Species sensitivity assessment of five Atlantic scleractinian coral species to 1methylnaphthalene

*D. Abigail Renegar¹, Nicholas R. Turner¹

¹Nova Southeastern University, Halmos College of Natural Science and Oceanography Dania, FL, USA

*drenegar@nova.edu

Semi-quantitative scoring matrix for the assessment of sublethal stress in corals

To estimate sub-acute effects, specific physical characteristics of each coral are semiquantitatively scored. The scoring system assesses relative deviations from the normal state of each species; initial range-finding experiments are very useful to establish the full spectrum of possible or expected effects in each category to the test species of interest.

The physical characteristics scored include color, polyp extension/retraction, tissue swelling/distension, tissue attenuation, and mucus production. These observable, physical characteristics are not independent, as changes to one characteristic may or may not reflect alterations in another. Each of the five characteristics are scored on a scale of 0 (normal limits) to 3 (severely affected), with a precision level of 0.5 (thus half-scores are permitted) (Supplemental Table 1). The maximum score for an individual coral is 12; tissue swelling and tissue attenuation are scored separately but are considered as one category, as the two criteria are opposite responses to stress (a coral which receives an attenuation score of 3 cannot have a swelling score greater than 0, as there is no tissue to swell). To determine the EC50, the scores for each criterion were summed and divided by the total maximum score possible (12) to obtain a single percent effect for each coral fragment at each time point.

Color: Scores for changes (loss) in coral color were used to assess relative lightening (or bleaching) of coral fragments. Due to inherent variation in coral fragment color at the beginning of each exposure, this score was based on the lightening of color of each fragment relative to the fragment's initial color. A score of 0 was given to a coral which has maintained its coloration, and a coral with slight lightening on color received a score of 1. A score of 2 represents a coral that is moderately bleached, and a score of 3 indicated significant bleaching/loss of color. To score color correctly, the corals must be evaluated and photographed under the same lighting conditions at each time point, and photos taken before and after the exposure for verification must be consistently white balanced.

Polyps: Polyps which were normally extended or slightly retracted received a score of 0. Polyps which were retracted and partly closed received a score of 1; this score would be representative of a "startled" polyp. *Great care must be taken during scoring to avoid disturbing the corals and therefore causing a polyp score not related to exposure conditions.* Fully closed polyps received a score of 2, and those with very tightly retracted polyps received a score of 3. It is important to

note that the degree of polyp retraction associated with scores of 2-3 was not readily reversible; the polyps were completely contracted/recessed and no tentacular tissue was visible. This extreme retraction represented a significant disruption in normal coral behavior, and frequently included exposure of skeletal elements around the polyp; corals with high polyp scores often had very little tissue outside of the corallites. Thus, severe polyp retraction could be accompanied by tissue attenuation.

Diagnostic Criteria	Range
	• <u>0 (normal):</u> color appears normal
Color	• <u>1 (mild):</u> slight lightening of coloration
COIOI	• <u>2 (moderate)</u> : moderate lightening of coloration
	• <u>3 (severe):</u> significant lightening of coloration, evident bleaching
	• <u>0 (normal):</u> fully extended or loosely retracted
Polyps	• <u>1 (mild):</u> retracted and slightly closed
roryps	• <u>2 (moderate)</u> : evident polyp retraction with full polyp closure
	• <u>3 (severe)</u> : polyps tightly retracted
	• <u>0 (normal):</u> no swelling
Tissue swelling	• <u>1 (mild)</u> : slight coenenchyme swelling and/or polyp distension
Tissue swenning	• <u>2 (moderate)</u> : moderate coenenchyme swelling and/or polyp distension
	• <u>3 (severe)</u> : severe swelling of coenenchyme and/or polyp distension
	• <u>0 (normal)</u> : no attenuation
Tissue attenuation	 <u>1 (mild)</u>: slight thinning of coenenchyme, flattening of polyps
115500 attendation	• <u>2 (moderate)</u> : moderate thinning of coenenchyme and polyp flattening
	• <u>3 (severe)</u> : severe tissue thinning, skeletal ridges exposed
	• <u>0 (normal)</u> : normal mucus production; no mesenterial filaments apparent
	• <u>1 (mild)</u> : slightly elevated mucus production, no mesenterial filaments apparent
Mucus production	• <u>2 (moderate)</u> : moderately elevated mucus production; mesenterial filament
	extrusion possible
	• <u>3 (severe)</u> : mucus sheets evident; possible mesenterial filament extrusion

Supplemental Table S1. Coral condition categories and description of score qualifications.

Tissue swelling: A tissue swelling score of 1 indicated a slight localized or diffuse swelling, usually of the coenenchyme. More extensive coenenchyme swelling and/or a greater degree of polyp distension received a score of 2, and extreme swelling of coral tissues and/or extreme polyp distension received a score of 3. Scores of 2-3 often indicated variable severity of diffuse swelling throughout the coenenchyme of the entire coral. In some cases, severe swelling manifested as large bubbles under localized areas of tissue, engulfing the coenenchyme and polyp. These "bubbles" frequently resulted in eventual tissue lysis of the affected area.

Tissue attenuation: A minor thinning of the coenenchyme, and/or slight recession of tissue from corallite ridges resulted in a score of 1. A greater degree of thinning, typically accompanied by clear visualization (but not exposure) of skeletal elements received a score of 2. Severe tissue thinning was characterized by exposure of skeletal elements in the coenenchyme and/or the polyp (sclerosepta and columella exposed within polyps) and was given a score of 3.

Mucus production: All corals continually produce some amount of mucus; an amount produced somewhat greater than this level received a score of 1. Low mucus scores were indicative of a localized mucus release, or a thin halo that was observable with backlighting. A score of 2 was given to corals producing more significant amounts of mucus, with more visible mucus strings or thin sheets extending upward from the coral. Partial mesenterial filament extrusion was possible but not frequently observed. Corals producing copious amounts of mucus, in thick sheets or with pools of mucus around the base of the coral received a score of 3. Again, mesenterial filament extrusion was possible but not typically seen in these exposures.

Mucus production was observed to have a high temporal variability, depending on the toxicant concentration. Low concentrations usually resulted in slower, consistently elevated mucus secretion that occurred over the duration of the exposure. High concentrations resulted in copious mucus production early in the exposure which then decreased later in the exposure, likely related to a depletion of energetic resources used to support mucus production. Mucus secretion was therefore not a reversible/irreversible stress, but rather a time/concentration dependent depletion of organism resources. For this reason, mucus scores that reached a high- to severely-impacted level (2.5-3) were fixed at subsequent time points, even if mucus production subsequently decreased as a result of tissue degradation or necrosis.

Organism	Measuring light intensity	Damping	Gain	Saturation Intensity	Saturation Width
Acropora cervicornis	5	2	4	8	0.8
Porites astreoides	3	2	3	8	0.8
Siderastrea siderea	3	2	4	8	0.8
Solenastrea bournoni	3	2	3	8	0.8
Stephanocoenia intersepta	3	2	3	8	0.8

Supplemental Table S2. Diving-PAM light-adapted effective quantum yield determination parameters used for each coral species.

Coral	Treatment	°C	pH _(NBS)	DO	Alk	PO ₄	NH ₃	NO_2	NO ₃
Coral	(µg/L 1-MN)	C	hi i(nrs)	(mg/L)	(mg/L CaCO ₃)	(mg/L PO ₄)	(mg/L NH ₃ -N)	(mg/L NO ₂ -N)	(mg/L NO ₃ -N)
	Control	26.8(±0.17)	7.89(±0.08)	7.7(±0.34)	108.1(±6.1)	0.31(±0.23)	0.18(±0.13)	0.013(±0.003)	0.03(±0.01)
Acropora cervicornis	745	26.9(±0.08)	7.87(±0.06)	6.9(±0.10)	112.8(±4.7)	0.14(±0.09)	0.00(±0.00)	0.013(±0.001)	0.03(±0.01)
Acropora cervicorni.	1501	26.7(±0.28)	7.93(±0.05)	7.1(±0.33)	115.8(±5.9)	0.26(±0.17)	0.02(±0.05)	0.019(±0.001)	0.03(±0.01)
rvic	2775	26.8(±0.22)	7.80(±0.04)	6.7(±0.36)	113.3(±7.1)	0.15(±0.06)	0.01(±0.01)	0.022(±0.009)	0.03(±0.01)
Ad Cer	5370	26.8(±0.14)	7.06(±0.13)	3.6(±0.34)	119.6(±7.3)	0.42(±0.15)	0.00(±0.00)	0.033(±0.006)	0.08(±0.02)
	9434	26.8(±0.25)	6.75(±0.04)	2.2(±0.17)	125.0(±2.8)	0.48(±0.13)	0.09(±0.09)	0.038(±0.007)	0.10(±0.02)
	Control	26.2(±0.21)	8.18(±0.02)	5.0(±0.01)	132.4(±0.8)	0.20(±0.08)	0.00(±0.00)	0.010(±0.002)	0.02(±0.01)
s es	1522	26.2(±0.18)	8.18(±0.01)	4.8(±0.15)	134.4(±1.3)	0.22(±0.05)	0.00(±0.00)	0.011(±0.002)	0.02(±0.01)
ite. oid	2868	26.1(±0.15)	8.18(±0.01)	4.7(±0.13)	134.9(±0.9)	0.25(±0.07)	0.00(±0.00)	0.011(±0.005)	0.02(±0.01)
Porites astreoides	5236	26.2(±0.17)	8.19(±0.01)	4.3(±0.24)	136.9(±1.4)	0.22(±0.04)	0.00(±0.00)	0.011(±0.001)	0.02(±0.01)
as a	8293	26.2(±0.21)	8.16(±0.01)	4.4(±0.25)	138.8(±0.6)	0.21(±0.06)	0.03(±0.05)	0.012(±0.003)	0.03(±0.01)
	12530	26.2(±0.24)	8.13(±0.04)	3.6(±0.26)	141.1(±0.4)	0.28(±0.04)	0.04(±0.04)	0.016(±0.005)	0.03(±0.01)
	Control	22.2(±0.17)	7.78(±0.05)	*9.5(±0.42)	108.5(±3.3)	0.22(±0.10)	0.01(±0.01)	0.009(±0.002)	0.05(±0.01)
Siderastrea siderea	828	22.3(±0.24)	7.77(±0.05)	*9.4(±0.24)	113.1(±3.0)	0.35(±0.13)	0.01(±0.03)	0.008(±0.001)	0.05(±0.01)
derastrı siderea	1614	21.9(±0.58)	7.71(±0.07)	*8.8(±0.13)	112.8(±0.6)	0.24(±0.09)	0.02(±0.02)	0.008(±0.004)	0.06(±0.01)
leri ide	3030	22.2(±0.39)	7.79(±0.02)	*8.7(±0.17)	115.2(±3.6)	0.23(±0.15)	0.02(±0.03)	0.009(±0.001)	0.07(±0.01)
Sia	5876	22.2(±0.24)	7.79(±0.02)	*8.4(±0.24)	121.7(±2.7)	0.38(±0.12)	0.02(±0.02)	0.009(±0.001)	0.07(±0.01)
	10332	22.1(±0.54)	7.70(±0.03)	*7.6(±0.34)	125.8(±3.5)	0.27(±0.20)	0.03(±0.03)	0.008(±0.003)	0.08(±0.01)
Stephanocoenia intersepta	Control	25.2(±0.21)	7.99(±0.01)	7.9(±0.21)	115.6(±8.8)	0.18(±0.06)	0.02(±0.02)	0.016(±0.003)	0.05(±0.01)
oer ita	805	25.3(±0.21)	7.89(±0.05)	7.2(±0.39)	97.1(±7.4)	0.17(±0.07)	0.01(±0.01)	0.017(±0.007)	0.04(±0.01)
phanocoeı intersepta	1616	25.2(±0.26)	7.91(±0.02)	7.4(±0.30)	98.0(±2.8)	0.29(±0.31)	0.04(±0.03)	0.018(±0.005)	0.05(±0.02)
ter ter	2955	25.4(±0.33)	7.85(±0.06)	6.9(±0.34)	99.1(±6.5)	0.40(±0.65)	0.01(±0.01)	0.015(±0.006)	0.05(±0.01)
ep! in	5610	25.3(±0.29)	7.85(±0.03)	6.9(±0.20)	104.9(±6.3)	0.14(±0.08)	0.00(±0.00)	0.016(±0.005)	0.05(±0.01)
St	9019	25.3(±0.26)	7.81(±0.04)	6.6(±0.13)	99.5(±1.7)	0.80(±1.30)	0.03(±0.07)	0.014(±0.006)	0.04(±0.02)
-	Control	25.1(±0.22)	8.05(±0.04)	7.7(±0.29)	123.6(±2.0)	0.12(±0.07)	0.09(±0.12)	0.015(±0.012)	0.07(±0.01)
Solenastrea bournoni	788	25.1(±0.15)	8.02(±0.03)	7.1(±0.10)	122.4(±2.6)	0.15(±0.13)	0.01(±0.01)	0.005(±0.002)	0.07(±0.01)
olenastre bournoni	1719	25.1(±0.29)	8.01(±0.01)	7.1(±0.12)	124.7(±4.3)	0.18(±0.21)	0.00(±0.01)	0.009(±0.005)	0.06(±0.01)
len. Jur	3081	25.2(±0.32)	7.97(±0.05)	6.8(±0.05)	123.5(±1.6)	0.23(±0.31)	0.05(±0.06)	0.008(±0.006)	0.06(±0.01)
Sol ba	5712	25.1(±0.29)	7.96(±0.04)	6.5(±0.22)	125.2(±2.1)	0.44(±0.24)	0.00(±0.00)	0.010(±0.007)	0.07(±0.02)
-	10293	25.1(±0.46)	7.87(±0.04)	6.4(±0.16)	123.5(±2.2)	0.25(±0.38)	0.02(±0.04)	0.010(±0.007)	0.07(±0.01)

Supplemental Table S3. Mean (±SD) water quality parameters for each exposure.

*abnormally high values attributed to instrument miscalibration.

Coral	Time	Kruskal-Wallis H	p value	Time	Kruskal-Wallis H	<i>p</i> value
s	1 h (Exp)	$H_{(5,24)} = 19.15855$	0.0018	8 h (Exp)	$H_{(5,24)} = 19.44949$	0.0016
Acropora cervicornis	2 h (Exp)	$H_{(5,24)} = 21.03971$	0.0008	12 h (Exp)	$H_{(5,24)} = 18.75055$	0.0021
vica	3 h (Exp)	$H_{(5,24)} = 20.27417$	0.0011	24 h (Exp)	$H_{(5,24)} = 20.07972$	0.0012
I CEI	4 h (Exp)	$H_{(5,24)} = 20.21901$	0.0011	36 h (Exp)	$H_{(5,24)} = 20.69374$	0.0009
210a	5 h (Exp)	$H_{(5,24)} = 19.04103$	0.0019	48 h (Exp)	$H_{(5,24)} = 19.03941$	0.0019
cro	6 h (Exp)	$H_{(5,24)} = 19.07768$	0.0019	1 wk (Post)	$H_{(3,16)} = 2.836538$	0.4175
P	7 h (Exp)	$H_{(5,24)} = 20.25456$	0.0011	4 wk (Post)	$H_{(3,8)} = 00.00000$	1.0000
	1 h (Exp)	$H_{(5,24)} = 18.00270$	0.0029	8 h (Exp)	$H_{(5,24)} = 21.70437$	0.0006
ides	2 h (Exp)	$H_{(5,24)} = 18.00270$	0.0029	12 h (Exp)	$H_{(5,24)} = 21.86707$	0.0006
Porites astreoides	3 h (Exp)	$H_{(5,24)} = 17.05500$	0.0044	24 h (Exp)	$H_{(5,24)} = 20.96852$	0.0008
ast	4 h (Exp)	$H_{(5,24)} = 20.52438$	0.0010	36 h (Exp)	$H_{(5,24)} = 19.91003$	0.0013
rites	5 h (Exp)	$H_{(5,24)} = 21.70852$	0.0006	48 h (Exp)	$H_{(5,24)} = 19.88943$	0.0013
Po_1	6 h (Exp)	$H_{(5,24)} = 21.37833$	0.0007	1 wk (Post)	$H_{(5,24)} = 20.02550$	0.0012
	7 h (Exp)	$H_{(5,24)} = 21.32764$	0.0007	4 wk (Post)	$H_{(5,11)} = 6.671271$	0.2463
ı	1 h (Exp)	$H_{(5,24)} = 15.16531$	0.0097	8 h (Exp)	$H_{(5,24)} = 21.01354$	0.0008
erea	2 h (Exp)	$H_{(5,24)} = 18.93821$	0.0020	12 h (Exp)	$H_{(5,24)} = 19.15912$	0.0018
sid	3 h (Exp)	$H_{(5,24)} = 16.62200$	0.0053	24 h (Exp)	$H_{(5,24)} = 20.76291$	0.0009
Siderastrea siderea	4 h (Exp)	$H_{(5,24)} = 11.96061$	0.0353	36 h (Exp)	$H_{(5,24)} = 20.70851$	0.0009
eras	5 h (Exp)	$H_{(5,24)} = 15.91244$	0.0071	48 h (Exp)	$H_{(5,24)} = 22.29847$	0.0005
Side	6 h (Exp)	$H_{(5,24)} = 13.94261$	0.0160	1 wk (Post)	$H_{(5,24)} = 20.08400$	0.0012
	7 h (Exp)	$H_{(5,24)} = 18.21715$	0.0027	4 wk (Post)	$H_{(5,11)} = 9.308252$	0.0974
ui	1 h (Exp)	$H_{(5,24)} = 20.97604$	0.0008	8 h (Exp)	$H_{(5,24)} = 18.49671$	0.0024
rnoi	2 h (Exp)	$H_{(5,24)} = 16.67475$	0.0052	12 h (Exp)	$H_{(5,24)} = 19.57756$	0.0015
noq	3 h (Exp)	$H_{(5,24)} = 19.84900$	0.0013	24 h (Exp)	$H_{(5,24)} = 20.32371$	0.0011
Solenastrea bournoni	4 h (Exp)	$H_{(5,24)} = 19.37362$	0.0016	36 h (Exp)	$H_{(5,24)} = 20.78711$	0.0009
ıastı	5 h (Exp)	$H_{(5,24)} = 20.66281$	0.0009	48 h (Exp)	$H_{(5,24)} = 21.49135$	0.0007
oler	6 h (Exp)	$H_{(5,24)} = 19.62697$	0.0015	1 wk (Post)	$H_{(5,24)} = 21.49818$	0.0007
S	7 h (Exp)	$H_{(5,24)} = 20.34210$	0.0011	4 wk (Post)	$H_{(5,12)} = 7.526316$	0.1843
	1 h (Exp)	$H_{(5,24)} = 20.23138$	0.0011	8 h (Exp)	$H_{(5,24)} = 4.234694$	0.561
ia	2 h (Exp)	$H_{(5,24)} = 20.26875$	0.0011	12 h (Exp)	$H_{(5,24)} = 9.430000$	0.0931
Stephanocoenia intersepta	3 h (Exp)	$H_{(5,24)} = 15.30209$	0.0091	24 h (Exp)	$H_{(5,24)} = 15.08806$	0.0100
phanocoe intersepta	4 h (Exp)	$H_{(5,24)} = 17.78395$	0.0032	36 h (Exp)	$H_{(5,24)} = 12.85725$	0.0248
₽phc inte	5 h (Exp)	$H_{(5,24)} = 11.85443$	0.0368	48 h (Exp)	$H_{(5,24)} = 12.85725$	0.0248
Sté	6 h (Exp)	$H_{(5,24)} = 11.03724$	0.0506	1 wk (Post)	$H_{(5,24)} = 6.337461$	0.2748
	7 h (Exp)	$H_{(5,24)} = 9.327494$	0.0967	4 wk (Post)	$H_{(5,12)} = 00.00000$	1.0000

Supplemental Table S4. Kruskal-Wallis ANOVA results for coral condition statistical comparisons.

Correl	Time	DF	SS	MS	F value			
Coral	Time	DF	22	MS	F value	p value		
orni	Pre-exposure (1 wk)	5	0.000265	0.000053	0.535747	0.746627		
cervic	Exposure (48 h)	3	0.005455	0.001818	29.19974	0.000008		
oora (Post-Exposure (1 wk)	3	0.000749	0.000250	1.084915	0.392642		
Acropora cervicornis	Post-Exposure (4 wk)		Kruskal Wallis ANOVA, H _(3,8) = 2.833333, <i>p</i> =0.4180					
des	Pre-exposure (1 wk)	5	0.000641	0.000128	1.816771	0.160255		
Porites astreoides	Exposure (48 h)	5	0.060455	0.012091	3.384772	0.024923		
ites a	Post-Exposure (1 wk)	5	0.019617	0.003923	2.153237	0.105383		
Por	Post-Exposure (1 wk)		Kruskal Wallis ANOVA, H _(5,11) = 6.090909, <i>p</i> =0.2975					
erea	Pre-exposure (1 wk)	5	0.000153	0.000031	0.562869	0.727157		
Siderastrea siderea	Exposure (48 h)	5	0.227831	0.045566	24.039458	0.000000		
rastre	Post-Exposure (1 wk)	5	0.007551	0.001510	0.897445	0.503763		
Side	Post-Exposure (4 wk)		Kruskal Wallis ANOVA, H _(5,11) = 6.090909, <i>p</i> =0.2975					
noni	Pre-exposure (1 wk)	5	0.000339	0.000068	0.952851	0.471691		
tnoq t	Exposure (48 h)	5	0.067786	0.013557	45.033312	0.000000		
Solenastrea bournoni	Post-Exposure (1 wk)	5	0.011682	0.002336	9.642805	0.000131		
Solen	Post-Exposure (1 wk)		Kruskal Wall	lis ANOVA, H _{(5,5}	$p_{12} = 4.564103 \ p=0.564103$	4714		
Stephanocoenia intersepta	Pre-exposure (1 wk)	5	0.000215	0.000043	0.426358	0.824294		
	Exposure (48 h)	5	0.152438	0.030488	90.297088	0.000000		
	Post-Exposure (1 wk)	5	0.001258	0.000252	0.937165	0.480606		
Ste	Post-Exposure (4 wk)		Kruskal Wall	lis ANOVA, H _{(5,1}	$_{12)} = 2.923077 \ p=0.00000000000000000000000000000000000$	7118		
	- ` ` `			. (.).				

Supplemental Table S5. One-way ANOVA results for photosynthetic efficiency statistical comparisons.

Coral	Time	Kruskal-Wallis H	p value
	24 h (Exp)	$H_{(5,24)} = 19.50038$	0.0016
	36 h (Exp)	$H_{(5,24)} = 22.64706$	0.0004
Acropora cervicornis	48 h (Exp)	$H_{(5,24)} = 20.48254$	0.0010
	1 wk (Post)	$H_{(3,16)} = 00.00000$	1.0000
	4 wk (Post)	$H_{(3,8)} = 00.00000$	1.0000
	24 h (Exp)	$H_{(5,24)} = 17.00173$	0.0045
	36 h (Exp)	$H_{(5,24)} = 17.64342$	0.0034
Porites astreoides	48 h (Exp)	$H_{(5,24)} = 21.46667$	0.0007
	1 wk (Post)	$H_{(5,24)} = 5.992287$	0.3070
	4 wk (Post)	$H_{(5,11)} = 0.000000$	1.0000
	24 h (Exp)	$H_{(5,24)} = 00.00000$	1.0000
	36 h (Exp)	$H_{(5,24)} = 00.00000$	1.0000
Siderastrea siderea	48 h (Exp)	$H_{(5,24)} = 19.84469$	0.0013
	1 wk (Post)	$H_{(5,24)} = 18.84500$	0.0021
	4 wk (Post)	$H_{(5,11)} = 4.500000$	0.4799
	24 h (Exp)	$H_{(5,24)} = 00.00000$	1.0000
	36 h (Exp)	$H_{(5,24)} = 00.00000$	1.0000
Solenastrea bournoni	48 h (Exp)	$H_{(5,24)} = 17.64193$	0.0034
	1 wk (Post)	$H_{(5,24)} = 5.000000$	0.4159
	4 wk (Post)	$H_{(5,12)} = 5.000000$	0.4159
	24 h (Exp)	$H_{(5,24)} = 10.45455$	0.0633
	36 h (Exp)	$H_{(5,24)} = 10.45455$	0.0633
Stephanocoenia intersepta	48 h (Exp)	$H_{(5,24)} = 22.85714$	0.0004
	1 wk (Post)	$H_{(5,24)} = 4.184783$	0.5231
	4 wk (Post)	$H_{(5,12)} = 00.00000$	1.0000

Supplemental Table S6. Kruskal-Wallis ANOVA results for coral mortality statistical comparisons.

Coral	Time (h)	EC10 _{Condition} (µg/L 1-MN)	EC50 _{Condition} (µg/L 1-MN)	LC50 (µg/L 1-MN)
r S	12 (Exp)	-	13890*	-
pora	24 (Exp)	2366 (1258-3474)	4409 (3568-5249)	5524 (5378-5671)
Acropora cervicornis	36 (Exp)	2560 (2004-3116)	3476 (2998-3953)	4571 (3022-6120)
~ 33	48 (Exp)	1943 (1013-2872)	3126 (2574-3678)	3421 (2670-4174)
S	12 (Exp)	4093 (2908-5279)	9330 (8414-10246)	-
Porites astreoides	24 (Exp)	4109 (3230-4989)	7306 (6678-7935)	-
Por stre	36 (Exp)	4305 (3426-5185)	6775 (6245-7305)	-
a	48 (Exp)	4593 (4342-4844)	5819 (5594-6045)	11982 (9017-14949)
a	12 (Exp)	2312 (0-6271)	20723*	-
Siderastrea siderea	24 (Exp)	862 (0-2253)	8148 (0-38716)	-
idera side	36 (Exp)	1379 (719-2039)	7357 (6136-8579)	-
Sı	48 (Exp)	857 (596-1118)	5189 (4583-5794)	> solubility
a	12 (Exp)	1493 (287-2699)		
Solenastrea bournoni	24 (Exp)			
olend	36 (Exp)	861 (17-1705)		
Sc	48 (Exp)	2355 (1048-3663)	7127 (5945-8309)	> solubility
enia 1	12 (Exp)	4351	-	_
Stephanocoenia intersepta	24 (Exp)	615	-	-
ohan nter:	36 (Exp)	-	-	-
Step ii	48 (Exp)	673 (42-1305)	9294 (6370-12217)	11787 (4956-18618)

Supplemental Table S7. Subacute and acute endpoints [in μ g/L 1-MN (95% CI)] determined at each time point for coral species exposed to 1-methylnaphthalene.

*above highest measured 1-MN concentration