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Healthy brain function is marked by neuronal network dynamics at or near the critical

phase, which separates regimes of instability and stasis. A failure to remain at this

critical point can lead to neurological disorders such as epilepsy, which is associated

with pathological synchronization of neuronal oscillations. Using full Hodgkin-Huxley

(HH) simulations on a Small-World Network, we are able to generate synthetic

electroencephalogram (EEG) signals with intervals corresponding to seizure (ictal) or

non-seizure (interictal) states that can occur based on the hyperexcitability of the artificial

neurons and the strength and topology of the synaptic connections between them.

These interictal simulations can be further classified into scale-free critical phases and

disjoint subcritical exponential phases. By changing the HH parameters, we can model

seizures due to a variety of causes, including traumatic brain injury (TBI), congenital

channelopathies, and idiopathic etiologies, as well as the effects of anticonvulsant drugs.

The results of this work may be used to help identify parameters from actual patient EEG

or electrocorticographic (ECoG) data associated with ictogenesis, as well as generating

simulated data for training machine-learning seizure prediction algorithms.

Keywords: epilepsy, epileptic seizures, epileptogensis, small-world networks, simulation—computers, neuron,

criticality, phase transition

INTRODUCTION

The human brainmust remain sensitive to new stimuli and coordinate spatially distant information
processing modules to function optimally in a continuously changing environment. To accomplish
this, the brain needs to dynamically operate at or near a critical state (Beggs and Timme, 2012). A
failure to remain at this “edge of chaos” (Waldrop, 1992), a point poised between insensitivity and
hyper-synchronization, can lead to neurological disorders, including epilepsy (Meisel et al., 2012).

A biological system, such as the human brain, in the critical state near a phase transition,
is maximally sensitive to external influences (Larremore et al., 2011), and is thus most efficient
in amplifying small perturbations. Such a state also allows for long-range coordination between
brain regions, with a theoretical correlation length that diverges to infinity. At this intermediate
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critical phase, neuronal bursts exhibit power law statistics
(Chialvo, 2010), with no typical spatial or temporal scale, unlike
the seizure or subcritical phases. The properties of a system
that are poised at the critical state of a phase transition may be
very different than those of states on either side. In particular,
the sensitivity of the system to external perturbations and
information processing power is often maximized at this point.
For example, in the case of magnetic susceptibility, at a critical
temperature, flipping a single spin may lead to a cascade of
magnetization changes that is not possible at either very low
or very high temperatures. This “critical brain hypothesis” that
links the physics of phase transitions with neuroscience was
first introduced by Alan Turning seven decades ago, and has
grown in acceptance due to increasing empirical and theoretical
support (Turing, 1950). The theory has been questioned because
of the apparent difficulty of satisfying the requirement for
the parameters to be fine-tuned within a very tiny region of
parameter space corresponding to the critical phase, as this would
be very unlikely to occur by chance alone. However, recent
research has demonstrated that the brain uses active homeostatic
mechanisms (Beggs, 2019), including synaptic rewiring based on
spike-timing dependent plasticity, to remain at the critical state
(Shin and Kim, 2006; Ma et al., 2019).

BACKGROUND

Epilepsy is one of the most common central nervous system
(CNS) diseases (Zack and Kobau, 2017), affecting ∼50 million
individuals worldwide, including both men and women of
varying ages. It is a chronic neurological disorder characterized
by a persisting predisposition to generate epileptic seizures and
by the resultant neurobiological, cognitive, psychological, and
social consequences. An epileptic seizure is a sudden, transient,
and uncontrolled electrical disturbance in the brain. The signs
and symptoms are caused by abnormal excessive or synchronous
neuronal activity. Seizures can cause sudden changes in patient
behavior, movements, feelings, or in levels of consciousness.
Most patients have little or no warning before a seizure occurs,
and this unpredictability can have profound impacts on in their
lifestyle, including restrictions on driving, or constraints on
employment opportunities.

Epilepsy research has enabled remarkable progress in
broadening our understanding of the etiologies and mechanisms
leading to epilepsy and its associated comorbidities. It has
also brought interventions and treatments to improve the
management of seizures and their comorbid conditions and
consequences. The prognosis for medical seizure control is good,
with over 70% of patients achieving remission. Meanwhile, 30%
of individuals with epilepsy remain uncontrolled with increased
risk of adverse events and lifestyle disruptions. As a result, over
the last three decades, researchers have aimed to gain insight
into the underlying mechanisms of epilepsy in these patients with
uncontrolled symptoms, hoping to identify biomarkers of disease
activity that would indicate an impending seizure and allow them
to take protective action or perhaps initiate some therapeutic
intervention (Mormann et al., 2007).

The critical brain hypothesis is one approach to understanding
the onset and lack of control in these epilepsy patients. Epilepsy
is believed to occur when the human brain is unable to
dynamically operate in or near this critical state. According to
this hypothesis, the intermediate critical phase, as opposed to
the ictal or subcritical phases, exhibits scale-free phenomena—
with no typical spatial or temporal scale. This behavior can be
quantified using a power law functional form of the number of
simultaneously firing neurons. This differs from the ictal state,
which consists of “all-or-nothing” pathological synchronization,
and the subcritical state that has only locally disjoint firing
with no long-range coordination. Power-law dynamics are a
necessary, but not sufficient, observation to conclude that a
system is in its critical state. More stringent tests for the
relationship between the scaling exponents for the spatial and
temporal sizes of bursts have been developed to distinguish actual
critical behavior from other phenomena that can also give rise to
power laws (Friedman et al., 2012).

To better understand this phenomenon, we employed
the Hodgkin-Huxley equations (Hodgkin and Andrew,
1952) for modeling the dynamics of neurons. The model is
computationally intensive, and as such, has usually been limited
to simulating small networks of neurons for short time periods.
Even with these constraints, distinct phases can be distinguished
by plotting a histogram of the number of simultaneously firing
neurons for each simulation time step, with the ictal phase
associated with significant deviations from power-law behavior.
This is particularly true when the network topology is chosen
to be Small World (SW) (Humphries and Gurney, 2008).
SW networks have many local connections between nearby
neurons, and a few long-range bridges. It is widely believed that
the human brain possesses many aspects of SW architecture
(Bassett and Bullmore, 2006). This allows for the modularity
of high clustering coefficients to coexist with the rapid and
efficient communication of short path lengths. In the case of
focal epilepsy, it is possible that these adaptations become
harmful. A seizure focus is thought to recruit connected neurons
into a growing synchronized cluster. This process nucleates
uncontrolled growth that can rapidly spread on SW networks
(Hong et al., 2002). The natural refractory period inherent
in neural spiking normally protects the brain from reaching
this synchronized ictal phase. However, when connectome
plasticity increases the synaptic weights between neurons—
either because of trauma, the reinforcement of neural pathways
from previous seizures, or channelopathies that lengthen the
action potential—these protections can fail.

Therefore, our research efforts focus on access to high-
resolution data, in this case, the simulated voltages of individual
neurons, in contrast with patient measurements that only
capture averaged field potentials at best. This allows us to
easily classify the phase—silent, exponential, power, or ictal—
to better understand the process of ictogenesis. Using full HH
simulations on an SW network, we have generated synthetic EEG
signals with intervals corresponding to seizure (ictal) or non-
seizure (interictal or subcritical) states that can occur based on
the hyperexcitability of the artificial neurons and the strength
and topology of the synaptic connections between them. By
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TABLE 1 | Model parameters for the THINKER 1.0 Simulation.

Parameter Symbol Value

Normalized membrane capacitance C 1

Maximum Na+ conductivity gNa 20

Maximum K+ conductivity gK 12

Maximum leak conductivity gLeak 0.05

Na+ reversal voltage VNa 50 mV

K+ reversal voltage VK −90 mV

Leak reversal voltage VLeak −60 mV

Na+ deactivation “stickiness” S Varies

Minimum connectivity weight gmin 0

Maximum connectivity weight gmax Varies

Initial voltage V0 −64 mV

Time step dt 0.1 ms

generating this synthetic data, we aim to train machine learning
(ML) algorithms for predicting seizures in patients with epilepsy.
Due to the difficulty in acquiring high-quality patient data, and
the relative rarity of seizures events compared with interictal
intervals, the ability to generate synthetic data may alleviate an
important bottleneck in seizure predictionmethods (Aznan et al.,
2019). Rapid advances in computational power permit more
realistic full HH simulations that were considered not practical
only a few years ago. Overall, the goals here are twofold. First,
to better understand the causal biophysical abnormalities of the
ictal transition. Second, to generate a set of surrogate EEG data
for use as input to ML algorithms which can then leverage
their power to identify this interval and rigorously characterize
the spatiotemporal characteristics. Since the biophysical changes
generating the surrogate data are known, it should be helpful
in “reverse engineering” the ML results to better understand
possible seizure prediction strategies.

METHOD

HH neurons in a SW network have intrinsic regulatory features,
including threshold-and-fire activity and refractory periods. As
a result, they are comparable with the archetypal self-organized
criticality (SOC) (Rubinov et al., 2011) situations of sandpile
avalanches and earthquakes. In each of these cases, SOC is
a natural consequence of the underlying balance of slow and
fast variables corresponding to loading and release, respectively
(Dickman et al., 1998, 2000; Gal and Marom, 2013).

Computational models of isolated HH neurons show
that criticality requires exquisite fine-tuning (Chua, 2013) of
processes, like the slow inactivation of sodium channels, in
order for the cell to remain excitable (Ori et al., 2018) but not
oscillatory. Based on the theory of percolation phase transitions
(Breskin et al., 2006; Zhou et al., 2015), in which adjacent nodes
of a network are connected with probability p, the number
distribution, n, of clusters of size s, obeys the proportion:

n(s, p) α s−τ e−s/s0

Where s0 is a function of p. For values of p below the critical
percolation threshold pc, there is a typical cluster size s0. The
formation of larger clusters is strongly suppressed, since the
exponential function dominates the power law except for very
low values of s. However, at the critical threshold, the value of s0
diverges to infinity. This means that there is no longer a “typical”
cluster size—the relation has become scale free—resulting in a
power-law distribution with many small clusters, fewer medium
clusters, and a small number of large clusters:

n(s, p = pc) α s−τ

Extracted burst sizes show a peak around the physiological
value of the Na+ inactivation ion-channel gating parameter.
Coordination both within and between specific brain modules is
thought to bemaximized at or near the critical state, since activity
at all length scales becomes important. This is not possible in the
hypercritical (Netoff et al., 2004) ictal state seen in epilepsy, when
global synchronization overwhelms everything else.

To simulate the dynamics of the small-world neuron
networks, we introduce the “Theoretical HH Ion-Gated Network
Connectome Electroencephalographic Replicator” (THINKER)
1.0 and 2.0 mathematical models. THINKER version 1.0
simulations were instantiated in Mathematica. First, the Watts-
Strogatz algorithm (Watts and Strogatz, 1998) was used to
generate the SW directed-network architecture. The connectivity
matrix and directionality were fixed for all runs, but the weights
could vary with uniform probability from 0 to gmax. The HH
coupled differential equations we implemented for each neuron
using Euler’s method in 0.1ms time steps to find the voltage
V are:

−C
dV

dt
= m3hgNa (V − VNa) + n4gK (V − VK)

+ gleak (V − Vleak) + Iinject

Where m, n, and h, are the voltage-dependent gating parameters
for Na+ activation, K+ activation, and Na+ inactivation,
respectively. The term Iinject represents incoming synaptic stimuli
from connected neurons, and C is the membrane capacitance
(Table 1). The response of these parameters to changes in voltage
are controlled by the opening (α) and closing (β) rate-constants
for individual gates in the neuron’s membrane:

dm

dt
= αm (1−m) − βmm

dn

dt
= αn (1− n) − βnn

dh

dt
= αh

(

1− h
)

− βhh

This implies the steady state values for z= {m,n,h} are:

z∞ =
αz

αz + βz
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with corresponding rate constants, in inverse seconds, assuming
constant voltage:

kz =
1

αz + βz
= 1/τz

The “stickiness” of sodium inactivation gates can be modeled by
multiplying αh and βh by the same constant s:

α
′

h = sαh

β
′

h = sβh

This decreases the rate constant for h, which is the variable
describing the gates that inactivate the sodium channels when
the neuron is supposed to return to its resting state after firing.
The result is an elongation of the characteristic time for h to
equilibrate to changes in voltage, from τh to sτh, while keeping
the steady state value of h unchanged.

The explicit forms of the α and β parameters for neuron
voltages in millivolts are given by:

αm(V) = 0.1
V + 40

1− Exp[−0.1(V + 40)]

βm(V) = 4 Exp[−0.05(V + 65)]

αn(V) = −0.01
V + 55

Exp[−0.1(V + 55)]− 1

βn(V) = 0.25 Exp[−0.0125(V + 65)]

αh(V) = s 0.07 Exp[−0.05(V + 65)]

βh(V) =
s

Exp[−0.1(V + 35)]+ 1

A hyperbolic tangent is used for the transfer function for
synaptic connections. One neuron is “voltage clamped” to a
white-noise source that drives the system without imparting
a characteristic frequency. THINKER 2.0 is written in Python
and follows Ermentrout and Terman (Ermentrout and Terman,
2010) with the same structure but slightly different parameters.
The simulation outputs the voltages of each simulated neuron
at every time step. The data are converted into a raster
array that records the firing of each neuron when its voltage
exceeds a preset threshold. The phases can be labeled by fitting
a histogram of simultaneously firing neurons, to either an
exponential or power-law function, following the established
methods for identifying critical behavior. These neuronal-level,
voltage-resolved data are generally not available to the ML
algorithm, which would as a matter of practice only have access
to EEG or electrocorticographic (ECoG) data.

FIGURE 1 | Visual representation of THINKER 1.0 simulation time evolution showing healthy (top) and ictal (bottom) phases. The synaptic connections between

neurons are shown in blue, and the firing neurons are marked red. Time increases to the right, and the rightmost neuron is “voltage-clamped” to a white noise source.

In the healthy/critical phase, the activity follows a power-law distribution, so “bursts” of all sizes are possible. By contrast, in the ictal/supercritical phase,

“all-or-nothing” pathological synchronization is observed.
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RESULTS

Figure 1 shows the output of THINKER 1.0 simulations on
small-world networks with the firing neurons labeled in red.
In the healthy phase (top), the activity has bursts with a
distribution of sizes, with coordination on local and extended
length scales. In contrast, the supercritical ictal state (bottom)
has globally synchronized firing with timesteps that have
almost all the nodes either on or off simultaneously. In
Figure 2, the difference between these phases can also be
demonstrated using the simulated EEG. The left panels for
the healthy and seizure state show the individual neuron
voltages, and the middle graphs display the overall mean
voltage at each time step. These are called “simulated” or
“synthetic” EEGs, although they can be compared with either
conventional scalp electrocochleographic (EEG) or intracranial
electrocorticographic (ECoG) patient data. The right panels
show the calculated histograms of the number of simultaneously
firing neurons. The upper subfigure is linear, while the
lower subfigure is log-log scale so that power laws will be
represented by straight lines. In the healthy critical phase,
the histogram follows a power-law form, and the occurrence
of more than 10 simultaneously firing neurons is suppressed.
By contrast, in the ictal seizure state, the histogram has a
spike around 12 simultaneous neurons, corresponding to near
complete synchronization.

To further visualize the different brain phases, an image of
a 3D-printiable file is shown in Figure 3. Here, the voltages at
each time times for all neurons are represented by the height of
the model. The difference between the complexity of the critical
healthy state and the repetitive synchronization of the ictal state
can be observed.

Figure 4 (top) shows a THINKER 2.0 small world network
near the critical state at different time points. An animated
movie version is available as part of the Supplementary Material.
Below are the corresponding synthetic EEG, wavelet transform
scalogram, and power spectral density.

The wavelet transform is accomplished by convolving a set
of orthogonal wavelet “chirps” that have identical shape, but
different scaling factors, with the data (Akansu et al., 2010). The
scalograms produced are similar to the spectrograms created
using short-time Fourier transforms. The primary difference
is the dynamic way in which the inherent tradeoff between
temporal and frequency resolution is handled. The wavelet
transform uses basis functions that are localized in both time
and frequency. As a result, at low frequencies scalograms
possess good frequency resolution at the expense of poor
temporal resolution. Conversely, high frequencies enjoy good
time resolution but reduced frequency resolution. Wavelet
transforms reveal the complexity of activity present in actual
human brain function, particularly in the high frequency regions.
These can be interpreted as non-periodic neuronal bursts of

FIGURE 2 | (Left) All simulated neuron voltages. The blue trace is the voltage-clamped neuron driven by white noise. (Middle) Resulting synthetic EEG, calculated at

each time step as the mean value of all neurons. (Right) Corresponding histogram showing the number of time steps that have that number of simultaneously firing

neurons. In the healthy state, a power-law relationship is observed, and time steps that show near complete synchronization are very rare. In contrast, the seizure

state has a spike at high node numbers, meaning that pathological synchronization occurs.
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FIGURE 3 | Image of 3D-Printed model showing an example of critical (healthy, top) and ictal (seizure, bottom) phases. The heights represent the neuron voltage for

each time step. The synchronization in the seizure state is readily visible, while the signals in the healthy state are much more varied.

varying sizes within these frequency bands, as observed with
normal brain function. In the high frequency region of the
power spectral density, the data closely follows a power law with
exponent -3.6, as marked by the orange line. This agrees with
previous measurements of human brain activity (Miller et al.,
2009).

A comparison of the different phases possible from THINKER
2.0 simulations is shown in Figure 5, where the synthetic
EEG, corresponding wavelet transform, and power spectral
density are shown for the subcritical, critical, and ictal
regimes. Again, the critical phase shows the most complex
activity in the wavelet transform, and most closely follows
a power law (green line) in the power spectral density
plot. The ictal state has a prominent spike (black arrow)
representing synchronization.

The differences between the subcritical/interictal, critical, and
ictal phases are easy to see when the scalograms are converted
into a 3D-printed representation (Figure 6). The subcritical
phase (“EXP” for exponential) has too little activity overall, while
the ictal phase is highly locked into a single pattern. Only the
critical phase (“Power” for power law) has the complexity, in both
the low and high frequency bands, to capture the neurocorrelates
of healthy cognition.

The uniqueness of the critical state also appears in
the histograms of simultaneously firing neurons as seen in

Figure 7. Here, the network topology was frozen, and only
the stickiness was varied. The extracted values of the mean
cluster sizes are shown in Figure 7A. As predicted by percolation
theory, subcritical states will have large clusters exponentially
suppressed, while the mean cluster size diverges in the critical
state, leaving a scale-free power-law relationship. Here, the gmax

represents the maximum synaptic weight of connected neurons,
and the “sticky” parameter again controls the Na+ channel
inactivation after each neuron fires. The finding that the critical
state occurs with a “sticky” value of 1.05, with 1.0 corresponding
to the physiological value, agrees with the concept that the brain
is regulated to be at or slightly below the critical threshold (Beggs,
2018). In the histograms of simultaneously firing neurons shown
in Figure 7B, a power law will produce a straight line, while an
exponential function will curve downward. Only the histogram
for the critical state exhibits a power law tail.

Figure 8 shows actual ECoG patient data collected from
intracranial electrodes. The readings were taken as part of
preoperative testing prior to epilepsy surgery. A clinician marked
time intervals as either interictal (not seizure) or ictal (seizure).
Here, a peak in the power spectral density around 8Hz is seen
in the ictal but not interictal data. The shift in peak frequency
compared with the simulations may reflect differences in the
natural oscillation periods for the modeled network using the
chosen parameters.
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FIGURE 4 | (Top) A THINKER 2.0 Small World network showing critical phase behavior over time. Local and global coordination between bursts is seen, as observed

in other systems with SW topologies. An animated movie version is available in the Supplementary Material. (Bottom) The corresponding simulated EEG, scalogram,

and power spectral density plots. In the power spectral density plot, the data at high frequencies closely follow a power law with exponent −3.6 (orange line).

DISCUSSION

Understanding ictogenesis, the cascade of biophysical events
that culminates in a clinically expressed epileptic seizure, has
remained an elusive goal, of special concern for those epilepsy
patients whose seizures remain uncontrolled with currently
available drugs and approaches. While mechanisms of disease
activity have been proposed and most seizures remain well-
controlled, a significant subset of patients remain at high
risk for adverse events and require lifestyle adjustment that
negatively impacts their ability to perform activities of daily
living. It is thought that epilepsy occurs when the human
brain is unable to dynamically operate in or near this critical
state, where certain biological neuronal networks work near
phases of pathological synchronization and insensitivity. A
failure to remain at this point poised between instability and
homeostasis can lead to epilepsy. One of the most prominent
approaches to understanding the underlying mechanisms of
epileptic seizure activity has been mathematical modeling of the
relevant physiological processes. The formalism described by
Hodgkin and Huxley in 1952 provides an elegant mathematical
description of neuronal behavior and is considered the gold
standard for describing neuronal physiology. However, the
computational complexity involved in modeling systems of
neurons large enough to exhibit meaningful behavior have
up until now rendered models of this type computationally
intractable. As a result, previous such approaches have generally
worked with some sort of approximated forms, the assumptions

of which may vitiate some of the conclusions drawn from
such models. Meanwhile, advances in computational power have
now made it feasible to perform simulations using full HH
models describing a biophysically relevant number of neurons.
In this paper, we described THINKER 1.0 and THINKER 2.0,
which implement full HH model simulations with the neurons
configured in a SW topology. It goes without saying that no
simulation, especially with orders of magnitude fewer nodes, can
reflect all of the complexity of the human brain, and we have
focused on aspects more relevant for future machine learning
algorithms for predicting seizures in patients with epilepsy. Here,
the simulated networks reproduce both the power-law tail at high
frequencies seen in the power spectral density of patient data at
times of normal cognition, as well as the peaks corresponding to
pathological synchronization that occur during seizures.

The work to date has yielded some interesting insights into
the process of ictogenesis. The results of this modeling work
identified three brain states—subcritical/interictal (non-seizure
state, with little or no activity), critical (non-seizure state, with
the number of active neurons characterized by a power law
distribution), and supercritical (ictal seizure state, displaying
pathological synchronization of large numbers of neurons). The
model biophysical parameter whose variation determines in
which state the system exists is h in the HH formalism, which
describes the process of Na+ inactivation. On an individual
neuronal basis, alteration of this parameter will affect the
rate of neuronal repolarization, which in turn alters the spike
frequency relative to other neurons, which can affect neuronal
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FIGURE 5 | (Left) Synthetic EEG from a subcritical, critical, a supercritical ictal state. (Middle) Corresponding wavelet transform scalograms. (Right) Calculated power

spectral density plots. The green dashed line shows the same power law as a guide for the eye. The critical state follows the line most closely, while the ictal state has

peaks representing synchronization at that frequency (black arow).

synchronization. In the model, we see an example where a single
parameter can determine whether the system is in a normal
critical state or transitions into a pathologic ictal regime. Future
work will involve increasing the number of neurons, extending
the simulation time, and looking at the effect of the other gating
parameters on neuronal state.

One of the traditional criticisms of ML, including deep
learning neural networks (DLNNs), has been that the trained
systems appear to be “black boxes” for which it is not easy
to understand how they are making decisions. The recent
development of topological data analysis (TDA) (Carlsson, 2009)
has led to attempts to treat the parameters of a trained DLNN
system as just another data set. Then TDA methods can be
applied to the data set of system weights to gain insights into
how the DLNN system is making decisions. Such insights may
ultimately lead to neurophysiologic insights into ictogenesis.
ECoG data from epilepsy patients can serve as the foundation
for refining and validating the THINKER models described in
this article. This model-generated data can then be used as input
to ML routines to attempt to identify biomarkers of impending
seizures, and also to attempt to gain insight into the underlying
neurobiology of ictogenesis. For ethical reasons, human data
acquisition must be driven by clinical parameters and hence
is available in extremely limited amounts. Once the simulated

ECoG generated by the THINKER models has been validated
against actual patient data, it can then serve as input to ML
techniques to attempt further characterize electrophysiologic
biomarkers of impending seizures. Although there are numerous
ML methods, we anticipate using DLNNs in our initial work.
DLNN has been found to generate increasingly abstract concepts
as it progresses deeper into the hierarchy of hidden layers
(Schmidhuber, 2015). This should increase the likelihood that the
DLNNmodel can be useful for developing a system for predicting
the real-time risk of impending seizures.

CONCLUSION

The present work utilized full Hodgkin-Huxley simulations
with artificial neurons connected in a small-world topology
to demonstrate that alteration in a single neuronal parameter
can catalyze the transition to the pathological synchronization
characteristic of epilepsy, a change from non-seizure (interictal
or subcritical) to seizure (ictal) states. These simulations help
provide a better understanding of the ways network topology,
synaptic strength, and neuron excitability influence both healthy
brain function and pathological states such as epilepsy. A
primary biomarker of the seizure state is a spike in either the
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FIGURE 6 | 3D-Printed representation of subcritical (EXP) critical (Power) and supercritical (Ictal) phases. Complex activity is evident at higher frequencies most in the

critical phase. Compare this with the repetitive nature of the ictal phase and the reduced activity in the subcritical phase.

FIGURE 7 | (A) Extracted mean cluster size using the formula from percolation theory. The largest value occurs near the physiological value of the Na+ inactivation

parameter called “sticky.” (B) Histogram of simultaneously firing neurons. The critical state most closely follows a power-law distribution, while the subcritical states

show exponential decay.
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FIGURE 8 | Example high-resolution patient data using electrocorticography (ECoG) intracranial electrodes. A time interval marked by the clinician as a seizure has a

peak in the power spectral density (black arrow) that is absent during the non-seizure sample.

power spectral density of an averaged signal like patient ECoG
measurements, or the histogram of the number of simultaneously
firing neurons in the highly spatially resolved simulation data.
In addition, during the healthy intervals marked by activity at
or near the critical point, the simulations reproduce power-law
behavior seen in patient data. This project also makes more
visible the distinct brain phases observed in actual patients. The
next steps are obtaining ECoG recordings from patients with
temporal lobe epilepsy who underwent presurgical evaluation for
temporal lobectomy. This will allow us to refine and validate the
insights from the models, especially important given the scarcity
of actual patient ECoG data. The synthetic data generated by
the model can also be used to train future machine-learning
algorithms to assess the real-time risk of seizure onset.
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