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The bull shark (Carcharhinus leucas) is a large, mobile, circumglobally distributed
high trophic level predator that inhabits a variety of remote islands and continental
coastal habitats, including freshwater environments. Here, we hypothesize that the
barriers to dispersal created by large oceanic expanses and deep-water trenches
result in a heterogeneous distribution of the neutral genetic diversity between island
bull shark populations compared to populations sampled in continental locations
connected through continuous coastlines of continental shelves. We analyzed 1,494
high-quality neutral single nucleotide polymorphism (SNP) markers in 215 individual bull
sharks from widespread locations across the Indian and Pacific Oceans (South Africa,
Indonesia, Western Australia, Papua New Guinea, eastern Australia, New Caledonia,
and Fiji). Genomic analyses revealed partitioning between remote insular and continental
populations, with the Fiji population being genetically different from all other locations
sampled (FST = 0.034–0.044, P < 0.001), and New Caledonia showing marginal
isolation (FST = 0.016–0.024, P < 0.001; albeit based on a small sample size)
from most sampled sites. Discriminant analysis of principal components (DAPC)
identified samples from Fiji as a distinct cluster with all other sites clustering together.
Genetic structure analyses (Admixture, fastStructure and AssignPOP) further supported
the genetic isolation of bull sharks from Fiji, with the analyses in agreement. The
observed differentiation in bull sharks from Fiji makes this site of special interest, as
it indicates a lack of migration through dispersal across deep-water trenches and large
ocean expanses.

Keywords: island populations, connectivity, coastal sharks, shark reef marine reserve, population genomics,
dispersal barriers
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INTRODUCTION

Reduced genetic variation, population isolation and genetic drift
may lead to genetic divergence and speciation among terrestrial
organisms inhabiting islands (Grant, 1985). Assessing genetic
structure among island demes can help in identifying small,
genetically differentiated, and spatially isolated populations
(Allendorf et al., 2008). While terrestrial organisms inhabiting
oceanic islands generally show significant levels of genetic
differentiation when compared to their continental conspecifics,
marine taxa with large dispersal capabilities are expected to
show little divergence as their habitats appear to be continuous
(Roberts, 1997). However, growing evidence suggests that
biogeographic barriers, produced for example by ocean currents
(Hare et al., 2005), changes in sea surface temperature (Kelly
and Eernisse, 2007), physical barriers such as oceanographic
fronts (Galarza et al., 2009), and resource availability (Palumbi,
1994) can impede gene flow (Cowman and Bellwood, 2013)
in some marine taxa (Cowen et al., 2000; Leis, 2002; Hauser
and Carvalho, 2008). Spatial distribution of the genetic
variation to establish connectivity patterns among marine
taxa has been subject of extensive research in recent years
(Cowen et al., 2000; Cowen and Sponaugle, 2009; Crandall
et al., 2019), including sharks (e.g., Momigliano et al., 2017).
However, data is limited when it comes to the quantification
of population structure in coastal shark species inhabiting
both island and continental coastal waters. Such studies can
be vital for the identification of management units and
metapopulations. For example, an analysis examining the
population structure of the tiger shark on a global scale using
a suite of mitochondrial and nuclear (microsatellites) genetic
markers revealed population isolation for the Hawaiian Islands
(Bernard et al., 2016).

Overexploitation has led to drastic declines in shark
populations worldwide (Dulvy et al., 2014). In general, various
studies indicate that many commercially exploited shark species
have a low intrinsic rebound potential due to their low
fecundity and slow growth rates, and have further been found
to have low genetic diversity and smaller population sizes
compared with other marine taxa (Martin et al., 1992; Daly-
Engel et al., 2010; Karl et al., 2011; Vignaud et al., 2013).
Additionally, coastal sharks are vulnerable to increased mortality
rates due to their proximity to human populations, where
fishing pressure is typically higher and habitat degradation is
more pervasive. Therefore, identifying the genetic structuring
of populations is fundamental for determining whether, and
to what degree, population differentiation exists. Furthermore,
this information is essential for understanding the state of
subpopulations that need to be treated as separate management
units (Palsbøll et al., 2007).

While global surveys examining broad scale patterns of genetic
differentiation confirmed connectivity within and between ocean
basins in some highly migratory pelagic sharks (Hoelzel et al.,
2006; Castro et al., 2007; Sequeira et al., 2013), oceanic expanses
can cause genetic population structure in coastal sharks (Schultz
et al., 2008; Ahonen et al., 2009; Ovenden et al., 2009; Portnoy
et al., 2010; Momigliano et al., 2017). For example, sicklefin

lemon shark populations, Negaprion acutidens, in Australia
and French Polynesia, separated by oceanic distances of at
least 750 km across the Tonga trench with a maximum depth
of over 10,000 m (van der Hilst, 1995), show moderate but
statistically significant genetic differentiation (FST = 0.070–0.087,
p < 0.001), with South Pacific archipelagos probably serving
as stepping stones for rare dispersal events (Schultz et al.,
2008). In addition, to oceanic expanses, physical barriers such
as fronts, eddies, gyres and other oceanographic factors can
prevent dispersal. In some tropical and subtropical shark species,
restricted gene flow is associated with cool thermal barriers such
as the Benguela upwelling (Duncan et al., 2006; Keeney and
Heist, 2006). For example, in the blacktip shark, Carcharhinus
limbatus, the cold Benguela upwelling along the south-West
coast of Africa restricts contemporary female-mediated gene flow
between Atlantic and Indo-Pacific populations (Keeney et al.,
2005; Keeney and Heist, 2006; Sodré et al., 2012). Contrastingly,
the Benguela upwelling appears not to be a barrier to the
temperate copper shark, C. brachyurus, as evidenced by a lack
of genetic differentiation between Namibia and South Africa
(Benavides et al., 2011). Additionally, coastal sharks may be
limited by their habitat, exhibiting fidelity to discrete locations
for feeding, mating, parturition, maturation and migratory routes
(Castro, 1983; Simpfendorfer and Milward, 1993; Heupel et al.,
2007; Speed et al., 2010; Brunnschweiler and Baensch, 2011). For
example, increasing evidence suggests that many coastal sharks
have strong philopatric behavior (Karl et al., 2011; Chapman
et al., 2015). The degree of segregation of these sites, and site
fidelity (philopatry) can directly affect the level of population
subdivision and genetic divergence among geographic regions
(Keeney et al., 2005).

Reproductive philopatry has been described in scalloped
hammerheads, Sphyrna lewini (Duncan et al., 2006), blacktips
(Keeney et al., 2005), and bull sharks, Carcharhinus leucas (Karl
et al., 2011; Tillett et al., 2012). Furthermore, natal philopatry
and long-term fidelity to parturition sites has been documented,
for the first time in any shark species at Bimini, Bahamas
(Feldheim et al., 2014). Restricted maternal gene flow between
populations caused by female site fidelity may result in small
local effective population size and thus increased vulnerability to
exploitation (Duncan and Holland, 2006; Duncan et al., 2006;
Nance et al., 2011). Thus, overfishing may have detrimental
effects on large coastal shark species due to limited exchange with
other regional populations.

One of the most iconic coastal apex predators is the bull shark
(C. leucas; Müller and Henle, 1839). This large shark is globally
distributed in warm, temperate, tropical and subtropical waters
(Compagno, 2001). Evidence based on highly restricted maternal
gene flow suggests site-fidelity and reproductive philopatry
(Tillett et al., 2012), while tracking studies documented large-
scale movements of up to 1,500 km in individual bull sharks
(Carlson et al., 2010; Daly et al., 2014; Heupel et al., 2015; Lea
et al., 2015). For example, a recent study documented that a
substantial segment of a Great Barrier Reef bull shark population
displayed long migrations of up to 1,400 km to other coral
reefs and/or inshore coastal habitats along the Australian east
coast (Espinoza et al., 2016). Microsatellite markers revealed, for
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the first time, genetic structuring in West Atlantic bull shark
populations (Karl et al., 2011) and strong genetic differentiation
between bull sharks from the West North Atlantic and Indo-
Pacific, with significant genetic structuring in specimens from
Fiji (Testerman, 2014). Similarly, a more recent study by Pirog
et al. (2019) utilized both mitochondrial and microsatellites
DNA markers in 11 sites across the Western Atlantic, Western
Pacific and Western Indian Ocean and found clustering between
the Western Atlantic and those from the Indian and Pacific
Oceans. However, given that the bull shark is a coastal species
(Brunnschweiler et al., 2010), it seems likely that barriers to gene
flow exist within its range, which includes distant oceanic islands
separated by hundreds of kilometers of open ocean.

New methodological advances such as co-dominant,
genome-wide single nucleotide polymorphism (SNP) loci,
have the potential to improve resolution in the estimation
of population structuring, migration rates, dispersal, and
population assignment (Morin et al., 2004; Benestan et al., 2015;
Gagnaire et al., 2015; Selkoe et al., 2016). Here, we utilize SNP
markers to test the hypothesis that barriers to dispersal created
by large oceanic expanses and deep-water trenches result in a
heterogeneous distribution of neutral genetic diversity between
island bull shark populations compared to demes sampled
in continental locations and connected through continuous
coastline of continental shelves.

To provide a broad geographic framework for our study,
and to place the findings in the context of existing knowledge
on bull shark population structure, we obtained samples from
South Africa, Indonesia, Western Australia, Papua New Guinea,
eastern Australia, New Caledonia and Fiji. Specific aims of the
study were: i) to compare inbreeding coefficients and levels of
heterozygosity of bull sharks within the sampled range, and ii)
to assess the population structure in bull sharks on a genomic
scale using SNPs. This study contributes to the understanding of
genetic patterns of insular – coastal shark populations that inhabit
historically understudied regions.

MATERIALS AND METHODS

Ethics Statement
All shipping procedures of shark tissue samples were conducted
under the relevant import and export permits issued by
The Australian Government, Department of Agriculture and
Water Resources to Diversity Arrays Technology Pty Ltd.,
Canberra, Australia and the Ministry of Fisheries and Forests
in Fiji. Bull shark tissues from Papua New Guinea came
from the CSIRO/ACIAR/PNG-NFA FIS/2012/102 “Sustainable
management of the shark resources of Papua New Guinea:
socioeconomic and biological characteristics of the fishery.”
Handling of live shark specimens were approved under the
Research Permit issued by the Fiji Ministry of Education,
Heritage and Arts to Beqa Adventure Divers and performed in
accordance with relevant guidelines and regulations.

Sampling Procedures
Bull shark samples (white muscle and fin clips, 1 cm2) were
obtained from fisheries independent surveys, observers on board
commercial fleets, and recreational and artisanal fishers from
2004 to 2017. The samples of 215 individual bull sharks came
from seven locations (defined as a priori populations, hereafter)
and six countries across the Indian and Pacific Oceans (Figure 1,
Table 1). All samples were stored in 95% ethanol until DNA
extraction, library preparation and sequencing.

Extraction and Sequencing
Tissue samples were sent to Diversity Arrays Technology
(DArT-SeqTM) in Canberra Australia where genomic DNA was
extracted from the tissues using standard robotic methods.
DNA was processed for reduced representation library
construction, sequenced and genotyped by DArT-SeqTM

following previously developed and tested complexity reduction
protocols for scalloped hammerhead sharks (Sphyrna lewini)

FIGURE 1 | Locations of sample sites with numbers of samples in parentheses.
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TABLE 1 | Number of original bull shark samples per location, full sibling pairs
detected with COANCESTRY, and remaining samples after one individual for each
pair was removed.

Location Sampling
period

Number of
samples

Full sibling
pairs

Remaining
samples

South Africa
(KwaZulu-Natal)

2004–2007 20 1 19

Indonesia (Banda
Aceh)

2008 30 4 26

Western Australia
(Fitzroy River)

2008 15 0 15

Papua New Guinea
(Sepik River and
coastal waters)

2015–2017 17 1 16

eastern Australia
(Brisbane River,
Townsville and
Sydney)

2006–2008 34 9 25

New Caledonia
(Nouméa coastal
waters)

2008 9 1 8

Fiji (Shark Reef
Marine Reserve)

2007–2017 90 12 78

Total 215 26 187

(Marie et al., 2019). Briefly, genome complexity reduction was
achieved with a double restriction digest using a PstI and SphI
methylation-sensitive restriction enzyme combination. Libraries
were sequenced on an Illumina HiSeq 2500 platform, and raw
reads obtained following sequencing were processed using
Illumina CASAVA v.1.8.2 software for initial assessment of read
quality and sequence representation. The DArT PL proprietary
software pipeline, DArTtoolbox was used for further filtering and
variant calling to generate the final genotypes set.

SNP Filtering
The dataset was filtered by excluding duplicate SNPs possessing
identical Clone IDs and by removing loci with a call rate
(proportion of individuals scored for a locus) <99%, read depth
>7 and minor allele frequencies (MAF) <2%. Detection of
loci under selection was implemented in BayeScan v.2.1 (Foll
and Gaggiotti, 2008). The most conservative neutral model in
BayeScan was used to minimize falsely detected loci under
selection (Lotterhos and Whitlock, 2014). Runs consisted of
100,000 iterations with a burn-in length of 50,000 iterations
(Foll and Gaggiotti, 2008; Foll, 2012). Once probabilities had
been calculated for each locus, the BayeScan function plot_R
was used in the R v.3.2.0 statistical package (Venables et al.,
2003) to identify putative outlier loci. A range of false discovery
rate (FDR) values from 0.01 to 0.20 were evaluated based on
preliminary testing and recommendations by Gondro et al.
(2013). Departure from Hardy-Weinberg Equilibrium was tested
for each locus using the software Arlequin v.3.5.2.2 (Schneider
et al., 2000) using an exact test with 10,000 steps in the
Markov Chain method and 100,000 dememorizations. Tests
for linkage disequilibrium was performed using the software
PLINK v.1.07 (Chang et al., 2015). Related individuals were

detected using TrioML with COANCESTRY v. 1.0.1.7 (Wang,
2011). To determine cut-off r values for categorizing relatedness
coefficients produced by the various algorithms into full-sib and
less-related brackets, COANCESTRY was again used to simulate
200 dyads in each group based on the same allele frequencies as
the original population samples. These values became the cut-
offs for delineating full siblings in the empirical dataset. One
individual from each of the full sibling pairs was removed for
the final neutral data set. This new data set was used in all the
subsequent analyses.

Allelic Diversity and Population
Structuring
Allelic diversity indices including average observed (Ho) and
unbiased expected heterozygosities corrected for population
sample size (Hnb) were computed in Genetix v.4.05.2 (Belkhir
et al., 1996), together with the inbreeding coefficient (FIS)
values using GENEPOP v.4.6 (Rousset, 2008). Pairwise FST
estimates were calculated using Arlequin v.3.5.1.3 followed
by correction of significance levels for multiple pairwise
tests (Excoffier and Lischer, 2010). An analysis of molecular
variance (AMOVA) was performed in GenoDive v.3.0 using
10,000 permutations to estimate F-statistics in order to detect
population genetic partitioning between sampling locations
(Mengoni and Bazzicalupo, 2002). P values were adjusted by
using the Bonferroni correction (Rice, 1989). Multiple AMOVAs
were performed: i) one overall analysis including all sampling
locations as separate populations, ii) Fiji versus all other sites
grouped as one population, iii) insular (New Caledonia, Fiji)
versus continental locations, and iv) Pacific Ocean versus
Indian Ocean. Visualization of broad-scale population structure
and population assignment was carried out by performing a
Discriminant Analysis of Principal Components (DAPC) in the
R package adegenet 1.4.2 (Jombart, 2008; Jombart and Ahmed,
2011). DAPC was carried out for all neutral loci. An α-score
optimization was used to determine the number of principal
components to retain. Alpha-score optimization indicated that
the first nine PCs (42.7% of total variation) should be retained
for analysis. Given the wide temporal range for sampling in Fiji
(2007–2017), separate DAPC analyses were run to determine the
temporal stability within Fiji samples. For this, the sampled years
that have a sufficiently large number of individuals within each
year were split as a separate populations [2010 (n = 28), 2011
(n = 22), and 2017 (n = 18)]. The samples collected in 2007 (n = 6),
2008 (n = 1), and 2009 (n = 3) were considered inadequate for this
analysis given the small sample sizes. Furthermore, to determine
if the pattern of differentiation obtained when using all Fijian
samples simultaneously was stable, the DAPC analyses were also
run comparing all Indo-Pacific populations against individual
years (2010, 2011, and 2017) from Fiji.

The determination of the optimal number of clusters (k) was
tested using both fastStructure (Raj et al., 2014) and Admixture
(Alexander et al., 2009). Both software packages were written
for large autosomal SNP data sets and unlike other programs
can test the likelihood of a k of one. Admixture utilizes a cross-
validation procedure when determining the optimal k. While, for

Frontiers in Marine Science | www.frontiersin.org 4 December 2020 | Volume 7 | Article 586015

https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-586015 December 14, 2020 Time: 11:37 # 5

Glaus et al. Bull Shark’s Population Genetic Structure

fastStructure the full model was selected with a seed of 100. For
both programs, k ranging from 1 to 10 was run. Additionally,
fastStructure included the python script chooseK.py which was
run after the ten k scenarios were finished and the optimal k was
selected. Once the optimal k was determined the probability of
individual population assignments was calculated and visualized
using both Admixture and AssignPOP (Chen et al., 2018).

RESULTS

Filtering and Genotypic Diversity
Genotyping by sequencing using DArT-SeqTM resulted in 59,601
SNPs prior to quality control filtering (Carson et al., 2014), which
in turn resulted in 1,494 loci using a 99% call rate, read depth
>7, and 2% MAF. Among the 1,494 SNPs that passed all quality
control filters for the 215 individuals, zero SNPs were identified
as outlier loci putatively under positive selection (FDR 1%). No
loci were detected to be out of Hardy-Weinberg Equilibrium and
in addition no loci were determined to be linked.

A total of 28 full sibling pairs were identified in
COANCESTRY (Table 1), with Fiji having the most pairs
(12) followed by eastern Australia (9). Most of the other sites
only had one or two pairs, while no full sibling pairs were
identified within the West Australian samples. After removal of
one individual from each of the pairs, 187 samples were retained.

Overall, population-level indices of genetic
diversity, including Ho, Hnb, and FIS, were variable
across a priori populations (Table 2). The Ho were
lowest within Papua New Guinea (0.128 ± 0.162) and
South Africa (0.157 ± 0.168) and highest in bull sharks from
New Caledonia (0.182 ± 0.188) and Indonesia (0.214 ± 0.166)
(Table 2). Inbreeding estimates were highest in specimens
collected in eastern Australia (FIS = 0.355) and lowest in bull
sharks from New Caledonia (FIS = −0.064) and Western
Australia (FIS = −0.049).

Population Structuring
Pairwise FST values were highest (0.034–0.044) between Fiji and
all other sites, while values were moderate (0.016–0.024) for
New Caledonia and all other continental sites (Table 3). The
AMOVA results allocated the vast majority of the variation within

TABLE 2 | Summary of average genetic diversity statistics per population.

Location n Ho Hnb FIS

South Africa 19 0.157 ± 0.168 0.156 ± 0.161 0.000

Indonesia 26 0.214 ± 0.166 0.203 ± 0.14 −0.017

Western Australia 15 0.164 ± 0.182 0.157 ± 0.163 −0.049

Papua New Guinea 16 0.128 ± 0.162 0.163 ± 0.152 0.031

astern Australia 25 0.163 ± 0.163 0.184 ± 0.141 0.355

New Caledonia 8 0.182 ± 0.188 0.212 ± 0.16 −0.064

Fiji 78 0.159 ± 0.163 0.155 ± 0.157 −0.021

Columns indicate the number of samples per location (n), observed heterozygosity
(Ho), unbiased expected heterozygosity after correction for sample size (Hnb) with
standard deviations and inbreeding indices (FIS).

individuals and when sampling sites were treated separately
without groupings, roughly 2.7% of the variation was found
among a priori populations (Table 4). The analysis showed
significant variation among groups, when Fiji and New Caledonia
were grouped as one versus a second group consisting of all
continental sites (Table 4). This reflects the pairwise FST values,
in that Fiji and New Caledonia were significantly different from
all other sites.

The DAPC scatterplot showed a clear distinction between Fiji
and the other locations. New Caledonia was not differentiated
from the continental locations, which may be a result of
the small sample size (Figure 2). The analysis of temporal
samples within Fiji resulted in scatter plots that placed the
individuals compared, from three different years, overlapping to

TABLE 3 | Pairwise FST (lower diagonals) and P values (upper diagonal) between
the seven locations sampled.

Locations SAF IND WAS PNG EAS NCL FIJ

SAF – 0.007 0.001 0.049 0.001 0.001 0.001

IND 0.013 – 0.028 0.160 0.004 0.134 0.001

WAS 0.007 0.013 – 0.003 0.001 0.001 0.001

PNG 0.004 0.015 0.008 – 0.007 0.001 0.001

EAS 0.007 0.011 0.007 0.005 – 0.001 0.001

NCL 0.018 0.001 0.016 0.024 0.017 – 0.001

FIJ 0.034 0.044 0.034 0.034 0.034 0.041 –

Significant FST and P values (<0.007, after Bonferroni correction) are in bold. SAF,
South Africa; IND, Indonesia; WAS, Western Australia; PNG, Papua New Guinea;
EAS, eastern Australia; NCL, New Caledonia; FIJ, Fiji.

TABLE 4 | Summary of AMOVA results for the various groupings.

Groupings Source of variation % of
variation

F statistic P value

Separate Populations: no
groupings

Within individual 99.20% F it

Among individuals −1.90% F is 1.000

Among populations 2.69% FST <0.000

Fiji vs All Others: Fiji and all
other sites as one group

Within individual 98.40% F it

Among individuals −1.89% F is 1.000

Among populations 1.28% Fsc <0.000

Among groups 2.21% Fct 0.144

Islands vs Continents: Fiji
and New Caledonia as a
group and all other sites
as one group

Within individual 98.59% F it

Among individuals −1.89% F is 1.000

Among populations 1.55% Fsc <0.000

Among groups 1.76% Fct 0.047

Indian/Pacific Ocean:
Indian Ocean sites as a
group and Pacific Ocean
sites as a group

Within individual 98.97% F it

Among individuals −1.90% F is 1.000

Among populations 2.37% Fsc <0.000

Among groups 0.56% Fct 0.450
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FIGURE 2 | DAPC using 1,494 neutral loci and 9 principle components.
(1 = South Africa, 2 = Indonesia, 3 = Western Australia,
4 = Papua New Guinea, 5 = eastern Australia, 6 = New Caledonia,
and 7 = Fiji).

an extent that supports stability in the distribution of the neutral
genetic diversity within this insular population. Furthermore,
when sampled years were analyzed separately with the rest
of populations, again, sharks strongly overlapped within the
Indo-Pacific and within Fiji. This confirmed the patterns of
differentiation observed irrespective of the sampling year in
Fiji and ruled out any temporal substructure (Supplementary
Materials; Supplementary Figure S1). Both fastStructure and
Admixture reported an optimal k of two, and we arbitrarily
labeled them population A and B. For Admixture the cross-
validation inflection point was at k = 2, while for fastStructure
the python script chooseK.py selected a k of 2 based on
marginal likelihood. The population assignment analyses for both
Admixture and AssignPOP assigned the same individuals to
the same populations, with all continental locations and New
Caledonia belonging to population A, and Fiji belonging to
population B (Figure 3). The best performing assignment model
in AssignPOP was Support Vector Machine (SVM) with an
assignment accuracy of 0.999 (s.d. = 0.001) for population A and
1.0 for population B.

DISCUSSION

This is the first population genetic structure study conducted
in bull sharks using SNP markers. The major finding
of this study is that the insular bull shark population
from Fiji is genetically distinct from its continental
counterparts. Therefore, the data presented here supports
the alternative hypothesis that biogeographic barriers to
dispersal result in a heterogeneous distribution of the neutral
genetic diversity between island bull sharks compared to
populations sampled from continental shelves across the
Indo-Pacific region.

Genetic Diversity
The sampling regime and SNP marker set used herein possessed
the ability to resolve relatively low levels of differentiation
enough to define bull shark population structure (Table 3). Based
on SNP data, levels of observed heterozygosity (Ho = 0.128–
0.214) in bull sharks are comparable to other tropically
distributed sharks, such as the gray reef shark (Carcharhinus
amblyrhynchos) (0.139–0.312) (Momigliano et al., 2017)
and the Galapagos shark (C. galapagensis) (0.188–0.193)
(Pazmiño et al., 2017).

Population Genetic Structure
All five analyses examining population structuring and
connectivity (FST, AMOVA, DAPC, Admixture and PopAssign)
failed to detect any barriers to gene flow among the six
continental a priori populations (from the Pacific and Indian
Oceans) in this study. Initially this might be surprising,
given the large distances between the sampled populations.
However, a recent study by Pirog et al. (2019) incorporating
25 microsatellites and using DAPC and fastStructure analyses
also detected large ocean wide clusters including all western
Atlantic populations in one and western Indian Ocean and
Pacific sites in the other. Additionally, to date, no ocean basin
subdivision has been detected for bull sharks (Karl et al., 2011;
Tillett et al., 2012; Testerman, 2014). This is not surprising
since tracking studies indicate bull sharks are capable of
long-distance movements of up to 1,506 km along coastlines
(Carlson et al., 2010) and can traverse open-ocean expanses
of 2,000 km (Lea et al., 2015). However, genetic connectivity
does not necessarily equate to demographic connectivity, as the
exchange of only a few individual migrants per generation is
enough to homogenize the gene pool even of distantly located
populations (Waples, 1998). Low levels of migration among
locations in turn are likely to be insufficient to compensate
localized declines in abundance, but rare excursions can
have important consequences for population viability by
prevention of inbreeding.

However, the same five analyses all detected differentiation
between all continental populations and Fiji. Significant
pairwise FST values ranged from 0.034 to 0.044 between all
locations (including New Caledonia) and Fiji. While values
for New Caledonia were significant, they were smaller ranging
between 0.016 and 0.024 and no significant differentiation was
detected between Indonesia (Banda Aceh) and New Caledonia
(FST = 0.001); locations which are separated by thousands
of kilometers of ocean. These smaller values and conflicting
patterns may be a result of the small sample size (N = 8) of
the New Caledonia population and may not reflect the true
genetic structure. The DAPC results clearly differentiated Fiji
from the rest of the populations, with New Caledonia clustering
well within the continental cluster. Further support comes
from Admixture and fastStructure, which both identified an
optimal k of two with all continental locations (including
New Caledonia) in one cluster and Fiji samples in the other.
Furthermore, given a k of two, PopAssign was able to assign
accurately the same individuals to each of the two populations
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FIGURE 3 | Probability of population placement based on an optimal k of PopAssign (top) and Admixture (bottom).

that Admixture allocated. Thus, the corroboration of these
independent analyses clearly indicates genetic heterogeneity and
divergence between the insular population of Fiji and the other
continental demes.

Bull sharks have a continuous distribution across South Africa,
Indonesia and Australia (Ebert et al., 2013). The presence of
continuous continental shelf waters off those landmasses and
the absence of physical barriers along the shoreline habitats
of Indo-Australia may facilitate dispersal in this coastal shark
species. This is also suggested by the differences between
South Africa and Western Australia but not with eastern
Australia (the FST between SAF and WAS is the same as
between SAF and EAS). Thus, this lack of migration to Fiji
from the surrounding continental populations suggests that
bull shark migration across wide expenses of deep oceanic
waters is an extremely rare event. The lack of differentiation
between SAF samples and the rest of the continental sites
despite the deep waters of the Indian Ocean is likely due
to the continuous coastal habitats extending from Africa to
southern Asia to the Sunda Shelf in Indonesia, allowing for
the avoidance of deep water trenches and a near continuous
migration route.

Management
The genetic differentiation of the Fiji bull sharks is a robust
finding and makes this population of special interest due to
its genetic and geographic isolation. Indonesia and Western
Australia appear to be sites of transition for continental
associated bull sharks. Dispersal limitations due to vast ocean
expanses has implications for the degree of genetic (and
demographic) connectivity among populations, and therefore the
spatial scale of their management (Waples and Gaggiotti, 2006).
For example, genetically isolated populations such as presumably
the Fiji bull sharks could benefit from local protection of
large, fecund individuals (Gwinn et al., 2015). Also, uncovering

potential mating and nursery areas of high conservation value
(Heupel et al., 2007) and fine-scale genetic connectivity is key to
further population genetic studies (Mourier and Planes, 2013).
Consequently, a comparison between information generated
by nuclear DNA (i.e., from both parents, relevant for kinship
studies) with results derived from mtDNA (maternal, relevant for
studies on philopatry) would help to define populations relevant
for management. Additionally, the previously reported female
philopatry implies that subpopulations within oceanic basins
are likely to be independent demographically over ecological
timescales, and that further work to identify discrete matrilineal
populations along continuous coastlines throughout the species
range is imperative to formulating effective management policies.
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