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Abstract 
 

Noble, Alexandra J., The impact of the environment on DNA methylation in humans 
and the zebrafish 

Doctor of Philosophy, December 2020, University of Canterbury, Christchurch, New 

Zealand. 

DNA methylation is a chemical modification to the DNA strand, which can 

control gene expression. DNA methylation can be modified by the environment. 

For example, tobacco use substantially alters DNA methylation, and hence 

DNA methylation therefore provides a route through which the environment can 

lead to alterations in gene expression. Consequently, alterations to DNA 

methylation patterns have been associated with disease phenotypes in humans 

and other mammals. However, the precise role of environmentally-induced 

DNA methylation changes in the onset of pathological phenotypes is not often 

clearly defined. 

Here, we investigate the response of DNA methylation to two different 

environmental exposures – adulthood cannabis and in utero tobacco exposure. 

These environmental exposures are important because they are associated 

with adverse phenotypes – long-term cannabis use, particularly through 

adolescence, is associated with adverse psychosocial wellbeing. The 

development of conduct problem (CP, including autism and antisocial 

behaviour disorder) in childhood and adolescence is associated with exposure 

to tobacco during development (in utero).  However, as yet, no studies have 

explored the role of DNA methylation in the link between these exposures and 

their associated phenotypic effects.    

Therefore, here we first asked whether DNA methylation in a longitudinal 

human cohort, the Christchurch Health and Development Study (CHDS), was 

altered in response to long term cannabis exposure, with and without tobacco.  

Using the Illumina EPIC array, we detected nominal differential DNA 

methylation in response to cannabis specifically, in genes associated with the 

following pathways; Cholinergic synapse, glutamatergic synapse and 

dopaminergic synapse.  These observations show a potential mediation 

between DNA methylation in the observed phenotypic effects of cannabis use.   



 
 

In order to develop a tool to investigate this association further, we assessed 

the efficacy of a targeted, high throughput amplicon-based approach, bisulfite-

based amplicon sequencing (BSAS), to replicate differential methylation at loci 

identified via EPIC array. We found that the ability of BSAS to detect equivalent 

differential methylation was locus-specific, meaning that it has value as a 

validation and replication tool, but that each locus for validation must be tested 

before being applied to a large study.   

Cannabis use is a contentious issue, mainly because of the debate around its 

therapeutic but also its psychoactive properties. In order to quantify the impact 

of both of its main cannabinoids, (-)-trans-∆9-tetrahydrocannabinol (THC) and 

cannabidiol (CBD) were exposed to zebrafish embryos. Following exposure 

reduced representation bisulfite sequencing (RRBS) was used to quantify their 

impact of each cannabinoid on DNA methylation. Differential methylation was 

found in each of the exposure groups, findings demonstrated the greatest 

number of methylation differences was in the CBD exposure group. CBD DNA 

methylation differences were found in genes that have roles in 

neurodevelopment, neurotransmission and behaviour. THC DNA methylation 

differences on the other hand were found to alter genes with roles in the axon 

guidance and retinal ganglion pathways, supporting the role of DNA methylation 

in the biological response to THC. Furthermore, our data revealed a role for 

both THC and CBD in brain related pathways, indicating that further research 

is needed to understand the full biological impacts of the two compounds. 

Next, to determine if tobacco-induced DNA methylation alterations are 

important in the link between in utero tobacco exposure and the development 

of CP, here, we applied BSAS to a subset of  CHDS participants to assess DNA 

methylation in in utero-exposed individuals compared to non-exposed 

individuals, with and without CP. We selected a panel of genes with known roles 

in in utero neurodevelopment, and identified differential methylation that was 

specific to individuals exposed to tobacco during development, who had high 

CP scores. We imply that developmentally-induced DNA methylation 

alterations may be playing a role in the development of CP in exposed 

individuals.  To investigate this further, we applied a genome-wide approach 

(EPIC array) to a larger cohort and identified nominal significance at genes 



 
 

involved in global developmental delay and neurological disorders, indicating 

that, in addition to CP, visual impairment may be a phenotypic response to in 

utero tobacco exposure. 

Lastly, we discuss whether DNA methylation analysis in whole blood samples 

is able to predict DNA methylation changes in brain tissue. To answer this 

question, we used publicly available data of the top lists of differentially 

methylated CpG sites in blood and brain tissue from individuals with 

schizophrenia.  We found that, the methylation of individual CpG sites did not 

replicate between tissues, the genes and pathways that have biological 

relevance to schizophrenia (e.g. mTOR signalling pathway and the mRNA 

surveillance pathway) were identified in both tissue types, demonstrating the 

value and applicability of whole blood as a proxy tissue.   

Overall, here we demonstrate a role for DNA methylation in the biological 

response to cannabis, and a link between in utero tobacco exposure and 

development of CP.  Further research is required to understand the mechanism 

through which these changes can contribute to disease.   
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Chapter 1 
 

1. Introduction and outline 

 

Part 1: The Molecular Mechanism of DNA Methylation 

 

1.1.1 From ‘epigenotype’ to epigenetics 

 

The field of epigenetics began with a series of experiments by Conrad Waddington, in 

1942 [1]. Waddington observed that when exposed to heat or shock, the fruit fly, 

Drosophila melanogaster, would respond with the “development of adaptive character 

which might itself become so far canalised it continued to appear even when the 

conditions appear to the previous norm” [2]. The  observation led Waddington to 

propose the existence of an intermediate and independent link between a gene and 

the expected phenotype [1], and he coined the term ‘epigenotype’.  Little did 

Waddington know, he was actually describing what we refer to now as epigenetics, 

literally translated as epi- “on top of” genetics- “genes”. The meaning has been refined 

over time, and is now specifically used to describe reversible gene regulation occurring 

independently of the underlying DNA sequence [3].  

In 1957, Waddington proposed the epigenetic landscape theory. The influential theory 

was a way to describe the process of cell-fate determination during the various phases 

of development in a multicellular organism [4]. It was of high importanance because it 

provided a way to illustrate the concept that the vast majority of cells within an 

individual share identical genotypes, yet the diversity of cell end-point is phenomenal 

[5].  In the theory, a marble (Figure 1.1) at the top of the valley depicts a pluripotent 

cell, which has the capacity to differentiate into any cell type. The valleys represent 

the many different trajectories a cell can take while its fate is being determined; 

essentially, they are pathways for differentiation, cell-fate determination, and tissue 

development. Each end point has its own unique biological function that is important 

for all multicellular organisms, and thus the epigenetic landscape shapes the 

opportunity for a cell to follow a specific pathway to differentiation; as that one cell’s 

role becomes more defined, its gene expression becomes restricted and exhibits a 

“locked in” state [6], signifying the end of a pluripotent state. A key process that is 

central to this process of cell differentiation is DNA methylation.   
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1.1.2 Epigenetic regulation via DNA Methylation 
 

There are several ways in which epigenetic processes can cause phenotypic changes, 

but one of the most well-studied is DNA methylation. DNA methylation is one type of 

epigenetic modification and it occurs when a methyl group is covalently transferred to 

the C5 position of the cytosine ring of a DNA molecule by a methyltransferase enzyme 

(Figure 1.2), which is then termed 5-methylcytosine (m5C). DNA methylation plays a 

crucial role in regulating gene expression and normal development [8]. 

 

Figure 1.1  

Figure 1.1 Waddington’s epigenetic landscape. a) a marble represents a singular pluripotent cell which travels down 
a route that is shaped by the epigenetic landscape, this ultimately leads to a defined/differentiated state. b) the 

complexity of the different trajectories which is driving the underlying decisions of the landscape [7]. Permission 

granted for the use of this image.  

Figure 1.2 Cytosine methylated at the 5’ carbon by DNA methyltransferaases resulting in a 5-mC. 

Made with BioRender.com 
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Cytosine methylation is present in the DNA of vertebrates, some flowering plants, 

fungi, invertebrates, protists and bacterial species [9], and is common in all large 

genomes of eukaryotes [10]. In mammals, approximately 98% of DNA methylation 

occurs at a CpG dinucleotide, which is the methylated cytosine and the 

phosphodiester bond that joins the cytosine with an adjacent guanine nucleotide. 

However differs in embryonic cells, where a quarter of methylation is in a non-CpG 

context. The difference in DNA methylation context has been hypothesised to be 

functionally significant; non-CpG methylation around gene bodies in ooytes correlates 

with the level of expression of corresponding genes, showing context-dependent 

functional significance of non-CpG methylation [10]. Further, DNA methylation during 

development is dynamic – extensive epigenetic remodelling must be undertaken 

during zygote formation, with DNA methylation almost entirely erased after fertilisation, 

and then re-established in the embryo [11]. Specifically, DNA methylation in the 

paternal genome (where overall DNA methylation is very high) will undergo 

demethylation early in zygote formation [12], while the maternal genome, which has 

relatively lower global methylation levels, undergoes demethylation at a less dynamic 

pace [13]. The dynamics of demethylation prompts key events in early development, 

and is essential for life [14, 15]. 

 

Once established, DNA methylation can be influenced by the surrounding 

environment, and factors such as diet, stress and aging can all impact on DNA 

methylation at CpG residues [16]. Of these environmental factors, age is possibly the 

most well-studied, with DNA methylation patterns shown to be intrinsically linked to an 

individual’s age.  For example, twin studies revealed that younger twins had virtually 

indistinguishable patterns of DNA methylation, whereas older twins had comparably 

different patterns [17]. It was hypothesised that the methylation patterns of adult twins 

differed due to the environmental influences that each individual twin had been 

exposed to [18]. A further study in monozygotic and non-twin individuals identified 88 

CpG sites in and around 80 different genes which drastically changed methylation 

status in relation to age [19], and further, the DNA methylation status of just 71 CpG 

sites in the genome can predict an individual’s age down to a standard error of 3.9 

years [20]. Thus, considering that DNA methylation is dynamic, and can change with 

age and environmental exposures, there exists the potential for DNA methylation to 
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serve as a hallmark of individual environmental exposures, and this will be discussed 

fully in the role of the environment and disease (Part 2).   

 

1.1.3 CpG Islands 
 

As previously stated, 98% of DNA methylation occurs at CpG dinucleotides. The 

human genome contains ~3 x 107 CpG dinucleotides, and each can either be in a 

methylated or unmethylated state [21]. Groups of CpG sites are known as CpG islands 

and span 0.5 - 3 kilobases (kb) in length [22, 23]. CpG islands are mathematically 

defined as sequences exhibiting greater than 55% G+C content, with an 

observed/expected ratio of 0.65 [24]. CpG islands are associated with the promoter 

regions of roughly 76% of all human genes [25, 26]; there are over 30,000 CpG islands 

across the genome, and 21,000 of them lie within the promoter region of genes. 

Usually, CpG islands at promoters of active genes are unmethylated, which then 

allows transcription to occur [27]. Conversely, dense promoter methylation via CpG 

islands can prevent expression of genes that are not necessary for that cell type [24]. 

DNA methylation can occur also at CpG dinucleotides in the gene body [23] and gene 

body CpG islands are more likely to become methylated than promoter CpG islands 

[28]. Methylation both in promoter regions and in gene bodies can impede the 

transcriptional machinery, preventing the DNA sequence from being read, essentially 

silencing genes  [29], via a reduction in the accumulation of gene transcripts [30]. 

Functionally, CpG methylation at CpG islands has many roles, both for correct 

developmental trajectories and also in disease. Of the former category, perhaps the 

best studied is the way in which DNA methylation contributes to the stability of X 

chromosome inactivation. X inactivation is the process in which one X chromosome in 

each cell of a female mammal is completely inactivated during development, to provide 

dosage compensation in gene expression [31]. Failure of X inactivation can lead to 

developmental disease [32]. An example from the latter category is methylation at CpG 

islands within tumour suppressor genes; promoters of tumour suppressor genes, 

which should be unmethylated to allow tumour suppressor gene expression, may be 

methylated in cancer cells [33], disrupting gene expression and causing disease.  

Thus, given that CpG island methylation patterns have been associated with a variety 
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of diseases, promoter methylation can be interpreted as a “hallmark” or a “biomarker” 

for disease states [34] 

 

1.1.4 DNA methylation via DNA methyltransferases 

 

DNA methylation is regulated by a family of DNA methyltransferase enzymes 

(DNMTs): DNMT1, DNMT2, DNMT3a, DNMT3b and DNMT3L. The family of enzymes 

catalyse cytosine methylation by transferring a methyl group from S-adenosyl-L-

methionine (SAM) to deoxycytosine [35]. DNA methyltransferases can largely be split 

into two subgroups: i) maintenance methyltransferases (Figure 1.3a), and ii) de novo 

methyltransferases (Figure 1.3b) [36].  

 

Figure 1.3 Members of the DNMT family. A) DNMT1 is responsible for the maintenance of methylation 

patterns during cell division, replicating existing CpG signatures to newly synthesised strands of DNA. 
B) DNMT3A and DNMT3B are known as de novo methyltransferases, and are responsible for new CpG 

signatures (made with biorender.com).  
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DNMT1 is the most abundant methyltransferase enzyme in adult cells [37], and it is 

largely responsible for maintenance of DNA methylation through the cell division cycle  

[38]. It maintains DNA methylation by copying the methylation pattern from a 

replicating to a nascent DNA strand [36], thus replicating the CpG signature from 

parent to daughter strands [39]. DNMT2 is the least understood methyltransferase in 

terms of its role in DNA methylation, but it is known to have a significant role in 

methylation of transfer RNA [40], and in Drosophila, DNMT2 is the sole cytosine DNA 

methyltransferase [41].  

The de novo methyltransferases dnmt3a and dnmt3b are highly expressed in 

undifferentiated embryonic cells and then downregulated in adult somatic tissues  

when studied in mice [42]. They transfer a methyl group to a cytosine residue that is 

unmethylated, and are mainly active during development [43]. DNMT3L is necessary 

for the establishment of methylation marks at maternally imprinted loci in developing 

oocytes [44].  

All of the enzymes in the DNMT family have individual but crucial roles, which have 

been shown to be lethal in mice models if knocked out [10, 43, 45]. Thus, given the 

importance of DNA methylation as a mechanism, it is crucial that we understand the 

way in which different environmental factors might influence this key mechanism.  

 

1.1.5 Detecting differential DNA methylation  

 

There are numerous methods for quantifying and analysing DNA methylation (Table 

1.1). A common method is bisulfite sequencing [46], which is a technique that can 

detect DNA methylation at individual CpG sites via a combination of sodium bisulfite 

treatment and DNA sequencing. Briefly, treatment of DNA with sodium bisulfite 

converts all non-methylated cytosine residues to uracil using polymerase chain 

reaction (PCR) (Figure 1.5). It then becomes possible to ‘read’ which cytosines were 

methylated in the original sample via DNA sequencing, when aligned to an 

unconverted reference sequence [47].  
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Figure 1.4 The process of bisulfite treatment of DNA to preserve methylated cytosines and chemically 
modify unmethylated cytosines to tyrosines using the process of PCR amplification. Figure was made 

with BioRender. 

 

 

This provides a cost- and time-efficient method of comparing differential methylation 

between two individuals, or it can be averaged to compare methylation levels between 

cohorts or populations. Advancements in our ability to quantify and analyse DNA 

methylation have been driven by next generation sequencing technology, where mass 

investigation of methylation across the genome can now be achieved. Thus, there are 

multiple modes through which bisulfite-converted DNA can be quantified.  Some 

include sequencing of the entire genome, some a reduced representation, some 

sequence amplicons, and some are probe based:  

1. Techniques for targeted methylation analysis 

a) Bisulfite-based amplicon sequencing (BSAS): This technique uses both 

bisulfite conversion and PCR amplification of short amplicons of ~250bp to 

obtain estimates of differential methylation between two populations [48]. 
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Genomic material must be first bisulfite converted before primers for the 

methylated template amplify the sites of interest. The relative disadvantage 

to this method is that PCR amplification can be prone to error [49]. 

b) Pyrosequencing:  This is a DNA sequencing technique which relies upon 

the release of pyrophosphate (PPi) during DNA synthesis [50]. 

Pyrosequencing can be performed after bisulfite conversion of DNA PCR 

products or in conjunction with long interspersed element-1 (LINE-1) whole 

genome approach. It relies upon four enzymes: DNA polymerase, ATP 

sulfurylase, firefly luciferase and apyrase. As the single stranded DNA 

template is made, each nucleotide is incorporated which coincides with the 

release of pyrophosphate which triggers ATP sulfurase. Then the firefly 

luciferases sense light, ultimately produces a light reaction [51]. Thus, 

Pyrosequencing  is known to have quantitative flaws due to the output of 

sequences generated through fluorescence methods [52]. 

2. Common technologies used for genome-scale analysis of the methylome are:  

a) Methylation arrays: Illumina EPIC 850K arrays quantify methylation at 

863,904 different CpG sites [53].  Although this is still a small proportion of 

the total number of CpG sites in the genome (~28 million) it represents a 

broad distribution of sites that give a specific and robust measurement of 

methylation at those sites. The technique relies on a probe-based method, 

which can be expensive. 

b) Methylated DNA immunoprecipitation sequencing (MeDIP-Seq): This 

method requires minimal DNA input and so is useful in experiments where 

DNA yield is limited. Methylated DNA is immunoprecipitated with an 

antibody raised against a CpG site which is followed by DNA sequencing 

[54, 55]. The antibody-based selection is biased towards higher CpG density 

[56] and it has low base resolution (~150 bp), compared to many other 

techniques which allows for single base resolution [57]. 

c) Whole genome bisulfite sequencing (WGBS):  DNA undergoes bisulfite 

conversion which is then coupled with next generation sequencing 

technology to obtain large numbers of DNA sequences with methylated 

cytosine residues converted to uracil. The method has been used frequently 

and in particular with mapping methylation in human cancers [58, 59]. There 
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is an extensive literature regarding preparation protocols, sequencing 

output and interpretation of data [60]. Bisulfite conversion does have its 

pitfalls, with sequencing biases and overestimation of global methylation 

[60, 61]. 

d) Reduced-representation bisulfite sequencing (RRBS): This technique 

utilises a reduced representation of the CpG sites within the genome which 

equates to around 85% of the CpG islands [62] via sequencing.  Since the 

output of RRBS is sequence-based, RRBS returns more information than 

the probe-based EPIC array. The technique utilizes the methylation-

insensitive restriction enzyme MspI to cut sites within the genome. The cut 

fragments vary in length between 40 - 220bp [62]. The fragments are then 

converted using sodium bisulfite and sequenced. Although this technique 

provides reduced representation of the whole genome, cut sites span most 

promoter regions which ensures most CpG sites are represented. The 

approach provides single-nucleotide resolution that is highly sensitive that 

only requires relatively small amounts of DNA input [62]. For example, 

clinical tumour samples [63] or samples where little material can be obtained 

such as organ specific sampling in mice can still assess genome wide 

methylation This technique is rather intensive both in wet lab work as well 

as computationally, compared to other methods. Although it is considered 

to be “whole genome” it is still only a representation of the total number of 

CpG sites. 

e) Nanopore MinION: the Oxford Nanopore sequencing system provides real-

time, high-throughput, and high read length sequences via a portable 

sequencing device [64]. It reads a DNA sequence by measuring the 

changes in electrical conductivity generated as the DNA strands pass 

through hundreds of nanopores, with sequencing complete in 48 hours. 

Genome coverage during this period depends on the size of the genome.  

Larger genomes will need multiple sequencing runs. Due to the pore-based 

method of sequencing, unmethylated cytosines and methylated cytosines 

disturb the ion current in distinct ways, enabling differentiation between 

modified and unmodified cytosines [65, 66]. Allowing for distinct methylation 

detection in difficult-to-map regions of the genome [67]. 
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Other technologies such as enzyme-linked immunosorbent assay (ELISA), high 

performance liquid chromatography mass spectrometry (HPLC-MS) and high 

performance liquid chromatography ultra violet (HPLC-UV) can all quantify total 

methylation levels within a genome [68] [69, 70]. However, they are not sequence-

based and therefore unable to identify specific differentially methylated cytosines nor 

their precise location within the genome.  The capacity to identify the genes (or nearest 

genes) which display differential methylation is important to this research project, so 

global methylation techniques will not be discussed here.  

 

Table 1.1 Different methods for detecting DNA methylation 

 

 

1.1.6 Choice of tissue sample type in studies of DNA methylation 

 

Given that levels of methylation vary substantially across different tissues [29], tissue 

sample choice is pivotal, and also frequently debated. It is of particularly importance 

when investigating diseases which are specific to, or associated with a certain cell 

type. Ideally, methylation would be measured in tissues of most relevance, but this 

becomes particularly difficult in human studies and disease of a specific cell type, e.g. 

the brain or other internal organs [75]; clearly, access to these cells from a live 

Method System Coverage  Starting 
material 

DNA 
origin 

Sensitivity Specificity Cost Reference 

Whole genome methods        

Iluminia EPIC 
array 

BS convert/ 
Bead array 

850,000 
sites (4% 

of 
genome) 

0.5- 1 µg Humans Very high Very good High [68, 71] 

MeDIP Antibody/ 
Array 

Whole 
genome 

50 ng Humans Medium Medium High [54] 

WGBS BS convert/ 
Sequencing 

Whole 
genome 

1-5 µg Any High Good High [60] 

RRBS Sequencing Whole 
genome 

1 µg Any High Good Medium [62] 

Specific targeted approaches       

PCR based BS convert/ 
Sequencing 

Gene 
specific 

100 ng Any High Good Low [48] 

Pyrosequencing 
+ LINE 1 

BS convert Gene 
specific  

1 µg Any High Good Medium [72-74] 
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organism would be impossible.  As such, whole blood samples and saliva are the 

easiest and the least invasive way to obtain a sample.  

While DNA methylation does vary between tissue types, whole blood samples have 

been shown to be a useful proxy tissue in which to assess phenotypically relevant 

DNA methylation differences.  For example, tobacco smoking, which affects the lungs 

primarily, is associated with methylation changes in DNA of aryl hydrocarbon receptor 

repressor (AHRR) and this effect of tobacco on DNA methylation is seen in whole 

blood samples in numerous studies across multiple cell types [76-82].   

One last limitation of using whole blood as proxy tissues is that they may suffer from 

tissue heterogeneity – whole blood is made up of multiple cell types, all of which have 

their own unique DNA methylation pattern. The variation in proportion to different cell 

types between samples from different individuals may bias or skew estimates of 

differential DNA methylation. However, bioinformatics tools have been developed to 

attempt to mitigate tissue heterogeneity as a cofounding variable [75].  
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Part 2: The role of the environment in disease 

 

1.2.1 Environmental epigenetics 

 

The ability of an organism to sense the environment and adapt its phenotype in 

response is a key concept in epigenetics [83].  This is particularly pertinent in the 

current research environment, where mounting evidence suggests that not all 

biological responses are determined by variation in DNA sequence [84]; it is 

increasingly clear that differences in methylation patterns within the genome can alter 

biological responses [85], and we know the environment can have a major influence 

on epigenetic modifications [86]. For example, alterations to DNA methylation patterns 

have been associated with nutritional, chemical, physical, and even psychosocial 

factors (e.g. stress) [3, 87-91]. In fact, methylation can generate epigenetic patterns 

that are specific to individual environmental factors, serving as an enduring hallmark 

of exposure to these factors. For example, differential methylation at very precise 

genomic regions has been identified in heavy alcohol use [92], and tobacco smoking 

[93]. 

Epigenetic changes can also occur in response to illicit, recreational and prescribed 

drugs, and it has been hypothesised that DNA methylation could play a role through 

addiction responses to such substances [94]. In particular, if we consider here 

exposure to nicotine via tobacco smoking, while nicotine as a chemical plays minor 

roles in the diseases caused by smoking (e.g. lung cancer, cardiovascular disease), it 

has a major role in the development of addiction through the mediation of persistent 

neuroplasticity [95]. Neuroplasticity is the ability of the brain to form new neural 

connections and structure in an adult brain [96], and it is associated with addiction. 

Plasticity is influenced by DNA methyltransferases [95], for example DNMT3A and 3B 

create dynamic changes in DNA methylation of plasticity-relevant genes that are 

important for learning and memory formation [97]. While the links between DNA 

methylation, neuroplasticity, and nicotine are not fully understood, it is feasible to 

suggest that, given the correlation between both nicotine and DNA methylation and 

neuroplasticity, DNA methyltransferase action could be altered by nicotine 

consumption, influencing neuroplasticity and addiction. Indeed, studies carried out in 

mice show an epigenetically mediated effect of early exposure to nicotine on pup 
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neural structure, that then persisted into adulthood [98], demonstrating that the 

epigenetic effects of nicotine exposure are lifelong.  

Importantly, there is no evidence as yet to suggest that the effect of nicotine on 

addiction is isolated; given the ability of DNA methylation to respond to environmental 

factors, it is possible that other illicit and prescribed drugs also affect addiction via 

epigenetic mechanisms. Addiction itself is a complex disease that has a multitude of 

contributing factors, in particular environmental, behavioural, and biological; twin 

studies have revealed that the heritable genetic component which predisposes an 

individual to a drug addiction could be between 20-50%, with the remaining component 

due to non-genetic factors [99, 100]. Suggesting a complex relationship between 

addiction, genetics, and the environment. Therefore, probing the relationship between 

environmental factors and DNA methylation is required to begin to fully understand the 

biological effects of the environment on the genome. 

 

1.2.2 Epigenetics and cannabis 

 

The research in this thesis sets out to assess the impact of heavy long term cannabis 

use on DNA methylation in the human genome. Cannabis was chosen as the initial 

environmental factor to investigate because the strong interaction between DNA 

methylation and substances such as tobacco [101] suggests that cannabis may 

likewise be influencing DNA methylation within the genome.  

 

Cannabis itself is a global public health issue and a growing topic of international 

controversy due to the debate surrounding its medicinal and therapeutic benefits [102]. 

Its main psychoactive ingredient is (-)-trans-∆9-tetrahydrocannabinol (THC), however 

the non-psychoactive component, cannabidiol (CBD), is the 2nd largest component of 

cannabis and is gaining interest as a therapeutic for pain relief [103]. Both THC and 

CBD target the endocannabinoid system, which plays a role in pathways related to 

neurodevelopment as well as other organs in the body. 

 

There is strong evidence to show that heavy cannabis usage is associated with 

increased risk of adverse psychosocial outcomes [104-107]. For example, low 
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educational achievement, low life satisfaction, inability to form social relationships, 

and, through co-substance use with other illicit drugs, psychosis in adults, are all 

associated with cannabis dependency [108-110]. In animal studies, behavioural 

abnormalities and molecular impairments to the brain have been associated with 

lifelong cannabis consumption [111, 112]. Importantly, DNA methylation can affect 

brain function. For example, DNA methylation is involved in behaviour, brain 

development, learning and memory, drug addiction, depression/bipolar and 

schizophrenia [103].  Thus, considering the links between recreational substances 

such as tobacco and alcohol and altered DNA methylation patterns, and given that 

altered methylation can affect brain development and brain function, we need to 

rigorously explore the relationship between cannabis and DNA methylation, so that we 

can better understand the links between cannabis and adverse psychosocial 

outcomes.  

 

1.2.3 Cannabis 

 

Marijuana (Cannabis sativa) is the most commonly used illicit substance in the 

Western world [113]. According to the World Health Organization (WHO), as of 2014 

it is estimated that approximately 5% of the world’s population (183 million) use 

cannabis annually [114].  It continues to be the most widely cultivated, produced and 

trafficked drug worldwide. There are a variety of ways the plant can be harnessed, 

each with a range of potencies. In its herbal form, marijuana is the unpurified product 

which consists of the leaves and stem of the plant. Cannabinoids are produced in the 

epidermal glands on the leaves, stems and bracts of the plant [115].  Hashish or “hash” 

is the dried cannabis resin which is compressed from the flowering tops of the 

cannabis plant. Ingestion of these products is either by smoking, eating, or 

vaporisation [116]. Cannabis oils are the most concentrated form as they consist of 

just the cannabinoids from the plant. Users report more addictive behaviours and 

withdrawal symptoms with high concentrations of THC in oil preparations [117]. Initial 

experiences with cannabis consist of paranoia, short term memory loss, relaxation, 

heightened sensory perception, laughter, altered perception of time and an increased 

appetite [118]. However, lasting impairments of the effects of cannabis in adult users 

have been well characterised; several studies have shown that deficits in learning, 
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memory, sustained attention, inability to make decisions and mental processing are 

all associated with cannabis consumption [118]. The plant itself contains 400 naturally 

occurring chemicals and of these approximately 100 are cannabinoids, which are the 

C1, C3 and C5 side chains found in cannabis. The remainder of cannabis components 

are terpenoids and flavonoids [119].  However, the exact makeup of the plants very 

much depends on plant genetics, growth conditions, and harvesting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1.2 the chemicalstructures of the two manjor compunds found in cannabis,  (-)-trans-∆9-

tetrahydrocannabinol and (-)-cannabidoil. 
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1.2.4 The endocannabinoid system 

 

Cannabis remains a source of controversy, largely for the strong psychoactive effect 

of its main cannabinoid component THC. THC binds to cannabinoid receptor 1 (CB1, 

strongly) and cannabinoid receptor 2 (CB2, less preferentially than CB1). The CB1 

receptor is located within the central nervous system (CNS) particularly in the 

neocortex, hippocampus, basal ganglia, cerebellum, and the brainstem [120, 121], and 

to a lesser extent in other areas of the body. The CB2 receptor is mainly located 

outside the CNS and is associated with the immune system.  

The endocannabinoid system itself serves various roles within the body: appetite 

control, sensory processing, metabolism, hormonal regulation, and brain development 

[122, 123]. Cannabinoid receptors are present in both mammalian and non-

mammalian vertebrates [124], suggesting the response of the endocannabinoid 

receptor to THC and THC-like substances is highly conserved across evolutionary 

timescales [125]. 

Stimulation of cannabinoid receptors causes activation of numerous transduction 

pathways through the inhibition of adenylyl cyclase and the reductions in cyclic AMP 

[126]. Both CB1 and CB2 receptors regulate the phosphorylation and activation of 

different members of the mitogen-activated protein kinase (MAPKs), Extracellular 

signal-regulated kinase-1 and -2 (ERK1/2), p38 MAPK and c-Jun N-Terminal kinase 

(JNK) [126]. CB1 receptors positively couple with K+ channels and negatively couple 

with Ca2+ channels [126]. The activation of CB1 leads to inhibition of transmitter 

release thus regulates synaptic function [127].  

Endocannabinoids are released from postsynaptic cells and then work their way back 

across the synapse forming a negative feedback loop [128-130].  As well as having a 

crucial role in neurotransmission, the endocannabinoid signalling system is also 

crucial for brain development; it guides cell fate decisions to differentiate between 

either neuronal (nerve cell) or glial cells (central nervous system- surround neuronal 

cells) [131, 132] . 

CBD is thought to be responsible for the purported therapeutic effects of cannabis 

[133-135]. However, unlike THC, this component only targets CB2 receptors, and 

therefore it does not have psychoactive effects of THC, as there are comparatively few 
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CB2 receptors in the brain. Given the lack of psychoactive effects, and suggested 

therapeutic benefits of CBD, much current research focusses on removing THC from 

cannabis cultivars, in an attempt to shape cannabis as a therapeutic drug for treating 

numerous diseases, for example, epilepsy [136]. However, cannabinoids work in 

conjunction with one another and display a synergistic effect. Meaning that skewing 

the ratio of cannabinoids may not provide a therapeutic benefit [137]. Interestingly, 

over the last five decades, THC to CBD ratios have changed dramatically; in the 

1970s, THC concentrations found in cannabis were less than 3%, while current 

evidence from the Netherlands shows concentrations are at least 20%, and some have 

even been found to contain 40% THC [138, 139]. High levels of THC are associated 

with an increased risk of psychosis and, due to the synergistic action of THC and CBD, 

this is particularly evident when CBD concentrations are low [140]. 

 

1.2.5 Offspring environmental exposures in utero 

 

The theory that the intrauterine developmental environment can affect disease risk in 

childhood and into adult life is widely accepted [141].  One such risk factor for disease 

in later life may be aberrant DNA methylation patterns, induced by environmental 

exposures in utero. For example, exposure to toxins during development can lead to 

altered DNA methylation in offspring [142-144]. Thus, while we know that DNA 

methylation is dynamic and that its distribution can change in response to 

environmental factors, the extent to which these environmental factors can affect the 

DNA methylation patterns of the developing offspring is not yet clear. Further, just like 

somatic cells, DNA methylation patterns of adult germ cells can be affected by the 

environment, raising the possibility that DNA methylation marks that have been altered 

in germ cells by environmental exposure will be passed onto the next generation [145, 

146].  While it is usually the case that most DNA methylation marks are erased during 

germ cell maturation and early embryonic development, methylation at some CpG 

sites may persist through this process [147-149], potentially permanently altering 

offspring DNA methylation patterns. Therefore, there are multiple routes through which 

the maternal environment can alter offspring DNA methylation, with potential 

downstream consequences for gene expression and phenotypes.   



18 
 

Differential DNA methylation that occurs during embryogenesis can result in what has 

become known as metastable epialleles [150].  Metastable epialleles can be 

generated during the vulnerable time of demethylation and then re-methylation, where 

DNA methylation patterns are (mostly) erased and re-established.  Any environmental 

exposure at this sensitive time that alters DNA methylation patterns therefore can lead 

to regions in the genome that are distinctly variable between identical individuals, due 

to alteration by an environmental stimulus in utero [151]. Thus far, the agouti mouse 

model in which nutritional alterations to maternal diet led to differences in phenotype, 

has offered the best understanding of metastable epialleles [147, 151-153].  

A series of Human studies using a cohort of individuals form a Gambian tribe showed, 

deprivation of nutrients during seasonal changes have also provided evidence for the 

development of metastable epialleles as a concept [154, 155]. However, due to the 

nature of metastable epialleles being established during so early in development, it is 

very hard to pinpoint the precise time that the genomes of developing offspring are 

most sensitive to environmental exposure. To further understand metastable epialleles 

and their role in disease phenotypes, future work investigating DNA methylation 

differences induced by environmental exposures over the whole of the embryogenesis 

period need to be examined. 

 

1.2.6 Tobacco in utero 

 

It is widely known that tobacco smoking adversely influences every organ in the body, 

causing the onset of disease that then reduces the health of a smoker substantially 

[156]. Maternal tobacco smoking, particularly during pregnancy, is considered to be 

the single largest modifiable lifestyle risk factor to adverse child development [157]. 

Cigarettes contain upwards of 600 ingredients, and when these are burned they 

contain over 7000 chemicals. Some of these 7000 chemicals can pass through the 

placenta [158], and there is an association between miscarriage rate and women who 

smoke tobacco during pregnancy [159]. Pregnancies are also more likely to have 

complications such as preterm delivery, lower birth weight, lung problems, and sudden 

infant death syndrome [160], all of which lead to perinatal compromise, or poor infant 

health [161]. Later-life outcomes of children whose mothers smoked tobacco during 

their pregnancy have shown associations with behavioural disorders such as autism, 
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attention deficit hyperactivity disorder (ADHD) and oppositional defiant disorder (ODD) 

[162], suggesting a link between in utero tobacco exposure and behavioural problems, 

which are collectively termed conduct problem (CP) phenotypes.   

Consequences of in utero tobacco exposure can still occur postnatally; mothers who 

consumed tobacco during their pregnancy will continue to expose the new-born to 

tobacco, with adverse effects on their health [161]. In mouse models, environmental 

tobacco smoke exposure during critical periods of brain development showed 

pathogenesis of regions of the brain involved in sudden infant death and susceptibility 

to addiction [163], again suggesting a link between tobacco use during pregnancy, 

perinatal compromise and adverse health in later life.  While the complex nature of 

these disorders means that it is almost impossible to identify a direct correlation 

between a handful of genes and the disease phenotype. However, given the impact 

of DNA methylation on brain plasticity and addiction, the role of DNA methylation in 

brain development, and the impact of tobacco on DNA methylation, we suggest that 

DNA methylation plays a crucial role in the link between maternal tobacco use during 

pregnancy and CP in exposed offspring.    

 

1.3 The zebrafish 

 

While DNA methylation changes are important, they can be considered a proxy – 

differential methylation can signal genomic regions that may be implicated in 

biologically interesting phenomena, but in order to prove that methylation changes 

have caused a measurable genomic and phenotypic change, it is imperative to link 

such methylation changes to changes in genome output (gene expression), and to 

correlate this with a phenotypic outcome. For instance, Genome wide association 

studies (GWAS) have identified chromosomal regions that appear to be involved in 

substance dependence including cannabis [164], but this information is not definitive. 

Answering questions such as these would help to emphatically link a particular 

environment to a phenotype, via epigenetic mechanisms. Thus, in this thesis we aim 

to establish a tractable model system in which to explore the interaction between the 

environment and the epigenome. 
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One of the most commonly used model organisms is the zebrafish, Danio Rerio. The 

zebrafish has become an increasingly popular model organism in molecular biology 

[165], to study the links between the environment and traits such as disease risk and 

behaviour [166]. Their short generation time, transparency and rapid development 

outside of the mother make them a tractable model system in which to explore the 

effect of the environment on the genome, and on phenotypes [167].  

 

Further benefits of zebrafish as a model system that make them highly appropriate 

and relevant to this project are: 

 

 

 zebrafish have similar DNA methylation machinery to humans and there is 

consistent distribution of 5-methylcytosine between zebrafish and 

mammals [168];  

 

 numerous studies have explored cannabis and cannabinoid biology using 

zebrafish [169-171];  

 

 zebrafish are frequently used in studies of environmental toxicology [169-

171] [173, 174];  

 

 cannabinoids induce behavioural effects in zebrafish that are comparable 

to some of those reported for mammals [169];  

 

 there is widespread literature on behavioural assays in zebrafish that can 

test learning, memory and cognition [172] which have shown to be 

impaired in long term cannabis usage; 

 

 many basic cellular and molecular pathways, regulated by different 

compounds, are similar between zebrafish and mammals [173, 174]; 

 

 their abundance of progeny produced (up to 50 embryos at one time) and 

their rapid time from fertilisation to completion of organogenesis (5 days 

post-fertilisation, dpf) means they are a time-efficient model [175] 

  

The zebrafish genome sequencing project was initiated at the Wellcome Trust Sanger 

Institute and published in 2013 [176]. Subsequently it has become apparent how 

similar at a genetic level humans and zebrafish are, yet phenotypically very divergent 

from one another. Approximately 70% of all human genes have at least one functional 

homolog in zebrafish, providing evidence of more than 26,000 protein coding genes 
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that have the potential to be studied [176]. Zebrafish share genetic similarities with 

humans across many different organelles; the brain, digestive tract, musculature, 

vasculature, and innate immune system are all physiologically comparable. Due to 

this, diseases such as depression [177], autism [178], psychoses [179] and muscular 

dystrophies [180] can all be modelled in zebrafish [181].  

Although other established model systems such as the fruitfly (Drosophila 

melanogaster) and the nematode worm (Caenorhabditis elegans) have some similar 

benefits to zebrafish (mass production and fast development) they lack the same 5-

methylcytosine machinery exhibited by humans, which is conserved in zebrafish [182].  

Additionally, there is a paucity of 5-methylcytosine in both fruitfly and nematodes [183]. 

Thus, given our focus on DNA methylation in this research, and coupled with our 

necessity to model the human condition, fruitfly, rodents and nematode systems are 

not suitable here with the research facilities available. As such, zebrafish were chosen 

to model the genomic and phenotypic consequences of environmentally-induced 

methylation changes in this research.. 

 

1.4 Summary 
 

In the past decade, advancements within the field of epigenetics have unravelled a 

link between DNA methylation and human development and disease. As stated earlier, 

the epigenome is a complex and dynamic structure. Clearly, genomic variability and 

inheritance is not limited to genes alone, and our understanding of genomics is shifting 

- it is now commonly accepted that some phenotypic variation is environmentally 

induced, and that this ‘missing heritability’ (that which cannot be accounted for by DNA 

sequence alone) may be partly explained by epigenetics [184]. Epigenetic alterations 

such as DNA methylation are an important source of variation and regulation in the 

genome. Methylation is one of the most well studied epigenetic alterations, and it is 

dynamic, with the ability to impact gene expression. Nutrition, toxins, alcohol, and 

stress are just some of the various environmental factors that can cause DNA 

methylation changes and then also have an influence on gene expression. The 

evidence for the impact of epigenetic effects in health and disease is now unequivocal, 

but we do not understand the mechanisms underlying this effect. The work will directly 
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address these questions and will have broad applicability to our understanding of 

health, disease, wellbeing, and future health outcomes.  

 

1.5 Statement of research 

 

This research addresses the fundamental question of how the environment can alter 

DNA methylation.  

 

Initial work will understand the impact of heavy cannabis use in the human genome. 

We will then use a targeted tool for establishing a pipeline for assessing regions of the 

genome for variants in DNA methylation. From there, we expand on our findings by 

using the model system, the zebrafish, to develop a tractable in-house model to link 

differential methylation with gene expression, facilitating the exploration of pathways 

involved with the biological response to cannabis that may be modified by epigenetic 

processes.  

 

We then will assess the impact of maternal tobacco use during pregnancy on offspring 

DNA methylation, and its association with conduct problem, in both a targeted and 

genome-wide manner. Here, we will look for associations between induced 

methylation patterns and changes to behavioural output and social interaction.  

 

Lastly, we will discuss the issue of sample type in studies of DNA methylation and 

whether associations between phenotypes and DNA methylation are consistent 

across different tissue types. It will be conducted as a meta-analysis using 

schizophrenia as a case study.  
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1.6 Research Design (Objectives) 

 

The overall aim of this study is to further our understanding of the extent to which 

DNA methylation may change when exposed to specific environmental factors. To 

achieve this, the following aims will be carried out: 

 

Chapter 2: Assess genome-wide DNA methylation alterations in response to heavy 

cannabis exposure, using the Illumina EPIC array system, and a cohort of individuals 

from the Christchurch Health and Development Study (CHDS); 

Chapter 3: Validate differential DNA methylation observed via EPIC array, using a 

targeted bisulfite-based amplicon sequencing (BSAS) approach; 

Chapter 4: Develop the zebrafish as a model for assessing the impact of THC and 

CBD on DNA methylation 

Chapter 5:  Using individuals from the CHDS cohort, quantify differential DNA 

methylation in individuals who were exposed to tobacco smoke during development 

(in utero). Analyse whether there is an association between maternal tobacco use 

during pregnancy and the development of conduct problem (CP) in offspring, at genes 

associated with neurodevelopment and CP phenotypes, using BSAS; 

Chapter 6:  Quantify genome-wide differential DNA methylation in response to 

maternal tobacco use during pregnancy, and probe the interaction between tobacco 

exposure during development and the onset of  CP in offspring; 

Chapter 7:  Analyse whether choice of tissue is a limiting factor in detecting 

biologically relevant DNA methylation differences, by using publicly available data and 

assessing DNA methylation differences in individuals with schizophrenia. 

Chapter 8: General discussion of the significance of the findings contained within 

this thesis, and suggestions for future research.   
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1.7 List of attributions of collaborative contributions to work in this thesis 

 

Chapters 2, 3, 5 and 7 have all been submitted for publication and so there is some 

repetition of background in some cases. 

 

Chapter 2 

Blood samples for DNA extraction were provided by the Christchurch Health and 

Development Study. Sample extraction and quantification of DNA was under taken by 

Dr. Amy Osborne. Australian Genomics Research Facility (AGRF, Melbourne, VIC, 

Australia) processed the Infinium® Methylation EPIC BeadChip (Illumina, San Diego, 

CA USA).The candidate carried out all bioinformatics analysis with guidance from A/P 

John Pearson (University of Otago). Critical discussion was undertaken by Prof Martin 

Kennedy, Dr Miles Benton, Dr Donia Macartney-Coxson and Prof Neil Gemmell. 

The data analysis in this chapter contributed to: Osborne and Pearson, et al, (2020) 

Genome-wide DNA methylation analysis of heavy cannabis exposure in a New 

Zealand longitudinal cohort, Translational Psychiatry. 

 

Chapter 3 

Blood samples for DNA extraction were provided by the CHDS. All laboratory and 

bioinformatics work was carried out by the candidate and Dr. Amy Osborne provided 

input into primer design and critical analysis of this work. Sequence libraries were 

prepared using the Illumina MiSeq™ 500 cycle Kit V2, and sequenced on an Illumina 

MiSeq™ system at Massey Genome Services (Palmerston North, New Zealand). 

Further bioinformatics guidance was provided by A/P John Pearson. Critical 

discussions around the research subject were undertaken with Prof Martin Kennedy 

and Prof Neil Gemmel. 

The data in this chapter contributed to: Noble et al, (2021) A validation of Illumina EPIC 

array system with bisulfite-based amplicon sequencing, Peer J. 
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Chapter 4 

Embryos were provided by the Otago Zebrafish Facility (Dunedin, New Zealand). All 

laboratory work and bioinformatics was carried out by the candidate. With critical 

analysis of this work from Dr. Amy Osborne, A/P John Pearson, and Prof Martin 

Kennedy. 

 

Chapter 5 

Blood samples for DNA extraction were provided by the CHDS. All laboratory work 

and bioinformatics was carried out by the candidate. Sequence libraries were prepared 

using the Illumina MiSeq™ 500 cycle Kit V2, and sequenced on an Illumina MiSeq™ 

system at Massey Genome Services (Palmerston North, New Zealand). Further 

bioinformatics guidance was provided by A/P John Pearson. Critical analysis provided 

by Dr Amy Osborne and Prof Martin Kennedy. 

 

Chapter 6 

Blood samples for DNA extraction were provided by the CHDS. All lab work and 

bioinformatics was carried by the candidate. Australian Genomics Research Facility 

(AGRF, Melbourne, VIC, Australia) processed the Infinium® Methylation EPIC 

BeadChip (Illumina, San Diego, CA USA).The candidate carried out all bioinformatics 

analysis with guidance from A/P John Pearson (University of Otago). Dr Amy Osborne 

and Martin Kennedy provided critical analysis into this work. 

 

Chapter 7 

All bioinformatics was carried out by candidate with support and critique by Dr Amy 

Osborne. 

The data from this chapter is under revision at Frontiers Genetics. 
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1.9 Packages used throughout this thesis (in order of appearance) 
 

Minfi- A Bioconductor tool to analyse and visualise Illumina Infinium methylation arrays 

[1] 

SWAN- Subset- quantile within array normalisation. This Normalisation package is 

intended to remove sources of technical variation between measurements via 

randomly selecting a subset of probes defined to be biologically similar based on CpG 

content. [2] 

Funnorm- Functional normalisation package for Illumina Infinium methylation arrays. 

This package uses 848 control probes as well as out-of-band probes into 42 summary 

measurements. [3] 

Noob- Normal-exponential out-of-band (noob) is a background correction method with 

dye-bias normalization for Illumina Infinium methylation arrays.[4] 

Flow.sorted.blood- Raw data objects for the Illumina 450k DNA methylation 

microarrays, and an object depicting which CpGs on the array are associated with cell 

type.[5] 

Limma- Data analysis, linear models and differential expression for microarray data.[6] 

Bacon- Bacon can be used to remove inflation and bias often observed in epigenome- 

and transcriptome-wide association studies. To this end bacon constructs an empirical 

null distribution using a Gibbs Sampling algorithm by fitting a three-component normal 

mixture on z-scores. [7] 

Granges- The ability to efficiently represent and manipulate genomic annotations and 

alignments is playing a central role when it comes to analysing high-throughput 

sequencing data (a.k.a. NGS data). The GenomicRanges package defines general 

purpose containers for storing and manipulating genomic intervals and variables 

defined along a genome. More specialized containers for representing and 

manipulating short alignments against a reference genome, or a matrix-like 

summarization of an experiment, are defined in the GenomicAlignments and 

SummarizedExperiment packages, respectively. Both packages build on top of the 

GenomicRanges infrastructure. [8] 
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EnrichR/FishenrichR- Enrichment analysis is a popular method for analysing gene 

sets generated by genome-wide experiments. [9] 

Ggplot2- A system for 'declaratively' creating graphics, based on "The Grammar of 

Graphics". You provide the data, tell 'ggplot2' how to map variables to aesthetics, what 

graphical primitives to use, and it takes care of the details. [10] 

Bisearch- A Web server (http://bisearch.enzim.hu), a primer design software created 

for designing primers to amplify such target sequences [11] 

SolexaQA++- SolexaQA calculates sequence quality statistics and creates visual 

representations of data quality for second-generation sequencing data. Originally 

developed for the Illumina system. [12] 

Bowtie2- bowtie2 is an ultrafast and memory-efficient tool for aligning sequencing 

reads to long reference sequences. It is particularly good at aligning reads of about 50 

up to 100s or 1,000s of characters, and particularly good at aligning to relatively long 

(e.g. mammalian) genomes [13]. 

Bismark- Bismark is a program to map bisulfite treated sequencing reads to a genome 

of interest and perform methylation calls in a single step [14]. 

edgeR- edgeR performs differential abundance analysis for pre-defined genomic 

features [15]. 

Survival - Contains the core survival analysis routines, including definition of Surv 

objects, Kaplan-Meier and Aalen-Johansen (multi-state) curves, Cox models, and 

parametric accelerated failure time models.[16] 

FastQC- FastQC aims to provide a simple way to do some quality control checks on 

raw sequence data coming from high throughput sequencing pipelines. It provides a 

modular set of analyses which you can use to give a quick impression of whether your 

data has any problems of which you should be aware before doing any further 

analysis. 

Trim Galore- Trim Galore! is a wrapper script to automate quality and adapter trimming 

as well as quality control, with some added functionality to remove biased methylation 

positions for RRBS sequence files (for directional, non-directional (or paired-end) 

sequencing). 

http://bisearch.enzim.hu/
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UpsetR- Creates visualizations of intersecting sets using a novel matrix design, along 

with visualizations of several common set, element and attribute related tasks [17] 
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Chapter 2  
 

2. The impact of heavy cannabis use on DNA methylation in the human genome 

 

 

 

2.1 Introduction 

 

2.1.1 Cannabis use and implications 

 

Cannabis is one of the most widely used recreational drugs in the world [1], and its 

use is increasing in frequency [2, 3]. It is a widely debated topic due to the 

psychoactive component THC, and implications on adolescence and later life 

outcomes [4]. Although the full effects of its use are largely still unknown, legalisation 

of cannabis for recreational use has occurred in some jurisdictions around the globe. 

More so, harnessing cannabis for medicinal purposes has increased [5], due to 

another other active cannabinoid, CBD, which is not psychoactive [6]. With this in 

mind, it is particularly important to understand this drug’s impact on the genome, 

particularly for heavy users. 

 

2.1.2 Risks associated with cannabis use 

 

While health risks associated with cannabis use, in the general population, are low    

[7], there is growing awareness about the spectrum of behavioural and neurological 

dysfunctions associated with cannabis use [8, 9]. Currently, a small number of 

cannabis users suffer neurological and behavioural effects due to the use of cannabis 

[10], and the acute effects of cannabis on cognitive function are well documented, 

including impaired working memory [11], increased risking taking, and deficiencies in 

planning and decision-making [12]. Further, while the long-term effects of cannabis 

use are still controversial and less well defined, we already understand that cannabis 

use in adolescence is associated with a 1.5 to 2.5 times higher risk of developing 

mental health conditions [13, 14] such as psychotic disorders like schizophrenia [15].  
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2.1.3 How drugs affect the genome 

 

Regardless if cannabis is legal or not, people will still consume it, thus, research needs 

to investigate its effects on those exposed to cannabis during development. 

Understanding the true effects of cannabis is imperative for the New Zealand 

population, in particular our most vulnerable groups (youth, Māori). Tobacco use, for 

example, is currently reducing in NZ, yet rates remain high within Māori and Pasifika 

groups [16]. Cannabis use is more commonly seen in males and amongst Māori [17] 

and thus could be a driver in disparities between ethnicities. DNA methylation (a type 

of ‘epigenetic’ modification) is a mechanism that cells use to control gene expression.  

It is a chemical modification to the DNA strand that can be altered by the environment, 

and can determine whether or not a gene is expressed [18], and this can directly 

influence health outcomes [19].   

If there are observed associations between cannabis use, health, and genomic 

impacts, it is vital that we seek to fully understand the biological effects of cannabis on 

the human body. In order to begin to address this, in this Chapter, we explore data 

from the DNA of heavy cannabis users, and assess levels of DNA methylation, 

compared to both controls (who have never used cannabis) and individuals who use 

both cannabis and tobacco. Both are important comparisons which will allow us to 

directly quantify the effect of cannabis, in isolation, on the DNA of users.   

 

 

2.1.4 The Christchurch Health and Development Study 

 

The Christchurch Health and Development Study (CHDS), is a longitudinal study of a 

birth cohort of 1265 children, all born in the Christchurch region in 1977 [20]. The 

cohort has been intensively studied from birth to 40 years thus far, and data obtained 

during this time have addressed numerous issues relating to health, development, and 

social wellbeing [20]. Importantly, the CHDS assessed cannabis use via self report 

rating (at ages 12,16 and 18) using frequenting items ranging from ‘never’ to ‘daily’, 

meaning there is a particular emphasis on usage during mid-adolescence and 

adulthood. Further, participant retention rate has remained high; at age 35, 962 

respondents were studied, representing 79% of the original 1977 cohort.   
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Through their work, the CHDS has shown that cannabis use in late adolescence and 

early adulthood is associated with a range of adverse outcomes in later life [4], such 

as increased rates of psychotic symptoms [21]. Just like other substances, high use 

of cannabis can lead to dependency, and it has been estimated that 8-9% of cannabis 

users will become addicted to the drug [22, 23]. However, in the CHDS, 12.5% of the 

cohort met the Diagnostic and Statistical Manual of Mental Disorder (DSM-IV) criteria 

for dependence on cannabis by the age of 25 [24], a rate which is 3.5% higher than 

the global population rate of dependency. Thus, showing the particular importance of 

carrying out this study from a New Zealand context, as what is seen globally may not 

reflect the reality in New Zealand. To the best of our knowledge, the CHDS is the only 

cohort that contains participants where DNA has been extracted who have been 

diagnosed as heavy cannabis users, but who have never used tobacco .This creates 

the opportunity to investigate the genome for DNA methylation changes that are 

specific to cannabis. Our hypothesis is that the chemical composition differences 

between cannabis and tobacco has very different biological impacts [25].  Therefore, 

given the potential health implications it is important that we rigorously test the effect 

of cannabis on the methylome, using the best available tools and pipelines that ensure 

accuracy of result.   

 

2.1.5 DNA methylation arrays 

 

The Illumina EPIC array (and their 450k array predecessors) are a hybridising array 

system, and have enabled DNA methylation studies at the genome-wide level.  

Consequently, the scientific literature has seen an exponential increase of studies 

quantifying differential DNA methylation via 450k and EPIC array. The benefit of these 

arrays is that they are highly reproducible and consistent at analysing many 

methylation sites across datasets, meaning that it is possible to combine and analyses 

multiple datasets together (meta-analyses). However, one of the major challenges with 

array technology is the bioinformatics pipelines that are available for analysis of array 

data. As the study of DNA methylation is a fast-growing field, a diverse range of 

pipelines have been developed to analyse DNA methylation data. However, having a 

range of analytical options requires decisions about which pipeline is best for a given 

set of data. Therefore, the aim of this chapter is look at the impact of different analysis 
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techniques, and quantify the impact that this can have on the integrity and results of 

methylome data analysis. 

 

2.1.5 The importance of normalisation 

Normalisation is the process of adjusting for effects detected in biological datasets 

which arise due to the variation of the technique itself, rather than the biological 

variance between samples [26].  Normalisation is particularly important for EPIC array 

data because each EPIC array allows methylome analysis of eight distinct samples.  

Without normalisation, data analysis can be confounded by ‘batch effects’, where 

different batches of arrays as well as batches of the eight samples can give different 

biological results. Further, as previously mentioned, it is becoming increasingly 

common to combine multiple datasets into meta-analyses, meaning accurate 

normalisation across datasets, to remove any batch effect, is crucial.   

Currently there is not a standardised ‘best practise’ normalisation pipeline for 

assessing EPIC array data. There are a variety of packages available for the platform, 

with each controlling for bias that may arise between arrays, such as background 

fluorescence corrections and colour dye adjustments.  For example, Illumina’s 

genome studio, SWAN, Funnorm and Noob are all pre-processing methods which are 

available under the ‘minfi’ Bioconductor package [27] which supports 27k, 450k and 

EPIC array platforms. Selecting the right tool is undertaken manually, through trial and 

error, and must be tailored to the unique design of each study.  This is because 

different pre-processing pipelines can result in differences in the identified biological 

variation, because each normalisation method transforms the data in slightly different 

ways. Therefore, it is important to pick the best fit for the data, not the best result.  

Here we assessed the impact of different normalisation methods on the reduction of 

batch effects across EPIC arrays that were sampled over two consecutive years 

(Table 2.2). Data from 48 EPIC arrays were collected in two separate batches, the first 

in 2016, and the second in 2017. We then proposed the question, what is the best 

normalisation tool for our study design?  Finally, after choosing the normalisation 

method that best fits our data, we quantify the specific impact of heavy cannabis use 

on DNA methylation in the human genome.   
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Tobacco is one of the most researched lifestyle factors to be associated with genome 

wide differential DNA methylation [28].This provided an internal reference control, for 

comparison with individuals who use both cannabis and tobacco. However, it is 

important to specifically isolate the difference between tobacco and cannabis smoking.  

 

2.2 Methods 

 

2.2.1 Cohort and study design 

 

CHDS participants between the ages of 28 to 30 were approached to provide a 

peripheral blood sample for DNA analysis. A subset of the >800 participants who 

consented and provided a blood sample was used in the present study, comprising a 

total of 96 participants. Cases (regular cannabis users, N= 48) were matched with 

controls (n=48) for sex, ethnicity and family of origin socioeconomic status (Table 2.1). 

Case participants were partitioned into two subsets: one that contained cannabis-only 

users (who had never consumed tobacco, N= 24), and one that contained cannabis 

users who also consumed tobacco (N= 24). Cases were a group of long term regular 

(>weekly) cannabis users, selected on the basis that they either met DSM-IV [29] 

diagnostic criteria for cannabis dependence or had reported using cannabis on a daily 

basis for a minimum of three years prior to age 28.  The median duration of regular 

use for selected cases was 9 years (range 3-14 years). Control participants had never 

used cannabis or tobacco. Mode of cannabis consumption was via smoking, for all 

participants. All aspects of the study were approved by the regional Health and 

Disability Ethics Committee. 

 

  



41 
 

Table 2.1 Christchurch Health and Development Study (CHDS) participants selected for EPIC arrays.   
Cases and controls were matched as closely as possible by the following: sex, ethnicity and parental 

socioeconomic status/occupation.    

 

    Cases Controls 

Sex Male 37 37 

Female 11 11 

Ethnicity European 35 45 

Other 13 3 

Socioeconomic status Professional/managerial 6 6 

Clerical/technical/skilled 21 21 

Semi-skilled/unskilled 21 21 

 

2.2.2 EPIC array methods 

 

DNA was extracted from whole blood using the KingFisher Flex System (Thermo 

Scientific, Waltham, MA USA), as per the published protocols. DNA was quantified via 

NanoDropTM (Thermo Scientific, Waltham, MA USA) and standardised to 100ng/l. 

Equimolar amounts were shipped to the Australian Genomics Research Facility 

(AGRF, Melbourne, VIC, Australia) for processing via the Infinium® Methylation EPIC 

BeadChip (Illumina, San Diego, CA USA).The 2016 samples were prepared by Dr 

Amy Osborne. The DNA samples were sent in two different batches as shown in Table 

2.2. Half the samples (N= 48) were measured in 2016 followed by the second round 

in 2017. 

Table 2.2 Time frame of sampling 

 

Batch/year Cannabis 

only users 

 Cannabis + 

Tobacco users 

Controls 

2016 24   24 

2017   24 24 
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2.2.3 Data processing 

 

Analysis was carried out using R statistical software (Version 3.5.2), quality control 

was firstly performed on the raw data. Sex chromosomes and a total of 150 failed 

probes (detection P value < 0.01 in at least 50% of samples) were excluded from 

analysis. Furthermore, potentially problematic CpGs with adjacent SNVs, or that did 

not map to a unique location in the genome [30] were also excluded, leaving 700,296 

CpG sites for further analysis. The raw data were then normalised using four different 

pipelines.  

2.2.4 Selecting a normalisation tool 

 

The raw data were normalised with Illumina, SWAN, Funnorm and Noob pre-

processing tools in the minfi package [27]. Our decision around the most appropriate 

tool for our dataset was based on the following steps: i) normalisation was checked by 

visual inspection of intensity densities and the first two components from beta density 

distribution plots and Multi-Dimensional Scaling (MDS) of the 5000 most variable CpG 

sites, and; ii) Quantile-Quantile (QQ) plots were used to assess the distribution of 

residuals, with lambda values generated to compare normalisation tools. 

 

2.2.5 Statistical analysis post-processing 

 

After selection of the best-performing normalisation method, the proportions of cell 

types (CD4+, CD8+ T cells, natural killer, B cells, monocytes and granulocytes) in each 

sample were estimated with the Flow.Sorted.Blood package [34]. Linear models were 

fitted to the methylated/unmethylated or M ratios using limma [35]. Separate models 

were fitted for cannabis-only vs. controls, and cannabis with tobacco users vs. 

controls. Both models contained covariates for sex (bivariate), socioeconomic status 

(three levels), batch (bivariate), population stratification (four principal components 

from 5000 most variable SNPs) and cell type (five continuous). 

The data were analysed in two ways: i) cannabis-only users, compared to controls, 

and ii) tobacco + cannabis users, compared to controls. β values were calculated as 

the ratio of the methylated probe intensity (M) / the sum of the overall intensity of both 

the unmethylated probe (U) + methylated probe (M). β values were calculated, defined 
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as the ratio of the methylated probe intensity (M)/the sum of the overall intensity of 

both the unmethylated probe (U) + methylated probe (M). P values were adjusted for 

multiple testing with the Benjamini and Hochberg method and assessed for genomic 

inflation with bacon [36]. 

Differentially methylated CpG sites that were intergenic were matched to the nearest 

neighbouring genes in Hg19 using Granges default settings [37], and the official gene 

symbols of all significantly differentially methylated CpG sites (nominal P < 0.001) in 

cannabis-only users were tested for enrichment in KEGG 2019 human pathways with 

EnrichR [38]. and ggplot was used to construct Manhattan plots [39]. 
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2.3 Results 

 

2.3.1 Raw data 

 

Illumina EPIC array raw data was plotted based on beta density distribution giving an 

overall illustration of the distribution of methylated counts and unmethylated counts. 

Figure 2.1 shows plots of beta value density for each array, arranged by year of 

analysis. Density plots of the beta distribution have two peaks, the first at around 0.0-

0.1 which indicates the number of unmethylated CpG sites, and the second peak at 

about 0.6-1.0 which indicates the methylated sites. The difference between these 

peaks indicates discrepancies between the samples measured in the different years, 

the aim of the section if to correct for this.  

 

 

 

Figure 2.1 The raw density of the beta values across all samples analysed using the Illumina 
EPIC array system.The 2016 samples are indicated in green and the 2017 samples are 

indicated in orange. 
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2.3.2 Beta density profiles of raw data, compared to Illumina, SWAN and Noob 

normalisation methods 

 

Four different normalisation tools were assessed for their fit to our data design (Table 

2.3). The normalisation tool Funnorm showed no improvements of beta density 

distribution compared to the raw data, therefore was discontinued for all further 

analysis. The remaining three methods were compared to the raw EPIC data (Figure 

2, A) and data processed with Illumina (Figure 2, B), SWAN (Figure 2, C), and Noob 

(Figure 2, D) normalisation methods were plotted as beta density plots, colour coded 

by analysis batch (year of EPIC array analysis). 

A B 

D C 

Figure 2.2 Density plots of the raw EPIC data compared after application of different normalisation tools. A) 

raw data, B) Illumina normalisation, C) SWAN normalisation, and D) Noob normalisation.  
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All beta density distribution plots generated by the normalisation methods showed an 

improved density distribution compared to the raw data, confirming that there was 

indeed a batch effect caused by the experiments being performed in two separate 

batches.  

 

2.3.3 Multidimensional scaling plots using Illumina, SWAN and Noob normalisation 

methods 

 

To further assess the best normalisation method for our data set, individual samples 

were displayed as a multidimensional scaling (MDS) plots for each of the normalisation 

method assessed. We can use this as a way of visually interpreting whether any 

individuals across batches reside closely to one another – this would indicate that the 

batch effect had not been normalised. Data from individual samples were each plotted, 

using 5000 of the most variable probes, with three normalisation tools: Illumina, SWAN 

and Noob (Figure 2.3). Illumina normalisation showed a random distribution of data 

points across the two years, indicating the batch effect was corrected (Figure 2.3A). 

The SWAN algorithm (Figure 2.3B), however, did not appear to effectively normalise 

the data, as data from each batch remained in discrete rather than overlapping 

clusters. Noob pre-processing of data (Figure 2.3C), showed similar results to Illumina 

normalisation. Here, no clustering based on array year was observed, indicating a 

correction of the batch effect.  
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B 

C 

Figure 2.3 Multidimensional plots displaying the individuals of the study using the 5000 most  variable 

positions post normalisation. A) Illumina B) SWAN and C) Noob. Individuals are grouped in colour by the 

year in which the samples were analysed – 2016 (green), 2017 (orange). 
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2.3.4 Genomic inflation -  Quantile-Quanti le plots for SWAN and Noob normalisation 

methods 

 

Because post normalisation, statistical analysis were carried out to assess for 

differential DNA methylation between cannabis-only users versus controls (Figure 2.4 

A and Figure 2.5 A), and cannabis with tobacco users versus controls (Figure 2.4 B 

and Figure 2.5 B), it was important to account for covariates that could lead to a bias 

in results.  To determine the appropriate number of covariates to add to our model to 

prevent inflation of the test statistic, here we include data for ethnicity, sex, and social 

economic status, cell composition, and four principal components. To assess 

differences between residuals using SWAN and Noob, Quantile-Quantile plots were 

constructed, generating a lambda value which gives an indicator of the genomic 

inflation for both normalisation tools. 

 

 

 

  

B A 

Figure 2.4 Post pre-processing using SWAN Quantile- quantile plots. Quantile plots were used to assess for overfitting of 

models. A) Cannabis only users vs controls B) Cannabis and tobacco users vs controls.  Each dot displays the expected –

log10 (p-values) under the model. 
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SWAN normalisation (Figure 2.4) shows the residuals plotted with a lambda estimate 

also displayed.  The data generated using the model for cannabis-only users 

compared to controls resulted in λ= 0.881 (Figure 2.4A), and for cannabis with tobacco 

smokers compared to controls gave λ= 1.076 (Figure 2.4B). Residuals (CpG sites) are 

plotted, where the majority of the sites appear to follow the null hypothesis and show 

a normal distribution. Sites that appear outside of this normal distribution show 

significance in response to the variable of interest. In this instance (Figure 2.5A) all 

CpG sites analysed in response to cannabis only smoking compared to controls show 

a normal distribution.   

 

 

  

B A 

Figure 2.5 Post pre-processing using Noob Quantile- quantile plots. Quantile plots were used to assess for overfitting of 

models. A) Cannabis only users vs controls B) Cannabis and tobacco users vs controls. Each dot displays the expected 

–log10 (P values) under the model. 
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Similarly, with Noob normalisation, residuals using the model for cannabis-only users 

showed all residuals normally distributed (Figure 2.5A). Again, some residuals are 

seen to reach significance when assessing differences in cannabis and tobacco users 

versus controls (Figure 2.5B). Genomic inflation values have been improved to 

approach closer to 1. Cannabis-only users compared to controls model with λ= 1.035 

and cannabis with tobacco users compared to controls generate λ= 0.855. 

 

Under both SWAN and Noob almost all CpG sites follow a normal distribution 

indicating little variation between cannabis-only users and cannabis with tobacco 

users. Following the outcomes of the beta density plots (Figure 2.2), the 

multidimensional scaling plots (Figure 2.3), and Q-Q plots (Figure 2.4 and Figure 2.5) 

it was decided that Noob performed the best at normalising the batch effect. Therefore, 

the remainder of our analyses are performed on data normalised using Noob.  

 

2.3.5 Differential DNA methylation in cannabis-only users, compared to controls. 
 

Following selection of Noob as the sole processing method, further data analysis was 

carried out using the full data set. Table 2.4 displays the top 10 most highly 

differentially methylated CpG sites in cannabis-only users, compared to controls. Of 

the top CpG sites, none remain significant post multiple comparison adjustment. A 

total of six of the top 10 nominally significantly differentially methylated CpG reside 

within known genes, with MYO1G gene displaying two differentially methylated CpG 

sites. Most of the CpG sites that were found to be nominally significant reside within 

the gene body, as opposed to e.g. promoter regions or 5’ untranslated regions. Four 

of the top 10 CpG sites were found to reside on chromosome 19. The beta values of 

the differences between cannabis-only users and controls vary amongst each of the 

CpG sites, and range from 1.1% differential DNA methylation to 9%. The greatest 

magnitude of change in differential DNA methylation is not associated with greatest 

nominal P value.  

 

A genome-wide plot of the CpG sites measured using the Illumina EPIC array in 

cannabis-only users compared to controls is displayed in Figure 2.6. Labelled CpG 

sites have a –log10 P value of greater than 4.5. At multiple sites, CpG sites are close 

to adjusted P value significance.
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Table 2.3 Top 10 CpG sites differentially methylated in response to cannabis-only users compared to controls. Beta values with P values, nominal and adjusted 
by the Benjamini and Hochberg method. Locations are relative to hg19 with gene names for overlapping genes or nearest 5ʹ gene with distance to the 5ʹ end 

shown. Missing UCSC locations are from new probes on the EPIC array, which have not yet been included in the UCSC annotation tracks.. 

Illumina ID Gene Chr Location Position 

in 

genome 

Cannabis Control β 

difference 

Log FC P value Adjusted P 

value 

cg02234936 19 42420037 
 

0.143 0.132 0.011 0.500 7.48E-07 0.269 

cg12803068 MYO1G 7 45002919 Body 0.804 0.708 0.095 1.150 7.69E-07 0.269 

cg01695406 TMEM190 19 55889276 Body 0.818 0.769 0.048 0.637 3.30E-06 0.700 

cg24875484 DPCR1 6 30910583 Body 0.101 0.091 0.009 0.253 4.41E-06 0.700 

cg05009104 MYO1G 7 45002980 Body 0.791 0.741 0.050 0.600 6.96E-06 0.700 

cg00470351 CDC20 1 43825296 Exon 0.401 0.377 0.023 0.212 7.25E-06 0.700 

cg24060040 19 5802267 
 

0.108 0.078 0.029 0.798 7.45E-06 0.700 

cg12322720 15 60447342 
 

0.579 0.523 0.056 0.430 9.87E-06 0.700 

cg06693983 TMEM190 19 55889216 Body 0.836 0.757 0.078 1.102 1.13E-05 0.700 

cg06955687 11 125803030 
 

0.739 0.702 0.036 0.366 1.21E-05 0.700 
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Figure 2.6 Manhattan plot of the genome-wide differential DNA methylation changes in response to cannabis only users compared to non-smoking controls. Each 
chromosome is listed along the X-axis, displaying the genome-wide differential DNA methylation changes found at each given CpG site. The dotted line represents 

the genome wide significance level, any adjusted P value significance observed at CpG sites would appear above this  
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2.3.6 Differential DNA methylation in response to cannabis with tobacco users  

 

Cannabis with tobacco users were then compared to controls to assess for differential 

DNA methylation. A total of six CpG sites were found to be significant following 

Benjamini and Hochberg method (i.e. at the genome-wide level). Table 2.5 displays 

the top 10 most differentially methylated CpG sites ranked in order of P Value 

significance. Of the six CpG sites that were significantly differentially methylated at the 

genome-wide level, four were located in known genes AHHR, RARA, F2RL3 and 

PRSS23. Of the top 10 CpG sites, three (AHHR, cg07219494 and cg12828729) reside 

on chromosome five. 

 

Figure 2.7 displays the Manhattan plot of the genome-wide CpG sites differentially 

methylated between cannabis with tobacco users compared to controls. Note that the 

scaling is different to that used for Figure 2.7; in cannabis-only users the –log10(p) 

scale is scaled by two-fold change, compared to a three-fold change in cannabis with 

tobacco users. A total of five CpGs - AHHR, RARA, F2RL3, cg21566642 and 

cg01940273 - have –log10(p) values of greater than seven.  
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Table 2.5 Top differentially methylated CpG sites in cannabis and tobacco users compared to controls. Beta values with P values, nominal and adjusted by the 
Benjamini and Hochberg method. Locations are relative to hg19 with gene names for overlapping genes or nearest 5ʹ gene with distance to the 5ʹ end shown. 

Missing UCSC locations are from new probes on the EPIC array, which have not yet been included in the UCSC annotation tracks. . 

 

Illumina ID Gene Chr Location Position in 

genome 

Cannabis + 

tobacco 

Control β 

difference 

Log FC P value Adjusted P 

value 

cg05575921 AHRR 5 373378 Body 0.661 0.895 -0.233 -2.071 5.33E-12 3.74E-06 

cg21566642 2 233284661 
 

0.445 0.619 -0.174 -0.990 7.24E-11 2.53E-05 

cg01940273 2 233284934 
 

0.533 0.628 -0.094 -0.557 9.29E-09 0.001 

cg03636183 F2RL3 19 17000585 Body 0.590 0.682 -0.091 -0.527 1.04E-08 0.001 

cg17739917 RARA 17 38477572 5'UTR 0.370 0.471 -0.100 -0.645 1.39E-08 0.001 

cg14391737 PRSS23 11 86513429 5'UTR 0.362 0.421 -0.059 -0.467 3.71E-07 0.043 

cg01541424 12 127874654 
 

0.167 0.132 0.0349 0.605 1.33E-06 0.132 

cg07219494 5 166408484 
 

0.700 0.747 -0.047 -0.650 1.54E-06 0.134 

cg12828729 5 134823969 
 

0.561 0.504 0.057 0.372 2.06E-06 0.160 

cg15651928 PXMP4 20 32290811 3'UTR 0.798 0.770 0.028 0.313 4.14E-06 0.290 
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Figure 2.7 Manhattan plot of the genome-wide differential DNA methylation changes in response to cannabis and tobacco smoking users compared to controls. 
Each chromosome is listed along the X-axis, displaying the genome-wide differential DNA methylation changes found at each given CpG site. The dotted line 

represents the genome wide significance level, any adjusted P value significance observed at CpG sites would appear above this. 
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2.3.7 Functional gene annotation clustering (KEGG pathway analysis) 

 

Functional gene annotation clustering was performed using Enrichr to annotate which 

KEGG pathways were most represented in the list of nominally significant differentially 

methylated CpG sites in the cannabis-only data. Specifically, the genes (or nearest 

genes) represented by the top 1000 nominally significant CpG sites were subjected to 

KEGG pathway analysis. All pathways that were found to have a significant adjusted 

P Value are included in the below tables. 

 

Table 2.6 Pathway analysis from the top CpG sites and their associated genes in cannabis-only users  

compared to controls. 

 

Pathway P value Adjusted P 

value 

Odds Ratio Combined 

Score 

Cholinergic synapse 0.00004 0.013 3.15 31.61 

Glutamatergic synapse 0.0001 0.020 2.90 24.81 

Insulin secretion 0.0004 0.021 3.08 23.51 

Long-term potentiation 0.0008 0.028 3.29 23.40 

Circadian entrainment 0.0004 0.026 2.96 22.96 

Aldosterone synthesis 
and secretion 

0.0004 0.024 2.93 22.43 

cAMP signalling pathway  0.00009 0.015 2.39 22.09 

Dopaminergic synapse 0.0002 0.022 2.70 21.97 

Arrhythmogenic right  
ventricular 
cardiomyopathy (ARVC) 

0.001 0.034 3.07 20.04 

 

 

Nine pathways were significantly enriched in the differential DNA methylation dataset. 

The top pathway was determined as cholinergic synapse (adjusted P= 0.01366), 

followed by glutamatergic synapse (adjusted P= 0.02005).  Both of these pathways 

are involved in neurotransmission. 
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Table 2.7 Pathway analysis of the top CpG sites and their associated gene in response to cannabis  

and tobacco use. 

 

Pathway P value Adjusted P 

value 

Odds Ratio Combined 

score 

Gastric cancer 2.75E-06 0.000424 3.17 40.64 

Pathways in cancer 3.07E-08 9.46E-06 2.25 38.96 

Cushing syndrome 1.81E-05 0.001 2.91 31.74 

Parathyroid hormone 

synthesis, secretion and 

action 

6.79E-05 0.005 3.19 30.59 

Basal cell carcinoma 0.0004 0.014 3.58 27.74 

Cholinergic synapse 0.0001 0.006 3.02 27.03 

Phospholipase D 

signalling pathway 

0.0001 0.006 2.74 25.18 

Signalling pathways 

regulating pluripotency of 

stem cells 

0.0001 0.006 2.75 24.31 

Renal cell carcinoma 0.0008 0.022 3.26 22.92 

Breast cancer 0.0002 0.011 2.60 21.22 

Melanoma 0.001 0.025 3.13 20.91 

Cortisol synthesis and 

secretion 

0.002 0.034 3.12 19.07 

Circadian entrainment 0.001 0.026 2.79 18.72 

Cellular senescence 0.0007 0.023 2.39 17.14 

Hippo signalling pathway 0.0007 0.021 2.39 17.14 

Fc gamma R-mediated 

phagocytosis 

0.002 0.033 2.72 16.54 

Hepatocellular carcinoma 0.001 0.025 2.28 15.08 

Wnt signalling pathway 0.001 0.031 2.28 14.40 

Proteoglycans in cancer 0.001 0.029 2.13 13.69 

 

The gene or nearest gene represented by the top 1000 CpG sites identified in the 

cannabis with tobacco dataset were also investigated, to determine which KEGG 

pathways were significantly enriched in these data.  A total of 19 pathways displayed 

significant enrichment after adjustment for multiple testing. Of the 19 pathways, seven 

are involved in cancer (gastric cancer and the more general pathways in cancer, 

adjusted P =0.000424 and 9.4 x 10-6 respectively). The top pathway in response to 

cannabis-only users, cholinergic synapse, is found to also be significant in cannabis 

with tobacco users. 
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2.4 Discussion 

 

2.4.1 The Illumina EPIC array 

 

High-throughput array technology has facilitated the next step in assessing 

associations between DNA methylation and response to a known phenotype at a 

genome wide level. The Illumina Infinium EPIC array (as well as the 27k and 450k) is 

one such platform that allows for the isolation of these DNA methylation changes. 

Selecting a pre-processing method is pivotal for the integrity of the data that is 

produced. The four pre-processing methods assessed in this chapter all performed 

differently on our data set. The raw density data (Figure 2.1) indicated that there were 

discrepancies between the two batches of samples which were measured in different 

years. Before any further analysis could begin these batch differences needed to be 

adjusted. Not addressing this issue could lead to bias and also misleading results, 

whereby the differential DNA methylation found is actually due to human/machine 

variation and not actually due to the variability seen from to the phenotype.  

 

Variation can arise in data through numerous ways. For instance, only eight individual 

DNA samples can fit onto a slide to be measured. Each slide can be different, and 

each batch of slides can be different again. Variation also arises through operational 

processes and the use of different equipment. These can all result in subtle variations 

which can equate to a point of difference between samples which researchers cannot 

be aware of until quality checking of data is performed. The task then becomes to 

account for these sources of variation and take addition steps in bioinformatics 

pipelines to counteract these. The problem then arises, what is batch effect and what 

is biological variation?  

 

The second problem with not having a uniform pipeline of analysis is the issue with 

validity and cross-comparison of other EPIC array experiments. Meta-analyses are a 

useful way of generating greater power to strengthen smaller analyses by combining 

datasets together. It is widely acknowledged that using the same technology is 

essential for meta-analyses, but further issues arise when different pre-processing 

methods have been applied to the different datasets. Thus, to ensure results are not 

biased by non-biological variability, all datasets should be processed in the same 
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manner. However, there is not yet a consensus on processing. Importantly, DNA 

methylation analyses, particularly via array, is a burgeoning field, and the more it 

grows, the more crucial it is that we have the methodology in place to be able to 

accurately combine data to increase our statistical power and determine the biological 

relevance of our results – often the most significant results come from those which 

combine multiple studies. Further, a consensus normalisation pipeline will future-proof 

research and yield cost savings - once array data has been generated for an individual 

DNA sample, the data can be applied to other hypotheses, enabling the investigation 

of epigenome-wide association analyses (EWAS).  In most lab groups, sample size is 

the most common limiting factor for statistical power when detecting differential 

methylation in response to a stimulus. Thus, combining studies is the best way to 

combat this problem, however, batch effects need to be accounted for. 

 

2.4.2 Comparison of four different normalisation methods 

 

Overall, assessment of the “best normalisation tool” was decided empirically based on 

the many ways raw data can be assessed visually. Beta density distribution, 

multidimensional scaling plots and Q-Q plots all provided important visual evidence 

for determining which was the best. Furthermore, highlighting the need for effective 

data visualisation, rather than simply using tabulated numerical data. 

 

All pre-processing tools were plotted to assess their adjustment and beta density 

distribution (Figure 2.2). Displaying this visually was crucial for understanding the true 

effects of the pre-processing normalisation methods. All three tools which could 

display beta density distributions showed a degree of correction for the batch effect 

compared to the raw unprocessed data. Funnorm showed no improvement of beta 

density distribution compared to the raw unprocessed data, therefore was 

discontinued. SWAN showed some improvements compared to the raw data however, 

discrepancies could still be seen. Illumina normalisation method and Noob both 

resulted in density plots which indicated that they had successfully corrected for the 

batch effect between the years that the samples were measured. 

 

Further assessment of Illumina, SWAN and Noob was carried using the 5000 most 

variable CpG sites for each of the individuals in the study. These were plotted as 
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multidimensional scaling plots (Figure 2.3). With Illumina and Noob methods, a 

random distribution of individuals is seen (Figure 2.3 A and Figure 2.3 C), again 

indicating that the batch effect had been successfully corrected. However, the same 

cannot be said using SWAN where individuals cluster based upon the year of sampling 

(Figure 2.3 B).   

 

Lambda values, as generated via Q-Q plot, are a quantitative measure of genome-

wide distribution of the test statistic with the expected genomic inflation.  A Lambda 

value of 1 would indicate that no inflation is present. In our analyses, the observed 

SWAN and Noob lambda values only showed marginal differences between both of 

our models. Specifically, using SWAN, the cannabis-only model genomic inflation was 

λ =0.881, and cannabis with tobacco users was λ =1.076. Using Noob, genomic 

inflation of our cannabis-only model was λ =1.035 and cannabis with tobacco was λ 

=0.855. In both of these instances, the values of both models appear to be either side 

of 1, by roughly a similar amount. A potential reason as to why results appear to be 

very similar here is that year of sampling was also included within the model for both 

Q-Q plot analyses. As this was included results were adjusted accordingly and 

therefore residual results appear to be very similar. Normalisation via the Illumina tool 

performed well in comparison to the other methods. However, its use was discontinued 

on the grounds of being outdated and as new innovations in the normalisation field 

have provided more robust tools [27]. Therefore, our results demonstrate that without 

visual interpretation of pre-processing batch normalisation, the underlying 

inaccuracies that were displayed by SWAN would not have been detected, and year 

of sampling could not therefore have been discounted as biasing our results.  

 

Finally, while the end residuals results appear similar from both SWAN and Noob 

output, the discrepancies between batches seen using SWAN cannot be ignored, 

therefore the pre-processing method Noob was seen as the best fit for our study 

design. 
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2.4.3 Differential DNA methylation between cannabis only users and controls 

 

Having successfully normalised the data, differential DNA methylation between 

cannabis-only users and controls was calculated. While we detected a large amount 

of differential DNA methylation between cannabis-only users and controls no individual 

CpG sites were found to reach adjusted P value significance (Table 2.4 and Figure 

2.6). Within the top 10 most nominally significant CpG sites there are two CpG sites 

that reside within the same gene, MYO1G. The gene plays a role within the immune 

system as it is expressed specifically by haematopoietic tissue and cells [40]. 

Knockdowns of the gene show a decrease in cell elasticity [40].  

 

Online tools such as EnrichR and KEGG (Kyoto Encyclopaedia of Genes and 

Genomes) provide further levels of understanding of the interaction of different genes 

in a pathway. DNA methylation sites within genes can then be compared and viewed 

for more functional roles. In Table 2.6, there are nine pathways that were found to 

contain genes with internal differentially methylated CpG sites. Interestingly, these 

pathways were related primarily to brain and cardiac function. Cholinergic synapse 

(adjusted P = 0.01366), glutamatergic synapse (adjusted P = 0.02005), long-term 

potentiation (adjusted P = 0.02816), dopaminergic synapse (adjusted P = 0.02230), 

and arrhythmogenic right ventricular cardiomyopathy (ARVC) (adjusted P = 0.03440). 

Both brain and cardiac alterations are consistent with the literature on the phenotypic 

impacts of cannabis use [41-44], supporting the biological relevance of our findings. 

 

 

2.4.4 Differential DNA methylation between cannabis with tobacco users 

 

When the data was partitioned to assess DNA methylation between cannabis with 

tobacco users, six CpG sites passed the Benjamini and Hochberg adjustment method. 

The top CpG site, AHRR, is the most well-known differentially methylated site resulting 

from tobacco exposure [45-48]. Validating this site with our cohort reiterates both the 

importance of that one CpG site but also the validity of our data and the methodology 

we applied to our analysis. These finding also gives us confidence in our cannabis-

only data (for which there is no literature to compare our findings to). Thus in this 

instance, our detection of AHRR serves as a positive control. 
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KEGG pathway analysis for cannabis with tobacco users (Table 2.7) clearly indicates 

that KEGG pathways associated with cancer are a more dominant theme, rather than 

the brain or cardiac function which is seen in cannabis-only users. A total of 19 

pathways had adjusted P value significance. Again, our data indicate biological 

relevance, as we know that tobacco smoking increases the risk of at least 17 classes 

of human cancers [49, 50], and induces DNA damage that can lead to an increase of 

somatic mutations and elevates the chance of acquiring driver mutations in cancer 

related genes [51].   

 

 

2.4.5 Limitations 

 

As previously discussed, our cannabis-only results are limited to nominal genome-

wide significance which is to be partially expected, as our sample size (dictated by 

financial constraints) is a limiting factor. Expanding the number of cannabis-only users 

would aid in confirming truly positive sites of differential methylation. Also, if our study 

design was conducted in a way where not all the cannabis only individuals were  

sampled in 2016 and the cannabis with tobacco individuals sampled in 2017 we would 

have maybe been able to differentiate between biological variance and batch effect 

better.  

 

Variance between individuals within the study could ultimately lead to bias in results, 

therefore it is very important that this is taken into account where possible. The 

statistical models which we used to compare cases to controls (cannabis-only and 

cannabis with tobacco) do take into account many forms of variance, as displayed by 

the residual plots in Figure 2.5.  However, while this is necessary, it can also be a 

limiting factor - accounting for “too many” variables in a model can also mask true 

biological variance, due to the creation of an overly-stringent of the model. There is a 

fine line of inclusion/exclusion of co-variables, particularly in small studies. In our case, 

it is likely that we have over-compensated with covariates, if we were to remove some 

of these from our model we would expect to see some CpG sites reach the genome 

wide significance level. However, it is important to have a robust and replicable 

analysis to maintain the integrity of data, even if it does come at the expense of only 

nominal significant results. It is particularly important for genetic studies to have 
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individual variance within the population, and this must be accounted for wherever 

possible. We are fortunate that the CHDS records a tremendous amount of data which 

spans from birth to the present time, and key variables, such as, socioeconomic status 

is available to us to include in our analyses.  

Thus, while our cannabis-only data is nominal, the apparent biological relevance of 

the findings demonstrate that these nominal results, in general, should be seen as 

interesting observations that require further follow up. The analysis illustrates the 

potential for DNA methylation to play a role in the human response to cannabis. The 

differences seen between the cannabis-only data, and the cannabis with tobacco data, 

highlights the unique mode of action of cannabis compared to tobacco, and stresses 

the importance of researching the biological effects of cannabis in isolation.  By 

extension, however, our data also highlight the value of performing the same analysis 

on individuals who use both cannabis and tobacco; the large majority of cannabis 

users are also tobacco users, therefore joint repercussions on the genome may play 

a role in the development of a range of diseases.  
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2.5 Chapter summary 

 

 Four normalisation tools were tested, and Noob was judged most effective at 

adjusting variance between batches of samples processed in different years.  

 Differential DNA methylation was assessed between cannabis-only users and 

controls, as well as cannabis with tobacco users, versus controls.  

 Nominal significance was found between cannabis-only users across CpG sites 

in the human genome, while six CpG were found to be significant post 

adjustment in the cannabis with tobacco users, compared to controls.  

 Pathway analysis was carried out on the genes (or nearest genes) that housed 

the top 1000 differentially methylated CpG sites.  

 Pathways differed between cannabis-only users, where the most significantly 

enriched KEGG pathways were involved in brain and cardiac functional.  This 

is in contrast to the cannabis with tobacco users, where the most significantly 

enriched KEGG pathways were involved in cancer.  

 Despite the limitation of small sample size the nominal results provide 

biologically relevant observations that should be expanded on.  
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Chapter 3 

 

3. Validating DNA methylation using bisulfite-based amplicon sequencing (BSAS)  

 

3.1 Introduction 

 

Epigenetic modifications, such as DNA methylation, play a vital role in regulating gene 

expression [1] and have the potential to induce phenotypic changes [2-6]. DNA 

methylation occurs when a methyl group is covalently transferred to the C5 position of 

the cytosine ring of a DNA molecule by a methyltransferase enzyme, with the resulting 

modified cytosine then termed 5-methylcytosine (5mC) [7].  In mammals, most DNA 

methylation occurs at CpG dinucleotides. CpG sites themselves can be defined as a 

singular modified cytosine residue which are found throughout the genome, but are 

particularly dense in promoter regions [8].  

 

DNA methylation is heavily influenced by the surrounding environment; factors such 

as tobacco smoking [9-12], alcohol [13, 14], nutrition [15, 16], stress [17] and aging 

[18, 19] can all impact on DNA methylation at CpG sites. Alterations to DNA 

methylation are associated with changes in phenotype and also, in some instances, 

methylation changes contribute to disease pathology [20-23].  

 

3.1.1 Gold standard for DNA methylation analysis 

 

As a result of these relatively recent observations, the assessment of differential DNA 

methylation in humans, and in particular, epigenome-wide association studies 

(EWAS), is a burgeoning field.  High-throughput array technologies are a popular 

choice for EWAS, due to their robustness and accuracy [24]. The Illumina Infinium® 

MethylationEPIC array (hereafter ‘EPIC array’) quantifies methylation at 850,000 

different CpG sites [25], and although this is still a small proportion of the total number 

of CpG sites in the genome (~28 million [26]) it represents a broad distribution of sites 

that give a specific and robust measurement of methylation at those sites.  
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3.1.2 Targeted techniques for the detection of differential DNA methylation 

 

Further, the goal of many whole-genome studies of DNA methylation is often a pilot or 

scoping study to capture a range of targets that may be associating with, e.g., a 

particular environmental exposure. As such, once the genome has been investigated 

in a number of samples, a whole-genome approach is not always necessary if the user 

simply requires follow up and/or validation of identified loci in a larger cohort. To 

undertake further analyses and to validate methylation array-based experiments, 

several different methods exist that rely on bisulfite treatment of DNA: bisulfite-based 

amplicon sequencing (BSAS), bisulfite pyrosequencing and methylation-specific PCR 

(MS-PCR) are methods which can specifically target a predetermined area of interest 

in the genome at a low cost and higher sample throughput, compared to arrays. An 

informative study conducted by the BLUEPRINT consortium evaluated 27 predefined 

genomic regions, across 32 reference samples amongst 18 laboratories using six 

assays [27]. Good agreement was observed across methods, with amplicon bisulfite 

sequencing, and bisulfite pyrosequencing showing the best concordance [27]. A 

similar study also assessed bisulfite pyrosequencing, observing congruence to EPIC 

array analysis [28].  However, pyrosequencing  is known to have quantitative flaws 

due to the output of sequences generated through fluorescence methods [29]. MS-

PCR is a method often used in clinical settings [30], however it has a high false positive 

rate [31]. By contrast, BSAS detects cytosine methylation to base-pair scale resolution 

without reliance on light detection methods for sequencing [32]. BSAS is a multiplex 

procedure that can quantitatively assess each CpG site within numerous target 

regions at the same time [33].  

 

Thus, given the limitations of pyrosequencing and MS-PCR, here we examine whether 

BSAS can also accurately validate EPIC array data, and be used as a replication, 

and/or expansion tool for targeted DNA methylation analyses, similar to what has been 

shown using pyrosequencing. Further, we wish to assess the multiple other CpG sites 

residing within the targeted amplicon region, to investigate differential methylated 

regions, which would not be able to be explored via EPIC array. 
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3.1.3 Study design 

 

We used EPIC array data generated in Chapter 2 using the  CHDS which evaluated 

differential DNA methylation in response to regular cannabis use (Chapter 2) [12].   

 

For validation analysis we selected new  individuals (N= 82), to serve as a validation 

and expansion cohort for the differential DNA methylation identified via EPIC array 

[12]. Specifically, we asked whether BSAS, after determination of the most appropriate 

normalisation method, produced the same average methylation values as EPIC 

arrays, when comparing case data to control data.  

 

While both EPIC array and BSAS are readily used as standalone experiments, they 

would provide robust evidence if carried out together. Establishing a better 

understanding of how differential DNA methylation differs between regions within the 

genome, such as evaluating concordance between methods and then further 

assessing resultant CpG sites within a designated region, is valuable to the scientific 

community. 
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3.2 Methods 

 

3.2.1 Illumina EPIC array samples and statistical analysis 

 

Illumina EPIC array methods are described in Chapter 2. 

 

3.2.2 Cohort selection and DNA extraction – BSAS experiments 

 

BSAS analysis was carried out on two groups: cannabis plus tobacco users (N= 44) 

and controls (N= 38), who had never used cannabis.  In contrast to the EPIC array 

analysis, no cannabis-only participants were used in BSAS; this is a consequence of 

the small number of individuals who use cannabis but who do not also use tobacco.  

Cannabis users were all selected on the basis that they either met DSM-IV diagnostic 

criteria [34] for cannabis dependence or had reported using cannabis consumption on 

a daily basis for a minimum of three years prior to age 28. Participants were matched 

as closely as possible for the following variables, sex, ethnicity, and parental 

socioeconomic status (Table 3.1). All participants were collected across a four month 

period so they are all of a similar age. Collection and analysis of DNA in the 

Christchurch Health and Development Study was approved by Southern Health and 

Disability Ethics Committee (CTB/04/11/234/AM10).  DNA extraction protocols are 

previously described in [35]. Specifically, DNA was extracted from whole blood 

samples using a Kingfisher Flex System (Thermo Scientific, Waltham, MA USA) and 

quantified via nanodrop (Thermo Scientific, Waltham, MA USA). DNA was bisulfite 

treated using the EZ DNA Methylation-Gold kit (Zymo Research, USA) as per the 

manufacturer’s instructions.  
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Table 3.1 The Christchurch Health and Developmental Study cohort selected for analysis by BSAS. 

Cases: cannabis and tobacco users; Controls: never cannabis users. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.3 CpG site selection, primer design and amplification – BSAS 

 

A total of 15 CpG sites, representing 15 individual probes from the Illumina EPIC array 

were chosen based on their differential methylation status in cannabis plus tobacco 

users compared to controls (Table 3.2). A range of probes at differing levels of 

significance (not significant, nominally significant, and significant after P value 

adjustment) were chosen to reflect the range of data provided by the EPIC arrays.  

Primers to amplify bisulfite-treated DNA were designed using the online tool BiSearch 

[36] to amplify a ~250 base pair region which spanned the CpG site (Table 3.2). At the 

5’ end of each primer sequence, an Illumina overhang (33 base pair sequence) was 

included to ensure the ability to pool the amplicons and barcode them for high-

throughput sequencing. All product lengths were all between 226 and 340 base pairs. 

To ensure primer specificity, Delta G’s were designed to be no lower than -9 kcal/mol 

for efficiently, using the tool OligoAnalyzer (IDT®). A total of 30 primer pairs were 

initially designed for this experiment, and 15 of these are discussed here, as these 

were the primer pairs which performed efficiently at first usage.  

 Cases Controls 

Individuals N= 44 N= 38 

Gender 

Male 

Female 

 

84% 

16% 

 

76% 

24% 

Ethnicity 

Maori 

Pacific Island 

Asian 

European 

 

20% 

7% 

0% 

73% 

 

8% 

3% 

0% 

89% 

Socioeconomic status 

Professional/managerial 

Clerical/technical 

Semi-skilled/unskilled 

 

20% 

41% 

39% 

 

37% 

39.% 

24% 

Tobacco smoking status 

Never 

Occasional 

Regular 

 

9% 

4% 

87% 

 

92% 

3% 

5% 
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Table 3.2 Forward and reverse primers used to target validation sites using bisulfite amplicon 

sequencing CpG sites including an Illumina overhand sequence. 

 

Primer name Illumina 
probe ID 

Bisulfite converted primer (including Iluminia overhang sequence) 

SLC17A7_F Cg 02624701 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTATTAGAAGATTTYGAAGTTGTTT 

SLC17A7_R Cg 02624701 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAAAATAAACCTATTCTCTCC 

AHRR_F Cg 05575921 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTTTTTTTGGTGTGGTTTTA 

AHRR_R Cg 05575921 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG ACCACCATCTTATCTTATTT 

ITPR1_F Cg 08987995 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG GATGGAATTTATTAGTGTTT 

ITPR1_R Cg 08987995 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTAAAACACAACCCATTATCT 

MAGI2_F Cg 21121803 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGTTTAATTGAGTGTTTTTGAGG 

MAGI2_R Cg 21121803 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG ACCCATTTTATTTATACCTTT 

EHMT2_F Cg 07829740 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG AGAGGGGTTTAAATTTAAGTTTG 

EHMT2_R Cg 07829740 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG CTAATAAATCACATATCTCC 

PPM1L_F Cg 26406186 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG AATGTTAGTTGAATAAGTGG 

PPM1L_R Cg 26406186 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCACAAAAATACTCTAAAAAC 

DPP10_F Cg 05868547 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG TTAAGGGAAGAAAGAAATGT 

DPP10_R Cg 05868547 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCCTCTATAACAACATTTACTCAA 

NIPAL4_F Cg 17695979 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTTGGGAGAATTTATTTTTAGAG 

NIPAL4_R Cg 17695979 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATATACCTATCACCAACTTC 

CHD7_F Cg 19926587 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG TTTTAAAAGGATTTAAGGTAATG 

CHD7_R Cg 19926587 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTAACACAAAACAACCCAAT 

PRDM5_F Cg 01118724 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATTTAAAAATGGTTGTGGTGAAG 

PRDM5_R Cg 01118724 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCCACTCATTACTCATATACTA 

Cg11977356_F Cg 11977356 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGAGGTGAGATGTTTTAATAATT 

Cg11977356_R Cg 11977356 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAATAAACTATAATCATACCCCTC 

Cg09078959_F Cg 09078959 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTTTGAAAAGGGGAAATTTA 

Cg09078959_R Cg 09078959 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACACTTAATAAAACACCAATC 

Cg00571101_F Cg 00571101 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGATAGGATATAAGAAGAAAGTA 

Cg00571101_R Cg 00571101 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTCTACTTCAACCTAAAACAA 

Cg11293828_F Cg 11293828 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAGGGGGTTAGAGTATTTATTTT 

Cg11293828_R Cg 11293828 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTTTACTTTACTTAACTTCTCCC 

Cg01614625_F Cg 01614625 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGGAATTAGAAATTTTGGG 

Cg01614625_R Cg 0161462 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG CCTCTCCATTTTATTTCTTTAA 
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Bisulfite-converted DNA was amplified via PCR, using KAPA Taq HotStart DNA 

Polymerase (Sigma, Aldrich) under the following conditions: 95 °C for 10 min, followed 

by 40 cycles of 95 °C for 30 sec, 59 °C for 20 sec, 72 °C for 7 min, and finally held at 

4 C° using the Mastercycler Nexus (Eppendorf, Australia). PCR products were then 

purified with the Zymo DNA Clean & Concentrator Kit™ (Zymo Research, USA).  

Following the PCR, DNA was cleaned up with Agencourt® AMPure® XP beads 

(Beckman Coulter) and washed with 80% ethanol and allowed to air-dry. DNA was 

then eluted with 52.5 µl of 10 mM Tris pH 8.5 before being placed back into the 

magnetic stand. Once the supernatant had cleared, 50 µl of supernatant was taken up 

and aliquotted into a fresh 96-well plate. DNA samples were quantified using the 

Quant-iT™ PicoGreen™ dsDNA Assay kit (Thermo Fisher) using the FLUROstar® 

Omega (BMG Labtech). Sequence libraries were prepared using the Illumina MiSeq™ 

500 cycle Kit V2, and sequenced on an Illumina MiSeq™ system at Massey Genome 

Services (Palmerston North, New Zealand). 

 

3.1.4 Bioinformatic and statistical analysis – BSAS data 

 

Illumina MiSeq™ sequences were trimmed using SolexaQA++ software and aligned 

to FASTA bisulfite converted reference sequences using the package Bowtie2 

(version 2.3.4.3). Each individual read was then aligned to all reference sequences 

(GRCh37/hg19) using the methylation-specific package Bismark [37]. Bismark 

produced aligned mapped reads with counts for methylated and unmethylated 

cytosines at each CpG site, thus BSAS returns additional CpG sites to the intended 

validation target, as each sequencing read contains multiple CpG sites. Cytosine 

proportion is calculated based upon the number of cytosines divided by the number of 

cytosines with the additions of the number of thymines present:  

(𝐶/(𝐶1) + 𝑇). 

 

Where: 

C Average cytosine methylation 

C1: Methylated cytosines 

T: Number of thymines present/ Unmethylated cytosines 
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This gave the average methylation β values for each individual at each given CpG site. 

These β values could be anywhere between 0 - 1, with a β equal to 1 indicating 100% 

methylation at that CpG site across all sequencing reads. These data were imported 

into R Studio (RStudio Version 3.3.0) and the edgeR package [38] was used to 

determine differential DNA methylation between cannabis users and controls; 

coverage level was set to greater or equal to “8” across unmethylated and methylated 

counts under the recommendations of [38] whereby the conservative rule of thumb is 

total count (both methylated and unmethylated is at least “8” in every sample. Within 

the data set 96.5% of the reads were above a methylation coverage of 50. A negative 

binomial generalised model was used to fit the counts (methylated and unmethylated 

reads) in regards to the two variable groups, using the below model: 

 

𝑌 ~ 𝐶𝑎𝑛𝑛𝑎𝑏𝑖𝑠 +  𝑒 

Where: 

Y = methylation M ratio 

Cannabis = A cannabis user 

e ~ N(0,s) 

 

Summary tables compiled of the CpG sites of interest with nominal P value 

significance and post multiple testing using false discovery rate (FDR) of less than 

0.05 were considered to be statistically significant. A scatter plot including a linear 

regression line with adjusted R2 values was generated in R to quantify the correlation 

between β values produced with EPIC array and BSAS. Adjusted R2 values were 

calculated for: i) BSAS cases versus EPIC cases, and; ii) BSAS controls versus EPIC 

controls. A Bland Altman analysis [39] was used to compare the agreement of the two 

techniques. Means were log transformed and lower and upper levels of agreement 

with 95% confidence intervals were calculated. Welch two sample t-tests were carried 

out on each of the loci (cases and controls separately) to assess differences between 

the two methods.  All graphs were constructed using the package ggplot2 (version 

3.3.2) [40].  
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3.2 Results 

 

3.2.1 Validation and replication of EPIC array data using BSAS: 

 

The differences between average methylation (β values) of cannabis plus tobacco 

users (cases) and controls were calculated for each method (EPIC array and BSAS, 

Table 3.3).   

 

When comparing case vs control data from EPIC and BSAS individually, no significant 

difference in average methylation between case and control was observed for either 

detection method, with the exception of cg05575921 in AHRR and cg09078959. 

AHRR was significant in both BSAS and EPIC (P= 0.006, P= 5.33x10-12), and 

cg05575921 was found to only be significant under BSAS (P= 0.001, P= 0.665).
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Table 3.3 CpG site differences from EPIC array and the BSAS methods at the 15 loci of differing levels of significance (not s ignificant, nominally significant and 

after P value adjustment). *When a cg number is listed, then there is no known gene associated with that CpG site. GB-Gene Body. 

      
 

Illumina EPIC array BSAS Difference  

between 

methods 

  Cg/Gene Position in 

genome 

Illumina ID β 

difference 

  

P value FDR Adjusted P 

value  

β 

difference 

P value FDR Adjusted P 

value  

β difference 

 
  

 
    

 
 

1 AHRR  Chr5, GB cg05575921 -0.233 5.33E-12 3.7E-06 -0.041 0.006* 0.245 -0.192 

2 cg11977356* Chr19 cg11977356 -0.040 0.474 0.999 -0.004 0.406 0.959 -0.036 

3 ITPR1 Chr3, GB cg08987995 -0.001 0.572 0.999 0.005 0.820 0.822 -0.006 

4 MAGI Chr7, GB cg21121803 -0.008 0.572 0.999 -0.007 0.809 0.959 -0.0004 

5 EHMT2 Chr6, GB cg07829740 0.005 0.037 0.999 -0.015 0.071 0.579 0.020 

6 PPM1L Chr3, GB cg26406186 -0.006 0.818 0.999 0.011 0.904 0.963 -0.017 

7 cg00571101* Chr12 cg00571101 0.004 0.368 0.999 -0.004 0.813 0.952 0.008 

8 cg09078959* Chr5 cg09078959 -0.001 0.893 0.999 -0.005 0.001* 0.245 0.004 

9 cg01614625* Chr7 cg01614625 -0.009 0.370 0.999 -0.006 0.569 0.952 -0.004 

10 DP10 Chr2, GB cg05868547 0.006 0.077 0.999 -0.003 0.713 0.952 0.009 

11 cg11293828* Chr12 cg11293828 -0.014 0.665 0.999 0.032 0.735 0.952 -0.045 

12 CHD7 Chr5, 5’UTR cg19926587 -0.007 0.960 0.999 -0.006 0.429 0.959 -0.001 

13 NIPAL4 Chr5, TSS1500 cg17695979 -0.007 0.714 0.999 -0.003 0.106 0.713 -0.004 

14 PRDM5 Chr4, GB cg01118724 -0.004 0.734 0.999 0.005 0.116 0.713 -0.009 

15 SLC17A7 Chr19, GB cg02624701 -0.043 0.312 0.999 0.018 0.646 0.952  -0.061 
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3.2.2 Linear regression between BSAS and EPIC 

 

Correlations between BSAS and EPIC were plotted individually for cases and controls. 

BSAS versus EPIC cases resulted in an adjusted R2 of 0.8878 and BSAS versus EPIC 

controls gave an adjusted R2 of 0.8683 (Figure 3.1). 

 

 

Figure 3.1 Scatter plots with linear regression of the β values at each loci for BSAS and EPIC array plotted 

against each other. Colours represent the loci of interest, with the shapes representing the case and controls. 
There are two regression lines: Correlation between cases with an adjusted R2 =0.8878 and controls with R2 = 

0.8683. 
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3.2.3 Bland Altman correlations 

 

A Bland Altman analysis was carried out on the loci investigated by BSAS and 

compared to data for the same loci produced using the Illumina EPIC array. Figure 3.2 

A shows cannabis users (cases) measured using BSAS and the EPIC array on the X 

axis, while the Y axis represents the log differences between the measurements. The 

observed differences between loci in cannabis cases (EPIC and BSAS) fall within the 

lines of agreement. Figure 3.2 B shows the control group differences plotted for the 

same loci for BSAS and the EPIC array methods. Similar to above, all data points fall 

within the lower and upper lines of agreement.  
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A 

B 

Figure 3.2 Bland Altman plots showing the log means differences between DNA methylation as measured 

by EPIC array vs. the same CpG sites measured using BSAS. A) Data from cannabis users, gathered 

using BSAS and the EPIC array (Cases) B) the control subjects used in BSAS and EPIC array. Each of 

the 15 points represent the CpG sites investigated. 
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3.2.4 Individual methylation across all 15 loci assessed for BSAS and EPIC 

 

Mean methylation values for each individual were plotted for each of the 15 loci, and 

these were then compared between BSAS and EPIC, for cases (Figure 3.3 A) and 

controls (Figure 3.3 B). Loci displaying a significant shift in average methylation 

between the methods of detection are indicated with an * when using a Welsh two 

sample comparison. The following loci were found to display differences between 

BSAS and EPIC array: cases; AHRR, cg09078959, cg11293828, CHD7, DP10, 

EHMT2 and ITPR1, and controls; AHRR, cg09078959, cg11293828, CHD7, DP10, 

EHMT2, ITPR1, NIPAL4 and PPM1L. 
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A 



82 
 Figure 3.3 Average methylation for cases individuals across the 15 loci assessed using EPIC and BSAS . * represent those loci with significant 

differences in average methylation between EPIC and BSAS. A) case individuals B) control individuals for each of the studies . 

B 
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3.2.5 Assessing amplicon regions 
 

Multiple CpG sites residing within an amplicon can be sequenced using BSAS, 

providing information about a larger region of interest, rather than just a single CpG 

site. Figure 3.4 displays the multiple CpG sites found across each of the 15 amplicons 

in this study. A total of 9 of the 15 amplicons contained more than one CpG site. All 

CpG sites within the amplicons remained non-differentially methylated between cases 

and controls, except one site in AHRR. The amplicon from SLC17A7 sequenced here 

contained a total of 15 CpG sites with in the 250 base pairs.  

 

Figure 3.4 Average DNA methylation between cannabis users compared to controls across all CpGs 

that were investigated. A differing number of CpG sites are found within each amplicon.  
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3.3 Discussion 

 

High throughput array technologies have facilitated the next step in assessing 

associations between DNA methylation changes in response to a known 

environmental exposure at a genome-wide level. The EPIC array (as well as the 

predecessor 27k and 450k arrays) is one such platform that allows for the 

characterisation of these DNA methylation changes. Through these approaches, 

various studies have furthered our understanding of how DNA methylation can play a 

role in response to different environmental exposures.  

 

3.3.1 Validation of EPIC using BSAS 

 

We selected the orthogonal method BSAS to determine its applicability as a validation, 

replication and/or expansion tool for EPIC array.  BSAS is often used as a standalone 

method for assessing differential DNA methylation at specific CpG sites, usually 

because it is more cost-effective than EPIC arrays, and allows analysis of many 

samples at once, in multiplex.  It returns data for all CpGs within a targeted  region of 

interest (~250 base pairs) with results providing base pair-level specificity [32].  

Overall, when considering average methylation between cases and controls as 

determined via BSAS or EPIC individually, we did not detect significant differences in 

average methylation for each detection method; the biological results are discussed in 

Chapter 2 [12] , however, it was expected that the smaller sample set used here would 

not have the statistical power to detect effects found in the larger cohort.  The intent 

of this study was to compare average methylation as determined via BSAS, to that 

determined by EPIC array.  We show here that the estimation of differential DNA 

methylation observed using BSAS correlated with differential methylation determined 

via EPIC array.  However, although the data correlates between the methods (adjusted 

R2 cases, 0.8878 and adjusted R2 controls, 0.8683), we urge caution when interpreting 

this correlation as proof that BSAS will be a suitable independent validation of EPIC 

array data in every experiment. It is because while the data presented here correlated 

between BSAS and EPIC array as a whole dataset, some sites showed larger 

differences between average methylation estimated using BSAS vs. EPIC array.  Most 

notably, where the differential methylation on EPIC array was greater than 5% 

between cases and controls, BSAS was unable to detect this differential DNA 
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methylation to the same magnitude as EPIC array.  Further, a total of 9/15 loci had 

observed P value significance when carrying out a Welch two sample t-test on control 

data, and 7/15 on case data, implying there were differences between the methylation 

values for the methods. For instance, AHRR exhibited a 4% difference in methylation 

between cases and controls when assessed using BSAS (the highest value detected 

in using BSAS in this study), compared to 23% using EPIC array.  Thus, while a strong 

correlation between EPIC array data and BSAS data was found across the 15 CpG 

sites investigated, which itself implies an association between the average methylation 

at each CpG for the two techniques, each locus must be validated on a case by case 

basis before being taken forward into high-throughput or large scale screening, to 

ensure it produces results that are equivalent to EPIC.  In addition, further work on 

CpG sites with higher magnitude changes is needed to determine whether BSAS is 

limited by the magnitude of differential methylation it is able to detect.  However, it is 

worth noting that most studies of differential methylation report modest (<5%) 

significant differential methylation observations, suggesting that BSAS may prove 

useful, given inclusion of rigorous controls of known differential methylation to ensure 

accuracy of results.     

 

3.3.2 Advantages to using BSAS as a DNA methylation tool    

 

Due to the sequence-based nature of BSAS data (compared to the probe-based 

nature of EPIC arrays) BSAS, as a standalone method, offers some advantages that 

are not applicable to EPIC arrays. For instance, BSAS has the potential to determine 

novel differentially methylated CpGs which may be near (in the same targeted region) 

but not the initial pre-determined CpG site of interest.  This is possible because all 

CpGs within an, e.g., 500bp region are returned using BSAS data, only one of which 

may be on an EPIC array.  Further, via this targeted sequencing process, BSAS may 

reveal novel differentially methylated regions (DMRs). DMRs are described as areas 

which exhibit multiple successive methylated CpG sites which may have biological 

impact within the genome [41]. Therefore targeting more than a single CpG site may 

provide further insight into genes and regions of interest. Consequently, while here we 

have used BSAS technology to replicate/validate differential methylation identified via 

EPIC array, given that BSAS outputs can correlate with EPIC data, equally, BSAS 

could be used as a “discovery-based tool”; if significantly differentially methylated 
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CpGs are identified via BSAS, this would serve to justify further investigation using a 

robust and more expensive high throughout method. The EPIC array still remains the 

most reproducible way to measure DNA methylation [42]. Largely, this is because the 

probe-based nature of the method frequently produces comparable results across 

research groups and arrays. For example, detection of differential methylation using 

the EPIC array found a difference of 23% in cannabis plus tobacco users, compared 

to controls, at AHRR (cg05575921, Table 3.3), a result that is supported by other 

studies in tobacco smokers using EPIC array [9, 43-46].  AHRR has an important role 

in controlling a range of different physiological functions; it contributes to regulation of 

cell growth, regulation of apoptosis and contributes to vascular and immune responses 

[47-50].  

 

3.3.3 Methods of detection differences 

 

BSAS and EPIC array rely upon different chemistries and methods to detect DNA 

methylation and this may account for the majority of the variation found between the 

two methods. BSAS relies upon PCR amplification of DNA that is treated with sodium 

bisulfite. When DNA is treated, unmethylated cytosine residues are converted into 

uracil via hydrolytic deamination. Amplification of uracil nucleotides during this process 

are replaced by thymine during replication and the 5-methylcytosines are left 

unreactive throughout the deamination process and then are amplified as cytosines. 

It then becomes possible to ‘read’ values of methylation for each cytosine in an 

amplicon via DNA sequencing [51]. The ability to treat DNA with sodium bisulfite has 

led to the expansion of research undertaken within this field [52]. However, it is 

important that we ensure the validity of the results are not limited by the manner in 

which the data was produced. Ensuring that we limit these discrepancies between 

technologies will allow for better validation of data.   There is potential for errors to 

occur at this step, because incomplete bisulfite conversion cannot be distinguished 

from 5-methylcytosine, this can possibly introduce false positive methylation calls at 

this point [53] [54]. Although both techniques rely upon bisulfite treatment, it is this 

source of error followed by the PCR amplification that might explain the differences in 

results we have observed. Refining these sources of error may provide much more 

comparable results between the two methods. 
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3.4 Chapter summary 

 

 We chose to validate EPIC array data by using the alternative method, BSAS, 

to detect differential methylation at CpG sites.  

 While BSAS validated EPIC array data at some loci, and correlated across all 

loci as a whole, however some individual loci did not validate.   

 BSAS was unable to reproduce the magnitude of changes that are shown in 

the EPIC array system, which may be a consequence of lack of specificity and 

addition error rate through PCR amplification.  

 BSAS does offer some advantages such as being able to assess differentially 

methylated regions, rather than individual CpG site
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3.6 Supplementary Tables  

  

Table 3.1 All CpG sites assessed for differential DNA methylation using BSAS  

 

Gene Log FC Log CPM L R P value FDR 

AHRR -0.112 11.080 7.216 0.007 0.268 

SLC17A7 0.067 13.325 6.608 0.010 0.268 

Cg09078959 -0.113 13.039 5.265 0.021 0.384 

AHRR -0.101 10.992 3.668 0.055 0.627 

ITPR1 -0.068 14.057 3.274 0.070 0.627 

EMTH2 -0.092 12.163 3.259 0.070 0.627 

NIPAL4 0.069 13.011 2.613 0.105 0.773 

PRDM5 -0.070 11.987 2.459 0.116 0.773 

PPM1 -0.122 13.185 2.146 0.142 0.807 

SLC17A7 0.076 13.104 2.047 0.152 0.807 

SLC17A7 0.047 13.029 1.522 0.217 0.880 

PPM1 -0.186 13.220 1.473 0.224 0.880 

Cg17470325 -0.112 12.695 1.341 0.246 0.880 

NIPAL4 0.050 12.909 1.238 0.265 0.880 

NIPAL4 0.041 13.367 1.237 0.265 0.880 

MAGI -0.052 13.036 1.159 0.281 0.880 

SLC17A7 -0.049 13.336 1.140 0.285 0.880 

SLC17A7 0.027 13.549 1.079 0.298 0.880 

SLC17A7 0.028 13.279 0.886 0.346 0.952 

Cg09078959 -0.035 13.368 0.683 0.408 0.952 

Cg11977356 -0.040 12.720 0.678 0.410 0.952 

AHRR2 -0.033 11.343 0.640 0.423 0.952 

CHD7 -0.031 13.351 0.625 0.429 0.952 

SLC17A7 0.028 13.141 0.583 0.445 0.952 

CHD7 -0.026 13.010 0.565 0.451 0.952 

Cg01614625 -0.012 14.179 0.323 0.569 0.952 

SLC17A7 0.015 13.579 0.319 0.571 0.952 

SLC17A7 -0.018 13.086 0.280 0.596 0.952 

SLC17A7 -0.014 12.674 0.273 0.600 0.952 

MAGI 0.035 13.172 0.270 0.602 0.952 

SLC17A7 0.013 13.394 0.211 0.645 0.952 

ITPR1 0.027 13.919 0.197 0.654 0.952 

MAGI 0.029 12.283 0.187 0.665 0.952 

SLC17A7 0.004 12.982 0.177 0.673 0.952 

MAGI -0.019 13.162 0.176 0.674 0.952 

PPM1 -0.020 13.684 0.156 0.692 0.952 

DP10 -0.012 13.062 0.134 0.713 0.952 

cg11293828 0.044 12.764 0.114 0.734 0.952 
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PPM1 -0.018 13.486 0.107 0.743 0.952 

ITPR1 0.021 14.114 0.100 0.751 0.952 

SLC17A7 -0.008 13.422 0.088 0.766 0.952 

MAGI -0.011 12.997 0.058 0.808 0.952 

Cg00571101 -0.019 12.931 0.055 0.813 0.952 

ITPR1 0.017 14.156 0.052 0.818 0.952 

EMTH2 0.028 11.863 0.052 0.819 0.952 

NIPAL4 -0.004 13.273 0.035 0.850 0.952 

SLC17A7 -0.006 13.461 0.034 0.851 0.952 

Cg09078959 0.009 13.468 0.029 0.863 0.952 

Cg00571101 0.010 13.313 0.022 0.880 0.952 

PPM1 0.006 13.005 0.014 0.904 0.958 

SLC17A7 0.002 13.567 0.003 0.952 0.972 

SLC17A7 -0.001 13.369 0.003 0.954 0.972 

PPM1 -0.0006 13.425 0.0005 0.981 0.981 
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Chapter 4:  

 

4. Development of the zebrafish (Danio rerio) as a model for assessing the impact of 

THC and CBD on DNA methylation 

 

4.1 Introduction 
 

So far, this thesis has worked with human cohorts to address the impact of an 

individual’s environment (cannabis, tobacco exposures) on DNA methylation. Yet, 

assessing the impact of any one specific environmental exposure on DNA methylation 

is not without its challenges. The main challenge is that each individual’s cumulative 

environmental exposures can vary greatly, and exposures also change throughout an 

individual’s lifetime. Meaning that, in human cohorts, it can be challenging to 

definitively attribute differential DNA methylation to one cause or one exposure.  

To counteract this diversity of exposures, here we utilise the model organism, Danio 

rerio (zebrafish), to assess the specific impacts of the most abundant cannabinoids 

within cannabis (THC and CBD) on DNA methylation, an experiment which is unable 

to be easily undertaken in humans. We then choose to address these two main 

hypotheses: i) THC and CBD exposure causes DNA methylation patterns compared 

to non-exposed in the zebrafish, and; ii) differential DNA methylation in response to 

THC and CBD will be identified within genes and pathways that are specific to the 

biological response to THC and CBD.  

This research will therefore allow us to determine whether the zebrafish is an 

appropriate system for exploring the precise epigenetic effects of human cannabis 

exposure - while there is precedence for the use of zebrafish in cannabinoid research  

[15-17] [18, 19]. Their utility and applicability to probe the molecular basis of the 

biological response to cannabis has not yet been established. It will also provide novel 

insights into the specific genomic targets of THC and CBD, contributing to the scant 

knowledge in this area around the precise molecular effects of each component. 

Lastly, this research will allow us to better understand the health implications of 

cannabis use and will seed future research into the epigenetics of environmental 

exposures.   
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4.1.1 The zebrafish as a model organism 

 

Model systems are an important component of research into the genetic bases of 

human diseases, and there are numerous well-established systems in which we can 

study human disease. There is no ‘gold standard’ model system for all research 

purposes [1]; each system is unique, and careful consideration is taken to weigh the 

positive and negative attributes of a model. Usually, the trade-off is between genetic 

similarity of models, and cost efficiency, because a higher degree of genetic similarity 

is associated with a higher research cost.  

The zebrafish is an exceptional model for the study of embryonic development and 

has been utilised for genetic research for decades [2, 3]. Further, it has been vital in 

allowing the observation of developmental traits and the genetic basis of phenotypes 

like disease and behaviour. For example, studies of reward, learning, aggression and 

anxiety have all conserved regulatory processes in zebrafish and mammals [4], and 

thus, reward behaviour such as ethanol [5], nicotine [5] and opiates [6] have all been 

evaluated in the zebrafish. Further, zebrafish are a well-established model in which to 

study the epigenetic effects of environmental exposures such as nutrition and stress 

[7] and often, the zebrafish is the first port of call for toxicology research [8, 9]. More 

specifically, zebrafish have been used for analysis in response to environmental 

containments such as arsenic [10], bisphenol A [11] and benzopyrene [12], and 

importantly,  studies such as the above are generally unable to be undertaken in 

human cohorts. Lastly, a vast network of data is curated in ZFIN (the Zebrafish Model 

Organism Database) which serves as a resource for genomic information and 

molecular tools for zebrafish research [13]. Thus, given its long history of use, its well-

characterised genome, and the wealth of publicly available data on its genome, 

phenotypes and development, the zebrafish is a highly tractable model system to use 

to investigate the epigenetic effects of the environment.   
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4.1.2 Zebrafish and DNA methylation patterns 
 

Zebrafish are an appropriate and relevant system in which to explore the effects of the 

environment on the epigenome because:  

i) zebrafish have similar DNA methylation machinery to humans [14] and there 

is consistent distribution of 5-methylcytosine between zebrafish and mammals 

[14];  

ii) numerous studies have explored cannabis and cannabinoid biology using 

zebrafish [15-17], particularly focussing on differences in gene expression [18, 

19], 

iii) cannabinoids induce behavioural effects in zebrafish that are comparable to 

some of those reported for mammals [20], with stimulation of locomotion at low 

concentration of cannabinoids, and suppression at higher concentrations [15],  

iv) many basic cellular and molecular pathways, regulated by different 

compounds, are similar between zebrafish and mammals [15, 21, 22] and;  

v) their applicability as a model of epigenetics in health and disease is becoming 

increasingly clear [23].   

As such, they are an appropriate species in which to model the genomic and 

phenotypic consequences of environmentally induced methylation changes. 

 

4.1.3 The endocannabinoid system in the zebrafish 

 

Here we will investigate the epigenetic impact of (-)-trans-∆9-tetrahydrocannabinol 

(THC) and (-)-cannabidiol (CBD) on methylation in the zebrafish genome. THC binds 

to CB1 or CB2 receptors and is the psychoactive agent of cannabis [24] [25]. The CB1 

receptor resides primarily within the central nervous system, mainly within key motor 

and behavioural centres, such as neocortex [26], olfactory system [26], hippocampus 

[26, 27] basal ganglia [28], cerebellum [28] and amygdala [26] and is the most 

abundant cannabinoid receptor [29, 30]. CBD is not thought to be psychoactive as it 

has a weaker affinity for the CB1 receptor [31]. CBD is recognised for its purported 

medicinal benefits, which are thought to be mediated via its binding to the CB2 
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receptor [32, 33]. The CB2 receptor is more generally distributed throughout the body, 

and less so in the central nervous system, in humans [34, 35]. The CB1 and CB2 

receptor locations are conserved between humans and zebrafish [36], further 

supporting the use of zebrafish to quantify the impact of cannabinoid exposure [37].  

 

4.1.5 DNA methylation, cannabinoid exposure and the zebrafish 

 

Most recent research into zebrafish cannabinoid exposure has largely focussed on 

morphological and gene expression analysis, with little/no consideration of the 

epigenetic effects. Intriguingly, in zebrafish, CBD mirrors the developmental, 

morphological and behavioural impacts of THC, at much lower concentrations [38], 

however, it is unclear if the genomic basis of these similar phenotypic effects is shared 

between THC and CBD. Further, the effect of THC and CBD exposure on genome-

wide DNA methylation patterns in zebrafish has not been established. Thus here, we 

use reduced representation bisulfite sequencing (RRBS) to quantify genome-wide 

DNA methylation patterns in response to THC and CBD exposure in zebrafish 

embryos. RRBS was chosen due to being a non-specific species method for DNA 

methylation detection as the Illumina EPIC array is specific to humans in its current 

form. We identify which CpG sites are differentially methylated in response to each 

ingredient, determine shared sites and conclude which genes and pathways are 

specifically targeted by each ingredient, paving the way for future research into the 

biological impacts of THC and CBD. 

  



97 
 

4.2 Methods 

 

4.2.1 Zebrafish  

 

Both male and female zebrafish (Danio Rerio, TB X pet shop), from the Otago 

Zebrafish facility Dunedin (New Zealand) were used for breeding. Zebrafish were kept 

in 45 L glass tanks containing ~35 fish per tank. The light cycle consisted of 14 h light 

and 10 h dark (lights on at 09.00). The temperature of the room was set at 28 ± 1 °C. 

 

4.2.2 Breeding and embryo collection 

 

The day before the morning of breeding, 1 female and 1 male (fish in a box) were set 

up in a 1.7 L beach breeding tank (Techniplast). The number of tanks set up would 

differ between experiments depending on the number of embryos needing to be 

produced. Males and females were separated by a divider overnight, which was 

removed with the onset of light. Pairs of zebrafish would then breed when the light 

cycle began at 09.00. Fish were then left for 1 h before they were put back into their 

designated tanks and their embryos collected. Embryos were then stored in 75 ml (cell 

culture containers) at N= 100 embryos per container and packaged with a heat pack 

and sent to the University of Canterbury, Christchurch, via overnight shipping. All 

embryos arrived within 24 hour post fertilisation (hpf). Embryos were placed in 28°C 

incubators if arrival was prior to 24 hpf. 

 

4.2.3 Embryo treatment 

 

Cannabidiol (CBD,1 mg/ml in EtOH 1 ml) was acquired from Echo pharmaceuticals 

(Leiden, Netherlands), and stored under a Ministry of Health Authority to Possess 

Medicines (Research/Study/Analysis) (Authority No: RI4570013-02). (-)-delta-9-

tetrahydrocannabinol (THC, 1 mg/ml in EtOH 1 ml) was acquired from Echo 

pharmaceuticals (Leiden, Netherlands) and stored under a Ministry of Health Licence 

to Possess Controlled Drugs (Licence No: RI6910080-00).   
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Lethal Concentration50 (LC50) experiments for treatments of both CBD and THC were 

carried out. Whereby, thec oncentration in the water was tested to determine the 

concentration which kills 50% of the zebrafish during the course of the observational 

period. Serial dilutions of concentrations for CBD and THC were identified from prior 

literature and used for initial calculations of LC50 (Table 4.1). Both CBD and THC are 

solubilised in ethanol, so an ethanol control was also added as an additional vehicle 

control to ensure that the effects seen from both CBD and THC were not due to 

ethanol. Thus, the 24 hpf embryos were exposed to either: i) e3 media (control); ii) e3 

media with vehicle (ethanol); iii) e3 with CBD (0.6, 0.3, 0.15, 0.075 µg/ml), or; iv) e3 

with THC (0.3, 0.6, 1.2, 2.5 µg/ml) for 96 hours (ceasing exposure at 120 hpf). Each 

concentration was set up in a petri dish with approx. 50 embryos per dish which each 

contained the desired concentration of CBD or THC in 30 ml of e3. Embryos were then 

left in an incubator at 28°C. The exposure medium was not replaced for the entirety of 

the time course. Probit and logit equations were used to assess the best 

concentrations for THC and CBD, which were taken forward into experiments to 

produce treatment embryos for DNA extraction, as per the methodology above. 

Embryos were scored from 58 hours onwards at 30 min time intervals for individual 

hatchings from each of the treatment groups. Kaplan Meier [39] curves were fitted to 

the hatching data to describe survival probability with survival probability at time t, St, 

given by: 

 

𝑆𝑡 =  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑚𝑏𝑟𝑦𝑜𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑖𝑛𝑔 

𝑜𝑓 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑎𝑙𝑖𝑣𝑒 − 
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑚𝑏𝑟𝑦𝑜𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑡𝑐ℎ𝑒𝑑 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑚𝑏𝑟𝑦𝑜𝑠 𝑎𝑡 𝑡ℎ𝑒 𝑏𝑒𝑔𝑖𝑛𝑖𝑛𝑔 

𝑜𝑓 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑎𝑙𝑖𝑣𝑒

 

 

The package survival [40] was used in R studio to return to Kaplan-Meier estimate and 

graphs were constructed using ggplot2. 
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4.2.4 DNA extraction 

  

Embryos were removed from their treatment at 120 hpf and tissue was stored in 

TRIzol™ Reagent (Thermo Scientific, MA USA) in 1.5mL Eppendorf tubes at -20°C. 

For DNA extraction, liquid was then removed from the Eppendorf tubes and tissue was 

lysed in Solid Tissue Lysis buffer (Zymo Research, USA) and Proteinase K (Zymo 

Research, USA) for 3 h at 55°C. The kit Quick- DNA Miniprep Plus (Zymo Research, 

USA) was used to carry out the extraction as per the manufacturer’s 

recommendations. DNA was assessed for quality using gel electrophoresis and 

Nanodrop™ (Thermo Scientific, Waltham, MA USA). 

 

4.2.5 RRBS preparation 

 

A total of 1 µg of DNA, from each of the treatment groups (control, vehicle ethanol, 

THC and CBD) were sent in duplicates to Custom Science (Auckland, New Zealand) 

for RRBS libraries to be prepared and sequencing to be carried out. Raw data was 

returned as FASTQ files and then processed in-house via the following pipeline 

(Figure 4.1): 

 

 

 

 

 

 

 

 

 

Figure 4.1 The pipeline used for quality control, pre-processing and methylation calling of RRBS data.   
Programs and methods are referenced in section 4.2.5.2. 
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4.2.6 Quality Control and alignment 

 

Raw data was initially assessed for quality using the package FastQC. All sequences 

were then trimmed using the package Trim Galore (Version 0.6.5), and the 2 bp from 

the 3’ end of the reads was trimmed to avoid the filled in cytosine position close to the 

second Mspl site. A phred quality score cut-off was set at 20, and sequences of less 

than 20 bp were also removed. Trimmed reads for each of the treatments in duplicate 

were then aligned to the zebrafish reference genome (Version Zv9 –danRer7) using 

bowtie2 (Version 2.4.2). Genome indexing and methylation calling was carried out 

using Bismark (Version 0.22.3). Histograms were used to assess the frequency of 

percentage methylation these were plotted using ggplot2.  

 

4.2.7 Methylation calling 

 

Bismark coverage files were then loaded into R Studio (Version 3.3.0) and analysed 

using the package edgeR (Version 4.0). A minimum read coverage score of 10 was 

used to assess for differential CpG methylation. The two exposure duplicated were 

then pooled together for analysis. A linear model was applied to assess the difference 

between control, vehicle control, CBD and THC treatment groups.  

 

4.2.8 Determining differential DNA methylation and gene regions 

 

Two tables were generated with the number of significantly differentially methylated 

CpG sites for each treatment group (THC and CBD). The first contained the number 

differentially methylated CpG sites after FDR correction, and the second contained the 

number CpG sites which were differentially methylated with nominal P values (P < 

0.001). Each table also showed the direction of methylation change (either 

hypermethylated or hypomethylated), this was displayed as MA and UpSetR plots 

(Version 1.4.0)[41] was used to assess for any overlapping CpG sites between the 

treatment groups. The top 50 most differentially methylated CpG sites for both CBD 

and THC were generated. We included the names of genes which housed the 

differentially methylated CpG sites were identified using the online tool annotation tool, 

GREAT [42]. GREAT assigns a gene to a CpG site if that CpG site is within 1000 kb 
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of the gene’s regulatory domain and is particularly useful for genomes with missing 

annotation. CpG sites which were unable to assign to a gene were left blank. 

 

4.2.9 Pathway analysis 

 

To identify Molecular Function (MF) and Biological Process (BP) gene ontology 

pathways that are enriched in each of the treatment groups, Fish Enrichr [43, 44] was 

used. Fish Enrichr was supplied with a list of genes identified as housing CpG sites 

with nominal P values of P < 0.001. MF assess activities of molecules that perform 

actions and BP is a larger process of broader molecular functions. Fish Enrichr uses 

Fisher’s exact test to assess the probability of a gene belonging to a set or given 

pathway. The pathways are then corrected for multiple testing via the Benhamini -

Hochberg method. Rank or z-scores were also assigned which is a modification to 

Fisher’s exact test for a deviation from the expected presence/absence of genes in the 

supplied lists. The combined enrichment score is thus a combination of the P value 

and the z-score.   
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4.3 Results 

 

4.3.1 Calculating working solutions of cannabinoids 

 

To calculate the working concentration for exposure of zebrafish embryos to CBD and 

THC, previous literature was consulted to establish a working range (Table 4.1). Our 

literature search showed that range of different exposure times were used, so that 

each may mimic a different stage in development, specific to the aim of each individual 

study. However, across all studies, all treatments were initiated between 5 hpf and 24 

hpf. 

 

 

Table 4.1 THC and CBD exposure concentration ranges and observed phenotypic differences identified 

from recent scientific literature and utilised here as a starting point for LC50 determination.   

 

Treatment Observations Reference 

CBD (1-4 mg/l) 
THC (2-10 mg/l) 

 
 

Phenotype differences seen at 1 mg/l and above 
Phenotype differences seen at 2 mg/l and above 

[45] 

THC (1-10 mg/l) 
 

Optimal THC concentration- 6 mg/l  
 

[46] 

CBD (0.07-1.25 mg/l) 

THC (0.3-5 mg/l) 
 

CBD LC50 0.53mg/l 

THC LC50 3.65 mg/l 
LOAEL- pericardial edema THC 0.60, CBD 0.07 mg/l 
LOAEL jaw malformations 

THC- 5,CBD 0.3 mg/l  
LOAEL- axis curvature THC 2.5, CBD 0.6 mg/l 
LOAEL-trunk degradation THC 2.5, CBD 0.6 mg/l 

 

[38] 

THC (0.0.024- 0.6 mg/l 
exposing F0, F1 populations 
CBD (0.006-0.15 mg/l) 

exposing F0, F1 populations 
 

Gene expression changes found to be different  
between both THC and CBD compared to controls in 
F0 population   

[47] 
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4.3.2 Lethal concentrations of CBD and THC 

 

Both the logit and probit values were generated from both cannabinoid LC50 

experiments and were plotted against log concentrations (Supplementary Figure 4.1). 

THC concentrations (Supplementary Figure 4.1 A and B) were higher than that of CBD 

(Supplementary Figure 4.1 A and B). These values suggest that zebrafish embryos 

have a much higher mortality rate in CBD compared to THC at the same concentration.  

Taking into account both the LC50 values for both CBD and THC and the previous 

literature (Table 4.1), treatment concentrations were calculated as 0.15 mg/l for CBD 

and 0.60 mg/l for THC. 

 

4.3.3 Developmental and hatching differences between the different treatments 

 

Embryos were exposed at 24 hpf to working concentrations of CBD (0.15 mg/l), THC 

(0.6 mg/l), vehicle ethanol (0.60 mg/l) and the non-exposed control group and left unti l 

120 hpf at 28°C (96 hr exposure in total).  
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4.3.4 Hatching efficiency between treatments groups  

 

From 57.5 hpf onwards, the number of embryos hatched was counted. Differences 

were seen between each of the treatment groups from the first initial recorded hatching 

(Figure 4.2). The rate at which hatching commences differs between each of the 

treatment groups. The control group is observed to have half the number of embryos 

hatched prior to 60 hpf. Both vehicle ethanol and THC have similar hatching efficiency 

rates with half the number of embryos hatched at 62 hpf. The CBD treatment group 

shows the greatest delay in hatching with half the number of embryos hatched at 65 

hpf, with this being the most significant difference also (Table 4.2). 

 

 

  

Figure 4.2 The proportion of embryos hatched at each of the time points for which data was collected, from 
57.5 hpf. The number of embryos from each of the treatment groups were counted and plotted.  
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4.3.5 Survival probability  

 

The hatching efficiency data was then assessed for quantitative differences between 

the control and each treatment group. The Kaplan-Meier method was fitted to estimate 

the statistical differences between each of the groups (Table 4.2 and Figure 4.2).  

 

Table 4.2 The proportion of hatched embryos for each treatment groups compared to controls assessed 

for survival rate using the Kaplan-Meier method. 

 

Treatment  Coefficient Expected 
(coefficient) 

Standard error 
(coefficient) 

Z Pr(>|z|) 

Vehicle Ethanol  -0.7778  0.4594 0.1933 -4.024 5.73x10-5 *** 

CBD  -1.3694 0.2543  0.1945 -7.041  1.90x10-12 *** 

THC  -0.8247 0.4384   0.1879 -4.389 1.14x10-5 *** 

 

 

 

4.4 DNA methylation analysis 

 

4.4.1 Genome alignment 

 

To calculate differential DNA methylation between control and treatment groups, each 

of the eight samples (4 for each group, in duplicate) were mapped and aligned to the 

zebrafish reference genome (alignment statistics Table 4.3). Each sample differed 

slightly in mapped alignment ranging from 49.2% to 55.5%.  

The coverage threshold was set to 10X; anything below this was disregarded from 

further analysis. Leaving between 2,273,488- 2,806,070 CpG sites per sample for 

analysis, the package edgeR was used for determining average methylation between 

samples.  
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Table 4.3 Genome alignment post processing information for the eight samples used for RRBS analysis. Sequence pair analysed- The total number of 

sequencing reads per sample. Number of reads <10X- The number of CpG sites which had greater than 10 reads. 

 

Sample % 
Aligned 

Sequences 
analysed 

Total no. CpG Number of 
reads < 10X 

Cytosine 
methylated in CpG 

context 

Cytosine 
methylated in 

CHG context 

Cytosine 
methylated in CHH 

context 

Control-1 54.1 20606670 868622138 2699384 79.0 0.9 0.7 

Control-2 55.5 39615887 1378858120 2806070 79.6 0.8 0.7 

Vehicle ethanol-1 52.6 40424260 1366928024 2796302 78.1 0.8 0.7 

Vehicle ethanol-2 50.6 32197049 1049997800 2518000 78.3 0.8 0.7 

CBD-1 53.0 37913057 1269584406 2486994 78.8 0.8 0.7 

CBD-2 49.2 25537266 793471211 2273488 76.5 0.8 0.7 

THC-1 52.5 38781171 1283356654 2737199 78.6 0.8 0.7 

THC-2 54.3 36925292 1246988505 2628683 81.4 0.8 0.7 
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4.4.2 Frequency of the percentage of methylation for the samples used for RRBS 

 

The frequency of the number of reads based off the percentage methylated per sample 

were plotted as histograms (Figure 4.2 as exemplars of Control-1 and THC-1, 

remainder found in Supplementary Figure 4.2. The reads are bimodal with the highest 

counts observed at either 0% or above < 85% methylation in both examples.  

 

 

 

 

 

 

  

Figure 4.3 The distribution of reads measured by the distribution of methylated reads from the samples. Here are two 

examples of the distributions, with a control-1 sample of the left and THC-1 on the right. 
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4.4.3 Differential DNA methylation in each of the treatment groups 

 

Each of the different exposures were compared to the control to asses for differential 

DNA methylation (Table 4.4 and Figure 4.4). The vehicle ethanol control was found to 

display a total of N= 662 CpG sites differentially methylated after FDR correction, 

compared to the control group. We identified N= 1939 sites significantly differentially 

methylated CpG sites in response to CBD treatment (Figure 4.4A), and N= 9 in 

response to THC (Figure 4.4B).  

The differentially methylated CpG sites identified in the vehicle ethanol and CBD 

groups (Table 4.4 and Figure 4.4A) showed similar distributions of both 

hypermethylation and hypomethylation. Those differentially methylated CpG sites 

identified in response to THC showed a tendency towards hypomethylation (Table 4.4 

and Figure 4.4B), however this may simply be an artefact of the small number of sites 

identified in response to THC. Any CpG sites in black that are more differentially 

methylated than the coloured dots are not significant due to standard error. 

Table 4.4 Number of FDR adjusted significantly differentiated sites found with between the different  

treatment groups. 

 

 Hypermethylated Hypomethylated Total 

Vehicle ethanol 349 316 662 

CBD 1005 934 1939 

THC 2 7 9 

 

Lists of significantly differentially methylated CpG sites in each treatment group were 

assessed to determine whether significant CpG sites overlapped between treatment 

groups (Figure 4.4c). No differentially methylated CpG sites were common to THC, 

CBD and the vehicle ethanol groups collectively. The vehicle ethanol and CBD groups 

shared the greatest number of differentially methylated CpG sites (N= 78) while CBD 

and THC shared N= 1. The one overlapping CpG site was the most significantly 

differentially methylated CpG in the THC treatment group, and 94 th in the CBD 

treatment group. N=1860 CpG sites were therefore unique to CBD exposure, and 8 

were unique to THC exposure.  
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A B 

C 

Figure 4.3 The top FDR corrected CpG sites found to be differentially methylated in response to CBD exposure (A), THC 

exposure (B). (C) – an upset plot to demonstrate shared or unique CpG sites between the treatment groups and the vehicle 
ethanol group. 
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4.4.4 Differential DNA methylation sites within each treatment group with nominal P 

value significance 
 

Given the comparatively small number of differentially methylated CpG sites in 

response to THC that were significant after FDR correction, a less stringent threshold 

of significance was applied to allow an assessment of further overlap between the 

treatment groups. Consequently, differentially methylated CpG sites displaying a 

nominal P values of < 0.001 were counted (Table 4.5). Vehicle ethanol had a total of 

N= 7741 CpG sites that were differentially methylated at an unadjusted P < 0.001, N= 

12148 were identified in response to CBD exposure, and THC exposure resulted in 

N= 3769 differentially methylated sites, when a less stringent significance threshold 

was used.  

  

Table 4.5 The number of differentially methylated CpG sites with a nominal P value of < 0.001.  

 

 Hypermethylated Hypomethylated Total 

Vehicle ethanol 4715 3026 7741 

CBD 6584 5564 12148 

THC 1760 2009 3769 

 

 

With the less stringent threshold, more overlap is observed between the different 

treatment groups (Figure 4.5c). Vehicle ethanol treatment shares a total of N= 34 CpG 

sites with both the CBD and THC exposure groups, N= 700 sites just with CBD 

exposure and N= 102 with just THC exposure. 
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A B 

C 

Figure 4.5 Top nominal (P < 0.001) CpG sites found to be differentially methylated in response to CBD (A) and 
THC (B) exposure. (C) - the overlap shared between the top sites with the vehicle ethanol group and within 

exposure groups. 
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4.4.5. Top 50 differentially methylated CpG sites in response to CBD treatment 

 

Top tables were constructed to display the top 50 differentially methylated CpG sites 

between CBD treatment and control. Within the top 50 CpG sites, N= 26 CpG sites 

overlapped with CpG sites from the top 50 differentially methylated sites identified in 

the vehicle ethanol (nominal P < 0.001, Supplementary Table 4.1). These shared sites 

were disregarded from further analysis. 

  

Table 4.6 The top 50 most significantly differentially methylated CpG sites in response to CBD 

treatment, compared to the untreated control and independent of vehicle ethanol control. The 

chromosome and location of the CpG site, and the CpG site’s nearest gene, is included. Log FC- Log 
Fold Change and FDR- False Discovery Rate. 

 

Chromosome Location Gene Log FC P value FDR 

NW_003040930.2 148543 
 

-4.825 1.31E-15 4.57E-09 

chr25 20353012 kcna6 -10.866 2.02E-14 2.71E-08 

chr24 41876972 scospondin 8.384 2.32E-14 2.71E-08 

chr3 58258458 socs3a -10.807 6.69E-14 4.68E-08 

chr3 57436826 rnf213a -6.355 8.04E-14 4.69E-08 

chr25 20353011 kcna6 -7.281 4.04E-13 2.02E-07 

chr3 29330751 cacna1i 7.935 1.20E-12 5.22E-07 

chr14 12445473 hdac3 -4.538 2.62E-12 8.31E-07 

chr3 11274009 zgc:165627 -4.627 1.27E-11 3.16E-06 

chr14 12445474 hdac3 -4.464 2.70E-11 5.55E-06 

chr3 58317921 cyth1a -9.709 3.34E-11 6.26E-06 

chr3 59293008 zgc:171489 -6.832 3.40E-11 6.26E-06 

chr3 58317922 cyth1a -6.161 6.54E-11 1.09E-05 

chr16 1893913 sim1a 8.077 1.28E-10 1.91E-05 

chr10 5486494 auh -8.253 1.31E-10 1.91E-05 

chr3 58828626  -5.965 5.16E-10 5.58E-05 

chr3 58258599 socs3a -8.814 5.78E-10 5.80E-05 

chr22 25789526 si:ch211-226h8.14 -5.318 7.29E-10 6.62E-05 

chr3 58354011 cyth1a -4.850 7.68E-10 6.71E-05 

chr10 44002663 fgfr1b -3.836 8.91E-10 7.17E-05 

chr3 58349704 cyth1a -7.407 9.02E-10 7.17E-05 

chr10 44002528 fgfr1b -3.767 1.34E-09 9.90E-05 

chr16 1893844 sim1a 7.401 1.39E-09 9.91E-05 

chr25 18423006 zgc:103499 -7.461 1.46E-09 0.0001 

chr10 44224476 zcchc9 -4.049 1.61E-09 0.0001 

chr3 60569101 zgc:194562 -5.018 1.85E-09 0.0001 

chr3 57905454 fscn2a -4.616 1.89E-09 0.0001 

chr25 23673051 mob2a 6.087 1.90E-09 0.0001 

chr10 43819553 npy8ar -4.109 2.18E-09 0.0001 

chr13 3088535 park2 3.753 2.22E-09 0.0001 
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Chr6 30338752 zgc:171930 -4.373 2.43E-09 0.0001 

NW_003336528.1 95691 
 

6.135 2.80E-09 0.0001 

chr25 23673065 mob2a 5.489 2.83E-09 0.0001 

chr13 38459928 si:ch211-69e5.1 -8.036 2.84E-09 0.0001 

chr6 9442520 acp5a 4.658 2.97E-09 0.0001 

chr25 23673067 mob2a 6.021 3.02E-09 0.0001 

chr6 3841545 slc25a12 8.336 3.11E-09 0.0001 

chr7 13641206 zgc:158785 6.209 3.20E-09 0.0001 

chr10 37545264 or104-2 -3.442 3.26E-09 0.0001 

chr1 37987032 si:ch211-15e22.3 -4.672 3.46E-09 0.0001 

chr1 37987235 si:ch211-15e22.3 -4.672 3.46E-09 0.0001 

chr5 1910297 rcl1 -4.673 3.63E-09 0.0006 

chr3 57905609 fscn2a -4.546 3.67E-09 0.0001 

chr1 35174499 gab1 -4.157 3.71E-09 0.0001 

chr23 2716155 ncoa6 3.623 3.97E-09 0.0001 

chr3 25397589 ddx5 4.480 3.99E-09 0.0001 

chr25 17774819 e2f4 -4.805 4.35E-09 0.0001 

chr3 59679574 luc7l3 -4.440 4.97E-09 0.0002 

chr12 9623582 reep3 4.126 5.24E-09 0.0002 

 

 

4.4.6 Top 50 differentially methylated CpG sites found in response to THC treatment 

 

Top tables were constructed to display the top 50 differentially methylated CpG sites 

between THC treatment and control. Within the top 50 CpG sites, a total of five CpG 

sites overlapped with vehicle ethanol (nominal P < 0.001, Supplementary Table 4.2). 

Table 4.7 lists the top sites which are independent of the sites found to be differentially 

methylated in response to the vehicle ethanol control. 

Within the top 50 CpG sites displaying the most significant differential methylation 

between THC treatment and control (independent of ethanol), one gene reoccurs 

throughout the list. si:dkey-85h7.1 is a zebrafish-specific gene which has no known 

human orthologue, and 12 CpG sites within this gene are differentially methylated in 

response to THC treatment (both with FDR adjusted and nominal significance). 

Another gene, nlgn2a contained the two other CpG sites found to have FDR adjusted 

significant P values. The top site in nlgn2a, is the one overlapping site shared between 

THC and CBD exposure after FDR correction.  
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Table 4.7 The top 50 most significantly differentially methylated CpG sites in response to THC 

treatment, compared to the untreated control and independent of vehicle ethanol control. The 

chromosome and location of the CpG site, and the CpG site’s nearest gene, is included. Log FC- Log 

Fold Change and FDR- False Discovery Rate 

 

Chromosome Location Gene Log FC P value FDR 

chr7 23338868 nlgn2a 7.045 2.01E-10 0.0007 

chr6 20523802 si:dkeyp-85h7.1 -6.934 4.48E-08 0.034 

chr6 20523860 si:dkeyp-85h7.1 -6.900 5.46E-08 0.034 

chr6 20523902 si:dkeyp-85h7.1 -6.886 6.28E-08 0.034 

chr6 20523745 si:dkeyp-85h7.1 -6.870 6.60E-08 0.034 

chr7 23338729 nlgn2a 5.875 7.51E-08 0.034 

chr6 20523883 si:dkeyp-85h7.1 -6.850 7.74E-08 0.034 

chr6 20523755 si:dkeyp-85h7.1 -6.836 8.84E-08 0.034 

chr6 20523757 si:dkeyp-85h7.1 -6.836 8.84E-08 0.034 

chr17 9972703 mgaa 6.603 5.99E-07 0.209 

chr6 20523743 si:dkeyp-85h7.1 -4.727 1.15E-06 0.364 

chr17 9972789 mgaa 6.468 1.33E-06 0.386 

chr7 51252313 slc1a2a -10.171 1.55E-06 0.416 

chr11 27554596 map1lc3a 7.117 1.96E-06 0.489 

chr6 20523808 si:dkeyp-85h7.1 -4.648 2.11E-06 0.491 

chr3 24452781 prr15la -6.884 3.79E-06 0.767 

chr3 24452797 prr15la -6.884 3.79E-06 0.766 

chr6 18869158 zgc:174863 -6.296 3.95E-06 0.766 

chr6 19761188 ppp1r27 -6.510 4.22E-06 0.776 

chr6 28542737 tp63 6.300 5.45E-06 0.787 

chr14 28904090 tsc22d3 3.210 6.18E-06 0.787 

chr23 23298992 samd11 -6.265 6.53E-06 0.787 

chr4 29657600 fnta 6.366 7.07E-06 0.787 

chr23 8906861 sox18 -7.962 7.12E-06 0.787 

chr6 20788733 znf644b -6.287 7.47E-06 0.787 

chr7 23126983 dock11 6.246 8.19E-06 0.787 

chr14 38793741 atrx -6.228 8.20E-06 0.787 

NW_001877452.3 719613 
 

7.733 8.82E-06 0.787 

chr7 20565248 dock11 -4.424 8.91E-06 0.787 

chr15 43987300 csf1ra -6.417 9.33E-06 0.787 

chr6 20523868 si:dkeyp-85h7.1 -3.862 1.00E-05 0.787 

chr20 27714926 zbtb25 8.488 1.01E-05 0.787 

chr14 27510990 smad5 4.787 1.03E-05 0.787 

chr18 41767582 pvrl1b -6.149 1.12E-05 0.787 

chr5 71262591 zgc:175280 6.078 1.21E-05 0.787 

chr24 37667946 pak1ip1 -8.115 1.22E-05 0.787 

chr14 7957224 zgc:110843 6.144 1.23E-05 0.787 

chr18 26054544 si:ch211-234p18.3 6.429 1.24E-05 0.787 
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chr17 11610599 efcab2 5.717 1.25E-05 0.787 

chr6 20523741 si:dkeyp-85h7.1 -3.824 1.35E-05 0.787 

chr5 9454165 atp5ib 6.560 1.36E-05 0.787 

chr6 20523722 si:dkeyp-85h7.1 -3.505 1.46E-05 0.787 

chr9 57746726 arsh 6.802 1.46E-05 0.787 

chr10 16251516 slc12a2 -6.225 1.49E-05 0.787 

chr15 45699086 igsf11 -6.574 1.50E-05 0.787 

chr23 24783311 sult1st5 -6.301 1.55E-05 0.787 

chr23 4600674 nup210 6.142 1.62E-05 0.787 

chr11 39055961 etnk2 6.119 1.71E-05 0.787 

 

 

4.4.7 Pathway analysis for CBD CpG sites in genes 

 

The less stringent P value cut off for significance (P < 0.001) was used to compile a 

list of the most significantly differentially methylated CpG sites within genes for 

biological pathway analysis. A total of 12,148 CpG sites had a P < 0.001, and within 

this, 11,745 CpG sites could be associated with a named zebrafish gene. The gene 

list was submitted to FishEnrichr to calculate pathway enrichment. Two different tables 

of results are displayed below: GO Molecular Function (Table 4.8) and GO Biological 

Process (Table 4.9). 

A total of 13 molecular functions were nominally enriched in response to CBD 

treatment, and those that remained significant after BH adjustment were involved in 

membrane transport and the cellular response to stress. Seven biological functional 

pathways remained significantly enriched in response to CBD after BH correction, and 

include pathways involved in the maturation of sensory organs and those involved in 

the negative regulation of cell communication/signalling and the cellular response to 

stimuli. 
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Table 4.8 Molecular Function pathway analysis of the genes or nearest genes which house nominally  
significantly differentially methylated (P< 0.001) CpG sites in response to CBD exposure. P values were 

adjusted using Benjamini Hochberg. 

 

Name P value Adjusted 
P value 

Z-
score 

Combined 
score 

transmembrane receptor protein tyrosine kinase activity 

(GO:0004714) 

5.1E-06 0.003 -1.37 16.67 

transmembrane receptor protein kinase activity 
(GO:0019199) 

4.07E-05 0.008 -1.52 15.36 

MAP kinase activity (GO:0004709) 2.43E-05 0.008 -1.30 13.78 

mitogen-activated protein kinase binding (GO:0031434) 4.21E-05 0.008 -1.20 12.10 

protein tyrosine kinase activity (GO:0004713) 7.46E-05 0.01 -1.19 11.29 

acyl-CoA dehydrogenase activity (GO:0003995) 0.001 0.14 -4.40 29.72 

transforming growth factor beta receptor binding 
(GO:0005160) 

0.008 0.89 -1.54 7.39 

heparan sulfate 6-O-sulfotransferase activity 

(GO:0017095) 

0.034 1 -5.55 18.70 

phosphatidylcholine transporter activity (GO:0008525) 0.024 1 -3.80 14.10 

alpha2-adrenergic receptor activity (GO:0004938) 0.034 1 -4.14 13.93 

NAD binding (GO:0051287) 0.030 1 -3.15 11.00 

bioactive lipid receptor activity (GO:0045125) 0.044 1 -3.25 10.14 
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Table 4.9 Biological Process pathway analysis of the genes or nearest genes which house nominally  
significantly differentially methylated (P< 0.001) CpG sites in response to CBD exposure. P values were 

adjusted using Benjamini Hochberg. 

 

Name P value Adjusted 
P value 

Z-
score 

Combined 
score 

sensory organ development (GO:0007423) 1.51E-06 0.003 -1.02 13.67 

negative regulation of cell communication 
(GO:0010648) 

2.97E-05 0.010 -2.00 20.81 

negative regulation of signalling (GO:0023057) 2.97E-05 0.010 -1.99 20.77 

negative regulation of response to stimulus 
(GO:0048585) 

2.97E-05 0.010 -1.57 16.34 

axon guidance (GO:0007411) 1.81E-05 0.010 -1.24 13.60 

positive regulation of transferase activity (GO:0051347) 4.4E-05 0.015 -1.95 19.61 

regulation of kinase activity (GO:0043549) 0.0001 0.033 -2.12 18.66 

positive regulation of phosphorylation (GO:0042327) 0.0003 0.064 -1.64 13.03 

central nervous system projection neuron 

axonogenesis (GO:0021952) 

0.001 0.161 -2.64 17.50 

semicircular canal development (GO:0060872) 0.001 0.188 -2.01 12.88 

nucleus localization (GO:0051647) 0.002 0.229 -2.97 18.00 

posterior lateral line neuromast hair cell development 
(GO:0035677) 

0.003 0.280 -4.02 22.50 

pattern specification involved in pronephros 

development (GO:0039017) 

0.003 0.280 -3.29 18.42 

posterior lateral line neuromast hair cell differentiation 
(GO:0048923) 

0.004 0.313 -2.83 15.12 

rRNA modification (GO:0000154) 0.006 0.385 -3.30 16.62 

regulation of insulin secretion (GO:0050796) 0.006 0.385 -3.06 15.39 

nuclear migration (GO:0007097) 0.008 0.453 -2.96 14.01 

anterior/posterior pattern specification involved in 
pronephros development (GO:0034672) 

0.011 0.483 -3.52 15.69 

anterior/posterior pattern specification involved in 
kidney development (GO:0072098) 

0.011 0.483 -3.21 14.35 

rhombomere boundary formation (GO:0021654) 0.012 0.492 -3.10 13.60 

rhombomere 4 morphogenesis (GO:0021661) 0.034 0.741 -6.61 22.28 

adenylate cyclase-inhibiting adrenergic receptor 
signalling pathway (GO:0071881) 

0.034 0.741 -5.46 18.38 

epithelial cell fate commitment (GO:0072148) 0.034 0.741 -4.10 13.82 

regulation of neutrophil differentiation (GO:0045658) 0.034 0.741 -4.07 13.70 

negative regulation of myeloid cell differentiation 
(GO:0045638) 

0.034 0.741 -4.00 13.46 
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4.4.8 THC Pathway analysis 

 

The P value cut off of P < 0.001 was also used to assess the CpG sites within genes 

for pathway analysis of THC treatment (N= 3769). Of this, a total of N= 3620 CpG sites 

resided or could be assigned to a nearest gene and was used for biological pathway 

analysis as per section 4.4.5.3.  

A total of eight molecular function pathways were nominally enriched in response to 

THC treatment (Table 4.10). The top two pathways are also the same top two 

pathways found in response to CBD exposure. The most significantly enriched 

pathway, transmembrane receptor protein tyrosine kinase activity, was the only 

molecular function to remain significant after P value adjustment. The biological 

pathway results (Table 4.11) show a bias towards brain related activity; axon guidance 

(also found in response to CBD Table 4.9), retinal ganglion cell axon guidance and 

neuron projection fasciculation are all significantly enriched and remain so after P 

value adjustment.  

 

Table 4.10 Molecular Function pathway analysis of the genes or nearest genes which house nominally  
significantly differentially methylated (P< 0.001) CpG sites in response to THC exposure. P values were 

adjusted using Benjamini Hochberg. 

 

Name P value Adjusted 
P value 

Z-
score 

Combined 
score 

transmembrane receptor protein tyrosine kinase 

activity (GO:0004714) 

1.16E-05 0.007 -1.37 15.54 

transmembrane receptor protein kinase activity 
(GO:0019199) 

0.0001 0.058 -1.53 13.17 

sodium:phosphate symporter activity (GO:0005436) 0.005 0.489 -2.68 14.10 

sodium-dependent phosphate transmembrane 

transporter activity (GO:0015321) 

0.007 0.565 -3.72 18.40 

phosphate ion transmembrane transporter activity 
(GO:0015114) 

0.012 0.753 -3.45 15.02 

BMP receptor binding (GO:0070700) 0.020 0.753 -2.87 11.13 

double-stranded DNA exodeoxyribonuclease 
activity (GO:0008309) 

0.032 0.957 -4.29 14.75 

transmembrane receptor protein serine/threonine 

kinase binding (GO:0070696) 

0.030 0.957 -3.01 10.46 
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Table 4.11 Biological Process pathway analysis of the genes or nearest genes which house nominally  
significantly differentially methylated (P< 0.001) CpG sites in response to THC exposure. P values were 

adjusted using Benjamini Hochberg. 

 

Name P value Adjusted 
P value 

Z-
score 

Combined 
score 

axon guidance (GO:0007411) 3.39E-10 7.12E-07 -1.25 27.20 

retinal ganglion cell axon guidance 
(GO:0031290) 

1.2E-05 0.007 -1.93 21.92 

neuron projection fasciculation (GO:0106030) 5.54E-05 0.016 -3.04 29.80 

axonal fasciculation (GO:0007413) 0.0002 0.044 -2.81 23.68 

embryonic skeletal joint development 
(GO:0072498) 

0.001 0.098 -4.33 28.26 

negative regulation of hemopoiesis 
(GO:1903707) 

0.003 0.133 -5.21 29.60 

negative regulation of cellular response to 

transforming growth factor beta stimulus 
(GO:1903845) 

0.003 0.133 -3.62 20.41 

phosphate ion homeostasis (GO:0055062) 0.005 0.164 -4.23 22.24 

cellular phosphate ion homeostasis 
(GO:0030643) 

0.007 0.187 -4.16 20.57 

retinoic acid metabolic process (GO:0042573) 0.032 0.419 -6.54 22.48 
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4.5 Discussion 

 

The zebrafish offers many advantages as a model organism, in particular their rapid 

development from embryo to larvae stage, and so this model was utilised to investigate 

the epigenetic effects of environmental exposures. Here we assessed the impact of 

exposure to the two main active ingredients of cannabis, THC and CBD, on DNA 

methylation in zebrafish. The data shows that CBD drives a greater degree of 

differential methylation in the zebrafish genome compared to THC, and its effects are 

more broadly distributed across molecular functions and biological processes. In 

contrast, the impact of THC exposure on the zebrafish genome is less widespread and 

differential methylation is more localised to biological processes that function in the 

brain. Thus, our results highlight a role for DNA methylation in the biological response 

to cannabis. While provisional, given that here we detect differential DNA methylation 

at CpG sites within or near genes that contribute to molecular functions and biological 

pathways that have relevance to the biological mode of action of each cannabinoid, 

our findings demonstrate the potential for the broad use and applicability of the 

zebrafish as a model for probing the genomic effects of cannabinoids, and would 

benefit from further exploration.   

 

4.5.1 Concentration of cannabinoids  

 

LC50 experiments are a tool to determine the delicate balance between a concentration 

that is biologically relevant, and one in which either there is no biological effect or one 

which leads to major mortality. Initial dose concentrations of cannabinoids required an 

extensive literature review of previous zebrafish and cannabinoid research (Table 4.1). 

Previous LC50 experiments provided a range for initial testing. Our range-finding 

experiments yielded similar observations to that which had been previously described 

[38, 45-47], and the LC50 for CBD was calculated to be four times lower than that of 

THC (0.15 mg/l and 0.60 mg/l). The concentration for the vehicle ethanol treatment 

group was calculated based on the highest concentration that was used for either CBD 

or THC – as THC was calculated as a concentration of 0.60 mg/l (dissolved in e3 

buffer) the vehicle ethanol was also calculated to the same concentration (0.60 mg/l 

in e3 buffer). Thus ensuring that we could accurately account for any methylation 
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changes that might be confounded by the presence of ethanol in the THC and CBD 

products. 

 

4.5.2 Hatching efficiency and survival analysis 

 

Alteration to hatching times differed between each of the treatment groups compared 

to the control, such that each treatment displayed statistical significance (Table 4.2). 

CBD exposure (0.15 mg/l) was lead to a greater reduction in hatching efficiency 

compared to the control as determined via Kaplan-Meier survival analysis (P = 1.90 

x10-12). 

Generally there is considerable variation in the hatching rates of zebrafish larvae under 

normal conditions; usually hatching takes place between 48 and 72 hpf [48, 49]. There 

are a range of different factors that can influence this, such as temperature and light 

cycles [50]. However, our exposure experiments were conducted at the same time, 

under constant conditions; all of the embryos were housed in the same incubator 

which was kept at a constant temperature of 28.5 °C for the duration of the experiment. 

Allowing us to minimise any hatching variation that could be attributed to 

environmental conditions or by experiment time.  

The prompting of a zebrafish embryo to hatch into a larvae requires the secretion of 

proteolytic enzymes to soften the outer shell of the embryo known as the chorion, this 

then allows the larvae’s movements to break it open [51]. It has been suggested that 

alterations in developmental pathways are responsible for the disruption of this 

process [51]. Previous research has associated a range of chemical exposures with a 

delay in hatching efficiency, for example, exposure to butyl benzyl phthalate (BBP) 

[52], ionizing radiation [53], gamma radiation [54], tobacco condensate [51] and 

graphene oxide [55]. More so, findings from exposure to alcohol have suggested that 

late hatching larvae may model alcohol response later in life as a predisposition to 

alcohol tolerance and dependency [56].  Here, we demonstrate using the Kaplan Meier 

method (Table 4.2) that exposure to CBD (P= 1.9E-12), THC (P= 1.14E -05) and vehicle 

ethanol (P= 5.73E -05) all resulted in a delay of hatching compared to the control. The 

delay was most pronounced in those embryos exposed to CBD, prompting us to 

hypothesise that the reduction in hatching efficiency detected here implies that THC 
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and CBD exposure may be altering developmental pathways in the zebrafish, and that 

CBD exposure may be having a more pronounced impact at the molecular level 

compared to any of the other exposure groups.  

 

4.5.3 Overall differential DNA methylation found in the treatment groups 

 

Each of the treatment groups were compared to the unexposed control group to 

assess for differential DNA methylation. Firstly, sites which reached an FDR cut off P 

< 0.05 were investigated (Table 4.4). The CBD treatment group showed the greatest 

amount of DNA methylation differences, with N= 1939 CpG sites identified as 

significant after FDR correction, followed by vehicle ethanol control (N= 662). The least 

amount of differential DNA methylation was seen in the THC treatment group, at N= 9 

after FDR correction. Some cross over was seen between treatment groups, which is 

to be expected largely due to the inclusion of the vehicle ethanol group. CBD and 

vehicle ethanol shared N= 78 significantly differentially methylated CpG sites, and 

THC and CBD shared N= 1 CpG site. The single CpG site resides in the gene, 

Neuroligin (NLGN2a), which will be discussed in detail below. 

In order to investigate differential methylation in response to THC more fully, we 

increased the significance threshold to nominal P < 0.001 across all treatment groups. 

As expected, a greater level of differential DNA methylation was identified (Table 4.5).  

Again CBD had the greatest number of differentially methylated sites (N= 12148), 

followed by the vehicle ethanol group (N= 7741) and then by the THC treatment group 

(N= 3769). Accordingly, a greater level of overlap was seen at this less stringent 

significance level, with N= 700 CpG sites shared between CBD and vehicle ethanol 

(out of 12148 sites for CBD, or 5.8%), N= 102 CpG sites shared between THC and 

vehicle ethanol (2.7%). Thus, while there is a degree of overlap between the drug 

treatment groups and the ethanol control, the overlap is not so great as to impede 

further downstream analyses, and the effects of alcohol in the drug treatment groups 

were able to be taken into account in further analyses. 

Again at this lower stringency, we identified N= 238 CpG sites that were shared 

between CBD and THC, and with a total of N= 34 CpG sites shared between all 

treatment groups (CBD, THC and vehicle ethanol). The results of this analysis implies 
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that the impact of CBD and THC on DNA methylation are dissimilar, and we 

hypothesise that the genes and pathways that house the THC- or CBD-specific CpG 

sites may highlight the precise biological pathways that are impacted by each 

cannabinoid.     

 

4.5.4 Differentially methylated CpG sites in response to CBD exposure 

 

To probe the biological relevance of the CBD-specific differential methylation, we 

further explored the differential CpG sites due to CBD exposure.  Due to the larger 

number of CpG sites that remained significant after FDR correction (N= 1939) 

compared to THC, FDR-corrected data was used for generation of top tables and CpG 

sites with a P value < 0.001 were used for pathway analysis. In contrast with our 

approach to THC which used P values < 0.001 for both top tables and pathway 

analysis, which will be discussed in section 4.5.6. Significantly differentially methylated 

CpG sites showed an even distribution of hypomethylated and hypermethylated sites 

(Table 4.5), indicating that the response of DNA methylation to CBD is not biased 

towards hyper or hypomethylation. We then calculated the top 50 most significantly 

differentially methylated CpG sites using the FDR adjustment method (Table 4.6). The 

top 50 CpG sites identified in response to CBD exposure include a range of zebrafish-

specific genes, as well as genes with human homolog. Specifically, we identified 

multiple significantly differentially methylated CpG sites within the top 50 (Table 4.6)  

in the genes Potassium Voltage-Gated Channel subfamily A Member 6 (KCNA6, 

associated with neurotransmitter release [57] and heart rate [58]), Cytohesin 1a 

(CYTH1A, immune defence [59]), MOB kinase activator 2a (MOB2A, neuron 

projection development [60]), Histone Deacetylase 3 (HDAC3, white matter 

neurostructure in the brain [61, 62]) and consequences for behaviour [63] and 

Fibroblast growth factor receptor B (FGFR1B, associated with schizophrenia [64, 65]).  

Given that CBD is the non-psychoactive component of cannabis, the inclusion of many 

brain-related genes in the top 50 most significantly differentially methylated sites was 

unexpected and warrants further exploration.   

Limited research has been conducted on assessing CBD exposure independently of 

THC and in non-disease systems. Often CBD exposure studies are in conjunction with 
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illness such as multiple sclerosis (MS) [66] and severe epilepsy [67, 68] and show 

promising health-related outcomes. However, we are still unsure of the full extent of 

the impact of CBD on the human body, and more so on DNA methylation, particularly 

in light of our findings above. Thus, while we have found differences in DNA 

methylation in response to CBD exposure, we are unable to comment on the clinical 

implications of these findings and we suggest that the impact of CBD on the brain 

should be explored more fully. 

 

4.5.5 Pathway analysis of differentially methylated CpG sites in genes from CBD 

exposure 

 

Differentially methylated CpG sites were annotated with their gene of residence or 

their nearest gene, and this list was then used for pathway analysis. Two types of 

pathway analysis was carried out, the first assessed Molecular Function which is 

described as the gene product ontologies (the role of the gene product), the second 

assessed Biological Process and is the based off the wider terminology of the process 

itself. From here we were able to assess sites showing differential methylation for gene 

pathways that may have been enriched due to CBD exposure (Table 4.8 and 4.9). 

Gene ontology (GO) molecular functions displayed three pathways specific to receptor 

protein tyrosine and kinase function (Table 4.8) both of which have broad roles in cell 

signalling. GO biological process pathway analysis (Table 4.9) showed a diverse 

enrichment of pathways with pathways relevant to sensory organ development, cell 

communication and axon guidance reaching significance (adjusted P < 0.05). The 

diversity of the molecular function and biological process pathways are indicative of 

the nature of the locations of CB2 receptors, which are found abundantly [69]. CBD is 

also often strongly associated with an effect on the immune system [19, 70], and 

although we identified the gene CYTH1A as differentially methylated, pathway 

analysis did not support this further.   

 

4.5.6 Differentially methylated CpG sites in response to THC exposure 

 

A total of nine CpG sites were found to be differentially methylated in response to THC 

exposure (FDR-corrected) compared to the unexposed control groups. Seven of the 
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sites displayed hypomethylation and two displayed hypermethylation. Within these 

nine CpG sites, seven of them are found to be within one region of the genome, with 

SI:DKEYP-85H7.1-201 as the nearest gene. The gene is found in zebrafish and some 

birds species, however, no mammalian homologues are thought to exist. Due to this, 

there is limited information available about the functional implications of this gene, 

however it is predicted to be involved in signal transduction – it possesses a Rho GTP-

ase-activating protein domain, and these domains have crucial roles in neuronal 

development and synaptic functions [71] which highlights the biological relevance of 

this gene. The remaining two CpG sites with FDR significance are both located within 

the gene NLGN2a, and one of these CpG sites was shared with the CBD exposure 

group. Differential methylation in NLGN2a has previously been identified in rodents, in 

a study assessing the cross-generational effects of THC exposure on offspring DNA 

methylation in the nucleus accumbens [72]. The gene presents an interesting finding 

as there has been a very recent surge in research assessing the association between 

paternal and maternal cannabis use and the development of autism in exposed 

offspring [73-78]. In both humans and mice, NLGN2 variants have been associated 

with autism, intellectual disabilities, behavioural disorders and schizophrenia [79-82]. 

Implying that while our data show few differences in response to THC at an FDR-

corrected level, identification of differential methylation at NLGN2 is biologically 

relevant. It further suggests that differential methylation at this gene, in response to 

THC, is conserved across species, highlighting the value of the zebrafish as a model 

for human cannabis exposure.  

In order to probe the impact of THC on DNA methylation more fully, we extended the 

significance threshold (P < 0.001) and identified N= 3769 CpG sites as differentially 

methylated. Of these, N= 2009 were hypomethylated and N= 1760 hypermethyla ted. 

Within the top most differentially methylated 50 CpG sites, five further CpG sites within 

si:dkeyp-85h7.1-201 are observed. We suggest that this gene is targeted for further 

investigation in zebrafish and work should focus on identification of a human 

homologue as it may be important in the human response to THC. 
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4.5.7 Pathway analysis of differentially methylated CpG sites in genes from THC 

exposure 

 

Similarly to the findings of CBD pathway analysis, molecular function pathway analysis 

of the genes which house nominally significant CpG sites in response to THC revealed 

that protein kinase activity was enriched (Table 4.10). Biological process enrichment 

analysis displayed enrichment for brain-related functions, for example, axon guidance, 

retinal ganglion cell axon guidance, and neuron projection fasciculation (Table 4.11), 

all of which reached an adjusted P value significance level.   

 

4.5.8 How do these data relate to cannabis use in humans? 

 

Experiments here were undertaken with pure THC and CBD, independently of each 

other. Although both THC and CBD are the most abundant cannabinoids in cannabis, 

they are still only two of approximately 100 potential cannabinoids that constitute 

cannabis. Importantly, CBD and THC have synergistic properties, for example, they 

have been described to be more effective in reducing symptoms of MS in combination 

rather than as independent chemicals [83-85]. Carrying out this same research with 

an additional CBD:THC treatment group is needed to further understand the genomic 

impact of these cannabinoids.  

Contrary to the literature around THC, there is limited evidence to suggest that CBD 

is associated with detrimental health outcomes in humans. However, animal studies 

have previously reported unfavourable effects in response to CBD [86] such as a 

decrease in BDNF expression [87], decrease in circulating testosterone [88], reduced 

fertility [89, 90], hypertension and cardiac arrest [91]. Although we are unable to 

determine whether the DNA methylation differences we identify here in response to 

CBD are having a positive or negative phenotypic impact, they are associated with a 

decrease in hatching efficiency, compared to the control group. Meaning that given 

the increasing popularity of CBD as a therapeutic substance, the impact of CBD on 

the human genome needs to be explored more fully, particularly with regards to: i) the 

effect of CBD on neurodevelopment and neurotransmission, and; ii) developmental 

exposure, when the genome is more sensitive to environmental perturbation. 
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4.5.10 Limitations and considerations  

 

Although in this study we identify differentially methylated CpG sites that reach 

genome-wide significance, we consider sample size to be a limitation, as this results 

in low statistical power. Increasing our sample size, as well as the number of replicates 

in each treatment group, would provide more robust evidence to support the 

biologically relevant results presented here.  

Secondly, due to the constraints of working with controlled drugs and prescription 

medicines, licences and authorities for possession and use are required from the 

Ministry of Health, which is time consuming. We suggest that next steps in this 

research would be to validate differential methylation of CpG sites using a targeted 

approach (e.g. bisulfite-based amplicon sequencing or Sequenom MassARRAY 

EpiTYPER analysis) and probed for functional significance using complementary 

quantitative PCR analysis to interrogate gene expression changes in response to 

differential methylation. Thus would serve to validate our results and provide functional 

support for the role of methylation in the biological response to THC and CBD.    

Lastly, although this study has highlighted the value of the zebrafish as a model for 

human THC and CBD exposure, there are still limitations to consider. Specifically, the 

THC and CBD used here have been solubilised in ethanol, and then given to the 

zebrafish via its environment. However, this is not the same mode of consumption as 

human cannabis use: the cannabis plant is composed of many different cannabinoids, 

and further, the combustion process which is involved in human cannabis consumption 

changes the molecular composition of the substance which is inhaled, and this cannot 

be replicated in the zebrafish model. However, while the precise effects of combustion 

of “smoked cannabis” cannot be replicated, our experimental design is more indicative 

of edible cannabis-based products, which are becoming increasingly available. 

Furthermore, we know that ethanol can also induce DNA methylation changes and 

can be associated with phenotype differences in humans, for example Fetal Alcohol 

Syndrome Disorder (FASD). Thus, it is important to further investigate what role 

ethanol may be causing in our result. 
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4.6 Chapter Summary 

 

 Zebrafish embryos were exposed to two cannabinoids, THC and CBD, as well 

as a vehicle ethanol control, at 24 hpf. 

 Hatching time discrepancies were observed in all treatment groups compared 

to the unexposed controls, with CBD displaying the greatest difference. 

 Differential DNA methylation was identified via RRBS with genome-wide (FDR-

corrected) significant differential DNA methylation observed in all treatment 

groups.  

 The greatest number of differentially methylated CpG sites was seen in CBD 

(N= 1939), followed by vehicle ethanol (N= 662), and THC (N= 9). 

 GO pathway analysis of CBD exposure showed enrichment for a diverse range 

of functional pathways, including cell communication and signalling. 

 In response to CBD, multiple differentially methylated CpG sites were identified 

in genes that have roles in neurodevelopment, neurotransmission, behaviour 

and schizophrenia. 

 GO pathway analysis for THC exposure was enriched for axon guidance, retinal 

ganglion and neuron projection fasciculation. 

 Twelve differentially methylated CpG sites were identified in the zebrafish-

specific gene si:dkeyp-85h7.1-201, which has predicted roles in neuronal 

development and synaptic function. 

 We demonstrate that the zebrafish shows promise and value as a model in 

which to probe the genomic impacts of human cannabinoid exposure. 
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4.7 Supplementary Figures and tables 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 4.1 Lethal concentration of THC and CBD experiment, the Log concentration 

plotted against Logit (A) and probit (B). 
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Supplementary 4.2 Frequency of the percentage of methylated reads for the remaining samples 

assessed for RRBS. A) Control 2, B) vehicle ethanol 1, C) Vehicle ethanol 2, D) THC 2, E) CBD 1, F) 
CBD 2. 
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Supplementary Table 4.1 CpG sites found to be differentially methylated in response to THC treatment  

that were also nominally significant (P value < 0.001) in response to the vehicle ethanol treatment.  

 

Chromosome Location Gene LogFC P value  FDR 

chr3 34907133 cdk5r1a 6.221 7.83E-06 0.787 

chr14 10899857 atrx 6.192 9.29E-06 0.787 

NW_003337037.1 71666   3.870 1.01E-05 0.787 

chr1 34805751 gab1 -4.971 1.10E-05 0.787 

chr6 21955808 acox1 6.088 1.12E-05 0.787 

chr23 18588976 hsd17b10 -7.002 1.24E-05 0.787 

 

 

Supplementary Table 4.2 CpG sites found to be differentially methylated in response to CBD treatment  

that were also nominally significant (P value < 0.001) in response to the vehicle ethanol treatment.  

 

Chromosome Location Gene LogFC P Value FDR 

chr19 46554422 ptpro -5.648 6.26E-14 4.68E-08 

NW_003337101.1 6968   -7.284 1.70E-12 5.94E-07 

NW_003337101.1 6927   7.284 1.70E-12 5.94E-07 

NW_003040930.2 148542   -4.131 3.95E-12 1.15E-06 

NW_003337101.1 6952   7.104 5.39E-12 1.45E-06 

chr13 45886895 si:ch211-
168h21.3 

7.245 2.06E-11 4.75E-06 

chr1 24511269 plrg1 -4.943 2.17E-11 4.75E-06 

chr1 22503413 slit2 -4.361 6.25E-11 1.09E-05 

chr19 43384306 tinagl1 -4.245 1.09E-10 1.74E-05 

chr1 29281079 tmem41ab -4.232 1.54E-10 2.15E-05 

chr5 12159513 zgc:112294 4.455 1.65E-10 2.22E-05 

chr5 1968493 rcl1 -5.642 2.40E-10 3.11E-05 

chr19 43384367 tinagl1 4.159 2.81E-10 3.47E-05 

chr5 7278569 ostf1 -5.516 2.88E-10 3.47E-05 

NW_001877452.3 55072   4.872 3.09E-10 3.49E-05 

chr5 6012759 zgc:73226 -4.444 3.10E-10 3.49E-05 

chr18 25702611 sema4ba -12.37 5.27E-10 5.58E-05 

chr5 7278568 ostf1 -4.280 5.81E-10 5.80E-05 

chr3 58674022 stra13 -6.146 6.20E-10 6.02E-05 

chr1 31036330 slc2a15b -4.299 6.47E-10 6.11E-05 

chr5 5784586 rabl6 -4.343 7.38E-10 6.62E-05 

chr14 8009994 zgc:92242 -4.540 8.05E-10 6.78E-05 

chr1 22503410 slit2 -4.030 8.15E-10 6.78E-05 

chr21 28252720 cxxc5a -7.844 9.49E-10 7.37E-05 

NW_001877452.3 7572   -5.083 1.08E-09 8.21E-05 

chr5 3496936 ywhag1 5.239 1.36E-09 9.90E-05 
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Chapter 5  

 

5. Epigenetic signatures associated with the observed interaction between maternal 

tobacco use during pregnancy, and offspring conduct problems in childhood and 

adolescence 

 

5.1 Introduction 

 

5.1.1 Maternal tobacco use during pregnancy 

 

The use of tobacco during pregnancy is one of the leading causes of perinatal 

compromise for developing offspring, and one of the most preventable [1]. For 

example, low birth weight [2], congenital heart anomalies [3], asthma/respiratory 

illness [4, 5], and sudden infant death syndrome (SIDS)[6] are all associated with 

maternal tobacco use during pregnancy, the rate of which remains relatively high in 

New Zealand (18.4% [7]), despite declining tobacco use rates overall [8].  

While immediate perinatal compromise in infants due to maternal smoking is well 

documented, the long term effects into later childhood, adolescence and adulthood 

are not understood. There is increasing evidence of linkages between maternal 

tobacco use in pregnancy and later risks of mental health and related adjustment 

problems in childhood and adolescence. In particular, there is evidence that maternal 

smoking during pregnancy is associated with increased risks of conduct disorders and 

antisocial behaviours in offspring [9] [10-12].  This association is not explained by post-

natal environment [13]. Further associations have been identified between maternal 

tobacco use during pregnancy and the increased risk of cardiometabolic disease [14], 

and the development of attention-deficit hyperactivity disorder (ADHD) [15]. Also 

affected are offspring neurodevelopment and behaviour, suggesting that poor 

behavioural adjustment (often termed ‘conduct problems’, CP) can be considered a 

consequence of maternal smoking during pregnancy [9]. While these traits in 

themselves can be linked to other societal risk factors such as low socioeconomic 

status and early-life adversity [16], their association with maternal tobacco use during 

pregnancy is intriguing. Understanding the link between exposures such as tobacco 

use during pregnancy and the association with CP is crucial to further our 

understanding the paradigm of the developmental origins of human health and disease 

(DOHaD) [17]. 
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5.1.2 Effect of prenatal tobacco exposure on DNA methylation  

 

Recent research has demonstrated links between prenatal tobacco exposure and 

specific DNA methylation patterns of newborn offspring [18-21]. Tobacco-induced 

DNA methylation changes can persist into adolescence [22] [21, 23] with potential for 

these unexplained marks to be inherited by future generation of offspring of exposed 

individuals [24]. Further, meta-analyses of multiple CpG sites in the gene, GFI1 

(Growth Factor Independent one transcriptional repressor) were found to be 

differentially methylated in adult offspring in response to being exposed to tobacco in 

utero, at multiple sites within the gene [25].  However, these studies are limited in their 

scope - they provide evidence for differential DNA methylation induced in both children 

and adults by tobacco exposure in utero, but do not relate these DNA methylation 

changes to a phenotype that is associated with in utero tobacco exposure. Thus, while 

limited preliminary work has been carried out, in which three loci which indicated 

modest DNA methylation changes in response to maternal smoking during pregnancy 

and CP phenotypes [26], the etiology of this link has not been fully explored. One 

potential mechanism is that differential DNA methylation caused during the in utero 

time period is playing a role later in life of the affected offspring via the in utero 

generation of metastable epialleles (MEs). Evidence at this stage has largely come 

from animal studies, where in utero exposures cause the development of MEs [27-29]. 

Potentially these in utero exposures can generate permanent epigenetic changes to 

the genome [30] that may contribute to an individual’s phenotype later in life [29-32] 

 

5.1.3 Chapter scope, aims and hypotheses 

 

Thus, given: i) the fact that maternal tobacco smoking during pregnancy is linked to 

offspring CP during early childhood and adolescence, and; ii) that maternal tobacco 

use during pregnancy can affect DNA methylation of offspring through to adolescence 

and adulthood, and; iii) that in utero exposures can create permanent epigenetic 

changes that can affect health in later life, here we hypothesise that DNA methylation 

is altered at genes involved in in utero brain development, and in those that associate 

with CP phenotypes, in the adult offspring of individuals who were exposed to tobacco 

in utero. 
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To test this hypothesis, we quantified DNA methylation at a suite of genes with known 

roles in in utero neurodevelopment and CP phenotypes, to assess whether DNA 

methylation may be implicated in the interaction between maternal tobacco use during 

pregnancy and the development of CP in offspring.  We applied a targeted approach 

via bisulfite-based amplicon sequencing (BSAS) of each gene in our panel, to 

interrogate differential methylation in the DNA of participants from the Christchurch 

Health and Development Study (CHDS) whose mothers consumed tobacco during 

pregnancy. 
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5.2 Methods 

 

5.2.1 Sample 

 

A sub-group of individuals from the CHDS were selected for this study (Table 5.1). 

The longitudinal study originally included 97% of all the children (N = 1265) born in the 

Christchurch, New Zealand urban region during a three-month period in mid-1977 and 

has been studied at 24 time points from birth to age 40 (n = 987 at age 30). All 

participants were aged between 28-30 when blood samples for DNA were drawn.   

For the subsets studied in this report, CHDS participants were chosen based on their 

in utero tobacco exposure status, their adult smoking status, and their CP scores 

(Table 5.1).  Group 1 consisted of individuals who were exposed in utero to tobacco 

smoke, and never smokers at the time blood samples were taken (N= 32).  Group 2 

consisted of individuals who were exposed in utero to tobacco smoke and were 

themselves regular smokers at the time the blood was taken (N =32).  Group 3 

consisted of individuals who were not exposed to tobacco in utero, and never smokers 

at the time blood was taken (N =32).  In utero tobacco exposure was defined as 10+ 

cigarettes per day throughout pregnancy. Within each group, 16 individuals were 

selected with a ‘high’ score on a measure of childhood CP at age 7-9 years and 16 

with a ‘low’ score. Severity of childhood CP was assessed using an instrument that 

combined selected items from the Rutter and Conners child behaviour checklists [33-

36] as completed by parents and teachers at annual intervals from 7-9 years. Parental 

and teacher reports were summed and averaged over the three years [37] to derive a 

robust scale measure of the extent to which the child exhibited conduct 

disordered/oppositional behaviours (mean (SD)=50.1(7.9) ; range 41-97).  For the 

purposes of this report a ‘high’ score was defined as falling into the top quartile of the 

score distribution (scores> 53) and a ‘low’ score was defined as scores< 46.  

A further control group consisting of non-exposed in utero who are adult smokers 

would have been beneficial for statistical analysis for this study. However, this group 

of individuals were unable to be sourced for this study. 
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Table 5.1 CHDS subsets selected for analysis in utero maternal tobacco exposure and the interaction 
of CP.  The range of CP scores in each category is indicated in brackets.  A score of 53 or more is the 

top quartile for CP, with a score of 60 or higher indicating the top decile for CP.  

 

 

  

Group 1 

Exposed in utero and a 

never smoker 

Group 2 

Exposed in utero 

and a regular 

smoker  

Group 3 

Not exposed in 

utero and a never 

smoker 

 N= 32 N= 32 N= 32 

Sex 

Male 

Female 

 

69% 

31% 

 

72% 

28% 

 

60% 

40% 

Tobacco smoking status at the time 

of blood collection 

Never 

Occasional 

Regular 

 

 

100% 

0% 

0% 

 

 

0% 

0% 

100% 

 

 

100% 

0% 

0% 

Conduct problem Score (CPS) 

           Below 46 

Above 53 

 

 

N= 16  (42-46) 

N= 16  (53-75) 

 

 

N= 16  (42-46) 

N= 16  (60-85) 

 

 

N= 16  (41-43) 

N= 16  (53-68) 

 

 

5.2.2 Bisulfite-based amplicon sequencing 

 

Bisulfite-based amplicon sequencing (BSAS) and genome alignment was carried out 

as described  in 3.3.1 [38].  

Genes for sequencing (Table 5.2) were picked based upon several cri teria: i) 

previously published differential DNA methylation in response to in utero tobacco 

smoking in human studies; ii) known associations with in utero brain development, 

and; iii) known associations with CP phenotypes.  
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Table 5.2 Genes selected to investigate the link between in utero tobacco exposure and CP. 

 

Gene Function Significance 

AHRR 
[43-47] 

Mediates toxicity of dioxin (found in 

cigarette smoke) 

Hypomethylated in tobacco smokers 

and their offspring 
 

ASH2L  
[48] 

Histone lysine methyltransferase 
 

Associated with schizophrenia 

BDNF  
[49, 50] 

Nerve growth factor Promotes neuronal survival.  Implicated 
in neurodegenerative disease  

CNTNAP2  
 [44, 51, 52] 

 

 

Neurexin family – functions in 

vertebrate nervous system 
 

Implicated in schizophrenia, autism, 

ADHD, intellectual disability.  
Hypomethylated in offspring of maternal 
smoking 

 

CYP1A1 
[43-47, 53] 

Monooxygenase – expression is 
induced by hydrocarbons found in 
cigarette smoke  

 

Hypomethylated in offspring of maternal 
smoking 

DUSP6  
[54] 

Protein phosphatase, cellular 
proliferation and differentiation 
 

Regulates neurotransmitter homeostasis  

GFI1 
[43, 46, 47] 

Zinc finger protein - transcriptional 

repressor 

Part of a complex that controls histone 

modifications and gene silencing.  
Hypermethylated in offspring of maternal 
smoking 

 

GRIN2B   
[55] 

Glutamate receptor – expressed early 
in the brain and is required for normal 
brain development 

Mutations associated with autism, 
ADHD, schizophrenia 

MEF2C   
[54] 

MEF2C is associated with 
hippocampal-dependent learning and 
memory 

 

MEF2C is crucial for normal neuronal 
development. Associated with ADHD 

PRDM8   
[51] 

Histone methyltransferase - Controls 
expression of genes involved in 
neural development and neuronal 

differentiation 
 

Hypomethylated in offspring of maternal 
smoking 
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Primers were then designed (Table 5.3) to flank the CpG sites of interest, ~350 base 

pairs (bp) in total, or to amplify ~350bp of the promoter region of the gene if a specific 

CpG site was not known. Multiple pairs of primers were designed to amplify larger 

regions.  

 
Table 5.3  Forward and reverse primers (5’ – 3’) used to target potential candidates of in utero tobacco 
exposure and the interaction of CP.  Primers for CpG sites of interest include the Illumina overhang 

sequence at the 5’ end. 

 

Primer name Illumina Probe 

ID 

Bisulfite converted primer (including the Illumina overhang sequence) 

AHRR_F Cg05575921 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTTTTTTTGGTGTGGTTTTA 

AHRR_R Cg05575921 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG ACCACCATCTTATCTTATTT 

CNTNAP2_F Cg2594950 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTTGTTTTGGAGTAGTTTTA 

CNTNAP2_R Cg2594950 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCATAATCTTCACTTTTCATTCAC 

CYP1A1_F Cg05549655 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTATAGTAGTTGTTTGGTAAA 

CYP1A1_R Cg05549655 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGRATACAAAAAATCTAAATCTAC 

GFI1_F Cg09935388 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGGGGGAAGGAATGAGTAGAT 

GFI1_R Cg09935388 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGACTAAAACTAATAACCCCAA 

GFI1_F Cg09662411 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTATAGTAGTTTYGATTTTATTTTGA 

GFI1_R Cg09662411 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAACCCTTCCCCCTACCTTTC 

DUSP6_F Promoter region TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAGTAAATAGAGTTGGGTTTT 

DUSP6_R Promoter region GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTACAAACAAACTACAACAAC 

BDNFpro1_F Promoter region 1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGAAAAGGGAAAGTTGTTGGGTT 

BDNFpro1_R Promoter region 1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTAAAAAACTTATTACTTATC 

BDNFpro2_F Promoter region 2 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTTTTTATTTTTTTTTTGTT 

BDNFpro2_R Promoter region 2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGATTTCCTAAAACTACCTTCTAAC 

BDNFpro3_F Promoter region 3 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTTTTTATTTTTTTTGGGAAT 

BDNFpro3_R Promoter region 3 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGRTCTCCCCAACAAATACTAAA 

PRDM8pro1_F Promoter region 1 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGGTTGAAGTAGTTGTTTT 

PRDM8pro1_R Promoter region 1 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAAATATATAAAAATCATAAC 

PRDM8pro2_F Promoter region 2 TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTATTTTTTTATATTATTTTTTTT 

PRDM8pro2_R Promoter region 2 GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAAAACTATAAAACTCCTTCC 

MEF2Cpro1_F Promoter region  TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGGAAAGATTGATTTATTAAG 

MEF2Cpro1_R Promoter region GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGTTTTATCCTTACCTTTACTT 

ASH2L_F Promoter region TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGYGGGTAGGGAGTGTTAGATTTTA 

ASH2L_R Promoter region GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCTAAAAAAACATAATTCCAC 

SLC6A1pro2_F Promoter region TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGATGTTTTAAGTGAATTTTATTG 

SLC6A1pro2_R Promoter region GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGRATCTTATTATTCCAAATAA 

GRIN2Bpro2_F Promoter region TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCTGTGGGAAATGCGGGGTTT 

GRIN2Bpro2_R Promoter region GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCAAAGGTAATTCAGGGTATG 
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5.2.3 Statistical analysis 

 

Differential DNA methylation was assessed using the package edgeR [41]. MA plots 

were carried out for clustering based on group and for the top differentially methylated 

sites via edgeR. The following models were fitted to the data: 

Univariate regression: 

Model 1 - effect of in utero tobacco exposure on DNA methylation (Table 5.5 and Table 

5.6) 

Y ~ U + 𝑒 

 

Model 2 - effect of CP on DNA methylation (Table 5.7) 

Y ~  C + 𝑒 

 

 

Model 3 - effect of adult smoking on DNA methylation (fitted on Exposed participants 

only, Table 5.8) 

Y ~ AS + 𝑒 

 

Multiple Regression: 

Model 4 - effect of in utero tobacco exposure and CP on DNA methylation (Table 5.9) 

Y ~  U +  C +  U: C + 𝑒 

Where: 

 

Y = methylation M ratio  

U = Exposed/Unexposed in utero to maternal smoking 

C = Conduct problem/Non-conduct problem 

e ~ N(0,s)   

AS = Adult smoking/Non-adult smoking 

U:C is interaction term between U and C 
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Models 1,2 and 3 all assessed differential DNA methylation from the one variable of 

interest.  

Model 4 took into account in utero exposure and CP score into the interaction between 

the two variables. It was fitted with both ANOVA parameters and with contrasts 

between in utero exposure groups (exposed – non-exposed) within CP score levels.  

Top tables were constructed using the topTags function in edgeR, Log fold change, 

average log counts per million, and in some cases F statistic and were calculated and 

nominal significance was given for P < 0.05, these were then corrected using FDR. 

The F value takes into account the standard error for each of the data sets being 

assessed. Co-variates such as ethnicity and sex were not corrected for. Box plots were 

constructed from log transformed normalized methylated and unmethylated counts. A 

statistical package called Predict Means [42] was used to assess the overall 

methylation differentiation between the various interactions as a whole data set. 

Similarly, general linear model with a binomial distribution was used for this analysis 

and a Bonferroni correction method was applied. The P value significance threshold 

based off the total number of different tests conducted. 

 

𝛼 altered =
𝛼 original 0.05

 number of tests
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5.3 Results 

 

5.3.1 Assessing AHRR methylation differences in smokers versus non smokers- 

model 3 

 

To assess the validity of this study, we compared differential DNA methylation 

between the CHDS subset used in these analyses, against that observed from the 

subset of the CHDS cohort used in Chapter 3, at one CpG site within the gene AHRR 

(Illumina ID cg05575921); this amplicon was used in Chapter 3 and so is included here 

as a control. The magnitude of difference between the individuals in this study who 

smoked tobacco (N = 32) compared to non-smokers (N= 64) was compared to Chapter 

3 cannabis with tobacco smokers (N = 48), compared to non-smoking controls (N = 

38).  

Our previous data from Chapter 3 demonstrated an average β difference between 

cases and controls of 4.1% (Table 5.4). The methylation difference here was found to 

be conservative, however statistically relevant between smokers and non-smokers (as 

well as cannabis smokers).  In this new analyses, we detect a methylation difference 

of 3.1%. The direction of change was the same, showing hypomethylated in cases vs. 

controls.  

 

 

Table 5.4 β differences in the gene AHRR between BSAS in Chapter 3 using tobacco and cannabis  

users and here in this new cohort which has sub-selected the adult smoker for this comparison. 

 

 Cannabis 

and tobacco 

users in 

Chapter 3 

Controls in 

Chapter 3 

Methylation 

difference 

Smokers 

in the in 

utero 

study 

Controls 

in the in 

utero 

study 

Methylation 

difference 

AHRR 

cg05575921 

0.701 0.742 -0.04 0.716 0.748 -0.031 

 

 

 



146 
 

 

5.3.2 Validating previously reported CpG sites in response to in utero exposure to 

tobacco 

 

Initially, we attempted to validate in our cohort (age ~28-30 years) 5 CpG sites which 

have been previously reported to be differentially methylated in the DNA of cord blood 

from newborns, and whole blood from children and adolescents (ages newborn to 17) 

in response to in utero tobacco exposure (Table 5.5).  Data were partitioned into those 

individuals exposed in utero, and those who were not, and corrected for CP score 

(Model 1, Methods). 

Table 5.5 Previously reported CpG sites showing differential DNA methylation in response to in utero 

tobacco exposure, and their average methylation values in individuals from this cohort (Model 1).   

 

Gene Illumina ID Exposed in 

utero 

methylation 

Non-

exposed in 

utero 

methylation 

β difference P value 

(nominal) 

  

AHRR cg05575921 72.287 75.448 -3.161 0.022   

CNTNAP2 cg2594950 3.8457 3.8600 -0.014 0.991   

CYP1A1 cg05549655 26.894 21.699 5.195 0.425   

GFI1 cg09935388 75.151 75.330 -0.582 0.055   

GFI1 cg09662411 95.837 97.400 -1.583 0.274   

 

AHRR (cg05575921) displayed a 3.1% decrease in DNA methylation between 

exposed and non-exposed individuals, at a nominal P value of 0.02.  This site has 

been previously identified as hypomethylated in adults, as well as in postnatal cord 

blood samples between in utero tobacco-exposed and non-exposed individuals. The 

probe cg05549655 in the gene CYP1A1 displayed a 5.19% increase in DNA 

methylation in the in utero-exposed group, however, this site this site did not reach 

nominal statistical significance in our cohort. Cg09935388 and cg09662411 in GFI1 

were unable to be replicated as differentially methylated between the exposed and the 

non-exposed groups (no significant change in methylation). Both CpG sites did show 
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hypomethylation, supporting previous observations of differential methylation within 

this gene.  CNTNAP2 (cg2594950) was similarly unable to be validated in our cohort. 

5.3.3 Differentially methylated CpGs by in utero tobacco exposure status  

 

Data were partitioned according to in utero exposure status only (exposed vs. 

unexposed) using Model 1 (Methods).  Of the 10 genes (encompassing a total of 280 

CpG sites) selected for BSAS, 6 genes showed nominally significant differential 

methylation between in utero-exposed and non-exposed controls, across 22 different 

CpG sites that resided in those regions: AHRR2, GRIN2b, GFI1, BDNF, ASH2L and 

DUSP6 (Table 5.6). The remaining genes, CNTNAP2, MEF2C, SLC9A9 and CYP1A1, 

showed no differential methylation across the region in response to in utero tobacco 

exposure alone.  

The top log fold changes (2.1 and 1.78) in differential methylation between in utero 

exposed individuals verses non-exposed individuals both come from CpG sites in 

GRIN2b (Chr12: 14133243 and Chr12: 14133359), followed by two further larger log 

fold changes in two CpG sites in BDNF (Chr11:, 27743857 and Chr11:, 27743730).  
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Table 5.6 Top CpG sites found to be nominally significantly differentially methylated (unadjusted P < 
0.05) in the in utero tobacco exposed group (Model 1).  Asterisk, *, indicates CpG sites in genes 

identified as differentially methylated in response to adult smoking status (Table 5.8) Abbreviations: FC, 

fold change; CPM, counts per million; FDR, FDR-corrected P value. 

 

Gene Illumina ID, CpG site 

location 

Log FC Average 

Log CPM 

P value FDR 

*AHRR Chr5, 373398 -0.369 12.699 0.0009 0.187 

*GFI1 Chr1, 92946546 -0.588 12.284 0.002 0.192 

*BDNF Chr11, 27743856 -1.323 10.237 0.004 0.192 

*GRIN2b Chr12, 14133243 2.100 10.113 0.004 0.192 

*GFI1 Chr1, 92947559 -0.507 9.068 0.005 0.192 

*GFI1 Chr1, 92947752 -0.433 9.844 0.006 0.192 

GRIN2b Chr12, 14133359 1.789 10.523 0.007 0.192 

*GFI1 Chr1, 92946452 -0.374 12.211 0.008 0.192 

*GIF1 Chr1, 92946429 -0.558 12.163 0.009 0.192 

BDNF Chr11, 27743594 -0.773 11.078 0.010 0.192 

GFI1 Chr1, 92946514 -0.477 10.053 0.011 0.200 

*BDNF Chr11, 27743729 -1.266 8.550 0.016 0.262 

GFI1 Chr1, 92946568 -0.339 12.218 0.019 0.284 

*AHRR cg05575921 -0.270 12.687 0.022 0.291 

AHRR Chr5, 373355 -0.228 12.749 0.022 0.291 

*GIF1 Chr1, 92946418 -0.512 12.160 0.030 0.365 

DUSP6 Chr12, 89746641 -0.635 10.060 0.033 0.371 

GFI1 Chr1, 92946434 -0.314 12.193 0.035 0.371 

GFI1 Chr1, 92946340 -0.368 12.360 0.047 0.413 

*GFI1 Chr1, 92946132 -0.420 12.295 0.048 0.413 

DUSP6 Chr12, 89746479 0.813 10.285 0.049 0.413 

ASH2L Chr8, 37962720 0.692 11.626 0.049 0.413 
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A MA plot of the log average difference between individuals exposed in utero, and 

non-exposed individuals (Figure 5.1, Table 5.6) indicates those sites with the highest 

log fold changes, and demonstrates the direction of change in methylation of the 22 

nominally significantly differentially methylated CpGs (P < 0.05); 4 are 

hypermethylated (pink) and 18 are hypomethylated (cyan).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

*GRIN2b 

GRIN2b 

*BDNF *BDNF 

*GFI1 

*AHRR/A

HRR 

ASH2L 
DUSP6 

*DUSP6 

BDNF 

*GFI1 
GFI1 

*GFI1/

GFI1 

Figure 5.1 Differential DNA methylation of individuals exposed to tobacco in utero vs non-exposed in utero 

individuals, across 280 CpG sites within 10 genes. Dots that are displayed in colour represent those that are 

differentially methylated: cyan, hypomethylation; pink, hypermethytion; black, non-differentially methylated sites. 

*previously shown to be differentially methylated in response to adult smoking status  
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5.3.4 Differentially methylated CpG sites in response to CP 

 

Data were then partitioned based upon CP and non-CP status (Model 2).  A total of 

nine CpG sites were found to be differentially methylated (Table 5.7). Four CpG sites 

were independent of in utero exposure, while the remaining five were also identified 

as differentially methylated in the in utero exposed group (Table 5.6).  

 

Table 5.7 Top CpG sites found to be nominally significant differentially methylated (unadjusted P < 0.05) 

in response to CP. 

 

Gene  Illumina ID, CpG 

site location 

log FC Average 

log CPM 

P value FDR 

DUSP6 Chr12, 89746479 -1.042 10.285 0.004 0.776 

GIF1 Chr1, 92946568 0.335 12.218 0.013 0.776 

CYP1A1 Chr15, 75019185 -0.943 9.079 0.014 0.776 

GIF1 Chr1, 92946472 0.317 12.125 0.018 0.776 

BDNF Chr11, 27743694 1.036 10.338 0.020 0.776 

CNTNAP2 Chr7, 145814223 0.345 12.826 0.024 0.776 

GIF1 Chr1, 92946132 0.419 12.295 0.033 0.817 

DUSP6 Chr12, 89746470 0.873 9.202 0.040 0.817 

GIF1 Chr1, 92946421 0.243 12.160 0.046 0.817 

 

CpG sites of nominal significance in response to CP were plotted in Figure 5.2. 

Compared to Figure 5.1 (in utero exposure vs. non-in utero exposure), CpG sites for 

this analysis (CP vs. non-CPs) showed seven CpG sites hypermethylated and two 

sites that are hypomethylated. Four of the CpG sites with nominal significance display 

a log fold change difference ~1 fold, there is a secondary cluster of five CpG sites of 

~0.5 fold change difference.
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CYP1A1 DUSP6 

DUSP6 

GIF1 

GIF1 

GIF1 

CNTNAP2 

GIF1 

BDNF 

Figure 5.2 Differentially methylated sites in high CP individuals verse people with low CP scores. Dots that are 

displayed in colour represent those that are differentially methylated: cyan, hypomethylation; pink, 

hypermethylation; black, non-differentially methylated sites. 
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5.3.5 Differential methylation in response to adult smoking status 

 

Smoking in adulthood was assessed for its confounding effect on DNA methylation 

across the amplicons of genes of interest. The data was partitioned into those 

individuals who were tobacco smokers in adulthood, and those who were never 

smokers. When differential methylation was calculated in smokers vs. never smokers, 

26 out of 280 CpG sites in total were identified as significantly differentially methylated 

(nominal P < 0.05, Table 5.8).  These loci were in general hypomethylated, consistent 

with the literature for the same or near sites with the only hypermethylated site located 

in the GRIN2b promoter. There were a total of 12 CpG sites that were also found to 

be differentially methylated in response to both of the univariate analyses of adult 

smoking status and in utero exposure (indicated by * in Table 5.6). 14 CpG sites were 

found solely to be differentially methylated in response to adult smoking status and 10 

CpG sites differentially methylated only in response to in utero exposure.  

  



153 
 

Table 5.8 Top CpG sites found to be nominally significantly differentially methylated (unadjusted P < 
0.05) in response to adult smoking status. Abbreviations: Log FC, Log fold change, Log CPM, Log 

counts per million. 

 

Gene CpG site location Log FC Average Log 
CPM 

P value FDR 

AHHR Chr5, 373398 -0.343 12.699 0.002 0.273 

GFI1 cg09662411 -0.444 12.314 0.005 0.273 

GFI1 Chr1, 92946923 -0.372 12.378 0.007 0.273 

GFI1 Chr1, 92946222 -0.492 12.299 0.007 0.273 

GFI1 cg09935388 -0.458 9.2268 0.008 0.273 

GFI1 Chr1, 92946429 -0.560 12.163 0.008 0.273 

ASH2L Chr8, 37962657 -0.129 11.333 0.010 0.273 

GFI1 Chr1, 92947752 -0.422 12.093 0.012 0.273 

GFI1 Chr1, 92947586 -0.445 9.229 0.013 0.273 

GRIN2b Chr12, 14133243 2.388 10.113 0.015 0.273 

GFI1 Chr1, 92946270 -0.315 12.363 0.018 0.273 

ASH2L Chr8, 37962793 -0.674 11.685 0.021 0.273 

GFI1 Chr1, 92946452 -0.336 12.125 0.022 0.273 

GFI1 Chr1, 92 947581 -0.332 9.2268 0.022 0.273 

GFI1 Ch1, 92946415 -0.303 12.160 0.022 0.273 

GFI1 Chr1, 92946620 -0.263 12.195 0.022 0.273 

BDNF Chr11, 27743452 -0.674 10.381 0.026 0.286 

GFI1 cg06338710 -0.402 12.198 0.029 0.286 

GFI1 Chr1, 92946434 -0.327 12.193 0.029 0.286 

BDNF Chr11, 27743729 -1.214 8.550 0.030 0.286 

GFI1 Chr1, 92946418 -0.500 12.160 0.031 0.286 

GFI1 Chr1, 92946235 -0.428 12.311 0.034 0.295 

GFI1 Chr1, 92947559 -0.336 12.356 0.041 0.337 

GFI1 Chr1, 92946132 -0.436 12.295 0.043 0.337 

GFI1 Chr1, 92946452 -0.287 12.211 0.045 0.337 

AHRR cg05575921 -0.233 12.687 0.048 0.337 
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5.3.6 Differentially methylated CpGs dependent on both in utero tobacco exposure 

and CP 

 

Differential methylation dependent on both in utero exposure and CP score was found 

at 10 loci in six genes at nominal significance level, however none were significant 

after correcting for false discovery rate (Table 5.9).  

Nine out of the 10 sites (all except DUSP6) displayed a greater level of differential 

methylation between in utero exposure states for high conduct scores, with 5/10 

nominally significant, compared to low conduct scores (no nominal significance).  The 

CpG sites which were nominally significantly differentially methylated  (P < 0.05) in the 

DNA of in utero-exposed individuals with high CP score were sites within CYP1A1, 

GFI1, ASH2L, and GRIN2b (Model 4, Table 5.9).  

Table 5.9 CpG sites where differential methylation between conduct problem scores differs with in utero 
exposure at P< 0.05. Log Fold Change (FC) and P values (unadjusted) from log ratio tests for the effec t  

on normalized methylation ratios of: (1) P value of differential methylation for the interaction between in 
utero exposure and Conduct Problem score. Then to determine whether this P value was driven by low 
CP score or high CP score we assessed (2) In utero exposed versus non-exposed in the Low CP group 

and (3) within High CP participants. Loci with nominally significant (P<0.05) interaction shown, all FDR 
P values > 0.05. 

Gene CpG location Interaction(1) Low CP(2) High CP(3) 

    Log FC P value Log FC P value Log FC P value 

CYP1A1 Chr15, 75019290 -2.013 0.010 0.344 0.493 -1.669 0.005 

GFI1 Chr1, 92947705 -0.957 0.011 0.002 0.992 -0.955 0.001 

ASH2L Chr8, 37962878 1.257 0.024 -0.447 0.253 0.811 0.042 

MEF2C Chr5, 88179596 -1.679 0.040 0.678 0.174 -1.000 0.122 

DUSP6 Chr12, 89746588 -1.444 0.041 0.864 0.107 -0.580 0.204 

ASH2L Chr8, 37962657 -0.199 0.042 0.052 0.455 -0.147 0.033 

CYP1A1 Chr15, 75019127 -1.221 0.045 0.403 0.319 -0.819 0.072 

ASH2L Chr8, 37962901 1.250 0.046 -0.561 0.205 0.688 0.121 

GRIN2b Chr12, 14133359 2.711 0.048 0.121 0.903 2.832 0.004 

MEF2C Chr5, 88179541 -1.336 0.050 0.615 0.139 -0.720 0.190 

 

Negative log fold change values for the significantly differentially methylated sites 

within the high CP score group correspond to hypomethylation within the exposed 

group, whereas positive log fold changes correspond to hypermethylation in the in 

utero exposed group as the log normalized ratios are negative, three examples are 

shown in Figure 5.3. These associations were not detected when data was partitioned 

and analysed to assess the impact of CP only on DNA methylation (Model 2,Table 

5.7). 
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C 

Figure 5.3 Differential methylation found in utero tobacco exposed for individuals with high conduct 

problem score that is not observed in individuals with low conduct problem score. A- CYP1A1 (Chr15, 

75019290), B- GFI1 (Chr1, 92947705) and C- , GRIN2b (Chr12, 14133359). 
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5.3.7 Overall methylation levels across all amplicon regions 

 

Overall methylation was assessed across all 10 gene regions (280) by each of the 

interactions to identify any overall patterns of differential methylation, which may give 

an indication of what would be represented across the whole epigenome.  

Each interaction is was assessed individually between either in utero exposed and not 

exposed, CP vs non-CP and then smoking versus non-smoking. Interactions were 

then combined, with in utero exposed versus non-in utero exposed vs CP vs non-CP. 

Then lastly, CP vs non-CP vs smoker versus non-smoking.  

 
Table 5.10 Overall DNA methylation differences found compared to control groups from the 280 CpG 

sites assessed under the different variable assessed in this study, 

Variable Df Sum Sq Mean Sq P value  

 

In utero maternal tobacco vs 

non-exposed 

1 30908 30908 5.15x10-6 

Low CP vs high CP 1 1249 1249 0.358 

Adult Smoking status vs 

non-smokers  

1 7727 7727 0.022 

In utero maternal tobacco 

exposure and the interaction 

of CP 

1 850 850 0.449 

CP and the interaction of 

adult smoking status 

1 12212 12212 0.004 

Residuals 4059 6020897 1483  

 

Overall methylation across the 10 gene regions showed one interaction in particular 

as being significantly statistically different: in utero exposed individuals have 

differential methylation overall, compared to non-exposed individuals. If a Bonferroni 

P value correction method was applied to this interaction, a P value of less than 0.01 

would pass the significance threshold. In utero exposed versus non exposed in utero 

has a P= 5.15x10-6 which gives an indication that there is a significant difference 

between these two groups. The other two significant interactions were between: i) 

smoking and non- smoking (P= 0.02252), and; ii) CP vs non-CP with the addition of 

adult smoking status (P= 0.00414). Only CP with the addition adult smoking status 

remains significant post Bonferroni correction method.  
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5.4 Discussion 

 

In utero tobacco exposure is known to alter DNA methylation at the genome-wide level 

in offspring [18, 19] [20, 21]. The later-life implications of these tobacco-induced DNA 

methylation changes are unclear, however, an association between in utero tobacco 

exposure and CP has previously been observed [26].  Given the complex etiology of 

CP phenotypes [56-58] and the vast array of socioeconomic variables associated with 

tobacco use [59], proving a causal link between maternal smoking and offspring CP is 

inherently challenging.  However, here, we provide initial observations within our in 

utero tobacco exposed cohort that may show DNA methylation changes that are 

associated with CP phenotypes in offspring. These methylation changes are within a 

panel of genes that have known roles in in utero brain development and CP 

phenotypes. 

 

5.4.1 Study design limitations 

 

All individuals in this study came from the CHDS longitudinal study cohort. The study 

commenced in 1977, at which time the effects of maternal in utero smoking had not 

been clearly defined. In more recent times, numerous studies have found associations 

between maternal smoking and adverse health outcomes and long term effects of 

offspring [60-62]. 

There are many other co-variables that have the potential to confound the effects of in 

utero smoking on DNA methylation. These are variables that also have a high chance 

of co-occurring with maternal tobacco smoking. For example, if a women is likely to 

smoke throughout her pregnancy this is also a high chance she will continue to smoke 

throughout the upbringing of that child. Differentiating between in utero exposure and 

second-hand smoke exposure is not possible with this study design or with this cohort 

of individuals. The problem is also the same for parental smoking as if a male partner 

also is a smoker then there is a higher proportionate chance that the female partner 

also smokes. Minimal research has been carried out on the effect of second-hand 

smoking, however this is very much a limitation for a various study who investigate the 
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effects of in utero exposure. Similarly, to second-hand smoking, alcohol consumption 

is another co variable which we are unable to account for. 

This data set was not corrected for on ethnicity or sex, which is another confounding 

issue.  However, due to the small sample size, correcting for these factors would have 

been detrimental to detecting differential DNA methylation. To validate and confirm 

our findings from this work, a larger sample size should be used. At that point, it would 

then be appropriate to correct for these two variables, similar to that which was carried 

out in Chapter 2, where the data was also corrected for five cell types, batch effects, 

four principal components and parent socioeconomic status, as well as ethnicity and 

sex. However, in this Chapter, in order to fully explore our hypotheses on a limited 

dataset with a small number of loci, we have not taken these variables into account. 

 

5.4.2 Validation of previously identified differentially methylated CpG from in utero 

tobacco exposure 

 

First, we asked whether differentially methylated CpGs that have been previously 

associated with in utero tobacco exposure were supported by this cohort.  Here, we 

present validation of differential methylation of a CpG site within the gene AHRR 

(cg05575921).  AHRR is a well-defined tobacco smoking gene, which is consistently 

represented in tobacco methylation data.  AHRR has previously been found to be 

differentially methylated in response to in utero tobacco exposure [22, 45, 63].  We 

find that this particular CpG within AHRR remains differentially methylated in response 

to in utero tobacco exposure in our adult cohort at age ~28-30 (Table 5.1). However, 

in this study, differential methylation at this CpG site was also explained by adult 

smoking status (Table 5.8). The four CpG sites (AHRR, CYP1A1, CNTNAP2 and 

GFI1) investigated here due to previous association with in utero tobacco exposure 

were not differentially methylated in our data. However, the direction of methylation 

change was supported at all five sites investigated [47, 64, 65]. We suggest that further 

investigation in a larger cohort may lead to nominal significance at the sites in 

CYP1A1, CNTNAP2, and GFI1. 
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5.4.3 Identification of in utero exposure-related differentially methylated CpGs  

 

Next, we compared all individuals exposed to tobacco in utero, to individuals not 

exposed to tobacco in utero, and we identified a large number of differentially 

methylated CpG sites (22, Table 5.6). Of these, 20 represent novel sites, which are 

not target CpG sites in the Illumina EPIC or 450K array systems (the most commonly 

used methylation arrays for which published data is available). Thus, these sites were 

unable to be previously identified as differentially methylated in response to in utero 

tobacco exposure.  This highlights the benefits of the BSAS method, which enables 

estimates of differential methylation of all CpGs within a particular amplicon [38].  

Further, the novel CpG sites we identify here are all in relatively close proximity to one 

another, suggesting that these sites may represent differentially methylation regions. 

Differentially methylation regions have important roles in regulating gene expression, 

thus potentially leading to changes in phenotype that could influence health outcomes 

[66]. None of the 22 CpG sites identified as being differentially methylated in response 

to in utero tobacco exposure remained significantly differentially methylated after FDR 

correction, which was expected because of small sample size. However, while our 

data are nominally significant, it does suggest that in utero tobacco exposure may be 

affecting DNA methylation at CpG sites within genes that had no overlap with adult 

smoking status in this study.   

 

5.4.4 Some changes in response to adult smoking status and in utero exposure unable 

to be differentiated   

 

We assessed what effect adult smoking status was having on differential methylation 

within well studied genes, in order to determine differential methylation patterns 

specifically impacted by in utero tobacco exposure.  The premise here was that CpG 

sites which were not identified in response to adult smoking status would indicate that 

the differential methylation we identify was much more likely to be induced during 

development, and not a by-product of adult smoking status.  When the data were 

partitioned based on adult smoking status (Model 3), we identified 26 differentially 

methylated CpGs (Table 5.8). Of these, 12 CpG sites overlapped with the CpG sites 

found to be differentially methylated when the data was partitioned based upon in utero 
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tobacco exposure status (Table 5.6, Model 1).  This indicates that differential DNA 

methylation identified in genes which overlap between Models 1 and 3 may be 

explained by adult smoking status, or in utero exposure. However, the remaining ten 

CpG sites observed in our panel of genes are not explained by adult smoking status.  

This implies that differential methylation at these CpG sites is explained more fully by 

in utero tobacco exposure, and provides confidence that the differential methylation 

we observe within these genes is more likely due to the in utero environment, than to 

adult smoking.  We cannot ignore the fact that adult tobacco smoking may still be 

playing a role in differential DNA methylation at these sites, but it does not appear to 

explain the variation in methylation we observe at the sites investigated in this study 

as fully as the in utero environment.  

Differential methylation within AHRR (cg05575921) was explained by adult smoking 

status in this study (Table 5.8).  This was an expected result as this site is one of the 

most pronounced and associated sites found to be differentially methylated in tobacco 

smoking [67, 68]. The site, however, also showed nominal significance in response to 

in utero maternal tobacco exposure.  The reason for this may be due to the study 

design; this study was limited by sample size, and as such, distinguishing between 

adult smoking status and in utero tobacco exposure is difficult; CpG sites which could 

show differences in response to both variables may have skewed the results when 

independently assessing them within this relatively small sample.  

Tobacco smoking is known to greatly affect DNA methylation, and because the DNA 

samples used in this study are from individuals who were between 28 and 30 years 

old, adult smoking is closer temporally than in utero exposure.  Thus we hypothesise 

that the data used in the in utero exposure model could be expected to be confounded 

to some extent by adult smoking status, meaning that, in these data, differential 

methylation at certain sites can be explained independently by both in utero tobacco 

exposure and adult smoking status.  Further investigations in larger cohorts, preferably 

at the genome-wide level, are required.  To further rule out adulthood smoking status 

as an explanatory factor in the differential methylation we observe within our panel of 

brain development and CP genes, this study should be expanded to include an 

additional group of individuals that were not exposed to tobacco in utero, but are 

smokers as adults. 



162 
 

5.4.5 Identification of in utero exposure-related differentially methylated CpGs that are 

specific to individuals with CP 

 

An overwhelming amount of epidemiological data has shown an increased association 

between in utero tobacco exposure and behavioural disorder in children and 

adolescents  [69, 70]. Thus, here, we investigated DNA methylation changes induced 

by in utero tobacco exposure as a potential molecular mechanism of dysfunction that 

could link the phenotypic trait of CP to maternal tobacco use during pregnancy.  We 

therefore analysed DNA methylation patterns within our gene panel in response to in 

utero tobacco exposure and its interaction with CP status.  A total of 10 CpG sites in 

six genes were found to display nominal significance in DNA methylation in response 

to in utero tobacco exposure and CP in this cohort (Table 5.9, Model 4).  Differential 

methylation at none of these CpG sites could not be explained by adult smoking status.  

The candidate genes explored here have been shown to be differentially methylated 

in response to both adult smoking and in utero smoking. We observed that when in 

utero smoking and CP score were considered together, differential methylation 

attributed to in utero exposure was significantly different in those with high CP scores 

than in those with low CP scores.  In the 10 loci we identified with interactive differential 

methylation, all but the loci in DUSP6 showed greater magnitude differential 

methylation in high CP scores (exposed in utero vs. non-exposed with high CPS), with 

reduced, reversed or no evidence of differential methylation at the same sites with low 

CP score.  While we cannot assert causality, our results are consistent with in utero 

tobacco exposure altering methylation at loci associated with neural phenotypes which 

persist into adulthood and are then associated with increased risk of CP. 

Our results indicate that in utero tobacco exposure is associated with a greater level 

of MEF2C hypomethylation in participants who were exposed to tobacco in utero with 

CP in this cohort, although not at the FDR significance level. We identified differential 

methylation at two CpG sites that are located next to each other within the gene 

MEF2C (chr5, 88179596 and 88179541). MEF2C (Myocyte enhancer factor 2C) is a 

transcription factor which regulates gene expression for development and 

maintenance in a variety of tissues [71]. It has been shown to play an important role 

in the brain [72-76], particularly, in neuronal migration and neuronal differentiation [77-

79]. More so, MEF2C in plays a role in neural crest formation during development, 
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where tissue-specific inactivation of the gene results in embryonic lethality [80]. 

Further, MEF2 interacts with oxytocin, which is affiliated with prosocial behaviours [81, 

82]. Alterations to oxytocin have been shown to change the morphology of neurons 

via MEF2A [83, 84]. Functional roles of the gene in relation to early neuronal 

development still remain unclear, however it is thought to play a crucial role [85].  

Three CpG sites from the gene ASH2L (ASH2 like histone lysine methyltransferase 

complex subunit) were also found to display differential methylation in response to in 

utero tobacco exposure and CP. ASH2L has been found to interact with MEF2C to 

mediate changes in histone 3 lysine 4 trimethylation (H3K4me3 [86]). Recent research 

in animal models suggests that nicotine-dependent induction of the ASH2L and 

MEF2C complex during development induces alterations that could lead to 

fundamental changes in the brain. These consist of dendritic branching and 

hypersensitive passive avoidance behaviour which is a consequence of 

developmental nicotine exposure [86]. Our findings support this hypothesis by 

providing molecular evidence of CpG site alterations in these genes via in utero 

tobacco exposure in individuals with high CP score.  

However, these sites were not differentially methylated in response to CP vs non-CP 

alone (Model 2, Table 4.7), suggesting that DNA methylation changes in 

developmental genes are both induced by maternal tobacco use during pregnancy, 

and involved in pathways in development of CP phenotypes. Further, the persistence 

of specific in utero related DNA methylation changes into adulthood, as identified here, 

indicates that methylation differences at these genes may be induced during 

development and stable over the life course, potentially indicating the presence of 

metastable epialleles within these genes.   

Although adult smoking status was the only other variable able to control for in this 

study we cannot account for many other confounding variables when assessing in 

utero effects. Other genetic factors such as sex and ethnicity, as well as social 

interactions of economic status are all confounding variables. Ideally, this study should 

be repeated in a larger cohort to further for assess these confounding variables on in 

utero tobacco exposure.  
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5.4.6 Overall hypomethylation found  

 

When average DNA methylation across all CpG sites investigated (280) differences 

were found between the different variables. The most significant differences was in 

the in utero exposed group with a Bonferroni corrected value of P= 5.15E-06. 

Hypomethylation was displayed within this group. These finding lead to the question, 

if we were to conduct a genome wide assessment of in utero exposure would we see 

this same result as seen in the preselected 10 genes? To further this observation, a 

genome-wide approach should be used to investigate the overall differences of 

methylation, as this may provide additional useful information at the genome-wide 

level, both supporting and expanding on the findings reported here. We also detected 

overall methylation differences in response to adult smoking status (P= 0.02252), 

however this did not pass Bonferroni correction.  This implies that the DNA methylation 

we observe within this panel of genes is more likely to be driven by the in utero 

environment, rather than adult smoking status, highlighting the importance of 

developmentally-induced DNA methylation changes to offspring phenotypes.    

 

5.4.7 Significance 

 

It is widely known that tobacco smoking has significant genome-wide effects on DNA 

methylation. Thus here, we asked whether tobacco smoking during pregnancy 

affected offspring DNA methylation in the CHDS cohort. As chemical compounds in 

tobacco are so harmful to an adult [87], we hypothesised that these same chemicals 

would also be having an impact on offspring, if smoking continued throughout 

pregnancy. What we were unsure of, was if these effects in utero could still be detected 

in individuals as adults. Some CpG sites showing differential DNA methylation effects 

due to tobacco smoke have been found to be reversible over time, or somewhat 

reformed [88], however, here we present preliminary data which suggests that 

developmentally-induced DNA methylation changes can persist into adulthood.   

While adult smoking status was able to be controlled for in this study, we were not able 

to control for many other confounding variables.  This can be problematic, as other 

genetic factors such as sex and ethnicity, as well as social interactions of economic 

status can all play a role in variability of results. Secondhand smoke throughout one’s 
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lifetime can also cause changes to DNA methylation. Whether these differences are 

in fact integrated into the genome in utero, or acquired during development in 

childhood or adolescence, is unknown. However, this is something which we are 

unable to address in our cohort, as the cohort only consists of adult DNA samples. 

Several studies, however, are now addressing this and taking samples of newborn 

cord blood or placenta tissues [20, 89-91] and will take further samples throughout 

childhood to account for secondhand smoke as a variable. Ideally, taking multiple 

blood samples beginning at birth, throughout childhood and into adulthood will provide 

the best study design for eliminating secondhand smoke, and other childhood 

exposures, as a variables.  

The frequency of maternal smoking during pregnancy in New Zealand, as of 2010, 

was estimated to be 18.4% [7].  This is a substantial proportion of pregnancies, and 

this research will serve to increase our knowledge base around the risk of such 

activities, most of which are preventable risks [1]. Given the prevalence of maternal 

tobacco use, it is a very important health issue in today’s society.  Providing a 

molecular link between maternal tobacco use and an adverse phenotypic outcome is 

therefore highly valuable, as this research will directly contribute to prevention 

methods, via early identification of at-risk individuals, and timely behavioural 

interventions. 

While this study focuses on maternal tobacco use, it is also a model for a variety of 

other exposures. For instance, maternal tobacco smoking is an extreme exposure, but 

more importantly there are various other maternal lifestyle factors that can cause 

differences in the epigenome of offspring [92, 93].  For example, nutrition [92], sugar 

[94], caffeine [95], alcohol [96] and cannabis [97] intake may all affect the epigenome 

of the developing offspring [98]. Thus, although these findings provide interesting 

observations, it further re-iterates the complexity of environmental exposures on DNA 

methylation, particularly as many of these environmental exposures will co-occur. 

Since there is not one distinct gene or CpG site showing a highly significant difference 

between exposed and control groups, it is still very difficult to understand precisely 

how DNA methylation may be contributing to the development of CP. However, by 

investigating specific genes, or regions within genes, we are able to offer support for 

the role of DNA methylation in the observed link between maternal tobacco use during 

pregnancy and development of CP in exposed offspring.     
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5.5 Chapter summary 

 

 Maternal tobacco smoking during pregnancy is still prevalent within the New 

Zealand population, and it has been associated with in an increased risk of 

adverse outcomes for exposed offspring.  

 Nominal significance was found in response to in utero exposed vs non-

exposed, Low CP vs high CP and adult smoking vs non-adult smokers. 

 Our preliminary data suggests that there may be an association between 

maternal tobacco use during pregnancy and the development of CP in children 

and adolescents. 

 We acknowledge the limitations of this study and the data presented here are 

suggestive of a role for DNA methylation in the link between in utero tobacco 

exposure and offspring CP.  

 Our findings should stimulate further study using a larger sample size, 

preferably with analysis at the genome-wide level. 
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Chapter 6 
 

6. Genome wide methylation analysis of in utero tobacco exposure and risk of conduct 

disorder in adolescence  

 

6.1 Introduction 

 

In Chapter 5, we used a targeted approach to quantify DNA methylation (bisulfite -

based amplicon sequencing, BSAS), and we demonstrated differential DNA 

methylation that was specific to the interaction between individuals exposed to tobacco 

in utero, and the risk of conduct problem (CP) in childhood and adolescence.  

Specifically, a total of seven CpG sites were found to be nominally significantly 

differentially methylated in individuals who were exposed to tobacco in utero, and who 

had high CP scores. These CpG sites resided in six different genes, which all have 

roles in neurodevelopment and CP phenotypes. The in utero effects of tobacco 

exposure and the manifestation of CP later in childhood and adolescence have been 

described previously [1, 2]. However, a molecular mechanism between the two has 

not been established. Our pilot data suggested that DNA methylation could play a role 

in the association between maternal tobacco use during pregnancy and the 

development of CP. However, this highly targeted study displayed nominal 

significance at a handful of pre-selected genes. Here, we further investigate this 

association by employing a genome-wide approach (the Illumina EPIC array), applied 

to a new subset of the Christchurch Health and Development (CHDS) cohort, to probe 

genome-wide DNA methylation changes that are specific to individuals exposed to 

tobacco in utero with high CP scores.  

The EPIC array tool, while expensive, does have its advantages – data obtained via 

EPIC arrays is highly reproducible [8]., meaning that raw data obtained in previous 

studies can be included in new analyses, allowing array data to be used to answer a 

further hypothesis. Although, this is also highly beneficial because increasing sample 

size will also increase statistical power to detected genome-wide associations. Thus, 

individuals that were used for analyses in Chapter 2, are combined with new array 

data in analyses here, along with their in utero tobacco exposure and CP score 

phenotypes.  
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Analysis at the genome-wide level allows the further exploration of DNA methylation 

differences due to tobacco exposure in utero. The additional sub-grouping of people 

with low and high CP scores allows us to build on our previous analysis into the 

interaction between in utero tobacco exposure and high CP score. Although further 

investigation of our pilot data using a similar sample size will still be bound by the same 

caveats as stated in Chapter 5 (e.g whole blood sampling, and limited covariate 

adjustments), here, we now ask if in utero tobacco exposure changes DNA 

methylation at the genome-wide level, where they are in the genome, and whether 

these changes associate with CP score. To further interrogate DNA methylation at the 

whole genome level and investigate whether we can detect differentially methylated 

regions rather than sole CpG sites. These findings are an important advance on the 

previous chapter, because differentially methylated regions are possible drivers of 

further downstream molecular changes, such as genes expression changes, histone 

modifications and chromatin confirmation [3, 4], all of which can lead to adverse health 

outcomes [5-7] . Therefore, identification of differentially methylated regions in 

response to in utero tobacco exposure will allow novel exploration of how exposure 

may be leading to disease (CP) in later life. 
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6.2 Methods 

 

6.2.1 Study design 

 

To utilise the maximum number of individuals for this analysis, here we utilise raw data 

from individuals from Chapter 2 (2016/2017 data, Table 6.1) if the maternal tobacco 

status during pregnancy and the individual CP score was known), along with newly 

acquired EPIC array data specific to this Chapter (2020, Table 6.1). 

Of the cohort of individuals from Chapter 2 a total of N= 19 were exposed to tobacco 

in utero to tobacco and are non-smokers, N= 22 were exposed to tobacco in utero and 

are adult smokers, and a further N= 42 were not exposed to tobacco in utero and were 

non-smokers. These individuals were then combined with a further N=18 individuals 

who were sampled in 2020, to assess in utero tobacco exposure and its risk with 

conduct problems at the genome-wide level.  

 

Table 6.1 EPIC array samples used in this study based upon year of measurement each were placed 

into the following sub groups, in utero exposed non-smokers, in utero exposed smokers, non-exposed 

in utero non-smokers and non-exposed in utero smokers.   

 

 in utero exposed 

non-smoker 

in utero exposed 

smoker 

in utero non-

exposed non-
smoker 

in utero non-

exposed 
smoker 

2016  12 6 28 - 

2017 7 16 14 8 

2020 7 1 10 - 

Total 26 23 52 8 

 

The final cohort for analysis (Table 6.2) comprises N= 109 individuals, N= 49 of which 

were exposed to tobacco in utero, and N= 60 are non-exposed controls. A subset of 

individuals who were exposed to tobacco in utero, who are also tobacco smokers 

themselves (N= 23) were included to control for lifetime tobacco exposure. A total of 

eight individuals who were not exposed in tobacco in utero who are adult smokers 

were also included in this study, which was a subgroup unable to be included in 

Chapter 5, which was a major limitation that we are able to address here. Subgroups 
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of CP low and CP high scored individuals were included for each of the in utero status 

groups. Diagnosis of CP is described in detail in section 5.1.1. 

 

Table 6.2 Cohort characteristics of the in utero maternal tobacco exposed group and their matched 

controls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.2.2 DNA samples 

 

All samples from Table 6.2 were prepared as per the DNA extraction protocol in 

section 2.2.3. Briefly, the 2020 samples were taken from whole blood samples and 

DNA extractions were conducted using the Kingfisher Flex System (Thermo Scientific, 

Waltham, MA USA), as per the published protocols. DNA was quantified via 

NanoDropTM (Thermo Scientific, Waltham, MA USA) and standardised to 100ng/l. 

Equimolar amounts were shipped to the Australian Genomics Research Facility 

(AGRF, Melbourne, VIC, Australia) for processing via the Infinium® Methylation EPIC 

 in utero  maternal tobacco 
exposed 

N= 49 

in utero non-exposed 
N= 60 

Sex 

Male 
Female 

 

36 
13 

 

46 
14 

Paternal socioeconomic 
status 

1 
2 
3 

 
 

3 
21 
25 

 
 

13 
30 
17 

Adult tobacco smoking 

status 
Never smoker 
Regular smoker 

 

 
26 
23 

 

 

 
52 
8 

 

Adult cannabis use status 
 

Never user 
Regular user 

 
 

 
18 
31 

 
 

 
39 
21 

Conduct problem score 
(CP)  

Low CP (< 46) 

High CP (> 53) 

 
 

26 

23 

 
 

41 

19 
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BeadChip (Illumina, San Diego, CA USA). With 8 samples being organised onto one 

chip. 

 

6.2.3 Data processing 

 

Analysis was carried out in R statistical software (Version 3.5.2). Quality control and 

data was processed via the protocols established in 2.2.4. Sex chromosomes and a 

total of 90 failed probes (detection P value of 0.01 in at least 50% of samples) were 

excluded from the analysis. CpG sites known to be problematic with adjacent SNVs or 

which did not map to a location in the genome were also excluded  [8]. Leaving a total 

of 699,916 CpG sites for further analysis. Pre-processing was also performed using 

the noob, swan and Illumina normalisation methods. Normalisation was then visually 

inspected for performance using beta density distribution plots and Multi-dimensional 

scaling of the 5,000 most variable CpG sites.  

 

6.2.4 Statistical analysis 
 

Hierarchical regression was used to investigate the best linear model to be fitted to the 

methylated/unmethylated or M ratios (Table 6.3). Baseline models (Model 1, 4, 8, 10) 

were corrected for the following variables: i) year of sampling (3 levels), and; ii) 

population stratification (four principal components from 5000 most variable SNPs). 

Further models included combinations of the variables tobacco status (bivariate), sex 

(bivariate), socioeconomic status (three levels) (Model 2,5,7), cannabis status 

(bivariate), conduct problem (bivariate) and in utero tobacco smoking status (bivariate) 

(Model 3,6,9). Q-Q plots of the residuals were also used to compare lambda values 

for over-inflation.  

  



176 
 

 

Table 6.3 Hierarchical regression models which were used to investigate differences between each of 
the variables assessed in this study. CP- Conduct Problems, IU- In utero exposed to tobacco, PC- 

Principal  Components, SES- Socioeconomic status. 

 

Variable  Model Multiple regression equation 

CP Model 1  Y ~ CP + Year + PC + e 

CP Model 2 Y ~ CP + Year + PC + SES + Smoking  + Sex + e 

CP Model 3 Y ~ CP + Year + PC + SES + Smoking  + Sex + IU + cannabis+  e 

IU Model 4 Y ~ IU + Year + PC + e 

IU Model 5 Y ~ IU + Year + PC + SES + Smoking  + Sex + e 

IU Model 6 Y ~ IU + Year + PC + SES + Smoking  + Sex + CP + Cannabis + e 

IU:CP Model 7 Y ~ IU + CP + Year + PC + SES+ + Smoking + Sex + IU:CP + e 

IU:CP Model 8 Y ~ IU + CP + Year + PC + IU:CP + e 

IU:CP Model 9 Y ~ IU + CP + Year + PC + SES + Smoking  + Sex + Cannabis IU:CP + 

e 

Adult 
tobacco 
smoking 

status 

Model 10 Y ~ Smoker + Year + PC + e 

 

 

Linear regression models used to generate the top tables of differentially methylated 

CpG sites were correct for multiple testing using Benjamini-Hochberg (BH). 

Differentially methylated CpG sites that were intergenic were matched to the nearest 

neighbouring genes within the Hg19 using Granges default settings [9]. The official 

gene symbols of all significantly differentially methylated CpG sites 

(nominal P < 0.001) for 1) in utero tobacco exposure, 2) CP and 3) in utero tobacco 

exposure with the interaction of CP were tested for enrichment in KEGG 2019 human 

pathways with EnrichR [10] and ggplot package (Version 3.3.2)  was used to construct 

all dotplot graphs [11]. 
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6.3 Results 

 

6.3.1 Data pre-processing 

 

Following the critical analysis of individual normalisation methods in Chapter 2, the 

same evaluation of pre-processing methods was conducted for this analysis. 

Specifically, the pre-processing methods noob, swan and Illumina were all fitted to the 

data. The data in its raw form is displayed as a beta density plot (Figure 6.1), which 

confirms that a batch effect is present amongst array batches in our data. The 2020 

samples are more congruent with the 2017 samples than the 2016 measurements 

(Figure 6.1). 

 

 

 

Figure 6.1 The raw density distributions plotted by year of Illumina EPIC array measurement. 2020 

samples are shown in purple, and are distributed between the 2016 (green) and 2017 (orange) 

samples previously collected and analysed in Chapter 2. 



178 
 

Normalisation was then trialled with a range of different pre-processing tools. In 

support of our findings from Chapter 2, the density plot produced using the pre-

processing tool noob indicates that it has successfully normalised the data to correct 

for the batch effect (Figure 6.2).  

 

Figure 6.2 Beta density distributions by year of the Illumina EPIC array samples measured by year after 

using the pre-processing method of noob normalisation. 

 

Multidimensional scaling plots were then produced to assess the 5000 most variable 

probes, and was plotted for each of the individuals in the study. Figure 6.3 A) shows 

the raw data, B) is the most variable plots following pre-processing using noob. 
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A 

B 

Figure 6.3: Multidimensional scaling plots of the 5000 most variable CpG positions analysed A) the 

raw data non-normalised and B) post normalisation-using noob. Each of the plots display the 

samples, which were analysed by year. 

 



180 
 

The two plots are grouped by colour depending on the year the samples were 

analysed. In A) the prenormalisation data displayed MDS plot, displays a similarity 

between the 2020 and the 2017 samples with the 2016 samples less aligned.  

Following noob normalisation, the batch effect between the 2016 and the 2017 

samples is corrected, however the same was not seen for the 2020 samples. The 

same difference between the 2016, 2017 groupings and 2020 samples was found 

when using both Illumina and swan pre-processing methods (data not shown). It was 

concluded that the batch effect between these samples was unable to be adjusted for 

with any of the pre-processing methods available. Thus, it was decided to include year 

of sampling in the model as the best way to adequately adjust for this. Therefore, the 

following analyses are based on noob normalisation, but with the addition of the year 

of sampling variable in all models, to ensure adjustment for a batch effect. 

 

6.3.2 Hierarchical clustering  

 

A number of models were fitted to each of the variables of interest with differing levels 

of covariates (Table 6.3): baseline models (1,4,7,10) included year samples were 

analysed to normalise batch effect and four principal components, models 2,5 and 8 

included these covariates with addition of adult smoking status, and models 3, 6 and 

9 included all of the above covariates with the addition of sex and adult cannabis use 

status. Each of models we applied were visualised as a Q-Q plots, with chosen models 

presented in Figure 6.4 and non-used models in Supplementary Figure 6.1. 

  



181 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 



182 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Q-Q plots of each of the chosen models which will be discussed in depth throughout the 

chapter. A) model 1- CP low vs CP high, B) model 4- maternal tobacco exposure vs controls, C) model -
7 maternal tobacco exposure and the interaction of CP. 

 

 

The models used to generate Q-Q plots were calculated with lambda values to infer 

how much inflation each model was producing (Table 6.4). These were then compared 

to the tobacco smoking (model 10), λ=0.818, for validation purposes.  Based on Q-Q 

value, it was determined that the baseline models 1, 4 and 7 were the best to carry 

forward with in our analysis.  
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Table 6.4 All models fitted to the data set based upon the variable or variables of interest and their 
associated lamba values. n.b bolded are the models which were used to generate the results for the 

rest of this chapter. 

 

Variable  Model (Table 6.3) Lamba (Q-Q value) How many CpG 
significant post P value 

adjustments? 

CP Model 1 1.006 0 

CP Model 2 0.936 0 

CP Model 3 0.953 0 

IU Model 4 0.963 4 

IU Model 5 0.957 0 

IU Model 6 0.956 0 

IU:CP Model 7 1.046 0 

IU:CP Model 8 1.031 0 

IU:CP Model 9 1.170 0 

Adult tobacco smoking 
status 

Model 10 0.818 2 

 

 

Following the fitting of the above models (Table 6.4), we assessed the robustness of 

our estimates by comparing data of differential DNA methylation to our previous EPIC 

array study. To do this we generated top differentially methylated CpG sites in 

response to adult tobacco smoking status (model 10) (Supplementary Table 6.1) and 

then directly compared those tables to tobacco cannabis top tables (Table 2.5 in 

Chapter 2) . The top two differentially methylated sites in Supplementary Table 6.1 

were AHRR (cg05575921) and F2RL3 (cg03636183), which both remained significant 

at the genome-wide level after P value adjustment. These two sites were ranked in 

Chapter 2 (Table 2.5) as the 1st and 4th most significantly differentially methylated CpG 

sites in that analysis. The agreement between analyses provides evidence that the 

addition of year into the model has combatted the batch effect displayed in Figure 6.3.  
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6.3.3 Genome wide alterations from in utero tobacco exposure on offspring 

 

Following hierarchical clustering, model 4 (Table 6.3) was chosen to be fitted to the 

data. Results of this analysis identified significant differential DNA methylation 

between individuals exposed to tobacco in utero compared to the non-exposed control 

group.  

Top tables of the most significant CpG sites were then constructed; the top 10 CpG 

sites are displayed in Table 6.5. Within this group, the top four CpG sites were found 

to display P value significance following BH adjustment. These four sites resided in 

three genes, MYOG1 (7.4%) two sites in FRMD4A (5.1 and 4.6%) and RTN1 (3.1%). 

At all four of these CpG sites methylation differences decreased, showing 

hyopmethylation in response to in utero tobacco exposure. The most differentially 

methylated site in MYOG1 (cg04180046) has a methylation difference of 7.4% in the 

in utero exposed group compared to the non-exposed controls (Table 6.5 and Figure 

6.5). The same trend is observed in the other remaining top CpG sites with a tendency 

towards hypomethylation in the exposed group. The observation is further illustrated 

by scatter plots of the top four most significant CpG sites in Figure 6.4. These three of 

these four sites have all previously been shown to be hypermethylated in response to 

in utero tobacco exposure.  

Pathway analysis was then conducted on nominal P value significant CpG sites of less 

than 0.01 within genes. Table 6.6 displays the pathways that were found to be 

significant after BH adjustment, with a total of 39 pathways shown to be enriched within 

the differentially methylated CpG sites. Analysis of these pathway showed that a total 

of 14 of the 39 pathways played specific roles in signalling function. Other pathway 

implications include hormone related functions, cancer and immune response. 
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Table 6.5 Top 10 most differentially methylated CpG sites in response to in utero maternal tobacco exposure in offspring, Beta values with P values, nominal 
and adjusted by the Benjamini and Hochberg method. Locations are relative to hg19 with gene names for overlapping genes or nearest 5ʹ gene with distance 

to the 5ʹ end shown. Missing UCSC locations are from new probes on the EPIC array, which have not yet been included in the UCSC annotation tracks.. 

 

Illumina ID Gene Chr Position in 
gene 

UCSC Location in utero 
exposed  

Non-
exposed 

 

β difference Log FC Nominal 
P value 

Adjusted 
P value 

cg04180046 MYO1G 7 Body chr7:45002111-45002845 0.587 0.512 0.074 0.072 6.01E-08 0.038 

cg15507334 FRMD4A 10 TSS200 chr10:14372914 -14372914 0.648 0.597 0.051 0.047 1.21E-07 0.038 

cg01604380 RTN1 14 Body chr14:60336951-60337461 0.249 0.217 0.031 0.030 1.66E-07 0.038 

cg25464840 FRMD4A 10 TSS200 chr10:14372911-14372911 0.755 0.708 0.046 0.043 2.41E-07 0.042 

cg06284231 CLEC14A 14 1st Exon chr14:38724254-38725537 0.183 0.160 0.022 0.021 1.84E-06 0.257 

cg05009104 MYO1G 7 Body chr7:45002111-45002845 0.798 0.740 0.057 0.054 2.50E-06 0.258 

cg15433297 PKHD1L1 8 1st Exon chr8:110374552-110374793 0.345 0.322 0.023 0.023 2.78E-06 0.258 

cg12282552 LTBP3 11 Body chr11:65321225-65321823 0.553 0.514 0.039 0.041 2.95E-06 0.258 

cg06671242 PRSS23 11 Body 0.836 0.804 0.031 0.031 4.35E-06 0.338 

cg11866719 RTN1 14 Body chr14:60336951-60337461 0.528 0.481 0.046 0.04 5.89E-06 0.370 
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Figure 6.5 The top four CpG sites differentially methylated due to in utero maternal tobacco exposure,  
these sites resided in genes MYO1G, RTN1 and two sites in FRMD4A.  
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Table 6.6 KEGG pathway analysis on nominally significant (P < 0.01) CpG sites differentially methylated 
between individuals exposed to tobacco in utero and non-exposed individuals. All KEGG pathways 

included here have significant adjusted P values (adjusted P < 0.05). 

Name P value Adjusted 

P value 

Odds 

Ratio 

Combined 

score 

Focal adhesion 4.30E-07 0.0001 1.81 26.57 

ErbB signalling pathway 5.13E-06 0.0005 2.15 26.23 

Glutamatergic synapse 3.92E-06 0.0006 2.00 24.84 

Phospholipase D signalling pathway 7.09E-06 0.0005 1.84 21.78 

Axon guidance 7.59E-06 0.0004 1.75 20.60 

Vibrio cholerae infection 0.0002 0.0057 2.22 18.65 

B cell receptor signalling pathway 0.0001 0.0048 2.03 17.81 

Insulin secretion 0.0001 0.0048 1.94 17.17 

Rap1 signalling pathway 3.09E-05 0.0015 1.64 17.06 

Calcium signalling pathway 5.34E-05 0.0023 1.65 16.26 

T cell receptor signalling pathway 0.000276 0.0060 1.81 14.85 

MAPK signalling pathway 6.59E-05 0.0025 1.5 14.49 

Wnt signalling pathway 0.0002 0.0059 1.65 13.96 

Neurotrophin signalling pathway 0.0003 0.0071 1.72 13.62 

Cushing syndrome 0.0002 0.0061 1.65 13.59 

Fc gamma R-mediated phagocytosis 0.0009 0.0160 1.77 12.24 

Choline metabolism in cancer 0.0009 0.0160 1.74 12.12 

Cortisol synthesis and secretion 0.0016 0.0193 1.88 12.05 

Ras signalling pathway 0.0003 0.0073 1.51 11.96 

Oxytocin signalling pathway 0.0007 0.0132 1.00 11.52 

GnRH signalling pathway 0.0014 0.0185 1.73 11.31 

Prostate cancer 0.0013 0.0187 1.72 11.28 

Gastric acid secretion 0.0024 0.0258 1.78 10.68 

Adherens junction 0.0030 0.0312 1.77 10.27 

Type II diabetes mellitus 0.0049 0.0414 1.93 10.23 

Thyroid hormone signalling pathway 0.0019 0.0222 1.63 10.14 

Insulin resistance 0.0021 0.0237 1.64 10.09 

Regulation of actin cytoskeleton 0.0010 0.0168 1.48 10.08 

Proteoglycans in cancer 0.0011 0.0172 1.49 10.05 

Chemokine signalling pathway 0.0016 0.0199 1.49 9.57 

Aldosterone synthesis and secretion 0.0034 0.0343 1.64 9.31 

Colorectal cancer 0.0039 0.0382 1.68 9.27 

Cholinergic synapse 0.0040 0.0375 1.59 8.74 

HIF-1 signalling pathway 0.0047 0.0418 1.61 8.61 

Inflammatory mediator regulation of TRP channels 0.0047 0.0406 1.61 8.61 

Amoebiasis 0.0050 0.0406 1.62 8.57 

Pathways in cancer 0.0013 0.0187 1.29 8.51 

Gap junction 0.0055 0.0417 1.64 8.51 

Arrhythmogenic right ventricular cardiomyopathy 
(ARVC) 

0.0066 0.0457 1.70 8.49 
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6.3.4 DNA methylation analysis of low CP compared to high CP scored individuals 

 

Model 1 was fitted to the normalised array data to investigate DNA methylation 

analysis on low CP compared to high CP scored individuals. Here, no adjusted P value 

significance was seen at any of the CpG sites (Table 6.7), however nominal 

significance was observed. Top tables were generated for the 10 most nominally 

significant CpG sites (Table 6.7). Two CpG sites in the top 10 most nominally 

significant sites resided within the same gene, PDE9A. There are two CpG sites that 

have no known gene association (cg06632577 and cg17695791) and we present 

these as novel findings. The top three nominally significant loci display 

hypomethylation in the high CP group compared to the low CP group (Table 6.7 and 

Figure 6.6). In comparison to the tobacco exposed in utero top 10 CpG sites (Table 

6.5), the methylation differences were smaller, with all CpG sites in the top 10 

displaying less than 1.7% differential DNA methylation. 

 

The top four most nominally significant CpG sites are plotted in Figure 6.6. One CpG 

site, cg20474266, which resides in the gene STEAP1B, displayed an increase in 

methylation in the high CP group. The top four observed CpG sites show a consistent 

pattern of variability in the range of methylation values for each of the individuals.  

 

KEGG pathway analysis was carried out on CpG sites within genes (or annotated to 

the nearest gene), which displayed nominal P value significance of less than 0.01 to 

assess for KEGG pathway enrichment. A total of 48 pathways were identified as 

enriched in the comparison of high CP vs. low CP (Table 6.8). Within the pathways 

that showed adjusted P value significance (N= 10), five have specific roles in the brain 

(cholinergic synapse, axon guidance, cGMP-PKG signalling pathway, GABAergic 

synapse and glutamatergic synapse). One pathway, calcium signalling pathway, plays 

multiple roles in muscle contraction, neuron signalling and fertilisation. The remaining 

three pathways (adrenergic signalling in cardiomyocytes, insulin secretion and type II 

diabetes mellitus) all rely upon calcium signalling processes for proper function. 
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Table 6.7 Top 10 differentially methylated CpG sites in response to low CP compared to high CP. Beta values with P values, nominal and adjusted by the 
Benjamini and Hochberg method. Locations are relative to hg19 with gene names for overlapping genes or nearest 5ʹ gene with distance to the 5ʹ end shown. 

Missing locations are from new probes, which have not been properly annotated. 

 

Iluminia ID Gene Chr Position in gene Location Low 
CP 

High 
CP 

β 
difference 

Log 
FC 

Nominal 
P value 

Adjusted 
P value 

cg20218460 LRRFIP1 2 Body chr2:238583504-238583504 0.039 0.038 -0.001 -0.006 

 

1.18E-05 0.992 

cg05064509 EYA2 20 Body 0.947 0.935 -0.011 -0.008 
 

3.39E-05 0.992 

cg06632577 10 
  

0.948 0.936 -0.012 -0.008 
 

3.93E-05 0.992 

cg20474266 STEAP1B 7 Body 0.055 0.069 0.014 0.014 

 

4.02E-05 0.992 

cg11570752 PDE9A 21 Body 0.099 0.151 0.051 0.077 
 

4.06E-05 0.992 

cg15495039 BAG4 8 TSS1500 chr8:38033408-38034643 0.037 0.043 0.005 0.008 
 

4.60E-05 0.992 

cg01036746 C14orf37 14 TSS1500 chr14:58618291-58619220 0.062 0.073 0.011 0.009 
 

4.69E-05 0.992 

cg04916741 PDE9A 21 5'UTR 0.941 0.926 -0.014 -0.009 

 

4.70E-05 0.992 

cg17695791 11 
 

chr11:91913958-91913958 0.862 0.844 -0.017 -0.024 
 

4.77E-05 0.992 

cg03935183 GATA3 10 Body chr10:8100384-8100768 0.945 0.932 -0.012 -0.010 
 

5.11E-05 0.992 
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Figure 6.6 The top four CpG sites differentially methylated between high CP and low CP scored 

individuals. CpG sites resided in genes LRRFIP1, EYA2 and STEAP1B, and one site, cg06632577 had 

no known gene association.
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Table 6.8 KEGG pathway analysis of CpG sites differentially methylated (nominal P < 0.01) in low CP 

vs high CP. 

 

Name P value Adjusted 
P value 

Odds 
Ratio 

Combined 
score 

Cholinergic synapse 3.23E-06 0.0004 2.36 29.86 

Axon guidance 1.65E-06 0.0005 2.07 27.62 

Type II diabetes mellitus 0.0001 0.009 2.78 24.47 

cGMP-PKG signalling pathway 1.48E-05 0.001 2.00 22.3 

Calcium signalling pathway 2.6E-05 0.001 1.91 20.13 

GABAergic synapse 0.0001 0.009 2.21 19.01 

Insulin secretion 0.0007 0.029 2.08 14.95 

Adrenergic signalling in cardiomyocytes 0.0006 0.027 1.82 13.46 

Gastric acid secretion 0.002 0.060 2.05 12.56 

Glutamatergic synapse 0.001 0.042 1.87 12.33 

Parathyroid hormone synthesis, secretion 

and action 

0.002 0.057 1.85 11.15 

Platelet activation 0.002 0.056 1.79 10.95 

Thyroid hormone synthesis 0.004 0.088 1.96 10.55 

Morphine addiction 0.003 0.079 1.88 10.42 

PI3K-Akt signalling pathway 0.001 0.043 1.47 9.79 

Progesterone-mediated oocyte maturation 0.004 0.087 1.81 9.65 

Long-term depression 0.008 0.122 1.99 9.52 

Hippo signalling pathway 0.003 0.071 1.65 9.46 

AMPK signalling pathway 0.005 0.101 1.71 8.74 

beta-Alanine metabolism 0.023 0.194 2.20 8.27 

Aldosterone synthesis and secretion 0.009 0.127 1.74 8.18 

Aldosterone-regulated sodium 
reabsorption 

0.024 0.196 2.08 7.72 

Dopaminergic synapse 0.009 0.124 1.63 7.61 

Ras signalling pathway 0.007 0.121 1.47 7.12 

TGF-beta signalling pathway 0.015 0.173 1.71 7.08 

Oxytocin signalling pathway 0.010 0.135 1.56 7.05 

MAPK signalling pathway 0.007 0.120 1.42 6.95 

Circadian entrainment 0.016 0.170 1.67 6.85 

Viral carcinogenesis 0.010 0.136 1.49 6.75 

C-type lectin receptor signalling pathway 0.017 0.171 1.64 6.66 

Insulin signalling pathway 0.016 0.171 1.56 6.43 

Choline metabolism in cancer 0.020 0.195 1.64 6.38 

Phosphatidylinositol signalling system 0.020 0.189 1.64 6.38 

cAMP signalling pathway 0.014 0.167 1.45 6.17 

Focal adhesion 0.015 0.175 1.46 6.09 

Serotonergic synapse 0.021 0.194 1.59 6.09 

Cysteine and methionine metabolism 0.042 0.254 1.82 5.71 

Phospholipase D signalling pathway 0.022 0.198 1.50 5.68 

Retrograde endocannabinoid signalling 0.022 0.193 1.50 5.68 

Thyroid hormone signalling pathway 0.027 0.215 1.54 5.53 

TNF signalling pathway 0.030 0.220 1.55 5.43 

Adherens junction 0.038 0.245 1.66 5.41 

Relaxin signalling pathway 0.028 0.213 1.51 5.38 

Fc gamma R-mediated phagocytosis 0.034 0.234 1.59 5.38 

Pancreatic secretion 0.034 0.234 1.57 5.26 

Th1 and Th2 cell differentiation 0.037 0.246 1.58 5.17 

Oocyte meiosis 0.033 0.237 1.50 5.11 

Glycerolipid metabolism 0.048 0.272 1.68 5.08 
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6.3.5 In utero tobacco exposure and the interaction with CP 

 

Model 7 was used to investigate genome-wide differential methylation specific to the 

interaction between in utero tobacco exposure and CP score (high CP and low CP). 

Top tables of the most significantly differentially methylated CpG sites were 

constructed, with the top 10 CpG sites displayed in Table 6.9. No CpG sites were 

found to be significant after adjustment for multiple testing. Within the top 10 CpG sites 

there is a clear bias towards hypomethylation, with nine CpG sites displaying a 

decrease in methylation. The differences between the b0 and the b1 variables under 

the interaction are all minor, with less than 1.2%. By comparison, differential 

methylation between individuals exposed to tobacco in utero, and unexposed controls 

(Table 6.5) were all greater than 2.2%.  

 

The top four most differentially methylated sites under this interaction are plotted in 

Figure 6.7. Scatter plots, overlaid with box are fitted to the four sub categories, non- 

exposed low CP, non-exposed high CP, in utero exposed low CP and in utero exposed 

high CP. Each of the four sub categories here has a range of methylation values for 

the individuals within the group. The main difference is that of the non-exposed high 

CP vs the exposed high CP, which are shown to be differentially methylated in each 

of the four CpG sites displayed.  

 

KEGG pathway analysis was conducted on the nominally significant CpG sites (P < 

0.01) within gene or near to genes (Table 6.10). One KEGG pathway, small lung 

cancer, reached an adjusted P value of significance (adjusted P = 0.0307). There were 

19 other pathways that were nominally significantly enriched under the interaction 

model.  
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Table 6.9 Differentially methylation CpG sites between in utero maternal tobacco exposure and the interaction with CP Beta values with P values, nominal and 
adjusted by the Benjamini and Hochberg method. Locations are relative to hg19 with gene names for overlapping genes or neares t 5ʹ gene with distance to the 

5ʹ end shown. Missing locations are from new probes, which have not been properly annotated. 

 

 

 

 

 

Illumina 
ID 

Gene Chr Position in 
gene 

Location In utero 
maternal 

tobacco 
exposed 
low CP 

In utero 
maternal 

tobacco 
exposed 
high CP 

β difference Log FC Nominal 
P value 

Adjusted P 
value 

cg13339919 SLC10A7 4 Body 0.947 0.943 -0.003 -0.014 1.08E-06 0.755 

cg01394525 LAMC3 9 Body chr9:133901745-133901956 0.912 0.912 -0.0004 -0.021 5.62E-06 0.974 

cg13787134 PHF2 9 Body chr9:96362103-96362103 0.941 0.935 -0.005 -0.017 6.39E-06 0.974 

cg12163448 FASTKD1 2 TSS200 chr2:170430473-170430473 0.136 0.166 0.030 0.0758 9.91E-06 0.974 

cg17343033 5 
  

0.886 0.872 -0.014 0.031 1.39E-05 0.974 

cg09125477 C16orf91 16 Body chr16:1470502-1471164 0.106 0.105 -0.0003 -0.034 1.95E-05 0.974 

cg24835473 CHCHD6 3 Body 
 

0.933 0.923 -0.009 -0.015 2.20E-05 0.974 

cg25849390 CCT6A 7 Body chr7:56131778-56132226 0.887 0.874 -0.012 -0.033 2.22E-05 0.974 

cg02809796 PCGF3 4 Body chr4:752029-753788 0.920 0.915 -0.005 -0.020 3.31E-05 0.974 

cg13353442 CDC27 17 Body 0.920 0.909 -0.011 -0.022 3.39E-05 0.974 
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Figure 6.7 The top four most significantly differentially methylated (nominal P < 0.01) CpG sites when 

in utero tobacco exposure was assessed with the interaction CP. Non-exposed individuals are plotted 

on the left of each plot, colour coded for either low CP (salmon) or high CP (cyan), with exposed 

individuals on the right. Lines from the non-exposed group to the exposed group represent the median 

methylation between non-exposed and exposed with (salmon) and without (cyan) CP. 
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Table 6.10 KEGG pathway analysis on CpG sites that are nominally significantly differential ly  

methylated in the interaction between individuals exposed to tobacco in utero tobacco and high CP. 

 

Name P value Adjusted 
P value 

Odds 
Ratio 

Combined 
score 

Small cell lung cancer 0.0001 0.037 1.97 17.76 

Morphine addiction 0.001 0.114 1.81 12.31 

Arrhythmogenic right ventricular 
cardiomyopathy (ARVC) 

0.002 0.125 1.86 11.55 

Longevity regulating pathway 0.001 0.119 1.73 11.21 

Regulation of actin cytoskeleton 0.001 0.161 1.51 10.37 

Parathyroid hormone synthesis, secretion and 
action 

0.002 0.128 1.67 9.74 

Chronic myeloid leukaemia 0.004 0.131 1.77 9.63 

Dilated cardiomyopathy (DCM) 0.005 0.113 1.68 8.82 

Fructose and mannose metabolism 0.013 0.167 2.03 8.82 

cAMP signalling pathway 0.002 0.128 1.47 8.79 

Glycosaminoglycan biosynthesis 0.008 0.137 1.84 8.68 

Autophagy 0.004 0.11 1.57 8.53 

Focal adhesion 0.003 0.119 1.47 8.50 

Prostate cancer 0.006 0.120 1.63 8.30 

AMPK signalling pathway 0.005 0.112 1.58 8.20 

Proteoglycans in cancer 0.003 0.130 1.46 8.11 

GABAergic synapse 0.007 0.132 1.64 7.99 

Mannose type O-glycan biosynthesis 0.025 0.234 2.12 7.82 

Endocytosis 0.004 0.111 1.40 7.50 

MAPK signalling pathway 0.004 0.122 1.36 7.41 
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6.3.6 Overall CpG differential methylation between exposure models 

 

Globally the total number of differentially methylated sites with a nominal P value of 

less than 0.01 were scored from each of the model variations assessed (Model 1, 4 7 

and 10, Table 6.11). Model 4 (exposure to tobacco in utero vs. non-exposed controls) 

produced 7228 differentially methylated CpG sites, compared to models 4, 7 and 10, 

which all detected fewer differentially methylated CpG sites.  

 

 

Table 6.11 Overall genome-wide nominally significantly differentially methylated CpG sites for each of 
the variables assessed. Adult smoking status (model 10), tobacco exposure in utero (model 4), Conduct  

problems (model 1) and in utero maternal tobacco exposure and the interaction of CP (model 7). 

 

 Adult smoking 
status (model 10) 

in utero maternal 
tobacco exposed 
(model 4) 

Conduct problems 
(model 1) 

in utero 
maternal 
tobacco 

exposure and 
the interaction 
with CP (model 

7)  

Number of 
differentially 
methylated CpG sites 

(P <0.01) 

4745 7228 3858 5226 
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6.3.7 Assessing differential DNA methylated regions within genes in individuals 

exposed to tobacco in utero, compared to non-exposed controls 

 

Data from models, 1, 4 and 7 were then used to assess differentially methylated 

regions. We defined a differentially methylated region to have the following, a gene 

containing nominally significant P values of less than 0.01 at greater that had five CpG 

sites. There was a threshold cut-off for region size based on the frequency of genes 

that had more than five differentially methylated CpG sites.  

Model 4, tobacco exposure in utero displayed a large number of differentially 

methylated CpG sites. Due to this, differentially methylated regions in genes 

containing seven or more CpG sites are displayed in Table 6.12. Genes containing 

either five or six CpG sites are displayed in appendices (Supplementary Table 6.3). 

Across these regions, a trending pattern of hypermethylation is seen, with eight of the 

genes displayed in Table 6.12 all showing hypermethylation at each cg site in the 

differentially methylated region. Functional analysis of the genes for which we detect 

differentially methylated regions show a vast majority of brain development genes or 

known brain related diseases.  
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Table 6.12 Genes that contain seven or more differentially methylated CpG sites, here defined as 
differentially methylated regions, found between individuals exposed to in utero maternal tobacco 

compared to non-exposed individuals. 

 

Gene Illumina ID Correlation Location CpG 
island 

Functional 
association 

BCL11B cg23479730 
cg13987489 
cg08129129 
cg04162647 
cg15530474 
cg12737475 
cg03205581 
cg26791805 

hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 

chr14:99681758-99681758 
chr14:99664107-99664107 
chr14:99711839-99713431 
chr14:99736040-99737584 
 
 
 
 

Body 
Body 
Body 
Body 
Body 
Body 
Body 
Body 

Neurodevelopment 
[12, 13] 

CAMTA1 cg09068636 
cg08647349 
cg00452133 
cg10349142 
cg09914736 
cg15063687 
cg12710648 
cg26669159 
cg11294564 
cg05233894 

hypo 
hyper 
hyper 
hypo 
hypo 
hyper 
hyper 
hyper 
hypo 
hypo 

chr1:7764593-7765856 
chr1:7439692-7,439692 
chr1:7308117-7308117 
 
 
chr1:7,359,621-7,359,621 
chr1:7,308092-7308092 
chr1:6,967037-6967037 

Body 
Body 
Body 
Body 
Body 
Body 
Body 
Body 
Body 
Body 

Neurobehavioral 
phenotypes [14] 

CASZ1 cg02396224 
cg22849913 
cg24661860 
cg22513691 
cg00787856 
cg13553158 
cg16436377 

hyper 
hypo 
hyper 
hyper 
hyper 
hyper 
hyper 

chr1:10698299-10698910 
chr1:10702136-10702340 
chr1:10,784363-10784363 
chr1:10738,664-10738664 
chr1:10853894-10856964 
chr1:10853894-10856964 
chr1:10725187-10725617 

3'UTR 
Body 
5'UTR 
Body 
TSS1500 
5'UTR 
Body 

Cardiac 
development [15] 

FAM84B cg08568155 
cg16566518 
cg21390512 
cg13636698 
cg06230848 
cg06532751 
cg02925049 
cg03374695 

hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 

chr8:127568676-127570873 
chr8:127568676-127570873 
chr8:127568676-127570873 
chr8:127568676-127570873 
chr8:127568676-127570873 
chr8:127568676-127570873 
chr8:127568676-127570873 
chr8:127568676-127570873 

Body 
Body 
Body 
Body 
Body 
TSS1500 
Body 
3'UTR 

Prostate cancer  
[16, 17] 

FOXP1 cg10715905 
cg07278181 
cg11670533 
cg07324822 
cg14398973 
cg21993077 
cg12423097 
cg27419618 
cg20642055 
cg21458836 

hyper 
hypo 
hyper 
hyper 
hyper 
hyper 
hypo 
hyper 
hyper 
hyper 

chr3:71542871-71542871 
chr3:71293767-71293767 

5'UTR 
5'UTR 
5'UTR 
5'UTR 
5'UTR 
TSS200 
Body 
TSS1500 
Body 
Body 

Autism spectrum 
disorder [18] 
Intellectual disability 
syndrome [19]  

FRMD4A cg15507334 
cg25464840 
cg11813497 
cg14630801 
cg20344448 
cg17538881 
cg17808360 
cg20643833 

hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hypo 
hypo 

chr10:14372914-14372914 
chr10:14372911-14372911 
chr10:14372879-14372879 
 
chr10:14372432-14372432 

TSS200 
TSS200 
TSS200 
5'UTR 
5'UTR 
5'UTR 
Body 
Body 

Alzheimer’s disease 
[20] 

LTBP3 cg12282552 
cg20588859 
cg21547324 
cg19332572 
cg24716530 
cg23743554 

hyper 
hyper 
hyper 
hyper 
hyper 
hyper 

chr11:65321225-65321823 
chr11:65321225-65321823 
chr11:65321225-65321823 
chr11:65321225-65321823 
chr11:65321225-65321823 
chr11:65321225-65321823 

Body 
Body 
Body 
Body 
Body 
Body 

Amylogenesis and 
skeletal 
development [21] 
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cg23272978 hyper chr11:65314912-65315476 Body 
PCDHGA4 cg04637478 

cg21908557 
cg07231479 
cg10917547 
cg07017875 
cg22737624 
cg12145907 

hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 

chr5:140753654-140753952 
chr5:140762401-140762768 
chr5:140794358-140795045 
chr5:140794358-140795045 
chr5:140789094-140789762 
chr5:140750050-140750264 
chr5:140864527-140864748 

Body 
Body 
Body 
Body 
Body 
Body 
Body 

Brain regulation [22]  

PRDM16 cg18240463 
cg09990962 
cg12648819 
cg08262220 
cg12701603 
cg19317333 
cg15156029 

hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 

chr1:3163969-3164643 
chr1:3163969-3164643 
 
chr1:2997272-2997473 
 
chr1:3321269-3322310 
 

Body 
Body 
Body 
Body 
Body 
Body 
Body 

Angiogenesis [23] 
neural stem and 
neuronal cell 
maintenance [24, 
25] 

PRRT1 cg11617964 
cg15194163 
cg12320039 
cg05764839 
cg21398794 
cg25845985 
cg19227031 
cg22268510 

hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 

chr6:32118101-32118544 
chr6:32118101-32118544 
chr6:32118101-32118544 
chr6:32118101-32118544 
chr6:32118101-32118544 
chr6:32118101-32118544 
chr6:32118101-32118544 
chr6:32118101-32118544 

Body 
Body 
Body 
Body 
Body 
Body 
Body 
Body 

Synapse function 
and development 
[26, 27] 

SH2B2 cg17190891 
cg07512361 
cg24707573 
cg01723606 
cg15355015 
cg06785147 
cg05302531 

hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 

chr7:101961741-101962226 
chr7:101943785-101944557 
chr7:101961741-101962226 
chr7:101943785-101944557 
chr7:101943785-101944557 
chr7:101943785-101944557 
chr7:101936317-101936548 

3'UTR 
Body 
Body 
Body 
Body 
Body 
Body 

Insulin signalling 
and glucose 
metabolism [28] 

VENTX cg12554483 
cg22165685 
cg04665423 
cg23845574 
cg14539179 
cg18727936 
cg02645368 
cg04347264 
cg06500714 
cg12666165 
cg07370771 

hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 

chr10:135048797-135052077 
chr10:135048797-135052077 
chr10:135048797-135052077 
chr10:135048797-135052077 
chr10:135048797-135052077 
chr10:135048797-135052077 
chr10:135048797-135052077 
chr10:135048797-135052077 
chr10:135048797-135052077 
chr10:135048797-135052077 
chr10:135048797-135052077 

TSS200 
TSS200 
TSS200 
TSS200 
TSS1500 
TSS1500 
TSS200 
TSS200 
TSS1500 
1s tExon 
TSS1500 

Regulation of 
dendritic cells [29] 
acute myeloid 
leukaemia [30, 31] 
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6.3.8 Detecting differential DNA methylated regions in individuals with high CP 

scores compared to low CP scores. 

 

We detected five genes which displayed multiple differentially methylated CpG sites 

in response to low vs high CP. Four of these gene regions are displayed below in 

Table 6.13 along with the methylation direction change, location and their functional 

annotation. The fifth gene region, not displayed in Table 6.13 PCDHGA4 will be 

discussed further in section 6.3.9.  Functional analysis reveals that two of the four 

genes with differentially methylated regions are associated with brain pathologies that 

are relevant to the CP phenotype. 

 

Table 6.13 Genes for which differentially methylated regions were detected between individuals with a 

low conduct problem score and those with high conduct problem scores. 

 

Gene Illumina ID Correlation Location CpG 
island 

Functional 
association 

CCKBR cg25740457 
cg21112490 
cg13580265 
cg08101193 
cg19364351 

hyper 
hyper 
hyper 
hyper 
hyper 

chr11:6291338-6291558 
chr11:6291338-6291558 
chr11:6292256-6292693 
chr11:6291338-6291558 
chr11:6292256-6292693 

3'UTR 
Body 
Body 
Body 
Body 

Anxiety related 
behaviours [32, 
33] 
 

CPT1B cg08260245 
cg24363820 
cg06530441 
cg16386697 
cg00983520 
cg27502912 
cg00270625 
cg17952465 

hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 
hyper 

chr22:51016253-51017020 
chr22:51016253-51017020 
chr22:51016253-51017020 
chr22:51016253-51017020 
chr22:51016253-51017020 
chr22:51016253-51017020 
chr22:51016253-51017020 
chr22:51016253-51017020 

5'UTR 
5'UTR 
TSS200 
TSS200 
1st Exon 
1st Exon 
1st Exon 
5'UTR 

Post traumatic 
stress disorder 
[34]  

DIP2C cg20684696 
cg10809719 
cg16942135 
cg10441401 
cg15030662 

hypo 
hypo 
hyper 
hyper 
hypo 

chr10:518192-518471 
 
chr10:711896-712395 
chr10:575898-576131 
chr10:575898-576131 

Body 
Body 
Body 
Body 
Body 

Breast and 
lung cancers 
[35, 36] 

PGAM2 cg07075347 
cg16627090 
cg14219560 
cg23616741 
cg17459793 
cg03470754 

hyper 
hyper 
hyper 
hyper 
hyper 
hyper 

chr7:44104746-44105116 
chr7:44104746-44105116 
chr7:44104746-44105116 
chr7:44104746-44105116 
chr7:44104746-44105116 
chr7:44104746-44105116 

1st Exon 
1st Exon 
Body 
TSS1500 
Body 
1st Exon 

Associated with 
glycogen 
storage 
disease type X 
[37] 
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6.3.9 Protocadherin Gamma Subfamily differential methylation between low CP and 

high CP scored individuals 

  

A large region of the genome was found to be differentially methylated between low 

CP and high CP scored individuals. The region spans approx. 130,000bp of 

chromosome 5 (Figure 6.8 A, chr5:140741174-140872335), which is predicted to 

contain any of the following genes: PCDHGA4, PCDHGA1, PCDHGA6, PCDHGA5, 

PCDHGB1, PCDHGA3, PCDHGA2, PCDHGA6, PCDHGB2, PCDHGB3.  The region 

is poorly annotated and highly repetitive, so a specific gene name is unable to be 

assigned to this observed region. In this region, 30 CpG sites were differentially 

methylated (Figure 6.8 B). All sites were hypermethylated and had nominal P values 

of less than 0.01. 
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 B 

Figure 6.8 Chromosome 5:140741174-140872335, located within the gene, protocadherin gamma displayed consistent DNA methylation differences between 

low and high CP individuals. 
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6.3.9 Differentially methylated regions under the interaction of in utero tobacco 

exposure and CP scores 

 

Multiple CpG sites were differentially methylated from the IU:CP interaction in the 

following six genes: CUX1, DIP2C, INPP5A, MAD1L1, PDE4B and PTPRN2 (Table 

6.14), all of which had five or more differentially methylated CpG sites. Five of the six 

genes had roles in brain development and brain pathologies that are directly relevant 

to the CP phenotype. In contrast to the differentially methylated regions in Table 6.12 

and 6.13 hypomethylation is predominantly observed at differentially methylated 

regions detected for this this interaction.  

 

Table 6.14 Genes for which differentially methylated regions were detected via the interaction of in utero 

maternal exposed and CP scored individuals. 

 

Gene Illumina ID Correlation Location CpG 
island 

Functional 
association 

CUX1 
 
 
 

cg02169185 
cg22202558 
cg10141789 
cg07266412 
cg24420432 

hypo 
hyper 
hypo 
hypo 
hypo 

chr7:101,899,429-101,899,429 
chr7:101,500,303-101,500,303 
chr7:101,807,411-101,807,411 
chr7:101,723,522-101,723,522 
chr7:101,518,619-101,518,619 

Body 
Body 
Body 
Body 
Body 

Global 
developmental 
delay [38] 

DIP2C 
 
 
 

cg22869706 
cg05764011 
cg25488288 
cg04854162 
cg12724894 

hypo 
hypo 
hypo 
hypo 
hyper 

chr10:357,285-357,285 
chr10:409201-409523 
chr10:734707-735606 
 
chr10:711896-712395 

Body 
Body 
1st Exon 
Body 
Body 

Breast and lung 
cancers [35, 36] 

INPP5A 
 
 
 

cg21730012 
cg05174943 
cg04391569 
cg11740348 
cg08195412 

hypo 
hypo 
hypo 
hypo 
hypo 

chr10:134477298-134477515 
chr10:134,513,773-134,513,773 
chr10:134595293-134595694 
chr10:134,420,209-134,420,209 
chr10:134,372,696-134,372,696 

Body 
Body 
Body 
Body 
Body 

Cerebellar 
degeneration 
[39] 
Spinocerebellar 
[40] 

MAD1L1 cg17309904 
cg17712928 
cg11994639 
cg23001930 
cg01886004 
cg11824316 

hyper 
hypo 
hypo 
hypo 
hypo 
hypo 

chr7:1,960,073-1,960,073 
chr7:2,124,974-2,124,974 
chr7:1,997,029-1,997,029 
chr7:2,094,478-2,094,478 
chr7:1,923,613-1,923,613 
chr7:1950279-1950482 

Body 
Body 
Body 
Body 
Body 
Body 

Schizophrenia 
[41, 42] Bipolar 
[43, 44] 

PDE4B cg02077669 
cg17726558 
cg15393946 
cg11741987 
cg02288344 

hypo 
hypo 
hypo 
hypo 
hypo 

chr1:66,730,524-66,730,524 Body 
Body 
Body 
TSS1500 
Body 

Neurological 
disorders [45, 
46] 

PTPRN2 cg09193477 
cg05869732 
cg23053506 
cg06094238 
cg03916382 
cg16492510 
cg13486056 

hypo 
hypo 
hypo 
hypo 
hypo 
hypo 
hypo 

chr7:158,188,683-158,188,683 
chr7:158318970-158319172 
chr7:158,075,705-158,075,705 
chr7:157568163-157568404 
chr7:157937614-157937841 
chr7:157560974-157561195 
 

Body 
Body 
Body 
Body 
Body 
Body 
Body 

Frontal temporal 
dementia [47] 
ADHD [48] 
Cocaine 
dependence and 
Major 
depressive 
episode [49] 
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6.4 Discussion 

 

6.4.1 Overall analysis 

 

Within this chapter, we aimed to assess genome-wide differences between in utero 

tobacco exposure vs non-exposed, low CP vs high CP and the interaction between in 

utero tobacco exposure and CP. Here, we are presenting work based off three models, 

the first showed adjusted significance for genome wide differential DNA methylation 

and nominal significance was observed for the other two. More so, differential 

methylation was detected in CpG sites located in biological relevant genes, particularly 

in the in utero tobacco exposure and CP interaction model. Which leads us to support 

our hypothesis that DNA methylation may be involved in the development of CP in 

individuals exposed to tobacco in utero.  

 

6.4.2 Sample size and batch effects 

 

Our pilot study in Chapter 5 was limited by sample size. A benefit of expanding our 

previous study into a genome-wide approach (using the Illumina EPIC array) we were 

able to increase our sample size (from 96 in Chapter 5 to 109 here). As we included 

array data from Chapter 2, in combination with new 2020 samples, to maximise our 

sample size, providing more statistical power. In saying this, the sample size was still 

moderately small, hence why nominal significance, rather than genome-wide 

significance, was the best outcome for some of the models presented here. However, 

this is a continuing challenge faced throughout this thesis, and one which we attempt 

to address by validating findings of previously published studies in our dataset.  We 

show when differential methylation is assessed based on adult smoking status, our 

top differentially methylated sites replicate those identified in Chapter 2, that were 

significant at the genome-wide level. Therefore, this gives us confidence that the 

models which reach nominal significance are likely to be biologically relevant, and 

would benefit from an increase in sample size to probe the statistical associations 

further. 

Similar to that which we have previously undertaken in Chapter 2, a selection of 

normalisation techniques were trialled to adjust the profound batch effect which we 
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know is a problem in metanalyses of array data. Unlike our post-normalisation results 

in Chapter 2, we were unable to correct for the additional samples added as the 2020 

samples via any of the published methods trialled. Our analyses in this chapter show 

that the tool noob corrected for differences in the 2016 and 2017 samples, which were 

the same samples in Chapter 2, but was unable to adjust for the additional 2020 

samples, which were the new additional samples. 

Other techniques were also trialled here, but none successfully corrected for this batch 

effect. We decided to persevere with the analysis and mitigate the batch effect problem 

by including year of sampling as a confounding variable in the model. It is noteworthy 

that our analysis of our combined dataset to explore differential methylation in 

response to adult smoking status (essentially our control analysis) rendered very 

similar results to the data output from Chapter 2. The similarity observed gives us 

confidence that the inclusion of year of sampling in our model is correcting for this 

batch effect and that are results may be biologically meaningful. If we had not observed 

concordance with Chapter 2 (Table 2.5) then we would have sought a new pipeline for 

analysis. However, our results here did reflect our previous analyses (Supplementary 

Table 6.1) with the top two CpG sites (AHRR and F2RL3) displaying adjusted P values 

of significance, and both ranked as 1st and 4th most differentially methylated CpG sites 

in Table 2.5.  We conclude here that the inclusion of year into each of the baseline 

models has corrected batch effect, and we suggest that this process is as a valid way 

of normalising data, without having to develop a new pipeline. 

 

6.4.3 Hierarchical model selection 

 

Multiple models were fitted to the data to get a clear understanding of how many 

covariables could be added prior to genomic inflation appearing in the results. Often, 

there is a fine balance between adjusting for as many confounders and overfitting, 

which can result in loss of relevant biological data. 

Previous research on exposure to tobacco (adult smoking status) and its effect on 

genome-wide methylation has identified reproducible differential DNA methylation at 

specific loci [50, 51]. Here we demonstrated validation of these previously identified 

loci (Supplementary Table 6.1), meaning that our less stringent models with fewer 
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confounding variables were producing robust data. Thus, we chose to use the least 

stringent models, correcting for year of sampling and four principal components, to 

give us the greatest amount of power, reduce genomic inflation, and provide the most 

biologically relevant data possible with our sample size. 

Other models explored but not used to generate the results of this chapter are also 

found in Table 6.3. These models featured additional covariates, such as adult tobacco 

smoking status, cannabis smoking status and sex. Although lambda values of these 

other models did not give an indication of over fitting, they were deemed as secondary 

cofounders which will not bias the downstream analyses. For example, while we 

exclude the X and Y chromosomes probes from analysis as there is the potential for 

them to skew the analysis, since our cohort here is matched for sex, ethnicity and 

socioeconomic status, this means that we also have both female and male participants 

for each of the cases and controls, essentially self-correcting for this confounder. The 

same rationale applies to adult tobacco smoking status and cannabis use status. Thus, 

although these are not fully corrected for in the models these variables are included in 

both the control and exposure groups.  

 

6.4.4 DNA methylation differences from individuals exposed to tobacco in utero vs 

non-exposed controls 

 

When we assessed the effect of exposure to tobacco in utero compared to non-

exposed controls, four CpG sites reached an adjusted P value significance (Table 6.5) 

in the genes MYO1G, RTN1 and two sites in FRMD4A. CpG sites in genes MYO1G 

and FRMD4A have been previously found to be differentially methylated due to 

maternal smoking during pregnancy [52-54]. However, no known literature has 

reported on the CpG site cg01604380 within the gene RTN1.  

Reticulon 1 (RTN1) is a part of the RTN protein family, which resides in the 

endoplasmic reticulum. The proteins are predominantly involved in trafficking and 

axonal regeneration [55] and RTN1 has been linked to Alzheimer’s disease [56-58]. 

Within the top 10 most differentially methylated CpG sites (Table 6.5) there are two 

sites that resided within RTN1 (cg01604380 and cg11866719). These two sites are 

141bp away from one another (chr14:60,336,293 and chr14:60,336,434) therefore 
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may be having an additive effect on gene transcription. Myosin 1 G (MYO1G) is highly 

expressed in T cells and is responsible for innate and adaptive immune related 

functions [59]. The gene also plays a role in cell elasticity [60] with a loss of MYO1G 

causing a decrease in cell tension affecting migration and both endocytosis and 

phagocytosis [61]. Ferm domain containing 4A (FRMD4A), in which two CpG sites 

were differentially methylated, has strong relevance to the brain and is important for 

neuronal development and synaptic processes; mutations in this gene are associated 

with intellectual disability, microcephaly and are potentially a risk marker for 

Alzheimer’s disease [20, 62]. 

MYO1G and FRMD4A are more established biomarkers for tobacco in utero exposure 

[52-54]. However, these prior results explore DNA methylation in childhood.  Our 

results expand on this current knowledge into DNA methylation stability, as here we 

show that these well-established biomarkers are detectable in exposed individuals 

through to adulthood (age ~28 years).  Thus, it is clear that MYO1G and FRMD4A are 

specifically differentially methylated in response to maternal tobacco use during 

pregnancy, and that these methylation changes induced in utero appear to be stable 

into adult.  However, the effect of methylation changes in these genes on the 

development of CP is unknown. We suggest further research to quantify DNA 

methylation changes over the life course in a cohort where matched samples from 

childhood and adulthood are available, and explore the association with development 

of CP phenotypes.    

KEGG pathway analysis of CpG sites within or near genes that are differentially 

methylated in response to maternal tobacco use during pregnancy demonstrate 

enrichment for pathways that have functional relevance to MYO1G and FRMD4A.  

Specifically, the top KEGG pathways (Table 6.6) included focal adhesion, ErbB 

signalling pathways and both B and T cell reception signalling, all of which have strong 

relevance to MYO1G. Also within this list are brain specific KEGG pathways such as 

glutamatergic synapse and axon guidance, which have relevance to the biological 

functions of FRMD4A. Further findings from the pathway analysis showed an 

overwhelming amount of signalling pathways affected, with 39 pathways in total 

displaying an adjusted P value of less than 0.05.  
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Interestingly, the top 10 differentially methylated CpG sites in response to maternal 

tobacco use (Table 6.5) all displayed hypermethylation in response to the exposure. 

The same observation were present in the differentially methylated regions of genes 

displaying greater than five CpG sites (Table 6.12).  Of the exposures we assessed, 

in utero tobacco exposure showed the largest proportion of differentially methylated 

regions (DMRs). When we assessed the functional associations between DMRs and 

phenotypes from previously published literature of the genes we identify in this 

analysis, the genes which the DMRs resided in were associated a range of diseases; 

total of nine out of the 12 DMRs (Table 6.12) had direct brain developmental 

phenotypes and the others were associated with cardiac function, cancer and 

metabolism. Thus while CP status was not included in this model, these data further 

support the role of DNA methylation in the link between in utero tobacco exposure and 

the development of CP. 

 

6.4.5 Differences in methylation in low CP compared to high CP scored individuals 

 

When we assessed the differences in DNA methylation between low CP and high CP 

scored individuals, we found nominal significance throughout the genome. While this 

was the least profound effect measured, with the observed adjusted P values all being 

greater than (P<0.992), our results produced biologically relevant findings, which we 

will discuss below. 

Two CpG sites in the gene Phosphodiesterase 9A (PDE9A) were identified in the top 

10 most differentially methylated sites between high and low CP scored individuals. 

The two CpG sites in our analysis have display differential methylation in opposite 

directions; cg11570752 is hypermethylated and cg04916741 is hypomethylated. 

PDE9A gene is predominantly expressed in neurons in the brain and disruption in this 

gene has been associated with several neurological deficits [63, 64]. PDE9A is also 

targeted previously as a therapeutic to treat cognitive disorders [37, 65, 66].  

Therefore, its association here with CP score is intriguing and would benefit from 

further investigation.  

In contrast to the observations from exposure to tobacco in utero, high CP scored 

individuals displayed greater levels of hypomethylation compared to low CP. 
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Differential methylation changes were also much smaller, with very few CpG sites 

displaying greater than 3% differential methylation. KEGG pathway analysis identified 

nine pathways that were significantly enriched after adjustment, within which brain 

related pathways predominated (e.g Cholinergic synapse, axon guidance and 

GABAergic synpase).  

Protocadherin gamma family (PCDHG) displayed a long region of differential 

methylation in response to both in utero tobacco exposure (seven CpG sites), adult 

tobacco smoking status (11 CpG sites, Supplementary Table 6.2) but 30 CpG sites 

differentially methylated in low CP vs high CP, all of which were observed to be 

hypermethylated. In fact, this was the largest differentially methylated region observed 

in response to any of the exposures assessed in this chapter. When we investigated 

the specific location of this differentially methylated region it was challenging to 

distinguish between the many transcripts associated with that location (Figure 6.8a). 

Thus, we believe this area of the genome is still poorly annotated, and we are unable 

to be more specific about the exact gene within this family that our data relates to. 

However, the PCDHG gene family is of important relevance to fetal brain development, 

implying that this differentially methylated region is biologically relevant and should be 

explored further.  

Further supporting its role in development of CP, differential DNA methylation within 

this same region (Chr5:140,750,000-140,850,000) has been found to be altered in 

numerous disorders, for example, Down syndrome  [67], dyslexia [68], cancer 

(colorectal cancer and gastric cancer primarily) [69], fetal alcohol syndrome [70] and 

Williams syndrome [71]. In all of these disorders, including our observations of high 

CP scored individuals, all sites are hypermethylated. The common theme across these 

disorders is brain development; Down syndrome, fetal alcohol syndrome, dyslexia, 

Williams’s syndrome and high CP are likely to have brain related dysfunction too. 

Highlighting the importance of this genome region in brain development and suggests 

that altered methylation at this region may be contributing to the development of CP 

phenotypes.  
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6.4.6 In utero exposure with the interaction of CP 

 

The last model assessed here was the interaction between in utero exposure and CP. 

No CpG sites displaying genome-wide significance were detected under this 

interaction model, however, nominal significance was observed. Beta differences 

within the top 10 most nominally (P<0.01) significant CpG sites remained low, with the 

largest being 1.2%. The top four most differentially methylated CpG sites resided in 

the following genes: SLC10A7, LAMC3, PHF2 and FASTKD1. At CpG sites within 

these genes, specific differences in methylation were found between individuals with 

high CP scores who were exposed to tobacco in utero, versus those that were not.  

There was no difference in methylation between individuals exposed in utero versus 

those who were not, who had low CP scores. Implying that, at these loci, differential 

methylation is specifically detected in exposed individuals with high CP scores, 

suggesting that these differences specifically associate with the development of CP in 

exposed individuals. These findings should be explored in a larger cohort to fully 

investigate this association.  What this finding further suggests is that the mechanism 

of CP development in non-exposed individuals with high CP is likely to be different to 

the individuals who were exposed to maternal tobacco smoke with the same 

phenotype.  This is not surprising – CP is a highly complex phenomenon and 

encompasses a range of phenotypes [72], which will have a range of aetiologies.  What 

this study does show, however, is that DNA methylation at specific CpG sites within 

the genome associate with the link between maternal tobacco use during pregnancy 

and high CP score in exposed offspring, suggesting that tobacco-induced DNA 

methylation changes may be playing a role in the development of CP in exposed 

individuals.  Thus, although the results in this chapter are, in the main, only nominally 

significant, they do offer some insight into the contributing genes, and how they 

function, could be playing a role in the phenotype of high CP.  

Of the four genes specific to the high CP/exposed group under the interaction model, 

the most significantly differentially methyaled CpG site was found within the gene, 

Solute Carrier Family 10 Member 7 (SLC10A7). The gene does not have a clear 

biological link to our investigated phenotype but mutations in this gene show 

dysfunction in skeletal development [73, 74]. Its role is essential for the biosynthesis 

and trafficking of glycoproteins for the functioning of the extracellular matrix [74].  
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The other three CpG sites within the top four all share common functional biological 

roles which exhibit relevance to the CP phenotype. Firstly, Laminin gamma 3 

(LAMC3), has diverse roles in cell migration, apoptosis and adhesion. Mutations within 

this gene have been found to contribute to cortical malformations [75-77]. More so, it 

has been reported that individuals with this mutation also have specific behavioural 

outcomes, e.g., impairments in endogenous attentional processes [76]. FAST Kinase 

domain 1 (FASTKD1) plays a role in the regulation of mitochondrial RNA [78, 79]. 

Single nucleotide variants within this gene have been associated with glaucoma [80] . 

PHD Finger protein 2 (PHF2) is a key regulator in neural stem cell proliferation [81]. 

The gene was first described as mutation known as hereditary sensory neuropathy 

type 1, which is a disorder of the sensory neurons [82]. Mutations that arise have been 

linked to genome instability [81] and also been found in high CP related phenotypes 

such as Autism Spectrum Disorder [83].  Although these three genes all share similar 

visual impairment phenotypes along with their roles in brain development, this was not 

reflected in the pathway analysis results (Table 6.10). 

 

6.4.7 Overall genome-wide significance  

 

Overall, the model though which we detected the highest number of genome-wide 

methylation changes in utero tobacco exposure versus non-exposed (Table 6.11) with 

a total of 7,228 CpG sites differentially methylated (nominal P  <0.01). Interestingly, 

there were ~2,000 more differentially methylated sites here compared to our model 

which explored methylation in response to adult tobacco smoking status, which 

displayed 4,747 differentially methylated CpG sites (nominal P value <0.01).  

Tobacco smoking is one of the most potent exposures to DNA methylation patterns in 

the genome, however, in our analysis there were far less changes in response to adult 

tobacco smoking status compared to in utero tobacco exposure. Eluding further to the 

key role DNA methylation plays in utero development and disruption during these 

vulnerable times can lead to long lasting alterations.  
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6.5 Chapter Summary 

 

 Quantification of genome-wide differential DNA methylation in response to in 

utero tobacco exposure found adjusted P values of significance at four CpG 

sites: MYO1G, two sites in FRMD4A and RTN1.   

 Detection of differential DNA methylation between individuals with low CP and 

high CP scores was observed only nominal significance.  

 We sought to determine if there was an interaction between in utero tobacco 

exposure and high CP scores, nominal significance was observed here. We did 

demonstrate specific CpG methylation differences were seen between the 

unexposed group with high CP and the exposed group with high CP.  

 Our findings support the hypothesis that DNA methylation is inovlved in the link 

between in utero tobacco exposure and CP development. They also highlight 

the detrimental effect that in utero tobacco exposure has on the genome, and 

suggest that DNA methylation may have implications for development of 

disease later on in life.  
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6.7 Supplementary Figures and Table 
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Supplementary Figure 6.1 Q-Q plots of the models that were fitted, Part A-F model results were not  

used to generate the results of this chapter. Part G was used for the tobacco smoking data. A) Model 

2, B) Model 3, C) Model 5, D) Model 6, E) Model 8, F) Model 9, G) Model 10.  
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Supplementary Table 6.1 Differentially methylation CpG sites between adult tobacco smoking vs non-smoking controls (model 10). 

 

 

 

 

 

Rank Illumina ID Gene Chr Position in 
genome 

Location Control Adult 
tobacco 

smokers 

β difference Log FC P Value Adjusted 
P value 

1 cg05575921 AHRR 5 Body chr5:373842-374426 0.880 0.717 -0.162 -0.150 2.90E-09 0.0020 

2 cg03636183 F2RL3 19 Body chr19:17000627-17001398 0.674 0.611 -0.062 -0.061 9.50E-09 0.0033 

3 cg03329539 2 
 

chr2:233283397-233285959 0.412 0.370 -0.042 -0.042 7.59E-07 0.175 

4 cg05767409 NDUFS7 19 TSS1500 chr19:1383437-1384251 0.053 0.058 0.004 0.0112 1.01E-06 0.175 

5 cg21161138 AHRR 5 Body   0.746 0.701 -0.045 -0.048 1.28E-06 0.178 

6 cg21566642 2 
 

chr2:233283397-233285959 0.589 0.500 -0.089 -0.079 2.27E-06 0.264 

7 cg21911711 F2RL3 19 TSS1500 chr19:17000627-17001398 0.846 0.815 -0.031 -0.031 4.50E-06 0.450 

8 cg10870815 CACNA1C 12 Body 0.589 0.656 0.067 0.071 5.17E-06 0.452 

9 cg23327011 MBP 18 5'UTR 0.929 0.923 -0.006 -0.012 6.97E-06 0.542 

10 cg01940273 2 
 

chr2:233283397-233285959 0.622 0.563 -0.058 -0.055 8.87E-06 0.594 
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Supplementary Table 6.2 Differentially methylated regions in genes (greater than 5 nominal P <0.01 
CpG sites) in comparison to the same genes from the other exposure models. * genome poorly  

annotated in this area so unable to distinguish gene name 

  

Gene Exposed 
to tobacco 
in utero 

CP Exposed to 
tobacco in 
utero : CP 

Adult 
tobacco 
smoking 

status 

AHRR 3 2 1 7 

ATP11A 5 2 1 3 

BACH2 6 0 0 2 

BCL11B 8 2 0 0 

CAMTA1 10 0 1 1 

CCKBR 0 5 0 0 

CASZ1 7 0 2 1 

CDH4 5 2 2 1 

CNTN1 5 1 0 0 

CNTNAP2 5 4 0 1 

CUX1 0 0 5 3 

CPT1B 0 8 0 0 

DENND1A 5 0 1 2 

DIP2C 7 5 5 5 

DIRC3 5 1 1 0 

DLGAP1 6 2 0 1 

ETS1 5 0 0 0 

FAM84B 8 2 0 0 

FLOT1 5 0 1 0 

FOXK1 5 0 2 1 

FOXP1 11 2 0 1 

FRMD4A 8 2 0 1 

GABBR1 6 2 0 1 

HDAC4 5 1 4 2 

INPP5A 1 4 5 2 

LTBP3 7 0 0 3 

MAD1L1 4 1 6 4 

MTHFR 0 3 0 0 

MYO1G 5 0 0 2 

OSBPL10 5 0 0 0 

PAX6 5 1 1 2 

PCDHGA4* 7 30 4 11 

PDE4B 4 0 5 0 

PGAM2 0 6 0 0 

PRDM16 7 2 0 7 

PRRT1 8 1 0 0 

PTPRN2 6 2 7 3 

RORA 6 0 0 4 

RPTOR 3 2 3 5 

SH2B2 7 0 0 0 

SH3PXD2A 5 0 3 0 

Sept09 5 0 1 0 

SORCS2 6 3 2 6 

TRAPPC9 5 1 3 0 

USP44 5 0 0 0 

VAV2 5 0 1 3 

VENTX 11 0 0 0 
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Supplementary Table 6.3 Differentially methylated regions for tobacco exposure in utero within genes 

displaying 5<6 CpG sites  

 

Gene Illumina ID Correlation Location CpG 
island 

Functional 
association 

BACH2 cg20886265 
cg01462343 
cg19039673 
cg03035849 
cg26961240 
cg17486314 

hypo 
hypo 
hypo 
hyper 
hypo 
hyper 

 
 
 
chr6:91004795-91006944 

 

3'UTR 
5'UTR 
5'UTR 
5'UTR 
5'UTR 
5'UTR 

Autoimmune 
disease[84] 

CDH4 cg21538645 
cg03215161 
cg09051966 
cg13021439 
cg17036908 

hyper 
hyper 
hyper 
hyper 
hyper 

 
 
chr20:60470080-60470335 
 

 

Body 
Body 
Body 
Body 
1stExon 

Colorectal and 
gastric cancer 
[85] 

CNTN1 cg15087347 
cg11743675 
cg01443755 
cg10514886 
cg02234487 

hyper 
hyper 
hyper 
hyper 
hyper 

chr12:41086522-41087102 
 
 
 
 

TSS200 
5'UTR 
5'UTR 
TSS200 
TSS200 

Formation of 
cortical neurons 
[86] 

CNTNAP2 cg25949550 
cg15932065 
cg11207515 
cg05640346 
cg08374341 

hypo 
hypo 
hypo 
hyper 
hyper 

chr7:145813030-145814084 
 
 
chr7:148036494-148036848 
 

Body 
Body 
Body 
Body 
Body 

Autism [87] 

DENND1A cg17501842 
cg00619207 
cg15591803 
cg19269039 
cg20317872 
cg23184711 

hyper 
hyper 
hypo 
hyper 
hyper 
hyper 

 
chr1:111746337-111747303 
 
chr1:111746337-111747303 
chr1:111746337-111747303 
chr1:111746337-111747303 

Body 
TSS200 
Body 
1stExon 
1stExon 
TSS200 

Polycystic ovary 
syndrome [88] 

DIP2C cg00332951 
cg19140503 
cg13471336 
cg10591926 
cg03287763 
cg07102380 
cg24723457 

hypo 
hyper 
hypo 
hypo 
hypo 
hypo 
hypo 

chr10:518192-518471 
 
chr10:669070-669336 
chr10:652259-652528 
chr10:465928-466396 
 
chr10:396943-397228 

Body 
Body 
Body 
Body 
Body 
Body 
Body 

Breast and lung 
cancers [35, 36] 

DIRC3 cg00991467 
cg15335768 
cg12596243 
cg14216322 
cg19918866 

hypo 
hypo 
hypo 
hypo 
hypo 

 Body 
Body 
Body 
Body 
Body 

Renal cancer 
[89] 

DLGAP1 cg16128363 
cg15874411 
cg04214965 
cg06291743 
cg11159132 
cg05111420 

hypo 
hypo 
hypo 
hypo 
hypo 
hypo 

chr18:3879202-3880087 
 
chr18:3879202-3880087 
chr18:3879202-3880087 
 
 

TSS1500 
TSS1500 
TSS1500 
Body 
Body 
Body 

Obsessive 
compulsive 
disorder [89]  
ADHD [90] 

ETS1 cg18898103 
cg15555017 
cg23514374 
cg23531640 
cg23800023 

hypo 
hyper 
hyper 
hyper 
hyper 

 5'UTR 
5'UTR 
Body 
Body 
Body 

Cancer [91, 92] 

FLOT1 cg10513302 
cg16646298 
cg02684104 
cg17988780 
cg09284772 

hyper 
hyper 
hyper 
hyper 
hypo 

 
 
 
 
chr6:30710307-30712440 

Body 
Body 
Body 
Body 
Body 

Major depressive 
disorder [93] 

FOXK1 cg03077364 
cg22581896 
cg01974478 

  
 
 

Body 
Body 
Body 

Insulin regulation 
[94] 
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cg00208274 
cg05066096 

 
chr7:4784820-4785058 

Body 
Body 

GABBR1 cg08862148 
cg21100518 
cg00594408 
cg25642476 
cg02014853 
cg25729445 

hyper 
hyper 
hyper 
hyper 
hyper 
hyper 

chr6:29595298-29595795 
chr6:29595298-29595795 
chr6:29595298-29595795 
chr6:29595298-29595795 
chr6:29595298-29595795 
chr6:29595298-29595795 

Body 
Body 
Body 
Body 
Body 
Body 

Schizophrenia 
[95] 

HDAC4 cg03281426 
cg23367987 
cg24634565 
cg02812817 
cg22296756 

hypo 
hypo 
hypo 
hypo 
hypo 

chr2:240111314-240111577 
 
chr2:240101503-240101764 
 
 

Body 
Body 
Body 
5'UTR 
5'UTR 

Synaptic 
plasticity and 
memory [96] 

MYO1G cg04180046 
cg05009104 
cg12803068 
cg19089201 
cg21188037 

hyper 
hyper 
hyper 
hyper 
hyper 

chr7:45002111-45002845 
chr7:45002111-45002845 
chr7:45002111-45002845 
chr7:45002111-45002845 
 

Body 
Body 
Body 
3'UTR 
5'UTR 

Maternal tobacco 
smoke during 
pregnancy [52] 

OSBPL10 cg02057211 
cg08541624 
cg23774003 
cg08947058 
cg24458780 

hypo 
hypo 
hypo 
hypo 
hypo 

 Body 
Body 
Body 
Body 
Body 

Regulation of 
lipid metabolism 
[97] 

PAX6 cg09041678 
cg15301794 
cg01587682 
cg18082638 
cg12798259 

hyper 
hyper 
hyper 
hyper 
hyper 

chr11:31841315-31842003 
chr11:31820060-31821416 
chr11:31820060-31821416 
chr11:31827696-31827921 
chr11:31820060-31821416 

TSS1500 
Body 
Body 
Body 
Body 

Cerebral and 
olfactory 
dysfunction [98, 
99] 

PTPRN2 cg03983213 
cg07176561 
cg15080590 
cg08242024 
cg25906770 
cg16747052 

hyper 
hyper 
hyper 
hyper 
hyper 
hyper 

chr7:157476886-157486719 
 
chr7:157494510-157494739 
chr7:157550547-157551025 
chr7:157568163-157568404 
 

Body 
Body 
Body 
Body 
Body 
Body 

Metabolic 
disease [100] 

RORA cg27167601 
cg16261097 
cg21241560 
cg12340454 
cg09782034 
cg24053032 

hyper 
hypo 
hyper 
hypo 
hyper 
hyper 

chr15:61519621-61520031 
 
 
chr15:61519621-61520031 
chr15:61520423-61521716 
 

TSS1500 
Body 
Body 
Body 
TSS1500 
Body 

Autism [101] 

Sept09 cg21579666 
cg19277969 
cg05783080 
cg01320579 
cg16293484 

hypo 
hypo 
hypo 
hyper 
hyper 

 5'UTR 
Body 
Bod 
Body 
Body 

Cancer [102, 
103] 

SH3PXD2A cg13289509 
cg14467781 
cg12975399 
cg17687265 
cg12312107 

hyper 
hyper 
hyper 
hyper 
hyper 

 
chr10:105614511-105615456 
chr10:105614511-105615456 
 
chr10:105452338-105453230 

Body 
Body 
Body 
Body 
Body 

Gestational 
diabetes [104] 

SORCS2 cg21445325 
cg08268947 
cg16356712 
cg11450537 
cg08145989 
cg17574602 

hyper 
hyper 
hypo 
hypo 
hyper 
hypo 

 
 
chr4:7593369-7593586 
 
 
 

Body 
Body 
Body 
Body 
Body 
Body 

Neuronal 
plasticity [105, 
106] 

TRAPPC9 cg14745383 
cg14689150 
cg23671279 
cg06924606 
cg24617008 

hypo 
hypo 
hypo 
hypo 
hypo 

 
chr8:141359155-141359621 
chr8:140971270-140971524 
 
chr8:141467218-141467927 

Body 
Body 
Body 
Body 
TSS1500 

Intellectual 
disability [107, 
108] 

USP44 cg14565151 
cg08948170 
cg06476970 
cg04488758 
cg27100916 

hyper 
hyper 
hyper 
hyper 
hyper 

chr12:95941906-95942979 
chr12:95941906-95942979 
chr12:95941906-95942979 
chr12:95941906-95942979 
chr12:95941906-95942979 

TSS200 
TSS200 
TSS200 
TSS200 
TSS200 

Cancer hallmark 
[109, 110] 
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Chapter 7:  
 

7. Is tissue really an issue? DNA methylation differences between whole blood and 

brain tissue in schizophrenia: a meta-analysis  

 

7.1 Introduction 

 

7.1.1 DNA methylation and whole blood 

 

To understand how epigenetic modifications can impact on disease processes, these 

modifications need to be quantified from a tissue sample. Despite the fact that DNA 

methylation patterns are highly tissue-specific [1], one of the most common forms of 

tissue used for DNA methylation analysis, regardless of the environmental exposure 

or disease under investigation, is whole blood. There are two main reasons for this: i) 

samples can be obtained via a simple blood test which is easily accessible [2, 3], and; 

ii) blood samples are often collected routinely in clinical trials and biomedical studies, 

which means studies of DNA methylation can be applied retrospectively to 

complement ongoing or past research questions.  

Throughout the contents of this thesis we have been assessing the proxy sample of 

whole blood for measuring diseases associated within the brain. Within a whole blood 

sample there are three major components; plasma, white blood cells and platelets, 

and red blood cells [4]. Thus, within this one sample there is a heterogeneous 

population of different cell types, each with its own unique epigenetic identity [5]. 

Because the different blood cell types are present in different proportions at different  

times (e.g. during infection), determination of methylation at CpG sites within a whole 

blood sample, if measured using bisulfite sequencing  this is based upon an overall 

average of all sequencing reads at that site [6], can be confounded by cell counts 

within whole blood [7]. To further confound estimates of average DNA methylation, we 

know that there is a strong association between DNA methylation patterns and an 

individual’s age [8, 9]. Thus, failing to account for cellular heterogeneity can cause 

differences in average methylation calculations, potentially leading to a bias in results 

[10] and false positives [11].  In fact, it is highly likely that tissue heterogeneity is one 

of the main causes of lack of reproducibility of methylome studies [12]. Adjustment 
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tools which are specific to and can correct for the individual composition of the principle 

immune cells present in whole blood (B cells, granulocytes, monocytes, natural killer 

cells, and T cells [13]) have been developed and can be fitted when using the Illumina 

EPIC array system. However, this is specific to the array system only, and analysis 

tools for other forms of DNA methylation quantification cannot adjust for 

heterogeneous cell populations  Despite this, whole blood is still the most commonly 

used tissue for studies of DNA methylation. 

 

7.1.2 Is whole blood a good measure of overall DNA methylation? 

 

Given that DNA methylation patterns are highly cell type-specific, it is important to 

question whether DNA methylation patterns in whole blood are indicative of 

methylation patterns in other tissues. There is evidence to support whole blood as a 

good overall predictor of methylation status for other tissues in some instances [8, 14]. 

For example, several studies have asked whether whole blood can be used as a 

surrogate for brain tissue [15, 16], and have found it to be concordant [17]. However, 

others have suggested that whole blood is not the most reliable proxy for other tissues 

[18, 19] and that it should be used with a side of caution [18]. Therefore, the literature 

around this issue presents contrasting results. The contradiction could be a 

consequence of the heterogeneous nature of whole blood, or may be a consequence 

of the heterogeneous nature of brain pathologies; diseases such as schizophrenia 

have multiple causes and routes to disease progression [20], which may not have a 

shared genomic or epigenetic basis.   

 

7.1.3 Our investigation of differential methylation between tissue types 

 

Thus, to investigate whether whole blood can be a good predictor of the DNA 

methylation status of other tissues, here, publicly available DNA methylation array data 

is used to ask whether brain tissue (prefrontal cortex, PFC) samples show the same 

significant differential DNA methylation signatures as whole blood samples, from 

individuals with schizophrenia. Allowing us to determine how reliable whole blood is 

as a proxy tissue for assessing DNA methylation that might be relevant to phenotypes 
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that manifest in the brain. Although using samples with CP would have been more 

fitting, we instead picked schizophrenia as a more defined disease. CP covers many 

disoders such as Autism, ADD and ADHD to name a few and the broadness of the 

term CP might induce a bias into our investigation due to diagnosis. 

Answering this question is important because the health of individuals with 

schizophrenia can benefit from early identification and intervention [21] . Therefore, 

development of biomarkers to diagnose or identify at-risk individuals that is non-

invasive, such as a blood sample, will go a long way to aiding in early diagnosis and 

therapy. Further, this work will contribute to a better understanding of the value of 

proxy tissues in DNA methylation-disease associations.    
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7.2 Methods 

 

7.2.1 Acquiring data 

 

All data was acquired through the National Genomics Data Centre (NGDC), 

https://bigd.big.ac.cn/ewas/index. The database consists of epigenome-wide 

association studies, and processed data is available for open access [22]. The 

database is made up of Illumina 27k, 450k and EPIC array where a total of 3,087 (as 

of May 2020) cohort studies have been collected. Through this database one may 

search a specific CpG site, a trait of interest, a cohort, tissue or cell type, or a specific 

study or a publication. The keyword used to search for the data used in this chapter 

was “schizophrenia”. Studies associated with this trait were then listed with further 

details and the data was selected for inclusion based on a strict criterion for omission.  

 

7.2.2 Inclusion/exclusion criteria  
 

All data needed to be generated from either the Illumina 27k, 450k or EPIC array 

system. Although there are other ways of assessing the genome for DNA methylation 

changes, here we specifically target studies which utilised the array system to assess 

accordance. All cohort data in response to the searched trait needed to be peer 

reviewed and published prior to data being acquired.  

All available data for a certain tissue sample was used. Studies were dismissed if the 

tissue definition was not clear or whole blood samples were sub selected for either 

buffy coat or leukocytes.  

The number of individuals in the study and the ethnicity of participants varied between 

studies. There was no minimum or maximum number of individuals within a study 

classified in our criteria for inclusion. Ethnicity was not stated in every study, however 

we included all available data even where ethnicity was not clear. Pre-processing and 

model design of data was also varied between studies. No exclusion was made on the 

basis of the pre-processing or statistical design, as studies have been peer reviewed 

prior to publication and this was seen as stringent enough. 

https://bigd.big.ac.cn/ewas/index
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All data derived for this analysis (Table 7.1) came from individuals who had been 

diagnosed via the Diagnostic and Statistical Manual of Mental Disorders (DSM-IV). 

The matched controls were free from psychiatric and or neurological diagnoses and 

substance abuse according to DSM-IV. Studies using whole blood samples had a 

minimum age criteria of 18 years old. The same criteria was not applied to samples of 

brain tissue due to the difficulty of acquiring any type of brain tissue. 

Table 7.1 Previously published studies used in the analysis of DNA methylation changes in individuals  

with schizophrenia from PFC and whole blood samples. 

 

Study ID Tissue Type  Publication/Reference 

ES00498 Prefrontal cortex (PFC) [23] 

ES00841 Whole blood (WB) [24] 

 

7.2.3 Methodology between studies for assessing top CpG sites 

 

Each of the top hits/statistically significant CpG sites from the studies in Table 7.1 were 

downloaded as CSV files. Statistically significant CpG sites/top hits were determined 

slightly differently between each of the studies. Across all studies X and Y 

chromosomes were excluded and SNPs were removed. Pre-processing methods 

were varied, as well as multiple comparison testing methods. 

More specifically, for the schizophrenia study, the PFC study [23] determined 

significance of differential methylation via a linear model, and CpG sites were adjusted 

based upon the conservative method of Bonferroni correction. However, this contrasts 

with the whole blood study [24], which was adjusted for sex, age, race/ethnicity, 

smoking status, estimates cell proportions of six cell types and the first two principal 

components. An FDR cut off of less than 0.2 was used for significance for whole blood.  

For each significant CpG site, data files included the Illumina ID, the region of each 

CpG site in the genome, associated genes, associated trait, and associated Genome 

wide association studies (GWAS). Additional columns for tissue of origin and study ID 

were also included.  
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7.2.4 Assessing CpG locations 

 

Data was then imported into R statistical software (Version 3.5.2). Unique statistically 

significant CpG sites/probes were counted in response to each tissue type from each 

of the studies. CpG sites were then assigned to their known associated gene. Genes 

were searched in genecards [25] to look for mRNA expression in relevant tissue. 

Differentially methylated CpG sites that were intergenic were matched to the nearest 

neighbouring genes within Hg19 using Granges default settings [26], and the official 

gene symbols of all significantly differentially methylated CpG sites were obtained. 

Pathway analysis was carried out using KEGG 2019 human pathways with EnrichR 

[27], and P values were adjusted using FDR. Tables and Venn diagrams were 

constructed in R studio.  
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7.3 Results 

 

7.3.1 Is whole blood telling the story of the brain? 

 

The two separate studies used for this analysis was found using the EWAS Atlas 

database. A total of 2357 individuals (PFC, N= 526, whole blood, N= 1831) were used 

for investigating differential DNA methylation. Ethnicity varied between samples 

obtained from whole blood and PFC, however, both sample types contained European 

individuals.  Whole blood samples which also contained individuals of African 

American or Afro Caribbean origin, reported all ethnicities of their cohort, whereas the 

other ethnicities of the PFC samples were not reported. 

 

Table 7.2 Cohort characteristics in the studies analysed based off whole blood and prefrontal cortex- 

WB whole Blood, PFC prefrontal cortex. 

 

 WB PFC 

The number of 

individuals in each of 
the cohort studies 

1831 526 

Ethnicity African American 
Afro Caribbean 

European 

European 
Not reported 

 

 

7.3.2 Differentially methylated CpG sites 

 

Significantly differentially methylated probes were counted and recorded between the 

two sample types (Table 7.3). There were more differentially methylated probes 

identified in prefrontal cortex (N= 1772) compared to that of the whole blood (N= 95) 

of individuals with schizophrenia. No overlap in significant CpG sites was observed 

between whole blood and PFC (Figure 7.1).  
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Table 7.3 Differentially methylated CpG sites found within whole blood (WB) and prefrontal cortex 

(PFC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1- The number of CpG sites that were statistically significant within the prefrontal cortex 
(salmon) and whole blood sample (blue). Within these tissue types there was no overlap between CpG 

sites found. 

 

  

 WB PFC 

The number of unique 
probes (excluding 

duplicate 
probes/CpG’s from the 
individual cohorts) 

95 1772 

The number of CpG 

sites that were found 
to be statistically 
significant that were 

associated with a 
named gene 

77 1567 
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Of the total number of CpG sites that have a known gene associated with them, N= 8 

genes were identified in both tissue types (Table 7.4). A total of N= 1559 stayed unique 

to prefrontal cortex samples and N= 69 to whole blood samples. Seven of the eight 

genes that were shared between tissues (with the exception of CTD-2175A23) are 

expressed in both whole blood and brain tissues. The direction of methylation change 

was consistent at CpG sites within half of the overlapping genes, RPTOR 

(hypermethylated in both tissues), CTD-2175A23.1, GFI1 and KIFC3 (all 

hypomethylated in both tissues). The remaining four genes showed contrasting 

direction of methylation change between whole blood and prefrontal cortex. A literature 

search of the shared genes indicated that two have roles in schizophrenia, and a 

further five have roles in brain and neurological impairment/disease. 
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Table 7.4 CpG site locations within common genes of both whole blood and prefrontal cortex tissue.  
Functional associations determined via genome wide association studies are cited. Hyper= 

hypermethylation, Hypo = hypomethylation. 

 

Gene Tissue type Cg Identifier Correlation Location CpG 
island 

Functional 
association 

RPTOR Whole blood cg13549638 Hyper chr17: 

78860076 

Shelf Schizophrenia 

[28]  
Whole blood cg16660971 Hyper chr17: 

78860029 
Shelf 

 
Whole blood cg27457201 Hyper chr17: 

78854232 
Shelf 

 
Prefrontal 

cortex 

cg22882460 Hyper chr17: 

78654648 

Other 

SEC14L1 Whole blood cg20610950 Hyper chr17: 
75096202 

Other Cognitive 
performance 
[29] 

 
Whole blood cg11597902 Hyper chr17: 

75096239 
Other 

 
Whole blood cg11186858 Hyper chr17: 

75096382 
Other 

 
Prefrontal 

cortex 

cg26547236 Hypo chr17: 

75136326 

Island 

FBXO46 Whole blood cg09277709 Hyper chr19: 
46224285 

Shelf Alzheimer’s 
disease [30]  

Prefrontal 
cortex 

cg26562171 Hypo chr19: 
46220049 

Shelf 

CTD-

2175A23.1 

Whole blood cg05036937 Hypo chr5: 

52283760 

Shore  

 
Prefrontal 
cortex 

cg15676241 Hypo chr5: 
52285231 

Island 

GMDS Whole blood cg06315217 Hyper chr6: 1629850 Other Grey matter 
volume [31], 

Depression in 
smokers [32], 
PHF-tau 

measurement 
[33] 

 
 
Prefrontal 
cortex 

 
cg08932320 

 
Hypo 

 
chr6: 2246077 

 
Island 

GFI1 Whole blood cg04535902 Hypo chr1: 
92947332 

Island Multiple 
sclerosis [34, 

35] 
 

Whole blood cg04777348 Hypo chr1: 

92952897 

Shore 

 
Whole blood cg24517501 Hypo chr1: 

92952702 
Shore 

 
Prefrontal 
cortex 

cg14475915 Hypo chr1: 
92952268 

Island 

KIFC3 Whole blood cg01115923 Hypo chr16: 

57793728 

Shore Alzheimer’s 

disease [36]  
Prefrontal 
cortex 

cg07685869 Hypo chr16: 
57836706 

Island 

MAD1L1 Whole blood cg25323444 Hyper chr7: 2111060 Shelf Schizophrenia 
[37] 

 
Prefrontal 
cortex 

cg20935553 Hypo chr7: 2272059 Island 
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7.3.3 Pathway analysis of prefrontal cortex tissue and whole blood 

 

Genes in which significantly differentially methylated CpG sites resided were then 

analysed via Enrichr to determine which KEGG pathways were enriched in whole 

blood (Table 7.5) and prefrontal cortex (Table 7.6). For whole blood, six pathways 

were found to be nominally enriched. These pathways included the long-term 

potentiation, mTOR signalling, and the mRNA surveillance pathways. 

 

Table 7.5 List of KEGG pathways calculated from gene lists containing statistically significant CpG 

sites found between whole blood and individuals with schizophrenia.  

 

 

 

 

 

 

 

 

When genes that housed significantly differentially methylated CpG sites in prefrontal 

cortex tissue were analysed, 23 KEGG pathways were identified as nominally 

significantly enriched. The top four KEGG pathways were cancer-related pathways. 

There were two pathways which overlapped between the tissues; the mTOR signalling 

pathway, and the mRNA surveillance pathway.  

 

  

Name P value Adjusted  

P value 

Odds 

Ratio 

Combined 

score 

Glycosaminoglycan biosynthesis 0.001 0.331 14.90 101.78 

Insulin resistance 0.008 1.000 7.31 35.21 

Long-term potentiation 0.026 1.000 7.86 28.41 

Oocyte meiosis 0.012 1.000 6.32 27.92 

mTOR signalling pathway 0.020 1.000 5.19 20.27 

mRNA surveillance pathway 0.046 1.000 5.78 17.69 
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Table 7.6 List of KEGG pathways calculated from gene lists containing statistically significant CpG 

sites, found between whole blood and individuals with schizophrenia. 

 

 

 

 

 

  

Name P Value Adjusted P 

Value 

Odds 

Ratio 

Combined 

score 

Basal cell carcinoma  0.0004 0.141 2.72 20.90 

Hepatocellular carcinoma 0.001 0.180 1.89 12.79 

Thyroid cancer 0.008 0.302 2.65 12.51 

Breast cancer 0.001 0.193 1.92 12.01 

Propanoate metabolism 0.013 0.289 2.68 11.60 

Gastric cancer 0.002 0.173 1.89 11.51 

Nucleotide excision repair 0.012 0.300 2.34 10.24 

Cushing syndrome 0.003 0.231 1.82 10.14 

mRNA surveillance pathway 0.006 0.295 2.02 10.1 

Wnt signalling pathway 0.004 0.247 1.78 9.52 

Melanogenesis 0.007 0.295 1.94 9.44 

N-Glycan biosynthesis 0.018 0.320 2.20 8.76 

Lysosome 0.011 0.340 1.79 8.07 

Cell cycle 0.011 0.335 1.78 7.86 

mTOR signalling pathway 0.012 0.311 1.69 7.46 

Colorectal cancer 0.022 0.339 1.85 7.06 

AMPK signalling pathway 0.017 0.345 1.73 6.97 

RNA transport 0.015 0.316 1.63 6.81 

Signalling pathways regulating 

pluripotency of stem cells 

0.018 0.331 1.67 6.69 

Hippo signalling pathway 0.020 0.336 1.61 6.23 

Acute myeloid leukemia 0.040 0.546 1.85 5.93 

Pancreatic cancer 0.040 0.568 1.80 5.75 

Lysine degradation 0.048 0.628 1.87 5.63 
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7.4 Discussion 

 

Selecting the most appropriate tissue type for investigating differential DNA 

methylation is an important aspect of any epigenetic study. However, this is sometimes 

a non-negotiable aspect of a study design and usually analysis is undertaken of the 

tissue type that is most readily available, even if the sample is not the most appropriate 

for answering the hypothesis.  This is because, often the “best” (most disease-specific) 

tissue is also the most invasive, therefore collecting those samples is not suitable. To 

advance our understanding of the role of DNA methylation in disease, it is important 

to gauge whether ‘proxy’ tissues (e.g. whole blood) reflect the same disease-

associated DNA methylation differences as disease-specific tissue (e.g. brain tissue).   

 

7.4.1 Schizophrenia cohort characteristics 

 

Thus, to address the value of whole blood as a proxy tissue in examining the role of 

DNA methylation in the development of schizophrenia, we utilised publicly available 

DNA methylation array data and analysed the top significantly differentially methylated 

CpG sites from individuals with schizophrenia in two different tissue types: prefrontal 

cortex, which represents the specific site in the body affected by the disease, and 

whole blood, which is, as mentioned previously, the most common proxy tissue used 

in methylation analyses.  

There was very little available DNA methylation data from previously published 

schizophrenia studies via the EWAS database. We believe this is because brain tissue 

can only be sampled postmortem. Nevertheless, three studies were identified, but only 

two of them passed our inclusion criteria, due to the source of sample.  

 

7.4.2 Schizophrenia differential DNA methylation between prefrontal cortex and whole 

blood 

 

A total of N= 1772 significantly differentially methylated CpG sites were observed in 

the prefrontal cortex group (N= 526 individuals). In contrast, a total of N= 95 statistically 

significant CpG sites found from the whole blood samples (N= 526 individuals). We 
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hypothesise that this is due to the cellular composition of the prefrontal cortex, this will 

be further discussed in section 7.4.4. Further, different correction methods were used 

to determine statistically significant CpG sites: prefrontal cortex samples were 

adjusted using Bonferroni correction of P > 0.05, which is a conservative method of 

testing, whereas whole blood significance was determined using a threshold of P > 

0.2 FDR threshold, which essentially allows 20% of ‘significant’ CpG sites to be a false 

positive. Without access to the raw data, we are unable to correct for this discrepancy 

here, however we are aware that this, along with the heterogeneous nature of whole 

blood, is likely to be driving the difference in the number of statistically significant CpG 

sites identified in each study (but not the assignment of the ‘top hits’ themselves).   

We did not detect an overlap between CpG sites found to be statistically significant 

between the prefrontal cortex tissue cohort and the whole blood cohort. However, this 

is not unexpected; we know that schizophrenia, like many other complex diseases, is 

highly heterogeneous and thus, lack of concordance between statistically significant 

CpG sites identified between whole blood and prefrontal cortex might be an offset 

characteristic of the disease itself.  One may expect some overlap between truly 

significant CpG sites if, on an individual level, they were affecting gene transcription 

to such an extent that they were playing a major role in disease, however, like SNPs 

in genome wide association studies, finding one particular nucleotide (or in this case, 

CpG site) that associates strongly with a heterogeneous disease, across populations, 

is rare, with phenotypes being a product of multiple loci, each with a small individual 

effect [38].  

In saying this, a further reason for this lack of concordance may be a consequence of 

the environmentally-induced nature of DNA methylation and differing cell type 

lifespans.  Specifically, whole blood cells have a shorter life span compared to cells in 

the brain. A monocyte, one type of white blood cell in whole blood, has a life span of 

24 hours [39]. When this is compared to a neuron, a key cell in the prefrontal cortex 

[40, 41], which is debated as to whether or not it undergoes replicative aging at all [42]. 

Implying that a neuron has a maximum lifespan is similar to that of the individual [43].  

Therefore, given DNA methylation can be induced by the environment [44] this would 

potentially allow prefrontal cortex cells to accumulate many more DNA methylation 

differences over its lifespan than a white blood cell [45], meaning that, when compared 

to DNA methylation patterns in white blood cells, any pathological DNA methylation 
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differences might be lost due to ‘noise’ in the prefrontal cortex cells.  This is supported 

by our results that suggest differential methylation is more widespread in prefrontal 

cortex samples than whole blood.  This would also make estimates of concordance of 

individual CpG sites between tissues more challenging, since whole blood samples  

may not show long term effects of DNA methylation that have occurred in the prefrontal 

cortex samples due to their much higher turnover rate.  

 

7.4.3 The overlapping genes found to contain differentially methylated CpG sites 

 

Interestingly, when we annotated the CpG sites to their gene (or nearest gene), a total 

of eight genes, RPTOR,  SEC14L1, FBXO46, CTD-2175A23.1, GMDS, GFI1,  KIFC3 

and MAD1L1, overlapped between prefrontal cortex and whole blood (Table 7.4). 

When we further investigated what tissues expressed these genes, all apart from one, 

CTD-2175A23.1 (gene expression not known), were found to be ubiquitously 

expressed in circulating blood and the brain.  Of these eight genes, seven have been 

identified via genome wide association studies to be implicated in schizophrenia and 

other related brain pathologies.  For example, SNPs in RPTOR and MAD1L1 have 

both been associated with schizophrenia [28, 37].  The loss of grey matter phenotype 

associated with SNPs in GMDS is a pathology common to schizophrenia patients [46].  

The genes FBXO46 and KIFC3 are associated with dementia; meta-analyses suggest 

that individuals with schizophrenia have an increased risk of dementia [47] and that 

the shared psychiatric symptoms in schizophrenia and Alzheimer’s disease, along with 

the effects on the dopaminergic/cholinergic axis common in both diseases, suggest 

similarities in the pattern of regional brain dysfunction [48].  From this, we suggest that, 

while individual CpG sites are not conserved between tissue types, the genes that are 

specifically differentially methylated and associate with the phenotype under 

investigation are conserved between tissue types, marking molecular pathways that 

are relevant to the phenotype.  Thus we can conclude from this that, in this study, the 

two tissue types are consistent in their identification of differential methylation at 

phenotypically relevant genes, and we stress that concordance between tissue types 

across studies should focus on the genes in which differential methylation is detected, 

rather than individual CpG sites.   
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In addition to this, and as indicated in Table 7.4, only half of the overlapping genes 

showed the same observed direction of differential methylation at CpG sites.  For 

example, within GMDS, whole blood identified a CpG site that was hypermethyla ted, 

while a hypomethylated CpG was identified in prefrontal cortex samples.  We do not 

consider this evidence of discordance between tissue samples.  This is because: i) the 

CpG sites are at different locations in the gene, DNA methylation is dynamic and 

known to vary between different genomic locations within the same gene, thus we 

have no reason to expect the direction of change to match, and; ii) we cannot assume 

that hypo- vs. hypermethylation indicates either positive or negative effect on resulting 

gene expression, when evidence suggests that either could be the result [49].  Thus, 

concordance between tissues cannot be rejected on the bases of the direction of 

differential methylation at CpG sites within shared genes.   

 

7.4.4 Pathway analysis of genes found to be associated in prefrontal cortex and 

whole blood 

 

Pathway analysis was then carried out on these same gene lists. Table 7.5 displays 

the CpG sites in genes from the prefrontal cortex pathway analysis. There was a total 

of 23 pathways which had nominal significance, the majority of which were cancer 

related. We hypothesise that the abundance of cancer-related pathways identified may 

be a potential consequence of the low turnover of cells in the prefrontal cortex 

compared to whole blood; given the known accumulation of cancer-causing mutations 

over the lifespan, the low cell turnover may be allowing the accumulation in these cells 

of differential methylation in genes that could play a role in cancer. Therefore, the 

identification of numerous cancer-related pathways could be interpreted as biological 

noise in response to our trait of interest, schizophrenia, or also a consequence of the 

inherent knowledge bias towards cancer that exists in such databases.   

Whole blood pathway ontology (Table 7.6) showed that the CpG sites within genes 

were enriched in just six KEGG pathways. However, two of these pathways, mTOR 

signalling pathway, and mRNA surveillance were found in both prefrontal cortex tissue 

and whole blood. The mechanistic Target of Rapamycin (mTOR), is an important 

pathway during neurodegeneration [50-52]. It has been hypothesised that the pathway 

prevents apoptotic cell death in the nervous system [53], and loss of mTOR leads to 
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apoptosis of neuronal cells [54]. There are several hypothesis as to how mTOR 

dysfunction is linked to schizophrenia [55-60], one of which is that disruption in the 

pathway when influenced by several extracellular and environmental factors could 

have implications for the onset of schizophrenia [61]. Since we know that DNA 

methylation is heavily influenced by the environment, it is feasible that environmental 

factors may be influencing methylation at CpG sites of relevance to the mTOR 

pathway, which could be contributing to the pathology of schizophrenia.  

The second pathway, mRNA surveillance, is also associated with neurodegenerative 

conditions via its role in the prevention of the production of potentially toxic proteins in 

protein aggregation. Loss of mRNA surveillance has been shown to lead to an 

increase in protein aggregation in the brain [62]. More so, work in human sibling pairs 

indicated that, compared to human reference sequence, brothers affected with 

childhood onset schizophrenia and autism spectrum disorders were found to have a 

mutation in the gene, UPF3B [63]. The gene encodes for a complex involved in mRNA 

surveillance and has been found to regulate expression and degradation of various 

mRNA present at the synapse [64].  

Thus, the pathway analysis carried out for schizophrenia provided interesting findings 

based upon the genes containing differential DNA methylation at CpG sites.  

Specifically, while there was little overlap in individual CpG sites, studies looking at the 

same phenotype in different tissue types showed enrichment for the same KEGG 

pathways, both of which had biological relevance to the disease in question. We 

hypothesis that although specific CpG sites are not differentially methylated in 

response to tissue type, the genes that are potentially causing dysregulation maybe 

the same in a wider network.  

A heterogeneous disease such as schizophrenia does not have one clear disease-

causing mutation. Therefore, it would also be highly unlikely that the same exact CpG 

sites in an individual are causing disease. The results of this study supports the 

heterogeneous nature of schizophrenia development, and supports the assertion that 

dysregulation within gene networks are more important to disease development, rather 

than DNA methylation at any one CpG site in particular. Thus, while different tissues 

display different differentially methylated CpG sites, this work demonstrates that genes 

and functional pathways of relevance to the disease can be shared across different 
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tissues.  Further, accepting that more definitive research needs to be done in this area, 

e.g. comparing prefrontal cortex and whole blood from the same patient, we would 

suggest that whole blood is not an inferior tissue for studies of organ-specific diseases, 

and that tissue-specific sampling may not always necessary, particularly when that 

sampling is highly invasive.  

7.4.4 Limitations of this analysis 

 

Meta analyses usually have a stringent inclusion and exclusion criteria. In this 

analysis, data was firstly limited and therefore inclusion rules were somewhat less 

stringent.  Although this objective was to try and combat a major limitation that we face 

when investigating DNA methylation, it also brings up its own limitations. When 

analysing metadata or taking top hits from selected cohorts you are rarely working with 

a uniformed pipeline of analysis. For instance, one cohort analysed may have used 

algometric tools which were needed for the integrity of their study design, but then not 

applicable for other study designs. Every study design is unique, therefore the way in 

which the analyses is carried out is different. Therefore, we entrust that data which is 

made publicly available is to the highest degree of integrity and has been pre-

processed adequately. However, it would be naive to say data processing methods 

could be ignored when interpreting the findings of our results. Unified pipelines would 

be the best way to ensure there is as little variation between each individual analysis. 

However, implementing this would be very difficult, as gaining access to raw data is 

challenging. For the most part, we had to trust the fact that all studies presented where 

data was analysed in response to the variable “schizophrenia” were accurate. Here 

we entrust the stringent peer review process that would have queried misinformation 

or biases in the data sets we chose to examine.   

It is important to note here, that although we found genes that displayed commonali ty 

between the different tissue groups, the actual CpG site of differential DNA methylation 

differed in all instances. Within a gene, there can be a multitude of CpG sites, 

especially in promoter regions of genes. So, conclusions on the relevance of any one 

CpG site to the phenotype should be made cautiously. When pathway analysis was 

performed, we found nominal significance in multiple pathways. Although this is a 

consequence of sample size, further work here needs to be carried out to be able to 

address this limitation.  



244 
 

One last issue that needs to be addressed is that of individual sample variance. Each 

of these tissue types shows a unique pattern, meaning that there will be a large amount 

of variation present. The variation can be caused by range of factors (underlying 

permanent epigenetic variation, environmental variation) and this variation can add 

up. It is normal to see some variation. However; it becomes a major problem when the 

variation fluctuates across the individual cohorts, particularly when we want to look at 

datasets as a collective. We often refer to this as heteroscedasticity, so for instance, 

the presence of variability differences between two groups e.g. whole blood vs 

prefrontal cortex. Heteroscedasticity could potentially be confounding these results, 

because more variability will be present between samples of whole blood;  the multiple 

cell types present in whole blood means that they are more likely to show more 

variation across individuals. In contrast to the prefrontal cortex, where variation across 

the majority of sites analysed will be more uniform, such that heteroscedasticity could 

be considered to be “non-applicable” to prefrontal cortex samples. Therefore, 

heteroscedasticity may be a reason why we see more significant CpG sites associated 

with the prefrontal cortex, when compared to whole blood. However, this is something 

that in this study we are unable to investigate as we are only taking “top hits”. However, 

conducting analysis using log fold form data is one way to overcome this problem. 

The observations in this chapter have provided support for the use of whole blood as 

a proxy tissue for brain pathologies. Given the biological and phenotypic relevance of 

the genes and pathways we identify between tissues, we suggest that, in order to 

make the best use of proxy tissues for heterogeneous diseases such as 

schizophrenia, studies should focus on the genes and the pathways that house 

differentially methylated CpG sites, rather than individual CpG sites themselves. 
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7.5 Chapter summary 

 

 We found no overlap between prefrontal cortex tissue and whole blood at 

specific differentially methylated CpG sites in individuals with schizophrenia in 

the two studies used in this analysis.  

 KEGG pathway analysis of the genes that housed significantly differentially 

methylated CpG sites in each tissue revealed that two major pathways, the 

mTOR signalling pathway and the mRNA surveillance pathway, which both play 

a role in neurodegeneration, were enriched in both tissue types.   

 We hypothesise that in complex diseases such as schizophrenia, differential 

methylation at individual CpG sites is less informative than the identification of 

the precise genes which house those CpG sites.  

 This is potentially due to individual variation in DNA methylation which leads to 

different CpG sites being differentially methylated in different individuals, 

especially when assessing whole blood samples.  
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8. Discussion 
 

8.1 General findings of the Chapters in this thesis 

 

The body of work presented within this thesis assessed the impact of two main 

environmental exposures, cannabis, and in utero tobacco exposure, on DNA 

methylation in the human and zebrafish genomes. We have presented evidence of 

differential DNA methylation changes in response to these exposures using both 

genome-wide and targeted (amplicon-based) techniques. Each of these chapters 

offers further insight into our understanding of the impact of environmental exposures 

on DNA methylation, and how this might relate to adverse phenotypic effects, but they 

also highlight further challenges which need to be addressed. 

 

Firstly, assessment of the response of DNA methylation in the human genome to 

heavy cannabis exposure was conducted using the Illumina EPIC array. We 

demonstrated that combining array data from different years led to a batch effect 

between sampling years, and that choice of normalisation methods for sample pre-

processing led to significant discrepancies in ability to correct for the batch effect 

between sample batches. If sampling could be carried out again, cannabis only 

samples and cannabis with tobacco samples would be sent at the same time. 

However, we determined that the tool noob was able to adequately correct for the 

batch effects, and did so more successfully than other methods. Differential DNA 

methylation was observed at a nominal level in cannabis-only users compared to 

controls, while in the cannabis with tobacco group, FDR adjustment levels were met 

at several CpG sites indicating CpG sites that were differentially methylated at the 

genome-wide level. KEGG pathway analysis was carried out on the genes (or nearest 

genes) which housed the top differentially methylated CpG sites in the cannabis-only 

group, and the cannabis with tobacco group. The cannabis-only genes displayed 

enrichment for genes involved in brain and cardiac function, whereas the cannabis 

with tobacco genes enriched for pathways involved in cancer. Given the observed 

phenotypic effects of long-term cannabis exposure in humans, these results, while 

nominal, are biologically meaningful and highlight a role for DNA methylation in the 

biological response to cannabis, and should be explored further. 
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Following on from these findings, we established a cost-efficient pipeline for the 

replication and validation of differential DNA methylation identified via EPIC array 

using the tool BSAS, in a targeted and high-throughput manner. The aim was to 

determine whether BSAS is an accurate tool for further exploration of differentially 

methylated CpG sites of interest. CpG sites from the cannabis with tobacco data from 

Chapter 2 were picked on the basis of their statistical significance (statistically 

significant, nominally significant and no observed difference between cannabis with 

tobacco users vs control). Here we found that BSAS was able to validate some CpG 

sites from the EPIC array but we caution that each locus should be explored 

individually on a small scale before being chosen for large-scale use. While BSAS was 

unable to reproduce the magnitude of differential methylation change shown in the 

EPIC array, BSAS did display some distinct advantages; it can be used to assess 

multiple CpG sites within a region in a gene, and therefore could be used as a tool for 

investigating specific differentially methylated gene regions efficiently and thoroughly.   

 

In Chapter 4 we demonstrated that the zebrafish was a tractable model system in 

which to assess the impact of cannabinoid exposure on DNA methylation. Specifically, 

we show that THC and CBD exposure reduces zebrafish embryo hatching efficiency 

compared to controls, however CBD exposure shows the greatest effect. DNA 

methylation differences were investigated using RRBS, and we detected differential 

DNA methylation in response to all treatment groups, at an FDR corrected adjustment, 

indicting significant results at the genome-wide level. CBD exposure resulted in N= 

1939 significantly differentially methylated CpG sites, and THC exposure displayed N= 

9 significantly differentially methylated individual CpG sites. Intriguingly, biological 

pathway analysis of the genes which housed significantly differentially methylated 

CpG sites in response to CBD showed that these data were enriched for genes 

involved in cell communication and axon guidance, which was unexpected due to the 

non-psychoactive nature of CBD. 

 

The impact of in utero tobacco exposure on DNA methylation, and the interaction 

between exposure and CP was quantified using BSAS. In this pilot study we identified 

10 genes from the literature known to play a role in neurodevelopment to investigate 

this. We identified nominally significant differential DNA methylation at specific CpG 

sites in individuals with CP who were exposed to tobacco in utero. These findings 
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highlighted the potential role for DNA methylation in the association between in utero 

tobacco exposure and CP, and therefore we investigated this association further, at 

the genome-wide level, in Chapter 6.  

In Chapter 6 we presented Illumina EPIC array data which assessed differential 

methylation under three different models: i) maternal tobacco use during pregnancy 

(in utero exposure) vs. non-exposed; ii) low CP scores vs high CP scores, and; iii) 

interaction between in utero exposure and CP score.  We detected significant genome-

wide DNA methylation differences between individuals exposed to tobacco in utero 

and those that were not, and this remained significant after adjustment for multiple 

testing.  In addition, nominal significance was observed across the genome when 

comparing high vs. low CP scores, and when modelling the interaction between in 

utero exposure and CP score (interaction model). The top CpG sites identified under 

this interaction model all have functional relevance to visual impairment and brain 

function, suggesting that visual impairment may be an additional phenotypic response 

to in utero tobacco exposure.   

Lastly, explored the use of whole blood samples for DNA methylation analysis and 

how indicative these marks were at predicting DNA methylation changes in brain cells, 

using DNA methylation in blood and brain in individuals with schizophrenia as a model. 

Here, we found very little overlap between differentially methylated CpG sites between 

whole blood and brain samples. However, KEGG pathway analysis of the genes 

containing the top differentially methylated CpGs from each tissue identified an overlap 

between whole blood and prefrontal cortex in the mTOR signalling and mRNA 

surveillance pathways, both of which have roles in schizophrenia, highlighting the 

value of whole blood as a proxy tissue for organ-specific diseases.   
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8.2 Contributions to the field 

 

8.2.1 Cannabinoid exposure 

 

Here, we have provided evidence of differential DNA methylation in response to heavy 

cannabis exposure in humans. Currently, there is little research that has investigated 

the response of DNA methylation to cannabis, which is largely due to the fact that 

cannabis is most often consumed in combination with tobacco. Here, we have had the 

unique opportunity to specifically investigate the effect of cannabis, in isolation from 

tobacco, on DNA methylation in the human genome. These findings has provided new 

insights into how cannabis alone is interacting with DNA methylation in the human 

genome. For example, we now know that DNA methylation is altered at genes with 

roles in brain and cardiac function, indicating that DNA methylation may play a role in 

the biological effects of cannabis. These observations can contribute to the debate 

around the safety and efficacy of cannabis and its constituents as a therapeutic agent, 

as well as contribute to the ongoing debates around decriminalisation and legalisation. 

Of importance to the above, the growing popularity of medicinal cannabis, and CBD-

based therapeutic products, highlights the need for investigation into the precise 

modes of action of each of the main ingredients of cannabis. However, this is a 

question that could not be readily answered in humans, therefore we sought to begin 

to explore this in the zebrafish.  Our data showed surprising results, namely that the 

impact of CBD on DNA methylation was widespread and included significant 

differential DNA methylation at genes and pathways that function in the brain. 

Therefore, our RRBS results seem contrary to what we would expect, given that THC 

is the main psychoactive component of cannabis.  

Although we cannot use these data to assign positive or negative phenotypic impacts 

for the individual, this evidence justifies the need for further research into the precise 

biological impact of CBD exposure. We see this as particularly relevance given the 

popularity of CBD for medicinal purposes. Specifically, pilot data from other groups 

suggests that CBD could be beneficial in the treatment of multiple sclerosis and severe 

epilepsy [1]. Thus, while there may be evidence for the use of cannabinoids as a 

therapy for multiple sclerosis and epilepsy, the unexpected nature of the identified 

differential DNA methylation in response to CBD implies that there is much we do not 



253 
 

now about the impact of CBD on the genome, and what this might mean for health. 

While we were not able to validate the impact of CBD and THC on gene expression 

within the scope of this thesis, this serves as a valuable observations around the use 

of cannabinoids and justifies further investigation.   

 

8.2.2 In utero tobacco exposure 

 

Maternal tobacco use during pregnancy is common, and has been associated with 

perinatal compromise and CP.  However, CP is an umbrella term that encompasses 

a number of different disorders, each of which may be influenced by numerous 

genetic, environmental, or socioeconomic factors. Further, diagnosis of CP is via a 

numerical scale (i.e. not binary). Thus, proving that CP is definitely linked to in utero 

tobacco exposure is challenging. While nominal, our initial findings at both the 

amplicon and the whole genome level identified differential methylation at CpG sites 

that were specific to the interaction between in utero tobacco exposure and high CP 

score, supporting the role of DNA methylation in the association between in utero 

tobacco exposure and the development of CP.  This provides evidence to further 

support the risks associated with maternal tobacco use during pregnancy, and further 

research into this association will support policy and education around maternal 

tobacco use.   

Our data also provided evidence to suggest that developmentally-derived DNA 

methylation may be maintained into adulthood. Specifically, here we identify four 

differentially methylated CpG sites in the DNA of adults that remain significant after 

FDR correction, in response to in utero tobacco exposure, that are independent of 

adult smoking status. Three of these CpG sites have been identified as differentially 

methylated in response to maternal tobacco use during pregnancy in newborns and 

young children [2-6]. Implying that some in utero tobacco-induced DNA methylation 

changes may be stable through the life course. These sites should be further 

investigated, as this observation may have further implications for human health. 
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8.3 Avenues for further research 

 

8.3.1 Sample size and genome-wide significance 

 

A limitation in many human studies, including this one, is sample size and access to 

human DNA. The number of individuals in each of the studies assessed here are of 

modest size. Chapter 5 was the largest working cohort assessed in this thesis (N= 

109). While our nominally significant data were biologically relevant, each hypothesis 

that we test is subjected to correction for multiple testing for ~850,000 tests (the 

number of CpG sites on the EPIC array). Due to this, it impedes our power to detect 

CpG sites that are significant at the genome-wide level.  We hypothesise that further 

investigation with a sample size of at least N= 500 individuals may provide enough 

power to reach genome wide significance, providing further support for our 

conclusions. However, achieving this target number, particularly in retrospective 

studies such as this one, is a challenge.  

An alternative approach would be to combine data from other comparable cohorts in 

order to validate our results. Again this approach has challenges, in particular, the 

majority of published data which has been discussed throughout this thesis was 

generated using the EPIC array predecessor, the 450K array, therefore it would 

remain impossible to validate half of our data points using this approach. Therefore 

the most tractable way forward would be to continue development of the zebrafish as 

a model for cannabinoid exposure and take this work forward into larger human 

cohorts. 

8.3.2 Functional relevance of KEGG pathway analysis 

 

Pathway analysis can support observations of differential DNA methylation by 

highlighting biological pathways that may be over-represented in differential 

methylation data. It is important because it may indicate functional relevance of a 

dataset, as pathway analysis tools group genes which have similar functional 

annotations. However, while KEGG pathway analysis can indicate the functional 

relevance of observed methylation changes, it remains important to link these 

methylation changes to a genomic output. These data serve as justification for the 

addition of gene expression data to complement our methylation findings. We further 

suggest that a useful addition to KEGG analyses here would be a functional 



255 
 

investigation of the impact of cannabis on the genome that specifically asks how CBD 

and THC affect chromatin structure and the 3-dimensional organisation of the genome. 

Asking how environmental exposures change genomic interactions would improve our 

understanding of how substances such as CBD and THC affect genome regulation, 

and this will increase our understanding of the mechanistic link between DNA 

methylation and phenotypes related to cannabis exposure. 

8.3.3 Validating zebrafish data 

Ideally further validation would have been carried out on the DNA methylation analysis 

of cannabinoid exposure. Carrying out bisulfite based amplicon sequencing to validate 

regions of interest would offer more robust results. Further assessing RNA-seq data 

would give more insight into the role these differential DNA methylation marks play in 

gene expression. One further point, we would also like to explore is that using a 

different vehicle. Ethanol is known to have profound effects on the genome and thus, 

could also be playing more of a role in the differences seen from each exposure group. 

Investigating the use of another control would offer further insight into the true effects 

cannabinoids are playing on the zebrafish genome.  

8.4 Overall relevance 

 

The findings we present here show how differential DNA methylation marks can be 

shaped by the surrounding environment. They further highlight the role of DNA 

methylation in the biological response to cannabis and tobacco. We have 

demonstrated that the environment can affect the genome during early development 

(in utero) and in adulthood. Our results also indicate that developmentally-induced 

changes can persist into adulthood. Further investigation is required to understanding  

the mechanism by which DNA methylation is contributing to disease. However, the 

results of the thesis contribute useful observations for future research in this area.  
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