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Abstract
For linear control systems in discrete time controllability properties are characterized. In
particular, a unique control set with nonvoid interior exists and it is bounded in the hyperbolic
case. Then a formula for the invariance pressure of this control set is proved.
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1 Introduction

Invariance pressure for subsets of the state space generalizes invariance entropy of determin-
istic control systems by adding potentials on the control range. We consider control systems
in discrete time of the form

xk+1 = F(xk, uk), k ∈ N0 = {0, 1, . . .},
where F : M × U → M is smooth for a smooth manifold M and a compact control range
U ⊂ R

m . The invariance entropy hinv(K , Q) determines the average data rate needed to keep
the system in Q (forward in time) when it starts in K ⊂ Q. Basic references for invariance
entropy are Nair et al. [12] and themonographKawan [10], where also the relation tominimal
data rates is explained. With some analogy to classical constructions for dynamical systems,
invariance pressure adds continuous functions f : U → R called potentials giving a weight
to the control values.
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For continuous-time systems, invariance entropy of hyperbolic control sets has been ana-
lyzed in Kawan [9] and Kawan and Da Silva [5]. Kawan and Da Silva [11] and [6] analyze
invariance entropy of partially hyperbolic controlled invariant sets and chain control sets.
Huang and Zhong [8] show dimension-like characterizations of invariance entropy.Measure-
theoretic versions of invariance entropy have been considered in Colonius [4] and Wang et
al. [15]. Invariance pressure has been analyzed in Colonius et al. [1–3]. In Zhong and Huang
[18] it is shown that several generalized notions of invariance pressure fit into the dimension-
theoretic framework due to Pesin.

The main results of the present paper are given for linear control systems xk+1 = Axk +
Buk with an invertible matrix A and control values uk in a compact neighborhood U of the
origin in R

m . It is shown that a unique control set D with nonvoid interior exists if and only
if the system without control constraints is controllable (i.e., the pair (A, B) is controllable),
and D is bounded if and only if A is hyperbolic. In this case a formula for the invariance
pressure of compact subsets K in D is presented.

The contents of this paper are as follows: Sect. 2 collects general properties of control
sets for nonlinear discrete-time systems. Section 3 characterizes controllability properties of
linear discrete-time systems with control constraints and Sect. 4 shows that here a unique
control set with nonvoid interior exists and that it is bounded if and only if the uncontrolled
system is hyperbolic. Section 5 introduces invariance entropy and as a generalization total
invariance pressure where potentials on the product of the state space and the control range
are allowed. For linear systems, Sect. 6 first derives an upper bound for the total invariance
pressure and a lower bound for the invariance pressure. Combined they yield a formula for
the invariance pressure in the hyperbolic case.

2 Control Sets for Nonlinear Systems

In this section we introduce some notation and prove several properties of control sets with
nonvoid interior for nonlinear discrete-time systems. They are analogous to properties of
systems in continuous time, however, the statements are a bit more involved, since one has
to consider in addition to the interior of control sets their transitivity sets. A discussion of
various slightly differing versions in the literature is contained in Colonius [4, Section 5].

We consider control systems of the form

xk+1 = F(xk, uk), k ∈ N0, (1)

on a C∞-manifold M of dimension d endowed with a corresponding metric. For an initial
value x0 ∈ M at time k = 0 and control u = (uk)k≥0 ∈ U := UN0 we denote the solutions by
ϕ(k, x0, u), k ∈ N0. Assume that the set of control values U ⊂ R

m is nonvoid and satisfies
U ⊂ intU . Let Ũ be an open set containing U and suppose that the map F : M × Ũ → M
is a C∞-map.

Definition 1 For x ∈ M and k ∈ N the reachable set Rk(x) and the controllable set Ck(x)
are

Rk(x) := {y ∈ M |∃u ∈ U : y = ϕ(k, x, u) },
Ck(x) := {y ∈ M |∃u ∈ U : ϕ(k, y, u) = x },
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resp., and R(x) and C(x) are the respective unions over all k ∈ N. The system is called
accessible in x if

intR(x) �= ∅ and intC(x) �= ∅. (2)

Accessibility in x certainly holds if

intF(x,U ) �= ∅ and int{y ∈ M |x ∈ F(y,U ) } �= ∅.

Next we specify maximal subsets of complete approximate controllability.

Definition 2 For system of the form (1) a nonvoid subset D ⊂ M is called a control set if
it is maximal with (i) D ⊂ R(x) for all x ∈ D, (ii) for every x ∈ D there is u ∈ U with
ϕ(k, x, u) ∈ D for all k ∈ N. The transitivity set D0 of D is D0 := {z ∈ D |z ∈ intC(z) }.

We define for k ≥ 1 a C∞-map

Gk : M ×Uk → M,Gk(x, u) := ϕ(k, x, u).

Following Wirth [17] we say that a pair (x, u) ∈ M × intUk is regular if rank ∂Gk
∂u (x, u) = d

(clearly, this impliesmk ≥ d). For x ∈ M and k ∈ N the regular reachable set and the regular
controllable set at time k are

R̂k(x) := {ϕ(k, x, u) |(x, u) is regular } ,

Ĉk(x) := {y ∈ M |x = ϕ(k, y, u) with (y, u) regular } ,

resp., and the regular reachable set R̂(x) and controllable set Ĉ(x) are given by the respective
union over all k ∈ N. It is clear that R̂(x) and Ĉ(x) are open for every x .

Accessibility condition (2) implies that there is k0 ∈ N such that for all k ≥ k0 one has
intRk(x) �= ∅ and

Rk(x) ⊂ {ϕ(k, x, u) ∈ intRk(x)
∣
∣u ∈ intUk }.

By Sard’s Theorem the set of points ϕ(k, x, u) ∈ Rk(x) such that (x, u) is not regular has
Lebesgue measure zero.

Proposition 3 Assume that accessibility condition (2) holds for all x ∈ M. Then for every
control set D with nonvoid interior the transitivity set D0 is nonvoid and dense in intD.

Proof For x ∈ intD there is k0 ∈ N such that the reachable set Rk(x) at time k has nonvoid
interior for all k ≥ k0. There is k ≥ k0 with Rk(x) ∩ intD �= ∅, hence we may assume that
there is y := ϕ(k, x, u) ∈ intRk(x) ∩ intD. Then, by Sard’s Theorem, it follows that there
is a point y = ϕ(k, x, u) ∈ intD with some regular (x, u), i.e., y ∈ intD ∩ R̂k(x). Then
x ∈ intC(y). Let V ⊂ intC(y) be a neighborhood of x . Since x ∈ intD and D ⊂ R(y),
there is z ∈ V ∩ R(y) ⊂ D and thus y ∈ C(z). By construction, the point z ∈ D satisfies
z ∈ intC(y) ⊂ intC(z), hence it is in the transitivity set of D and D0 is dense in intD. 
�
Remark 4 In the general context of semigroups of continuous maps (and with slightly differ-
ent notation), Patrão and SanMartin [13, Propositions 4.8 and 4.10] show that the transitivity
set D0 is dense in a control set D with nonvoid interior provided that D0 �= ∅.

We note the following further results for control sets.

Proposition 5 Assume that D is a control set for a control system which is accessible for all
x ∈ M. Then its transitivity set D0 satisfies D0 ⊂ R(x) for all x ∈ D.
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Proof Let x ∈ D and x0 ∈ D0. By approximate controllability of D and x0 ∈ intC(x0),
there are k ≥ 1 and u ∈ U with ϕ(k, x, u) ∈ intC(x0). Hence there are l ≥ 1 and v ∈ U such
that ϕ(l, ϕ(k, x, u), v) = x0. Therefore x ∈ C(x0), that is, x0 ∈ R(x). 
�
Proposition 6 Assume that D is a control set with nonvoid interior of a control system, which
is accessible for all x ∈ M. Then the transitivity set D0 of D is nonvoid and

D = R(x0) ∩ C(x0) for all x0 ∈ D0,

in particular, the set D is measurable.

Proof By Proposition 3 the transitivity set D0 is nonvoid. Let x0 ∈ D0. Note that D ⊂ R(x0)
by the definition of control sets. For every x ∈ D, Proposition 5 shows that x0 ∈ R(x), that
is x ∈ C(x0). Hence D ⊂ D′ := R(x0) ∩ C(x0). It is not difficult to see that the set D′ is a
set of approximate controllability with nonvoid interior. It follows that D′ is contained in a
maximal set D′′ of approximate controllability with nonvoid interior, which by Kawan [10,
Proposition 1.20] is a control set. By the maximality property of control sets and D ⊂ D′′,
it follows that D = D′ = D′′, which concludes the proof. 
�

The following proposition shows that a trajectory starting in the interior of a control set
D and remaining in it up to a positive time must actually remain in the interior of D.

Proposition 7 Assume that the maps F(·, u) are local diffeomorphisms on M for all u ∈ U.
Let x be in the interior of a control set D and suppose that for some τ ∈ N and u ∈ U one
has ϕ(k, x, u) ∈ D, k ∈ {1, . . . , τ }. Then ϕ(k, x, u) ∈ intD, k ∈ {1, . . . , τ }.
Proof Suppose that y := ϕ(k, x, u) ∈ D ∩ ∂D for some k ∈ {1, . . . , τ }. By the assumption
on the maps F(·, u) and x ∈ intD, there is a neighborhood N0(y) of y with N0(y) =
ϕ(k, N (x), u) for a neighborhood N (x) ⊂ D of x . Since y ∈ D, there are a control v ∈ U and
k0 ∈ Nwith ϕ(k0, y, v) ∈ intD. Then there is a neighborhood N1(y)with ϕ(k0, N1(y), u) ⊂
intD. By the maximality property of control sets it follows that the neighborhood N0(y) ∩
N1(y) of y is contained in D, contradicting y ∈ ∂D. 
�

3 Controllability Properties of Linear Systems

Next we consider linear control systems in K
d , K = R or K = C, of the form

xk+1 = Axk + Buk, uk ∈ U ⊂ K
m, (3)

where A ∈ Gl(d, K) and B ∈ K
d×m and the control rangeU is a compact convex neighbor-

hood of 0 ∈ K
m with U = intU .

For initial value x ∈ K
d and control u ∈ U = UN0 the solutions of (3) are given by

ϕ(k, x, u) = Akx +
k−1
∑

i=0

Ak−1−i Bui , k ∈ N0.

Where convenient,we also use the notationϕk,u := ϕ(k, ·, u) : R
d → R

d . Note the following
observation.

Proposition 8 For x ∈ K
d the reachable set Rk(x) at time k,

Rk(x) = {y ∈ K
d | ∃u ∈ U with ϕ(k, x, u) = y }

is compact and convex.
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Proof Convexity follows from the convexity ofU . SinceU ⊂ K
m is compact, there isM > 0

such that ‖u‖ ≤ M , for all u ∈ U . Then, if y = ϕ(k, x, u) ∈ Rk(x), u = (ui ) ∈ Uk , we get

‖y‖ ≤ ‖Akx‖ +
k−1
∑

i=0

‖Ak−1−i Bui‖ ≤ ‖A‖k‖x‖ + M
k−1
∑

i=0

‖A‖k−1−i‖B‖ < ∞,

hence Rk(x) is bounded. In order to show that Rk(x) is closed, consider a sequence yn =
ϕ(k, x, un) in Rk(x) such that yn → y ∈ K

d and un ∈ Uk . By compactness of U , we have
that Uk is compact, hence there is a subsequence converging to some u ∈ Uk . Therefore
y = ϕ(k, x, u) ∈ Rk(x) by continuity. 
�
Proposition 9 For all k, l ∈ N we have

Rk(0) + AkRl(0) = Rl+k(0) and intRk(0)+AkRl(0) ⊂ intRk+l(0).

Proof Let x1 ∈ Rk(0) and x2 ∈ Rl(0). Then there are u, v ∈ U such that

x1 =
k−1
∑

i=0

Ak−1−i Bui and x2 =
l−1
∑

i=0

Al−1−i Bvi .

Define

wi =
{

vi , if 0 ≤ i ≤ l − 1
ui−l , if l ≤ i ≤ k + l − 1

.

Then

ϕ(k + l, 0, w) =
k+l−1
∑

i=0

Ak+l−1−i Bwi =
l−1
∑

i=0

Ak+l−1−i Bwi +
k+l−1
∑

i=l

Ak+l−1−i Bwi

= Ak
l−1
∑

i=0

Al−1−i Bvi +
k−1
∑

i=0

Ak−1−i Bui = Akx2 + x1.

Hence x1 + Akx2 = ϕ(k + l, 0, w) ∈ Rl+k(0). The converse inclusion follows by reversing
these steps. The second assertion follows since the set on left hand side is open. 
�

Define the time reversed counterpart of system (3) by

xk+1 = A−1xk − A−1Buk, uk ∈ U ⊂ K
m . (4)

The reachable and controllable sets from the origin at time k for this system are denoted by
R−
k (0) and C−

k (0), respectively.

Proposition 10 The reachable and controllable sets for system (3) and the time reversed
system (4) satisfy for all k ∈ N

Rk(0) = C−
k (0) and Ck(0) = R−

k (0).

Proof Note that x ∈ Ck(0) if and only if there is u ∈ U with

Akx +
k−1
∑

i=0

Ak−1−i Bui = 0, i.e., x = −
k−1
∑

i=0

A−1−i Bui .
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For any u ∈ Uk , we define v j = uk−1− j , 0 ≤ j ≤ k − 1. Then

x = −
k−1
∑

i=0

A−1−i Bui = −
k−1
∑

j=0

A−1−(k−1− j)Buk−1− j = −
k−1
∑

j=0

(A−1)k− j Bv j

= −
k−1
∑

j=0

(A−1)k−1− j A−1Bv j =
k−1
∑

j=0

(A−1)k−1− j (−A−1B)v j .

Hence we conclude that x ∈ Ck(0) if and only if there exists a control v ∈ Uk such that
x = ϕ−(k, 0, v), where ϕ− is the solution of (4). This proves thatCk(0) = R−

k (0). The other
equality follows analogously. 
�
Lemma 11 If (A, B) is controllable, there is δ > 0 such that the ball Bδ(0) satisfies Bδ(0) ⊂
intRd−1(0). Furthermore, Rn(0) ⊂ Rm(0) for m ≥ n.

Proof Since the control range is a neighborhood of 0, controllability implies that there is
δ > 0 with Bδ(0) ⊂ intRd−1(0). The second assertion follows since 0 is an equilibrium for
u = 0. 
�
Proposition 12 If (A, B) is controllable, the reachable set of system (3) satisfies R(0) =
intR(0).

Proof The inclusion intR(0) ⊂ R(0) holds trivially. For the converse we first show that
R(y) ⊂ intR(0) for y ∈ intR(0). In fact, let there exists a neighborhood Vy of y such that
Vy ⊂ R(0). Given z ∈ R(y), there are k ∈ N and u ∈ U such that z = ϕ(k, y, u). Since
A ∈ Gl(d, R), themap ϕk,u is a diffeomorphism andwe have that ϕk,u(Vy) is a neighborhood
of z and clearly ϕk,u(R(0)) ⊂ R(0). So z ∈ ϕk,u(Vy) ⊂ R(0), which shows that z ∈ intR(0).

Now, let x ∈ R(0) and V a neighborhood of x . There is y ∈ R(0) such that y ∈ V ,
so there are k ∈ N and u ∈ U such that y = ϕ(k, 0, u). Since 0 ∈ intR(0) there exists a
neighborhood W of 0 such that W ⊂ intR(0) and ϕk,u(W ) ⊂ V by continuity of ϕk,u . For
z ∈ W the arguments above show that R(z) ⊂ intR(0) and it follows that

ϕ(k, z, u) ∈ V ∩ R(z) ⊂ V ∩ intR(0)

and hence x ∈ intR(0). 
�
We will need the following lemmas.

Lemma 13 For every λ ∈ C there are nk → ∞ such that λnk

|λ|nk → 1, and, in particular,

Im(λnk )

Re(λnk )
→ 0 for k → ∞.

Proof There is θ ∈ [0, 2π) with λ = |λ| (cos θ + ı sin θ), hence

λn = |λ|n (cos(nθ) + ı sin(nθ)).

If θ ∈ 2πQ, there are n, N ∈ N with nθ = N2π , hence λn = |λ|n cos(N2π) = |λ|n . Else,
there are nk → ∞ such that modulo 2π one has nkθ → 0. This implies cos(nkθ) → 1 and
sin(nkθ) → 0, hence

λnk

|λ|nk = cos(nkθ) + ı sin(nkθ) → 1.
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This implies

Im(λnk )

Re(λnk )
=

Im
(

λnk

|λ|nk
)

Re
(

λnk

|λ|nk
) = sin(nkθ)

cos(nkθ)
→ 0.


�
The next lemma states a property of convex sets.

Lemma 14 If C is an open convex subset of K
n and Y ⊂ C a subspace, then C = C + Y .

The following theorem describes the general structure of reachable and controllable sets.
It is analogous to a well known property of linear systems in continuous time, cf. Sontag
[14, Section 3.6] and Hinrichsen and Pritchard [7, Theorem 6.2.15]; the proof for discrete-
time systems, however, is more involved. Recall that the state space K

d can be decomposed
with respect to A into the direct sum of the stable subspace Es , the center space Ec and the
unstable subspace Eu which are the direct sums of all generalized (real) eigenspaces for the
eigenvalues λ of A with |λ| < 1, |λ| = 1 and |λ| > 1, respectively. Furthermore, we let
Euc := Eu ⊕ Ec and Esc := Es ⊕ Ec.

Theorem 15 Consider the control system given by (3) and suppose that the system without
control restriction is controllable.

(i) There exists a compact and convex set K ⊂ Es ⊂ K
d with nonvoid interior with respect

to Es such that R(0) = K + Euc. Moreover 0 ∈ K and Euc ⊂ intR(0).
(ii) There exists a compact and convex set F ⊂ Eu ⊂ K

d with nonvoid interior with respect
to Eu such that C(0) = F + Esc. Moreover 0 ∈ F and Esc ⊂ intC(0).

Proof We will first prove the result for K = C.

(i) In the first step, wewill show that Euc ⊂ intR(0). AsR(0) is convex, its interior is convex
too. Therefore it suffices to prove that the generalized eigenspaces for eigenvalues with
absolute value greater than or equal to 1 are contained in intR(0). Fix an eigenvalue λ

of A with |λ| ≥ 1 and let Eq(λ) = ker(A − λI )q , q ∈ N0. It suffices to show that
Eq(λ) ⊂ intR(0) for all q .
We prove the statement by induction on q , the case q = 0 being trivial since Eq(λ) =
{0} ⊂ intR(0). So assume that Eq−1(λ)) ⊂ intR(0) and take any w ∈ Eq(λ). We must
show that w ∈ intR(0). By Lemma 11 there is δ > 0 such that aw ∈ intRd−1(0) for all
a ∈ C with |a| < δ.
Note that for all |a| < δ and all n ≥ 1

Anaw = (A − λI + λI )naw =
n

∑

j=0

(
n

j

)

(A − λI )n− jλ j aw

= λnaw +
n−1
∑

j=0

(
n

j

)

(A − λI )n− jλ j aw.

Since aw ∈ Eq(λ), it follows that (A − λI )i aw ∈ Eq−1(λ) for all i ≥ 1, hence
z(n) := ∑n−1

j=0

(n
j

)

(A − λI )n− jλ j aw ∈ Eq−1(λ), n ≥ 1. Using aw ∈ intRd−1(0)
Lemmas 11 and 14 imply for n ≥ 1

λnaw = Anaw − z(n) ∈ Anaw + Eq−1(λ) ⊂ intRn+d−1(0) + Eq−1(λ) ⊂ intR(0).(5)
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We write

a = α + ıβ and λn = xn + ı yn

with α, β ∈ R and xn, yn ∈ R
d .

Claim: There are a sequence (nk)k∈N with nk → ∞ and ank ∈ C with
∣
∣ank

∣
∣ < δ such

that λnk ank ∈ R.
In fact, we have

λna = (xn + ı yn)(α + ıβ) = xnα − ynβ + ı(xnβ + ynα) ∈ R,

if and only if xnβ + ynα = 0.
Case (a): If xn = 0, one may choose αn := 0 and gets λnan = −ynβn ∈ R for βn = δ

2
with |an | = |βn | = δ

2 .
Case (b): Otherwise λna ∈ R if and only if

β = −α
yn
xn

= −α
Im(λn)

Re(λn)
.

According to Lemma 13 there are nk ∈ N, arbitrarily large, such that with αnk := δ
2 and

βnk := −αnk
ynk
xnk

∣
∣βnk

∣
∣ = δ

2

∣
∣
∣
∣

Im(λnk )

Re(λnk )

∣
∣
∣
∣
<

δ

2
.

It follows for ank := αnk + βnk that

∣
∣ank

∣
∣
2 = α2

nk + β2
nk <

1

4
δ2 + 1

4
δ2, and hence

∣
∣ank

∣
∣ < δ.

We have shown that with this choice of ank we have λnk ank ∈ R and theClaim is proved.
Furthermore in case (a), by |λ| ≥ 1,

∣
∣λnan

∣
∣ = |λ|n |an | ≥ |an | = δ

2
,

and in case (b)

∣
∣λnk ank

∣
∣ = |λ|nk ∣∣ank

∣
∣ ≥ ∣

∣ank
∣
∣ ≥ ∣

∣αnk

∣
∣ = δ

2
.

Now choose � ∈ N with � ≥ 2/δ. Recall that all points ankw ∈ intRd−1(0). We may
assume that n2 ≥ n1 + d − 1, hence

An1an1w ∈ intRn1+d−1(0) ⊂ intRn2(0).

We may also assume that n3 − n2 ≥ n2 + d − 1, hence

An2an2w ∈ intRn2+d−1(0) ⊂ intRn3−n2(0).

Thus Proposition 9 implies

An1an1w + An2an2w ∈ intRn2(0) + An2Rn3−n2(0) ⊂ intRn3−n2+n2(0) = intRn3(0).

Proceeding in this way, we finally arrive at

�
∑

k=1

Ank ankw ∈ intRn�
(0).
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Thus we find with (5),

�
∑

k=1

λnk ankw =
�

∑

k=1

[

Ank ankw − z(nk)
] ∈ intRn�

(0) + Eq−1(λ) ⊂ intR(0).

If λnk ank > 0 for all k ∈ {1, . . . , �}, then (the real number)

�
∑

k=1

λnk ank > � · δ/2 ≥ 1.

For the k with λnk ank < 0, replace ank by −ank , to get the same conclusion. This
shows thatw is a convex combination of the points 0 and

∑�
k=1 λnk ankw in intR(0), thus

convexity of this set impliesw ∈ intR(0) completing the induction step Eq(λ) ⊂ intR(0).
Hence we have shown that Euc ⊂ intR(0).

It remains to construct a set K as in the assertion. Define K0 := intR(0) ∩ Es . Then it
follows that

K0 + Euc = ( intR(0) ∩ Es) + Euc ⊂ intR(0) + Euc ⊂ intR(0).

For the converse inclusion, let v ∈ intR(0), then v = x + y where x ∈ Es and y ∈ Euc,
hence by Lemma 14,

x = v − y ∈ intR(0) + Euc = intR(0),

which shows that x ∈ K0 and therefore v ∈ K0 + Es . This shows that

K0 + Euc = intR(0). (6)

In order to show that K0 is bounded, consider the projection π : C
d = Es ⊕ Euc →

Es along Euc. Since Es and Euc are A-invariant, π commutes with A and we have
π An = Anπ , for all n ∈ N0. For each x ∈ K0 = intR(0) ∩ Es , there are k ∈ N and
u = (ui ) ∈ U such that

x =
k−1
∑

i=0

Ak−1−i Bui .

Since A|Es is a linear contraction, there exist constants a ∈ (0, 1) and c ≥ 1 such that
‖Anx‖ ≤ can‖x‖ for all n ∈ N and x ∈ Es . Since U is compact, there is M > 0 such
that ‖πBu‖ ≤ M , for all u ∈ U , so

x = π(x) = π

(
k−1
∑

i=0

Ak−1−i Bui

)

=
k−1
∑

i=0

π Ak−1−i Bui =
k−1
∑

i=0

Ak−1−iπBui ,

hence

‖x‖ ≤
k−1
∑

i=0

∥
∥
∥Ak−1−iπBui

∥
∥
∥ ≤

k−1
∑

i=0

∥
∥
∥Ak−1−i‖‖πBui

∥
∥
∥ ≤ cM

k−1
∑

i=0

ak−1−i = cM
1 − ak

1 − a

showing that K0 is bounded. As a consequence, K := K0 = intR(0) ∩ Es is a compact
convex set which has nonvoid interior relative to Es . Moreover, K + Euc is closed,
because K is compact. Therefore it follows from Proposition 12 and (6) that

R(0) = intR(0) = K0 + Euc = K + Euc.
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(ii) Consider the time reversed system (4). Note that C
d = Es− ⊕ Ec− ⊕ Eu−, where Es−, Ec−

and Eu− are the sums of the generalized eigenspaces for the eigenvalues μ of A−1 with
|μ| < 1, |μ| = 1 and |μ| > 1, respectively. Now λ is an eigenvalue of A (note that λ �= 0
since A ∈ Gl(d, C)), if and only if μ = λ−1 is an eigenvalue of A−1. Hence we have
Es− = Eu , Ec− = Ec and Eu− = Es . By (i) there exists a compact and convex set F ⊂ C

d

which has nonvoid interior with respect to Es− = Eu such thatR−(0) = F + Euc− , 0 ∈ F
and Euc− ⊂ intR−(0). By Proposition 10,

Esc = Euc− ⊂ intR−(0) = intC(0)

and

C(0) = F + Euc− = F + Esc.

This completes the proof of the theorem for the case K = C.

It remains to prove the theorem for the case K = R. Note that if A ∈ Gl(d, R), then
u − ıv ∈ Es, u, v ∈ R

d , implies u + ıv, v + ıu ∈ Es and a similar implication holds for
Euc. Hence

Re Es = Es ∩ R
d ,Re Euc = Euc ∩ R

d ,

Es = Re Es + ı Re Es, Euc = Re Euc ⊕ ı Re Euc (7)

Let UC := U + ıU and apply the result above for K = C. Clearly (A, B) is controllable,
when considered as a system with state space C

d andUC is a convex compact neighborhood
of 0 ∈ C

m with UC ⊂ intUC.
Denote the reachable set from0of the real and complex systembyRR andRC, respectively.

It follows from the complex version of the theorem that the compact convex set KC :=
int(RC) ∩ Es has non-empty interior relative to Es and satisfies RC = KC ∩ Euc. Since
every u ∈ UC is of the form u = v + ıw, where v,w ∈ U , and ϕ(k, 0, u) = ϕ(k, 0, v) +
ıϕ(k, 0, w), k ∈ N, we have

UC = UR + ıUR and RC = RR + ıRR. (8)

It follows that

RR = ReRC, intRR = Re intRC,

where the interior of RR is relative to R
d and the interior of RC is relative to C

d . Now, if
W , Z ⊂ C

d are subsets of the form

W = W1 + ıW2, Z = Z1 + ı Z2,

where W1,W2, Z1, Z2 ⊂ R
d and W ∩ Z �= ∅, then W ∩ Z = (W1 ∩ Z1) + ı (W2 ∩ Z2)

and so Re(W ∩ Z) = ReW ∩ Re Z . Applying this equality to W = intRC and Z = Es we
obtain from (8) and (7) that

K = (Re(intRC)) ∩ Re Es = Re(intRC) ∩ Es) = Re KC.

Hence K is a compact convex subset ofR
d , which has a non-empty interior relative to Re Es .

Using (8) for the second equality we get

RR = ReRC = ReRC = Re(KC + Eu,s) = K + Re Eu,s .

This concludes the proof. 
�
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Next we present a necessary and sufficient condition for controllability inK
d . This conse-

quence ofTheorem15 illustrates that controllability only holds under very strong assumptions
on the spectrum of the matrix A. In the next section, we will instead consider subsets of the
state space where complete controllability holds, i.e., control sets. Recall that the system
without control restriction is controllable in R

d if and only if (A, B) is controllable.

Corollary 16 Consider the discrete-time linear system given in (3).

(i) The reachable set R(0) = K
d if and only if (A, B) is controllable and A has no

eigenvalues with absolute value less than 1.
(ii) The controllable set C(0) = K

d if and only if (A, B) is controllable and A has no
eigenvalues with absolute value greater than 1.

(iii) The system is controllable inK
d if and only if (A, B) is controllable and all eigenvalues

of A have absolute value equal to 1.

Proof (i) If R(0) = K
d , then the pair (A, B) is controllable, since R(0) is contained in the

image of Kalman’s matrix [B AB . . . Ad−1B]. Moreover, if there is an eigenvalue λ of
Awith |λ| < 1, then Es �= {0} and Eu is a proper subset ofK

d . By Theorem 15 (ii), there
is a nonvoid compact set F ⊂ Eu such that Esc + F = R(0) = K

d , a contradiction.
Conversely, if (A, B) is controllable and all eigenvalues λ of A satisfy |λ| ≥ 1, then by
Theorem 15 (i) we have K

d = Euc ⊂ intR(0) ⊂ R(0).
(ii) This follows analogously.
(iii) This is a consequence of assertions (i) and (ii) observing that R(0) = C(0) = K

d

holds if and only if for all x, y ∈ K
d there are a control u ∈ U and a time k ∈ N with

ϕ(k, x, u) = y.

�

Remark 17 In the continuous-time case, a result analogous to Corollary 16 is given e.g. in
Sontag [14, Section3.6]. For the discrete-time case,we are not aware of a result in the literature
covering Corollary 16. In the special case of two inputs (i.e., m = 2) the characterization of
null-controllability in Corollary 16 (ii) is given in Wing and Desoer [16, Section V, Theorem
2].

4 Control Sets for Linear Systems

Next we analyze linear control systems in R
d of the form

xk+1 = Axk + Buk, uk ∈ U ⊂ R
m (9)

with A ∈ Gl(d, R) and B ∈ R
d×m and suppose that U is a convex compact neighborhood

of 0 ∈ R
m withU = intU . Recall that the system without control restrictions is controllable

in R
d if and only if rank[B AB . . . Ad−1B] = d , i.e., the pair (A, B) is controllable.

Theorem 18 There exists a unique control set D with nonvoid interior of system (9) if and
only if the system without control restriction is controllable inR

d . In this case 0 ∈ D0∩ intD.

Proof The controllability condition for (A, B) is necessary for the existence of D, since it
guarantees that accessibility condition (2) holds for all x ∈ R

d and, for the system without
control constraints, the reachable and the null-controllable subspaces coincidewithR

d . Since
0 ∈ intU , one verifies that for k ≥ d − 1

0 ∈ int(Ck(0)) ∩ int(Rk(0)) =: D′.
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Then every point x ∈ D′ can be steered to any other point z ∈ D′ (first steer x to the origin
in time k and then the origin to z in time k) and 0 ∈ int(C(0)). As in the proof of Proposition
6 one finds that D′ is contained in a control set D. Thus we have established the existence of
a control set D with nonvoid interior, and 0 ∈ D0 ∩ intD. It remains to show uniqueness.

Let D̃ ⊂ R
d be an arbitrary control set with nonvoid interior. By Proposition 6 its transi-

tivity set D̃0 is nonvoid and for x0 ∈ D̃0

D̃ = R(x0) ∩ C(x0).

By linearity, we have ϕ(k, x1, u) = x2 for k ∈ N and x1, x2 ∈ R
d implies ϕ(k, αx1, αu) =

αx2 for any α ∈ (0, 1]. Here the control αu has values in U , since U is convex and 0 ∈ U .
This implies that α D̃ is contained in some control set Dα and int(α D̃) is contained in the
interior of Dα . Now choose any x ∈ intD̃ and suppose, by way of contradiction, that

α0 := inf{α ∈ (0, 1]
∣
∣
∣∀β ∈ [α, 1] : βx ∈ D̃ } > 0.

Then α0x ∈ ∂ D̃ and α0x ∈ intDα0 . Therefore D̃∩ intDα0 �= ∅, and it follows that D̃ = Dα0

and α0x ∈ intD̃. This is a contradiction and so α0 = 0. Choosing α > 0 small enough such
that αx ∈ D, we obtain αx ∈ D̃ ∩ D �= ∅. Now it follows that D̃ = D. 
�

The following theorem gives a spectral characterization of boundedness of the control set.
Recall that A is called hyperbolic if all eigenvalues λ of A satisfy |λ| �= 1.

Theorem 19 Assume that (A, B) is controllable. Then the control set D with nonvoid interior
of system (9) is bounded if and only if A is hyperbolic.

Proof By Theorem 15 there are compact sets K ⊂ Es , F ⊂ Eu such that

R(0) = K + Ec + Eu and C(0) = F + Ec + Es .

By Proposition 6, D = R(0) ∩ C(0), because 0 ∈ D0 ⊂ intD, and hence every element
x ∈ D can be represented in the following two ways:

x = k + x1 + x+ = f + x1 + x−,

where k ∈ K ⊂ Es , f ∈ F ⊂ Eu , x1 ∈ Ec, x− ∈ Es and x+ ∈ Eu . Since R
d =

Es ⊕ Ec ⊕ Eu we get k = x−, f = x+. As Ec = Esc ∩ Euc ⊂ R(0) ∩ C(0) ⊂ D, we
conclude that Ec ⊂ D ⊂ K + Ec + F , and so the control set D is bounded if and only if
Ec = {0}. 
�
Remark 20 We know that in the hyperbolic case

D = K0 + F ′ (10)

with K0 ⊂ Es, F ′ ⊂ F ⊂ Eu , where K0 and F are compact sets with 0 ∈ K0 ∩ F . In
particular, it follows that K0, F ′ ⊂ D.

Next we present a simple example illustrating control sets.

Example 21 Consider for d = 2 and m = 1
[

xk+1

yk+1

]

=
[
2 0
0 1

2

] [

xk
yk

]

+
[

1
1

]

uk, uk ∈ U = [−1, 1].

We claim that for this hyperbolic matrix A the unique control set with nonvoid interior
is D = (−1, 1) × [−2, 2]. The stable subspace associated with the eigenvalue 1

2 of A
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is the y-axis, the unstable subspace associated with the eigenvalue 2 is the x-axis. For a
constant control u ∈ [−1, 1], one computes the equilibrium as (x(u), y(u))� = (u, 2u)�.
In particular. for u = 1 and u = −1 one obtains the equilibria

[

x(1)
y(1)

]

=
[−1

2

]

and

[

x(−1)
y(−1)

]

=
[

1
−2

]

,

resp. It is clear that for all u ∈ (−1, 1) the equilibrium (−u, 2u)� is in the interior of the
control set D. Furthermore, observe that for x0 > 1 one has in the next step 2x0 + u > x0
and for x0 < −1 one has 2x0 + u < x0. If y0 > 2, then 1

2 y0 + u < 1
2 y0 + 1 ≤ y0 and if

y0 < −2, then 1
2 y0 + u ≥ 1

2 y0 − 1 > y0. Hence solutions starting left of the vertical line
x = −1 and right of x = 1 have to go to the left and to the right, respectively. Solutions
which start above the horizontal line y = 2 and below y = −2, have to go down and up,
respectively. This shows that the control set must be contained in (−1, 1) × [−2, 2]. The
controllability property within D can be seen by the following analysis. If we start in an
equilibrium (x(α), y(α))� = (−α, 2α)�, α ∈ (−1, 1), we get e.g.

[

x1
y1

]

=
[−2α

α

]

+
[

1
1

]

u0,

[

x2
y2

]

=
[−4α

1
2α

]

+
[
2
1
2

]

u0 +
[

1
1

]

u1.

For the reachable set, we see that after one step the line segment S = {(u, u)�, u ∈ [−1, 1]}
is shifted to (−2α, α)�. After two time steps the line segment S is shifted to (−4α, 1

2a)�
and at every point the line segment {(2u, 1

2u)� |u ∈ [−1, 1] } is added. One can show that
the equilibrium (0, 0)� can be reached. If we start in (0, 0)�, we compute

[

x1
y1

]

=
[

1
1

]

u0,

[

x2
y2

]

=
[
2
1
2

]

u0 +
[

1
1

]

u1,

[

x3
y3

]

=
[
4
1
4

]

u0 +
[
2
1
2

]

u1 +
[

1
1

]

u2.

Proceeding in this way one finds that one can get approximately to all points in D and, in
particular, to the equilibria (−1, 2)� and (1,−2)�. Connecting appropriately the controls,
one finally shows that D = (−1, 1) × [−2, 2] is a control set.

5 Invariance Pressure

In this section we recall the concept of invariance pressure considered in [1,2,18] where
potentials are defined on the control range. Furthermore, we introduce the generalized version
of total invariance pressure, where the potentials are defined on the product of the state space
and the control range. Again we consider the general system (1).

A pair (K , Q) of nonvoid subsets of M is called admissible if K ⊂ Q is compact and for
each x ∈ K there exists u ∈ U such that ϕ(N, x, u) ⊂ Q. For an admissible pair (K , Q) and
τ > 0, a (τ, K , Q)-spanning set S of controls is a subset of U such that for all x ∈ K there is
u ∈ S with ϕ(k, x, u) ∈ Q for all k ∈ {1, . . . , τ }. Denote by C(U , R) the set of continuous
function f : U → R which we call potentials.

For a potential f ∈ C(U , R) denote (Sτ f )(u) := ∑τ−1
i=0 f (ui ), u ∈ U , and

aτ ( f , K , Q) = inf

{
∑

u∈S
e(Sτ f )(u) |S (τ, K , Q)-spanning

}

.

123



Journal of Dynamics and Differential Equations

Definition 22 The invariance pressure Pinv( f , K , Q) of control system (1) is defined by

Pinv( f , K , Q) = lim
τ→∞

1

τ
log aτ ( f , K , Q).

For the potential f = 0, this reduces to the notion of invariance entropy, Pinv(0, K , Q) =
hinv(K , Q).

In order to define the total invariance pressure associate to every control u in a (τ, K , Q)-
spanning setS of controls an initial value xu ∈ K with ϕ(k, xu, u) ∈ Q for all k ∈ {1, . . . , τ }.
Then a set of state-control pairs of the form

Stot = {(xu, u) ∈ K × S |ϕ(k, xu, u) ∈ Q for all k ∈ {1, . . . , τ } }
is called totally (τ, K , Q)-spanning. Denote by C(Q ×U , R) the set of continuous function
f : Q × U → R which we again call potentials. For a potential f ∈ C(Q × U , R) and
(x, u) ∈ M × U denote (Sτ f )(x, u) := ∑τ−1

i=0 f (ϕ(i, x, u), ui ) and

aτ ( f , K , Q) := inf

⎧

⎨

⎩

∑

(x,u)∈Stot

e(Sτ f )(x,u) |Stot totally (τ, K , Q)-spanning

⎫

⎬

⎭
.

Definition 23 The total invariance pressure Ptot ( f , K , Q;�) of control system (1) is defined
by

Ptot ( f , K , Q) = lim
τ→∞

1

τ
log aτ ( f , K , Q). (11)

Note that by continuity and monotonicity of the logarithm,

Ptot ( f , K , Q)

= lim
τ→∞ inf

⎧

⎨

⎩

1

τ
log

∑

(x,u)∈Stot

e(Sτ f )(x,u) |Stot totally (τ, K , Q)-spanning

⎫

⎬

⎭
. (12)

Furthermore −∞ < aτ ( f , K , Q) ≤ ∞ for every τ ∈ N, every admissible pair (K , Q), and
every potential f if every countable totally spanning set contains a finite totally spanning
subset, cf. [2, Remark 7]. If f (x, u) is independent of x , i.e., it is a continuous function on
U , the total invariance pressure coincides with the invariance pressure.

Remark 24 The definition of totally (τ, K , Q)-spanning sets is inspired by the definition of
spanning sets for (K , Q) in Wang, Huang, and Sun [15, p. 313], where a similar notion is
introduced in the context of invariant partitions which provide an alternative definition of
invariance entropy..

The next elementary proposition presents some properties of the function Ptot (·, K , Q) :
C(Q ×U , R) → R ∪ {±∞}.
Proposition 25 The following assertions hold for an admissible pair (K , Q), functions
f , g ∈ C(Q ×U , R) and c ∈ R:

(i) For f ≤ g one has Ptot ( f , K , Q) ≤ Ptot (g, K , Q).
(ii) Ptot ( f + c, K , Q) = Ptot ( f , K , Q) + c.

Proof This follows easily from the definition, cf. also [1, Proposition 13]. 
�

123



Journal of Dynamics and Differential Equations

The following proposition shows that, in the definition of total invariance pressure, we
can take the limit superior over times which are integer multiples of some fixed time step
τ ∈ N. The proof is analogous to the proof given in [2, Theorem 20] for invariance pressure
of continuous-time systems.

Proposition 26 For all f ∈ C(Q×U , R)with inf(x,u)∈Q×U f (x, u) > −∞ the total invari-
ance pressure satisfies for τ ∈ N

Ptot ( f , K , Q) = lim
n→∞

1

nτ
log anτ ( f , K , Q).

Proof For every f ∈ C(Q ×U , R), the inequality

Ptot ( f , K , Q) ≥ lim
n→∞

1

nτ
log anτ ( f , K , Q) (13)

is obvious. For the converse note that the function g(x, u) := f (x, u)− inf f is nonnegative
(if f ≥ 0, we may consider f instead of g). Let τk ∈ (0,∞) with τk → ∞ for k → ∞.
Then for every k ≥ 1 there exists nk ∈ N0 such that nkτ ≤ τk < (nk + 1)τ and nk → ∞ for
k → ∞. Since g ≥ 0 it follows that

aτk (g, K , Q) ≤ a(nk+1)τ (g, K , Q)

and consequently

1

τk
log aτk (g, K , Q) ≤ 1

nkτ
log a(nk+1)τ (g, K , Q).

This yields

lim
k→∞

1

τk
log aτk (g, K , Q) ≤ lim

k→∞
1

nkτ
log a(nk+1)τ (g, K , Q).

Since 1
nkτ

= nk+1
nk

1
(nk+1)τ and nk+1

nk
→ 1 for k → ∞, we obtain

lim
k→∞

1

τk
log aτk (g, K , Q) ≤ lim

k→∞
1

(nk + 1)τ
log a(nk+1)τ (g, K , Q)

≤ lim
n→∞

1

nτ
log anτ (g, K , Q).

Together with Proposition 25 (ii) and (13) applied to f − inf f , this shows that

Ptot ( f , K , Q) = Ptot ( f − inf f , K , Q) + inf f

= lim
n→∞

1

nτ
log anτ ( f − inf f , K , Q) + inf f

= lim
n→∞

1

nτ
log anτ ( f , K , Q).


�
The following result is given in [2, Corollary 15] for continuous-time systems. The

discrete-time case is proved analogously.

Proposition 27 Let K1, K2 be two compact sets with nonvoid interior contained in a control
set D ⊂ M and assume that every point in D is accessible. Then (K1, D) and (K2, D) are
admissible pairs and for all f ∈ C(U , R) we have

Pinv( f , K1, D) = Pinv( f , K2, D).
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6 Invariance Pressure for Linear Systems

The main result of this section presents a formula for the invariance pressure of the unique
control set with nonvoid interior for hyperbolic linear control systems of the form (9).

We start with a proposition providing an upper bound for the total invariance pressure
of the unique control set with nonvoid interior, cf. Theorems 18 and 19. The proof uses
arguments from [3] which in turn are based on a construction by Kawan [9, Theorem 4.3],
[10, Theorem 5.1] (for the discrete-time case cf. also [10, Remark 5.4] and Nair, Evans,
Mareels, Moran [12, Theorem 3]).

Let A+ be the restriction of A to the unstable subspace Eu . The unstable determinant of
A is

det A+ =
∏

λ∈σ(A)

λnλ and log
∣
∣det A+∣∣ =

∑

λ∈σ(A)

nλ max{0, log |λ|},

where nλ denotes the algebraic multiplicity of an eigenvalue λ of A.

Proposition 28 Consider a linear control system of the form (9) and assume that the pair
(A, B) is controllable with a hyperbolic matrix A. Let D be the unique control set with
nonvoid interior and let f ∈ C(D × U , R). Then there exists a compact set K ⊂ D with
nonvoid interior such that the total invariance pressure satisfies

Ptot ( f , K , D) ≤ log
∣
∣det A+∣∣ + inf

(τ,x,u)

1

τ

τ−1
∑

i=0

f (ϕ(i, x, u), ui ),

where the infimum is taken over all τ ∈ N with τ ≥ d and all τ -periodic controls u with a
τ -periodic trajectory ϕ(·, x, u) in intD such that ui ∈ intU for i ∈ {0, . . . , τ − 1}.
Proof Wewill construct a compact subset K ⊂ Dwith nonvoid interior such that the inequal-
ity above holds. Observe that then by Proposition 27 the pair (K , D) is admissible.

We may suppose that A has real Jordan form R = T−1AT . In fact, writing x = T x ′ one
obtains

x ′
k+1 = T−1AT x ′

k + T−1Buk = Rx ′
k + B ′uk (14)

with B ′ := T−1B. Then with f ′(x ′, u) = f (T x ′, u) =: f (x, u), K ′ := T−1K , and D′ :=
T−1D the total invariance pressure Ptoz( f , K , D) coincideswith the total invariance pressure
Ptot ( f ′, K ′, D′) of (14). Consider a τ 0-periodic control u0(·) with τ 0-periodic trajectory
ϕ(·, x0, u0) as in the statement of the theorem, hence

x0 = Rτ 0 x0 +
τ 0−1
∑

i=0

Rτ 0−i B ′ui . (15)

Step 1: Choose a basis B of R
d adapted to the real Jordan structure of R and let

L1(R), . . . , Lr (R) be the Lyapunov spaces of R, that is, the sums of the generalized
eigenspaces corresponding to eigenvalues λwith the absolute value |λ| = ρ j . This yields the
decomposition

R
d = L1(R) ⊕ · · · ⊕ Lr (R).

Let d j = dim L j (R) and denote the restriction of R to L j (R) by R j . Now take an inner
product on R

d such that the basis B is orthonormal with respect to this inner product and let
‖·‖ denote the induced norm.
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Step 2:We fix some constants: Let S0 be a real number which satisfies

S0 >

r
∑

j=1

max{1, d jρ j } = log
∣
∣det A+∣∣ ,

and choose ξ = ξ(S0) > 0 such that

0 < dξ < S0 −
r

∑

j=1

max{1, d jρ j }

and such that ρ j < 1 implies ρ j + ξ < 1 for all j . Let δ ∈ (0, ξ). It follows that there exists
a constant c = c(δ) ≥ 1 such that for all j and for all k ∈ N

∥
∥
∥Rk

j

∥
∥
∥ ≤ c(ρ j + δ)k .

For every m ∈ N we define positive integers by

Mj (m) :=
{⌊

(ρ j + ξ)m
⌋ + 1 if ρ j ≥ 1

1 if ρ j < 1

and a function β : N → (0,∞) by

β(m) := max
1≤ j≤r

{

(ρ j + δ)m

√

d j

M j (m)

}

, m ∈ N.

If ρ j < 1, then ρ j + δ < 1 and Mj (m) ≡ 1, and hence (ρ j + δ)m/Mj (m) converges to zero
for m → ∞. If ρ j ≥ 1, we have Mj (m) ≥ (ρ j + ξ)m and hence

(ρ j + δ)m

√

d j

M j (m)
≤ (ρ j + δ)m

√

d j

(ρ j + ξ)m
=

(
ρ j + δ

ρ j + ξ

)m
√

d j . (16)

Since δ ∈ (0, ξ), we have
ρ j+δ

ρ j+ξ
< 1 showing that also in this case β(m) → 0 for m → ∞.

Since we assume controllability of (A, B) and τ 0 ≥ d there exists C0 > 0 such that for
every x ∈ R

d there is a control u ∈ U with

ϕ(τ 0, x, u) = Rτ 0 x +
τ 0−1
∑

i=0

Rτ 0−i B ′ui = 0 and ‖u‖∞ ≤ C0 ‖x‖ . (17)

The inequality follows by the inverse mapping theorem. For the corresponding trajectory we
find a constant C1 > 0 such that for k ∈ {1, . . . , τ 0}

‖ϕ(k, x, u)‖ ≤ ‖R‖k ‖x‖ +
k−1
∑

i=0

‖R‖k−i
∥
∥B ′∥∥C0 ‖x‖ ≤ C1 ‖x‖ . (18)

For b0 > 0 let C be the d-dimensional compact cube C in R
d centered at the origin with sides

of length 2b0 parallel to the vectors of the basis B. Choose b0 small enough such that

K := x0 + C ⊂ D

and B(u0(k),Cb0) ⊂ U for all k ∈ {0, . . . , τ 0}. This is possible, since x0 ∈ intD and all
values u0(k) are in the interior of U .
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Step 3. Let ε > 0 and τ = mτ 0 with m ∈ N. By Theorem 19, the closure D is compact,
hence for the continuous function f on the compact set D ×U there is ε1 > 0 such that for
all (x, u), (x ′, u′) ∈ D ×U

max
{∥
∥x − x ′∥∥ ,

∥
∥u − u′∥∥} < ε1 implies

∣
∣ f (x, u) − f (x ′, u′)

∣
∣ < ε. (19)

We may take m ∈ N large enough such that

d

τ
log 2 = d

mτ 0
log 2 < ε. (20)

Furthermore, we may choose b0 small enough such that

C0b0 < ε1 and C1b0 < ε1. (21)

Partition C by dividing each coordinate axis corresponding to a component of the j th Lya-
punov space L j (R) into Mj (τ ) intervals of equal length. The total number of subcuboids in
this partition of C is

∏r
j=1 Mj (τ )d j . Next we will show that it suffices to take

∏r
j=1 Mj (τ )d j

control functions to steer the system from all states in x0 + C back to x0 + C in time τ such
that the controls are within distance ε1 to u0 and the corresponding trajectories remain within
distance ε1 from the trajectory ϕ(·, x0, u0). Let y be the center of a subcuboid. By (17) there
exists u = (u0, . . . , uτ 0−1) such that

ϕ(τ 0, y, u) = 0 and ‖u‖∞ ≤ C0 ‖y‖ ≤ C0b0 < ε1. (22)

For k ≥ t0 let uk = 0. Hence ϕ(τ, y, u) = 0 and u(t) ∈ U for all k ∈ {0, . . . , τ }. Using (15)
and linearity, we find that x0 + y is steered by u0 + u in time τ = mτ 0 to x0,

ϕ(τ, x0 + y, u0 + u) = ϕ(τ, x0, u0) + ϕ(τ, y, u) = x0. (23)

Now consider an arbitrary point x ∈ C. Then it lies in one of the subcuboids andwe denote the
corresponding center of this subcuboid by y with associated control u = u(y). We will show
in Step 4 that u0 + u also steers x0 + x back to x0 + C and in Step 5 that the corresponding
trajectory ϕ(k, x0 + x, u0 + u) remains within distance ε1 of ϕ(k, x0, u0), k ∈ {0, . . . , τ }.

Step 4. Observe that

‖x − y‖ ≤ b0
Mj (τ )

√

d j .

By (16) this implies that

∥
∥Rτ x − Rτ y

∥
∥ ≤

∥
∥
∥Rmτ 0

j

∥
∥
∥ ‖x − y‖ ≤ c(ρ j + δ)mτ 0 b0

Mj (mτ 0)

√

d j → 0 for m → ∞,

and hence for m large enough ‖Rτ x − Rτ y‖ ≤ b0. This implies that the solution ϕ(k, x0 +
x, u0 + u), k ∈ N, satisfies for m large enough by (23) and linearity,

∥
∥ϕ(τ, x0 + x, u0 + u) − x0

∥
∥

=
∥
∥
∥
∥
∥
Rτ (x0 + x) +

τ−1
∑

i=0

Rτ−i B ′(u0i + ui ) − x0
∥
∥
∥
∥
∥

≤ ∥
∥Rτ (x0 + x) − Rτ (x0 + y)

∥
∥ +

∥
∥
∥
∥
∥
Rτ (x0 + y) +

τ−1
∑

i=0

Rτ−i B ′(u0i + ui ) − x0
∥
∥
∥
∥
∥

≤ ∥
∥Rτ x − Rτ y

∥
∥ + ∥

∥ϕ(τ, x0 + y, u0 + u) − x0
∥
∥
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≤ b0 + 0.

This shows that ϕ(τ, x0+x, u0+u) ∈ x0+C and it also follows that ϕ(τ, x0+x, u0+u) ∈ D
for all k ∈ {0, 1, . . . , τ }.

Step5.By linearity and formulas (17), (18), and (21)wecan estimate for k ∈ {0, 1, . . . , τ 0}
∥
∥ϕ(k, x0 + x, u0 + u) − ϕ(k, x0, u0)

∥
∥

=
∥
∥
∥Rk(x0 + x) + ϕ(k, 0, u0 + u) − Rkx0 − ϕ(k, 0, u0)

∥
∥
∥

=
∥
∥
∥Rkx + ϕ(k, 0, u)

∥
∥
∥ = ‖ϕ(k, x, u)‖ ≤ C1 ‖x‖ ≤ C1b0 < ε1.

Together with (22) and (19) this shows that for k ∈ {0, 1, . . . , τ }
∣
∣ f

(

ϕ(k, x0 + x, u0 + u), u0k + uk) − f (ϕ(k, x0, u0), u0k)
)∣
∣ < ε. (24)

Step 6. We have constructed
∏r

j=1 Mj (τ )d j control functions that allow us to steer the

system from all states in K = x0 + C back to x0 + C in time τ and satisfy (24). By iterated
concatenation of these control functions we obtain a totally (nτ, K , D)-spanning set Stot for
each n ∈ N with cardinality

#Stot=
⎛

⎝

r
∏

j=1

Mj (τ )d j

⎞

⎠

n

=
⎛

⎝
∏

j :ρ j≥0

(⌊

(ρ j + ξ)τ
⌋ + 1

)d j

⎞

⎠

n

.

By (24) it follows that

log anτ ( f , K , D) ≤ log
(∑

(x,u)∈Stot
e(Snτ f )(x,u)

)

= log
(∑

(x,u)∈Stot
e(Snτ f )(x0,u0) · e(Snτ f )(x,u)−(Snτ f )(x0,u0)

)

≤ log
∑

(x,u)∈Stot
e(Snτ f )(x0,u0) + log e

∑nτ−1
i=0 ε

≤ log
(

#Stot ·e(Snτ f )(x0,u0)
)

+ nτε.

This implies, using also (20),

1

nτ
log anτ ( f , K , D) ≤ 1

τ

∑

j :ρ j≥0

d j log(
⌊

e(ρ j+ξ)τ
⌋

+ 1) + 1

nτ

nτ−1
∑

i=0

f (ϕ(i, x0, u0), u0i ) + ε

≤ 1

τ

∑

j :ρ j≥0

d j log(2e
(ρ j+ξ)τ ) + 1

τ 0

τ 0−1
∑

i=0

f (ϕ(i, x0, u0), u0i ) + ε

≤ d

τ
log 2 + 1

τ

∑

j :ρ j≥0

d j (ρ j + ξ)τ + 1

τ 0

τ 0−1
∑

i=0

f (ϕ(i, x0, u0), u0i ) + ε

≤ ε + dξ +
∑

j :ρ j≥0

d jρ j + 1

τ 0

τ 0−1
∑

i=0

f (ϕ(i, x0, u0), u0i ) + ε

< S0 + 1

τ 0

τ 0−1
∑

i=0

f (ϕ(i, x0, u0), u0i ) + 2ε.
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Since ε can be chosen arbitrarily small and S0 arbitrarily close to log
∣
∣det A+∣∣, the assertion

of the proposition follows. 
�
For the invariance pressure, we obtain the following consequence.

Corollary 29 Consider a linear control system of the form (9) and assume that the pair
(A, B) is controllable with a hyperbolic matrix A. Let D be the unique control set with
nonvoid interior and let f ∈ C(U , R). Then for every compact set K ⊂ D with nonvoid
interior the invariance pressure satisfies

Pinv( f , K , D) ≤ log
∣
∣det A+∣∣ + inf

(τ,x,u)

1

τ

τ−1
∑

i=0

f (ui ),

where the infimum is taken over all τ ∈ N with τ ≥ d and all τ -periodic controls u with a
τ -periodic trajectory ϕ(·, x, u) in intD such that ui ∈ intU for i ∈ {0, . . . , τ − 1}.
Proof The assertion follows from Proposition 28, since every compact subset of D is con-
tained in a compact subset K of D with nonvoid interior and the invariance pressure is
independent of the choice of such a set K by Proposition 27. 
�
Remark 30 Kawan [10, Theorem3.1] derives for the outer invariance entropy hinv,out (K , Q),
which is a lower bound for the invariance entropy, the formula

hinv,out (K , Q) = log
∣
∣det A+∣∣ .

Here (K , Q) is an admissible pair, K has positive Lebesgue measure, and Q is compact. For
the potential f = 0, Corollary 29 shows that the invariance entropy satisfies

hinv(K , Q) ≤ log
∣
∣det A+∣∣ = hinv,out (K , Q) ≤ hinv(K , Q)

implying that

hinv(K , Q) = log
∣
∣det A+∣∣ . (25)

We proceed to prove a lower bound for the invariance pressure. Recall that with respect to
A the state spaceR

d can be decomposed into the direct sum of the center-stable subspace Esc

and the unstable subspace Eu which are the direct sums of all generalized real eigenspaces
for the eigenvalues λ with |λ| ≤ 1 and |λ| > 1, resp. Let π : R

d → Eu be the projection
along Esc.

Proposition 31 Let K ⊂ D be compact and assume that both K and D have positive and
finite Lebesgue measure. Then for every f ∈ C(U , R)

Pinv( f , K , D) ≥ log
∣
∣det A+∣∣ + inf

(τ,x,u)

1

τ

τ−1
∑

i=0

f (ui ),

where the infimum is taken over all (τ, x, u) ∈ N×D×U with τ ≥ d and πϕ(i, x, u) ∈ πD
for i ∈ {0, 1, . . . , τ − 1}.
Proof Every (τ, K , Q)-spanning set S satisfies

log
∑

u∈S
e(Sτ f )(u) ≥ log inf

u∈S e(Sτ f )(u) + log #S. (26)
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First suppose that the unstable subspace of A is trivial, Eu = 0. Formula (25) implies that

lim
τ→∞

1

τ
inf {log #S |S (τ, K , Q)-spanning } = hinv(K , D) = log

∣
∣det A+∣∣ = 0.

Now (12) and (26) implies

Pinv( f , K , Q) = lim
τ→∞

1

τ
inf

{

log
∑

u∈S
e(Sτ f )(u) |S (τ, K , Q)-spanning

}

≥ lim
τ→∞

1

τ
inf

{

log inf
u∈S e(Sτ f )(u) + log #S |S (τ, K , Q)-spanning

}

≥ lim
τ→∞

1

τ
inf

{

inf
u∈S

τ−1
∑

i=0

f (ui ) |S (τ, K , Q)-spanning

}

+ 0

≥ lim
τ→∞ inf

u∈S
1

τ

τ−1
∑

i=0

f (ui ) ≥ inf
u∈S

1

τ

τ−1
∑

i=0

f (ui ).

Since for u ∈ S there is x ∈ K with πϕ(i, x, u) = 0 ∈ πD for i ∈ {0, 1, . . . , τ − 1}, the
assertion for trivial unstable subspace E− follows.

Now suppose that Eu is nontrivial. We may assume that Pinv( f , K , Q) < ∞ and hence
and all considered spanning sets are countable. Note that by invariance of Esc and Eu the
induced system on Eu is well defined with trajectories πϕ(k, x, u), k ∈ N. For each u in a
(τ, K , D)-spanning set S define

πKu := πK ∩
τ−1
⋂

t=0

(

πϕt,u
)−1

(D).

Thus πK = ⋃

u∈SπKu . Since D is measurable, each set πKu is measurable as the countable
intersection ofmeasurable sets.We denote the Lebesguemeasure inR

d byμd and the induced
measure on Eu by μ. The linear part of the affine-linear map πϕτ,u(x) is given by (A+)τ ,
hence it follows that

μ(πD) ≥ μ(πϕτ,u(πKu)) =
∫

πϕτ,u(πKu)

dμ =
∫

πKu

∣
∣det(A+)τ

∣
∣ dμ = μ(πKu)

∣
∣det A+∣∣τ .

Abbreviate β(τ) = inf(x,u)(Sτ f )(u), where the infimum is taken over all (πx, u) ∈ πK ×U
with πϕ(i, x, u) ∈ πD for i = 0, . . . , τ − 1. Then we find

eβ(τ)μ(πK ) ≤
∑

u∈S
e(Sτ f )(u)μ(πKu) ≤ sup

u∈S
μ(πKu)

∑

u∈S
e(Sτ f )(u)

≤ μ(πD)
∣
∣det A+∣∣τ

∑

u∈S
e(Sτ f )(u).

Since this holds for every (τ, K , D)-spanning set S and μd(D) > 0 implies μ(πD) > 0,
we find

aτ ( f , K , D) = inf{
∑

u∈S
e(Sτ f )(u) |S (τ, K , D)-spanning } ≥ μ(πK )

μ(πD)
eβ(τ)

∣
∣det A+∣∣τ ,
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implying

Pinv( f , K , D) = lim
τ→∞

1

τ
log aτ ( f , K , D) ≥ inf

τ

1

τ
β(τ) + log

∣
∣det A+∣∣

= inf
(τ,x,u)

1

τ
(Sτ f )(u) + log

∣
∣det A+∣∣ ,

where the infimum is taken over all (τ, x, u) ∈ N × πK × U with πϕ(i, x, u) ∈ πD for
i = 0, . . . , τ − 1. 
�

The next theorem is the main result of this paper. For linear discrete-time control systems
it provides a formula for the invariance pressure of control sets.

Theorem 32 Consider a linear control system of the form (9) and assume that the system
without control restriction is controllable in R

d , the matrix A is hyperbolic, and the control
rangeU is a compact convex neighborhood of the origin with U = intU. Let D be the unique
control set with nonvoid interior. Then D is bounded and for every compact set K ⊂ D with
nonvoid interior and every potential f ∈ C(U , R), the invariance pressure is given by

Pinv( f , K , D) = log
∣
∣det A+∣∣ + min

u∈U f (u) = hinv(K , D) + min
u∈U f (u).

Proof Theorems 18 and 19 imply existence, uniqueness, and boundedness of the control set
D. Formula (25) implies that hinv(K , D) = log det A+ showing the second equality above.
Proposition 31 and Corollary 29 yield the bounds,

inf
(τ ′,x ′,u′)

1

τ ′
τ ′−1
∑

i=0

f (u′
i ) ≤ Pinv( f , K , Q) − log

∣
∣det A+∣∣ ≤ inf

(τ,x,u)

1

τ

τ−1
∑

i=0

f (ui ), (27)

where the first infimum is taken over all (τ ′, x ′, u′) ∈ N × D × U with τ ′ ≥ d and
πϕ(i, x ′, u′) ∈ πD for i ∈ {0, . . . , τ ′ − 1} and the second infimum is taken over all τ ∈ N

with τ ≥ d and all τ -periodic controls u with a τ -periodic trajectory ϕ(·, x, u) in intD such
that ui ∈ intU for i ∈ {0, . . . , τ − 1}.

Note that there is a control value u0 ∈ U with f (u0) = minu∈U f (u). Consider

f (u0) = 1

d

d−1
∑

i=0

f (u0) ≤ inf
(τ ′,x ′,u′)

1

τ ′
τ ′−1
∑

i=0

f (u′
i ), (28)

where the infimum is taken over all triples (τ ′, x ′, u′) ∈ N × K × U with τ ′ ≥ d and
πϕ(i, x ′, u′) ∈ πD for i ∈ {0, . . . , τ ′ − 1}. Let ε > 0. Then there is a control function u1

with values in a compact subset of intU such that

1

d

d−1
∑

i=0

f (u1i ) ≤ 1

d

d−1
∑

i=0

f (u0) + ε. (29)

By hyperbolicity of A the matrix I − Ad is invertible, and hence there exists a unique solution
x1 of

(

I − Ad
)

x1 = ϕ(d, 0, u1).

Now by linearity

x1 = Adx1 + ϕ(d, 0, u1) = ϕ(d, x1, u1).
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Since the values of u1 are in intU and (A, B) is controllable, it follows that a neighborhood
of x1 can be reached in time d from x1. Analogously, x1 can be reached from every point in
a neighborhood of x1 in time d . Hence in the intersection of these two neighborhoods every
point can be steered in time 2d into every other point. This shows that x1 is in the interior of
the control set D, and the corresponding trajectory ϕ(i, x1, u1), i ∈ {0, . . . , d − 1}, remains
by Proposition 7 in the interior of D. Extending u1 to a d-periodic control again denoted by
u1 we find that the control-trajectory pair (u1(·), ϕ(·, x1, u1)) is d-periodic, the trajectory is
contained in intD and all values u1i are in a compact subset of intU . It follows that

inf
(τ ′,x ′,u′)

1

τ ′
τ ′−1
∑

i=0

f (u′
i )

(28)≥ f (u0) = 1

d

d−1
∑

i=0

f (u0)
(29)≥ 1

d

d−1
∑

i=0

f (u1i ) − ε

≥ inf
(τ,x,u)

1

τ

τ−1
∑

i=0

f (ui ) − ε,

where the first infimum is taken over all triples (τ ′, x ′, u′) ∈ N × K × U with τ ′ ≥ d
and πϕ(i, x ′, u′) ∈ πD for i ∈ {0, . . . , τ ′ − 1} and the second infimum is taken over all
(τ, x, u) ∈ N × D × U such that the control-trajectory pair (u, ϕ(·, x, u)) is τ -periodic with
τ ≥ d , the trajectory is contained in intD, and the control values ui are in a compact subset
of intU .

Using this in (27) we get

inf
(τ ′,x ′,u′)

1

τ ′
τ ′−1
∑

i=0

f (u′
i ) ≤ Pinv( f , K , Q) − log

∣
∣det A+∣∣ ≤ inf

(τ ′,x ′,u′)

1

τ ′
τ ′−1
∑

i=0

f (u′
i ) + ε.

Since ε > 0 is arbitrary, the assertion of the theorem follows. 
�
Remark 33 For partially hyperbolic control systems, Da Silva and Kawan prove in [11]
relations between invariance entropy and topological pressure for the unstable determinant.
In contrast to our framework, they consider the topological pressure (with respect to the
fibers) of associated random dynamical systems obtained by endowing the space of controls
with shift invariant probability measures.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Colonius, F., Cossich, J.A.N., Santana, A.: Invariance pressure for control systems. J. Dyn. Differ. Equ.
31(1), 1–23 (2019)

2. Colonius, F., Santana, A., Cossich, J.A.N.: Invariance pressure of control sets. SIAM J. Control Optim.
56(6), 4130–4147 (2018)

123

http://creativecommons.org/licenses/by/4.0/


Journal of Dynamics and Differential Equations

3. Colonius, F., Cossich, J.A.N., Santana, A.: Bounds for invariance pressure. J. Differ. Equ. 268, 7877–7896
(2020)

4. Colonius, F.: Invariance entropy, quasi-stationary measures and control sets. Discrete Contin. Dyn. Syst.:
DCDS-A 38(4), 2093–2123 (2018)

5. Da Silva, A., Kawan, C.: Invariance entropy of hyperbolic control sets. Discrete Contin. Dyn. Syst.:
DCDS-A 36(1), 97–136 (2016)

6. Da Silva, A., Kawan, C.: Lyapunov exponents and partial hyperbolicity of chain control sets on flag
manifolds. Isr. J. Math. 232, 947–1000 (2019)

7. Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory, vol. 2. Springer, Berlin (2021). (in prepa-
ration)

8. Huang, Y., Zhong, X.: Carathéodory–Pesin structures associated with control systems. Syst. Control Lett.
112, 36–41 (2018)

9. Kawan, C.: Invariance entropy of control sets. SIAM J. Control Optim. 49, 732–751 (2011)
10. Kawan, C.: Invariance Entropy for Deterministic Control Systems. An Introduction. LNM, vol. 2089.

Springer, Berlin (2013)
11. Kawan, C., Da Silva, A.: Invariance entropy for a class of partially hyperbolic sets. Math. Control Signals

Syst. (2018). https://doi.org/10.1007/s00498-018-0224-2
12. Nair, G., Evans, R.J., Mareels, I., Moran, W.: Topological feedback entropy and nonlinear stabilization.

IEEE Trans. Autom. Control 49, 1585–1597 (2004)
13. Patrão, M., San-Martin, L.: Semiflows on topological spaces: chain transitivity and semigroups. J. Dyn.

Differ. Equ. 19, 155–180 (2007)
14. Sontag, E.: Mathematical Control Theory. Deterministic Finite Dimensional Systems, 2nd edn. Springer,

New York (1998)
15. Wang, T., Huang, Y., Sun, H.-W.: Measure-theoretic invariance entropy for control systems. SIAM J.

Control Optim. 57(1), 310–333 (2019)
16. Wing, J., Desoer, C.A.: The multiple-input minimal-time regulator problem (general theory). IEEE Trans.

Autom. Control: AC 8(2), 125–136 (1963)
17. Wirth, F.: Dynamics and controllability of nonlinear discrete-time control systems. IFAC Proc. Vol. 31,

267–272 (1998)
18. Zhong, X., Huang, Y.: Invariance pressure dimensions for control systems. J. Dyn. Differ. Equ. 31, 2205–

2222 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/s00498-018-0224-2

	Controllability Properties and Invariance Pressure for Linear Discrete-Time Systems
	Abstract
	1 Introduction
	2 Control Sets for Nonlinear Systems
	3 Controllability Properties of Linear Systems
	4 Control Sets for Linear Systems
	5 Invariance Pressure
	6 Invariance Pressure for Linear Systems
	References




