑅 based on 𝑉𝑝: S-D Model (SDM) simulations (symbols) 

using Eq. 4-13 compared with the target regression model of Hossain et al. (2013). 
 

 

4.4 Modelling of Non-Liquefiable Soils (Step 3) 

4.4.1 Identification of non-liquefiable soil layers  

Natural soil deposits generally have soil layers that are, by composition, susceptible to 

liquefaction and others that are not. Ideally, index and cyclic testing of retrieved soil samples 

in the laboratory should be used to distinguish between liquefiable and non-liquefiable soils 

(e.g. Bray and Sancio 2006). In the absence of soil sample data, the soil behaviour type index 

𝐼𝑐 or the modified soil behaviour type index 𝐼𝐵 (Robertson 2016) obtained from CPT 

measurements may be used for classification of soil behavior type. As a general rule, in the 

CPT-based effective-stress analysis approach presented herein, soil layers with 𝐼𝑐 < 2.6 are 
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considered liquefiable and they are modelled as described in the previous section; all other 

soil layers are regarded as non-liquefiable, and their modelling is discussed in this section. 

Exceptions to this rule apply for liquefiable soils (𝐼𝑐 < 2.6) that are not expected to respond in 

a strongly non-linear manner and develop large excess pore water pressures (𝛾𝑚𝑎𝑥 ≲  0.1 −

0.2%). These might be liquefiable (by composition) soils with high 𝑞𝑐1𝑁𝑐𝑠 (e.g. 𝑞𝑐1𝑁𝑐𝑠 >

170) or soils at large depths where the seismic demand is relatively low. Modelling of such 

soils and conditions must be targeting soil behaviour for strains 𝛾 ≲  0.1 − 0.2%, rather than 

their liquefaction resistance. Taking this into consideration, in the analyses presented in the 

following chapters, liquefiable (by composition) soils with 𝑞𝑐1𝑁𝑐𝑠 > 170 have been modelled 

as ‘non-liquefiable’. Note, however, that vertical flow of water is allowed through such layers. 

4.4.2 Target stress-strain behaviour 

The nonlinear shear stress–shear strain (𝜏 − 𝛾) response of non-liquefiable soils at a constant 

effective-stress can be approximated by the small strain shear modulus (𝐺𝑚𝑎𝑥), the peak shear 

stress (𝜏𝑚𝑎𝑥) at large strains, and a strain-dependent model that describes the transition 

(change in stiffness) from small strains to large strains. Under cyclic loading, a measure for 

the energy dissipated in each loading cycle is also required. It is common in ground response 

analysis to represent the strain-dependent variation in stiffness and energy dissipation via 

modulus reduction (𝐺 𝐺𝑚𝑎𝑥⁄ ), and damping ratio (ξ) curves, such as those depicted in Fig. 4.9. 

In this study, the modulus reduction and damping ratio models proposed by Darendeli (2001) 

were initially adopted as target curves. Key parameters required for the definition of 

𝐺 𝐺𝑚𝑎𝑥⁄ − 𝛾 and 𝜉 − 𝛾 curves in Darendeli’s model are the mean effective confining stress 

(𝜎′𝑚𝑜 = [(2𝐾𝑜 + 1) 3⁄ ]𝜎′𝑣𝑜, where 𝐾𝑜 is the earth pressure coefficient at rest), the 

overconsolidation ratio (𝑂𝐶𝑅), and the soil plasticity index (𝑃𝐼). More often than not, some 

adjustment of the original Darendeli 𝐺 𝐺𝑚𝑎𝑥⁄ − 𝛾 model is necessary to make the backbone 

stress-strain curve asymptotically approach the target shear strength (𝜏𝑚𝑎𝑥) of the soil at large 

strains (e.g. Yee et al. 2013). In summary, the complete stress-strain (target) model for non-

liquefiable soils can be defined if 𝐺𝑚𝑎𝑥, 𝜏𝑚𝑎𝑥, 𝐾𝑜, 𝑂𝐶𝑅 and 𝑃𝐼 are known. For the purposes 

of this study, 𝐺𝑚𝑎𝑥 values for the layers of the simplified profiles were calculated from the 

measured 𝑉𝑠 values assuming a wet soil density of 𝜌𝑠 = 1.89 Mg m3⁄ , or, at depths where 𝑉𝑠 

data from the cross-hole tests were not available, they were estimated from the respective 

CPT data using the Christchurch-specific empirical correlation proposed by McGann et al. 

(2015). 𝐾𝑜 was assumed equal to 0.5, whereas 𝜏𝑚𝑎𝑥 and 𝑂𝐶𝑅 were estimated from empirical 

correlations with the CPT data provided in Robertson and Cabal (2015). 𝑃𝐼 was assumed 

equal to 20% for soil layers with 𝐼𝑐 ≥ 2.6, and 0% for all other layers. 

4.4.3 Constitutive modelling 

Once the target stress-strain model has been defined, a calibration procedure is required in 

which constitutive model parameters that provide reasonably accurate simulation of the target 

stress-strain behavior are determined. Any non-linear constitutive model that can concurrently 

model both the target 𝐺 𝐺𝑚𝑎𝑥⁄ − 𝛾 and the target 𝜉 − 𝛾 curves could be used. In fact, this is 
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often difficult to achieve because the Masing rules (1926) that most constitutive models adopt 

for modelling the hysteretic behaviour of soils during cyclic loading does not necessarily 

match the corresponding behaviour observed in the lab. Recognizing this limitation, a 

compromise approach often needs to be taken, where both the target damping and modulus 

curves are reasonably fitted over the expected range of strains. Fig. 4.9 shows an example of 

modulus reduction and damping ratio curves simulated using the S-D Model. It can be seen 

that the S-D Model simulation slightly overpredicts shear stiffness in a range of shear strains 

from 0.001% to 1%, whereas it significantly overpredicts the damping ratio for shear strains 

greater than about 0.5%. Provided that the maximum shear strains in the numerical 

simulations do not exceed (about) 0.5%, such compromise modelling is considered 

acceptable, as the model is expected to be used only over the range of strains where it shows 

good performance. Note that, in addition to the damping provided by the hysteretic response 

of the S-D Model, a small amount of (frequency-dependent) Rayleigh damping is also used in 

the analysis for numerical stability and to provide damping at small strains where hysteretic 

damping is nearly zero (Fig 4.9).  

 

 

Fig. 4.9 Example target shear modulus degradation and damping ratio curves (solid lines), together with fitted 

curves from S-D Model (SDM) simulations (dashed lines). 

 

To verify the above approach for modelling non-liquefiable soils, a series of total stress 

analyses of selected Christchurch sites was performed and the results were compared with 

analogous simulations using the 1-D nonlinear ground response analysis program DEEPSOIL 

(Hashash et al. 2016). DEEPSOIL was chosen because it provides a more rigorous modelling 

option (MRDF) for hysteretic stress-strain response, with a nearly perfect fit for both 

𝐺 𝐺𝑚𝑎𝑥⁄ − 𝛾 and 𝜉 − 𝛾 target curves even at large strains. A comparison between the ground 

motion and shear strain predictions from total stress analyses with the S-D Model in DIANA-

J (DJ-SDM) and GQ/H model with MRDF in DEEPSOIL (DS-GQ/H+MRDF), at different 

depths of an example site, is presented in Fig. 4.10. It can be seen that the two analyses 

predict almost identical ground motions, but the DJ-SDM analysis, as expected due to the 
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overprediction of shear modulus and damping, predicts slightly smaller strains than DS-

GQ/H+MRDF. Nevertheless, the S-D Model performance in total stress analysis is, clearly, 

sufficiently good for the purpose of this study.  

 

 

Fig. 4.10 Comparison between total-stress ground response analysis results using the S-D Model in DIANA-J 

(DJ-SDM, dashed lines) and the GQ/H model with MRDF in DEEPSOIL (DS-GQ/H+MRDF, solid lines): (a) 

acceleration time series; (b) response spectral accelerations at various depths; (c) 𝑉𝑠 profile; (d) maximum shear 

strains throughout depth.  
 

 

4.5 Definition of Input Ground Motion(s) (Step 4) 

The problem of deriving input ground motions for forensic dynamic analyses of ground and 

structures is addressed in the following chapter. In this section, for the completeness of the 

proposed effective-stress analysis procedure, a brief discussion on the selection of input 

ground motions for forward applications of the method is provided.  

Several methods for ground motion selection have been proposed in the literature over the last 

decades (e.g. Katsanos et al. 2010, Tarbali et al. 2018). Among them, the generalized 

conditional intensity measure (GCIM) approach (Bradley 2010, Bradley 2011), and other 

similar methods in concept, allow to rigorously consider multiple intensity measures (IMs) in 
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the selection. Thus, in the selection of ground motions for liquefaction analyses, the GCIM 

approach allows for concurrent consideration of amplitude-, duration-, and energy-related IMs 

which may be equally important. 

The GCIM approach for ground motion selection can be broken down into three main steps. 

The first step entails dis-aggregation of the seismic hazard curve to obtain the contribution 

from different sources and earthquake events at a given IM level, referred to as the 

‘conditioning IM’ (and denoted as 𝐼𝑀𝑗). The second step involves derivation of the marginal 

conditional distributions of each (single) considered IM (𝐼𝑀𝑖) taking into account the 

contribution of all scenario ruptures to the seismic hazard at the conditioning IM level (𝐼𝑀𝑗). 

The obtained marginal 𝐼𝑀𝑖 distributions are used to generate realizations of the multivariate 

𝑰𝑴 distribution considering the correlation between the considered IMs, which are then used 

to assess the appropriateness of the candidate ground motions. In the final step, a database of 

prospective ground motions is searched to find ground motions that fit best the generated 

realizations of the 𝑰𝑴 distribution. A weight vector (𝑤𝑖) is used to prescribe the relative 

importance of the considered 𝐼𝑀𝑖 and calculate the misfit of each prospective ground motion 

with respect to the target distribution. Bounds on causal parameters (e.g. magnitude, source-

to-site distance, site condition) of prospective ground motions may also be considered prior to 

conducting IM-based ground motion selection (Tarbali and Bradley 2016). The main steps 

described above refer to the case in which the seismic hazard is defined in terms of a seismic 

hazard curve resulting from a probabilistic seismic hazard analysis (PSHA). An analogous 

process for ground motion selection can be followed in the case of scenario earthquake 

ruptures (Tarbali and Bradley 2015).  

The GCIM approach (including random realizations of the 𝑰𝑴 distribution) has been 

implemented in the open-source software for seismic hazard analysis OpenSHA (Bradley 

2012, Field et al. 2003). Alternatively, a set of Matlab codes that can be used for computing 

the GCIM distributions and, subsequently, selecting appropriate ground motions is available 

from Bradley (2020). 

 

4.6 Numerical Model and Analysis Parameters (Step 5) 

In the proposed numerical procedure, fully coupled nonlinear effective-stress analyses are 

performed using 1-D soil column models (i.e. 1-D vertical wave propagation with 2-D 

quadratic elements constrained to deform in simple shear) to simulate the free-field response 

at level ground sites. The soil-column models are developed based on the simplified soil 

profile and constitutive model parameters defined in steps 1 to 3. In the following, salient 

features of the numerical model and analysis are discussed.   
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4.6.1 Mesh geometry 

A sketch of the adopted mesh geometry is illustrated in Fig. 4.11. The sizing of the mesh 

elements is a trade-off between model accuracy and computational efficiency. The minimum 

element thickness (𝛥𝑌) is taken equal to the minimum layer thickness adopted for the 

simplified profile (i.e. 𝛥𝑌𝑚𝑖𝑛 = 𝑇𝑚𝑖𝑛 = 0.3 m). The maximum 𝛥𝑌 is taken as the smallest of 

𝛥𝑌1, 𝛥𝑌2 and 𝛥𝑌3, which are defined as (see also Fig. 4.11): 

𝛥𝑌1 = 
1

8
𝜆𝑚𝑖𝑛 =

𝛽𝑉𝑠

8𝑓𝑚𝑎𝑥
                                                  (4-14)  

𝛥𝑌2 = 3𝛥𝑌𝑎𝑑𝑗                                                          (4-15) 

𝛥𝑌3 = 2.0 m                                                            (4-16) 

where 𝑉𝑠 is the shear wave velocity of the considered layer (appropriately reduced to account 

for stiffness degradation at large strains via a reduction factor 𝛽), 𝜆𝑚𝑖𝑛 is the wavelength 

associated with the highest frequency that is considered in the analysis (𝑓𝑚𝑎𝑥), and 𝛥𝑌𝑎𝑑𝑗 is 

the larger thickness of the two adjacent elements. The condition  𝛥𝑌 ≤ 𝛥𝑌1 (Eq. 4-14) ensures 

accurate transmission of waves with frequency up to 𝑓𝑚𝑎𝑥 (Kuhlemeyer and Lysmer 1973), 

whereas the condition 𝛥𝑌 ≤ 𝛥𝑌2 (Eq. 4-15) is adopted to avoid disproportionate changes in 

the thickness of adjacent elements. For liquefiable soil elements, to avoid impractically small 

𝛥𝑌1 values due to a potential large degradation in 𝑉𝑠, a maximum element thickness of 0.6 m 

is adopted, irrespective of 𝛽𝑉𝑠. The above element size constraints dictate the sizing and 

number of elements required in the discretization of each layer of the simplified profile.  

4.6.2 Initial stress conditions, boundary conditions, and load application 

Prior to the dynamic analysis, the initial stress state in the model has to be established. This 

can be done either by simply calculating the static stresses in each element and imposing them 

‘externally’ as an initial condition onto the model, or by conducting a self-weight gravity 

analysis for the soil-column. In this analysis, the displacements of the nodes at the base of the 

column are fixed in both the x- and y-directions, whereas the remaining soil nodes are fixed in 

the x-direction only. In the subsequent dynamic analysis, nodes at the same elevation are free 

in the x-direction, but they are tied to share same displacement, thereby enforcing a simple 

shear mode of deformation. A Lysmer and Kuhlemeyer (1969) dashpot element with dashpot 

coefficient 𝑐 is employed at the base of the soil-column to simulate the compliance of the 

underlying half-space, as schematically illustrated in Fig. 4.11. The soil-column is excited at 

the base by a horizontal force time history 𝑓 which is proportional to the known velocity time 

history of the input ground motion (�̇�).  

Theoretically, the soil-column must be extended deep enough to include an elastic bedrock 

layer at the bottom. Because the exact soil conditions down to bedrock depth may often not be 

known, and also because the 1D wave propagation assumption can be increasingly inaccurate 



Chapter 4. Effective Stress Analysis Procedure 

 65 

with increasing depth from the ground surface, it is practically sufficient and often advisable 

to place the base of the soil column at a shallower layer, which is stiff compared to the near-

surface soils and is expected to respond with nearly elastic deformations. In the application of 

the proposed procedure for the analyses of Christchurch sites, the base of the soil column 

models was assumed at the interface of the strong impedance contrast with the Riccarton 

Gravel layer which lies at a depth from about 10 to 40 m from the ground surface and has 𝑉𝑠 

of about 400 m/s (Fig. 3.3). Note that, in such cases, the ground motion selection process 

should assume soil conditions representative for the underlying half-space (reference layer). 

 

 

Fig. 4.11 Schematic illustration of the soil-column model used for numerical analyses. 
 

4.6.3 Drainage conditions and permeability values 

In the effective-stress analyses, the soil is treated as a two-phase medium based on Biot’s 

equations for dynamic behaviour of saturated porous media (Biot 1956). The analyses are 

performed assuming drained conditions allowing for pore water redistribution and vertical 

water flow through and between layers. Horizontal water flow is restricted in the 1-D soil-

column analysis. Permeability values (𝑘) for each distinct soil layer can be approximated from 

the 𝐼𝑐 values of the simplified profile using Eq. 4-17 (Robertson and Cabal 2015):  
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𝑘 =  {
10(0.952−3.04𝐼𝑐),        1.0 <  𝐼𝑐  ≤ 3.27

10(−4.52−1.37𝐼𝑐),        3.27 <  𝐼𝑐 < 4.0
           ( m s⁄ )                   (4-17) 

It should be noted that in the proposed 1-D simulation of ground response based on the 

continuum approach, it is assumed that both liquefiable and non-liquefiable (low-

permeability) layers are laterally continuous and the overall permeability remains unchanged 

during the analysis. Disruptions of the lateral continuity of low-permeability layers, due to 

either pre-existing discontinuities or seepage-induced hydraulic fracturing, as well as changes 

in hydraulic conductivity that occur within the liquefied soils in the process of and post their 

liquefaction are not considered in the analysis. It is important that the above limitations of the 

analysis are recognized and appropriate measures or indicators of the potential for such 

liquefaction phenomena and their effects on the response and liquefaction manifestation are 

considered in assessing the seismic (liquefaction) performance at the site of interest, as 

discussed in Chapter 7.  

4.6.4 Analysis parameters and output 

In the final step of the procedure, considering the adopted element sizing and anticipated 

behaviour, analysis parameters such as computational time increment, integration scheme and 

numerical damping are adopted, and the dynamic effective stress analysis is then executed. In 

the analyses presented in the following chapters, an implicit Newmark method (𝛽 = 0.25 and 

𝛾 = 0.5) was used for time integration with a computational time step of 𝛥𝑡 = 0.005 𝑠, and 

Rayleigh damping with proportionality constants 𝛼 = 0.114 and 𝛽 = 0.002 applied to the 

mass and stiffness terms, respectively. These parameters were shown to provide valid results 

for all analyzed soil-column models.  

The output from the effective-stress analysis can be extracted in terms of time-histories of 

acceleration, velocity, and displacement at any soil node including at the ground surface, as 

well as stresses, strains, and pore pressures determined for soil elements. Note that post-

liquefaction reconsolidation volumetric strains (휀𝑣𝑐,𝑚𝑎𝑥), associated free-field settlements, and 

strain-based liquefaction damage indices can be estimated in a post-processing phase by 

utilizing the computed maximum shear strains 𝛾𝑚𝑎𝑥 from the dynamic effective-stress 

analysis as input in empirical 휀𝑣𝑐,𝑚𝑎𝑥 − 𝛾𝑚𝑎𝑥 relationships (e.g. Ishihara and Yoshimine 1992, 

Yoshimine et al. 2006). In essence, all key measures of ground response determined from a 

simplified liquefaction analysis can be easily obtained from the results of the proposed 

numerical procedure, but the latter would also provide temporal and spatial evolution of the 

response, while accounting for important dynamic interactions in the response of the soil 

deposit. 
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4.7 Summary 

A CPT-based effective-stress analysis procedure for liquefaction assessment has been 

presented in this chapter. Key elements in the proposed procedure can be summarized as 

follows:  

(1) As a first step, a simplified, discretized soil profile is determined from the nearly 

continuous CPT data. A practical algorithm that automates this process has been 

presented. Apart from the obvious necessity of a discretized soil profile for the numerical 

analysis, this profile ‘simplification’ allows for rigorous scrutiny of the overall site 

characteristics and identification of critical layers in the deposit. Based on their inferred 

behaviour characteristics, the soil layers resulting from this process are classified as either 

liquefiable or non-liquefiable.  

(2) Modelling of the liquefiable soil layers focuses on the simulation of their (cyclic) 

liquefaction resistance, while using representative values for elastic and plastic stress-

strain parameters for sand. A set of liquefaction resistance curves (LRCs) were derived 

over relevant 𝑞𝑐1𝑁𝑐𝑠 − 𝜎
′
𝑣 conditions by directly following the simplified liquefaction 

triggering procedure of Boulanger and Idriss (2014). These target curves were then used 

to calibrate a constitutive model capable of reproducing the target behaviour over all 

densities and confining stresses of interest, with a single set of values for model 

parameters. The calibration methodology was extended to allow for incorporation of 

partial saturation effects on LRC, using the 𝑉𝑝 values measured in the field.  

(3) Modelling of the non-liquefiable soil layers targets their cyclic stress-strain response, 

typically defined in terms of modulus reduction and damping ratio curves. Reasonably 

accurate and concurrent modelling of target modulus reduction and damping ratio curves 

over the expected range of shear strains is the key requirement in this case.  

(4) With respect to the seismic input for forward applications of the method, it is 

recommended to select an ensemble of ground motions for the earthquake scenario of 

interest using the generalized conditional intensity measure (GCIM) approach (Bradley 

2010, 2012), or similar method, considering a suitable set of intensity measures (IMs) 

relevant to liquefaction problems, including not only amplitude-related IMs, but also 

duration- and energy-related measures, as they are also critical for liquefaction problems. 

(5) In the final step, numerical model (i.e. element size, boundary conditions, initial stress 

state of the soil) and analysis parameters (i.e. computational time increment, integration 

scheme, numerical damping) are defined. Here, basic rules of a good numerical analysis 

are followed, always taking into consideration the characteristics of the given soil profile 

and its anticipated behaviour. 

Two important features of the proposed procedure are that it can be fully automated in a 

programming environment, and that it is directly equivalent (in the definition of cyclic 
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resistance and required input data) to the CPT-based simplified procedures for liquefaction 

analysis. These features allow advanced effective-stress analysis to be routinely applied in 

practice, in parallel with simplified analysis and inform one another. 

The proposed effective-stress analysis procedure was implemented for the analyses of the 55 

Christchurch sites, as well as for the analyses of 13 strong motion station sites of urban 

Christchurch. The latter were mainly used for validation purposes as described in the 

following chapters. A set of Matlab programs were developed to process and interpret the in-

situ data, prepare the required input for the effective-stress analysis code, call the code to 

perform the numerical simulations, and post-process the analysis output. In the numerical 

simulations, the finite element code DIANA-J (Taisei Corporation 1997) and the S-D Model 

were employed. It is important to note, however, that the proposed procedure is generally 

applicable to any finite element or finite difference code and liquefaction-oriented constitutive 

model provided that these can capture the key aspects of the cyclic soil behaviour in a fully 

coupled (soil-water) dynamic analysis, as discussed in this chapter.  
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5 DERIVATION OF INPUT GROUND MOTIONS 

5.1 Introduction 

To reliably interpret and quantify the influence of system response effects on liquefaction 

manifestation by means of effective-stress analyses, it is important that the input motions used 

in the analyses are representative of the shaking intensity induced by the considered 

earthquake. In defining the input ground motion for forensic analysis at a given site of interest 

(target site), one has the following options: (1) select a suite of representative ground motions 

from available strong motion databases, relevant to the considered earthquake scenario and 

predicted distribution of some relevant ground motion intensity measure (IM) at the target 

site, using standard selection procedures (e.g. Katsanos et al. 2010, Tarbali and Bradley 

2015); (2) use synthetic motions obtained from numerical ground motion simulations 

(deterministic, stochastic or hybrid) for the event of interest (e.g. Boore 2003a, Motazedian 

and Atkinson 2005, Graves and Pitarka 2010); or (3) use representative within-event recorded 

ground motions, obtained at nearby strong motion station (SMS) sites (reference sites) during 

the specific event of interest, with appropriately modified IMs for the target site. While 

uncertainty in the determination of the target-site input motion is inevitable in all three 

methods, methods (2) and (3) allow to reduce this uncertainty by considering event-, region-, 

and site-specific conditions in the estimation. Numerical simulations (method 2) have the 

inherent advantage that they can provide ground motions at any geographic location and depth 

corresponding to a grid-point in the simulation domain, but they are limited by uncertainties 

in the parameters and modelling approaches describing the fault rupture and wave 

propagation, among other factors (e.g. Bradley 2019). These limitations restrain the wider 

acceptance of numerically simulated motions by engineers, who still presently view the use of 

within-event recorded ground motions as the best-available option, particularly for forensic 

assessments in densely instrumented regions. 

When the choice is made to use within-event recorded ground motions in forensic analysis at 

a non-instrumented site, potential effects of spatial variation of ground motion must be 

considered (potential differences in the ground motion between the reference recording site 

and the target site). I herein specifically refer to effects of spatial variation resulting from 

physical processes that are generally understood and can be modelled on a physical basis. 

This is to distinguish from spatial variation of high-frequency ground motion observed at 
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dense instrument arrays which is largely stochastic in nature (e.g. Zerva 2009). With the 

above in mind, in a typical ‘source-path-site’ convolutional interpretation of the physical 

process, spatial variation may be seen as a result of spatial differences in any of the three 

components of the convolution. Variation due to differences in the near-surface geology and 

site response can be addressed by incorporating a correction for the relative site-response 

between the reference (SMS) site and the target site (e.g. Boore et al. 2003, Maugeri et al. 

2011, Bray and Luque 2017). On the other hand, source and path effects reflecting, for 

instance, possible azimuthal variation in the radiated seismic energy and path attenuation, can 

be considered in the selection of the reference site (motion) and subsequent scaling of the 

reference motion to the estimated intensity at the target site (e.g. Pradel et al. 2005, Markham 

et al. 2016, Tsaparli et al. 2019). Note that source and path effects can contribute significantly 

to the spatial variability of ground motion in the near-source region of an earthquake.  

This chapter discusses key steps and challenges in deriving representative input motions for 

forensic seismic analysis in the near-source region. The discussion is mainly focused on 

aspects of the problem relevant to the 04Sep10 and 22Feb11 earthquakes (with more 

emphasis on the second), but the practical implications for the selection and subsequent 

treatment of within-event recorded ground motions are generally applicable to any forensic 

assessment in the near-source region. 

 

5.2 Strong Motion Station Sites 

The 2010-2011 Canterbury earthquakes were recorded by a high-density network of strong 

motion instruments across the Canterbury region. The exact locations of SMS sites in urban 

Christchurch and its environs are indicated in the map of Fig. 5.1 together with the surface 

projections of the causative fault planes (Beavan et al. 2012) of the 22Feb11 (Fig. 5.1a) and 

04Sep10 (Fig. 5.1b) earthquakes. Also shown in this figure are: the locations of available 

deep (+500 m) shear wave velocity (𝑉𝑠) profiles (Teague et al. 2018) that are utilized in 

subsequent sections, approximate contours of the depth to Riccarton Gravel (RG) layer (Fig. 

5.1a) and depth to the Banks Peninsula volcanic (BPV) rock (Fig. 5.1b), which underlies the 

Quaternary sediments of Christchurch and outcrops on the southeast edge of the city (Port 

Hills), and, finally, the locations of the 55 sites which are subject of this study.  

Table 5.1 provides key information for the 13 SMS sites of urban Christchurch, including site 

class according to the New Zealand earthquake loading standards NZS1170.5:2004 

(Standards New Zealand 2004), 𝑉𝑠30 values, depth to RG, IDs of nearby CPT sites, and 

source-to-site distances (𝑅𝑟𝑢𝑝), recorded geometric mean peak ground accelerations (𝑃𝐺𝐴), 

and severity of surface liquefaction manifestation for the two considered earthquakes. Further 

details regarding soil profiles, characteristics of the recorded ground motions, and liquefaction 

manifestations can be found in relevant publications (e.g. Bradley and Cubrinovski 2011, 

Tasiopoulou et al. 2011, Bradley 2012, Wotherspoon et al. 2015a).  
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Fig. 5.1 Map of the Christchurch area showing the locations of SMS sites, the locations of selected sites with 

deep 𝑉𝑠 measurements (Teague et al. 2018), the locations of the 55 sites of interest, approximate contours of the 

depth to the RG and depth to BPV rock (Lee et al. 2017b), and the the surface projections of the causative fault 

planes (Beavan et al. 2012) of the two considered earthquakes: (a) 22Feb11; and (b) 04Sep10. 
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Table 5.1 Summary of site characteristics, observed ground motions, and surface liquefaction manifestations for 

the 13 SMS sites of urban Christchurch.  

  
 

  2010 Mw7.1 Darfield 
 

2011 Mw6.2 Christchurch 

Station 

Site 

Classi 

𝑉𝑠30
ii 

[m/s] 

Depth 

to RG 

[m] 

Nearby 

CPTsiii 

𝑅𝑟𝑢𝑝
v 

[km] 

𝑃𝐺𝐴 

[g] 

SLMvi 

 

 

𝑅𝑟𝑢𝑝
v  

[km] 

𝑃𝐺𝐴 vii 

[g] 

SLMvi 

 

CACSviii D 435 7 -- 11.7 0.20 None  12.8 0.21 None 

CBGS D 197 21 CPT1iv 14.4 0.16 None  4.7 0.50 (0.32) None 

CCCC D 182 25 CPT_484 16.2 0.22 None  2.8 0.43 (0.35) Minor 

CHHC D 196 22 CPT_12257 14.7 0.17 None  3.8 0.37 Moderate 

CMHS D 213 24 CPT_72541 14.0 0.24 None  1.4 0.37 Severe 

HPSC E 150 36 CPT_89 21.7 0.15 Severe  3.9 0.22 Severe 

NNBS D 204 41 CPT_33695 23.1 0.21 None  3.8 0.67 (0.32) None 

PPHS E 180 19 CPT_1497 15.3 0.22 None  8.6 0.21 None 

PRPC E 196 28 CPT_1396 19.3 0.21 None  2.5 0.63 Minor 

REHS E 155 20 CPT_40480 15.8 0.25 None  4.7 0.52 (0.36) None 

RHSCviii D 286 18 -- 10.0 0.21 None  6.5 0.28 None 

SHLC D 201 27 CPT_626 18.6 0.18 None  5.1 0.33 Moderate 

SMTCviii D 219 18 -- 17.5 0.18 None  10.8 0.16 None 

i As defined by NZS1170.5 (Standards New Zealand, 2004), i.e. D = deep or soft soil; E = very soft soil. 
ii Data from https://www.geonet.org.nz/ 
iii Data from the NZGD (2020) unless stated otherwise.  
iv Data from Wotherspoon et al. (2015a). 
v 𝑅𝑟𝑢𝑝 = closest distance to the rupture. 
vi SLM = severity of surface liquefaction manifestation based on the interpretation of Wotherspoon et al. (2015b).  
vii Values in brackets indicate the 𝑃𝐺𝐴 prior to the onset of liquefaction (Wotherspoon et al. 2015b), i.e. neglecting 

post-liquefaction high-frequency acceleration spikes associated with cyclic mobility behaviour.  
viii Reference station 

 

 

5.3 Spatial Variability of Ground-Motion 

Spatial variation of ground motion characteristics was observed in both the two considered 

earthquakes, but it was much more pronounced in the case of the 22Feb11 earthquake as a 

result of the proximity of the earthquake source to the studied area. Some of the potential 

factors contributing to the observed ground-motion variability are considered to be: 
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(a) The variability in site-response due to differences in the composition and stratification of 

near-surface soils. 

(b) The variation in the deeper geological structure below the SMS sites (e.g. basin effects)  

(c) Differences between hanging-wall and footwall motion. 

(d) Effects from the finiteness and complexity of the rupture process (source effects). 

(e) Path effects related to the attenuation of amplitudes and general increase of duration with 

distance from the source. 

These aspects need to be considered in the selection of reference SMS sites and the 

subsequent modification of their recorded ground motions for use in forensic analysis at a 

target site of interest. 

 

5.4 Derivation of Input Motions for Forensic Analysis 

The proposed procedure for deriving representative input motions for forensic analysis at a 

target site involves the following steps: 

(1) Selection of reference SMS site(s) and reference recorded motion(s) 

(2) Deconvolution of reference motion(s) by the local site-response at the reference site(s) 

(3) Scaling of deconvolved motion(s) for source-to-site distance effects 

The three key steps involved in the proposed procedure are elaborated in the following 

sections, in the context of the examined case studies. 

 

5.5 Step 1: Selection of Reference Sites 

In the selection of the most representative reference site (motion) for a given target site 

consideration must be given to: (a) the appropriateness of the candidate reference site for 

deconvolution analysis; (b) the deeper geological structure below the candidate reference site 

and the target site and their locations relative to the causative fault; and, (c) source effects on 

the spatial variation of the characteristics of the radiated seismic energy and generated ground 

motions.  
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5.5.1 Site Appropriateness for Deconvolution 

Seismic effective-stress analysis, and ground response analysis in general, examines the 

response of a soil deposit to the motion specified at the underlying (engineering) bedrock 

(input motion). To derive this input motion for ground response analysis, the recorded 

(surface) motion of the reference site (i.e. reference motion) needs first to be deconvolved to 

the depth of the engineering bedrock or, more specifically, to a reference layer (depth) at 

which the upward propagating motion would exhibit compatible (similar) ground motion 

characteristics to those at the corresponding layer of the target site, had the two sites been at 

similar geographical locations.  

In Christchurch, the requirement for the reference site to be appropriate for deconvolution 

analysis is a major constraint on the selection of reference sites. Deconvolution analysis can 

be performed formally only within the context of one-dimensional (1D) linear (L) or 

equivalent linear (EQL) approximations to the complex three-dimensional wave propagation 

and nonlinear (NL) soil response. The underlying deep basin structure of Christchurch, 

formed by the outcropping hard BPV rock dipping northwards beneath the surface Quaternary 

deposits (Fig. 5.1), generates complex 2D and 3D wave propagation phenomena that cannot 

be explicitly incorporated in such 1D models. Also, the widespread and severe liquefaction 

documented in Christchurch is associated with highly nonlinear response which cannot be 

well approximated by linear or equivalent-linear soil models.  

Consistent with previous studies (e.g. Markham et al. 2016, Tsaparli et al. 2020), the approach 

taken here was to assume the base of the numerical models (for the deconvolution and the 

subsequent effective-stress analysis) at the depth of the first strong impedance contrast below 

the soft surficial deposits, which is encountered at the interface with the denser Riccarton 

Gravel (RG) layer (𝑉𝑠 ≈ 400 m/s) at depths of about 10–40 m from the ground surface. The 

use of this shallow reference layer is critical for the validity of the 1D wave-propagation 

assumption, and also for reducing errors due to uncertainties in the geotechnical properties of 

the soil profile and numerical errors in the deconvolution (e.g. Roesset et al. 1995). It must be 

recognized, however, that the use of this reference layer (depth), as a single measure for the 

convolution compatibility between sites, neglects potential differences in ground motion 

arising from variation in the deeper geological structure below the sites. Hence, the deeper 

geology needs to be considered as an additional criterion for further optimization of the 

selection process, as discussed in the following subsection.   

As indicated in Table 5.1, in the 22Feb11 earthquake, 9 out of the 13 SMS sites of urban 

Christchurch had signs of soil liquefaction, either as surface manifestation in the form of soil 

ejecta, or characteristic spikes in the recorded accelerograms associated with strain hardening 

behaviour during cyclic mobility. Therefore, these sites cannot be used for deconvolution 

analysis as their response cannot be well approximated by an EQL soil model. Three out of 

the remaining sites, namely the Canterbury Aero Club (CACS), Riccarton High School 

(RHSC), and Styx Mill Transfer Station (SMTC), were considered as reference sites for 

deconvolution of the respective surface motions recorded during the 22Feb11 earthquake. In 
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addition to these urban Christchurch sites, the Lyttelton Port (LPCC), which is practically an 

outcropping rock site located southeast, on the hanging wall of the causative fault (Fig. 5.1a), 

was also included in the list of reference sites for the 22Feb11 earthquake. Fig. 5.2 shows the 

shallow 𝑉𝑠 profiles of the four selected reference sites. All reference sites but SMTC are 

comprised of relatively stiff soils ensuring low levels of nonlinear response in the 

deconvolution analysis. Also, all four sites have relatively shallow depth to RG (or BPV in 

the case of LPCC), from 6 to 18 m from the ground surface.  

 

 

Fig. 5.2 Median shear-wave velocity profiles of the selected reference sites derived from surface-wave testing 

results reported in Wood et al. (2011), Wotherspoon et al. (2015a), and Teague et al. (2018). 
 

In the case of the 04Sep10 earthquake, while liquefaction might not have occurred in many of 

the SMS sites, large strains and strongly nonlinear response are still likely. A sufficiently high 

stiffness of surface soils and shallow depth to RG are again key requirements in the selection 

of reference sites. With this in mind, the CACS and RHSC sites were selected as reference 

sites for the 04Sep10 earthquake. In this case, given that Christchurch is outside the 

immediate near-source region of the 04Sep10 earthquake, it was not deemed necessary to 

include in the selection additional reference sites.  

5.5.2 Deep Geology and Site Location Relative to Fault 

As previously alluded to, it is important in the selection of reference sites to also consider the 

deeper geological structure of the region in order to account for effects which cannot be 

incorporated in the deconvolution analysis. With respect to the deep geology of the region and 

their locations relative to the 22Feb11 fault rupture, the SMS sites of Fig. 5.1a can be broadly 
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grouped into sites located north or northwest of the rupture plane on the deep sedimentary 

basin (‘Christchurch sites’), and sites located south of the fault on the outcropping BPV rock 

(‘Lyttelton sites’). Fig. 5.3 presents a schematic illustration of the deep geology of the region 

with the main lithological units encountered along a Northwest-Southwest cross section. 

Approximate values of the shear wave velocity (𝑉𝑠) are indicated in the figure along with 

example ray paths of seismic waves from the 22Feb11 rupture. As explained in Bradley and 

Cubrinovski (2011), the large post-critical angle with which seismic waves from the 22Feb11 

earthquake may enter the sedimentary basin of Christchurch through its thickening edge on 

the southeast end of the city can cause reflection and refractions that lead to a waveguide 

effect in which surface waves propagate across the basin resulting in enhanced long-period 

ground motion amplitudes and shaking duration for the Christchurch sites. The absence of 

such basin-edge and waveguide effects in conjunction with potential differences due to 

hanging wall effects on the Lyttelton side of the volcanic rock formation, southeast of the 

rupture, may have resulted in significantly different motions for the Lyttelton sites. These 

potentially important differences in ground motions question the suitability of the LPCC 

records for use as reference motions for Christchurch, despite the advantageous features 

associated with (nearly) outcropping rock characteristics at this site (i.e. negligible soft soil 

effects).  

 

 

Fig. 5.3 Schematic Northwest-Southwest cross section of the geological structure of Christchurch illustrating 

how waveguide effects occurring in the sedimentary basin underlying Christchurch affect the recorded ground 

motions from the 22Feb11 earthquake (modified after Bradley and Cubrinovski 2011; roughly based on the 3D 

regional velocity model by Lee et al. 2017). 

 

Needless to say, spatial variation of ground motion is expected also among the Christchurch 

sites as a result of variation in the bedrock topography and varying contributions of different 

ray paths. Indicatively, for the sites considered in this study, the depth to the strong 

impedance contrast with the BPV rock (i.e. basin depth) varies from about 100 m in the 

southern part of the city to nearly 700 m towards the north (Fig. 5.1). These large differences 
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in the deeper geology are expected to contribute to the ground motion variability across the 

sedimentary basin. 

It is important in forensic seismic assessments to account for this variation in the deeper 

geological structure of the region and, on this basis, refine the selection of reference sites 

(motions) so that they are compatible with the target site (e.g. have similar basin depth).  

5.5.3 Source Effects 

Source effects refer to the spatial variation of both amplitude and phase of ground motion as a 

result of the rupture process characteristics of a given earthquake (e.g. Mai 2009). While 

rigorous quantification of source effects requires detailed modelling of the spatiotemporal 

characteristics of the rupture process and wave transmission to the site of interest, in the 

following paragraphs it is attempted to explain and illustrate source effects on ground motion 

variability in a simplified manner, solely on the basis of the fault geometry, relative 

hypocentre location, and cumulative slip distribution (Fig. 5.4). 

  

 

Fig. 5.4 Slip model for the 22Feb11 Mw6.2 Christchurch earthquake (Beavan et al. 2012). 

 

To this end, the focus is placed on two stations with the same source-to-site distance (𝑅𝑟𝑢𝑝 =

3.8 km) for the 22Feb11 earthquake but at different geographic location (i.e. different source-

to-site azimuth), i.e. one (CHHS) located closer to the southwestern segment of the fault and 

northwest from the earthquake epicenter, and the other (NNBS) northeast from the epicenter 

and closer to the northeastern fault segment where the maximum slip occurred (Fig. 5.1a). 

The close proximity of the two sites to the fault and the relatively large asymmetric spatial 
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extent of the fault, with respect to each of the sites, means that seismic waves emitted by the 

most distant points on the fault (i.e. points on the northeastern fault segment for CHHC and 

points on the southwestern fault segment for NNBS) travel longer distances to reach each site 

and, therefore, will be attenuated more than the seismic waves generated by the closest 

portions of the rupture (i.e. southwestern fault segment for CHHC and northeastern fault 

segment for NNBS).  

It is common practice in ground motion simulation to model ground motions from large 

earthquakes (extended-sources) as a summation of signals generated with a proper time delay 

from smaller earthquakes on the fault or subfaults, where each subfault is represented by a 

point-source at its centre. The amplitude of the Fourier spectrum of each point source is 

typically taken proportional to the slip (𝑠𝑠𝑓) of the respective subfault (e.g. Boore 2003, 

Motazedian and Atkinson 2005), hence the radiated energy from each subfault is assumed 

proportional to the squared subfault slip (𝑠𝑠𝑓
2 ). Given a geometrical spreading function 𝐺(𝑅𝑠𝑓) 

describing the attenuation of Fourier amplitudes with distance from the source (𝑅𝑠𝑓), the 

contribution of energy from each subfault, normalized by the total incident energy at a site, 

can be derived as: 

�̂�𝑠𝑓 =
𝑠𝑠𝑓

2[𝐺(𝑅𝑠𝑓)]
2

∑ 𝑠𝑠𝑓
2[𝐺(𝑅𝑠𝑓)]

2
𝑠𝑓

                                                         (5-1) 

where all subfaults are taken to have identical rupture area, and energy loss due to material 

damping and wave scattering is considered negligible, a reasonable assumption for the near-

source region where geometrical spreading largely dominates the attenuation.  

In theory, assuming spherical spreading of body waves in a homogeneous space, wave 

amplitudes attenuate with distance at a rate proportional to 𝑅−1. However, for typical layered 

earth models higher attenuation rates have been suggested in the literature (e.g. Burger et al. 

1987, Ou and Herrmann 1990, Yenier and Atkinson 2014). Using an equivalent point-source 

simulation model for the 04Sep10 and 22Feb11 earthquakes, Yenier and Atkinson (2014) 

found that an attenuation rate proportional to 𝑅−1.2 provides a better fit of the observed 

ground motions. Using this assumption, Eq. 5-1 can be expressed as: 

�̂�𝑠𝑓 ≈
𝑠𝑠𝑓

2𝑅𝑠𝑓
−2.4

∑ 𝑠𝑠𝑓
2𝑅𝑠𝑓

−2.4
𝑠𝑓

                                                      (5-2) 

Note that Eq. 5-2 can be considered approximately valid only within the range of source-to-

site distances in which body-waves are expected to dominate the ground motion (𝑅 < 40 km, 

approximately). At larger distances, slower attenuation rates due to a transition from body-

wave to surface-wave spreading should be considered.  

For a given model of fault slip distribution (Fig. 5.4), Eq. 5-2 can be used to estimate the 

energy contributed from different portions of the fault to the total energy reaching a site. Such 

an estimation is shown for the CHHC and NNBS sites in Fig. 5.5 in which a different color-
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code has been assigned to each ‘patch’ on the fault according to the relative contribution of 

the patch to the total S-wave energy reaching the respective site. It can be seen from the 

representation of Fig. 5.5 that the high-slip zone on the northeastern fault segment provides 

most of the incident energy at NNBS (i.e. 75% of the total energy) but its contribution is 

considerably smaller at the more distant CHHC site for which nearly equal energy 

participation of all main asperities has been estimated. Also, from the location of the 

hypocentre it can be inferred that the northeastern asperity with the maximum slip breaks later 

in time than the southwestern fault segment, and since the seismic waves radiating from the 

northeastern rupture need to travel longer distances to reach CHHC, they are less likely to 

constructively interfere with the waves emitted earlier from the closer fault segments. Taking 

the above into consideration, one can expect longer duration and lower amplitude motion at 

CHHC, relative to NNBS, due to larger attenuation of seismic waves emitted from the 

maximum slip zone and temporal spreading (less interference) of wave arrivals originating 

from different portions of the fault. Conversely, relatively short durations and high amplitudes 

should be expected at NNBS which is largely dominated by the close-by high-slip zone of the 

northeastern fault segment. As shown in Fig. 5.5, the recorded vertical ground motions (used 

here as a proxy for the ‘site effects–free’ motion) at CHHC and NNBS confirm the above 

reasoning. Indicatively, the CHHC record has 𝑃𝐺𝐴CHHC = 0.62 g, and significant durations 

𝐷5−75% = 3.5 s, 𝐷5−95% = 5.7 s, whereas the NNBS record has 𝑃𝐺𝐴NNBS = 0.80 g, and 

significant durations 𝐷5−75% = 1.6 s, 𝐷5−95% = 3.0 s. 

 

 

Fig. 5.5 Comparison of vertical ground motion and color-coded distribution of the normalized site-specific S-

wave energy from the source (warmer colors indicate the portions of the fault that contribute larger amounts of 

energy to each site), for two stations with the same source-to-site distance (𝑅𝑟𝑢𝑝 = 3.8 km) but different source-

to-site azimuth: (a) CHHC located closer to the southwestern segment of the fault and northwest from the 

earthquake epicenter (five-pointed star); (b) NNBS located northeast from the epicentre and closer to the 

northeastern fault segment; values in percent indicate the cumulative normalized energy contributed from each 

fault segment. 
 

It should be noted that the above interpretation of the observed ground motion variability 

between CHCH and NNBS based solely on the fault geometry, relative hypocentre location, 

and cumulative slip distribution is rather simplified as other important source factors, such as 

rupture velocity, rise time, small-scale slip heterogeneity, etc., as well as path-to-path 
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variability, which also contribute to the observed variability of ground motions, have been 

omitted. Nevertheless, the above discussion clearly indicates how the finiteness and 

spatiotemporal heterogeneity of the fault rupture can greatly contribute to the spatial 

variability of ground motion in the near-source region. In general, source effects on ground-

motion variability are considered to be particularly significant in the region of less than one or 

two fault lengths distance (Ripperger et al. 2008). 

The above discussion emphasizes the need to consider in the selection of reference sites 

(motions) the various source and wave propagation effects that contribute to near-source 

ground-motion variability. In other words, the selected reference site should be not only 

appropriate for deconvolution (to remove the local site effects) but also compatible with the 

target site, in terms of source and path effects. 

 

5.6 Step 2: Deconvolution Analyses 

Deconvolution analyses were performed at each considered reference site (CACS, LPCC, 

RHSC, and SMTC for 22Feb11; and, CACS and RHSC for 04Sep10) using the 1D ground 

response analysis program Strata (Kottke and Rathje 2009). This type of analysis takes as 

input the recorded motion at the surface and produces an ‘equivalent-outcrop’ motion at a 

user-specified depth deconvolved by the response of the overlying soils. The nonlinearity in 

the soil response was approximated by the equivalent linear approach using generic modulus 

reduction and damping ratio curves for non-plastic soils (𝑃𝐼 = 0) recommended by Darendeli 

(2001). In the modelling of the SMTC soil profile, the respective curves for 𝑃𝐼 = 20% were 

adopted at depths where the adjacent borelog indicated the presence of plastic silt or peats. 

Only one component of motion was considered in the deconvolution analyses at the reference 

sites and the subsequent effective-stress analyses at the target sites. In particular, the as-

recorded orthogonal horizontal components of the reference motions were used to identify the 

orientation of the maximum Arias Intensity (Arias 1970) axis, and then the maximum 

horizontal component in the identified direction was used for each reference motion. This was 

driven by the appreciation that soil nonlinearity and development of excess pore water 

pressures in liquefiable soils should largely be controlled by the maximum shaking intensity 

direction (e.g. Cubrinovski et al. 1996). The obtained motions in the maximum Arias intensity 

direction were low-pass filtered at 15 Hz to prevent unrealistic increase of high-frequency 

content with depth during deconvolution (Roesset et al. 1995). The filtering process had 

negligible effect on the recorded ground motions. Deconvolution analyses at the maximum 

Arias Intensity (𝐴𝐼) direction for the CACS, LPCC, and RHSC sites resulted in maximum 

shear strains that were generally below 0.1%. Initial deconvolution analyses at the SMTC site, 

on the other hand, resulted in excessive shear straining and unrealistically large high-

frequency amplitudes at the base. A number of modifications to the original analysis were 

attempted for the SMTC site, including adopting alternative modulus reduction and damping 

curves and scaling down the input (surface) motion as recommended by Silva (1988), but 

instabilities in the deconvolution could not be eliminated. 
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Following the unsuccessful initial attempts, an alternative approach for deconvolving the 

surface SMTC motion was tested. In this approach, the deconvolved motion is obtained using 

surface-to-bedrock transfer functions derived from conventional 1D convolution ground 

response analysis, hence no direct deconvolution analysis is required. In this indirect 

approach, first the nearby-recorded CACS motion was deconvolved to the respective depth of 

RG at the SMTC site and scaled in amplitude, using a scaling factor of 1.18, to approximately 

represent the expected intensity of the RG motion at the SMTC site for the 22Feb11 

earthquake; the basis for the derivation of the scaling factor is described in the following 

subsection. Next, the scaled CACS-based motion was used as a base excitation in an EQL 

convolution analysis at SMTC. The surface-to-bedrock transfer function obtained from this 

convolution analysis was then applied to the recorded surface motion at SMTC to derive an 

equivalent outcrop SMTC motion at the RG level. For verification purposes, the motion 

obtained based on the indirect approach, as above, was then used as a base input in 1D EQL 

analysis of the SMTC site. Fig. 5.6 compares the computed surface acceleration response 

spectrum from this analysis to that of the observed surface ground motion at SMTC. Besides 

the slight overprediction of 𝑃𝐺𝐴 and short-period motion (𝑇 ≲ 0.05 s), the fit is generally 

considered satisfactory confirming the efficacy of the indirect deconvolution approach 

employed at SMTC. Similar convolution analyses to evaluate the respective deconvolved 

motions were also executed for CACS, LPCC, and RHSC. In all cases, the predicted surface 

motions were identical to the respective recorded motions. 

 

 

Fig. 5.6 Comparison of the acceleration response spectrum of the observed ground motion at SMTC (22Feb11 

earthquake) to that computed from 1D ground response analysis using base input from the indirect deconvolution 

approach. 
 

A final issue that needs to be addressed here is the conversion of the deconvolved BPV 

motion at LPCC to an equivalent RG motion for use in the subsequent effective-stress 

analyses of Christchurch sites. To this end, several deeper 𝑉𝑠 profiles, with their locations 

indicated in Fig. 5.1, were utilized. The process included: first, deconvolution of the recorded 

LPCC motion to the various depths corresponding to the BPV depth at the locations of the 
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deep 𝑉𝑠 sites (Fig. 5.1a); then, scaling of the deconvolved BPV motions to account for 

differences in the site-to-source distance between the LPCC site and the respective 𝑉𝑠 sites, as 

described in the next subsection; and, finally, 1D convolution ground response analyses of the 

deep 𝑉𝑠 profiles to identify the equivalent outcrop motions for the RG layer, at each of these 

sites. Multiple LPCC-based RG motions were derived from this process, one at each deep 𝑉𝑠 

location, each intended to be used as reference RG motion for the nearby target sites. Note 

that the above approach for deriving LPCC-based RG motions neglects 2D and 3D wave-

propagation effects in the sedimentary basin of Christchurch, and this limitation may far 

outweigh any advantage of the LPCC-based motions for analysis of Christchurch sites.  

Given the results from the 1D deep ground response analyses for the 22Feb11 earthquake, it is 

interesting to examine the degree of variability in the response of deeper soils, between RG 

and BPV. Such potential variability and its influence on the RG motion is largely neglected in 

the CACS-, RHSC-, and SMTC-based motions, as previously alluded to. Fig. 5.7 shows ratio 

of spectral accelerations of the computed (equivalent-outcrop) RG motion to the respective 

base BPV motion for eight deep 𝑉𝑠 sites. It can be seen that, although the resonance periods 

are more or less consistent among the examined sites, there are significant differences in the 

amplification ratios, particularly for vibration periods longer than 1 sec. This suggests that the 

CACS-, RHSC-, and SMTC-based RG motions should be used with caution in areas where 

the deeper site-response may be significantly different from that at the respective reference 

sites. That being said, it should also be mentioned that (at least) certain aspects of the 

response of the near-surface deposits, and liquefaction triggering in particular, are not 

expected to be considerably affected by such variations in the low-amplitude long-period 

ground motion. 

 

 

Fig. 5.7 Response spectral ratio of RG to BPV motion (22Feb11 earthquake) as a function of vibration period for 

various deep 𝑉𝑠 profiles with their locations indicated in Fig. 5.1a. 
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5.7 Step 3: Scaling of Deconvolved Motions 

The scaling of the deconvolved motions aims to account for path effects resulting from 

differences in the source-to-site distance (i.e. closest distance to the fault or rupture distance) 

between the target site and the reference site. From an engineering perspective, the most 

important effects of the path are the amplitude attenuation and the general increase of duration 

with distance. Traditionally, effects on amplitude are considered by scaling the amplitudes of 

the reference motion to the expected intensity level of a ground motion metric at the target 

site of interest, via a constant scaling factor. Scaling in time to account for changes in duration 

has also been considered in past studies but, because of its influence on the frequency content, 

is generally not recommended (e.g. Bommer and Acevedo 2004). Alternative methods based 

on response spectral matching are also common in (forward) design applications, they allow 

for changes in the spectral shape but do not provide direct control over the duration of ground 

motion. 

In the following subsections, the basis for the derivation of amplitude scaling factors is 

described first and the predictions of different distance-scaling models for the 04Sep10 and 

22Feb11 earthquakes are comparatively examined. Then, changes in duration and issues 

arising from the use of overly high or overly low amplitude scaling factors are discussed. 

Finally, a novel frequency-domain ‘amplitude-duration’ scaling method is introduced and 

further described in Appendix B. 

5.7.1 Determination of Amplitude Scaling Factor 

Determination of the amplitude scaling factor requires an estimation of the intensity of the 

input ground motion at the target site of interest. This can be estimated in the form of a 

probability distribution for a selected ground motion intensity measure (𝐼𝑀) using an 

appropriate for the region empirical ground motion model (GMM). The amplitude scaling 

factor can be determined as:  

𝑆𝐹𝐼𝑀 =   exp(ln 𝐼𝑀𝑡
̅̅ ̅̅ ̅̅ ̅̅ − ln 𝐼𝑀𝑟 + 𝛿𝐵 + 𝛿𝑊𝑡)                                 (5-3) 

where ln 𝐼𝑀𝑡
̅̅ ̅̅ ̅̅ ̅̅  represents the median of 𝐼𝑀 for a lognormal distribution as predicted by the 

GMM using appropriate model parameter values for the given earthquake and target site (i.e. 

earthquake magnitude, source-to-site distance, classification of the reference layer condition, 

etc.), 𝐼𝑀𝑟 represents the (known) intensity of the deconvolved ground motion at the selected 

reference site, 𝛿𝐵 is the ‘between-event’ residual with zero mean and variance 𝜎𝐵
2, and 𝛿𝑊𝑡 is 

the ‘within-event’ residual for the target site with zero mean and variance 𝜎𝑊
2 . 

Provided a sufficiently large number of strong-motion recordings of the earthquake are 

available for various geographic locations, it is possible to improve the estimation of the 

ground motion intensity at the target site by adjusting the GMM using a fixed value for the 

between-event residual 𝛿𝐵 that removes the overall bias of the median ground motion 

prediction, i.e. corrects for average under- or over-estimation of the observed motions, and 
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reduces uncertainty (i.e. eliminates 𝜎𝐵
2). Further improvements of the ground motion estimate 

can be made if one considers, in addition to replacing the event term (𝛿𝐵), the spatial 

correlation of the within-event residuals (𝛿𝑊) among nearby locations, thereby constraining 

the estimate at the target site based on nearby observations. Several methods for such a 

conditional estimation of the level of shaking at a non-instrumented site can be found in the 

literature (e.g. Douglas 2007, Bommer and Stafford 2012, Bradley 2014, Kwak et al. 2016, 

Worden et al. 2018). Implementation of these methods for the problem examined herein, 

where an estimate of the target-site ground-motion 𝐼𝑀 is required for the reference (layer) 

condition, can be complicated by the need for, and uncertainty associated with, the conversion 

of the observed surface ground motions to estimated ground motions for the reference 

condition at depth. 

A simpler approach that is often implicitly adopted in practice (e.g. Pradel et al. 2005, Bray 

and Luque 2017) is to assume perfect spatial correlation between the reference station and the 

target site for the considered ground motion 𝐼𝑀, which can be, to some degree, justified by 

the selection of ‘target-compatible’ recording stations in Step 1. Under this assumption, the 

scaling factor 𝑆𝐹𝐼𝑀 can be taken simply as: 

𝑆𝐹𝐼𝑀 = exp(ln 𝐼𝑀𝑡
̅̅ ̅̅ ̅̅ ̅̅ − ln 𝐼𝑀𝑟

̅̅ ̅̅ ̅̅ ̅̅ )                                              (5-4) 

where ln 𝐼𝑀𝑡
̅̅ ̅̅ ̅̅ ̅̅  and ln 𝐼𝑀𝑟

̅̅ ̅̅ ̅̅ ̅̅  are the median estimates of the 𝐼𝑀 predicted by the chosen GMM 

for the target site and the reference station, respectively.  

5.7.2 Scaling Factors for the 04Sep10 and 22Feb11 Earthquakes 

For the purposes of the present study, amplitude scaling factors were determined based on two 

different distance-scaling models of ground motion: (1) A New Zealand-specific empirical 

model for the attenuation of pseudospectral acceleration amplitudes (Bradley 2013) referred 

to as B13; and (2) An equivalent point-source model for the attenuation of Fourier amplitudes 

(Yenier and Atkinson 2014), referred to as YA14, which has been specifically calibrated 

against observations from the 04Sep10 and 22Feb11 earthquakes. Both models describe the 

scaling or attenuation of ground motion amplitudes with distance using the following 

functional form as a basis: 

ln(𝐼𝑀)̅̅ ̅̅ ̅̅ ̅̅ ̅ ∝ ln (𝑓𝑃(𝑅𝑟𝑢𝑝)) = 𝑏 × ln [(𝑅𝑟𝑢𝑝
𝑛 + ℎ𝑛)

1 𝑛⁄
] + 𝛾 × 𝑅𝑟𝑢𝑝                 (5-5) 

where 𝑓𝑃 denotes the path attenuation function, 𝑅𝑟𝑢𝑝 is the closest distance to the fault rupture 

plane or simply ‘rupture distance’, 𝑏 defines the rate of attenuation due to geometric 

spreading, ℎ is a magnitude-dependent term that accounts for near-source saturation, 𝑛 is a 

constant, and 𝛾 defines the rate of anelastic attenuation. The contribution from the anelastic 

attenuation is generally small for the range of rupture distances of interest to this study, and 

hence the geometric spreading largely dominates the attenuation. For a given reference site 
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and target site pair with respective rupture distances 𝑅𝑟𝑢𝑝,𝑟 and 𝑅𝑟𝑢𝑝,𝑡, scaling factors were 

determined using Eq. 5-4: 

𝑆𝐹 = exp [ln (𝑓𝑃(𝑅𝑟𝑢𝑝,𝑡)) − ln (𝑓𝑃(𝑅𝑟𝑢𝑝,𝑟))]                                   (5-6) 

For reference-site distances (𝑅𝑟𝑢𝑝,𝑟) that correspond to the locations of CACS and RHSC 

(Table 5.1), Fig. 5.8 shows the respective variation of scaling factor as a function of 𝑅𝑟𝑢𝑝,𝑡, 

for the two considered earthquakes, using the aforementioned distance-scaling models in Eq. 

5-6. Scaling factors were estimated for periods that vary from 0.1 to 10 s, and the resulting 

range of 𝑆𝐹 values is indicated in the figure. In the case of the 04Sep10 earthquake, for 

reasons that will be explained in the following, the YA14 model was implemented using two 

alternative values for the saturation term ℎ, the default ℎ = 20.6 km used by the developers 

for the 04Sep10 earthquake, and an increased value of ℎ = 33.3 km. Finally, note that in Fig. 

5.8 a linear scaling-factor axis is used for the 22Feb11 earthquake (Fig. 5.8a), but a 

logarithmic scaling-factor axis is used for the 04Sep10 earthquake (Fig. 5.8b). This is to focus 

on the respective areas of interest for each earthquake as, generally, 𝑅𝑟𝑢𝑝,𝑡 < 𝑅𝑟𝑢𝑝,𝑟 for the 

22Feb11 earthquake, and 𝑅𝑟𝑢𝑝,𝑡 > 𝑅𝑟𝑢𝑝,𝑟 for the 04Sep10 earthquake (see Fig. 5.1 and Table 

5.1). 

 

 

Fig. 5.8 Scaling factors (Eq. 5-6) as a function of source-to-target site distance (𝑅𝑟𝑢𝑝,𝑡), based on the B13 and 

YA14 models for the distance-scaling of ground motion, and for reference-site distances (𝑅𝑟𝑢𝑝,𝑟) that correspond 

to the locations of RHSC (top row) and CACS (bottom row): (a) 22Feb11 earthquake; and (b) 04Sep10 

earthquake; scaling factors (𝑆𝐹) were computed for periods that vary from 0.1 to 10 s, but only the total 

(envelope) ranges of 𝑆𝐹 values are shown in the plots. 
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In the case of the 22Feb11 earthquake (Fig. 5.8a), the two ground motion scaling models 

result in similar scaling factors, with the exception of the very close distances to the rupture 

(𝑅𝑟𝑢𝑝,𝑡 ≲ 2 km) where, in contrast to YA14, the B13 model predicts increasingly large 

scaling factors. A degree of saturation in the scaling factor at these close distances to the fault, 

as indicated by the YA14 model, seems in fact more reasonable.  

In the case of the 04Sep10 earthquake (Fig. 5.8b), significant differences are observed 

between the two models. The B13 model predicts a strong scaling of the ground motion with 

distance with scaling factors as low as 0.6 at 𝑅𝑟𝑢𝑝,𝑡 = 20 km. On the other hand, the 04Sep10 

earthquake-specific YA14 (ℎ = 20.6 km) model exhibits a much smoother scaling. This, in 

fact, is in better agreement with the small variation of surface motions recorded across the city 

as can be inferred from the 𝑃𝐺𝐴 values reported in Table 5.1. The observed discrepancy 

could, at least partly, be attributed to a potentially strong azimuthal variation of the near-

source saturation effect for the 04Sep10 earthquake, as explained in the following. In Eq. 5-5, 

the saturation term ℎ, also often referred to as ‘pseudo-depth’ (e.g. Yenier and Atkinson 2014) 

or ‘finite fault factor’ (e.g. Boore and Thompson 2015), is used to modify the rupture distance 

𝑅𝑟𝑢𝑝 to an ‘effective distance’ (𝑅𝑟𝑢𝑝
𝑛 + ℎ𝑛)

1 𝑛⁄
 which can be thought of as an ‘average 

distance’ from all points on the fault or the distance from an equivalent point-source. Given 

the general geometry of the 04Sep10 earthquake rupture (Fig. 5.1b) and its shallow depth 

(Beavan et al. 2012), it can be appreciated that sites to the east of the rupture and across the 

city have larger ‘average distances’ than the respective distances of sites to the north or south 

of the epicenter with the same rupture distance 𝑅𝑟𝑢𝑝. In other words, the actual ℎ varies 

azimuthally and is larger for sites to the east of the rupture. Regression of the observed ground 

motions from the 04Sep10 earthquake may have therefore resulted in the YA14 model having 

an increased estimate of ℎ and smoother apparent scaling of ground motion due to bias 

towards the extended saturation zone east of the causative faults where the observations are 

denser.  This can effectively explain the observed discrepancy between the generic B13 model 

and the 04Sep10 earthquake-specific YA14 model in Fig. 5.8b. 

The above hypothesis regarding the apparent scaling of ground motion from the 04Sep10 

earthquake implies that the actual distance-scaling of ground motion in urban Christchurch, 

which is the area of concern to this study, may be, not only smoother than that predicted by 

the B13 model, but also smoother than that of the default YA14 (ℎ = 20.6 km) model. While 

the near-source scaling in the 04Sep10 earthquake-specific YA14 model is primarily 

influenced by the observations from urban Christchurch, it is not defined exclusively by them. 

To account for the possibility of extended saturation towards urban Christchurch, an increased 

value of ℎ = 33.3 km (Fig. 5.8b), which corresponds to the 84th percentile of the generic 

magnitude-dependent model for ℎ proposed in Yenier and Atkinson (2014), was also 

considered. 

In the following, the YA14 (ℎ = 33.3 km) model and the default YA14 model with ℎ =

5.2 km are adopted as default models for scaling the RG motions for the 04Sep10 and 
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22Feb11 earthquakes, respectively. For completeness, selected results from effective-stress 

analyses using the alternative scaling-factor models are presented in Appendix C.   

5.7.3 Importance of Duration Changes 

Temporal spreading of wave arrivals due to differences in propagation velocities and 

scattering effects results in an increase of ground motion duration with distance. Empirical 

models of ground motion duration (e.g. Bommer et al. 2009, Boore and Thompson 2014, 

Afshari and Stewart 2016) agree that the rate of this increase is greater in the near-source 

region, while some degree of saturation may be present at the very close distances from the 

source and for large earthquakes (Bommer et al. 2009).  

By and large, the distance-scaling of (significant) duration observed in the recordings of the 

04Sep10 and 22Feb11 earthquakes is in good agreement with the trends of the empirical 

models. In particular, in accordance with the observations, the empirical models predict 

considerable variation in the median significant duration for the range of source-to-site 

distances relevant to the 22Feb11 earthquake. To illustrate such effects, Fig. 5.9 compares the 

5-75% significant duration (𝐷𝑠,5−75%) of the ground motions recorded at PPHS (𝑅𝑟𝑢𝑝 =

8.6 km) and CMHS (𝑅𝑟𝑢𝑝 = 1.4 km) during the 22Feb11 earthquake. While some differences 

in the observed ground motion duration at the two sites may be due to source and site effects, 

a great deal of this difference is considered to be due the aforementioned path effects on 

duration. Amplitude-only scaling does not account for these potentially large changes in 

duration with distance. 

 

 

Fig. 5.9 Temporal accumulation of Arias Intensity (Husid function) and 𝐷𝑠,5−75% significant duration (grey 

shaded time-window) of the fault-normal component of the observed ground motions during the 22Feb11 

earthquake at: (a) PPHS (𝑅𝑟𝑢𝑝 = 8.6 km); and (b) CMHS (𝑅𝑟𝑢𝑝 = 1.4 km). 
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5.7.4 Energy Bias 

In the case of large difference in the source-to-site distance between the reference site and the 

target site (relative to their average source-to-site distance), which can often be the case in the 

near-source region, the use of overly high or overly low scaling factors without accounting for 

changes in ground motion duration can result in a significantly erroneous energy input in the 

dynamic analysis, and, consequently, biased estimates of the response of non-linear systems 

(e.g. Luco and Bazzurro 2007). In the following, this error in the simulated energy content of 

ground motion is quantified by taking advantage of existing conditional models for the 

prediction of Arias Intensity (𝐴𝐼).  

Several researchers (e.g. Abrahamson et al. 2016, Liu et al. 2016, Macedo et al. 2019) have 

developed empirical GMMs for 𝐴𝐼 conditioned on the peak ground acceleration (𝑃𝐺𝐴), some 

including also the spectral acceleration at 1.0 s period (𝑆𝐴1). The general functional form of 

these conditional models is given by: 

ln 𝐴𝐼 = 𝑐1 + 𝑐2 ln 𝑉𝑠,30 + 𝑐3𝑀𝑤 + 𝑐4 ln 𝑃𝐺𝐴 + 𝑐5 ln 𝑆𝐴1                   (5-7) 

in which 𝑉𝑠,30 is the average shear-wave velocity in the top 30 m of the deposit (in m s⁄ ), and 

𝑐𝑖 are regression coefficients.  

Let 𝑃𝐺𝐴𝑟 and 𝑆𝐴1,𝑟 be the peak ground acceleration and 1 s–period spectral acceleration, 

respectively, at the reference site, and 𝑃𝐺𝐴𝑡 and 𝑆𝐴1,𝑡 be the respective intensity measures at 

the target site of interest. Then, writing Eq. 5-7 for both sites and taking their difference 

yields:  

𝐴𝐼𝑡 = 𝐴𝐼𝑟 · (𝑃𝐺𝐴𝑡 𝑃𝐺𝐴𝑟⁄ )𝑐4 · (𝑆𝐴1,𝑡 𝑆𝐴1,𝑟⁄ )
𝑐5

                           (5-8) 

where 𝐴𝐼𝑡 and 𝐴𝐼𝑟 are the Arias Intensities at the target site and the reference site, 

respectively. It is important to recall that, at this stage, the scaling of ground motions at the 

‘engineering bedrock’ level is examined, and hence, site effects are ignored or assumed 

identical for the two sites. In the amplitude-only scaling method discussed previously, it is 

implicitly assumed that spectral accelerations of ground motion exhibit identical scaling with 

distance irrespective of the vibration period, and such scaling is expressed via the scaling 

factor 𝑆𝐹𝐼𝑀 (Eq. 5-4). Using this period-independent scaling assumption in Eq. 5-8 yields: 

𝐴𝐼𝑡 ≈ 𝐴𝐼𝑟 · (𝑆𝐹𝑆𝐴  )
𝑐4+𝑐5                                           (5-9) 

Eq.5-9 provides the expected scaling of Arias Intensity with distance for ground motions 

whose distance-scaling of spectral accelerations can be described via 𝑆𝐹𝑆𝐴. At the same time, 

by definition, the Arias Intensity of a ground motion scaled using a constant factor 𝑆𝐹𝑆𝐴 is 

simply 𝑆𝐹𝑆𝐴
2
 times greater (or smaller) than the Arias Intensity of the unscaled (reference) 

motion. Unless the sum of the regression coefficients 𝑐4 and 𝑐5 equals 2, the above implies a 

discrepancy between an appropriate scaling of energy with distance (as that observed in real 
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ground motion records) and an erroneous scaling of energy resulting from the amplitude-only 

scaling approach. To quantify this discrepancy and examine its dependence on the scaling 

factor, an 𝐴𝐼 – prediction error is herein defined as:  

𝐸𝑟𝑟𝑜𝑟𝐴𝐼 =
𝐴𝐼𝑟∙(𝑆𝐹𝑆𝐴)

2−𝐴𝐼𝑡

𝐴𝐼𝑡
· 100% = [(𝑆𝐹𝑆𝐴)

2−(𝑐4+𝑐5) − 1] · 100%              (5-10) 

in which positive errors indicate overprediction of the Arias Intensity and negative errors 

indicate underprediction of the Arias Intensity. According to two recent conditional 𝐴𝐼 − 

GMMs for active shallow crustal earthquakes (Abrahamson et al. 2016, Liu et al. 2016), the 

sum (𝑐4 + 𝑐5) can vary from 1.639 to 1.739, with standard errors included in the estimation of 

this range. Using these values in Eq. 5-10, the range of errors in the prediction of 𝐴𝐼 can be 

estimated as a function of the scaling factor, as depicted in Fig. 5.10.  

 

 

Fig. 5.10 Range of errors in the prediction of Arias Intensity as a function of scaling factor. 

 

It can be seen from this figure that amplitude scaling factors outside a range from, say, 0.5 to 

2, while presumably capturing changes in 𝑃𝐺𝐴 and spectral accelerations from the reference 

station to the target site as intended, may be associated either with significant under-

prediction or over-prediction of the actual 𝐴𝐼 at the target site, with errors in excess of 20%.  

This error in the energy content of the input ground motion can lead to biased estimates of the 

response of nonlinear systems, including liquefiable soil deposits. This is an additional 

important point that needs to be considered in the selection and scaling of reference motions 

and in the subsequent interpretation of the analysis results at the target sites. 

5.7.5 Amplitude-Duration Scaling 

The reason behind the energy bias of the amplitude-only scaling approach lies in the fact that, 

in this method, potentially large changes in the response spectral amplitudes of ground motion 

can occur without analogous changes in its duration, as observed in actual earthquake ground 

motions. As part of this study, an alternative method for scaling ground motions intended to 
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provide a consistent scaling of amplitude, duration, and energy content with distance was 

developed. In this method, the scaling is performed in the frequency domain, with amplitude 

changes applied to the Fourier amplitude spectra, and duration handled by modifications of 

the Fourier phase spectra. Further details on this method and an example application for 

effective-stress analysis at a target site are provided in Appendix B. 

 

5.8 Final Input Motions 

Fig. 5.11 shows (equivalent-outcrop) input acceleration and velocity time-series at PPHS 

obtained from deconvolution and (amplitude-only) scaling of the four selected reference 

motions for the 22Feb11 earthquake. The grey-shaded areas in this figure indicate the 5-95% 

significant duration (𝐷𝑠,5−95%) of each motion. The corresponding pseudo-acceleration 

response spectra (𝑆𝐴) of the input motions are presented in Fig. 5.12.  

 

 

Fig. 5.11 Acceleration and velocity time-series of equivalent-outcrop input motions at PPHS (22Feb11 

earthquake) obtained from: (a) CACS; (b) LPCC, (c) RHSC; and, (d) SMTC; the deconvolved motions from 

these sites were scaled in amplitude with the scaling factors indicated in the parentheses; the grey-shaded time-

windows in the acceleration time-series correspond to the 5-95% significant duration (𝐷𝑠,5−95%) of each input 

motion. 

 



Chapter 5. Derivation of Input Ground Motions 

 91 

Significant differences among the various input motions at PPHS can be observed in Figs. 

5.11 and 5.12. In particular, the LPCC-based motion is characterized by a significantly higher 

intensity of short-to-intermediate period spectral amplitudes (𝑇 ≲ 1.7 s), multiple high-

frequency spikes in the acceleration time-series, and a rapid drop in the spectral amplitudes of 

longer periods. It is also interesting to note the remarkably shorter significant duration of this 

motion and the absence of strong velocity cycles after approximately 8 s in Fig. 5.11. In 

contrast, relatively long durations, higher long-period amplitudes (𝑇 > 2.0 s), and strong late 

velocity cycles are observed in the remaining three motions, and particularly in the CACS- 

and SMTC-based motions. The observed differences in long-period motion, velocity 

waveforms, and significant durations, can be explained by the aforementioned differences in 

surface-wave propagation and the relatively stronger contribution of surface-wave motion 

with increasing source-to-site distance.  

 

Fig. 5.12 Pseudo-acceleration response spectra for the various input motions at PPHS (22Feb11 earthquake). 

 

The respective waveforms and acceleration response spectra of the input motions at PPHS for 

the 04Sep10 earthquake are illustrated in Figs. 5.13 and 5.14. In this case, important 

differences between the input motions from the two considered reference sites are seen at 

intermediate and long period amplitudes. The effects of these differences on the effective-

stress analysis simulations and the predicted ground motions at the surface will be explored in 

the next chapter.  
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Fig. 5.13 Acceleration and velocity time-series of equivalent outcrop input motions at PPHS (04Sep10 

earthquake) obtained from: (a) CACS; and, (b) RHSC; the deconvolved motions from these sites were scaled in 

amplitude with the scaling factors indicated in the parentheses; the grey-shaded time windows in the 

acceleration time-series correspond to the 5-95% significant duration (𝐷𝑠,5−95%) of each input motion. 
 

 

 

Fig. 5.14 Pseudo-acceleration response spectra for the two input motions at PPHS (04Sep10 earthquake). 

 

 

5.9 Summary 

Fig. 5.15 summarizes the key steps and considerations in the derivation of site-specific input 

ground motions involving:  

(1) The selection of a reference site and reference recorded motion with consideration of: (a) 

the appropriateness of the candidate reference site for deconvolution (i.e. negligible 



Chapter 5. Derivation of Input Ground Motions 

 93 

nonlinearity in the response and shallow thickness of soft soil deposits); (b) potential 

differences between hanging-wall and footwall motion, in case the considered sites 

(reference site and target site) are located on opposite sides of the fault; (c) the deeper 

geological structure below the reference site and the target site (e.g. basin depth); (d) 

extended-source effects and their impact on the azimuthal variation in radiated seismic 

energy; and, (e) the proximity of the reference site to the target site, which generally 

increases the likelihood of similarities in the above characteristics and reduced bias 

introduced by the subsequent scaling.  

(2) The deconvolution of the selected reference motion by the local site-response at the 

reference site using EQL analysis. Key requirement from this analysis is that the 

maximum shear strains throughout the soil profile do not exceed a threshold strain (e.g. 

𝛾𝑚𝑎𝑥 ≈ 0.5% − 1%) beyond which the EQL approximation of the nonlinear soil 

behaviour is no longer credible. 

(3) The scaling of the deconvolved motion to account for path effects arising from differences 

in the source-to-site distance between the reference site and the target site. Amplitude 

scaling factors can be derived using Eqs. 5-3 or 5-4. The use of scaling factors that 

significantly deviate from unity should generally be avoided as significant bias in the 

energy content of ground motion can be introduced in such cases (Fig. 5.10). To overcome 

this issue, an alternative ‘amplitude-duration’ scaling method that provides consistent 

distance-scaling of amplitude, energy content, and duration was developed as part of this 

study. This method is described in Appendix B.  

(4) Once the input motion is derived, ground response analysis (using either equivalent linear 

or fully nonlinear models) can be performed at the target site to evaluate its performance 

and estimate the surface ground motion.  

 

 

Fig. 5.15 Key steps and considerations in the derivation of input motions for forensic analysis at a target site. 
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An important conclusion from this chapter is that there is no a unique reference motion that 

can be considered representative for all sites in the near-source region of an earthquake. 

Instead, each recorded motion represents the characteristics of the ground motion over a 

limited geographic area where the various factors contributing to the spatial variability of 

ground-motion have a similar effect. The adopted ground-motion treatment processes (i.e. 

deconvolution and scaling) are used to account for some of these factors but they simplify 

significantly the physical processes that generate the spatial variability of ground motion. The 

following chapter will evaluate the accuracy with which the input motions derived from these 

processes can be used to simulate the ground response and observed ground motions at the 

SMS sites in Christchurch.   
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6 ANALYSES OF THE STRONG MOTION STATION SITES 

6.1 Introduction 

The present chapter evaluates the ability of the developed effective-stress analysis procedure 

to simulate the ground response of liquefying deposits throughout Christchurch, with a 

specific emphasis on the comparative evaluation of the performance of the various reference 

motions used for the 04Sep10 and 22Feb11 earthquakes. The performance of each reference 

motion and associated simulation of ground response are evaluated by comparing recorded 

surface motions to those predicted by 1D effective-stress analyses at the 13 SMS sites of 

urban Christchurch (Table 5.1). The implicit assumption in this verification approach is that if 

the surface ground motion is well-predicted, then both the induced seismic demand and 

consequent response of the shallow part of the deposit, which is the most relevant for 

liquefaction manifestation at the ground surface, are well-represented in the analyses. 

Findings from this study, regarding the quality of the predictions at the studied SMS sites, are 

used to inform the definition of input motions and indicate important factors to consider in the 

subsequent effective-stress analyses of the 55 case-history sites.  

 

6.2 Numerical Modelling and Analysis Cases 

Input motions derived from the various reference motions, as described in the previous 

chapter, were used as base excitations of 1D soil-column models to simulate the free-field 

shallow ground response at the 13 SMS sites of urban Christchurch (Table 5.1).  

Effective-stress analyses for the 04Sep10 earthquake were performed using input motions 

obtained from all three scaling models, illustrated in Fig. 5.8b, for scaling ground motions 

with distance. The YA14 model with the increased saturation factor (ℎ = 33.3 km) yielded 

the best performance in the simulations and has been adopted as the default model for the 

analyses presented in this chapter. For completeness, results from the 04Sep10 earthquake 

simulations using the B13 model and the YA14 (ℎ = 33.3 km) model are provided in Figs. 

C1–C4 of Appendix C. The default YA14 model with ℎ = 5.2 km (Fig. 5.8a) has been 

adopted in scaling the reference motions for the 22Feb11 earthquake simulations.  
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The soil-column models for the effective-stress analyses were calibrated in accordance with 

the framework described in Chapter 4, by, first, defining a simplified soil profile from the 

available in-situ test data, and then, determining appropriate constitutive model parameters for 

the identified behavioural characteristics of each layer of the simplified profile. An example 

of adopted simplified soil profile along with values for key layer properties used in the 

calibration of the constitutive model is illustrated in Fig. 6.1 for the Christchurch Hospital 

(CHHC) SMS site. 

 

 

Fig. 6.1 Determination of a simplified soil profile with values key layer properties for the Christchurch Hospital 

(CHHC) site: (a) visual (USCS) soil classification based on borehole data; (b) 𝐼𝑐 values and 𝐼𝑐-based 

classification of soil behaviour type; (c) 𝑞𝑐1𝑁 values, including 𝑞𝑐1𝑁 values converted from the measured SPT 

blow counts (square symbols) according to Robertson and Cabal (2015); (d) 𝑞𝑐1𝑁𝑐𝑠 values; and (e) 𝑉𝑠 values. 
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A series of additional sensitivity analyses were carried out at each SMS site to examine the 

influence of several factors that may affect the cyclic resistance and overall dynamic 

characteristics of the deposit including: the 𝐼𝑐 threshold separating liquefiable from non-

liquefiable soils; the 𝐹𝐶 − 𝐼𝑐 correlation used in estimating 𝑞𝑐1𝑁𝑐𝑠 for liquefiable soils; the 

choice of the CPT used in model calibration among the several CPTs that could be available 

in close proximity to the considered SMS site; the adopted 𝑉𝑠 profile; and the influence of 

partial saturation on the cyclic resistance of near-surface soils. By and large, the sensitivity of 

the computed surface ground motion to changes related to the above factors was minor 

compared to that resulting from the consideration of alternative reference motions or 

uncertainties in the scaling factor. 

In the following, results from 26 seismic effective-stress analyses for the 04Sep10 earthquake 

(13 SMS sites × 2 reference motions) and 52 analyses for the 22Feb11 earthquake (13 SMS 

sites × 4 reference motions) are scrutinized. 

 

6.3 Evaluation Approach 

The scrutiny of the effective stress analysis simulations is realized by comparing observed and 

predicted surface ground motions at the 13 SMS sites. Multiple ground motion intensity 

measures (𝐼𝑀s) are considered in the comparison, and prediction residuals 𝑦𝐼𝑀 for each 𝐼𝑀 

are calculated in natural logarithmic space as: 

𝑦𝐼𝑀 = ln(𝐼𝑀𝑝𝑟𝑒𝑑) − ln(𝐼𝑀𝑜𝑏𝑠)                                               (6-1)      

where 𝐼𝑀𝑜𝑏𝑠 is the observed 𝐼𝑀 obtained from the recorded motion at the ground surface of a 

given SMS site, and 𝐼𝑀𝑝𝑟𝑒𝑑 is the corresponding predicted 𝐼𝑀 obtained from the effective-

stress analysis. Positive 𝑦𝐼𝑀 residuals indicate overprediction of the observed ground motion, 

whereas negative 𝑦𝐼𝑀 residuals indicate underprediction. 

A list of the 𝐼𝑀s considered and their definition is summarized in Table 6.1. Besides the 

traditional amplitude-based 𝐼𝑀s used in earthquake engineering practice (i.e. 𝑃𝐺𝐴, 𝑃𝐺𝑉 and 

𝑆𝐴), several energy-based measures of the ground motion intensity, expressing either the 

cumulative spectral intensity over a range of vibration periods (i.e. 𝑆𝐼) or the cumulative 

intensity of the motion over time (i.e. 𝑃𝐺𝐴𝑀7.5, 𝐴𝐼, 𝐶𝐴𝑉, 𝐶𝐴𝑉5), are also considered. The 

selected energy-based measures have been shown in several past studies (e.g. Kayen and 

Mitchell 1997, Kramer and Mitchell 2006, Bradley et al. 2009, Kramer et al. 2016, Dashti and 

Karimi 2017, Karimi and Dashti 2017) to correlate well with either the triggering of 

liquefaction or its consequences on affected structures and, hence, are the key measures used 

in evaluating the quality of the predictions. For completeness, representative 𝐼𝑀s that 

characterize the strong motion duration (i.e. 𝐷𝑠) and frequency content of ground motion (i.e. 

𝑇𝑚) are also included in the comparisons.  
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Table 6.1 Ground motion intensity measures considered in the evaluation of the analyses predictions. 

Intensity Measure Notation Definition Reference 

Peak ground 

acceleration 
𝑃𝐺𝐴 max[|𝑎(𝑡)|]  (1) -- 

Peak ground 

velocity  
𝑃𝐺𝑉 max[|𝑣(𝑡)|]  (2) -- 

Pseudo-spectral 

acceleration 
𝑆𝐴(𝑇) max

𝑡
[|𝑎𝑠𝑡𝑟(𝑇, 𝜉 = 0.05, 𝑡)|]  

(3) 
-- 

Spectrum intensity 𝑆𝐼 ∫ 𝑆𝑉(𝑇, 𝜉 = 0.05)𝑑𝑇
2.5

0.1
  (4) 

Housner (1952) 

Magnitude-

corrected peak 

ground acceleration 

𝑃𝐺𝐴𝑀7.5 𝑃𝐺𝐴 𝑀𝑆𝐹⁄   (5)  Kramer et al. (2016) 

Arias intensity 𝐴𝐼 π 2g⁄ ∫ [𝑎(𝑡)]2𝑑𝑡
∞

0
  Arias (1970) 

Cumulative absolute 

velocity 
𝐶𝐴𝑉 ∫ |𝑎(𝑡)|𝑑𝑡

∞

0
  

Benjamin and 

Associates (1988) 

Modified 

cumulative absolute 

velocity 

𝐶𝐴𝑉5 ∫ 〈𝜒〉|𝑎(𝑡)|𝑑𝑡
∞

0
  (6) Kramer and Mitchell 

(2006) 

Significant duration 𝐷𝑠 
The interval of time over which a portion 

(percentage) of the total 𝐴𝐼 is accumulated  
(7) 

Trifunac and Brady 

(1975) 

Mean period 𝑇𝑚 ∑(𝐴𝑖
2 𝑓𝑖⁄ ) ∑𝐴𝑖

2⁄   (8) 
Rathje et al. (1998) 

(1) 𝑎(𝑡): acceleration time-series, 
(2) 𝑣(𝑡): velocity time-series, 
(3) 𝑎𝑠𝑡𝑟: oscillator’s acceleration time-series, 𝜉: oscillator’s damping, 
(4) 𝑆𝑉: pseudo-spectral velocity, 

(5) 𝑀𝑆𝐹 = (15/𝑁𝑒𝑞)
𝑏
, 𝑁𝑒𝑞: number of equivalent loading cycles estimated from 𝑎(𝑡) using a peak 

counting method excluding non-zero crossing peaks, 𝑏: slope of LRC taken as 0.34.  
(6) 〈𝜒〉 = 1, for |𝑎(𝑡)| > 5 cm s2⁄ ; 0, otherwise, 
(7) 20-80% and 5-75% 𝐴𝐼 thresholds are used for the 04Sep10 and 22Feb11 earthquake simulations, 

respectively, as these intervals were shown to best describe the respective durations of the main S-wave 

motion 
(8) 𝐴𝑖: Fourier amplitudes, 𝑓𝑖: discrete Fourier transform frequencies between 0.25 and 20 Hz. 

 

 

6.4 Characteristic Results from an Individual Analysis 

Before discussing the summarized results from all analyzed SMS sites, it is useful to first 

examine in more detail key characteristics of the simulated response at an individual site and 

evaluate the associated liquefaction effects on the surface ground motion (e.g. Kramer et al. 
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2011, Youd and Carter 2005, Bouckovalas et al. 2016). Fig. 6.2 shows characteristic results 

from the effective-stress analysis carried out at the Cashmere High School (CMHS) site using 

an LPCC-based input excitation for the 22Feb11 earthquake. The left column of the figure 

presents comparisons between the observed and predicted surface ground motions, in terms of 

acceleration time-series (Figs. 6.2a and 6.2b), temporal evolution of 𝐴𝐼 (Fig. 6.2c), and 

spectral acceleration residuals 𝑦𝑆𝐴 as a function of vibration period 𝑇 (Fig. 6.2d). Note that, 

because of the low-pass filtering of the reference motions at 15 Hz (for the purpose of the 

deconvolution analysis), only the residuals for spectral periods greater than 0.08 s are shown 

in Fig. 6.2d, as well as in the remaining 𝑦𝑆𝐴 − 𝑇 plots of this chapter. The equivalent 

predictions from a total-stress analysis at the site using the same LPCC-based input excitation 

are also shown for reference. The right set of columns in Fig. 6.2 is used to show snapshots of 

the excess pore water pressure ratio 𝑟𝑢 profile at characteristic time sections (Fig. 6.2g), for 

the top 14 m of the deposit, with reference to the soil type (Fig. 6.2e) and penetration 

resistance (Fig. 6.2f) of each layer.  

While some differences between the observed and predicted ground motions are evident in 

this figure, key characteristics of the observed ground motion, such as the weakening of the 

ground acceleration following the 2-3 strong acceleration cycles between 3 and 6 s of the time 

axis in Fig. 6.2a, are well captured by the effective-stress analysis (Fig. 6.2b). This reasonably 

good agreement in the temporal evolution of the intensity is also reflected in the cumulative 

𝐴𝐼 versus time shown in Fig. 6.2c for the effective-stress analysis. In contrast, the surface 

ground motion predicted by the total stress analysis does not exhibit the same weakening of 

the shaking intensity, instead strong acceleration cycles in excess of 0.2 g amplitude continue 

up until about 8 s, with moderate amplitude cycles following thereafter (Fig. 6.2b). 

Consequently, 𝐴𝐼 (Fig. 6.2c) and spectral accelerations at vibration periods from 0.2 to about 

0.7 s (Fig. 6.2d) are significantly overpredicted by the total-stress analysis. Discrepancies 

between the effective-stress and total-stress analyses predictions are particularly notable in 

spectral accelerations at short periods (𝑇 ≲ 1.0 s) (Fig. 6.2d), while they start becoming 

prominent in the time series at about 4.5 s (Fig. 6.2b), when 𝑟𝑢 approaches 1.0 within the 

deeper weak layers of the deposit, at about 10 and 12.5 m depth from the ground surface 

(Figs. 6.2f and 6.2g). The loading cycle that follows triggers liquefaction (𝑟𝑢 ≈ 1.0) at three 

different depths in the deposit, including in the shallow critical layer near the ground surface, 

and after that time (~5 s) differences between the effective-stress analysis and the total-stress 

analysis become increasingly large (Figs. 6.2b and 6.2c).  

Excess pore water pressure build-up and liquefaction of loose soil layers result in softening of 

the soil deposit with consequent large deformations and increased soil damping, which in turn 

may significantly reduce the short-period amplitudes of the ground motion after the onset of 

liquefaction. These liquefaction effects on the ground motion due to a substantial reduction in 

effective stresses cannot be captured by the total-stress analysis which ignores the generation 

of excess pore water pressures and their effects on the stress-strain behaviour of the soil.  
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Fig. 6.2 Characteristic results from effective-stress analysis (ESA) and total-stress analysis (TSA) at the CMHS 

site using an LPCC-based input excitation, and comparisons with the surface ground motion observed at this site 

during the 22Feb11 earthquake: (a) acceleration time-series of the observed motion; (b) acceleration time-series 

of the predicted surface motions; (c) temporal evolution of 𝐴𝐼; (d) 𝑦𝑆𝐴 residuals as a function of vibration period; 

(e) stratification of simplified soil profile; (f) 𝑞𝑐1𝑁𝑐𝑠 profile; and (g) computed 𝑟𝑢 profiles at characteristic time 

sections, for the top 14 m of the deposit. 
 

 

6.5 Summary Results for the 04Sep10 Simulations 

Summarized results for the 04Sep10 earthquake simulations are illustrated in Fig. 6.3 with 

box-and-whisker plots representing the distribution of the prediction residuals 𝑦𝐼𝑀 for the 

considered 𝐼𝑀s across all 11 analyzed (non-reference) SMS sites and for each reference 

motion (i.e. CACS and RHSC) separately. Analogous plots representing the median spectral 

acceleration residuals 𝑦𝑆𝐴, and the interquartile and total (minimum to maximum of all 

residuals) ranges of 𝑦𝑆𝐴 as a function of vibration period are shown in Fig. 6.4. Prediction 

residuals for selected 𝐼𝑀s on a site-by-site basis are provided in Fig. C.5 of Appendix C. 
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Fig. 6.3 Box-and-whisker plots illustrating the distribution of the considered 𝐼𝑀 residuals for the 04Sep10 

earthquake simulations using: (a) CACS-based input motions; and (b) RHSC-based input motions. 

 

 

 

Fig. 6.4 Distribution of the spectral acceleration residuals for the 04Sep10 earthquake simulations as a function 

of vibration period using: (a) CACS-based input motions; and (b) RHSC-based input motions; thick lines 

represent the median of the distribution, shaded regions indicate the interquartile range, and dotted lines show 

the total (minimum to maximum of all residuals) range. 

 

The distribution of the residuals in Figs. 6.3 and 6.4 shows some clear differences between the 

CACS- and RHSC-based simulations. The CACS-based simulations display clear anomalies 

with significant bias for many of the considered 𝐼𝑀s including the spectral amplitudes, 

particularly at periods longer than 1 s. The RHSC-based simulations show a much better 

performance with relatively small dispersion and symmetric distribution of the residuals 

around the zero bias axis for all considered 𝐼𝑀s except for 𝑃𝐺𝐴 and 𝑇𝑚, both of which are 

generally underpredicted by the simulations. The above observations generally apply also to 

the spectral amplitudes, though the quality of the prediction somewhat varies as a function of 

the vibration period. The better performance of the RHSC-based simulations can be explained 

by the fact that, compared to the CACS site, the RHSC site has more similar orientation 

relative to the source of the 04Sep10 earthquake (source-to-site azimuth) to that of the 
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analyzed SMS sites (Fig. 5.1b) and hence more compatible source and wave propagation 

effects. 

Key energy-based ground motion metrics, such as 𝐶𝐴𝑉 and 𝐶𝐴𝑉5, are exceptionally well 

predicted by the RHSC-based simulations. Indicatively, the lower and upper quartiles of the 

residuals for these 𝐼𝑀s are about -0.10 and 0.05, respectively, implying ratios of 

𝐶𝐴𝑉𝑝𝑟𝑒𝑑 𝐶𝐴𝑉𝑜𝑏𝑠⁄  from 0.90 to 1.05. The minimum and maximum residuals are -0.17 and 

0.29, respectively, corresponding to 𝐶𝐴𝑉𝑝𝑟𝑒𝑑 𝐶𝐴𝑉𝑜𝑏𝑠⁄  ratios of 0.84 and 1.34. Kramer and 

Mitchell (2006) showed that the 𝐶𝐴𝑉5 at the bedrock level relates very well with the excess 

pore water pressure generation in overlying liquefiable soils, while more recent studies (Bray 

and Macedo 2017, Bullock et al. 2019) have used 𝐶𝐴𝑉 or modified versions of it (at the free-

field ground surface or the bedrock level) as the key ground motion 𝐼𝑀 in evaluation of 

liquefaction-induced building settlements. As noted by Kramer and Mitchell (2006), the 

values of an 𝐼𝑀 at bedrock and the ground surface are correlated, so the computed low 

dispersion from the effective-stress analyses at the ground surface corresponds to low 

dispersion at the bedrock level as well.  

It can be concluded that the RHSC-based input motions, in conjunction with the adopted 

modelling approach for the ground response, seem to provide a reasonably good prediction of 

the seismic demand induced by the 04Sep10 earthquake. The observed ground motion at 

CACS appears to have some specific features which are carried over the deconvolution and 

subsequent ground-response analyses, but they are not apparent in the observed ground 

motions at other SMS sites in Christchurch. 

 

6.6 Summary Results for the 22Feb11 simulations 

A similar format is used in this section to illustrate the results from the 22Feb11 earthquake 

simulations. In this case, results from simulations at 10 SMS sites, excluding the simulations 

at the 3 reference sites of urban Christchurch (i.e. CACS, RHSC, and SMTC), are used to 

define the distributions of the residuals for each considered reference motion. Fig. 6.5 

provides plots of the spectral acceleration residuals versus period of vibration for each 

reference motion.  

Strong biases and large dispersion of the residuals are seen for all reference motions in Fig. 

6.5. These observations reflect the significant spatial variability of ground motion in the near-

source region of the 22Feb11 earthquake. Clearly, in this case, there is no a unique reference 

motion that can be considered representative across all areas (sites) in the near-source region 

of the earthquake. In other words, the degree of representativeness of each reference motion 

varies significantly across the region, and it depends on the compatibility (similarity) of wave-

propagation and source effects between the reference site (used in the determination of the 

input motion) and the target site (used in the subsequent effective stress analysis).  
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Fig. 6.5 Distribution of the spectral acceleration residuals for the 22Feb11 earthquake simulations as a function 

of vibration period using: (a) CACS-based input motions; (b) LPCC-based input motions; (c) RHSC-based input 

motions; (d) SMTC-based input motions; thick lines represent the median of the distribution, shaded regions 

indicate the interquartile range, and dotted lines show the total (minimum to maximum of all residuals) range. 
 

Taking the above into consideration, a separate set of prediction residuals using the simulation 

with the most representative or ‘optimal’ input (reference) motion for each site was compiled. 

The source-to-site distance, source-to-site azimuth, and basin depth were the key factors 

considered in the selection of the optimal reference motion for each site. The simulation 

performances of the various reference input motions were also comparatively evaluated at 

each target SMS site to confirm or revise the initial selection based on these three principal 

factors. The spectral acceleration residuals for the optimal-input simulations are presented in 

Fig. 6.6. The respective box-and-whisker plots for the remaining 𝐼𝑀s is shown in Fig. 6.7, 

together with the prediction residuals separately for each reference input motion. The selected 

optimal reference motions for each target SMS site are reported in Fig. 6.8. 
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Fig. 6.6 Distribution of the spectral acceleration residuals for the 22Feb11 earthquake simulations as a function 

of vibration period using as input the optimal reference motion for each analysed site; thick lines represent the 

median of the distribution, shaded regions indicate the interquartile range, and dotted lines show the total 

(minimum to maximum of all residuals) range. 
 

 

 

 

Fig. 6.7 Box-and-whisker plots illustrating the distribution of the considered 𝐼𝑀 residuals for the 22Feb11 

earthquake simulations using: (a) CACS-based input motions; (b) LPCC-based input motions; (c) RHSC-based 

input motions; (d) SMTC-based input motions; and (e) the optimal input motion for each analysed site. 
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The following key observations and associated explanatory hypotheses can be made with 

respect to Figs. 6.5–6.7.  

First, there is a tendency for underprediction of short-period spectral amplitudes (𝑇 < 0.2 s) 

by the CACS-, RHSC-, and LPCC-based simulations and underprediction of 𝑃𝐺𝐴 and 

𝑃𝐺𝐴𝑀7.5 for all reference motions. Kaklamanos and Bradley (2018) observed a similar effect 

of underprediction of high-frequency motion in total-stress simulations of numerous vertical 

array records from Japan, and they attributed it to a potential breakdown in the 1D site-

response assumptions and/or the poor resolution of the shear-wave velocity profiles. In 

addition to the above effects, discrepancies in the high-frequency components of motion are 

to be expected as a result of the different analysis methods employed in the deconvolution (at 

the reference site) and convolution (at the target site), and particularly of the different 

damping formulation schemes used in these methods. Equivalent-linear analysis uses time-

invariant and frequency-independent damping, which is known to often result in 

overprediction of high-frequencies with depth during deconvolution (e.g. Roesset et al. 1995). 

On the other hand, in the nonlinear convolution analysis damping is provided by the 

hysteretic response of the S-D model, and it varies with time as the severity of shaking 

changes. A small amount of Rayleigh damping is also used in the nonlinear analysis for 

numerical stability and to provide damping at small strains where hysteretic damping is near 

zero. High-frequency motion is sensitive to the above differences in the modelling of soil 

damping between the equivalent-linear and nonlinear analyses. Rayleigh damping and 

excessive hysteretic damping of non-liquefiable layers at large strains – a result of Masing 

unload/reload rules in S-D model – in nonlinear analysis are suspected to contribute to the 

observed loss in high-frequency content in the computed motions from the present study. 

Second, the CACS-, SMTC- and RHSC-based simulations tend to overpredict the significant 

duration 𝐷5−75%, whereas the LPCC-based analyses display a severe underprediction bias. 

The latter is related to 2D and 3D basin effects which are absent from the LPCC reference 

motion, as previously discussed. On the other hand, the tendency for overprediction of 

𝐷5−75% by CACS-, SMTC- and RHSC-based simulations is likely a manifestation of strong 

path effects on duration which are neglected in the adopted amplitude-only scaling approach. 

As a result, the use of reference motions, such as CACS and SMTC, which are recorded at 

large distances from the rupture compared to the analyzed near-source sites (Table 5.1), 

produces significant overpredictions of 𝐷5−75%. These biases in strong motion duration also 

affect the predictions of other 𝐼𝑀s. For instance, it can be seen that the 𝐶𝐴𝑉 and 𝐶𝐴𝑉5 

residuals are generally consistent with the residuals of 𝐷5−75%. With regards to 𝐴𝐼, the 

opposing effects of overprediction of duration and underprediction of high-frequency motion 

seem to have a balancing effect on the median 𝐴𝐼 for the relevant simulations, but they 

contribute to the large dispersion of the residuals as the two effects alternately dominate one 

another depending on the separation distance between the reference and target sites. 

Third, the consideration of site-specific optimal reference motions reduces both the overall 

bias in the predictions and the dispersion of the residuals for nearly all examined 𝐼𝑀s (Fig. 

6.7e). By considering the optimal input motion for each target site, the use of inadequate 
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reference motions at locations with significantly different source-to-site geometry and deeper 

geological conditions from the reference site has been prevented to some extent. Yet, not all 

target sites have a suitable nearby reference site, and, hence, considerable dispersion of the 

residuals for many 𝐼𝑀s still persists (Figs. 6.6 and 6.7e). 

To get a better understanding of the source of this persisting variation in the residuals of the 

optimal-input simulations, and also to evaluate their performance at the various urban areas of 

interest, in Fig. 6.8 the residuals of key 𝐼𝑀s are examined on a site-by-site basis. Some clear 

spatial trends in the residuals of the optimal-input simulations can be observed in this figure. 

These include a general underpediction of ground motion at the CBD sites (i.e. CBGS, 

CHHC, REHS, and CCCC) and an overprediction of ground motion at sites northeast of CBD 

(HPSC and NNBS). A parallel scrutiny of the site-by-site residuals from the 04Sep10 

earthquake simulations (Fig. C5) exposes some systematic trends at specific sites, such as 

REHS and HPSC. The former is a soft peat soil site which has been previously identified (e.g. 

Bradley 2015) as a site of exceptionally large site amplification, whereas the latter site 

suffered severe liquefaction and lateral spreading in both events (Table 5.1). The 1D ground-

response analyses alone using the available reference motions cannot sufficiently explain the 

ground motions observed at these sites. A greatly improved performance of the simulations is 

evident at sites south (i.e. CMHS), west (i.e. RHSC), and north of CBD (i.e. PPHS and 

SHLC), which generally show only minor residuals. For completeness, the site-by-site 

residuals for the same 𝐼𝑀s but including all simulations, rather than only the optimal ones, are 

provided in Fig. C6 of Appendix C  

In summary, the results from the 22Feb11 earthquake simulations show that careful site-

specific selection of reference ground motions, with consideration of the key factors of spatial 

ground motion variability discussed in chapter 5, is essential to achieve a good simulation of 

the ground response in this earthquake. Based on the findings from the 22Feb11 earthquake 

simulations, a pair of reference motions has been selected for the analyses of each of the 55 

sites (Fig. 3.1). The RHSC motion has been selected for use across all sites, as it corresponds 

to relatively moderate source-to-site distance and basin depth (Fig. 5.1). In addition to RHSC, 

the LPCC, CACS, LPCC and SMTC motions have been selected, as the second reference 

motion, for use at the sites located south, west, east, and north of CBD (Fig. 5.1) respectively. 

The use of two reference motions per site serves to account for the uncertainty in the input 

motion, while still using the most representative reference motions for each urban area based 

on the findings from the analyses of the SMS sites.  
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Fig. 6.8 Prediction residuals of the optimal-input simulations on a site-by-site basis for: (a) 𝑃𝐺𝐴𝑀7.5; (b) 𝐴𝐼; (c) 

𝐶𝐴𝑉5; and (d) 𝑆𝐼. 
 

 

6.7 Summary 

The purpose of this chapter was to evaluate the performance of the derived input motions for 

effective-stress analysis of sites throughout Christchurch and scrutinize the quality of the 

analysis predictions through rigorous comparisons with available seismic recordings. To this 

end, 1D effective-stress analyses were carried out at 13 target SMS sites of urban 

Christchurch using several reference motions for the two considered earthquakes. 

Importantly, the same approach was used consistently in deriving the input motions, 

calibrating the effective-stress analysis procedure, and evaluating the quality of the 

predictions for all analyzed SMS sites and for both considered earthquakes. Results from the 

effective-stress analyses demonstrated the ability of the adopted analysis procedure to capture 

key aspects of the ground response in liquefying deposits, but they also highlighted the 

sensitivity of the predicted surface motion to the input excitation at the base. 

In the 04Sep10 earthquake simulations, the reference motion from the Riccarton High School 

(RHSC) station showed the best performance, with practically no bias in the aggregate and 
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small dispersion of the prediction residuals for nearly all examined 𝐼𝑀s. In contrast to other 

reference sites, the RHSC site has similar source-to-site azimuth to that for the majority of the 

target sites and hence more compatible (with the target sites) wave propagation and ground 

motion characteristics. A key factor for the unbiased prediction of the surface ground motions 

was the use of scaling factors that correspond to a much smoother distance-scaling of ground 

motion than that indicated by a New Zealand-specific empirical ground motion model 

(Bradley 2013) for the relevant range of source-to-site distances (Fig. 5.9b). This weaker 

attenuation of ground motion with distance was attributed to a spatially extended near-source 

saturation of ground motion as a result of the orientation of the studied sites relative to the 

earthquake rupture (Fig. 5.1b).  

In the 22Feb11 earthquake simulations, all reference input motions resulted in significant 

biases and large dispersion of the prediction residuals in the aggregate. This was attributed to 

a strong spatial variation of ground motion at the engineering bedrock level, as a result of the 

proximity of the studied sites to the causative fault rupture, and associated extended-source 

effects and strongly varying path effects. In other words, signature ground motion 

characteristics rapidly change over short distances in the near-source region of the 22Feb11 

earthquake and are significantly affected by the orientation of the sites relative to the source. 

In this case, instead of seeking for the individual reference motion that can provide the best 

performance across all sites, one should rather select site-specific (area-specific) optimal 

reference motions based on similarities in key source-to-site path characteristics (i.e. distance, 

azimuth, and basin depth) between the reference and target sites. Simulations using such site-

specific optimal reference motions based on the above criteria resulted in reduction of both 

the overall prediction bias and the dispersion of the residuals for nearly all examined 𝐼𝑀s. 

Despite these efforts, considerable bias persisted for sites in CBD and eastern Christchurch. 

The predictive capacity of the simulations in these regions is constrained by the absence of 

representative reference motions, among other factors. 

The lack of representative enough (i.e. compatible with the target site) reference motions, and 

the subsequent scaling of deconvolved motions for source-to-site distance effects are 

considered as the primary sources of errors in the estimation of input motion and prediction of 

surface ground motion at a target site. Yet, discrepancies between observed and predicted 

ground motions are also due to bias in the evaluation of site response, in both the 

deconvolution at the reference sites and the convolution at the target sites. It is important to 

note that, because of the different methods employed in these processes (i.e. equivalent-linear 

analysis in deconvolution; nonlinear effective-stress analysis in convolution), some 

discrepancies, at least in high-frequency motion, should be expected even when the target 

(convolution) site coincides with the reference (deconvolution) site. 

The comprehensive study on the ground response of the SMS sites serves as validation for the 

adopted effective-stress analysis procedure and has indicated important factors to consider in 

the analysis of the 55 case-history sites. 
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7 55 SITES: ANALYSES RESULTS AND SYSTEM-RESPONSE 

INTERPRETATION 

7.1 Introduction 

In this chapter, results from the effective-stress analyses of the 55 sites are scrutinized. The 

analyses were carried out following the proposed effective-stress analysis procedure in 

Chapter 4 and using the appropriate input motions for each site and for each considered 

earthquake based on the considerations and findings discussed in Chapters 5 and 6. In total, 

165 effective-stress analyses were performed using one input motion for each site for the 

04Sep10 earthquake and two input motions per site for the 22Feb11 earthquake.  

Despite the good performance of the 04Sep10 earthquake simulations in terms of predicted 

surface ground motions at the SMS sites (Figs. 6.3 & 6.4), the effective-stress analyses results 

at some of the 55 sites were clearly problematic for this earthquake. In particular, for a 

significant number of sites that manifested liquefaction in the 04Sep10 earthquake, triggering 

of liquefaction was not predicted at any depth in the deposit by the effective-stress analyses. It 

is worth noting that for most of these sites the simplified analyses also under-estimate 

liquefaction manifestation, and the factors of safety against liquefaction triggering at the 

critical layers for liquefaction manifestation are only marginally lower or even higher than 1. 

The underestimation of the liquefaction response by the effective-stress analysis may be 

related to the slight underprediction of the high-frequency motion (demand), as observed in 

Figs. 6.3 & 6.4, and/or inaccuracies in modelling details of the stress-strain soil behaviour and 

liquefaction resistance (capacity). It needs to be appreciated that the 04Sep10 earthquake 

corresponds to a threshold demand for liquefaction triggering of the critical layers in 

Christchurch and, given the relatively low density (liquefaction resistance) of these critical 

layers which is associated with sudden increase in excess pore water pressure and liquefaction 

triggering, small differences in the above details can relatively easily alter the predictions of 

the effective-stress analysis with respect to liquefaction triggering. This is not the case for the 

22Feb11 earthquake in which the seismic demand is high enough to cause liquefaction 

triggering early in the ground motion, for the vast majority of the investigated sites. Future 

work will attempt to resolve the above issue for the 04Sep10 earthquake simulations. 
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Given the above limitation, the system-response interpretation presented in this chapter is 

solely based on, and informed by, the effective-stress analyses results for the 22Feb11 

earthquake. Characteristic results from the effective-stress analyses for the 22Feb11 are 

provided in Appendix D, for all 55 sites. The principal aim of the interpretation of these 

results discussed in the present chapter is to break down the complex system response of 

liquefiable deposits, identify and then quantify relevant interaction mechanisms and their 

effects, and examine their influence on the development of liquefaction throughout the deposit 

and its severity of manifestation at the ground surface. In this context, deposit characteristics, 

such as the vertical continuity of liquefiable soils and the thickness of critical zone, which 

were previously identified as key differentiators between the YY-sites (sites that manifested 

liquefaction in both 04Sep10 and 22Feb11 earthquakes) and the NN-sites (sites that did not 

manifest liquefaction in either event), are herein linked to certain system response effects that 

either intensify or mitigate liquefaction manifestation. 

The chapter is organized as follows. First, the various terminologies and notations used are 

introduced. Then, effective-stress analyses results from selected sites are discussed in detail to 

illustrate characteristic examples of responses associated with different performances 

(severity of liquefaction manifestation). Following this initial scrutiny, a procedure for 

consistent analysis of the system response of liquefiable deposits and quantification of the 

relevant mechanisms and effects is presented. On this basis, five principal types of system 

responses are identified and discussed. Limitations of simplified procedures and existing 

frameworks for liquefaction damage evaluation are examined in the context of the identified 

types of system responses, and a preliminary system-response based framework for 

assessment of liquefaction manifestation is introduced. The scrutiny presented in this chapter 

highlights the important effects of system response of liquefiable deposits and demonstrates 

the potential for significant improvements in liquefaction damage assessment when such 

effects are appropriately incorporated.  

 

7.2 Terminology and Notation 

This section introduces some standard symbols and terminology that are used throughout this 

chapter.  

The following terms are used to describe key layers and zones of interest in the deposit. 

 The term critical layer (CL) refers to the layer of the simplified soil profile that, based on 

CPT profile characteristics and simplified triggering analysis, is the most likely to trigger 

and contribute to liquefaction manifestation at the ground surface. The critical layer has a 

low factor of safety, relatively low penetration resistance (𝑞𝑐1𝑁𝑐𝑠 ≈ 75 − 85) and is 

typically located at shallow depth from the ground surface (≲ 4 m). 

 The term critical zone (CZ) refers to a zone that includes the critical layer but also other 

layers of low liquefaction resistance (only slightly above that of the critical layer) which 
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are in contact with the critical layer, and hence create a vertically continuous (connected) 

zone of weak layers that is expected to work as a unit during the development of 

liquefaction and post-liquefaction through water flow and pore water pressure 

redistribution. If there are no low-resistance layers in contact with the critical layer, then 

the term critical zone (when used in such cases) simply refers to the critical layer. 

 The term triggering layer (TL) refers to a layer of the simplified profile that is not part of 

the critical zone and is predicted to liquefy by the effective-stress analysis, i.e. it develops 

relatively large maximum shear strains (𝛾𝑚𝑎𝑥 > 1%).  

 The term triggering zone (TZ) refers to a zone of interconnected triggering layers, that is, 

a vertically continuous zone of liquefied soil outside the critical zone. Multiple triggering 

zones may exist in a deposit.  

 The term nominal crust (NC) refers to the top part of the deposit from the ground surface 

to the top of the shallowest liquefiable layer (𝐼𝑐 < 2.6) below the groundwater table. Thus, 

if the soil immediately below the groundwater table is liquefiable, the bottom of the 

nominal crust coincides with the groundwater table. 

There are two general types of deposits identified in this study: 

 Deposits with vertically continuous liquefiable soils below the water table and in the top 

10 m, often simply refer to as  ‘Continuous’ deposits in this chapter, and 

 Interbedded deposits comprising liquefiable and non-liquefiable soils in a relatively fine 

sequencing that does not allow the formation of thick (vertically continuous) critical 

zones in the top 5 to 6 m from the ground surface. 

Several parameters are used to describe various layer, zone, and deposit characteristics and 

quantify their responses.  

 A subscript of the layer/zone code in parentheses is used to indicate the layer/zone each 

parameter refers to. For instance, the parameters 𝑞𝑐1𝑁𝑐𝑠(𝑇𝐿), 𝛾𝑚𝑎𝑥 (𝑇𝑍), 𝑟𝑢,𝑚𝑎𝑥 (𝐶𝑍), and 

ℎ(𝑁𝐶) denote the corrected penetration resistance of a triggering layer, maximum shear 

strain computed in the triggering zone(s), maximum excess pore water pressure ratio in 

the critical zone, and thickness of the nominal crust, respectively. 

 The subscript (𝐶𝑍 − 𝑇𝑍) refers to the part of the deposit between the critical zone and the 

shallowest triggering zone below the critical zone. For instance, 𝐻𝑁𝐿(𝐶𝑍−𝑇𝑍) refers to the 

cumulative thickness of non-liquefiable (NL) soil between the critical zone and the 

shallowest triggering zone below the critical zone.  

 Similarly, the subscript (0 − 𝑧) refers to the part of the deposit from the ground surface to 

depth 𝑧 below the ground surface. 

 A subscript 𝛾 is used to refer to the soil portions of a zone that were predicted to liquefy in 

the effective-stress analysis and develop large maximum shear strains (𝛾𝑚𝑎𝑥 > 1%). 

While the triggering zone is by definition a zone of liquefied soil, the critical zone may 

not necessarily (and completely) liquefy in the effective stress analysis. Hence, the 

parameters ℎ𝛾(𝐶𝑍), 𝑧𝛾(𝐶𝑍), and 𝐼𝑐𝛾(𝐶𝑍) with the characteristic subscript 𝛾 denote the 
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thickness of the liquefied part of the critical zone, the depth to the top of the liquefied part 

of the critical zone, and the average soil behaviour type of the liquefied part of the critical 

zone, respectively. 

 Similarly, a subscript 𝑟𝑢 is used to refer to soils in the deposit that develop large excess 

pore water pressures associated with soil liquefaction (𝑟𝑢 ≈ 1). Note that soils with 𝑟𝑢 ≈ 1 

may not have necessarily develop large maximum shear strains in the analysis (shaking-

induced liquefaction). For example, the parameter ℎ𝑟𝑢(𝐶𝑍) denotes the thickness of a 

vertically continuous zone of soil with 𝑟𝑢 ≈ 1 that includes part of the critical zone but it 

may also extend beyond it to include layers which did not liquefy during shaking (𝛾𝑚𝑎𝑥 <

1%) but liquefy due to seepage action reaching 𝑟𝑢 ≈ 1. 

 A lowercase ℎ denotes the thickness of a continuous soil zone with certain characteristics, 

whereas an uppercase 𝐻 denotes the cumulative thickness of zones and layers with certain 

characteristics which are not necessarily connected. For instance, the parameter 𝐻𝛾(𝑇𝑍) 

denotes the cumulative thickness of the various triggering zones in the deposit, whereas 

the parameter ℎ𝛾(𝑇𝑍),𝑚𝑎𝑥 refers to the maximum thickness of a connected triggering zone 

(with 𝛾𝑚𝑎𝑥 > 1%). 

Some additional parameters are used to characterize the timing of liquefaction, effects of 

liquefaction on the seismic demand, and dissipation effects in the deposit. 

 The Husid function of the input motion at the base of the soil-column (ℋ𝑏(𝑡)), defined as 

the cumulative Arias Intensity at a given time 𝑡 normalized by the total Arias Intensity 

accumulated throughout the duration of shaking (e.g. Fig. 5.9), is used to express the 

timing of liquefaction in a reference layer/zone (e.g. CZ or TZ) relative to the temporal 

evolution of the intensity of the input excitation. Thus, the symbol ℋ𝑏,𝑡𝑟(𝑇𝑍) is used to 

denote the value of the Husid function at the base of the soil column at the time of first 

liquefaction triggering outside the critical zone (in the triggering zone that liquefies first). 

Values of ℋ𝑏,𝑡𝑟(𝑇𝑍) closer to 0 indicate early triggering of liquefaction (at an early stage 

of loading) in the triggering zone, whereas values of ℋ𝑏,𝑡𝑟(𝑇𝑍) approaching 1 correspond 

to late triggering of liquefaction (closer to the end of shaking). Similarly, ℋ𝑏,𝑡𝑟(𝐶𝑍) 

denotes the value of the base Husid function at the time of first liquefaction triggering in 

the critical zone. 

 The effects of pore water pressure generation and liquefaction on the seismic demand are 

characterized by an Arias Intensity Ratio (𝐴𝐼𝑅) defined as the ratio of the Arias Intensity 

demand at a given depth or layer (typically the critical layer) predicted by the effective-

stress analysis to the Arias Intensity predicted at the same depth or layer by an equivalent 

total-stress analysis in which pore water pressure development was suppressed (while all 

else being equal, as the same constitutive model was used for both the effective-stress and 

total-stress analyses).  

 Among other parameters, two depth parameters are used to describe and quantify effects 

from the dissipation of excess pore water pressures in the deposit. 𝑧𝑚𝑎𝑥@𝑢𝑒≥𝜎𝑣𝑜(𝐶𝑍)
′  or 

simply 𝑧𝑚𝑎𝑥 denotes the maximum depth in the deposit where the excess pore water 
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pressure has reached values equal to or greater than the initial vertical effective stress at 

the top of the critical zone. 𝑧𝑚𝑖𝑛@𝑟𝑢≥0.7 or simply 𝑧𝑚𝑖𝑛 denotes the minimum depth in the 

deposit where the excess pore water pressure ratio has, at some point of the analysis 

including during dissipation, reached or exceeded 0.7.  

The various terms and notations introduced above will become clearer in the following 

sections once they are discussed and illustrated in the context of specific responses of 

deposits. The reader is advised to refer back to this section for clarifications, when deemed 

necessary.  

 

7.3 Detailed Analyses Results for Selected Sites 

7.3.1 Example response for a YY-site in Avondale 

Figs. 7.1a and 7.1b show the simplified CPT profile (𝑞𝑐1𝑁𝑐𝑠 values and characteristic soil 

units based on 𝑞𝑐 and 𝐼𝑐) and 𝑉𝑝 profile, respectively, for an example site in Avondale 

(northeast Christchurch; CPT_29035) which manifested severe liquefaction effects (large 

volumes of ejected material) including lateral spreading in both 04Sep10 and 22Feb11 

earthquakes (YY-site). The deposit of this site is comprised of fully saturated (𝑉𝑝 >

1500 m/s) and vertically continuous liquefiable soils below the shallow water table and 

includes several low resistance layers in the top 6 m. Results from simplified triggering 

analyses using the Boulanger and Idriss (2014) procedure, as discussed in section 3.5, are 

presented in Figs. 7.1c and 7.1d for both earthquakes and indicate the presence of a shallow, 

thick, and continuous critical zone (CZ) connecting the low resistance layers at various depths 

from 1.9 m to 6 m from the ground surface. The factor of safety (𝐹𝑆𝐿) in the weakest layers of 

the critical zone is only slightly lower than 1 in the case of the 04Sep10 earthquake but 

significantly lower for the 22Feb11 earthquake. Layers with similarly low or only slightly 

greater 𝐹𝑆𝐿 value than the lowest 𝐹𝑆𝐿 obtained for the shallow critical zone, are also present 

at larger depth of about 8 m. The results obtained from the simplified triggering analyses were 

used in the evaluation of liquefaction damage indices, 𝐿𝑃𝐼 and 𝐿𝑆𝑁, with the respective 

predictions shown in Figs. 7.1e and 7.1f. Both indices suggest severe liquefaction effects and 

surface manifestation for the 22Feb11 earthquake (𝐿𝑃𝐼 > 15 and 𝐿𝑆𝑁 > 30), in agreement 

with the observed liquefaction manifestation at this site, but they show diverging estimations 

of the severity of manifestation for the 04Sep10 earthquake, from none-to-minor (𝐿𝑃𝐼 < 5) to 

moderate-to-major (𝐿𝑆𝑁 ≈ 20) manifestation. 
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Fig. 7.1 Soil profile characteristics and simplified analysis results for the Avondale YY-site (CPT_29035): (a) 

𝑞𝑐1𝑁𝑐𝑠 values and characteristic soil units illustrated with different colours based on 𝐼𝑐 (for interpretation of the 

references to colour refer to section 3.4); (b) 𝑉𝑝 profile; (c) 𝐹𝑆𝐿 values for the 04Sep10 earthquake; (d) 𝐹𝑆𝐿 

values for the 22Feb11 earthquake and identified critical zone (CZ); (e) 𝐿𝑃𝐼; (f) 𝐿𝑆𝑁, for the top 11 m of the 

deposit.  

 

Results from effective-stress analysis of the Avondale site for the 22Feb11 earthquake are 

illustrated in Fig. 7.2 in terms of acceleration and excess pore water pressure (𝑢𝑒) time 

histories at selected depths. Excess pore water pressures develop rapidly in the critical zone 

(𝑧 = 3.8 m) and also in the deeper weak soil layers (𝑧 = 8.2 m), below the critical zone. 

Liquefaction is triggered (𝑢𝑒 ≈ 𝜎𝑣𝑜
′ ) within the first two strong acceleration cycles from 

approximately 5.5 to 8 s (of the computational time) first in the critical zone, but also almost 

concurrently in the deeper soils below the critical zone. Effects of liquefaction are evident in 

the acceleration time-series at the ground surface with the abrupt change in the frequency 

content and reduction of acceleration amplitudes following initial liquefaction. Pore water 

pressure redistribution through upward flow of water can be clearly seen in the 𝑢𝑒 time-

histories following the end of strong shaking after about 𝑡 = 20 s. Migration of pore water 

from areas of higher hydraulic head (higher excess pore water pressure) towards areas with 

lower hydraulic head (lower excess pore water pressure) is manifested in the gradual 

reduction of excess pore water pressure in the deeper triggering zone which developed the 

highest excess pore water pressure in the deposit (𝑢𝑒 ≈ 90 at 𝑧 = 8.2 m), the prolonged state 

of liquefaction (𝑢𝑒 ≈ 𝜎𝑣𝑜
′ ) in the critical zone (𝑧 = 3.8 m) as it is subjected to a continuous 
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supply of water from deeper soils of higher hydraulic head, and the gradual increase of excess 

pore water pressure above the critical zone (𝑧 = 2.3 m) due to upward flow of water from the 

liquefied critical zone towards the ground surface.  

 

 

Fig. 7.2 Effective-stress analysis results at selected depths for the Avondale YY-site: (a) acceleration time 

histories; (b) excess pore water pressure time histories. 
 

Fig. 7.3 illustrates excess pore water pressures at specific time sections and computed 

maximum shear strains in the effective stress analysis for the Avondale site throughout the top 

11 m of the deposit. The 𝑢𝑒 isochrones in Fig. 7.3b correspond to the time of first triggering 

of liquefaction in the deposit (𝑡𝑡𝑟(𝐶𝑍) ≈ 7.2 s), which occurs simultaneously in the two layers 

of the CZ with the lowest 𝐹𝑆𝐿 (Fig. 7.1d), and the time of liquefaction triggering in the deeper 

triggering zone (𝑡𝑡𝑟(𝑇𝑍) ≈ 7.8 s) at 8 m. The triggering of liquefaction occurs first in the 

critical zone when about half of the energy of the input excitation (ℋ𝑏,𝑡𝑟(𝐶𝑍) = 0.49) has 

been transmitted to the soil-column, whereas the triggering zone at depth liquefies when 

ℋ𝑏,𝑡𝑟(𝑇𝑍) = 0.61. Note in Fig. 7.3b that when the deeper triggering zone liquefies, the 

majority of the critical zone is already at a liquefied state (𝑢𝑒 ≈ 𝜎𝑣𝑜
′ ). The liquefied critical 

zone (Fig. 7.3c) is characterized by relatively shallow depth (𝑧𝛾(𝐶𝑍) = 2.5 m), large thickness 

(ℎ𝛾(𝐶𝑍) = 3.7 m), and development of large maximum shear strains (𝛾𝑚𝑎𝑥 (𝐶𝑍) > 3%, 

predominantly 4 − 6%). Slightly less severe liquefaction effects develop in the higher 

resistance (𝑞𝑐1𝑁𝑐𝑠(𝑇𝑍) ≈ 110) triggering zone at 𝑧𝛾(𝑇𝑍) = 8 m with a total thickness of 

liquefaction ℎ𝛾(𝑇𝑍) = 0.6 m and 𝛾𝑚𝑎𝑥(𝑇𝑍) somewhat smaller than 𝛾𝑚𝑎𝑥(𝐶𝑍). 
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Fig. 7.3 Key response characteristics and parameters for the Avondale YY-site in the effective stress analysis: 

(a) soil profile; (b) excess pore water pressures at specific time sections, 𝑡𝑡𝑟(𝐶𝑍) = 7.2 s and 𝑡𝑡𝑟(𝑇𝑍) = 7.8 s; (c) 

computed maximum shear strains; (d) excess pore water pressures during dissipation (𝑡𝑒𝑛𝑑 = 31 s), for the top 

11 m of the deposit.  
 

Following the end of the strong shaking, the water flow resulting from the dissipation of the 

excess pore water pressures causes an additional disturbance of the already liquefied soil in 

the critical zone and also an increase in the excess pore water pressures of soils which are in 

contact with the critical zone both below and above it (Fig. 7.3d). The critical liquefied zone 

is therefore ‘expanded’ forming a continuous zone of 𝑢𝑒 ≈ 𝜎𝑣𝑜
′  with a total thickness of 

ℎ𝑟𝑢(𝐶𝑍) ≈ 5.5 m. Excess pore water pressures with 𝑟𝑢 = 𝑢𝑒 𝜎𝑣𝑜
′⁄ ≥ 0.7 develop up to a 

minimum depth of 𝑧𝑚𝑖𝑛 = 1.9 m from the ground surface, for the considered analysis 

duration (~400 s). Also, high excess pore water pressures in excess of those at the top of the 

critical zone (𝑢𝑒(𝐶𝑍)) have been developed up to a depth of 𝑧𝑚𝑎𝑥 = 10 m. These deeper soils 

of high excess pore water pressure will supply additional water and sustain the upward inflow 

of water into the continuous ‘liquefied’ zone and further towards the ground surface. In effect, 

the entire deposit below the groundwater table from 𝑧𝑚𝑎𝑥 = 10 m to 𝑧𝑚𝑖𝑛 = 1.9 m is 

vertically connected through the high excess pore water pressures and water flow, and 

contribute to the severity of liquefaction manifestation at the ground surface. The nominal 

crust above the groundwater table has a relatively small thickness (ℎ(𝑁𝐶) = 1.9 m) and is 

largely composed of liquefiable materials. For such ground conditions, it is anticipated that 

the liquefiable crust layer will be subject to seepage-induced liquefaction and 
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cracking/fissuring under the hydraulic pressures from the upward water (fluidized soil) flow, 

and therefore, the ‘crust’ cannot have any mitigating effects on the liquefaction manifestation 

at the ground surface.  

It is important here to recognize the limitations of the effective-stress analysis in accurately 

simulating specific liquefaction phenomena and soil response characteristics in different 

phases of the response (e.g. in the post-triggering phase and particularly during the post-

liquefaction re-consolidation). As the soil approaches a state of zero effective stress and its 

phase transforms, from a solid into a fluidized state, key parameters of the reconsolidation 

process, such as the soil compressibility and hydraulic conductivity can change dramatically 

and be further exacerbated due to effects of void redistribution, and development of 

nonuniformities and discontinuities through layers and the deposit as a whole. Such dramatic 

changes in the post-liquefaction response of the soil (deposit) cannot be rigorously considered 

in the dynamic effective stress analysis based on the continuum approach. Hence, the above 

description of the dissipation effects on the deposit and the reported values for the parameters 

used to quantify the relevant mechanisms are only indicative of what may (and is anticipated 

to) actually occur during the dissipation process. In fact, the dissipation effects can be much 

more dramatic as larger amounts of water are expelled from the liquefied soils and at a higher 

rate than that predicted by the effective stress analysis. With this background in mind, a 

reduced threshold value of 𝑟𝑢 = 0.7 has been herein adopted to define 𝑧𝑚𝑖𝑛 and ℎ𝑟𝑢(𝐶𝑍) (Fig. 

7.3d) and to approximately indicate areas that develop high excess pore water pressures 

during the reconsolidation phase and are likely to undergo seepage-induced liquefaction. 

Specific criteria for hydraulic fracturing and creation of discontinuities for different crust 

conditions and deposit responses are beyond the scope of this thesis.  

7.3.2 Example response for an NN-site in Hoon Hay 

Fig. 7.4 presents the simplified CPT profile (𝑞𝑐1𝑁𝑐𝑠 values and characteristic soil units), 𝑉𝑝 

profile, and simplified analyses results (𝐹𝑆𝐿 , 𝐿𝑃𝐼, and 𝐿𝑆𝑁) for an example site in Hoon Hay 

(southwest Christchurch; CPT_36417) which did not manifest liquefaction in any of the 

events of the Canterbury earthquake sequence (NN-site). The top 11 m of the soil deposit 

consist of interbedded liquefiable soils (silty sands, non-plastic or low-plasticity silts) of low 

tip resistance and non-liquefiable plastic silts. The measured 𝑉𝑝 values from the cross-hole test 

show effects of partial saturation (𝑉𝑝 < 1500 m/s) in the deposit from the ground surface up 

to a depth of about 4.4 m including the shallowest liquefiable layer at 2.7 m depth. Assuming 

full saturation below the groundwater table, the simplified triggering analyses predict low 

𝐹𝑆𝐿, less than 0.5 for the 04Sep10 earthquake and less than 0.4 for the 22Feb11 earthquake, 

for all liquefiable layers in the deposit. The shallowest of these layers at 2.7 m depth is hence 

considered as the critical layer (zone) for liquefaction manifestation at the ground surface. 

The 𝐿𝑃𝐼 values calculated using the results from the triggering analyses (again without 

considering the effects of partial saturation on 𝐶𝑅𝑅) indicate severe liquefaction 

manifestation for both earthquakes (𝐿𝑃𝐼 > 15), whereas somewhat reduced effects (major 

liquefaction manifestation) are estimated based on 𝐿𝑆𝑁 (20 < 𝐿𝑆𝑁 < 30). Yet, both indices 
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heavily over-estimate the liquefaction manifestation at the Hoon Hay site, for both 

earthquakes, as no liquefaction effects were observed at the site. 

 

 

Fig. 7.4 Soil profile characteristics and simplified analysis results for the Hoon Hay NN-site: (a) 𝑞𝑐1𝑁𝑐𝑠 values 

and characteristic soil units illustrated with different colours based on 𝐼𝑐 (for interpretation of the references to 

colour refer to section 3.4); (b) 𝑉𝑝 profile; (c) 𝐹𝑆𝐿 values for the 04Sep10 earthquake; (d) 𝐹𝑆𝐿 values for the 

22Feb11 earthquake and identified critical layer/zone; (e) 𝐿𝑃𝐼; (f) 𝐿𝑆𝑁, for the top 11 m of the deposit; effects of 

partial saturation (𝑉𝑝 < 1500 𝑚/𝑠) on the 𝐶𝑅𝑅 of the critical layer have not been considered in the calculation 

of 𝐹𝑆𝐿 and damage indices. 

 

Fig. 7.5 shows characteristic acceleration and excess pore water pressure time histories 

obtained from the effective-stress analysis of the Hoon Hay site using an LPCC-based input 

motion for the 22Feb11 earthquake. In addition, characteristics of the computed response 

throughout the depth of the deposit in terms of excess pore water pressures, Arias Intensity, 

and maximum shear strains are illustrated in Fig. 7.6.  
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Fig. 7.5 Effective-stress analysis results at selected depths for the Hoon Hay NN-site: (a) acceleration time 

histories; (b) excess pore water pressure time histories. 
 

 

Due to the close proximity of the Hoon Hay site to the causative fault of the 22Feb11 

earthquake and the shallow depth to the volcanic bedrock, high accelerations reach the 

shallow part of the deposit at 13 m (Fig. 7.5a). The high seismic demand induces liquefaction 

first in the two layers with the lowest tip resistance (𝑞𝑐1𝑁𝑐𝑠(𝑇𝑍) = 75 − 77; as shown in Fig. 

7.6b) in the deposit within the first 2-3 seconds of strong shaking, when ℋ𝑏,𝑡𝑟(𝑇𝑍) is only 

0.21. As illustrated in Fig. 7.5b, the excess pore water pressures in the first two triggering 

layers increase abruptly from 0 to 𝜎𝑣𝑜
′  and remain practically at 𝜎𝑣𝑜

′  for the remaining part of 

the excitation, a response indicative of the highly contractive behaviour of the soil in these 

loose layers. Large maximum shear strains (𝛾𝑚𝑎𝑥(𝑇𝑍)) in excess of 8% develop in the two 

loosest layers, whereas maximum shear strains associated with triggering of liquefaction 

develop also in a number of other layers resulting in cumulative thickness of liquefied soil 

(outside the critical zone) 𝐻𝛾(𝑇𝑍) = 4.6 m between 𝑧𝛾(𝑇𝑍) = 4.7 m and 11 m. The 

combination of a significant high-frequency content in the input excitation and the early 

triggering of liquefaction in loose and relatively thick zones results in a liquefaction-induced 

‘seismic isolation’ effect where, upon triggering of liquefaction in the loose layers at depth, 

strong de-amplification of the high-frequency shear waves takes place in the triggering zones 

resulting in reduced seismic demand for the overlying soils. This is clearly illustrated in Fig. 

7.6c where the Arias Intensity demand in the critical layer predicted by the effective-stress 

analysis is seen to be only 16% of that predicted by an equivalent total-stress analysis 

(𝐴𝐼𝑅(𝐶𝐿) = 0.16). This extreme reduction of the seismic demand in the critical layer, in 

conjunction with partial saturation effects (𝑉𝑝(𝐶𝐿) ≈ 900 m/s) on its 𝐶𝑅𝑅, which is now 

modelled in the effective-stress analysis as per Fig. 4.8, effectively prevent occurrence of 
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liquefaction in the critical layer during shaking. In addition, the presence of thick non-

liquefiable layers above the shallowest triggering layer (𝐻𝑁𝐿(𝐶𝑍−𝑇𝑍) = 1.3 m) does not allow 

any seepage effects (𝑧𝑚𝑖𝑛 = 𝑧𝛾(𝑇𝑍)) and vertical ‘communication’ of excess pore water 

pressures between the triggering zones and the critical layer. Minor excess pore water 

pressures and shear strains develop in the critical layer (𝑟𝑢(𝐶𝐿) = 0.3 and 𝛾𝑚𝑎𝑥(𝐶𝐿) = 0.3%). 

This effectively results in a non-liquefied (stiff) crust from the ground surface to 𝑧𝑚𝑖𝑛 =

4.7 m, the majority of which (𝐻𝑁𝐿(0−𝑧𝑚𝑖𝑛) = 3.4 m) is comprised of non-liquefiable soils. 

Under these conditions, the liquefaction at depth below 4.7 m would be unlikely to manifest 

at the ground surface for the level of the seismic demand imposed by the 22Feb11 earthquake 

(i.e. Mw6.2 event with a relatively small number of significant cycles or short duration of 

strong shaking).  

 

 

Fig. 7.6 Key response characteristics and parameters for the Hoon Hay NN-site in the effective stress analysis: 

(a) soil profile; (b) excess pore water pressures at specific time sections, 𝑡𝑡𝑟(𝑇𝑍) ≈ 6 s and 𝑡𝑒𝑛𝑑 ≈ 15 s (end of 

shaking); (c) Arias Intensity from the effective-stress analysis (ESA) and an equivalent total stress analysis 

(TSA); (d) computed maximum shear strains, for the top 11 m of the deposit. 
 

Fig. 7.7 compares side-by-side key characteristics of the responses of the above described YY 

(Avondale) and NN (Hoon Hay) sites. Both sites are subjected to high input demand, undergo 

liquefaction and develop large ground deformations with peak horizontal displacements at the 

ground surface (𝐷𝑐𝑦𝑐,𝑚𝑎𝑥) in the order of 15 to 20 cm, relative to the ground displacement at 

11 m depth. Note that this amount of relative horizontal displacements for the demand levels 

of the 22Feb11 earthquake is generally consistent with observations from vertical array 
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records at liquefied sites from other historical events (e.g. Pease and O’Rourke 1997, 

Cubrinovski et al. 2000). A critical difference in the responses of the YY- and NN-sites is the 

location of liquefaction in the subsurface profile. In the NN-site (Fig. 7.7b), severe 

liquefaction occurs within weak layers at relatively large depths and results in a substantial 

reduction in the demand for the critical layer at shallow depth. In the YY-site (7.7a), severe 

liquefaction occurs in the critical zone at shallow depth. The triggering of liquefaction in the 

deeper denser layers occurs later in the ground motion and has only minor effect on the 

demand reaching the critical zone. This difference in the depth of liquefaction occurrence is 

critical for the manifestation of liquefaction at the ground surface and the impacts on 

shallowly founded structures and buried utilities (e.g. embedment depths of the potable water 

and wastewater pipelines in Christchurch are generally less than 3.5 m from the ground 

surface). Note, however, that the responses of the two sites could have been equally damaging 

to pile-supported structures with their foundations extended through the liquefied zones, but 

such structures were not present in the residential areas encompassing the studied sites. In 

addition to the location of shaking-induced liquefaction in the soil profile, the vertical 

communication of the developed excess pore water pressures in the case of the YY-deposit 

which is composed of vertically continuous liquefiable soils, or the absence of it in the case of 

the interbedded NN-deposit, is another critical factor for the severity of liquefaction 

manifestation at the ground surface that differentiates between the performances of YY and 

NN sites. 

 

 

Fig. 7.7 Comparison of Arias Intensity, maximum shear strain, and maximum horizontal displacement (relative 

to the ground displacement at 11 m) profiles obtained from the effective stress analyses: (a) Avondale YY-site 

(left); (b) Hoon Hay NN-site (right). 
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7.3.3 Example responses for two NY-sites 

The responses of two NY-sites, i.e. sites that did not manifest liquefaction in the 04Sep10 

earthquake but did manifest in the 22Feb11 earthquake, are discussed in this subsection. One 

site is in Hoon Hay (CPT_57340; at about 1 km distance from the NN-site discussed in the 

previous section) and manifested minor liquefaction in the 22Feb11 earthquake, whereas the 

other site is in Shirley suburb (northeast Christchurch; CPT_57366) and manifested severe 

liquefaction in the 22Feb11 event.  

Effective stress analyses results for the Hoon Hay site are shown in Fig. 7.8 in terms of 𝑢𝑒 and 

𝛾𝑚𝑎𝑥 for the top 11 m of the deposit, for both 04Sep10 and 22Feb11 earthquake simulations. 

Different types of response are observed in the two simulations.  

In the analysis for the 04Sep10 earthquake, liquefaction is first triggered in the low tip 

resistance (𝑞𝑐1𝑁𝑐𝑠(𝑇𝐿) = 74) silt layer at 𝑧𝛾(𝑇𝑍) = 4.8 m depth. Two additional low tip 

resistance layers at depths from 8.5 m to 9.3 m also liquefied at a later stage of shaking. The 

liquefied loose layers develop large maximum shear strains (𝛾𝑚𝑎𝑥(𝑇𝑍) ≈ 7.5 − 9%) and have 

relatively small cumulative thickness of 𝐻𝛾(𝑇𝑍) = 1.1 m. For the 04Sep10 earthquake, no 

liquefaction triggering is predicted in the critical zone. A thick crust is therefore formed from 

the ground surface to 𝑧𝑚𝑖𝑛 = 𝑧𝛾(𝑇𝑍) = 4.8 m with large cumulative thickness of non-

liquefiable soil 𝐻𝑁𝐿(0−𝑧𝑚𝑖𝑛) = 2.8 m and insignificant pore water pressure response 

developing in the shallow liquefiable soils. The predicted response of the considered NY-site 

to the 04Sep10 earthquake can explain the absence of liquefaction manifestation for this 

earthquake.  

In the 22Feb11 earthquake simulation, liquefaction is triggered at an early stage of loading 

simultaneously in the critical zone and in the deeper (triggering) zone (co-triggering). The 

higher demand of this earthquake in the immediate near-source region causes liquefaction of 

nearly all liquefiable soils in the shallow deposit resulting in cumulative thickness of liquefied 

soil 𝐻𝛾(𝑇𝑍) = 3.7 m below the critical zone and ℎ𝛾(𝐶𝑍) = 0.7 m in the critical zone. A thick 

non-liquefiable layer of thickness 𝐻𝑁𝐿(𝐶𝑍−𝑇𝑍) = 1.9 m separates the critical zone from the 

deeper triggering zone, thus preventing the formation of continuous thick liquefied zones 

through vertical ‘communication’ of their excess pore water pressures. Seepage effects in the 

crust above the critical zone are also restricted by the presence of non-liquefiable soils with 

total thickness 𝐻𝑁𝐿(0−𝑧𝑚𝑖𝑛) = 0.9 m. The small thickness of the critical zone and the absence 

of system-response mechanisms that could intensify the severity of liquefaction manifestation 

at the ground surface can explain the minor liquefaction manifestation observed at this site 

after the 22Feb11 earthquake. 
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Fig. 7.8 Key response characteristics for the Hoon Hay NY-site (CPT_57340): (a) soil profile; (b) excess pore 

water pressures at specific time sections, 𝑡𝑡𝑟(𝑇𝑍) and 𝑡𝑒𝑛𝑑 (end of shaking) for the 04Sep10 earthquake; (c) 

computed maximum shear strains for the 04Sep10 earthquake; (d) excess pore water pressures at specific time 

sections, 𝑡𝑡𝑟(𝑇𝑍) ≈ 𝑡𝑡𝑟(𝐶𝑍) and 𝑡𝑒𝑛𝑑 (end of shaking) for the 22Feb11 earthquake; (e) computed maximum shear 

strains for the 22Feb11 earthquake, for the top 11 m of the deposit. 
 

Key characteristics of the response of the Shirley site to the 22Feb11 earthquake are 

illustrated in Fig. 7.9. This site has a critical zone of relatively low tip resistance layers 

(𝑞𝑐1𝑁𝑐𝑠(𝐶𝑍) = 84 − 111) at depths from 3.2 m to 4.6 m. Low tip resistance (𝑞𝑐1𝑁𝑐𝑠 = 78 −

89) liquefiable layers are also encountered at greater depths, from 6.7 to 7.5 m from the 

ground surface. Importantly, the deposit is entirely composed of liquefiable soils below the 

nominal crust. The effective-stress analysis for the 22Feb11 earthquake predicts triggering of 

liquefaction first in the layer with the lowest 𝑞𝑐1𝑁𝑐𝑠 at 6.7 m depth. The relatively high 

demand in this earthquake extended the liquefaction front over a triggering zone of thickness 

ℎ𝛾(𝑇𝑍) = 1.5 m which includes the first triggering layer as well as adjacent layers of low tip 

resistance. Large maximum shear strains in excess of 4% developed throughout this liquefied 

zone. The development of liquefaction at depth results in a substantial reduction of the 

seismic demand for the overlying layers. Consequently, the Arias Intensity reaching the 

critical zone at 4.5 m depth is only 33% of that corresponding to an equivalent total stress 

analysis (𝐴𝐼𝑅(𝐶𝑍) = 0.33). As a result of this significant reduction in the demand, the critical 

zone does not liquefy during the shaking and develops only limited maximum shear strain 

(𝛾𝑚𝑎𝑥(𝐶𝑍) = 0.3%). However, significant excess pore water pressures develop in the critical 
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zone due to dissipation of excess pore water pressures from the liquefaction in the deeper 

triggering zone. In fact, following the end of strong shaking, a continuous zone with 𝑢𝑒 ≈ 𝜎𝑣𝑜
′  

is formed from 𝑧𝑚𝑖𝑛 = 3.2 m to about 8 m depth. This ℎ𝑟𝑢(𝐶𝑍) ≈ 5 m thick zone includes 

both the deeper triggering zone and the shallower critical zone, as well as in-between layers of 

higher penetration resistance. As large amounts of water seep out of the triggering zone 

towards the shallower soils, severe liquefaction effects including large shear strains (if 

earthquake shaking has not been completely ceased during this process), and consequently 

large re-consolidation volumetric strains may take place also in the shallow soils which were 

not predicted to liquefy during the strong shaking. The presence of the impervious non-

liquefiable layer atop the critical zone can further exacerbate these effects by impeding the 

dissipation of excess pore water pressures towards the ground surface (‘water film’ effect) 

which may prolong the duration of high excess pore water pressures in the ℎ𝑟𝑢(𝐶𝑍) zone. The 

large thickness of soils affected by high excess pore water pressures, vertical continuity of 

liquefaction, and the potentially severe effects induced by seepage and void redistribution can 

explain the severe liquefaction manifestation observed at the Shirley site after the 22Feb11 

earthquake. No triggering of liquefaction was predicted in the 04Sep10 earthquake simulation 

for this NY-site.  

 

 

Fig. 7.9 Key response characteristics and parameters for the Shirley NY-site (CPT_57366): (a) soil profile; (b) 

computed maximum shear strains; (c) Arias Intensity from the effective-stress analysis (ESA) and an equivalent 

total stress analysis (TSA); (d) excess pore water pressures at specific time sections, 𝑡𝑡𝑟(𝑇𝑍) and 𝑡𝑒𝑛𝑑 (end of 

shaking), for the top 11 m of the deposit. 
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7.4 Analysis and Quantification of System Response 

The above detailed scrutiny of the effective-stress analyses results was applied to all 55 sites. 

Lessons learned from this exercise were used to develop a procedure that can be consistently 

used, for all types of deposits and their specific responses, to break down the system response 

mechanisms and quantify their effects on the evolution and manifestation of liquefaction. The 

developed procedure for the analysis and quantification of system response is illustrated in the 

flow chart of Fig. 7.10. 

Several steps are involved in the adopted procedure. The first step entails the determination of 

the critical layer (CL) and critical zone (CZ) in the deposit. To this end, CPT profile 

characteristics and a simplified triggering analysis are used to identify the layers with the 

lowest factors of safety and their location within the deposit (depth from the ground surface). 

Key considerations involved in the selection of critical layers (zones) and illustrative 

examples have been discussed in Chapter 3. Then, the timing of liquefaction triggering in the 

critical zone (ℋ𝑏,𝑡𝑟(𝐶𝑍)) and the timing of first liquefaction triggering outside the critical zone 

(ℋ𝑏,𝑡𝑟(𝑇𝑍)) are identified.  If liquefaction is first triggered outside the critical zone and the 

liquefaction effects in the triggering zone(s) are substantially more severe than the effects in 

the critical zone, e.g. there is either no triggering of liquefaction or ‘marginal’ liquefaction 

associated with late triggering (ℋ𝑏,𝑡𝑟(𝑇𝑍) ≪ℋ𝑏,𝑡𝑟(𝐶𝑍)), then the deeper liquefaction of the 

triggering zones is expected to dominate the system response. In this case (deep liquefaction), 

the subsequent steps in the analysis are primarily focused on quantifying the mechanisms 

governed by deep liquefaction. Otherwise, in cases when liquefaction is either triggered first 

in the critical zone or simultaneously (with small difference in ℋ𝑏,𝑡𝑟) triggered in the critical 

and triggering zones (shallow liquefaction), the quantification starts from the liquefied critical 

zone, and then proceeds with the evaluation of potential intensifying and mitigating 

mechanisms, from below and above it. In either case, all identified mechanisms of system 

response can be quantified and the distinction between S (for shallow liquefaction) and D (for 

deep liquefaction) simply provides more logical pathways to interpret and relate the sequence 

of different mechanisms and their compound effects on the deposit response and liquefaction 

manifestation at the ground surface. 
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Fig. 7.10 Analysis and quantification of system response: sequence of steps and quantification parameters. 

 

 

7.5 Characteristic Types of System Response 

Consistent application of the developed procedure to the effective-stress analyses results for 

the 55 sites led to the identification of clusters of sites with similar response characteristics 

(i.e. similar values for the majority of the parameters used in the quantification). The 

identified clusters were organized into the following main types of system response: 
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 Shallow liquefaction in vertically ‘Continuous’ deposit (SC-response), where the most 

severe liquefaction effects occur in the critical zone at shallow depth and the deposit is 

largely composed of vertically continuous liquefiable soils. 

 Deep liquefaction in ‘Interbedded’ deposit (DI-response), where triggering of liquefaction 

occurs only at a relatively large depth and the deposit consists of interbedded liquefiable 

and non-liquefiable soils. 

 Shallow liquefaction in ‘Interbedded’ deposit (SI-response), where liquefaction may be 

triggered in multiple zones including the critical zone (co-triggering), but the various 

liquefied zones are separated by interbedded non-liquefiable soils. 

 Deep liquefaction in ‘Continuous’ deposit (DC-response), where the most severe 

liquefaction effects occur during shaking at relatively large depth and the deposit is 

composed of vertically continuous liquefiable soils below the nominal crust. 

 No Triggering (NT-response), where liquefaction triggering does not occur at any depth in 

the deposit. 

The detailed classification of the 55 sites into the above types of system response is given in 

Table D1 of Appendix D, while a summary of this classification is presented below in Table 

7.1, for the 22Feb11 earthquake. The majority of the YY-sites are classified under the SC-

response, whereas the DI-response and SI-response types share the majority of the NN-sites. 

The transient NY-sites are spread across the entire spectrum of system-response types, but the 

majority of these sites lie under types SC and SI. Note that the classification presented in 

Tables 7.1 & D1 as well as the response characteristics discussed in the following subsections 

are based on the analyses cases with the input motion that induces the higher demand in the 

deposit. While, by and large, the same trends are observed using the analyses cases with the 

alternative input motion, the exact number of sites under each type of system response and the 

values for the quantification parameters reported in the following subsections may slightly 

differ. 

 

Table 7.1 Classification of 55 sites based on manifestation and type of system response. 

Liquefaction 

manifestation 

Type of System Response 

SC DC SI DI NT 

YY (15 sites) 10 (+2) a 3 0 0 0 

NY (23 sites) 1 (+9) 3 5 2 3 

NN (17 sites) 0 (1) 7 8 1 

a Numbers in parentheses refer to sites with slight deviations from the ‘standard response 

characteristics’ of the respective response type, as explained in the relevant subsections. 

 

Typical deposit features and response characteristics associated with each of the identified 

types of system response are summarized in Figs. 7.11–7.14. The following subsections 

describe key system response processes and effects involved in each of the five identified 

types of system response. 
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7.5.1 SC-Response: Shallow Liquefaction in ‘Continuous’ Deposit 

The following processes are involved in the ‘standard’ SC-response (Fig. 7.11). 

(1) Liquefaction is triggered first in the weakest layers of the shallow critical zone 

(𝑞𝑐1𝑁𝑐𝑠(𝐶𝑍),𝑚𝑖𝑛 ≈ 75 − 95). Occasionally, when weak layers (𝑞𝑐1𝑁𝑐𝑠(𝑇𝑍) ≈ 100 − 110) 

are present also at larger depth, ‘co-triggering’ may occur in which case liquefaction 

triggering occurs concurrently in both the critical zone and a deeper triggering zone at 

about the same time. In such cases of co-triggering, the triggering occurs relatively late in 

the ground motion (ℋ𝑏,𝑡𝑟(𝑇𝑍) > 0.6). 

(2) After the first triggering, liquefaction quickly spreads over the critical zone and large 

maximum shear strains (𝛾𝑚𝑎𝑥(𝐶𝑍)) develop in the critical zone during the strong shaking. 

The large shear strains (𝛾𝑚𝑎𝑥(𝐶𝑍) > 3%) reflect the relatively loose soils with low 

penetration resistance in the critical zone. The depth to the top of the liquefied critical 

zone (𝑧𝛾(𝐶𝑍)) is shallow and varies from 1.5 to 3.5 m. The thickness of shaking-induced 

liquefaction in the critical zone (ℎ𝛾(𝐶𝑍)) is typically greater than 2 m. The soil behaviour 

type in the liquefied critical zone is characterized by 𝐼𝛾𝑐(𝐶𝑍) values between 1.7 and 2. 

(3) The triggering zone at depth 𝑧𝛾(𝑇𝑍) ≈ 7 − 9 m, when present, has relatively small 

thickness (ℎ𝛾(𝑇𝑍) ≈ 0.5 − 1 m) and, because of the late triggering and less severe 

liquefaction effects in this zone, it has only minor effects on the seismic demand in the 

critical zone (𝐴𝐼𝑅(𝐶𝑍) > 0.85). However, it causes additional disturbance and prolonged 

fluidization of the critical zone through seepage action and upward flow of large amount 

of water into the critical zone. Even in the absence of a deeper liquefaction (i.e. triggering 

zone) excess pore water pressures higher than the initial vertical effective stress at the top 

of the critical zone develop up to large depths substantially below the critical zone 

(𝑧𝑚𝑎𝑥 > 8 m). These high excess pore water pressures in the deeper soils supply 

additional water into the critical zone, sustain the upward flow of water towards the 

ground surface, and prevent downward dissipation of developed excess pore water 

pressures away from the critical zone.  

(4) The soil above the critical zone also loses its effective stress due to an upward flow of 

water from the critical zone towards the ground surface (seepage-induced liquefaction). 

High excess pore water pressures develop up to depth 𝑧𝑚𝑖𝑛 ≈ 1.5 − 2 m and even above 

the groundwater table. The dissipation effects and the vertically unconstrained flow of 

water throughout the deposit result in ‘expansion’ of the liquefied critical zone eventually 

forming a continuous zone of ‘liquefied’ soil with thickness of 1 to 2 m greater than the 

initial thickness of the liquefied soil in the critical zone. 

(5) The small thickness of the nominal crust above the groundwater table (ℎ(𝑁𝐶) ≈ 1.5 −

2 m) and especially the low thickness of non-liquefiable soils (𝐻𝑁𝐿(0−𝑧𝑚𝑖𝑛) ≲ 0.5 m) are 

insufficient to mitigate liquefaction manifestation at the ground surface. Instead, the 

liquefiable soils above the groundwater may also be subject to seepage-induced 

liquefaction expanding further the total thickness of liquefied soil. Development of cracks, 

discontinuities, pathways for large volumes of water and soil ejecta, and consequent loss 
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of crust integrity are anticipated to fully diminish the mitigating effects of such crust 

characteristics in the field. 

 

 

Fig. 7.11 Key deposit features and processes involved in the ‘standard’ SC-response. 

 

The standard SC-response is typical for the response of 10 YY-sites and 1 NY-site, all of 

which manifested severe liquefaction in the 22Feb11 earthquake. The above SC-response 

mechanisms involving vertical communication of excess pore water pressures throughout the 

deposit and large volumes of water expelled from thick and continuous liquefied zones can 

explain the severe liquefaction effects observed at the aforementioned sites. As the key 

feature of the deposits associated with the SC-response is the presence of thick zones of low 

resistance soils at shallow depth, liquefaction damage indices that combine thickness, depth, 

and severity of liquefaction in the assessment, such as 𝐿𝑆𝑁 and 𝐿𝑃𝐼, correctly predict (in most 

cases) the severe manifestation associated with the SC-response, as illustrated for the example 

Avondale site in Fig. 7.1. 

In addition to the above sites, 2 YY-sites and 9 NY-sites, the majority of which were 

characterized by moderate liquefaction manifestation in the 22Feb11 earthquake, also follow 

the main features of the SC-response (i.e. liquefaction of shallow critical zone and vertical 

communication of excess pore water pressures). However, there are some important 

differences in the response of these sites including one or more of the following: 

 Reduced thickness of liquefaction in the critical zone (ℎ𝛾(𝐶𝑍) ≈ 1 − 1.7 m). 

 Higher values of 𝐼𝑐 in the critical zone (𝐼𝛾𝑐(𝐶𝑍) ≳ 2.3), possibly associated with low-

plasticity silts. The latter may often be characterized by delayed post-liquefaction 
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reconsolidation response which can, in turn, reduce pore water movement and ejecta 

development (Beyazei et al. 2018). 

 Low excess pore water pressures below the critical zone (𝑧𝑚𝑎𝑥 ≈ 𝑧𝛾(𝐶𝑍) + ℎ𝛾(𝐶𝑍)), hence 

allowing also for downward dissipation of part of the developed excess pore water 

pressures from the critical zone. 

 Reduced seepage effects above the critical zone (𝑧𝑚𝑖𝑛 ≈ 𝑧𝛾(𝐶𝑍)) due to a reduced 

hydraulic gradient. 

 Increased mitigation effects from the crust due to higher content of non-liquefiable soils 

(𝐻𝑁𝐿(0−𝑧𝑚𝑖𝑛) ≈ 1 − 2 m). 

A reduced thickness of the critical zone and increased thickness of non-liquefiable soils in the 

crust were the most commonly encountered features in the above sites. These key differences 

from the characteristics of the standard SC-response can explain the less severe manifestation 

observed in the majority of these sites, and they also emphasize the importance of considering 

the combined (and competing) effects from the various intensifying and mitigating 

mechanisms in the assessment of the severity of liquefaction manifestation. 

7.5.2 DI-Response: Deep Liquefaction in ‘Interbedded’ Deposit 

The following key processes and effects are involved in the DI-response (Fig. 7.12). 

(1) Liquefaction is triggered outside the critical zone at depth greater than 𝑧𝛾(𝑇𝑍) > 4.5 m. 

The first triggering occurs at an early stage of the excitation (ℋ𝑏,𝑡𝑟(𝑇𝑍) < 0.5) in the deep 

layers with the lowest tip resistance (𝑞𝑐1𝑁𝑐𝑠(𝑇𝑍),𝑚𝑖𝑛 ≈ 70 − 80), slightly lower than that of 

the shallow critical layer, and then it spreads to neighboring (deep) layers of slightly 

higher resistance (𝑞𝑐1𝑁𝑐𝑠(𝑇𝑍),𝑚𝑎𝑥 ≈ 85 − 95).  The cumulative thickness of the soil that 

liquefies in the various triggering zones (𝐻𝛾(𝑇𝑍)) varies from 0.5 to 3 m, but because of the 

interbedded nature of the deposit thick continuous zones of liquefied soil cannot be 

formed (ℎ𝛾(𝑇𝑍),𝑚𝑎𝑥 ≲ 1.5 m). 

(2) The liquefaction in the deep triggering zone(s) results in a substantial reduction of 

accelerations and seismic demand for the overlying soils above 𝑧𝛾(𝑇𝑍) ≈ 4.5 m. The Arias 

Intensity demand in the critical zone is typically about 30 to 40% of the respective 

demand generated in the analysis in which no excess pore water pressures were allowed to 

develop in the triggering zone. 

(3) The reduction in the seismic demand prevents occurrence of liquefaction in the critical 

layer. The shallow critical layer has equal or slightly higher tip resistance (𝑞𝑐1𝑁𝑐𝑠(𝐶𝐿) ≈

75 − 95) than the first triggering layer(s) and in about 50% of the cases it is also partially 

saturated (𝑉𝑝 ≈ 700 − 1000 m/s). The maximum response in the critical zone is 

characterized by relatively small shear strains and low excess pore water pressures of 

𝛾𝑚𝑎𝑥(𝐶𝑍) ≲ 0.3% and 𝑟𝑢,𝑚𝑎𝑥(𝐶𝑍) < 0.4. 

(4) The high proportion of non-liquefiable soils and interbedded nature of these deposits 

restrict the development of seepage effects above the triggering zone(s) and towards the 
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ground surface (𝑧𝑚𝑖𝑛 ≈ 𝑧𝛾(𝑇𝑍)). This effectively results in a continuous non-liquefied 

(stiff) crust from the ground surface up to 𝑧𝑚𝑖𝑛 > 4.5 m, with a high proportion of non-

liquefiable soils (𝐻𝑁𝐿(0−𝑧𝑚𝑖𝑛) ≳ 1.5 m).  

 

 

Fig. 7.12 Key deposit features and processes involved in the DI-response. 

 

The above cascading mechanisms of the DI-response work together to effectively mitigate the 

development of liquefaction and its manifestation at the ground surface. This type of system 

response was observed in 8 NN-sites (no manifestation) and 2 NY-sites which manifested 

minor to moderate liquefaction. Note that the mitigating effects arising from the deep 

liquefaction (reduction in the seismic demand) and the high content of non-liquefiable soils in 

the deposit (which restrict the vertical communication of excess pore water pressures and 

supress ejecta movement) are not considered in the simplified method which significantly 

over-estimates liquefaction manifestation for the DI-response sites, as illustrated for the 

example Hoon Hay site in Fig. 7.4.  

7.5.3 SI-Response: Shallow Liquefaction in ‘Interbedded’ Deposit 

The key processes and effects for the SI-response (Fig. 7.13) are summarized below. 

(1) Liquefaction triggering occurs at about the same time (co-triggering) in the critical zone at 

shallow depth (𝑧𝛾(𝐶𝑍) ≈ 1.5 − 3.0 m) and in a deeper triggering layer at 𝑧𝛾(𝑇𝑍) ≈ 4 −

6 m. The 𝑞𝑐1𝑁𝑐𝑠 values for the critical layer and the first triggering layer outside the 

critical zone are practically identical, typically in the range from 75 to 85, and 75 to 90 
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respectively. The (co-)triggering occurs relatively early in the ground motion (ℋ𝑏,𝑡𝑟(𝑇𝑍) ≈

ℋ𝑏,𝑡𝑟(𝐶𝑍) < 0.5).  

(2) The deep liquefaction is characterized by large shear strains (𝛾𝑚𝑎𝑥(𝑇𝑍) > 3) and 

cumulative thickness of 𝐻𝛾(𝑇𝑍) ≈ 1 − 3 m. The occurrence of liquefaction at depth (at 

ℋ𝑏,𝑡𝑟(𝐶𝑍) < 0.5) reduces the Arias Intensity demand in the critical layer to about 35 to 

50% of that corresponding to an equivalent total-stress analysis (without excess pore 

water pressure generation). 

(3) The liquefaction in the critical zone is characterized by smaller maximum shear strains 

than those in the deeper triggering zone(s) (𝛾𝑚𝑎𝑥(𝐶𝑍) ≲ 𝛾𝑚𝑎𝑥(𝑇𝑍)) and relatively small 

thickness (ℎ𝛾(𝐶𝑍) ≲ 1.2 m). The 𝐼𝑐 values in the critical zone are most often associated 

with non-plastic or low-plasticity silt type of behaviour (𝐼𝑐𝛾(𝐶𝑍) ≳ 2.1). 

(4) There is no vertical ‘communication’ of excess pore water pressures between the critical 

zone and the deeper triggering zone(s), as non-liquefiable soils with thickness 𝐻𝑁𝐿(𝐶𝑍−𝑇𝑍) 

greater than 1 m separate the critical zone from the deeper liquefied zone(s).  

(5) Non-liquefiable soils in the crust above the critical zone with thickness (𝐻𝑁𝐿(0−𝑧𝑚𝑖𝑛) 

typically greater than 1 m impede seepage effects and development of excess pore water 

pressures above the critical zone (𝑧𝑚𝑖𝑛 ≈ 𝑧𝛾(𝐶𝑍)). 

 

 

Fig. 7.13 Key deposit features and processes involved in the SI-response. 

 

The above mechanisms were encountered in 7 NN-sites (no manifestation) and 5 NY-sites 

which manifested only minor volumes of ejected material in the 22Feb11 earthquake. The 

none-to-minor liquefaction manifestation associated with the SI-response can be explained 

by: (a) the reduced liquefaction effects in the critical zone (i.e. relatively small strains, small 
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thickness of liquefaction, and possibly delayed reconsolidation response due to increased 

plasticity), (b) the interbedded nature of the deposits which impedes the formation of 

continuous liquefied zones and isolates the critical zone from the deeper liquefied layers, and 

(c) the high content of non-liquefiable soils in the crust above the critical zone which 

improves the crust integrity during the shaking and post liquefaction. Assessment of the 

severity of liquefaction manifestation using current state-of-practice damage indices, such as 

𝐿𝑆𝑁 and 𝐿𝑃𝐼, ignores important mitigating mechanisms of the SI-response, and hence it over-

estimates liquefaction manifestation for sites exhibiting this type of response. 

7.5.4 DC-Response: Deep Liquefaction in ‘Continuous’ Deposit 

The following key processes and effects are involved in the DC-response (Fig. 7.14). 

(1) Liquefaction is triggered in a relatively deep layer of low tip resistance (𝑞𝑐1𝑁𝑐𝑠(𝑇𝐿) ≈

80 − 90) when ℋ𝑏,𝑡𝑟(𝑇𝑍) < 0.6. A continuous triggering zone with large maximum shear 

strains (𝛾𝑚𝑎𝑥(𝑇𝑍) > 3) and thickness (ℎ𝛾(𝑇𝑍) ≳ 1.5 m) is developed around the triggering 

layer. The depth to the top of the triggering zone (𝑧𝛾(𝑇𝑍)) varies from 5 to 8 m from the 

ground surface. 

(2) The deep liquefaction reduces the seismic demand for all soils above the triggering zone. 

The Arias Intensity demand above the triggering zone is reduced to 30% – 60% of that 

that would have occurred had no excess pore pressures been developed at depth. 

(3) There is (either) no triggering of liquefaction (or, in some cases, triggering with minor 

consequences, i.e. relatively small shear strains and thickness of liquefied soils) at shallow 

depth during shaking.  

(4) Significant seepage action and upward flow of water from the triggering zone results in 

seepage-induced liquefaction of the critical zone at shallow depth (𝑟𝑢,𝑚𝑎𝑥 (𝐶𝑍) ≳ 0.9) and 

development of a thick (ℎ𝑟𝑢(𝐶𝑍) ≳ 4.5 m) and continuous ‘liquefied or nearly liquefied’ 

zone with 𝑢𝑒 ≈ 𝜎𝑣𝑜
′  up to 𝑧𝑚𝑖𝑛 = 2 − 3 m. Void redistribution and upward flow of water 

can cause significant disturbance in the upper soils of this thick zone which were initially 

not predicted to liquefy during shaking.  

(5) The proportion of non-liquefiable soils in the crust (𝐻𝑁𝐿(0−𝑧𝑚𝑖𝑛)) vary significantly among 

the sites that exhibited this type of response. However, even in the extreme case where 

𝐻𝑁𝐿(0−𝑧𝑚𝑖𝑛) ≈ 𝑧𝑚𝑖𝑛, it does not appear to be sufficient to effectively suppress the 

liquefaction manifestation of the underlying liquefied zone. 
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Fig. 7.14 Key deposit features and processes involved in the DC-response. 

 

The above processes and effects are typical for the computed response of 3 YY-sites and 3 

NY-sites, all of which were associated with severe liquefaction manifestation in the 22Feb11 

earthquake. 1 NN-site was also characterized by deep triggering of liquefaction and vertical 

continuity of liquefiable soils, but the liquefaction effects in the triggering layer and, 

consequently, the associated seepage effects were significantly less severe for this site (e.g. 

ℎ𝛾(𝑇𝑍) = 0.4 m, and 𝑟𝑢,𝑚𝑎𝑥 < 0.4 above the triggering zone). In such a case, the relatively 

small amount of excess water from the thin triggering layer is expected to be dissipated 

throughout the deposit without causing high excess pore water pressures and considerable 

disturbance to the overlying soils or liquefaction manifestation.  

The mechanisms associated with the DC-response highlight the important influence of the 

material composition and overall permeability (flow continuity) of the deposit on the severity 

of liquefaction manifestation. The simplified method ignores important seepage mechanisms 

that contribute to the spread and severity of liquefaction and its manifestation, and therefore, 

in the absence of thick and shallow critical zones of low resistance soils, it tends to under-

estimate the severity of liquefaction manifestation for sites with the above characteristics.  

7.5.5 NT-Response: No Triggering of Liquefaction 

The remaining 4 sites in which triggering of liquefaction was not predicted at any depth in the 

deposit (𝛾𝑚𝑎𝑥 < 1%) are sites of uniform clean sands with high penetration resistance, 

predominantly in the range between 𝑞𝑐1𝑁 = 130 and 170. One of these sites did not manifest 
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liquefaction (NN-site), whereas the other 3 NY-sites were characterized by minor (2 sites) to 

moderate liquefaction manifestation (1 site). 2 out of the latter have a thin layer of lower 

penetration resistance (𝑞𝑐1𝑁 ≈ 105) at about 4 m depth. While liquefaction triggering is not 

predicted in the analyses, excess pore water pressures slowly build up in the deposit and cause 

upward hydraulic gradients and flow of pore water towards the ground surface. It is therefore 

not unlikely that the unconstrained upward flow of water in such uniform sand deposits can 

develop locally hydraulic gradients high enough to buoy up soil particles from the near-

surface soil and eject them at the ground surface in the form of minor manifestation. 

 

7.6 Assessing the Severity of Liquefaction Manifestation 

The above analysis and system-level interpretation of the responses of the 55 sites provide 

reasonable explanations for the strong variation in their performance (liquefaction 

manifestation) and the overall poor quality of the predictions by the simplified procedures, 

which ignore important system-response effects in the assessment. Table 7.2 summarizes the 

performance of the simplified analyses (quality of predictions based on 𝐿𝑆𝑁) for the 

identified types of system response. As previously discussed, there is a significant and 

systematic bias in the predictions of the existing simplified procedures with over-estimation 

of liquefaction manifestation for nearly all sites with interbedded deposits (SI-response and 

DI-response) and under-estimation of liquefaction manifestation for sites with ‘continuous’ 

deposits in which liquefaction is triggered at a relatively large depth and the shallower soils 

have relatively high liquefaction resistance (DC-response). 

 

Table 7.2 Summary of predictions by simplified analyses classified based on the identified types of system 

response. 

𝑳𝑺𝑵–based prediction a 

Type of System Response 

SC (22 b) DC (7) SI (12) DI (10) NT (4) 

Good agreement 77% 29% 0% 10% 75% 

Under-estimation 9% 57% 0% 0% 0% 

Over-estimation 14% 14% 100% 90% 25% 

a agreement between predictions and observations 
b number of sites classified under each type of system response 

 

Existing procedures for the assessment of liquefaction-induced damage and severity of 

surface manifestation focus on the evaluation of three important factors (e.g. Iwasaki et al. 

1978, Ishihara 1985, Maurer et al. 2014, van Ballegooy et al. 2014): (1) the thickness of the 

liquefied soil, (2) the severity of liquefaction, and (3) the depth of the liquefied soil from the 

ground surface. It is important to note that even when using the results from the effective-

stress analyses to evaluate these three factors, the existing procedures cannot explain the 

vastly different manifestations of liquefaction observed among the 55 sites. Fig. 7.15 shows 
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the normalized (frequency) histograms of 𝐿𝑆𝑁 values computed using results from both 

simplified analyses (𝐿𝑆𝑁; Fig. 7.15a) and effective-stress analyses (𝐿𝑆𝑁𝐸𝑆𝐴; Fig. 7.15b) for 

the 22Feb11 earthquake. In both approaches, the computed maximum shear strains from the 

analyses are used to estimate post-liquefaction reconsolidation volumetric strains based on the 

Ishihara and Yoshimine (1992) chart (Yoshimine et al. 2006, Idriss and Boulanger 2008) and 

using the Tatsuoka et al. (1990) relationship to infer relative density from 𝑞𝑐1𝑁𝑐𝑠. Note that, 

because the effective-stress analysis inherently accounts for the effects of pore water pressure 

generation and liquefaction on the seismic demand, the extent of liquefaction and magnitude 

of maximum shear strains computed by the effective-stress analyses and, consequently, the 

reconsolidation volumetric strains and 𝐿𝑆𝑁𝐸𝑆𝐴 values are significantly lower than the 𝐿𝑆𝑁 

values predicted by the simplified method. Hence, the 𝐿𝑆𝑁𝐸𝑆𝐴 values reported in Fig. 7.16b 

for the effective-stress analyses should not be interpreted using the standard 𝐿𝑆𝑁 thresholds 

for differentiating between different levels of damage and liquefaction manifestation. Yet, 

Fig. 7.16b clearly illustrates the poor performance of 𝐿𝑆𝑁 and 𝐿𝑆𝑁𝐸𝑆𝐴 for liquefaction 

assessment of the 55 sites as indicated by the significant portion of overlapping predictions 

associated with vastly different liquefaction manifestation, from none to severe. This implies 

that ‘correcting’ the simplified procedures for the effects of liquefaction on the seismic 

demand and effects of partial saturation on liquefaction resistance alone (effects which are 

considered in the effective-stress analyses and reflected in the computed shear strains) would 

not be sufficient to provide a substantial improvement in the simplified assessment, as other 

important interactions, system response mechanisms and effects would still be missing.  

 

 

Fig. 7.15 Histograms summarizing the distribution of 𝐿𝑆𝑁 and 𝐿𝑆𝑁𝐸𝑆𝐴 values and associated liquefaction 

manifestation for the 55 sites based on: (a) simplified analyses; (b) effective-stress analyses. 
 

Insights from the system-response interpretation presented in this chapter can be used to 

improve current frameworks for the assessment of liquefaction manifestation and associated 

damage. A preliminary framework was designed and tested in this study using the effective-

stress analysis results for the 55 sites to examine whether incorporating key system response 
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effects has indeed the potential to improve liquefaction damage assessment. Key objectives in 

mind when developing this preliminary framework were: (a) to account for (most of) the key 

factors and system response mechanisms that appear to be influencing liquefaction 

manifestation, and (b) to maintain simplicity in the evaluation. On this basis, a modified 

Liquefaction Severity Number (𝐿𝑆𝑁𝑆𝑅) incorporating system response effects was defined. 

The evaluation of 𝐿𝑆𝑁𝑆𝑅 involves the following procedure and parameters: 

 First, the various zones in the deposit where liquefaction has been triggered during 

shaking are identified. In this context, a liquefied zone is defined as a continuous zone of 

soils with 𝛾𝑚𝑎𝑥 ≥ 1%. Among the various liquefied zones in the deposit, a critical 

liquefied zone is defined as the liquefied zone that is most likely to manifest liquefaction 

at the ground surface. Fig. 7.16 illustrates the identification of the liquefied zones for two 

example sites based on the results (computed maximum shear strains) from effective-

stress analyses. The critical liquefied zone is denoted as ‘zone 1’, whereas the remaining 

liquefied zones below zone 1 are numbered sequentially (i.e. zone 2, zone 3, etc.). 

 The post-liquefaction reconsolidation settlement of each liquefied zone (𝑆𝑣1𝐷(𝑖)), obtained 

by integration of the post-liquefaction volumetric reconsolidation strains over depth of 

liquefaction, is used to quantify the consequences of liquefaction within each zone, as 

illustrated in Fig. 7.16. 𝑆𝑣1𝐷(𝑖) accounts for the combined influence of thickness and 

severity of liquefaction and incorporates the effect of soil density on the liquefaction 

response. Besides, 𝑆𝑣1𝐷(𝑖) is directly related to the volume of water expelled by the 

liquefied soil and, hence, it reflects its potential for ejecta manifestation. 

 A ‘minimum depth of influence’ (𝑧𝑚𝑖𝑛(𝑖)) is assigned to each liquefied zone (Fig. 7.16). 

𝑧𝑚𝑖𝑛(𝑖) is defined as the shallowest depth above the liquefied zone 𝑖 where significant 

excess pore water pressures develop (𝑟𝑢,𝑚𝑎𝑥 ≥ 0.7) during or post- shaking. 𝑧𝑚𝑖𝑛(𝑖) cannot 

be less than the depth to the bottom of zone 𝑖 − 1 or, in case no shallower zone exists, it 

cannot be less than the depth of the surface crust (ℎ(𝑁𝐶)). 𝑧𝑚𝑖𝑛(𝑖) reflects several important 

factors including the depth to the liquefied zone, the extent of seepage effects and 

seepage-induced liquefaction above the liquefied zone, and the depth of the surface crust 

while accounting for effects of liquefaction on the crust thickness and integrity.  

 The cumulative thickness of non-liquefiable soils between each liquefied zone (zone 𝑖) 

and the critical liquefied zone (zone 1), denoted as 𝐻𝑁𝐿(1−𝑖) (Fig. 7.16), is used as a 

mitigating factor to reduce the contribution from liquefaction in deeper zones that are 

overlaid by non-liquefiable soils. In addition, the cumulative thickness of non-liquefiable 

soils in the crust above the critical liquefied zone (𝐻𝑁𝐿(0−1)) is also considered separately. 

The above parameters are combined according to the following equation to calculate 𝐿𝑆𝑁𝑆𝑅: 

𝐿𝑆𝑁𝑆𝑅 = 𝑆𝑣1𝐷(1) ∙
1

√𝑧𝑚𝑖𝑛(1)
+ ∑ 𝑆𝑣1𝐷(𝑖) ∙

1

√𝑧min(𝑖)
∙ exp(−𝐻𝑁𝐿(1−𝑖))

𝑛
𝑖=2              (7-1) 

where 𝑛 indicates the total number of continuous liquefied zones in the deposit. 
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Fig. 7.16 Determination of parameters used in the evaluation of 𝐿𝑆𝑁𝑆𝑅 . 

 

. There are two key differences between the system-response-based index 𝐿𝑆𝑁𝑆𝑅 and the 

original 𝐿𝑆𝑁 definition: 

(1) In 𝐿𝑆𝑁, the consequences of liquefaction in each individual layer are weighted by a factor 

that is function of the depth of the layer from the ground surface (1 𝑧⁄ ). On the other hand, 

𝐿𝑆𝑁𝑆𝑅 considers the individual layers within each continuous zone of liquefied soil as a 

unit and ‘lumps’ the consequences of liquefaction across the zone into the minimum depth 

of influence (𝑧𝑚𝑖𝑛(𝑖)) for the zone. Furthermore, 𝑧𝑚𝑖𝑛(𝑖) accounts for possible expansion 

of the liquefied zone and seepage-induced effects during dissipation. 

(2) 𝐿𝑆𝑁 ignores mitigating effects from the presence of non-liquefiable soils in the deposit. 

On the other hand, 𝐿𝑆𝑁𝑆𝑅 uses an additional factor that reduces the contribution from 

deeper zones (below the critical liquefied zone) depending on the thickness of interbedded 

non-liquefiable soils between each zone and the critical liquefied zone (zone 1). 

Both modifications to the original definition of 𝐿𝑆𝑁 intend to place more emphasis on the 

great importance of vertical ‘communication’ of excess pore water pressures and water flow 

within and between the liquefiable layers and zones of the deposit, as suggested by the 

preceding analyses and interpretation. 

In Fig. 7.17, 𝐿𝑆𝑁𝑆𝑅 values calculated from the effective stress analyses results for the 55 sites 

are plotted against 𝐻𝑁𝐿(0−1), where 𝐻𝑁𝐿(0−1) is the thickness of the crust comprised of non-

liquefiable soils. It can be seen from this figure that the modified 𝐿𝑆𝑁𝑆𝑅 incorporating system 

response effects, achieves a very good separation between the sites that manifested moderate-

to-severe liquefaction and the sites that either did not manifest liquefaction or manifested 

minor liquefaction in the 22Feb11 earthquake. More specifically, there is a good agreement 
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between predictions and observations (clear separation in the chart) for 85% of the cases. 

Liquefaction manifestation is underestimated for 20% of the sites that manifested moderate or 

severe liquefaction (solid symbols below the dividing line of the chart), and it is over-

estimated for only 8% of the sites that did not manifest liquefaction or had only minor 

liquefaction manifestation (open symbols above the dividing line). Importantly, there is a 

substantial improvement in the predictions using 𝐿𝑆𝑁𝑆𝑅 − 𝐻𝑁𝐿(0−1) compared to those based 

on the original definition of 𝐿𝑆𝑁 (Fig. 7.15). 

 

 

Fig. 7.17 Relationship between 𝐿𝑆𝑁𝑆𝑅 and 𝐻𝑁𝐿(0−1) for sites that manifested moderate to severe liquefaction 

(filled symbols) and sites that did not manifest liquefaction or manifested only minor liquefaction (open 

symbols) in the 22Feb11 earthquake. 
 

The current implementation of the 𝐿𝑆𝑁𝑆𝑅 − 𝐻𝑁𝐿(0−1) framework for assessing the severity of 

liquefaction manifestation relies on results from effective-stress analyses for the evaluation of 

the maximum shear strains throughout the deposit (used in determining the various liquefied 

zones and 𝑆𝑣1𝐷(𝑖)) and seepage-induced excess pore water pressures (used in determining 

𝑧𝑚𝑖𝑛(𝑖)). The above can be sensitive to, among other factors, the constitutive model used in 

the analysis and its calibration, the adopted permeability values, analysis duration and 

numerical damping. In this study, the magnitude of maximum shear strains was also found to 

be sensitive to the input motion used for the 22Feb11 earthquake. All the above factors affect 

𝐿𝑆𝑁𝑆𝑅 and the location of the dividing line in the 𝐿𝑆𝑁𝑆𝑅 − 𝐻𝑁𝐿(0−1) chart making it difficult 

for a generic use in forward assessments. Nevertheless, the above framework has clearly 

illustrated that appropriate consideration of system response effects can substantially enhance 

liquefaction assessment. Further work is required to establish a complete and robust 

framework that could be used more widely, and which will be also incorporated within the 

simplified liquefaction evaluation procedures. 



Chapter 7. 55 Sites: Analyses Results and System-Response Interpretation 

 140 

7.7 Summary 

A comprehensive scrutiny of the effective-stress analyses results for the 55 Christchurch sites 

has been presented in this chapter. Detailed analyses results at selected sites demonstrated the 

ability of the adopted CPT-based effective-stress analysis to capture key aspects of the 

response of liquefiable soils and deposits as it develops through time, including pore water 

pressure development, soil liquefaction and resulting deformations (shear strains) during the 

dynamic shaking, and post-shaking dissipation of excess pore water pressures. Importantly, 

system-response mechanisms involving cross-interactions amongst different soil layers in the 

dynamic response and through pore water pressure redistribution and water flow were also 

rigorously simulated in the analyses, and found to often govern the ground response and 

liquefaction performance. On the other hand, specific post-liquefaction field processes 

involving, among others, severe disturbance and fluidization of liquefied soils under seepage 

action, hydraulic fracturing, formation of cracks (discontinuities) and sand boils, and their 

effects on the response and liquefaction manifestation either cannot be rigorously modelled or 

are ignored in the effective-stress analysis based on the continuum approach. It is important to 

emphasize that the effective stress analysis captures the development and evolution of soil 

liquefaction throughout the deposit in a most rigorous way. In addition, the results from such 

analyses provide quantifiers and response measures that are indicative of the severity of 

liquefaction manifestation, which is associated with phenomena (mentioned above) that are 

beyond the direct scope of the effective stress analysis. This clear recognition of a response 

domain where the effective stress analysis provides the most robust and rigorous methodology 

for analysis of soil liquefaction and response features for which it provides only indirect 

measures or indicators of liquefaction effects is critically important for an appropriate use of 

the effective stress analysis.  

With the above in mind, a set of response measures (parameters) and associated criteria were 

used to quantify the onset of independent system response mechanisms and effects of 

interaction between different mechanisms. This allowed for rigorous analysis and 

quantification of the system response effects on the seismic performance of the studied sites. 

On this basis, five characteristic types of system responses were identified for the 55 sites and 

their specific response features including representative values for the above response 

measures were summarized in Figs. 7.11 to 7.14.  

The vertical continuity (or discontinuity) of critical zones and liquefiable soils in the deposit 

was identified as a key factor for the activation of certain system response mechanisms that 

can either intensify (in the case of deposits with vertically continuous liquefiable soils) or 

mitigate (in the case of interbedded deposits) the development of liquefaction and its 

consequences throughout the deposit including surface liquefaction manifestation.  

Mechanisms that intensify liquefaction manifestation involve: (i) shaking-induced 

liquefaction of thick and vertically continuous zones of relatively low resistance soils, as such 

zones are expected to strongly interact, develop large deformations, and cause strong and 

damaging discharge of excess pore water pressures and soil ejecta during dissipation; and (ii) 
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vertically unconstrained water flow through and between liquefiable layers (zones) and 

seepage action resulting in additional disturbance to that caused by the ground shaking, both 

contributing to either further fluidization of already liquefied soils or seepage-induced 

liquefaction and hydraulic fracturing of initially stable soils. Such intensifying mechanisms 

are primarily encountered in deposits comprising vertically continuous liquefiable soils which 

allow vertical ‘communication’ of excess pore water pressures and water flow through and 

between layers. Provided the existence of a zone of relatively low resistance soils within the 

top 5 to 8 m and with sufficiently high level of loading to liquefy these soils, such 

‘continuous’ liquefiable deposits can manifest severe liquefaction effects at the ground 

surface (YY-sites and part of NY-sites). 

Mechanisms that mitigate liquefaction manifestation involve: (i) reduction in the seismic 

demand for shallow critical layers due to deeper liquefaction; (ii) isolation or vertical 

confinement of layers that liquefy or develop high excess pore water pressures by overlying 

and underlying relatively thick non-liquefiable layers resulting in either reduced or complete 

loss of water flow between liquefiable layers; (iii) partial saturation of shallow soils and 

consequent increase in their liquefaction resistance; (iv) reduced hydraulic gradients in upper 

soils due to delayed post-liquefaction reconsolidation response of underlying low-plasticity 

silts; and (v) at-depth suppression of ejecta movement from thick crust of non-liquefiable 

soils. Such mitigating mechanisms are mostly encountered in deposits with interbedded 

liquefiable and non-liquefiable soils. For the levels of seismic demand considered in this 

study, such deposits show a limited liquefaction manifestation potential, from no 

manifestation to minor manifestation (NN-sites and part of NY-sites). 

Current simplified liquefaction evaluation procedures ignore system response effects. Hence, 

they systematically over-estimate liquefaction manifestation for sites with interbedded 

deposits, while they tend to either predict correctly or under-estimate liquefaction 

manifestation for sites with vertically continuous liquefiable soils (Table 7.2). Preliminary 

developments of this study toward an improved framework for liquefaction damage 

(manifestation) assessment show that appropriate consideration of system response effects can 

substantially improve predictions. Future work will explore various alternatives or refine the 

presented preliminary framework, and eventually incorporate it in the simplified liquefaction 

evaluation procedures.  
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8 SUMMARY AND CONCLUSIONS 

Seismic effective-stress analysis was used to thoroughly investigate the liquefaction 

performance of 55 well-documented case-history sites from Christchurch. At each site, the 

liquefaction performance during four major events of the 2010-2011 Canterbury earthquake 

sequence was documented based on detailed field inspections which covered not only the 

specific sites of interest, but also their adjacent properties and wider neighbouring areas. The 

performance of the 55 sites varied significantly, from no liquefaction manifestation at the 

ground surface (in any of the major events) to very severe liquefaction manifestation in 

multiple events. For the majority of the 55 sites, the simplified liquefaction evaluation 

procedures could not explain these dramatic differences in the manifestation. The present 

study focused on the two most damaging events of the earthquake sequence, i.e. the 04Sep10 

Mw7.1 and 22Feb11 Mw6.2 earthquakes, and aimed to explain the above inconsistencies 

between simplified method predictions and field observations for the 55 sites through a 

rigorous interpretation of their responses using results from effective-stress analyses.  

Comprehensive geotechnical and geophysical investigations (primarily CPT and high-

resolution crosshole 𝑉𝑝 data) at each of the 55 sites were initially examined to identify 

similarities and differences in soil profile characteristics between sites with different seismic 

performance (liquefaction manifestation). Then, a CPT-based effective-stress analysis 

procedure was developed to analyse the seismic response of the 55 Christchurch sites in a 

consistent but also practical manner that would allow for rigorous comparisons with the 

predictions obtained from simplified procedures. Input motions for the analyses were derived 

based on selected recordings from the specific events of interest and with appropriate 

modifications to address some of the challenges associated with the spatial variability of 

ground motion in the near-source region. The quality of the simulations using the developed 

effects stress analysis procedure and derived input motions was evaluated through rigorous 

comparisons with available seismic recordings at 13 strong motion station sites throughout 

Christchurch. Finally, effective stress analyses results from the 55 sites were scrutinized to 

elucidate the system response of Christchurch deposits, identify and quantify relevant 

interaction mechanisms, and examine their combined influence on the liquefaction 

manifestation. 
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Overall, this study has set a paradigm for rigorous forensic assessments of ground response 

including comparative analyses and consistent treatment (from model calibration and 

definition of input motions to evaluation and interpretation of results) of a large number of 

(case-history) sites, and it has demonstrated how such a comprehensive and unbiased 

approach can provide valuable insights into various aspects of ground response and seismic 

performance and, eventually, inform and advance current engineering practices. 

In the following sections, the most important findings and contributions on three specific 

topics addressed in this research are summarized. Limitations of the study and future research 

needs are also discussed. 

 

8.1 CPT-based Effective Stress Analysis Procedure  

As part of this research, a 1D CPT-based effective stress analysis procedure was developed 

and implemented for the analyses of the 55 Christchurch sites. Key objective in mind when 

developing this procedure was to bridge the gap between the simplified liquefaction 

evaluation procedures used in engineering practice and advanced dynamic effective-stress 

analyses whose application in practice can often be highly demanding on the user. In this 

context, the proposed CPT-based procedure provides a simplified (in use and calibration) but 

advanced (in simulation capabilities) computational tool for liquefaction assessment of free-

field soil columns which (a) can be fully automated in a programming environment and (b) 

requires no additional input compared to simplified CPT-based liquefaction evaluation 

procedures. In this way, 1D effective-stress analysis can be routinely applied for quick, yet 

more robust estimations of liquefaction hazards, in a similar fashion to the simplified 

procedures.  

Key elements in the proposed procedure can be summarized as follows:  

(1) As a first step, a simplified, discretized soil profile is determined from the nearly 

continuous CPT data. A practical algorithm that automates this process has been presented 

in Fig. 4.2. Apart from the obvious necessity of a discretized soil profile for use in finite 

element and finite difference numerical analyses, this profile ‘simplification’ allows for 

rigorous geotechnical scrutiny of the overall deposit characteristics and identification of 

critical layers in the deposit. Based on their inferred behaviour characteristics, the soil 

layers resulting from this process are classified as either liquefiable or non-liquefiable.  

(2) Modelling of the liquefiable soil layers focuses on the simulation of their (cyclic) 

liquefaction resistance, while using representative values for elastic and plastic stress-

strain parameters for sand. A set of liquefaction resistance curves (LRCs) were derived 

over relevant 𝑞𝑐1𝑁𝑐𝑠 − 𝜎
′
𝑣𝑜 conditions by directly following the simplified liquefaction 

triggering procedure of Boulanger and Idriss (2014). These target curves were then used 

to calibrate an elastic-plastic constitutive model (S-D Model) capable of reproducing the 



Chapter 8. Summary and Conclusions 

 145 

target behavior over all densities and confining stresses of interest, with a single set of 

values for model parameters. The calibration methodology was extended to allow for 

incorporation of partial saturation effects on LRC based on 𝑉𝑝 measurements from the 

field. A complete set of S-D Model parameters calibrated based on the Boulanger and 

Idriss (2014) liquefaction triggering curves is provided in Table 4.1.  

(3) Modelling of the non-liquefiable soil layers targets their cyclic stress-strain response, 

typically defined in terms of modulus reduction and damping ratio curves. Reasonably 

accurate and concurrent modelling of target modulus reduction and damping ratio curves 

over the expected range of shear strains is the key requirement in this case.  

(4) With respect to the seismic input for forward application of the method, it is 

recommended to select an ensemble of ground motions for the earthquake scenario of 

interest using the generalized conditional intensity measure (GCIM) approach (Bradley 

2010, 2012), or an equivalent method, considering a suitable set of intensity measures 

(IMs) relevant to liquefaction problems, including not only amplitude-related IMs, but 

also duration- and energy-related measures, as they are also important for liquefaction 

problems. For problems of forensic assessment, recommendations for the definition of 

input motion are provided in the following section. 

(5) In the final step, numerical model (i.e. element size, boundary conditions, initial stress 

state of the soil) and analysis parameters (i.e. computational time increment, integration 

scheme, numerical damping) are defined. Here, basic rules of a good numerical analysis 

need to be followed, always taking into consideration the characteristics of the given soil 

profile and its anticipated behaviour. 

Detailed analyses results at selected Christchurch sites demonstrated the ability of the 

proposed effective-stress analysis procedure to capture key aspects of the response of 

liquefiable soils and deposits in realistic chronological sequence, including pore water 

pressure development, triggering of soil liquefaction and resulting deformations (shear 

strains) during the dynamic shaking, and post-shaking dissipation of excess pore water 

pressures. Importantly, system-response mechanisms involving cross-interactions amongst 

different soil layers in the dynamic response and through pore water pressure redistribution 

and water flow were also simulated and rigorously considered in the analyses. The 

acceleration response and surface ground motions were also reasonably well captured (given 

appropriate definition of input motion) by the effective stress analyses, as illustrated through a 

comprehensive validation study of 13 strong motion station sites in Christchurch. 

Limitations of the procedure itself but also of the constitutive model and numerical analysis 

framework have to be recognized. The simplified CPT-based calibration adopted in the 

proposed procedure cannot be compared in rigor and consequent accuracy of the predicted 

response with a detailed model calibration based on laboratory tests on site-specific soils. 

Also, specific post-liquefaction field processes involving, among others, severe fluidization of 

liquefied soils under seepage action, hydraulic fracturing, formation of cracks 
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(discontinuities) and sand boils, and their effects on the response and ground deformations are 

beyond the capacity of continuum-based approaches to be rigorously modelled. 

 

8.2 Definition of Input Motions for Forensic Seismic Analyses 

The strong spatial variation of ground motion in the near-source region of an earthquake 

imposes significant challenges in the derivation of representative input motions for forensic 

ground response analysis, based on the available recordings of the event at strong motion 

station sites. Addressing such challenges was necessary to realistically simulate the seismic 

demand caused by the 04Sep10 and 22Feb11 earthquakes across Christchurch, at the various 

target sites, for the purposes of liquefaction assessment. A series of steps and considerations 

were used in this study and are proposed to more rigorously approach the problem of the 

determination of input motions for forensic ground response analysis in the near-source 

region.  

(1) Step 1 involves the selection of appropriate reference (strong motion station) site and 

reference recorded motion. In this process, consideration is given to: (a) the 

appropriateness of the candidate  reference site for deconvolution (i.e. negligible 

nonlinearity in the response and shallow thickness of soft soil deposits); (b) potential 

differences between hanging-wall and footwall motions, in case the considered sites 

(target site and reference site) are located on opposite sides of the fault; (c) the deeper 

geological structure below the reference site and the target site (e.g. basin depth) and 

associated possible ray paths of seismic waves; (d) extended-source effects and their 

impact on the azimuthal variation in radiated seismic energy and ground-motion 

characteristics; and, (e) the proximity of the target site to the reference site, which 

generally increases the likelihood of similarities in the above characteristics and reduces 

bias introduced by the subsequent scaling.  

(2) Step 2 involves deconvolution of the selected reference motion at the reference site using 

equivalent-linear analysis. Key requirement from this analysis is that the maximum shear 

strains throughout the soil profile do not exceed a threshold strain (e.g. 𝛾𝑚𝑎𝑥 ≲ 0.5% −

1%) beyond which the equivalent-linear approximation of the nonlinear soil behaviour is 

no longer credible.  

(3) Step 3 involves the scaling of the deconvolved motion to account for path effects arising 

from differences in the source-to-site distance between the reference site and the target 

site. Amplitude scaling factors can be derived using Eqs. 5-3 or 5-4. The use of scaling 

factors that significantly deviate from unity should generally be avoided as large bias in 

the energy content of ground motion can be introduced in such cases (Fig. 5.10). To 

overcome this issue, an alternative ‘amplitude-duration’ scaling method that provides 

consistent distance-scaling of amplitude, energy content, and duration was developed as 

part of this study (Appendix B). The amplitude-duration scaling method allows for 



Chapter 8. Summary and Conclusions 

 147 

frequency-dependent scaling of amplitudes and changes in strong motion duration. It was 

shown to provide substantial improvements in the prediction for a case of large difference 

in the source-to-site distance between the reference and target sites (Appendix B). 

Comparative evaluation of the performance of alternative reference input motions in the 

simulations of ground response at the strong motion station sites of Christchurch showed 

clearly that proper selection and scaling of within-event records, in accordance with the above 

criteria and methods, are essential for a good prediction of the ground motion at target sites. 

However, for some areas (sites), the derivation of realistic input motions can be challenging 

mainly due to absence of representative (compatible with the target sites) within-event 

records. In such situations of significant uncertainty in the input motion, it is considered 

important to examine the sensitivity of the response to variations in the reference motion and 

scaling factor.  

 

8.3 System Response of Liquefiable Deposits 

The comprehensive study on the performance of the 55 case-history sites has provided 

important insights into the system response of liquefiable deposits and the effects of relevant 

interaction mechanisms on the development of liquefaction and its surface manifestation. 

Initial scrutiny of the soil profile characteristics of the 55 sites identified some key differences 

between sites that manifested liquefaction in both considered earthquakes (YY-sites) and sites 

that did not manifestation liquefaction in either event (NN-sites). In particular, YY-sites are 

generally characterized by vertically continuous liquefiable soils in the top 10 m. They are 

typically composed of a shallow silty sand or sandy silt layer in the top 2 to 3 m overlying a 

vertically continuous 7 to 8 m thick sand or fine sand layer up to 10 m depth. Partial 

saturation, when present at soils below the groundwater table, is typically confined within the 

top 0.5 to 1 m from the water table. The vertical continuity of liquefiable soils in the deposit, 

shallow water table at about 2 m depth, and absence or minor thickness of non-liquefiable 

soils in the crust are key features of the YY-sites. Conversely, the NN sites are highly 

stratified deposits comprising interbedded liquefiable and non-liquefiable soils. A crust of 

non-liquefiable soil, shallow water table at about 1 to 2 m depth, partial saturation of plastic 

and non-plastic silt layers up to a depth of about 4 m below the groundwater table, horizontal 

‘grid’ of non-liquefiable layers, and vertical discontinuity of liquefiable soils are key features 

of the NN-sites. It is important to note that in terms of the characteristics of their critical 

layers (depth from the ground surface and penetration resistance), YY-sites and NN-sites have 

essentially no difference.  

Subsequent in-depth investigation of the effective stress analyses results showed that, in fact, 

the vertical continuity (or discontinuity) of liquefiable soils is a key factor for the occurrence 

of certain system response mechanisms that can either intensify or mitigate the development 
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of liquefaction and its consequences throughout the deposit including surface liquefaction 

manifestation.  

Mechanisms that intensify liquefaction manifestation involve: (i) shaking-induced 

liquefaction of relatively thick and vertically continuous zones of soils with low penetration 

(liquefaction) resistance, as such zones are expected to strongly interact, develop large 

deformations, and generate strong and damaging discharge of excess pore water pressures 

during dissipation; and (ii) vertically unconstrained water flow through and between 

liquefiable layers (zones) with seepage action resulting in additional disturbance and further 

fluidization of already liquefied soils, and also seepage-induced liquefaction or hydraulic 

fracturing of initially stable soils near the ground surface (at and above the water table). Such 

intensifying mechanisms are primarily encountered in deposits comprising vertically 

continuous liquefiable soils which allow vertical ‘communication’ of excess pore water 

pressures and water flow through and between layers. Provided the existence of a zone of 

relatively low resistance soils within the top 5 to 8 m and with sufficiently high level of 

loading to liquefy these soils, such ‘continuous’ liquefiable deposits can manifest severe 

liquefaction effects at the ground surface (YY-sites and part of NY-sites). 

Mechanisms that mitigate liquefaction manifestation involve: (i) reduction in the seismic 

demand for shallow critical layers due to deeper liquefaction; (ii) isolation or vertical 

confinement of layers that liquefy or develop high excess pore water pressures by capping and 

underlying non-liquefiable layers; (iii) partial saturation of shallow soils and consequent 

increase in their liquefaction resistance; (iv) reduced hydraulic gradients in upper soils due to 

delayed post-liquefaction reconsolidation response of underlying low-plasticity silts; and (v) 

at-depth suppression of ejecta movement from thick crust of non-liquefiable soils. Such 

mitigating mechanisms are mostly encountered in deposits with interbedded liquefiable and 

non-liquefiable soils. For the levels of seismic demand considered in this study, such deposits 

show a limited liquefaction manifestation potential, from no manifestation to minor 

manifestation (NN-sites and part of NY-sites). 

Results from the comprehensive series of effective stress analyses were used to identify a set 

of response measures (parameters) and associated criteria that allow to quantify the onset of 

independent mechanisms and effects of interaction between different mechanisms. This in 

turn provides basis for quantification of the system response effects on the seismic 

performance of liquefiable deposits. Specific processes and response features for five 

characteristic types of system responses identified by this rigorous quantification were 

summarized in Figs. 7.11 to 7.14.  

The system-level interpretation of the responses of the 55 sites provided reasonable 

explanations for the strong variation in their performance (liquefaction manifestation) and the 

overall poor quality of the predictions by the simplified procedures, which ignore important 

system-response effects in the assessment. More specifically, the simplified procedures 

systematically over-estimate liquefaction manifestation for sites with interbedded deposits, 

while they tend to predict correctly for the majority of the cases or sometimes under-estimate 
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liquefaction manifestation, for sites with vertically continuous liquefiable soils (Table 7.2). 

Significant improvements in the assessment of the severity of liquefaction manifestation are 

possible when system response effects are appropriately considered, as illustrated by the 

promising predictions of a preliminary framework (𝐿𝑆𝑁𝑆𝑅 −𝐻𝑁𝐿(0−1)) that incorporates such 

effects.  

In conclusion, the scrutiny presented in this study highlights the governing influence of 

system response effects on liquefaction manifestation and emphasizes the need to incorporate 

such considerations in the liquefaction assessment. 
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APPENDIX B:  Amplitude-Duration Scaling 

B.1  Introduction 

As discussed in the main body of this thesis, the scaling of reference motions using amplitude 

scaling factors that significantly deviate from unity can introduce significant bias in the 

energy content of the obtained input motions (Fig. 5.10) and, consequently, result in biased 

estimates of the seismic response of nonlinear systems. The reason behind this bias of the 

amplitude-only scaling approach lies in the fact that, in this method, potentially large changes 

in the response spectral amplitudes of ground motion can occur without analogous changes in 

its duration, as observed in actual earthquake ground motions. To overcome this issue, a new 

scaling method which is intended to provide a consistent scaling of amplitude, duration, and 

energy content with distance was developed as part of this study. In this method, the scaling is 

performed in the frequency domain, with amplitude changes applied to the Fourier amplitude 

spectra, and duration handled by modifications of the Fourier phase spectra. A schematic 

illustration of key elements in the proposed method is presented in Fig. B.1. 

 

 

Fig. B.1 Key elements in the amplitude–duration scaling method. 
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The first step in the method involves the transformation of the time series of the reference 

ground motion 𝑦𝑟(𝑡) into the frequency domain:  

𝑌𝑟(𝑓) = ∫ 𝑦𝑟(𝑡) exp(i2π𝑓𝑡) 𝑑𝑡
+∞

−∞
= 𝐴𝑟(𝑓) · exp[i𝜙𝑟(𝑓)]                      (B-1) 

where 𝑌𝑟(𝑓) is the complex Fourier Transform of 𝑦𝑟(𝑡), and 𝐴𝑟(𝑓), 𝜙𝑟(𝑓) are the amplitude 

and phase angle of 𝑌𝑟(𝑓), respectively. 

 

B.2  Amplitude Scaling 

Scaling of the Fourier amplitudes can be performed on the basis of simple theoretical 

functions that represent the path contribution to the spectral amplitudes 𝑃(𝑅, 𝑓) accounting 

for geometrical spreading and anelastic (including scattering) effects (e.g. Boore 2003a): 

𝑃(𝑅, 𝑓) = 𝐺(𝑅) · exp [
−π𝑓𝑅

𝑄(𝑓)𝛽
]                                                    (B-2) 

where 𝑄(𝑓) is the regional quality factor, 𝛽 is the seismic velocity in the vicinity of the 

source, and 𝐺(𝑅) is the geometrical spreading function, which, in the general case, is given 

by a log-multilinear model as:  

𝐺(𝑅) =

{
 
 

 
 𝑅

𝑏1  𝑅 ≤ 𝑅1
𝑅1

𝑏1(𝑅 𝑅1⁄ )𝑏2 𝑅1 ≤ 𝑅 ≤ 𝑅2
⋮
𝑅1

𝑏1(𝑅2 𝑅1⁄ )𝑏2⋯(𝑅 𝑅𝑛⁄ )𝑏𝑛 𝑅𝑛 ≤ 𝑅

                           (B-3) 

Yenier and Atkinson (2014) fitted the observed near-source ground motion amplitudes from 

the 22Feb11 earthquake using these simple functions for the path effect with parameters 𝑏1 =

−1.2, 𝑏2 = −0.5, 𝑅1 = 30 km, 𝛽 = 3.5 km/s, and using an ‘effective distance’ measure 

given as 𝑅 = (𝑅𝑟𝑢𝑝
2 + ℎ2)

0.5
, where 𝑅𝑟𝑢𝑝 is the closest distance to the fault, and ℎ is a 

pseudo-depth term, equal to 5.2 km, that accounts for near-source saturation. Their obtained 

values of quality factors were herein fitted by the model 𝑄(𝑓) = max(35, 150𝑓0.9). With the 

above data, frequency-dependent amplitude scaling factors 𝐴𝑆𝐹(𝑓) can be computed for any 

given pair of reference and target sites for the 22Feb11 earthquake as:  

𝐴𝑆𝐹(𝑓) =
𝑃(𝑅𝑟𝑢𝑝,𝑡,𝑓)

𝑃(𝑅𝑟𝑢𝑝,𝑟,𝑓)
=

𝐺(𝑅𝑟𝑢𝑝,𝑡)

𝐺(𝑅𝑟𝑢𝑝,𝑟)
· exp [

−π𝑓(𝑅𝑟𝑢𝑝,𝑡−𝑅𝑟𝑢𝑝,𝑟)

𝑄(𝑓)𝛽
]                           (B-4) 

where 𝑅𝑟𝑢𝑝,𝑟 and 𝑅𝑟𝑢𝑝,𝑡 are the rupture distances for the reference site and the target site, 

respectively. Note that, because the total energy of a signal in the time and frequency domains 

is equivalent, scaling of Fourier amplitudes in the frequency domain is theoretically fully 

consistent with the scaling of Arias intensity. 
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It is worth mentioning that as an alternative to the simple model described above, and, 

particularly, in the absence of event- and region-specific calibration parameters, amplitude 

scaling factors can be similarly determined from empirical models for the attenuation of 

Fourier amplitudes (e.g. Bayless and Abrahamson 2019, Bora et al. 2019). 

B.2.1 Directionality 

An added benefit from the use of the Fourier transform in amplitude-duration scaling is that it 

also provides a way to account for potential differences in the directionality of ground motion 

between the reference site and the target site. Near-source ground motions often exhibit strong 

polarity, while complex fault ruptures can additionally induce considerable variability in the 

maximum direction orientation from site-to-site (e.g. Bradley and Baker 2015). Also, soil 

nonlinearity and development of excess pore water pressures in liquefiable soils are known to 

be largely controlled by the maximum component of motion (e.g. Cubrinovski et al. 1996), 

therefore, unless a bi-directional ground-response analysis is carried out, the evaluation of the 

target-site response should ideally consider the maximum shaking intensity direction. 

Let 𝑐(𝑓) denote the ratio of the Fourier amplitudes of the maximum component at the target 

site to the amplitudes of its orthogonal component. This can be computed from the recorded 

motion at the same site, if the target site is an SMS site, or inferred from the nearest 

recordings. Assuming that directionality is not affected by the site response (i.e. the same 

bedrock-to-surface transfer function applies in all directions), 𝑐(𝑓) may also describe the 

directionality of the ground motion at the bedrock level. The Fourier amplitudes of the 

bedrock ground motion at the maximum direction can be computed from Eq. B-5: 

𝐴𝑡,𝑚𝑎𝑥(𝑓) = 𝐴𝑆𝐹(𝑓) · 𝐴𝑟,𝑒𝑓𝑓(𝑓) · 𝑐(𝑓) · {2 [𝑐(𝑓)2 + 1]⁄ }0.5                    (B-5) 

where 𝐴𝑆𝐹(𝑓) is given by Eq. A-4, and 𝐴𝑟,𝑒𝑓𝑓(𝑓) denotes the orientation-independent 

Fourier amplitudes of the deconvolved motion at the reference site given by 𝐴𝑟,𝑒𝑓𝑓(𝑓) =

{0.5[𝐴𝑟,1(𝑓)
2 + 𝐴𝑟,2(𝑓)

2]}
0.5

, in which 𝐴𝑟,1(𝑓) and 𝐴𝑟,2(𝑓) are the Fourier amplitudes of 

two orthogonal horizontal components. 

 

B.3  Duration Scaling 

Changes in ground motion duration can be accommodated by an appropriate adjustment of the 

phase spectrum. To identify the means to achieve this, it is first important to elaborate on 

some of the key properties of the phase content of earthquake ground motions (e.g. Ohsaki 

1979, Thrainsson and Kiremidjian 2002, Boore 2003b). 

Consider the acceleration time-series shown in Fig. B.2a, which corresponds to the 

deconvolved motion at CACS from the 04Sep10 earthquake (Bradley 2012). A notable 

feature of the observed ground motions from the 04Sep10 earthquake is the large amplitude of 
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long-period motion resulting from a combination of forward directivity effects and basin-

generated surface waves, evident in Fig. B.2a from the strong long-period cycles following 

the peak response. An insightful representation of the phase characteristics of ground motion 

can be obtained by taking the phase derivatives with respect to frequency (Stoffa et al. 1974, 

Boore, 2003b):  

𝑡𝑔𝑟 =
𝑑𝜙

𝑑𝜔
= [ℜ(𝑌)ℜ(𝑍) + ℑ(𝑌)ℑ(𝑍)] 𝐴2⁄                                    (B-6) 

where 𝜔 denotes angular frequency, 𝑍 is the Fourier transform of 𝑧(𝑡) = 𝑡 · 𝑦(𝑡), and ℜ(𝑋) 

and ℑ(𝑋) are the real and imaginary parts of the complex variable 𝑋, respectively. 𝑑𝜙 𝑑𝜔⁄  

has units of time and is often termed ‘group delay’ (𝑡𝑔𝑟) or ‘envelope delay’ (𝑡𝑒) for reasons 

that will be made clear in the following. Fig. B.2b shows a scatter plot of 𝑡𝑔𝑟 versus 

frequency, including a continuous line representing the moving median of the data across 

frequencies. At high frequencies, the phase derivatives appear to be distributed in time 

following a normal-like distribution with the median roughly coinciding in time with the 

occurrence of the peak acceleration in the original ground motion (Fig. B.2a). As frequency 

decreases, the median 𝑡𝑔𝑟 shifts toward later times in accordance with the later arrivals of low 

frequency waves in the original motion, and the dispersion about the median increases. At 

very low frequencies, both the median and the dispersion about the median decrease.  

 

Fig. B.2 (a) Acceleration time-series, and (b) frequency versus group delays for the reference motion; (c) 

acceleration time-series, and (d) frequency versus group delays for a modified motion obtained by scaling the 

group delays of the reference motion with a constant factor 𝑎 = 0.5; the continuous lines in (b) and (d) represent 

the moving medians of the data across frequencies. 
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The above observations allude to a close relationship between the non-stationary 

characteristics of the original ground motion and the time-frequency distribution of phase 

derivatives. In fact, it can be easily proven that the phase derivatives correspond to the arrival 

times of the maximum energy (or peak amplitude) of a narrow-band group of harmonic waves 

in the vicinity of the evaluated frequency (e.g. Dziewonski and Hales, 1972), hence the term 

‘group delays’ used in seismology literature. The observed time-frequency distribution of 𝑡𝑔𝑟 

can be explained by differences in the propagation velocities between body waves 

(dominating the high-frequency components of motion) and surface waves (dominant in the 

low-frequency range), and by the fact that surface waves are dispersive (i.e. their propagation 

velocity varies with frequency and mode of propagation). The observed dispersion at high 

frequencies is mainly a result of scattering effects of short-wavelength body waves, whereas 

the nearly absent dispersion at the very low frequencies is because at these low frequencies 

only the fundamental mode of surface-wave propagation is possible, hence dispersion is 

minimized (Novikova and Trifunac 1994). 

Changes in ground motion duration can be introduced by modifying the group delays. Fig. 

B.2d shows the distribution of group delays obtained by multiplication of the group delays of 

Fig. B.2b with a scalar factor 𝑎 = 0.5. With this operation, the median 𝑡𝑔𝑟 has been shifted 

towards earlier arrival times, the difference in the median 𝑡𝑔𝑟 between high-frequencies and 

low-frequencies has been reduced, and the dispersion about the median at each frequency has 

also been reduced. These are changes that would have expected to occur at a site located 

closer to the causative fault, if the observed 𝑡𝑔𝑟 distribution was simply a result of the 

different propagation velocities of different wave groups. A key assumption here is that the 

phase delay caused by the rupture process is constant or varies only slowly with frequency. A 

modified ground motion 𝑦𝑚 can now be obtained by combining the Fourier amplitude of the 

reference motion 𝐴𝑟 with the phase spectrum 𝜙𝑚 obtained from integration of the modified 

group delays via an inverse Fourier transform:  

𝑦𝑚(𝑡) = ∫ 𝐴𝑟(𝑓)exp[i𝜙𝑚(𝑓)]exp(−i2π𝑓𝑡) 𝑑𝑓
+∞

−∞
                              (B-7) 

The synthesized ground motion 𝑦𝑚 (Fig. B.2b) has higher peak response and shorter strong 

motion duration compared with the original motion. Note that the original (reference) and the 

modified ground motions have identical Fourier amplitude spectra and energy content, 

however, in the modified motion, the total energy is distributed over a shorter time window 

resulting in higher peak responses. Thus, by modifying the phase derivatives and hence the 

duration of ground motion, consistent distance-scaling of response spectral amplitudes and 

energy content can be achieved.  

Fig. B.3 compares the interquartile range of 𝑡𝑔𝑟 computed within several separate frequency 

bands and for varying 𝑎 factors applied to the group delays of Fig. B.2b, with an empirical 

frequency-dependent model for path duration obtained from regression analyses of band-pass 

filtered ground motions within the same frequency bands (Novikova and Trifunac 1994). The 

interquartile ranges represent the difference between late and early wave arrival times within 
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each frequency band, and hence have a direct correlation with the ground motion duration. 

The similarity between the two plots suggest that the application of a scalar factor 𝑎 to the 

group delays of the reference motion can capture well the frequency- and distance- dependent 

trends in path duration. 

 

 

Fig. B.3 Comparison between: (a) the path duration defined at separate narrow frequency bands as a function of 

hypocentral distance, based on the model by Novikova and Trifunac (1994); and, (b) the interquartile range of 

group delays computed at the same frequency bands for various 𝑎 factors applied to the group delays of Fig. 

B.2b. 
 

Further work is required to establish robust models for the variation of phase derivatives with 

source-to-site distance, as done with the Fourier amplitudes. Existing empirical models for the 

phase differences (e.g. Thrainsson and Kiremidjian 2002) and strong motion duration can 

provide useful insights in that regard. At present, the scaling factor 𝑎 may be determined such 

that the synthesized ground motion from the combination of the scaled amplitude and phase 

spectra complies with a target strong motion duration or response spectral amplitude. 

 

B.4  Synthesis and Correction 

The synthesized (scaled) motions obtained from the inverse Fourier transform using modified 

amplitude and phase spectra were often found to contain unphysical vibrations before the 

expected start of the scaled motion (~𝑎𝑡1 roughly, where 𝑡1 is the time of the first non-zero 

acceleration value of the unscaled acceleration time-series) and baseline errors. Such spurious 

effects are introduced by the changes in the phase spectrum and may be due to errors in the 
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numerical integration of the phase derivatives or incompatibility between the modified 

Fourier amplitude and phase spectra. A ‘correction’ procedure was implemented to remove 

these effects from the scaled motion by: (1) imposing zero acceleration amplitude before the 

expected start (< 𝑎𝑡1) and after the expected end of the scaled motion (> 𝑎𝑡2, where 𝑡2 is the 

time of the last non-zero acceleration value of the unscaled acceleration time-series) and 

applying a half-cosine taper for the transition from the zero pads to the motion; (2) scaling the 

spectral amplitudes of the modulated motion to the target amplitude spectrum (using a smooth 

transfer function) to compensate for possible energy losses resulting from the modulation; and 

(3) applying a low-cut causal Butterworth filter of 0.05 Hz for baseline correction.  

Fig. B.4 illustrates acceleration, velocity, and displacement time histories for the unscaled 

reference CACS motion from the Darfield earthquake, the uncorrected duration-scaled motion 

using 𝐴𝑆𝐹 = 1 and 𝑎 = 0.5, and the corrected duration-scaled motion obtained from the 

above correction procedure. Superimposed on the acceleration plots of this figure are Husid 

plots illustrating the temporal evolution of Arias Intensity for each motion. The time intervals 

corresponding to the 𝐷5−75% and 𝐷5−95% definitions of significant duration are also marked in 

the acceleration plots. Note that, in this case where 𝐴𝑆𝐹 = 1, the unscaled motion and the 

duration-scaled motion have nearly identical Arias Intensity (according to Parseval’s theorem, 

the total energy of a signal in the time domain and frequency domain is equivalent), however, 

in the duration-scaled motion the total energy is distributed over a shorter time window 

resulting in higher peak responses.  

 

Fig. B.4 Acceleration and Husid plot (top row), velocity (middle row), and displacement (bottom row): unscaled 

motion (left); uncorrected duration-scaled motion (middle); corrected duration-scaled motion (right); the 

shadings in the acceleration plots correspond to the time intervals for the 𝐷5−75% (dark shading) and 𝐷5−95% 

(light shading) definitions of significant duration. 
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B.5  Example Application (Validation) 

This section discusses the application of the proposed amplitude-duration scaling to reference 

motions from the 22Feb11 earthquake. The specific purpose is to derive appropriate input 

motions for effective-stress analysis at the CMHS SMS site (Fig. 5.1a), which is a site at very 

close proximity to the causative fault (𝑅𝑟𝑢𝑝 = 1.4 km). To this end, reference motions from 

the CACS (𝑅𝑟𝑢𝑝 = 12.8 km) and SMTC (𝑅𝑟𝑢𝑝 = 10.8 km) reference SMS sites were 

deconvolved by the local site-response and scaled using both the amplitude-only scaling 

method and the proposed amplitude-duration scaling method. The obtained equivalent-

outcrop RG motions were used for 1D effective-stress analysis at the CMHS site in 

accordance with the procedure described in the main body text. The performances of the two 

different scaling methods and associated input motions are herein evaluated by comparing the 

simulated surface motions to the observed ground motion at CMHS, in terms of acceleration 

and velocity waveforms, 5% damped pseudo-acceleration response spectra, and temporal 

accumulation of Arias Intensity. In both cases, comparisons of the surface motions are made 

in the direction of the recorded maximum Arias Intensity at the CMHS site. 

In the application of the amplitude-only scaling method, amplitude scaling factors were 

calculated using the B13 model for the distance-scaling of spectral accelerations yielding 

values equal to 3.49 for the CACS motion and 2.95 for the SMTC motion. For these large 

values of the scaling factor, the overprediction of the Arias Intensity can be in the order of 

40% and greater, according to Fig. 5.10. Fig. B.5 presents comparisons between the observed 

and simulated surface ground motions at CMHS using the amplitude-only scaling method 

with the above scaling factors. There are two key observations that can be made with respect 

to this figure. First, as expected, the simulations with the amplitude-only approach result in 

significant overprediction of the cumulative Arias Intensity and strong motion duration with 

strong acceleration and velocity cycles in the simulated waveforms evident beyond the end of 

the strong shaking of the observed ground motion. Second, both simulations severely 

overpredict the spectral amplitudes at long periods (𝑇 > 2 s). This second effect is likely the 

result of differences between the reference sites and CMHS in the basin depth and the 

response of the deeper soils below the RG layer, as can be inferred from Fig. 5.8.  
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Fig. B.5 Comparisons between observed and simulated surface ground motions at CMHS (22Feb11 earthquake) 

using amplitude-only scaling: (a) acceleration time-series; (b) velocity time-series; (c) temporal evolution of 𝐴𝐼; 

and, (d) pseudo-acceleration response spectra. 
 

In the application of the amplitude-duration scaling method, target Fourier amplitudes for 

CMHS were determined using Eqs. B-4 and B-5 with the parameters provided in the relevant 

sections, accounting for both amplitude attenuation and directionality effects. Target Fourier 

phase angles and group delays were derived from the group delays of the maximum direction 

reference RG motions using an 𝛼 factor of 0.48 for CACS and 0.65 for SMTC. These factors 

were determined such that the relation between the respective significant durations of the 

target and reference RG motions follows the distance-scaling of duration suggested by Boore 

and Thompson (2014). Fig. B.6 compares the surface motions obtained using the proposed 

amplitude-duration scaling method to the observed surface motion at CMHS. In both 

simulations, there is a clear improvement of the predictions manifested in nearly all examined 

aspects of ground motion, including the acceleration waveforms, response spectra, temporal 

accumulation of 𝐴𝐼, and strong motion durations. Yet, the long-period motion and peak 

ground velocities are still significantly overpredicted, as basin amplification effects are still 

present in the amplitude-duration scaled motions. 
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Fig. B.6 Comparisons between observed and simulated surface ground motions at CMHS (22Feb11 earthquake) 

using amplitude–duration scaling: (a) acceleration time-series; (b) velocity time-series; (c) temporal evolution of 

𝐴𝐼; and, (d) pseudo-acceleration response spectra. 
 

By allowing for concurrent scaling of both amplitude and duration of ground motion, 

amplitude-duration scaling can achieve physically consistent scaling of response spectral 

amplitudes, duration, and energy content with distance. Thus, the method offers significant 

advantages over the conventional amplitude-only scaling especially in cases of relatively large 

difference in the source-to-site distance between the reference site and the target site. Yet, 

because this scaling method may considerably distort the original motion, it should be applied 

with great care and the reasonableness of any amplitude-duration scaled motion should be 

evaluated carefully. 
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Fig. C.1 Box-and-whisker plots illustrating the distribution of the considered 𝐼𝑀 residuals for the 04Sep10 

earthquake simulations using the B13 model for the relative distance-scaling of the reference motions: (a) 

CACS-based simulations; and (b) RHSC-based simulations. 
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Fig. C.2 Box-and-whisker plots illustrating the distribution of the considered 𝐼𝑀 residuals for the 04Sep10 

earthquake simulations using the B13 model for the relative distance-scaling of the reference motions: (a) 

CACS-based simulations; and (b) RHSC-based simulations. 
 

 

 

 

 

 

Fig. C.3 Box-and-whisker plots illustrating the distribution of the considered 𝐼𝑀 residuals for the 04Sep10 

earthquake simulations using the default YA14 (ℎ = 20.6 km) model for the relative distance-scaling of the 

reference motions: (a) CACS-based simulations; and (b) RHSC-based simulations. 
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Fig. C.4 Distribution of the spectral acceleration residuals for the 04Sep10 earthquake simulations as a function 

of vibration period using the default YA14 (ℎ = 20.6 km) model for the relative distance-scaling of the 

reference motions: (a) CACS-based simulations; and (b) RHSC-based simulations; thick lines represent the 

median of the distribution, shaded regions indicate the interquartile range, and dotted lines show the total 

(minimum to maximum of all residuals) range. 

 

 



Appendix C: Supplementary Results from the Analyses of the SMS Sites 

 238 

 

Fig. C.5 Prediction residuals from the 04Sep10 earthquake simulations, using the YA14 (ℎ = 33.3 km) 

distance-scaling model, on a site-by-site basis for: (a) 𝑃𝐺𝐴𝑀7.5; (b) 𝐴𝐼; (c) 𝐶𝐴𝑉5; and (d) 𝑆𝐼. 
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Fig. C.6 Prediction residuals from all the 22Feb11 earthquake simulations on a site-by-site basis for: (a) 

𝑃𝐺𝐴𝑀7.5; (b) 𝐴𝐼; (c) 𝐶𝐴𝑉5; and (d) 𝑆𝐼. 
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Table D.1 Response-based classification of 55 sites for the 22Feb11 earthquake, as per Section 7.5. 

  Liquefaction manifestation 
Response-based 

classification NZGD IDi Suburb 04Sep10 22Feb11 Classification 

21508 Avonside Severe Severe YY SC 

44439 Avondale Severe Severe YY SC 

21509 Avondale Moderate Severe YY SC 

34460 Avondale Severe Severe YY DC 

57354 Avondale None Severe NY (SC) 

38758 Avondale None Moderate NY (SC) 

57342 Avondale None Severe NY (SC) 

29035 Avondale Severe Severe YY SC 

36414 Avondale Moderate Severe YY SC 

34454 Avondale Moderate Severe YY DC 

45 Avondale Minor Severe YY SC 

21506 Bexley Minor Severe YY SC 

158 Bexley Minor Minor YY (SC) 

175 Bexley Severe Severe YY SC 

57349 Aranui Moderate Moderate YY (SC) 

57347 Aranui None Minor NY NT 

57348 Aranui None Moderate NY (SC) 

38797 Aranui Minor Severe YY SC 

57343 North New Brighton None None NN NT 

38742 North New Brighton None Moderate NY (SC) 

34431 North New Brighton None Severe NY SC 

57350 North New Brighton None None NN (DC) 

38752 Parklands None Moderate NY NT 

57366 Shirley None Severe NY DC 

57346 Shirley None Minor NY NT 

57362 Shirley None Minor NY SI 

i CPT identification code in New Zealand Geotechnical Database (NZGD 2020). 
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Table D.1 Response-based classification of 55 sites for the 22Feb11 earthquake, as per Section 7.5 (Continued) 

  Liquefaction manifestation 
Response-based 

classification NZGD ID Suburb 04Sep10 22Feb11 Classification 

57341 Woolston None Severe NY (SC) 

57360 Woolston None Moderate NY (SC) 

57365 Hillsborough None None NN SI 

57357 Waltham None Severe NY DC 

57356 Waltham None Severe NY DC 

57355 Sydenham None Minor NY DI 

57353 St Martins None Severe NY (SC) 

638 Somerfield None Minor NY SI 

37818 Spreydon None Minor NY SI 

57344 Hoon Hay Minor Severe YY SC 

57340 Hoon Hay None Minor NY SI 

36417 Hoon Hay None None NN DI 

36421 Hoon Hay None None NN DI 

57364 Hoon Hay None Moderate NY DI 

57352 Halswell None None NN SI 

36419 Halswell None None NN SI 

57319 Riccarton None None NN DI 

57337 Riccarton None None NN DI 

36418 Riccarton None None NN DI 

57345 Riccarton None None NN SI 

36420 Riccarton None None NN SI 

5567 Fendalton None None NN DI 

57358 St Albans None Minor NY SI 

57359 Papanui Moderate Severe YY DC 

57363 Merivale None Moderate NY (SC) 

57361 Papanui None None NN SI 

57339 Papanui None None NN DI 

57351 Papanui None None NN DI 

57338 Papanui None None NN SI 
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