Dietary intakes of retinol, β -carotene, vitamin D and vitamin E in the European Prospective Investigation into Cancer and Nutrition cohort M Jenab¹, S Salvini², CH van Gils³, M Brustad⁴, S Shakya-Shrestha⁵, B Buijsse⁶, H Verhagen⁷, M Touvier^{8,9}, C Biessy¹⁰, P Wallström¹¹, K Bouckaert¹⁰, E Lund⁴, M Waaseth⁴, N Roswall¹², AM Joensen¹³, J Linseisen^{14,26}, H Boeing⁶, E Vasilopoulou¹⁵, V Dilis¹⁵, S Sieri¹⁶, C Sacerdote¹⁷, P Ferrari^{1,27}, J Manjer¹⁸, S Nilsson¹⁹, AA Welch^{20,28}, R Travis²¹, MC Boutron-Ruault⁸, M Niravong⁸, HB Bueno-de-Mesquita⁷, YT van der Schouw³, MJ Tormo²², A Barricarte²³, E Riboli²⁴, S Bingham^{20,25,*} and N Slimani¹⁰ 1 Lifestyle and Cancer Group, International Agency for Research on Cancer, Lyon, France; 2 Molecular and Nutritional Epidemiology Unit, ISPO, Florence, Italy; ³Julius Center for Health Sciences and Primary Care, University Medical Center, Utrecht, The Netherlands; ⁴Institute of Community Medicine, University of Tromsø, Tromsø, Norway; ⁵Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; ⁶Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany; 7 National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands; 8 Inserm, ERI 20, Institut Gustave Roussy, Villejuif, France; ⁹AFSSA (French Food Safety Agency), DERNS/PASER, Maisons-Alfort, France; ¹⁰Dietary Exposure Assessment Group, International Agency for Research on Cancer, Lyon, France; ¹¹Department of Clinical Sciences, Lund University, Malmö, Sweden; ¹²Institute of Cancer Epidemiology, Danish Cancer Society, Copenhagen, Denmark; ¹³Department of Cardiology, Center for Cardiovascular Research, Aalborg Hospital, Aarhus University Hospital, Aalborg, Denmark; ¹⁴Division of Clinical Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; ¹⁵Department of Hygiene and Epidemiology, University of Athens Medical School, Athens, Greece; ¹⁶Nutritional Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; ¹⁷Institute for Scientific Interchange Foundation, Turin, Italy; ¹⁸Department of Surgery, Malmö University Hospital, Malmö, Sweden; ¹⁹Department of Nutritional Research, University of Umeå, Umeå, Sweden; ²⁰Department of Public Health and Primary Care, MRC Centre for Nutritional Epidemiology in Cancer Prevention and Survival (CNC), Cambridge, UK; 21 Cancer Research UK Epidemiology Unit, University of Oxford, Oxford, UK; ²²Epidemiology Department, Murcia Health Council, Murcia and CIBER Epidemiología y Salud Pública (CIBERESP), Spain; ²³Institute of Public Health of Navarra, Pamplona, Spain; ²⁴Department of Epidemiology, Public Health and Primary Care, Imperial College, London, UK and ²⁵Diet and Cancer Group, MRC Dunn Mitochondrial Biology Unit, Cambridge, UK **Objectives:** To describe the intake of the fat-soluble nutrients retinol, β -carotene, vitamin E and vitamin D and their food sources among 27 redefined centres in 10 countries participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Correspondence: Dr M Jenab, Lifestyle and Cancer Group, International Agency for Research on Cancer (IARC), (IARC, WHO), 150, cours Albert-Thomas, 69372 Lyon cedex 08, France. E-mail: Jenab@iarc.fr Contributors: MJ carried out the statistical analysis, preparation of tables and figures, and wrote the paper, taking into account the comments from all co-authors. NS was the overall coordinator of this project and the EPIC Nutrient Database project. CB assisted in the statistical analysis and preparation of the tables and figures. SS, CHvG, MB, SS-S, BB, HV, MT, CB and PW were members of the writing group and gave inputs on the statistical analysis, drafting of the manuscript and interpretation of the results. EL, MW, NR, AMJ, JL, HB, EV, VD, SS, CS, PF, JM, SN, AAW, RT, MCB-R, MN, HBB-de-M, YTvdS, MJT, AB, ER and SB were local EPIC collaborators involved in the collection of dietary and other data, and contributed to the ENDB project. ER is the overall coordinator of the EPIC study. ^{*}The author is deceased. ²⁶Current address: Institute of Epidemiology, Helmholtz Centre Munich, Neuherberg, Germany. ²⁷Current address: Data Collection and Exposure Unit (DATEX), European Food Safety Authority, Parma, Italy. ²⁸Current address: School of Medicine, Health Policy and Practice, University of East Anglia, Norwich, UK. *Guarantors*: M Jenab. Methods: Between 1995 and 2000, 36034 subjects (age range: 35–74 years) completed a single standardized 24-h dietary recall using a computerized interview software program (EPIC-SOFT). Intakes of the fat-soluble nutrients were estimated using the standardized EPIC Nutrient Database. Results: For all the nutrients, in most centres, men had a higher level of intake than did women, even after adjustments for total energy intake and anthropometric confounders. Distinct regional gradients from northern to southern European countries were observed for all nutrients. The level intake of β -carotene and vitamin E also showed some differences by level of education, smoking status and physical activity. No meaningful differences in the nutrient intake were observed by age range. Conclusions: These results show differences by study centre, gender, age and various lifestyle variables in the intake of retinol, β -carotene, vitamin E and vitamin D between 10 European countries. #### Introduction Vitamins A, D and E belong to the family of fat-soluble vitamins. Similar to their water-soluble counterparts, these fat-soluble vitamins have important metabolic and physiological roles (Debier and Larondelle, 2005; Holick, 2005). In addition, their intake may also be associated with reduced risk of several chronic diseases, particularly some cancers (Giovannucci, 2007, 2008; Constantinou et al., 2008) and heart disease (Fairfield and Fletcher, 2002; Singh et al., 2005; Voutilainen et al., 2006; Wallis et al., 2008). In contrast to water-soluble vitamins, fat-soluble vitamins are stored in the liver and fatty tissues and are only slowly excreted from the body. Thus, they may have deleterious or toxic consequences if consumed at very high levels. Although in well-fed populations serious deficiencies of these vitamins are rare, mild intake insufficiencies may be present, particularly in certain sub-populations, such as vegetarians, individuals consuming low-fat diets or those with fat absorption problems (Fairfield and Fletcher, 2002). These factors make the comparative assessment of the dietary intake levels of these nutrients in different European countries an important issue. Vitamin A, also known as retinol, has essential roles in night vision and cell differentiation, particularly during embryological development, as well as in carcinogenesis, glycoprotein synthesis, epithelial cell integrity, immune cell maintenance and human growth hormone production (Love and Gudas, 1994; McCullough et al., 1999; Marceau et al., 2007; Sommer, 2008). In addition, some data suggest that, similar to vitamin E, vitamin A may also have an antioxidative function, but this remains to be better clarified (Palace et al., 1999). For the most part, dietary sources of vitamin A are of animal origin (e.g., dairy products, fatty fish, liver, eggs, etc.), and populations that do not consume many of these animal products may be at risk of insufficiency of these nutrients. Vitamin A may also be produced endogenously from dietary precursor pro-vitamin A carotenoids (α -carotene, β -carotene and β -cryptoxanthin; from plant origin). However, the efficiency of this conversion is rather low and these carotenoids have a lower bioavailability or efficiency of intestinal uptake than retinol itself. Vitamin A from animal products is mostly consumed as retinyl esters, which are easily hydrolysed endogenously to form retinol (Debier and Larondelle, 2005). There is strong interest in the disease-protective role of retinol (Goodman *et al.*, 2008), and data obtained from the European Prospective Investigation into Cancer and Nutrition (EPIC) suggest that higher blood concentrations are associated with a reduced risk of gastric cancer (Jenab *et al.*, 2006). Vitamin E is a general term describing the α -, β -, δ - and γ -forms of the tocopherol and tocotrienol chemical classes, although the inclusion of various other isomers of tocopherols and tocotrienols into the definition of vitamin E is currently under debate. The main role of vitamin E in the body is as an anti-oxidant, and it is this role that has sparked interest in the potential of vitamin E in chronic disease prevention (Singh *et al.*, 2005; Traber and Atkinson, 2007; Constantinou *et al.*, 2008). Vitamin D can be diet-derived or produced endogenously from sun exposure (Holick, 2007). The degree of endogenous production depends on several variables such as genetics, degree of sun exposure, geographical location, ethnicity, etc (Nesby-O'Dell *et al.*, 2002; Kimlin, 2008). The dietary sources of vitamin D are limited, being found primarily in fatty fish (including cod liver oil), egg yolk and fortified dairy products. Vitamin D is essential for calcium/phosphorus metabolism and bone health (Holick, 2007), but more recent data suggest that it may also have a chronic disease-protective role (Zittermann *et al.*, 2005; Ali and Vaidya, 2007; Wallis *et al.*, 2008). Very high levels of these nutrients, whether from dietary sources or by way of supplementation, may have a negative impact. For example, in a comprehensive review of randomized clinical trials, supplementation of β -carotene, vitamin A and vitamin E was associated with an increased risk of mortality (Miller III *et al.*, 2005; Bjelakovic *et al.*, 2008). In addition, very high daily supplementation of vitamin D can also lead to severe toxicity (Heaney, 2008). Indeed, safe tolerable upper intake limits have been established
for many of these nutrients. The objective of this study was to conduct a comparative analysis of the dietary intake levels of these nutrients with consideration of food sources, lifestyle confounders and seasonal variations, using data obtained from EPIC, a cohort of 10 European countries (Riboli and Kaaks, 1997; Bingham and Riboli, 2004). Consumption of these nutrients as food supplements is described elsewhere in this special issue (Skeie *et al.*, in this supplement). The data to be presented in this study use the newly developed standardized EPIC Nutrient Database (ENDB) (Slimani *et al.*, 2007) and are based on the EPIC calibration study subcohort (Slimani *et al.*, 2002a). A better understanding of dietary exposures of these nutrients in various countries can provide further insight into potential aetiological links with chronic disease risk. #### Materials and methods Study population, design and dietary assessment The rationale and methods of the EPIC study have been previously described in detail (Riboli and Kaaks, 1997; Riboli et al., 2002; Bingham and Riboli, 2004). The EPIC cohort consists of 23 subcohorts in 10 European countries (Denmark, France, Greece, Germany, Italy, the Netherlands, Norway, Spain, Sweden and the United Kingdom), providing a wide range of cancer occurrence rates, lifestyle and dietary habits. The EPIC subcohorts represent heterogeneous groups that were population based (Bilthoven centre of the Netherlands, Greece, Germany, Sweden, Denmark, Norway, Spain, Italy, Cambridge centre of the United Kingdom and part of the Oxford centre of the United Kingdom), health-conscious individuals (a majority of the Oxford centre of the United Kingdom), participants in breast-screening groups (Utrecht centre of the Netherlands) or teachers and school workers (France). In France, Norway, the Utrecht centre of the Netherlands and the Naples centre of Italy, all subjects were women. For this study, the initial 23 EPIC administrative centres have been redefined into 27 geographical regions relevant to the analysis of dietary consumption patterns (Slimani et al., 2002a). The EPIC study was approved by the ethics review boards of the IARC (International Agency for Research on Cancer) and all local EPIC centres. All EPIC participants provided informed consent. Within the design of the EPIC study, a subsample of each study centre was randomly (age, sex stratified) chosen for the application of a standardized 24-h dietary recall (24-HDR) assessment gathered using computerized software (EPIC-SOFT) (Slimani *et al.*, 1999, 2000). This subcohort is referred to as the EPIC Calibration Substudy and was undertaken between 1995 and 2000. Each participant provided a single 24-HDR in a face-to-face interview (Slimani *et al.*, 1999), except in Norway where it was obtained by telephonic interview (Brustad *et al.*, 2003). By design, the sampling procedures of the EPIC Calibration Substudy were defined to control for seasonal and day-of-the-week variations in dietary intake (Slimani *et al.*, 2002a). In total, complete 24-HDR information exists on 36 994 subjects (13 486 men and $23\,508$ women), representing $\sim\!8\%$ of the entire EPIC cohort. A total of $36\,034$ subjects with 24-HDR data were included in this analysis, after exclusion of 960 subjects aged under 35 or over 74 years, because of low participation in these age categories. Using EPIC-SOFT, information on the intake of all foods and beverages was collected, described, quantified, entered and coded according to common rules. The classification of the EPIC-SOFT food groups and food subgroups used in the calibration study is derived from a system described in detail elsewhere (Slimani *et al.*, 2002a). Intakes of retinol, β -carotene, vitamin D and vitamin E were estimated using the ENDB project (Slimani *et al.*, 2007). Although the ENDB values are obtained from country-specific food composition tables, they are standardized as much as possible across the EPIC countries by matching EPIC foods to the national databases, deriving the nutrient values of unavailable foods, and imputation of missing values using common procedures and algorithms (Slimani *et al.*, 2007). Data on other lifestyle factors, including education level, total physical activity and smoking history considered in this analysis, were collected at baseline through standardized questionnaires and clinical examinations, and have been described elsewhere (Riboli *et al.*, 2002, Slimani *et al.*, 2002a). Data on age as well as body weight and height were self-reported by the participants during the 24-HDR interview. The mean time interval between these baseline questionnaire measures and the 24-HDR interview varied by country, from 1 day to 3 years later (Slimani *et al.*, 2002a). #### Statistical methods Intakes of retinol, β -carotene, vitamin D and vitamin E were calculated as least square means and standard error (s.e.) by EPIC centre (ordered from southern to northern European centres), by age (10 year categories from 35 to 74), by gender, as well as by combined values for all centres and for men and women. The main food groups contributing to the intake levels of each of the above-mentioned nutrients were also determined. The statistical models were adjusted for age as well as a set of weights to control for the day of the week (Monday–Thursday; Friday–Sunday) and season (Spring, Summer, Autumn, Winter) of the 24-HDR collection (referred to as 'minimally-adjusted model'). Models with further adjustments for height, weight and total energy intake were also run and are referred to as fully adjusted models in this text. Differences in intake levels were compared according to categories of education level (none/primary, technical/secondary, university or higher), smoking status (smoker, former smoker, never smoker), level of physical activity (active, moderately active, moderately inactive, inactive), body mass index (BMI; <25, 25 to <30, \geqslant 30 kg/m²) and European region (South: all centres in Greece, Spain, Italy and the south of France; Central: all centres in the north-east and north-west of France, Germany, the Netherlands and the United Kingdom; North: all centres in Denmark, Sweden and Norway). *P*-values for trend across age categories were computed. Statistical significance of differences in intake levels by each of these stratifications was assessed and *P*-values < 0.05 were considered as statistically significant. Statistical significance for differences by gender was also assessed. Analyses were also carried out to determine the main food source of each of the four nutrients of interest, by study centre and gender. All analyses were conducted using the SAS statistical software (version 9.1, SAS Institute, Cary, NC, USA). #### Results Table 1 shows the mean intakes and s.e.m. for retinol, β-carotene, vitamin D and vitamin E, presented for each centre by gender and also by age range at recruitment. These data are shown with further adjustments for height, weight and total energy intake (so-called 'fully adjusted model') in Table A1 in the Appendix. Table 2 shows the overall intake of each nutrient (for all centres combined) stratified by European region, as well as a number of important lifestyle variables that may potentially affect nutrient intake levels. Tables 3 and 4 show the percentage contribution of the main food groups to the intake of each nutrient in men and women, respectively. Table 5 shows the country-specific mean intakes of the nutrients by the season in which the 24-HDR was administered, stratified by gender. For all four nutrients, intakes by the day of the week in which the 24-HDR was administered were sporadic and no remarkable variation was observed (data not shown). In tables presenting information by EPIC centre, the data are arranged geographically from south to north. # Mean intakes of retinol For men, the mean intake of retinol ranged from 422 (Granada, Spain) to 1715 μ g/day (Malmö, Sweden), whereas for women the range was 241 (Ragusa, Italy) to 1219 μ g/day (Umeå, Sweden) (Table 1 and Figures 1a and b). In all centres, except in the Florence centre of Italy, men had a higher mean intake than did women. The intakes for women ranged from 13.7 (Navarra, Spain) to 66.5% (Ragusa, Italy) and were lower than those for men. Overall, for all centres combined, men had a significantly higher consumption of retinol than did women (848 versus 600 μ g/day, *P* difference by gender < 0.01) (Table 1). Considering centre-specific data, no trends in retinol intake are apparent by age range for either men or women (Table 1). Further adjustments for age, height, weight and total energy intake did not meaningfully alter the observed intake values or patterns (Table A1 in the Appendix). A clear and statistically significant regional gradient of increasing retinol intakes is apparent from Southern to Northern Europe in both men and women (Table 2). In men, but not in women, a statistically significant difference in intake was also observed by the level of physical activity, with active individuals consuming significantly more retinol than inactive subjects. In both men and women, former smokers had lower retinol intakes than did either never smokers or smokers (Table 2). Overall, for men, it is clear that the major contributing food sources of retinol are meats/meat products (51.7%), added fats (18.5%) and dairy products (15.6%) with considerable variability between centres (Table 3). Compared with men, women appear to consume slightly less retinol from meats/meat products (44.9%), more from dairy products (20.9%) and a roughly similar amount from added fats (15.8%) (Table 4). For both genders, vegetables and fruits provide no retinol, whereas the other food groups appear to be very small yet consistent sources of this nutrient (Tables 3 and 4). Mean intakes of retinol show little variation by season (Table 5). # Mean intakes of
β-carotene The intake of β-carotene ranged from 1901 (Umeå, Sweden) to 3907 µg/day (Health Conscious, UK) in men and from 1520 (Asturias, Spain) to 4590 μg/day (North-West, France) in women (Table 1 and Figures 1a and b). In most centres, men tended to have a higher intake of β-carotene than did women (range from 1.5% in Turin, Italy to 24.2% in Asturias, Spain), with the exception of centres in Germany, Denmark and Sweden where the intakes of β-carotene by women were higher (range from 7.0% in Malmo, Sweden to 29.4% in Aarhus, Denmark). However, for all centres combined, the intakes of β-carotene were relatively similar between men and women (2760 versus 2887 µg/day, P difference by gender = 0.10; Table 1). No remarkable trends in β -carotene intake are apparent by age range (Table 1). Further adjustments for age, height, weight and total energy intake did not meaningfully alter the observed intake values or patterns (Table A1 in the Appendix). Differences in the levels of β -carotene intake were apparent by European region in both men and women (Table 2). Men and women from Central European countries consumed a statistically significantly higher level of β -carotene than did those from Northern countries, whereas those from Southern countries had an intermediate intake level (Table 2). Subjects in the lowest category of schooling consumed significantly less β -carotene than did those with higher levels of education. This difference was particularly evident in women. Smokers showed a significantly lower intake of β -carotene than did either former smokers or never smokers. In terms of level of physical activity, active men showed a statistically higher level of β -carotene intake than did inactive men, whereas no differences of intake were apparent for women (Table 2). In complete contrast to retinol, the major contributing food sources of β -carotene in both genders appear to be vegetables (men: 67.8%, women: 70.7%), fruits (men: 7.8%, Table 1 Minimally adjusted^a mean daily intakes of retinol, β-carotene, vitamin D and vitamin E, by centre ordered from south to north, gender and age group | Country and centre | | | | | | Men | | | | | | | | | | | Women | | | | | | Меп апс | Men and women | |--|---------------------------------|---------------------------------|--------------------------|--------------------------|------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|----------------------------------|---------------------------------|--------------------------------------|-----------------------------------|-----------------------------------|---------------------------------|---------------------------------|---------------------------------|-------------------------------|---------------------------------|-------------------------------|--------------------------|---|---------------------------------|-----------------------------| | | z | All | | 35-44 year | t years | 45-54 | 45-54 years | | 55-64 years | 65-74 | 65-74 years | z | All | | 35-44 years | years | 45-54 years | years | 55-64 years | years | 65-74 | 65-74 years | S | s.e. | | | , | Z | s.e. | Z | s.e. | Z | s.e. | Z | s.e. | Z | 5.6. | | Z | s.e. | Z | s.e. | Z | s.e. | Z | 5.6. | Z | s.e. | | | | Greece | 1311 | 594 | 61 | 528 | 185 | 705 | 126 | 471 | 114 | 619 | 6 | Retinol (µ | (μg/day)
441 | 42 | 586 | 113 | 318 | 73 | 514 | 75 | 427 | 85 | 511 | 35 | | Spain
Granada
Murcia
Navarra
San Sebastian
Asturias | 214
243
444
490
386 | 422
514
438
715
569 | 149
140
104
111 | 323
823
411
535 |
438
454
236
421 | 389
552
474
802
553 | 315
253
174
138
187 | 424
457
422
852
600 | 203
196
148
189 | 440
1003
210
334
540 | 339
489
319
500
303 | 300
304
271
244
324 | 360
431
378
349
439 | 88
88
96
86 | 364
452
440
369
579 | 230
178
246
211
208 | 458
359
436
387 | 150
149
154
160 | 280
283
325
314
510 | 139
147
143
167 | 342 | 287 — — — — — — — — — — — — — — — — — — — | 385
473
417
607
512 | 80
77
68
67
68 | | Italy
Ragusa
Naples
Horence
Turin
Varese | 168
271
676
327 | 720
467
489
520 | 169
133
84
121 | 616 517 |
420
274
 | 957
529
604
567 | 252
228
141
270 | 619
432
449
510 | 264
189
121
146 | | 323 | 138
403
784
392
794 | 241 1
262
606
401
311 | 131
77
55
78
78
55 | 170
257
575
250
218 | 218
250
185
247
176 | 172
269
604
709
258 | 245
122
96
130
91 | 152
243
658
227
389 | 234
118
76
109
82 | 333
242
—
250 | 249
216
— | 514
264
572
461
371 | 103
91
56
55
54 | | France
South coast
South
North-East
North-West | | | | | | | | | | | | 620
1425
2059
631 | 731
580
659
708 | 62
41
34
61 | | | 789
630
629
856 | 102
64
53
97 | 644
581
660
539 | 97
65
53
93 | 788
468
715
786 | 129
92
78
148 | 728
578
656
705 | 73
48
40
72 | | <i>Germany</i>
Heide <mark>lb</mark> erg
Potsdam | 1034 952
1233 1219 | 952
1219 | 69 | 771
1287 | 182
180 | 1042 | 108
126 | 964
1242 | 101 | 931 | 244 | 1087 | 717
709 | 47 | 742
681 | 94 | 625
815 | 85
92 | 922 | 78 | 507 | 299 | 841
987 | 40
38 | | <i>The Netherlands</i>
Bilthoven
Utrecht | 1024 1119 | 1119 | 7 | 1061 | 134 | 1250 | 107 | 1066 | 120 | 1 | I | 1086 | 761
773 | 48
36 | 720 | 83 | 827
800 | 73
61 | 713
742 | 90 | 780 | | 951
768 | 40 | | United Kingdom
General population
Health-conscious | 114 | 760
554 | 109
205 | 648 | 360 | 689 | 195
335 | 714
430 | 200 | 903 | 198 | 570 | 531
370 1 | 64
110 | 543
409 | 175
312 | 469
314 | 97
165 | 621
386 | 124
183 | 516
459 | 156
340 | 623
441 | 58
103 | | <i>Denmark</i>
Copenhagen
Aarhus | 1356 1349
567 1312 | 1349 | 59
92 | | | 1250
1307 | 97
130 | 1440
1333 | 78
132 | 938 | 300 | 1484 | 730
786 | 40 | | | 657
787 | 62 | 765
816 | 55
104 | 686 | 217 | 1024
1064 | 34
55 | | S <i>weden</i>
Malmö
Umeå | 1421 1715
1344 1678 | 1715 | 61 | 1510 | 202 | 1956
1708 | 175 | 1724
1669 | 92 | 1616
1748 | 83
178 | 1711 12 | 1206
1219 | 38
39 1 | 1218 | 98 | 1224
1297 | 70 | 1201
1152 | 66
64 | 1187 | 68
145 | 1421
1428 | 33 | | Norway
South and East
North and West | | | | | | | | | | | | 1004 | 792
718 | 49
55 | 846
819 | 109 | 782
698 | 55
61 | 841
755 | 129
154 | | | 802
728 | 58
65 | | All centres | 13025 1060 | 1060 | 70 | 877 | 99 | 1059 | 35 | 1084 | 53 | 1084 | 51 | 23 009 | 708 | 10 | 684 | 32 | 669 | 17 | 669 | 16 | 777 | 28 | 835 | 10 | | Greece | 1311 2760 | 2760 | 94 | 2010 | 284 | 2323 | 193 | 3217 | 175 | 2963 | 150 | β-carotene (μg/day)
1373 2361 103 | , (µg/dc
361 | | 2113 | 280 | 2374 | 181 | 2613 | 185 | 2181 | 211 | 2557 | 77 | Table 1 Continued | Country and centre | | | | | | Men | | | | | | | | | | W | Women | | | | | | Wen and | women | |--|--|------------|---|----------------------|----------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|------------------------------|---------------------------------|--|--|--|-------------------|--|--|--|---|--|--------------------------------------|-------------------------|--------------------------------------|---------------------------------| | | Z | All | , m | 35–44 years | rears | 45–54 years | years | 55-64 years | years | 65–74 years | years | z | All | 35 | 35–44 years | | 45-54 ye | years 5 | 55–64 years | | 65–74 years | ears | Z | 5.6. | | | Z | | S.e | Z | 5.6. | Z | s.e. | Z | 5.6. | Z | s.e. | | M s. |
 -
 - | Z | S.e. | Z | S.e. | N | s.e. | Z | s.e. | | | | Spain
Granada
Murcia
Navarra
San Sebastian
Asturias | 214 2549
243 2630
444 2829
490 2860
386 2007 | | 230
216 29
160 22
154 31
171 15 | | 675 2
699 2
363 2
648 1 | 2560
2229
2510
2785
1772 | 485
389
268
212
288 | 2690
2506
3179
2738
2310 | 313
302
228
291
257 | 2440
4300
2516
1805 | 522
753
491
769
466 | 300 2290
304 2204
271 2265
244 2732
324 1520 | 30 220
34 219
55 231
32 244
20 212 | .0 2466
9 2329
11 1692
4 2423
2 1338 | | 569 24
440 22
609 21
522 33
515 15 | 2469 33
2246 34
2116 33
3368 33 | 371 21
369 19
380 21
397 23
345 15 | 2125 34
1935 36
2170 34
2321 47 | 345 19
364
354
412
341 14 | 1963 7
—
—
—
1431 7 | 710 | 2400
2393
2612
2806
1783 | 161
157
137
136
137 | | Italy
Ragusa
Naples
Horence
Turin
Varese | 168 2331
271 3095
676 3024
327
2812 | | 260
205 30
130 30
186 | 3041 6
3032 4
 | 647 3
421 2
- 3 | 2552
3343
2742
3027 | 388
351
217
415 | 2038
3072
3116
2723 | 407
292
185
224 | |

497
629 | 138 1981
403 2131
784 2562
392 2979
794 2194 | | 325 1728
190 3196
136 2936
192 3179
135 2286 | | 540 15
619 17
458 26
609 29
436 20 | 1587 66
1713 39
2628 2
2904 3
2045 2 | 606 25
302 20
236 25
320 29
226 23 | 2529 5;
2077 29
2534 18
2982 20
2398 20 | 579
293 29
189 19
269
204 17 | | 617
533

409 | 2168
2136
2699
3001
2376 | 209
182
113
112 | | France
South coast
South
North-East
North-West | | | | | | | | | | | | 620 4528
1425 4199
2059 4440
631 4590 | , , , , | 153
101
84
152 | | 47
38
40
45 | 4715 2.
3856 1.
4090 1.
4572 2. | 253 47
157 44
131 45
241 46 | 4765 23
4444 16
4572 13
4613 23 | 239 38
161 44
132 49
230 46 | 3879 3
4484 2
4989 1
4646 3 | 320 ,
227 ,
194 , | 4529
4201
4442
4592 | 147
97
81
146 | | <i>Germany</i>
Heidelberg
Potsdam | 1034 3402
1233 3371 | | 106 30
96 37 | 3022 2
3797 2 | 281 3
276 3 | 3461
3300 | 167 | 3397
3320 | 155
126 | 3095 | 375 | 1087 3770
1061 3895 | 70 117
35 117 | 7 3850
7 3606 | | 198 37
232 43 | 3777 2
4322 2: | 211 36
228 38 | 3623 19
3817 13 | 193
172 28 | _ 7 | 739 | 3588
3611 | 80 | | <i>The Netherlands</i>
Bilthoven
Utrecht | 1024 2187 | | 109 20 | 2087 2 | 206 2 | 2194 | 164 | 2046 | 185 | 1 | 1 | 1086 1891
1870 2035 | | 118 1860
89 | | 205 18 | 1862 18
2023 13 | 180 18
152 20 | 1828 22
2044 13 | 223
135 21 | 2129 1 | 179 | 2028
2035 | 81
85 | | <i>United Kingdom</i>
General population
Health-conscious | 402 3234 | | 168 17
315 | 1787 5 | 553 3 | 3166 | 300 | 3760
4208 | 308
487 | 3264 | 305 | 570 3020
197 3752 | | 159 3037
271 3504 | | 480 <i>29</i>
860 37 | 2947 20
3751 4 | 262 30
445 36 | 3085 28
3608 47 | 289 30
428 43 | 3061 3
4364 7 | 342
751 | 3109
3807 | 117 | | <i>Denmark</i>
Copenhagen
Aarhus | 1356 2895
567 2819 | _ | 91
141 | | (1) (1) | 2788 | 149 | 2944
2746 | 119
202 | 3224 | 161 | 1484 3352
510 3995 | ·- | 69 | | 32 | 3214 10
3853 2 | 164 34
238 41 | 3422 1;
4140 2 ⁴ | 128 37
244 | 3789 4 | 174 | 3131
3372 | 69 | | <i>Sweden</i>
Malmö
Umeå | 1421 1836
1344 1901 | | 94
92 16 | 1612 | 312 1 | 1925 | 269 | 1910
2100 | 141 | 1906
1819 | 127
275 | 1711 1975
1574 2216 | | 94
96 227 | m | 19
233 21 | 1999 18 | 189 19
172 22 | 1976 15
2278 14 | 153 20
147 21 | 2060 1
2152 3 | 144 | 1916
2071 | 89 | | Norway
South and East
North and West | | | | | | | | | | | | 1004 2351
793 2714 | 51 122
14 137 | 2 2153
7 2518 | | 290 22
310 26 | 2291 1-
2608 1- | 147 25
165 31 | 2567 29
3179 33 | 298
356 | | | 2363
2726 | 117 | | All centres | 13 025 2667 | | 30 25 | 2552 1 | 101 2 | 2635 | 53 | 2775 | 44 | 2476 | 78 | 23 009 2964 | | 26 2651 | | 81 29 | 2916 | 42 30 | , 6808 | 41 29 | 2970 | 7 | 2857 | 20 | | Greece | 1311 | 3.9 | 0.2 | 4.0 | 9.0 | 4.1 | 0.4 | 4.3 | 0.4 | 3.3 | 0.3 | Vitamin D (µ
1373 | D (μg/day)
2.8 | 0.1 | 2.8 | 0.4 | 3.3 | 0.2 | 2.6 | 0.2 | 2.3 | 0.3 | 3.3 | 0.1 | | <i>Spain</i>
Granada
Murcia
Navarra | 214
243
444 | 4.6
5.1 | 0.5
0.5
0.4 | 5.3
4.3 | 1.5 | 5.7
5.4
6.6 | 1.1 0.9 0.6 | 4.4
6.4
6.4 | 0.7
0.7
0.5 | 5.1
3.4
2.6 | 1.7 | 300
304
271 | 3.0
3.5
3.0 | 0.3
0.3
0.3 | 2.7
3.7
2.9 | 0.8
0.6
0.8 | 3.4
3.1
3.6 | 0.5
0.5
0.5 | 2.4
3.7
2.7 | 0.5
0.5
0.5 | 4.6 | 0.9 | 3.7
4.1
4.3 | 0.3
0.3
0.2 | Table 1 Continued | Country and centre | | | | | | Men | | | | | | | | | | ^ | Women | | | | | _ | Men and women | women | |--|---------------------------------|------------------------------|--------------------------|----------------------------------|---------|------------------------------|---------------------------------|------------------------------|--------------------------|------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------|--------------------------------------|-------------------|------------------------------|--------------------------|------------------------------|---------------------------------|--------------------------|-----------------------|--------------------------------------|--------------------------| | | z | All | | 35-44 years | | 45-54 | years | 55-64 years | years | 65-74 years | years | z | All | | 35-44 years | years | 45-54 years | | 55–64 years | ears | 65–74 years | years | Z | s.e. | | | 1 | Z | s.e. | Z | 5.6. | Z | s.e. | Z | s.e. | Z | s.e. | | Z | s.e. | | | | San Sebastian
Asturias | 490
386 | 8.0 | 0.3 | 7.7 | 0.8 | 6.1 | 0.5 | 7.6 | 0.7 | 2.9 | 1.7 | 244
324 | 4.4 | 0.3 | 5.2 | 0.7 | 5.0 | 0.5 | 3.5 | 0.5 | I 4. | 1 -0: | 5.9 | 0.2 | | Italy
Ragusa | 168 | 2.1 | 9.0 | I | 1 | 2.2 | 6.0 | 1.8 | 6.0 | I | I | 138 | 2.0 | 4.0 | 1.8
5.4 | 0.7 | 2.5 | 8.0 | 2.0 | 8.0 | ١ | 0 | 2.1 | 4.0 | | Naples
Florence
Turin
Varese | 271
676
327 | 2.4
2.6
2.1 | 0.5
0.3
0.4 | 2.5 | 1.4 | 2.9
3.2
2.4 | 0.8
0.5
0.9 | 2.3
2.3
2.0 | 0.7
0.4
0.5 | 1.8 6.1 | | 403
784
392
794 | 2.0
1.7
1.7
1.9 | 0.3
0.3
0.2 | 3.1
1.5
2.0
2.0 | 0.00 | 1.6
2.1
2.1
2.1 | 0.0
0.3
0.3 | 2.0
1.8
1.8
1.8 | 0.3
0.3
0.3
0.3 | 1.9 | 0.7 | 2.3
1.9
1.9 | 0.3
0.2
0.2
0.2 | | France
South coast
South
North-East
North-West | | | | | | | | | | | | 620
1425
2059
631 | 2.8
2.8
2.9 | 0.2
0.1
0.1 | | | 2:2
2:3
2:7 | 0.3
0.2
0.3 | 3.3
3.3
3.1 | 0.3
0.2
0.3 | 2.9
2.7
2.2
2.8 | 0.4
0.3
0.5 | 2.2
2.8
2.9
9.9 | 0.2
0.1
0.1 | | <i>Germany</i>
Heidelberg
Potsdam | 1034
1233 | 4.8
4.9 | 0.2 | 2.9 | 0.6 | 3.3 | 0.4
4.0 | 3.3 | 0.3 | 3.9 | 0.8 | 1087
1061 | 3.0 | 0.2 | 3.0 | 0.3 | 3.2 | 0.3 | 2.8 | 0.3 | 3.1 | 1.0 | 3.3
4. | 0.1 | | <i>The Netherlands</i>
Bilthoven
Utrecht | 1024 | 5.6 | 0.2 | 5.8 | 0.5 | 5.6 | 0.4 | 5.6 | 9.0 | I | | 1086
1870 | 3.8 | 0.2 | 3.9 | 0.3 | 3.6 | 0.2 | 3.9 | 0.3 | 3.8 | 0.2 | 4.8 | 0.1 | | <i>United Kingdom</i>
General population
Health-conscious | 402
114 | 4.7 | 0.4 | 4.
4. | 1.2 | 4.9 | 0.7 | 4.7 | 0.7 | 7.4 | 0.7 | 570
197 | 3.4 | 0.2 | 2.8 | 0.6 | 3.4 | 0.3 | 3.5 | 0.4 | 3.4
4.3 | 0.5 | 3.9 | 0.2 | | <i>Denmark</i>
Copenhagen
Aarhus | 1356
567 | 5.7 | 0.2 | | | 5.2 | 0.3 | 5.6 | 0.3 | 9.5 | 1.0 | 1484
510 | 4.0 | 0.1 | | | 3.7 | 0.2 | 4.3 | 0.2 | 3.2 | 9.0 | 4.8
4.5 | 0.1 | | <i>Sweden</i>
Malmö
Umeå | 1421
1344 | 8.2
9.1 | 0.2 | 9.1 | 0.7 | 8.0 | 0.6
0.4 | 8.1 | 0.3 | 8.3
9.3 | 0.3 | 1711
1574 | 6.0 | 0.1 | 5.9 | 0.3 | 5.6 | 0.3 | 5.9 | 0.2 | 6.6 | 0.2 | 6.9 | 0.1 | | Norway
South and East
North and West | | | | | | | | | | | | 1004
793 | 0.4
4.4 | 0.2 | 4.0 | 0.4
4.0 | 3.7 | 0.2 | 4.8 | 0.4 | | | 0.4
4.4 | 0.2 | | All centres | 13 025 | 5.5 | 0.1 | 5.2 | 0.2 | 5.3 | 0.1 | 5.5 | 0.1 | 6.1 | 0.2 3 | 23 009 | 3.6 | 0.0 | 3.6 | 0.1 | 3.5 | 0.1 | 3.7 | 0.1 | 3.8 | 0.1 | 4.3 | 0.0 | | Greece | 1311 | 20.1 | 0.3 | 20.7 | 0.8 | 19.3 | 0.5 | 20.3 | 0.5 | 20.0 | V 4.0 | Vitamin E
. 1373 | : (mg/day)
15.0 | ηγ)
0.2 | 13.2 | 0.5 | 15.6 | 0.3 | 15.4 | 0.3 | 14.6 | 9.4 | 17.4 | 0.2 | | Spain
Granada
Murcia
Navarra
San Sebastian
Asturias | 214
243
444
490
386 | 14.8
17.2
16.7
19.3 | 0.6
0.4
0.5
0.5 |
22.9
23.0
22.9
16.2 | <u></u> | 15.7
15.9
17.3
18.7 | 1.3
1.1
0.7
0.6
0.8 | 14.3
16.8
16.1
19.9 | 0.8
0.6
0.8
0.8 | 16.0
18.2
14.3
13.3 | 1.4
2.0
1.3
2.1
1.3 | 300
304
271
244
324 | 11.7
15.1
13.1
15.2
11.8 | 0
4. 4. 4. 4. 4. | 11.2
15.7
11.9
17.7
11.9 | 0.8
1.1
0.9 | 12.7
14.4
13.3
16.3 | 0.7
0.7
0.7
0.7 | 11.1
15.4
13.2
13.1 | 0.6
0.7
0.6
0.8
0.8 | 10.7 | <u></u> <u></u> | 13.0
16.1
15.4
18.1
13.2 | 0.3
0.3
0.3
0.3 | Table 1 Continued | Country and centre | | | | | | Men | | | | | | | | | | Z | Women | | | | | | Men and women | women | |---|-------------------|----------------------|-------------------|--------------|-------|----------------------|-------------------|----------------------|-------------------|------------------|-------|----------------------------|------------------------------|--------------------------|-----------------------------|------------|------------------------------|--------------------------|------------------------------|-------------------|-----------------------------|-------------------|------------------------------|--------------------------| | | z | All | _ | 35-44 years | years | 45-54 years | years | 55-64 years | years | 65-74 years | years | z | All | | 35-44 years | | 45-54 years | | 55-64 years | | 65-74 years | years | Z | s.e. | | | ı | Z | 5.6. | Z | s.e. | N | 5.6. | Z | s.e. | Z | s.e. | | Z | s.e. | Ø | s.e. | Z | S.e. | Z | s.e. | Z | s.e. | | | | Italy
Ragusa | 168 | 13.6 | 0.7 | | | 13.9 | 1. | 13.9 | 7. | | | 138 | 11.2 | 0.6 | 10.8 | 1.0 | 9.6 | 7. | 13.8 | <u> </u> | ; | ; | 12.7 | 0.5 | | Naples
Florence
Turin
Varese | 271
676
327 |
13.8
12.9
12.4 | 0.6
0.4
0.5 | 14.2 | 1.8 | 14.1
12.5
13.1 | 0.9
0.6
1.1 | 14.5
13.2
11.9 | 0.8
0.5
0.6 |
13.5
14.8 | 1:3 | 403
784
392
794 | 10.3
10.8
9.5 | 0.3 | 14.3
10.7
10.5
9.6 | 0.8 | 9.9
10.2
10.7
9.6 | 0.0
0.4
0.4
0.4 | 9.9
9.9
9.8
8.9 | 0.3
0.3
0.4 | 10.2
10.0
—
8.5 | 1.0 | 10.3
11.1
12.2
10.4 | 0.2
0.2
0.2
0.2 | | France
South coast
South
North-East
North-West | | | | | | | | | | | | 620
1425
2059
631 | 12.7
11.2
11.2
10.3 | 0.3
0.2
0.3
0.3 | | | 11.7
10.7
11.2
10.2 | 0.5
0.3
0.4 | 13.2
11.6
11.1
10.5 | 0.3
0.3
4.0 | 13.2
11.3
11.1
9.6 | 0.6
0.4
0.7 | 12.7
11.2
11.1
10.3 | 0.3
0.2
0.3 | | <i>Germany</i>
Heidelberg
Potsdam | 1034
1233 | 16.5
18.5 | 0.3 | 15.7
20.1 | 0.8 | 16.5
18.2 | 0.5 | 17.1 | 0.4 | 16.9 | 1.0 | 1087 | 13.8
13.5 | 0.2 | 14.7 | 4.0
4.0 | 13.6 | 0.4
4.0 | 13.1 | 0.4 | 20.0 | [4: | 15.2
16.3 | 0.2 | | <i>The Netherlands</i>
Bilthoven
Utrecht | 1024 | 15.5 | 0.3 | 17.2 | 9.0 | 15.9 | 0.4 | 14.8 | 0.5 | I | I | 1086
1870 | 11.1 | 0.2 | 11.9 | 0.4 | 11.1 | 0.3 | 10.4 | 0.4 | 10.1 | 0.3 | 13.4 | 0.2 | | <i>United Kingdom</i>
General population
Health-conscious | 402 | 11.8 | 0.5 | 13.2 | 1.5 | 13.1 | 0.8 | 10.6
15.9 | 0.8 | 11.0 | 0.8 | 570
197 | 8.7
13.3 | 0.3 | 9.1 | 0.9 | 9.1 | 0.5 | 8.5
14.4 | 0.5 | 8.3 | 0.6 | 10.0 | 0.3 | | <i>Denmark</i>
Copenhagen
Aarhus | 1356
567 | 10.6 | 0.2 | | | 10.3 | 0.4 | 10.7 | 0.3 | 11.5 | 1.2 | 1484
510 | 8.3 | 0.2 | | | 8.3 | 0.3 | 8.4
9.5 | 0.2 | 7.7 | 0.9 | 9.4 | 0.2 | | <i>Sweden</i>
Malmö
Umeå | 1421
1344 | 9.3 | 0.3 | 11.2 | 0.8 | 9.4 | 0.7 | 9.0 | 0.4 | 8.9
9.6 | 0.3 | 1711
1574 | 7.7 | 0.2 | 7.8 | 4.0 | 8.1 | 0.3 | 7.7 | 0.3 | 7.4 | 0.3 | 8.8
8.8 | 0.1 | | Norway
South and East
North and West | | | | | | | | | | | | 1004 | 7.7 | 0.2 | 7.7 | 0.5 | 7.7 | 0.3 | 8.0 | 0.5 | | | 7.8 | 0.3 | | All centres | 13 025 | 14.2 | 0.1 | 17.3 | 0.3 | 14.3 | 0.2 | 13.8 | 0.1 | 13.2 | 0.2 | 23 009 | 10.6 | 0.0 | 11.5 | 0.2 | 10.5 | 0.1 | 10.6 | 0.1 | 10.2 | 0.1 | 11.9 | 0.0 | | | Ì | Ì | Ì | Ì | Ì | 1 | Ì | Ì | Ì | Ì | 1 | l | l | Ì | Ì | Ì | Ì | Ì | Ì | Ì | Ì | l | Ì | | Abbreviations: M, mean; s.e., standard error; '—' If fewer than 20 persons are present in a certain age group, the mean intake is not presented. ^aAdjusted for age (when not stratified for age) and weighted by season and day of recall. Table 2 Minimally adjusted mean daily intakes of retinol, β-carotene, vitamin D and vitamin E by gender and selected characteristics | Stratification variable | | Men (mear | n (s.e.)) | | | Women (m | ean (s.e.)) | | |-------------------------|---------------------|------------------------|-----------------------|-----------------------|---------------------|------------------------|-----------------------|-----------------------| | | Retinol
(μg/day) | β-carotene
(μg/day) | Vitamin D
(μg/day) | Vitamin E
(mg/day) | Retinol
(μg/day) | β-carotene
(μg/day) | Vitamin D
(μg/day) | Vitamin E
(mg/day) | | European region | | | | | | | | | | South | 553.9 (32.6) | a 2743.0 (50.5) | a 4.2 (0.1) a | 16.6 (0.1) a | 470.9 (18.0) | a 2877.4 (45.6) | a 2.6 (0.1) a | 12.1 (0.1) a | | Centra | 1056.2 (36.3) k | 3057.6 (56.4) | b 4.7 (0.1) a | 16.4 (0.2) a | 700.5 (16.7) | b 3342.3 (42.3) | b 3.4 (0.1) b | 11.4 (0.1) b | | North | 1545.9 (32.5) | 2283.4 (50.4) | c 7.4 (0.1) b | 10.1 (0.1) b | 964.3 (18.4) | c 2597.7 (46.5) | c 5.0 (0.1) c | 8.0 (0.1) c | | Level of schooling | | | | | | | | | | None/primary | 838.5 (38.2) | 2547.8 (58.6) | a 4.8 (0.1) | 14.6 (0.2) | 604.7 (21.2) | 2636.1 (52.6) | a 3.4 (0.1) | 11.0 (0.1) a | | Technical/secondary | 870.7 (36.4) | 2736.6 (55.8) | b 5.0 (0.1) | 14.5 (0.2) | 608.3 (17.9) | 2963.7 (44.5) | b 3.3 (0.1) | 11.0 (0.1) a | | University or higher | 769.6 (44.0) | 2892.5 (67.5) | b 4.7 (0.2) | 14.2 (0.2) | 565.5 (25.1) | 3227.6 (62.2) | c 3.4 (0.1) | 11.5 (0.1) b | | Smoking status | | | | | | | | | | Smoker | 914.5 (40.7) | 2481.5 (62.2) | a 5.1 (0.1) | 14.1 (0.2) a | 651.0 (26.3) | a 2696.2 (64.7) | a 3.3 (0.1) | 10.7 (0.1) a | | Former smoker | 805.4 (35.4) | 2851.6 (54.0) | b 4.7 (0.1) | 14.5 (0.1) ab | 565.1 (23.7) | b 2933.7 (58.4) | b 3.4 (0.1) | 10.8 (0.1) a | | Never smoker | 846.4 (38.1) | 2878.0 (58.2) | b 4.8 (0.1) | 14.7 (0.2) b | 600.3 (15.9) | ab 2931.0 (39.3) | b 3.4 (0.1) | 11.3 (0.1) b | | Physical activity | | | | | | | | | | Active | 975.3 (62.7) | a 3114.7 (97.8) | a 5.0 (0.2) | 15.4 (0.3) a | 567.7 (43.2) | 2971.1 (105.8 | 3.3 (0.1) | 11.9 (0.2) | | Moderately active | 784.1 (37.9) a | b 2805.3 (59.2) | b 4.6 (0.1) | 15.0 (0.2) a | 555.4 (19.5) | 2946.7 (47.7) | 3.1 (0.1) | 11.5 (0.1) | | Moderately inactive | 828.8 (41.0) a | b 2723.7 (63.9) | b 4.5 (0.1) | 14.7 (0.2) a | 560.3 (23.2) | 2962.9 (56.8) | 3.2 (0.1) | 11.4 (0.1) | | Inactive | | 2752.1 (78.4) | | 14.0 (0.2) b | 584.8 (33.3) | 2899.1 (81.6) | 3.2 (0.1) | 11.3 (0.2) | | Body mass index (kg/m² |) | | | | | | | | | <25 | 881.5 (39.2) | 2857.7 (60.4) | 5.1 (0.1) | 14.7 (0.2) a | 610.0 (16.9) | 2958.3 (41.9) | a 3.4 (0.1) | 11.3 (0.1) a | | 25 to < 30 | 815.2 (31.1) | 2746.9 (48.0) | 4.8 (0.1) | 14.5 (0.1) ab | 598.0 (19.8) | 2841.3 (49.0) | ab 3.3 (0.1) | 10.8 (0.1) b | | ≥30 | 890.9 (50.2) | 2629.9 (77.3) | 4.7 (0.2) | 14.0 (0.2) b | 572.4 (28.8) | 2745.9 (71.2) | b 3.4 (0.1) | 10.9 (0.1) b | Abbreviations: M, mean; s.e., standard error. Within each stratification variable, values with different letters in a column are significantly different (P < 0.05). women: 9.0%) and soups/bouillon (men: 6.6%, women: 7.8%) (Tables 3 and 4). These sources appear to be consistent between centres, with little regional variability. In both men and women, the mean intakes of β -carotene show little variation by season (Table 5). Compared with the other seasons, the summer intakes of this nutrient are higher in men and women from Spain, Italy, Germany and Sweden. In the UK Health Conscious, intakes for men were highest in the winter and spring, whereas those for women were highest in the summer (Table 5). #### Mean intakes of vitamin D The highest mean intake of vitamin D was in Umeå (Sweden) for both men $(9.1\,\mu\text{g/day})$ and women $(6.1\,\mu\text{g/day})$. The lowest mean intakes were in Ragusa and Varese (Italy) for men $(2.1\,\mu\text{g/day})$ and Florence and Turin (Italy) for women $(1.7\,\mu\text{g/day})$ (Table 1 and Figures 2a and b). Men tended to have higher intakes of vitamin D than did women in most centres, ranging from 4.8% higher in Ragusa, Italy to 41.2% in Navarra, Spain (Table 1). For all centres combined, men consumed $4.9\,\mu\text{g/day}$ compared with $3.4\,\mu\text{g/day}$ for women (*P* difference by gender < 0.01). No clear trends in intake were apparent by age range (Table 1). Further adjustments for age, height, weight and total energy intake did not meaningfully alter the observed intake values or patterns (Table A1 in the Appendix). Subjects from Northern countries consumed significantly higher levels of vitamin D than did those from Southern countries, with intermediate levels in Central European countries (Table 2). However, for both men and women, no remarkable differences in intake levels were noted for any of the lifestyle variables (Table 2). For men, the major contributing food group sources of vitamin D are fish/shellfish (41.9%), added fats (21.8%), meats/meat products (9.7%) and dairy products (9.6%) (Table 3). Similar to men, fish/shellfish are also the major sources of vitamin D in women (39.6%) followed by added fats (19.3%), dairy products (10.4%) and meat/meat products (9.4%) (Table 4). In both men and women, fish/shellfish appear to contribute to a greater percentage of vitamin D in Southern than in Central countries, and the reverse appears to be true for dairy products (Tables 3 and 4). Intakes of vitamin D showed slight sporadic variation by season in most countries with the exception of Greece, Spain and Sweden where both men and women tended to have higher intakes in the summer, compared with the other seasons (Table 5). ^aAdjusted for age and weighted by season and day of recall. Table 3 Percentage contribution of main food groups to the intake of retinol, β-carotene, vitamin D and vitamin E—men | Country and centre | | | 7 | Dietary food grou | ıps (percentage | Dietary food groups (percentage contribution of each food group to total intake of the nutrient) | ıch food group | to total in | take of the | nutrient) | | | |---|--------------------------------------|------------------------------|--------------------------------|---|------------------------------|--|---------------------------------|--------------------------|--------------------------|---------------------------------|-------------------------------------|--------------------------| | | Vegetables | Fruits | Dairy
products | Cereals and products | Meats and products | Fish/shellfish | Eggs and products | Added
fats | Cakes | Condiments/
sauces | Soups/
bouillon | All other food
groups | | Greece | 0.0 | 0.0 | 30.4 | 0.3 | 53.8 | Retinol
1.9 | 4.7 | 3.6 | 3.0 | 4. | 9.0 | 0.5 | | Spain
Granada
Murcia | 0.0 | 0.0 | 38.9
20.8 | 0.1 | 18.7 | 4.6 | 13.1 | 7.3 | 5.9 | 0.8 | 9.4
5.8
1.6 | 0.9
2.1 | | Navarra
San Sebastian
Asturias | 0.0 | 0.0 | 25.9
25.9 | 0.0 | 45.1
57.3
38.0 | 3.4
6.2 | 14.5
13.7 | 1.3
3.0 | 5.7
5.1 | 0.2
0.1 | 7.1
7.1 | 0.8
0.9 | | <i>Italy</i>
Ragusa
Florence
Turin
Varese | 0.0000 | 0.0
 14.6
24.0
27.0
27.3 | <u>. 1 </u> | 71.1
50.1
49.8
52.7 | 2.5
2.2
1.6
0.7 | 4.3
6.0
6.0
2.3 | 0.6
4.6
2.7
5.1 | 3.1
8.3
7.4
7.4 | 0.5
1.0
1.0 | 0.0 | 2.2
2.2
2.2
2.2 | | <i>Germany</i>
Heide lb erg
Potsdam | 0.0 | 0.0 | 16.0
13.6 | 1.3 | 55.3
50.1 | 0.5
0.5 | 3.2 | 14.6
25.6 | 6.1 | 1.3 | 0.5 | 1.1 | | The Netherlands
Bi l thoven | 0.2 | 0.0 | 14.8 | 0.2 | 49.7 | 1.6 | 2.8 | 24.4 | 3.2 | 2.4 | 0.0 | 0.7 | | United Kingdom
General population
Health-conscious | 0.0 | 0.0 | 19.1 | 1.2 | 29.5
36.3 | 0.6 | 3.4 | 32.8
35.4 | 8.3 | 1.1 | 0.6 | 3.0 | | <i>Denmark</i>
Copenhagen
Aarhus | 0.0 | 0.0 | 10.1 | 0.2 | 62.5
57.4 | 3.0 | 2.9 | 13.3
15.3 | 4.2 | 2.6 | 0.3 | 0.8 | | <i>Sweden</i>
Malmö
Umeå | 0.0 | 0.0 | 11.9 | 1.2 | 52.4
45.3 | 0.4
0.4 | 2.0 | 24.1
26.4 | 4.2 | 2.7 | 0.2 | 0.8
8.0 | | All centres | 0.0 | 0.0 | 15.6 | 0.7 | 51.7 | 1.5 | 3.7 | 18.5 | 4.9 | 1.9 | 9.0 | 1.0 | | Greece | 86.9 | 1.5 | 2.4 | 0.0 | 0.1 | β -carotene 0.0 | o.0 | 3.4 | 6.0 | 3.0 | 9.0 | 1.9 | | <i>Spain</i>
Granada
Murcia
Navarra
San Sebastian
Asturias | 55.0
60.4
65.3
62.1
58.2 | 14.0
17.2
10.5
11.9 | 2.0
2.1.1.5
3.4.8
4.0 | 0.0 | 1.9
3.6
3.6
5.9 | 0.0
0.1
0.0
0.0 | 0.0
4.0
6.0
8.0
8.0 | 2.2
1.4
1.1
0.5 | 0.9
1.5
1.0
1.1 | 1.1
2.4
2.2
3.6
2.4 | 17.8
10.4
12.7
13.3
7.5 | 2.8
2.8
1.5
3.9 | | Italy
Ragusa
Florence
Turin
Varese | 48.7
55.9
64.9
62.0 | 27.3
29.5
21.7
17.7 | 3.9
2.3
2.7
4.0 | 2.1
1.6
2.3
2.5 | 2.0
0.3
0.4
0.2 | 0.00 | 0.6
0.4
0.2 | 0.3
0.6
0.3
0.8 | 0.4
0.7
0.5
0.8 | 12.3
6.0
4.2
8.5 | 0.0
0.7
0.6
1.2 | 2.2
2.0
2.0
2.1 | Table 3 Continued | Country and centre | | | | Dietary food grou | ıps (percentage | Dietary food groups (percentage contribution of each food group to total intake of the nutrient) | ach food group | to total in | take of the | : nutrient) | | | |---|--------------------------|--------|---------------------------------|---------------------------------------|------------------------------|--|----------------------------|--------------------------|---------------------------------|--------------------------|--------------------------|--------------------------| | | Vegetables | Fruits | Dairy
products | Cereals and products | Meats and products | Fish/shellfish | Eggs and products | Added
fats | Cakes | Condiments/
sauces | Soups/
bouillon | All other food
groups | | G <i>ermany</i>
Heidelberg
Potsdam | 59.7
49.7 | 8.2 | 3.2 | 0.6 | 0.8 | 0.0 | 0.0 | 8.6
9.6 | <u>6. F.</u> | 3.2 | 6.9 | 6.2 | | <i>The Netherlands</i>
Bilthoven | 63.5 | 3.5 | 5.9 | 0.3 | 0.1 | 0.0 | 0.1 | 6.7 | 1.2 | 3.3 | 10.0 | 2.3 | | United Kingdom
General population
Health-conscious | 83.8 | 0.5 | 2.1 | 0.5 | 0.0 | 0.0 | 0.0 | 4.2 | 1.4 | 1.5 | 2.8 | 3.1
9.9 | | <i>Denmark</i>
Copenhagen
Aarhus | 79.6
74.8 | 2.4 | 2.4 | 0.0 | 0.0 | 0.0 | 0.3 | 3.0 | 1.3 | 1.7 | 4.5
3.8 | 4.7 | | <i>Sweden</i>
Malmö
Umeå | 71.6 | 4.0 | 4.0 | 0.4
0.6 | 0.4 | 0.6 | 0.4
0.4 | 1.8 | 0.6 | 1.8 | 11.2 | 3.4 | | All centres | 67.8 | 7.8 | 3.2 | 0.5 | 8.0 | 0.1 | 0.2 | 4.2 | 1.1 | 3.0 | 9.9 | 4.6 | | Greece | 0.1 | 0.0 | 29.7 | 9.0 | 13.0 | Vitamin D
40.5 | η D
7.0 | 3.1 | 3.4 | 1.8 | 0.5 | 0.4 | | <i>Spain</i>
Granada
Murcia
Navarra
San Sebastian
Asturias | 0.0000
1.0000 | 0.0000 | 5.2
3.3
3.5
3.3
3.5 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 6.3
7.2
7.1
7.0 | 71.1
71.2
68.5
70.8
78.5 | 10.2
9.1
13.8
9.2 | 2.2
1.4
0.6
0.7 | 3.4
6.1
3.8
3.7
2.5 | 0.3
0.2
0.1
0.1 | 0.5
0.3
0.4
0.6 | 0.1
0.3
0.2 | | Italy
Ragusa
Florence
Turin
Varese | 0.0
3.4
4.5
1.2 | 0.0 | 4.6
6.0
5.1
6.5 | 4.1
1.9
2.5
2.5 | 19.4
21.5
21.6
31.1 | 46.5
42.3
48.2
41.3 | 12.4
9.8
9.0
4.4 | 0.2
1.3
0.6
1.3 | 6.0
8.0
6.3
7.7 | 3.8
2.9
2.9 | 0.0000 | 3.0
2.9
1.5 | | <i>Germany</i>
Heidelberg
Potsdam | 3.8 | 0.0 | 14.1 | 1.6 | 2.4 | 45.2
50.5 | 10.5 | 12.1 | 7.4
8.8 | 1.3 | 0.5 | 1.0 | | The Netherlands
Bi l thoven | 0.0 | 0.0 | 9.9 | 0.3 | 11.2 | 19.0 | 5.3 | 45.3 | 5.6 | 5.2 | 0.2 | 1.3 | | United Kingdom
General population
Health-conscious | 0.0 | 0.0 | 4.2 | 5.9
6.5 | 13.8
3.5 | 18.8
9.9 | 5.0 | 37.3
52.5 | 11.7 | 1.1 | 0.1 | 2.2 | Table 3 Continued | Denmark Copenhagen 0 Aarhus 0 Sweden 0 Umeå 0 | Vegetables F | Fruits | | Cereals and | | | J 6 | | | | | | |---|-----------------------------|------------------------------|---------------------------------|--------------------------|--------------------------|---------------------------|--------------------------|------------------------------|---|----------------------------|---------------------------------|--------------------------| | agen | | | products | products | Meats and
products | Fish/shellfish | Eggs and
products | Added
fats | Cakes | Condiments/
sauces | Soups/
bouillon | All other food
groups | | | 0.5
0.6 | 0.0 | 6.3 | 0.3 | 14.0 | 66.5 | 4.7 | 3.4 | 1.6 | 2.1 | 0.3 | 0.4 | | | 0:0 | 0.0 | 9.5
13.3 | 2.3 | 9.9
8.2 | 22.7
21.9 | 2.9 | 40.4
39.0 | 7.5
8.5 | 3.8
2.8 | 0.5 | 0.4 | | | 0.5 | 0.0 | 9.6 | 1.3 | 9.7 | 41.9 | 6.2 | 21.8 | 5.7 | 2.3 | 0.5 | 9.0 | | Greece 11 | 11.2 | 11.4 | 1.1 | 2.1 | 6.0 | Vitamin E
1.7 | ı Ε
0.9 | 62.1 | 2.5 | 3.5 | 9.0 | 1.9 | | Spain
Granada 11
Murcia 111
Navarra 115
San Sebastian 7
Asturias 5 | 11.1 | 16.6
23.9
12.3
12.5 | 2.9
1.7
1.6
1.7
3.0 | 1.9
1.4
0.7
2.0 | 2.0
2.3
2.3
2.7 | 6.0
6.1
6.1
10.6 | 2 2 8 4 4
7 5 6 5 5 5 | 39.3
36.9
50.9
51.3 | 1.6
3.3
1.9
3.2 | 6.1
2.5
3.9
3.2 | 5.0
1.6
2.1
2.2
1.5 | 4.8
4.8
7.2
4.7 | | ltaly 89 99 12 Florence 12 Turin 15 Varese 11 | 9.7
12.8
15.9
11.3 | 13.5
13.4
14.4 | 1.6
2.1
2.3
3.1 | 3.5
3.5
3.6
3.6 | 1.3
1.4
2.2 | 2.7
3.4
2.3 | 1.3
1.2
1.1
0.6 | 39.8
45.8
41.1
30.8 | 6.4 4.9 6.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 | 18.8
7.7
7.3
22.5 | 0.0
0.3
0.4
0.4 | 2.5
2.1
2.1
8 | | <i>Germany</i>
Heidelberg 8
Potsdam 5 | 8.1
5.9 | 8.0 | 2.7 | 8.9
7.0 | 3.7 | 2.1 | 1.5 | 25.3
48.8 | 6.5
5.6 | 26.3
10.6 | 4. L
2. | 5.6 | | <i>The Netherlands</i>
Bilthoven | 6.3 | 5.6 | 3.2 | 3.5 | 1.2 | 1.6 | 3.1 | 51.0 | 5.0 | 15.8 | 0.1 | 3.6 | | United Kingdom
General population 9
Health-conscious 11 | 9.6 | 5.2
16.0 | 3.9 | 11.9 | 2.0 | 4.0 | 1.2 | 37.9
37.1 | 10.7 | 7.7
5.7 | 1.1 | 4.8
8.8 | | <i>Denmark</i>
Copenhagen 7
Aarhus 6 | 7.2 1
6.3 1 | 10.3 | 4.0 | 9.6
9.7 | 2.6 | 9.9 | 3.5 | 26.3
31.5 | 7.3
9.5 | 13.3
9.4 | 0.6
0.5 | 5.4
4.8 | | Sweden
Malmö | 6.2 | 7.5 | 4.5 | 10.8 | 6.4 | 9.9 | 3.6 | 30.7 | 10.4 | 7.9 | 4. | 3.9 | | Norway
South and East –
North and West – | 1 1 | 1.1 | 11 | 11 | 11 | 1.1 | 11 | 11 | 11 | 11 | 11 | 1.1 | | All centres 8 | 8.4 | 10.1 | 2.8 | 6.1 | 2.7 | 4.3 | 2.4 | 42.2 | 5.7 | 10.0 | 1.2 | 4.2 | Values are percentages derived from models adjusted for age and weighted by season and day of recall (minimally adjusted models). Table 4 Percentage contribution of main food groups to the intake of retinol, β-carotene, vitamin D and vitamin E—women | Country and centre | | | | Dietary food groups (percentage contribution of each food group to total intake of the nutrient) | ups (percentage | contributior | of each food | group to to | tal intake o | of the nutrient) | | | |--|------------|--------|-------------------|--|--------------------|--------------------|-------------------|-----------------|--------------|-----------------------|-------------------|--------------------------| | | Vegetables | Fruits | Dairy
products | Cereals and products | Meats and products | Fish/
shellfish | Eggs and products | Added
fats | Cakes | Condiments/
sauces | Soups/bouillon | All other
food groups | | Greece | 0.0 | 0.0 | 32.3 | 0.2 | 49.7 | 1.5 | Retinol
4.9 | 4.0 | 5.0 | 1.3 | 0.3 | 0.7 | | S <i>pain</i>
Granada | 0.1 | 0.0 | 28.0 | 0.0 | 43.1 | 3.0 | 8.2 | 9.9 | 4.8 | 0.2 | 4.8 | 1.3 | | Murcia | 0.0 | 0.0 | 20.9 | 0.2 | 50.6
36.9 | 2.2 | 8.8 | %
%
% | 9. «
« | 0.2 | 3.5 | 1.2 | | San Sebastian
Asturias | 0.0 | 0.0 | 26.5
30.4 | 0.0 | 35.0
34.0 | 5.3 | 16.5
12.4 | 5.4.4
5.1.8. | 8.9
6.9 | 0.2 | 2.3
1.7
5.8 | 1.6 | | Italy | | | | | | | | | | | | | | Ragusa
Naples | 0.0 | 0.0 | 31.7
50.9 | 0.1
9.4 | 39.8
10.4 | 4.2 | 9.6
9.6 | 1.1 | 9.4 | 0.6 | 0.1 | 2.2
4.3 | | Florence | 0.0 | 0.0 | 18.8 | ::: | 63.9 | 0.6 | 3.9 | 2.8 | 6.3 | 9.0 | 0.0 | 2.0 | | Turin
Varese | 0.0 | 0.0 | 27.5
35.4 | <u></u> €. | 49.0
33.8 | 0.7
1.5 | 6.8
7.1 | 3.
5.8 | 7.3
8.9 | 0. L
8. 4. | 0.0 | 3.5
4.3
5.5 | | France | ć | (| (| (| (| , | | Ć | · | 7 | · · | , | | South coast
South | 0.0 | 0.0 | 24.9
28.0 | 0.5
1.0 | 49.9
40.7 | 2.1 | 5.0 | 8.2
10.2 | 7.4
8.7 | 1.3
2.1 | 0.6
0.4 | 1.1 | |
North-East
North-West | 0.0 | 0.0 | 25.6 | 0.7 | 43.2 | 2.0 | . 4. 4
5. 6. 4 | 11.7 | 9.3 | 1.1 | 0.5 | 5. 5. | | | 2 | ? | 5 | -
5 | !
:
- | 3 | <u>?</u> | <u>?</u>
- | 9 | ; | 9 | <u>:</u> | | <i>Germany</i>
Heidelberg
Potsdam | 0.0 | 0.0 | 21.9
19.9 | 1.3 | 46.5
39.5 | 0.4 | 3.9 | 14.4 | 8.1 | 1.6 | 0.5 | 4. L. | | The Netherlands
Bilthoven | 9.0 | 0.0 | 16.7 | 0.3 | 46.2 | 1.7 | 3.7 | 21.8 | 5.2 | 2.4 | 0.1 | 1.2 | | סמוברוונ | 4. | 0.0 | 6.0 | 0.0 | 4.
4. | 6.2 | 0.0 | 0.12 | 0.0 | 0.0 | 0.0 | <u>:</u> | | <i>United Kingdom</i>
General population
Hea l th-conscious | 0.0 | 0.0 | 19.1
22.9 | 0.6 | 37.6
5.5 | 0.6 | 4.0 | 23.8 | 9.1 | 1.0 | 1.0 | 3.3 | | <i>Denmark</i>
Copenhagen
Aarhus | 0.0 | 0.1 | 15.9 | 0.3
0.5 | 50.4
47.4 | 4.3 | 4.4
8.8 | 13.7 | 6.7 | 2.3 | 0.5 | 1.8 | | <i>Sweden</i>
Malmö
Umeå | 0.0 | 0.0 | 15.0 | 4.1. | 49.7
48.8 | 0.6 | 2.7 | 19.9 | 6.1 | 2.9 | 0.5 | 1.3 | | Norway
South and East
North and West | 0.0 | 0.0 | 21.0 | 0.4 | 38.2
31.3 | 1.9 | 5.9 | 19.8
21.5 | 7.9 | 2.3 | 0.3 | 2.3 | | All centres | 0.1 | 0.0 | 20.9 | 8.0 | 44.9 | 1.7 | 4.4 | 15.8 | 7.3 | 2.0 | 0.5 | 1.6 | Table 4 Continued | Country and centre | | | | Dietary food groups (percentage contribution of each food group to total intake of the nutrient) | ups (percentage | contribution | of each food | group to to | tal intake c | of the nutrient) | | | |--|--------------------------------------|------------------------------|--------------------------|--|---------------------------------|--------------------------|---------------------------------|--|---------------------------------|----------------------------------|----------------------------------|---------------------------------| | | Vegetables | Fruits | Dairy
products | Cereals and products | Meats and products | Fish/
shellfish | Eggs and products | Added
fats | Cakes | Condiments/
sauces | Soups/bouillon | All other food groups | | Greece | 87.9 | 1.7 | 2.5 | 0.1 | 0.0 | β-c | β-carotene
0.0 | 3.0 | 0.5 | 2.8 | 0.3 | 1.0 | | <i>Spain</i> Granada Murcia Navarra San Sebastian Asturias | 60.7
63.9
59.9
64.0
54.0 | 15.4
18.8
16.5
13.0 | 1.9
2.3
1.6
4.2 | 0.0.0.0.0 | 1.3
2.5
1.7
3.4 | 0.0
0.0
0.0
0.0 | 0.3
0.4
0.5
0.7 | 1.8
1.5
1.3
1.3
1.3
1.3 | 0.9
1.6
1.2
1.8
1.8 | 1.7
1.9
2.2
2.5
2.5 | 9.7
5.7
7.3
11.2
8.3 | 6.1
3.2
5.8
3.7
6.8 | | Italy
Ragusa
Naples
Florence
Turin
Varese | 45.1
63.8
64.6
67.4
62.6 | 34.3
22.1
23.1
22.0 | 3.7
2.2
3.3
3.3 | 1.2
0.9
2.0
1.3 | 0.7
0.0
0.7
0.6
0.5 | 0.0
0.0
0.0
0.0 | 0.6
0.5
0.3
0.4
0.4 | 0.3
0.3
0.3
0.0 | 0.7
0.9
0.6
0.5
0.5 | 11.9
5.4
3.2
3.0
5.4 | 0.3
0.1
0.7
1.4 | | | France
South coast
South
North-East
North-West | 67.8
67.2
65.3
66.4 | 9.9
11.3
12.7 | 2.0
1.9
2.0
1.9 | 0.2
0.2
0.1 | 0.0
0.0
0.0 | 0.0 | 0.1 | 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | L. L. 4. E. | 1.0
0.9
0.8
0.9 | 15.9
14.5
14.2
15.2 | 1.0
1.8
1.8
8. | | <i>Germany</i>
Heidelberg
Potsdam | 61.7
54.6 | 10.2 | 3.1 | 0.4 | 0.2 | 0.0 | 0.0 | 5.8 | 1.6 | 3.2 2.3 | 4.1 | 9.8 | | <i>The Netherlands</i>
Bilthoven
Utrecht | 66.0
67.4 | 4.3 | 4.9 | 0.2 | 0.2 | 0.0 | 0.1 | 6.3 | 1.7 | 2.2 | 9.6 | 4.5 | | United Kingdom
General population
Health-conscious | 86.1 | 1.1 | 1.5 | 0.2 | 0.0 | 0.0 | 0.0 | 2.4 | 1.2 | 0.8 | 3.9 | 2.8 | | <i>Denmark</i>
Copenhagen
Aarhus | 84.7
81.1 | 2.9 | 1.6 | 0.0 | 0.0 | 0.0 | 0.2 | 4. L. | 0.8 | 1.1 | 3.1
3.9 | 4.1 | | <i>Sweden</i>
Malmö
Umeå | 73.9
76.6 | 5.7 | 3.3 | 0.3 | 0.4
0.6 | 0.5 | 0.3 | 1.0 | 0.6 | 2.1 | 8.6
9.0 | 3.2 2.4 | | Norway
South and East
North and West | 84.7
85.5 | 1.9 | 4.9
6.3 | 0.1 | 0.2 | 0.5 | 0.0 | 4.1
2.1 | 0.6 | 1.1 | 3.3
3.9 | 1.3 | | All centres | 70.7 | 9.0 | 2.8 | 0.3 | 0.3 | 0.1 | 0.1 | 2.2 | Ξ: | 1.8 | 7.8 | 3.8 | Table 4 Continued | Country and centre | | | 1 | Dietary food groups (percentage contribution of each food group to total intake of the nutrient) | ups (percentage | contribution | of each food | group to to | tal intake o | of the nutrient) | | | |---|---------------------------------|--------|-----------------------------|--|--------------------------------------|--------------------------------------|------------------------------|--------------------------|-----------------------------------|--------------------------|--------------------------|--| | | Vegetables | Fruits | Dairy
products | Cereals and products | Meats and products | Fish/
shellfish | Eggs and products | Added
fats | Cakes | Condiments/
sauces | Soups/bouillon | All other food groups | | Greece | 0.1 | 0:0 | 41.4 | 6.0 | 6.6 | Vii
29.1 | Vitamin D
7.2 | 3.3 | 5.8 | 1.5 | 0.3 | 9.0 | | <i>Spain</i>
Granada
Murcia
Navarra
San Sebastian
Asturias | 0.0000
0.0000 | 0.0 | 6.2
6.2
6.0 | 0.2
0.6
0.1
0.8 | 4.8
5.4
5.0
3.4 | 68.2
66.6
61.5
67.0
72.8 | 10.1
10.3
14.5
13.1 | 5.0
2.7
1.9
1.9 | 4. V. V. 4. 6. 8. 9. 9. 8. | 0.1
0.5
0.0
0.0 | 0.5
0.5
0.3
0.6 | 0.4
4.2
4.1
0.8
4.0 | | Italy
Naples
Horence
Turin
Varese | 1.1
1.3
4.2
2.2
2.8 | 0.0000 | 4.8
4.7
7.1
6.2 | 2.4
2.7
3.3
3.3 | 17.6
15.5
24.4
24.0
23.1 | 52.4
44.0
35.1
40.0 | 11.3
10.8
11.0
12.8 | 0.2
0.4
1.1
1.1 | 8.0
11.3
10.7
7.7
7.5 | 1.8
2.2
2.0
1.5 | 0.0000 | 0.6
4.4
7.1
7.1
8.1
4.1 | | France
South coast
South
North-East
North-West | 2.6
3.7
3.2
3.5 | 0.0 | 10.7
10.2
10.6
9.9 | 3.1
2.7
1.8 | 8.3
8.1
8.5
7.7 | 48.6
47.0
46.7
48.2 | 9.4
10.0
8.9
8.8 | 6.3
5.5
7.8
9.7 | 7.7
8.1
8.8
7.7 | 9.0
9.0
9.0
9.0 | 0.0
0.3
0.3
0.4 | 2.1
2.0
1.8
1.7 | | <i>Germany</i>
Heidelberg
Potsdam | 3.5 | 0.0 | 16.6 | 1.6 | 2.0 | 43.6 | 11.2 | 10.0 | 8.6 | 1.3 | 0.4 | 1.3 | | <i>The Netherlands</i>
Bilthoven
Utrecht | 0.0 | 0.0 | 7.3 | 0.5 | 9.5
8.4 | 20.7
25.0 | 7.1 | 38.3
34.3 | 8.8
9.3 | 5.1 | 0.3 | 2.2 | | United Kingdom
General population
Health-conscious | 0.0 | 0.0 | 4.2 | 9.6 | 12.3 | 25.4
30.1 | 6.2 | 27.2
35.2 | 12.1 | 0.9 | 0.2 | 2.0 | | <i>Denmark</i>
Copenhagen
Aarhus | 0.6 | 0.0 | 7.7 | 0.3
0.5 | 12.0
13.7 | 66.4 | 5.6 7.1 | 2.7 | 2.2 | 1.5 | 0.3 | 0.6 | | <i>Sweden</i>
Malmö
Umeå | 0.0 | 0.0 | 11.4 | 2.5 | 9.3
8.3 | 26.2
26.1 | 3.7 | 31.7 | 9.9 | 3.5 | 1.0 | 0.7 | | Norway
South and East
North and West | 0.0 | 0.0 | 2.5 | 0.4 | 1.0 | 41.5 | 5.7 | 34.6
30.6 | 9.9 | 2.8 | 1.0 | 0.6 | | All centres | 1.0 | 0.0 | 10.4 | 1.8 | 8.3 | 39.6 | 7.0 | 19.3 | 8.3 | 2.4 | 9.0 | 1.2 | Table 4 Continued | Country and centre | | | 7 | Dietary food groups (percentage contribution of each food group to total intake of the nutrient) | ups (percentage | contribution | of each food | group to tc | tal intake | of the nutrient) | | | |--|-------------------------------------|------------------------------|---------------------------------|--|---|---|--|--------------------------------------|---------------------------------|------------------------------------|--|---| | | Vegetables | Fruits | Dairy
products | Cereals and products | Meats and products | Fish/
shellfish | Eggs and products | Added
fats | Cakes | Condiments/
sauces | Soups/bouillon | All other
food groups | | Greece | 11.5 | 10.8 | 1.3 | 2.1 | 9.0 | 1.8 | Vitamin E
1.0 | 59.8 | 8.4 | 3.4 | 6.0 | 2.6 | | Spain
Granada
Murcia
Navarra
San Sebastian
Asturias | 14.1
14.3
8.8
4.2 | 19.0
17.7
17.3
16.4 | 2.7
2.0
2.9
4.9
4.9 | 2.3
1.8
2.0
3.5 | £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ £ | 5.1
4.3
5.3
5.2 | 2.2.2.8.2.0.3.4.2.2.2.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2 | 38.8
40.8
46.0
48.5 | 2.5
7.6
7.6
2.5
7.6 | 8. 2. 2. 8. 8.
8. 4. 8. 4. | 4.1.00.1.1.80.1.1.2.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. | 8. 5. 1. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. | | facility Ragusa Naples Florence Turin | 9.8
13.6
13.8
13.9
9.81 | 16.0
13.4
15.4
16.7 | 2.2
2.2
2.2
2.2 | ; | 2. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 5. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | 5 1.3
5 2.1
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1.3
1 | 40.6
40.1
43.7
38.5
26.7 | 6.7
6.7
5.1
5.2
6.6 | 14.3
12.0
4.5
6.0
20.6 | 0.0
0.0
0.3
0.3
0.5 | 2.1
3.5
3.1
2.4
2.5 | | France
South coast
South
North-East
North-West | 13.3
12.7
12.5
11.4 | 12.2
12.5
12.4
13.8 | 4, 4, 4, 4,
4, L, 4, 6, |
5.0
5.4
5.5
4.2 | 2.2
2.0
2.3
2.5 | 3.1
2.9
2.9
4.7 | 1.5
1.6
1.8 | 27.6
23.0
21.2
15.9 | 4.7
4.0
5.2
5.0 | 20.9
27.0
26.7
29.4 | 1.9
2.0
2.0 | 3.1
3.2
3.4 | | <i>Germany</i>
Heidelberg
Potsdam | 9.8 | 9.6 | 3.2 | 8.0
7.0 | 2.6 | 1.8 | 1.5 | 21.3
35.4 | 8.0 | 27.3
14.2 | 1.1 | 6.0 | | The Netherlands
Bilthoven
Utrecht | 8.5 | 5.2 7.8 | 3.5 | 4.8 | 1.2 | 1.6 | 4.0 | 43.1
40.9 | 7.9 | 15.8
14.1 | 0.2 | 4.7 | | United Kingdom
General population
Health-conscious | 13.7 | 9.0 | 4.5 | 12.4 | 1.5 | 4.6 | 1.4 | 26.3
24.1 | 11.1 | 8.8 | 1.2 | 5.4 | | <i>Denmark</i>
Copenhagen
Aarhus | 10.0 | 17.1 | 4.3 | 10.0 | 2.1 | 9.3 | 3.6 | 18.6 | 8.5
13.3 | 9.5
8.3 | 0.7 | 6.3 | | <i>Sweden</i>
Malmö
Umeå | 8.7 | 11.7 | 4.7 | 9.5
12.1 | 5.3
4.9 | 6.1 | 4.0
3.4 | 22.8
23.4 | 12.3
12.4 | 7.7
5.9 | 2.1 | 5.0 | | Norway
South and East
North and West | 9.2
8.4 | 11.3 | 7.4
4. | 12.8
12.6 | 3.9 | 8.5 | 9.2 | 13.0 | 11.4 | 5.6 | 1.5 | 8.8 | | All centres | 10.9 | 12.2 | 3.6 | 6.4 | 2.2 | 4.0 | 2.7 | 31.2 | 7.4 | 13.7 | 1.2 | 4.5 | Values are percentages derived from models adjusted for age and weighted by season and day of recall (minimally adjusted models). Table 5 Minimally adjusted^a mean (s.e.) daily intakes of retinol, β-carotene, vitamin D and vitamin E by season of 24 hour recall collection, stratified by gender | Country | | Men—intakes by s | —intakes by season (mean (s.e.)) | | | Women—intakes by | Women—intakes by season (mean (s.e.)) | | |---|---|---|---|--|---|--|--|--| | | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | | Greece
Spain | 588.6 (63.1)
548.7 (53.7) | 592.7 (103.3)
493.2 (101.2) | 563.5 (283.7)
670.5 (105.5) | Retinol (
569.0 (125.9)
384.9 (116.1) | Retinol (μg/day) 5.9) 305.6 (69.3) 6.1) 407.0 (74.7) | 271.3 (146.8)
476.4 (78.8) | 649.5 (80.5)
308.4 (91.2) | 456.6 (77.2) 409.8 (82.9) | | Italy
France | 510.7 (59.5) | 483.1 (110.0) | 304.2 (139.7) | 346.2 (119.4) | 280.8 (54.6)
673.1 (38.1) | 630.9 (62.8) | 412.0 (61.1)
609.9 (46.9) | 568.4 (61.1)
657.1 (41.1) | | Germany
The Netherlands | 1107.8 (47.7)
1098.2 (72.8)
748.5 (113.5) | 1067.8 (91.7)
1078.2 (138.6) | 1160.5 (85.4)
1027.9 (129.6) | 999.9 (113.3)
1000.5 (142.0)
540.1 (207.5) | 729.6 (59.1)
765.3 (57.6) | 698.7 (57.1)
641.8 (51.2)
678.5 (135.5) | 713.4 (85.4)
817.5 (60.4) | 764.8 (77.1)
851.1 (59.0) | | UK, health-conscious | 728.6 (211.1) | 1082.1 (305.0) | 309.6 (457.3) | 563.7 (617.0) | 312.4 (198.1) | 428.4 (249.3) | 354.2 (221.7) | 357.0 (218.1) | | Sweden
Nomes | 1530.3 (31.4)
1696.8 (44.4) | 1574.7 (86.0) | 1439.8 (147.8)
1626.7 (89.2) | 1839.8 (99.8) | 652.9 (74.1)
1219.1 (51.2)
763.8 (71.6) | 813.3 (89.9)
1180.8 (54.1)
820.2 (100.7) | 725 1 (66.6) | 1240.8 (51.5) | | All centres | 856.1 (45.3) | 803.2 (41.5) | 877.8 (47.1) | 895.2 (41.3) | 601.8 (23.2) | 578.2 (20.5) | 602.2 (24.6) | 616.5 (21.4) | | Greece
Spain
Italy | 2754.9 (157.8)
2394.0 (154.5)
2980.0 (168.0) | 2339.5 (433.2)
3131.3 (161.1)
3284.0 (213.3) | 3038.5 (192.2)
2476.8 (177.2)
2460.6 (182.3) | β-carotens
2982.2 (164.2)
2308.5 (162.5)
2549.9 (170.6) | β-carotene (μg/daγ)
(164.2) 2475.8 (173.1)
(162.5) 1893.7 (186.6)
(170.6) 2443.0 (136.4) | 1800.6 (367.0)
2508.9 (196.8)
2896.0 (183.6) | 2714.3 (201.2)
2163.9 (227.9)
2160.3 (152.8) | 2473.5 (193.0)
2170.6 (207.2)
2174.6 (152.6) | | France
Germany
The Netherlands | 3320.5 (140.0)
1918.2 (211.7) | 3545.0 (130.3)
2026.5 (197.9) | 200 | 3541.6 (145.2)
2554.0 (250.0) | 4457.5 (95.2)
3498.1 (147.6)
2001.1 (144.1) | 4920.3 (156.9)
4144.9 (142.7)
2016.5 (127.9) | 3990.6 (117.3)
3538.0 (213.5)
1890.3 (151.0) | 3997.9 (102.8)
3854.0 (192.6)
2045.4 (147.4) | | UK, general population | 3323.3 (332.3) | 2991.3 (377.3) | 200 | 3174.6 (354.4) | 3056.3 (275.1) | 3488.5 (338.7) | 3476.1 (337.6) | 2235.3 (360.5) | | on, nealth-conscious
Denmark
Sweden | 4000.7 (403.0)
2332.6 (168.8)
1714.4 (131.3) | 3245.1 (225.6)
1991.3 (136.2) | 2656.8 (148.9)
1870.8 (152.4) | 3167.4 (126.0)
1954.4 (116.3) | 3407.0 (185.1)
3407.0 (185.1)
1945.6 (128.0) | 4319.0 (625.0)
3306.4 (224.6)
2242.4 (135.1) | 3239.6 (175.1)
2032.9 (151.4) | 7 6 0 | | Norway
All centres | 2634.5 (69.1) | 2583.6 (63.3) | 2915.0 (71.9) | 2826.4 (63.1) | 1934.5 (179.0)
2715.9 (57.9) | 3135.9 (251.7)
2791.5 (51.3) | 2391.9 (166.6)
3114.7 (61.5) | 2624.1 (165.4)
2841.0 (53.5) | | Greece
Spain
Italy | 3.3 (0.4)
5.2 (0.3)
2.7 (0.4) | 5.2 (1.0)
8.1 (0.4)
2.1 (0.5) | 3.5 (0.4)
5.6 (0.4)
2.4 (0.4) | Vitamin D
3.5 (0.4)
5.0 (0.4)
2.7 (0.4) | Vitamin D (µg/day) (0.4) 2.6 (0.2) (0.4) 3.6 (0.2) (0.4) 1.7 (0.2) | 3.3 (0.5)
4.4 (0.3)
2.1 (0.2) | 2.6 (0.3)
3.7 (0.3)
1.8 (0.2) | 2.6 (0.3)
3.5 (0.3)
1.8 (0.2) | | Germany
Germany
The Netherlands
UK, general population | 3.7 (0.3)
6.0 (0.5)
4.7 (0.7) | | 4.4 (0.4)
5.7 (0.5)
5.1 (0.7) | 4.7 (0.3)
5.3 (0.6)
4.9 (0.8) | 000 | ટુંટ્રેટ્રેટ્ | ટુંટુંટુંટું | ೭೭೭ | | UK, health-conscious
Denmark
Sweden | 3.4 (1.0)
5.4 (0.4)
8.5 (0.3) | 2.1 (1.6)
5.1 (0.5)
8.9 (0.3) | 3.9 (2.1)
6.4 (0.3)
8.7 (0.3) | | 000 | .000 | .છંછંછ | . ಅಲ | | Norway
All centres | 5.0 (0.2) | 4.6 (0.1) | 5.3 (0.2) | 4.8 (0.1) | 00 | 99 | | . ಅ.ಅ | | Greece
Spain
Italy | 19.8 (0.4)
16.4 (0.4)
13.4 (0.4) | 19.5 (1.2)
18.1 (0.4)
13.9 (0.6) | 21.4 (0.5)
15.9 (0.5)
12.3 (0.5) | Vitamin E (mg,
20.3 (0.4)
16.4 (0.4)
12.0 (0.5) | (mg/day)
14.8 (0.3)
11.5 (0.3)
10.2 (0.2) | 13.1 (0.7)
14.5 (0.4)
11.0 (0.3) | 15.5 (0.4)
14.1 (0.4)
9.6 (0.3) | 16.5 (0.3)
12.8 (0.4)
10.1 (0.3) | | France
Germany
The Netherlands | 18.0 (0.4)
15.4 (0.6) | 4 / | 16.8 (0.5)
15.8 (0.6) | | 13.9 (0.2)
13.9 (0.3)
10.6 (0.3) | 14.5 (0.3)
11.2 (0.2) | 13.5 (0.2)
13.5 (0.4)
10.4 (0.3) | 12.0 (0.2)
12.0 (0.3)
10.2 (0.3) | | UK, general population UK, health-conscious Denmark | 15.4 (0.9)
15.1 (1.2)
10.0 (0.5)
9.5 (0.4) | 11.5 (1.0)
14.8 (1.9)
11.5 (0.6)
9.8 (0.4) | 11.1 (0.8)
17.7 (2.5)
11.1 (0.4)
9.8 (0.4) | 15.8 (2.9)
15.8 (2.0)
10.8 (0.3)
9.7 (0.3) | 8.8 (0.3)
14.0 (0.9)
8.3 (0.3)
7.8 (0.3) | 7.4 (0.6)
16.0 (1.1)
9.3 (0.4) | 8.8 (0.6)
11.0 (1.0)
8.3 (0.3)
7.6 (0.3) | 8.3 (0.6)
11.9 (1.0)
8.5 (0.2)
7.7 (0.2) | | Norway
All centres | 14.4 (0.2) | | 14.8 (0.2) | | 7.7 (0.3) | 7.6 (0.5)
10.9 (0.1) | 7.8 (0.3)
11.7 (0.1) | 7.6 (0.3)
10.8 (0.1) | | | | | | | | | | | Abbreviation: s.e., standard error. ^aAdjusted for age and weighted by season and day of recall. Figure 1 Minimally adjusted mean intake of retinol and β -carotene ($\mu g/day$), stratified by gender and centre ordered from south to north, adjusted for age and weighted by season and day of dietary recall (a) men and (b) women. Figure 2 Minimally adjusted mean intake of vitamin D (μg/day), stratified by gender and centre ordered from south to north, adjusted for age and weighted by season and day of dietary recall (a) men and (b) women. Figure 3 Minimally adjusted mean intake of vitamin E (mg/day), stratified by gender and centre ordered from south to north, adjusted for age and weighted by season and day of dietary recall (a) men and (b) women. Mean intakes of vitamin E The lowest mean intake of vitamin E in men was in Malmo. Sweden (9.3 mg/day) and the highest in Greece (20.1 mg/day). In women, the mean intake of vitamin E ranged from a low of 7.7 mg/day (Malmo, Sweden and South and East Norway) to a high of 15.2 mg/day (San Sebastian, Spain) (Table 1 and Figures 3a and b). Similar to all the other nutrients, the intakes of vitamin E were higher in men than in women (range from 12.2% higher in Murcia, Spain to 28.4% higher in Bilthoven, the Netherlands). Overall, men consumed 14.5 mg/day, which was significantly (P difference by gender < 0.01) higher than the 11.1 mg/day intake for women. For both men and women, no apparent trends in intake were apparent by age range (Table 1). Further adjustments for age, height, weight and total energy intake did not meaningfully alter the observed intake values or patterns (Table A1 in the Appendix). Men in Southern and Central European regions consumed significantly higher levels of vitamin E than did those in Northern countries (Table 2). Although intakes for women in all three regions were lower than those for men, a clear and statistically significant south-to-north gradient of higher to lower intake was apparent (Table 2). In both men and women, smokers (as well as former smokers in the case of women) had significantly lower intakes of vitamin E than did never smokers. Men who were physically active showed a significantly higher level of vitamin E intake than did men who were inactive, whereas no differences in intake by level of physical activity were apparent for women. In both men and women, subjects in the lowest category of BMI ($<25 \, \text{kg/m}^2$) had significantly higher vitamin E intake than did those in the highest category (>30). In men, the major food group contributing to vitamin E intake is added
fats (42.2%), whereas fruits (10.1%), vegetables (8.4%) and condiments/sauces (10.0%) appear to be important contributors as well (Table 3). This appears to be the case in most centres with little variability. In women, the major food group source of vitamin E is also added fats (31.2%), but compared with men a greater percentage is contributed by fruits (12.2%), vegetables (10.9%) and condiments/sauces (13.7%). Similar to men, women also show little variability between centres for food group sources of vitamin E. In both men and women, there appeared to be little seasonal variation of vitamin E intake (Table 5). # Discussion Standardized data across different European countries on overall intake levels, major contributing food sources, lifestyle confounders and seasonal variation of nutrients are not only important for understanding dietary and nutrient patterns in different populations but they may also assist in devising policies pertaining to diet quality, nutritional intake levels and public health. This study has shown that the intake levels and food sources of the fat-soluble nutrients retinol, β -carotene, vitamin D and vitamin E vary to some extent by both gender and European region. This is more than likely a consequence of differences and heterogeneity of dietary patterns across Europe. The populations in this study range from southern European countries, where a diet rich in fruits and vegetables (rich sources of β -carotene and vitamin E) is consumed, to Central Europe, where meat and meat products (rich sources of retinol) are popular, to Northern Europe, where fish (rich sources of vitamin D) are more strongly consumed (Agudo *et al.*, 2002; Welch *et al.*, 2002; Linseisen *et al.*, 2002b, 2006; Slimani *et al.*, 2002b). In this context, a contrast is apparent in the food sources as well as in the regional-specific intakes of retinol and β-carotene, both of which contribute to vitamin A status in the body. From these data, it is clear that the majority of retinol in both men and women comes from animal products, such as dairy products and meats/meat products. A remarkable regional gradient of retinol intake—lowest in the south and highest in the north—is very apparent in both men and women, suggesting large differences between these centres in the intakes of the main food sources of retinol and, possibly, variations in the nutrient content of specific foods across countries. It is also interesting to note that in the southern centres, dairy products appear to provide a greater proportion of retinol intake than they do in the northern centres. In contrast to retinol, β-carotene is almost exclusively derived from fruits and vegetables. Thus, it would be expected to have a regional gradient of intake somewhat opposite to that of retinol. Yet, although both men and women from the southern regions do have significantly higher β-carotene intakes than do subjects in the north, the subjects from the central region have a significantly higher intake than do those in the other two regions. This is suggestive of a very intricate heterogeneity of dietary patterns in these European regions that merits further insight in terms of the differing fruit and vegetable sources of β-carotene (Agudo et al., 2002) and may be of consequence in terms of associations with the risk of different chronic diseases. It is also interesting to note that for all nutrients, except β-carotene, men had a higher intake than did women in most centres, and the differences were actually statistically significant when comparing men and women from all centres combined. To a large extent, the apparent gender differences in these non-energy adjusted data may be due to the fact that men consume more food than do women. When these data were adjusted for total energy intake (see Table A1), the gender differences were reduced but still apparent—likely because of the existence of gender-specific dietary patterns. For example, in the non-energy adjusted data, the gender difference was most striking for retinol, where women consumed \sim 59% as much as men. This may be because men may consume a greater proportion of their overall diet as meats/meat products—which are the main food source of retinol—than women. Similarly, when considering data for all centres combined, women actually consume a higher amount of β-carotene than do men. This small difference is not statistically significant, but it is likely indicative that women may consume a higher proportion of their diet as fruits and vegetables, which are the main sources of this nutrient. It is interesting to note that in a subset of the population in this study, blood concentrations of β-carotene were also higher in women than in men (Al-Delaimy et al., 2004). Within the EPIC study, blood concentrations of various carotenoids have been identified as dietary biomarkers of the intake of specific fruits and vegetables at an ecological (Al-Delaimy et al., 2005b) and individual (Al-Delaimy et al., 2005a) level. The data also show that blood β-carotene levels follow the north–south European gradient, with the European region, BMI, gender and smoking status being the top predictors of concentration (Al-Delaimy et al., 2004). In our analysis, an inverse relationship was observed between overall dietary \beta-carotene intakes and BMI, particularly in women. With respect to smoking status, overall β-carotene intake was significantly lower in smokers than in former or never smokers and is probably indicative of different dietary patterns based on smoking status. Another interesting component of these observations is the intake pattern of vitamin D. As is well known and also apparent from these data, the main food sources of vitamin D are fish/shellfish. In some centres, there was a small contribution of vegetables to overall vitamin D intake. This may be due to vitamin D from the intake of some mushrooms, or it may be as a result of mis-reporting of vegetable intake from mixed dishes that include vitamin D sources, such as eggs or milk. Interestingly, a non-negligible and relatively consistent contribution across centres was observed for meats and meat products to overall vitamin D intake. In fact, this food group has recently been suggested to provide more vitamin D than believed previously and a recent study shows that rickets and osteomalacia can be prevented by higher meat consumption, related in part to its vitamin D content (Dunnigan et al., 2005). The vitamin D contribution of added fats was high in northern EPIC regions, likely because of the high consumption of marine oils. However, dietary vitamin D is only a small component of body vitamin D status as the majority of body vitamin D is produced by sun exposure—that is, in populations with adequate access to sunlight (Holick, 2002). For this reason, higher dietary intake of vitamin D-rich foods to increase body vitamin D status has been recommended for some populations in very northern European regions (Brustad et al., 2004). In this study, perhaps as a conscious effort or as a consequence of supplementation of some food products, subjects in the northern European regions had significantly higher intakes of vitamin D than did those in either the central or southern regions. Similar geographic trends have been observed by some studies considering serum measures of body vitamin D status. A dated report shows higher mean serum vitamin D concentrations in Nordic countries compared with Mediterranean countries (van der Wielen et al., 1995), whereas a more recent systematic review of the European literature suggests a statistically significant positive association between latitude and body vitamin D status in subjects older than 65 years, but not in younger subjects (Mullie *et al.*, 2008). Nevertheless, foods likely contribute little to overall vitamin D sufficiency (Harris, 2008). Although some of the populations studied herein consume vitamin D in the form of multi-vitamin dietary supplements (Skeie *et al.*, 2009), in other populations the contribution of supplemented vitamin D to overall serum vitamin D levels has been shown to be minimal (Yetley, 2008). On this latter point, it is important to note that the data presented in this study pertain only to intake from dietary sources and do not include supplement intake. The only exceptions are of course for foods that are directly supplemented with a nutrient, such as vitamin D in dairy products in some European countries. However, vitamin A (retinol), vitamin E and, more recently, vitamin D are very common as dietary supplements. Thus, the overall intakes of each of these nutrients may be higher in subgroups that regularly consumed dietary supplements containing these nutrients. In both men and women, the overall intake of vitamin E showed an interesting difference by European region (higher intake in the south, lower in the north) and by BMI (higher intake with lower BMI). These observations may be related to the food sources of vitamin E, which is primarily derived from vegetable oils. Thus, the gradient of intake by European region may be due to the higher intake of vegetable oils in the south compared with the north, where butter and mixed fat margarines are consumed more than in the south (Linseisen et al., 2002a). The gradient of intake by BMI may be similarly related to varying dietary patterns of food sources vitamin E. For example, those with lower BMI may be consuming more fruits, vegetables and vegetable oils (all sources of vitamin E), whereas those with higher BMI may be consuming more butter and meats/meat products and less fruits and vegetables. Similar variations in dietary patterns may also explain differences in vitamin E intake by smoking status. For all the nutrients presented in this study, very little variation in intake was observed by the day of the week (data not shown) or season in which the 24-HDR was administered. Intuitively, it is likely that there are
some inter-individual differences in intake and dietary patterns from weekday to weekend and from season to season, but they are not being well observed herein at the population level because all these data are derived from a single 24-HDR. This limitation does not allow for any study at the individual level. On the topic of limitations, it must also be noted that although this is the largest study looking at the dietary intake levels of these nutrients, not all EPIC populations were population-based and hence these findings should not be extrapolated to general populations in each country or region. The results presented in this study originate from the ENDB, a nutrient database that has been standardized across all the countries involved in the EPIC study. The lack of a standardized nutrient database has been a major obstacle to obtaining comparable nutrient intake data across Europe. The ENDB is the first initiative to take into account differences in the types of food available and methods for the calculation of micronutrient and macronutrient composition of foods across the different populations enrolled in the EPIC study. In summary, the data presented in this study show some very interesting gender- and region-specific differences in the intakes of retinol, β -carotene, vitamin D and vitamin E in 10 European countries with great heterogeneity in dietary patterns as well as incidence of cancer and other chronic diseases. Given the essential metabolic roles of these fatsoluble nutrients, these observations may provide a basis for further studies exploring potential aetiological links between the intake of these nutrients and chronic disease risk in these countries. #### Conflict of interest M Jenab has received grant support from the World Cancer Research Fund. S Shakya-Shrestha received grants support from the British Heart Foundation. P Wallström received lecture fees from Prenet AB. S Bingham has received grant support from MRC Centre. The remaining authors have declared no financial interests. # **Acknowledgements** The work described in this paper was carried out with the financial support of the European Commission: Public Health and Consumer Protection Directorate 1993-2004; Research Directorate-General 2005; Ligue contre le Cancer (France); Société 3M (France); Mutuelle Générale de l'Education Nationale; Institut National de la Santé et de la Recherche Médicale (INSERM); Institut Gustave Roussy; German Cancer Aid; German Cancer Research Center; German Federal Ministry of Education and Research; Danish Cancer Society; Health Research Fund (FIS) of the Spanish Ministry of Health; Spanish Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra and the Catalan Institute of Oncology; and ISCIII RETIC (RD06/0020), Spain; Cancer Research UK; Medical Research Council, UK; the Stroke Association, UK; British Heart Foundation; Department of Health, UK; Food Standards Agency, UK; the Wellcome Trust, UK; Greek Ministry of Health; Hellenic Health Foundation; Italian Association for Research on Cancer; Italian National Research Council, Regione Sicilia (Sicilian government); Associazione Iblea per la Ricerca Epidemiologica - ONLUS (Hyblean association for epidemiological research, NPO); Dutch Ministry of Health, Welfare and Sport; Dutch Prevention Funds; LK Research Funds; Dutch ZON (Zorg Onderzoek Nederland); World Cancer Research Fund (WCRF); Swedish Cancer Society; Swedish Research Council; Regional Government of Skane and the County Council of Vasterbotten, Sweden; Norwegian Cancer Society; the Norwegian Research Council and the Norwegian Foundation for Health and Rehabilitation. We thank Sarah Somerville, Nicole Suty and Karima Abdedayem for their assistance with editing and Kimberley Bouckaert and Heinz Freisling for their technical assistance. #### References - Agudo A, Slimani N, Ocke MC, Naska A, Miller AB, Kroke A *et al.* (2002). Consumption of vegetables, fruit and other plant foods in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts from 10 European countries. *Public Health Nutr* 5, 1179–1196. - Al-Delaimy WK, van Kappel AL, Ferrari P, Slimani N, Steghens JP, Bingham S *et al.* (2004). Plasma levels of six carotenoids in nine European countries: Report from the European Prospective Investigation into Cancer and Nutrition (EPIC). *Public Health Nutr* 7, 713–722. - Al-Delaimy WK, Ferrari P, Slimani N, Pala V, Johansson I, Nilsson S *et al.* (2005a). Plasma carotenoids as biomarkers of intake of fruits and vegetables: individual-level correlations in the European Prospective Investigation into Cancer and Nutrition (EPIC). *Eur J Clin Nutr* **59**, 1387–1396. - Al-Delaimy WK, Slimani N, Ferrari P, Key T, Spencer E, Johansson I *et al.* (2005b). Plasma carotenoids as biomarkers of intake of fruits and vegetables: ecological-level correlations in the European Prospective Investigation into Cancer and Nutrition (EPIC). *Eur J Clin Nutr* **59**, 1397–1408. - Ali MM, Vaidya V (2007). Vitamin D and cancer. *J Cancer Res Ther* 3, 225–230. - Bingham S, Riboli E (2004). Diet and cancer—the European Prospective Investigation into Cancer and Nutrition. *Nat Rev Cancer* **4**, 206–215. - Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2008). Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. *Cochrane Database Systematic Review* 2, CD007176. - Brustad M, Skeie G, Braaten T, Slimani N, Lund E (2003). Comparison of telephone vs face-to-face interviews in the assessment of dietary intake by the 24h recall EPIC SOFT program—the Norwegian calibration study. *Eur J Clin Nutr* **57**, 107–113. - Brustad M, Alsaker E, Engelsen O, Aksnes L, Lund E (2004). Vitamin D status of middle-aged women at 65–71 degrees N in relation to dietary intake and exposure to ultraviolet radiation. *Public Health Nutr* 7, 327–335. - Constantinou C, Papas A, Constantinou AI (2008). Vitamin E and cancer: an insight into the anticancer activities of vitamin E isomers and analogs. *Int J Cancer* **123**, 739–752. - Debier C, Larondelle Y (2005). Vitamins A and E: metabolism, roles and transfer to offspring. *Br J Nutr* **93**, 153–174. - Dunnigan MG, Henderson JB, Hole DJ, Barbara ME, Berry JL (2005). Meat consumption reduces the risk of nutritional rickets and osteomalacia. *Br J Nutr* 94, 983–991. - Fairfield KM, Fletcher RH (2002). Vitamins for chronic disease prevention in adults: scientific review. *JAMA* 287, 3116–3126. - Giovannucci E (2007). Epidemiological evidence for vitamin D and colorectal cancer. *J Bone Miner Res* **22**(Suppl 2), V81–V85. - Giovannucci E (2008). Vitamin D status and cancer incidence and mortality. *Adv Exp Med Biol* 624, 31–42. - Goodman GE, Alberts DS, Meyskens FL (2008). Retinol, vitamins, and cancer prevention: 25 years of learning and relearning. *J Clin Oncol* **26**, 5495–5496. - Harris S (2008). Emerging roles of vitamin D: more reasons to address widespread vitamin D insufficiency. *Mol Aspects Med* 29, 359–360. Heaney RP (2008). Vitamin D: criteria for safety and efficacy. *Nutr Rev* 66, S178–S181. - Holick MF (2002). Vitamin D: the underappreciated D-lightful hormone that is important for skeletal and cellular health. *Curr Opin Endocrinol Diabetes* **9**, 87–98. - Holick MF (2005). The vitamin D epidemic and its health consequences. J Nutr 135, 2739S–2748S. - Holick MF (2007). Vitamin D deficiency. *N Engl J Med* **357**, 266–281. Jenab M, Riboli E, Ferrari P, Friesen M, Sabate J, Norat T *et al.* (2006). Plasma and dietary carotenoid, retinol and tocopherol levels and the risk of gastric adenocarcinomas in the European prospective investigation into cancer and nutrition. *Br J Cancer* **95**, 406–415. - Kimlin MG (2008). Geographic location and vitamin D synthesis. Mol Aspects Med 29, 453–461. - Linseisen J, Bergstrom E, Gafa L, Gonzalez CA, Thiebaut A, Trichopoulou A *et al.* (2002a). Consumption of added fats and oils in the European Prospective Investigation into Cancer and Nutrition (EPIC) centres across 10 European countries as assessed by 24-hour dietary recalls. *Public Health Nutr* 5, 1227–1242. - Linseisen J, Kesse E, Slimani N, Bueno-De-Mesquita HB, Ocke MC, Skeie G *et al.* (2002b). Meat consumption in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts: results from 24-hour dietary recalls. *Public Health Nutr* 5, 1243–1258. - Linseisen J, Rohrmann S, Norat T, Gonzalez CA, Dorronsoro IM, Morote GP *et al.* (2006). Dietary intake of different types and characteristics of processed meat which might be associated with cancer risk–results from the 24-hour diet recalls in the European Prospective Investigation into Cancer and Nutrition (EPIC). *Public Health Nutr* 9, 449–464. - Love JM, Gudas LJ (1994). Vitamin A, differentiation and cancer. *Curr Opin Cell Biol* **6**, 825–831. - Marceau G, Gallot D, Lemery D, Sapin V (2007). Metabolism of retinol during mammalian placental and embryonic development. *Vitam Horm* **75**, 97–115. - McCullough FS, Northrop-Clewes CA, Thurnham DI (1999). The effect of vitamin A on epithelial integrity. *Proc Nutr Soc* 58, 289–293. - Miller III ER, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E (2005). Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. *Ann Intern Med* **142**, 37–46. - Mullie P, Gandini S, Boniol M, Autier P (2008). Latitude of residence in Europe and serum 25-hydroxy vitamin D levels: a systematic review. In: Vitamin D and Cancer. IARC Working Group Reports, vol. 5. WHO-International Agency for Research on Cancer, Lyon. pp 201–210. - Nesby-O'Dell S, Scanlon KS, Cogswell ME, Gillespie C, Hollis BW, Looker AC *et al.* (2002). Hypovitaminosis D prevalence and determinants among African American and white women of reproductive age: third National Health and Nutrition Examination Survey, 1988–1994. *Am J Clin Nutr* **76**, 187–192. - Palace
VP, Khaper N, Qin Q, Singal PK (1999). Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. *Free Radic Biol Med* **26**, 746–761. - Riboli E, Kaaks R (1997). The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. *Int J Epidemiol* **26**(Suppl 1), S6–S14. - Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M *et al.* (2002). European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. *Public Health Nutr* 5, 1113–1124. - Singh U, Devaraj S, Jialal I (2005). Vitamin E, oxidative stress, and inflammation. *Annu Rev Nutr* 25, 151–174. - Skeie G, Braaten T, Hjartåker A, Lentjes M, Amiano P, Jakszyn P *et al.* (2009). Use of dietary supplements in the European Prospective Investigation into Cancer and Nutrition calibration study. *Eur J Clin Nutr* **63**(Suppl 4), S226–S238. - Slimani N, Deharveng G, Charrondiere RU, van Kappel AL, Ocke MC, Welch A *et al.* (1999). Structure of the standardized computerized 24-h diet recall interview used as reference method in the 22 centers participating in the EPIC project. European Prospective Investigation into Cancer and Nutrition. *Comput Methods Programs Biomed* 58, 251–266. - Slimani N, Ferrari P, Ocke M, Welch A, Boeing H, Liere M et al. (2000). Standardization of the 24-h diet recall calibration method used in the European prospective investigation into cancer and nutrition (EPIC): general concepts and preliminary results. Eur J Clin Nutr 54, 900–917. - Slimani N, Kaaks R, Ferrari P, Casagrande C, Clavel-Chapelon F, Lotze G *et al.* (2002a). European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study: rationale, design and population characteristics. *Public Health Nutr* 5, 1125–1145. - Slimani N, Fahey M, Welch AA, Wirfalt E, Stripp C, Bergstrom E *et al.* (2002b). Diversity of dietary patterns observed in the European Prospective Investigation into Cancer and Nutrition (EPIC) project. *Public Health Nutr* 5, 1311–1328. - Slimani N, Deharveng G, Unwin I, Southgate DA, Vignat J, Skeie G et al. (2007). The EPIC nutrient database project (ENDB): a first attempt to standardize nutrient databases across the 10 European countries participating in the EPIC study. Eur J Clin Nutr 61, 1037–1056. - Sommer A (2008). Vitamin A deficiency and clinical disease: an historical overview. *J Nutr* 138, 1835–1839. - Traber MG, Atkinson J (2007). Vitamin E, antioxidant and nothing more. Free Radic Biol Med 43, 4–15. - van der Wielen RP, Lowik MR, van den BH, de Groot LC, Haller J, Moreiras O *et al.* (1995). Serum vitamin D concentrations among elderly people in Europe. *Lancet* **346**, 207–210. - Voutilainen S, Nurmi T, Mursu J, Rissanen TH (2006). Carotenoids and cardiovascular health. *Am J Clin Nutr* **83**, 1265–1271. - Wallis DE, Penckofer S, Sizemore GW (2008). The 'sunshine deficit' and cardiovascular disease. *Circulation* 118, 1476–1485. - Welch AA, Lund E, Amiano P, Dorronsoro M, Brustad M, Kumle M et al. (2002). Variability of fish consumption within the 10 European countries participating in the European Investigation into Cancer and Nutrition (EPIC) study. *Public Health Nutr* 5, 1273–1285. - Yetley EA (2008). Assessing the vitamin D status of the US population. *Am J Clin Nutr* **88**, 558S–564S. - Zittermann A, Schleithoff SS, Koerfer R (2005). Putting cardiovascular disease and vitamin D insufficiency into perspective. *Br J Nutr* **94**, 483–492. # Appendix Table A1 Fully adjusted^a mean daily intakes of retinol, β-carotene, vitamin D and vitamin E, presented by centre ordered from south to north, gender and age group | | | | | | : | | | | | | | | | | | ; | | | | | | | | |---|-------------------|-------------------------|--------------------------|-----------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|----------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|--------------------------|------------------------|---------------------------------|----------------------------| | | - 1 | | | | Men | | | | | | | | | | | Women | | | | | | Men an | Men and women | | | 4 | ΑΙΙ | 35 | 35–44
years | 45 | 45–54
years | 55 | 55–64
years | 65 | 65–74
years | z | | ΑΙΙ | 35 | 35–44
years | 4 > | 45–54
years | \$5 | 55–64
years | 6 × | 65–74
years | Z | 5.6. | | Σ | | s.e. | Z | 5.6. | Z | s.e. | Z | s.e. | Z | 5.6. | | Z | s.e. | | | | 1311 723 | | 62 | 556 | 182 | 778 | 125 | 635 | 114 | 827 | 66 | Retino
1373 | Retinol (μg/day)
1373 540 | <i>y</i> 43 | 629 | 112 | 388 | 73 | 631 | 75 | 563 | 98 | 604 | 35 | | 214 418
243 463
444 386
490 581
386 504 | | 148
140
104
99 | 169
564
225
438 | | 364
459
318
610
470 | 312
250
172
137 | 422
426
423
732
548 | 201
195
147
187
165 | 487
1025
358
286
473 | 335
484
316
494
300 | 300
304
271
244
324 | 414
402
376
318
442 | 88
88
93
85 | 408
401
427
285
550 | 228
176
244
209
206 | 456
316
429
299
324 | 148
148
152
159
138 | 378
254
330
351
517 | 139
146
142
165 | 418 | 284 — — — 312 | 414
415
319
414
434 | 79
77
67
67
69 | | | 7 | | I | Ι | 891 | 249 | 624 | 262 | I | 1 | 138 | | 130 | 75 | 216 | 250 | 243 | 106 | 232 | 785 | 748 | 448 | 102 | | 271 4.
676 4
327 4 | 429
472
410 | 131
84
120 | 399
435
— | 415
271
— | 487
555
489 | 225
140
267 | 365
440
402 | 187
119
144 | 211
84 | 319
404 | 784
392
794 | 623
420
317 | 55
77
55 | 553
236
194 | 183
244
175 | 619
722
257 | 95
128
91 | 684
253
400 | 76
108
82 | 261
—
288 | 214
—
164 | 612
382
378 | 55
55
54 | | | | | | | | | | | | | 620
1425
2059
631 | 679
544
596
663 | 62
41
34
61 | | | 741
594
553
799 | 101
63
53 | 585
542
604
508 | 96
65
53
92 | 764
451
687
755 | 128
91
78
146 | 784
651
698
770 | 72
48
40
72 | | 1034 959
1233 1194 | 959
1194 | 68 | 715
1134 | 181 | 1008 | 108 | 985 | 99 | 924 | 241 | 1087 | 711
722 | 47 | 969 | 79 | 596
803 | 85
91 | 969 | 77 | 520 | 296 | 793
926 | 39 | | 1024 1072 | 72 | 70 | 916 | 133 | 1155 | 106 | 1027 | 119 | I | 1 | 1086 | 748 | 47 | 653 | 83 | 801 | 72
61 | 729
705 | 90 | 782 | 72 | 864 | 40 | | 402 8 | 812
658 | 108 | 584 | 355 | 703
448 | 193
332 | 799
516 | 197
314 | 1018 | 196 | 570
197 | 570
353 | 64 | 515
418 | 192
344 | 478
317 | 105 | 679
340 | 116 | 611
438 | 137 | 656
458 | 57 | | 1356 1291
567 1211 | 12 | 59
91 | | | 1204 | 96
129 | 1373 | 77 | 914 | 296 | 1484 | 707 | 40 | | | 611 | 99 | 746 | 51 | 1020 | 189 | 946
916 | 34 | | 1421 1763
1344 1666 | 999 | 61 | 1341 | 201 | 1962
1683 | 173 | 1808
1690 | 91 | 1729 | 82
176 | 1711 | 1219
1218 | 38 | 1165 | 94 | 1222
1272 | 9/ | 1237 | 61 | 1227
1319 | 58
123 | 1432
1391 | 33 | Table A1 Continued | Country and centre | | | | | | Men | | | | | | | | | | _ | Women | | | | | | Men and women | women | |--|--|-----|--------------------------------|----------------------|--------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------|-------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|------------------------------|-----------------------------|--------------------------------------|---------------------------------| | | z | All | | 35–44
years | 44
3 | 45–54
years | .54
ITS | 55–64
years | -64
7rs | 65–74
years | 65–74
years | z | All | _ | 35–44
years | 44
rs | 45–54
years | 54 | 55–64
years | 54
rs | 65–74
years | 74
rs | Z | s.e. | | | | Z | s.e. | M | s.e. | Z | s.e. | Z | s.e. | Z | S.e. | | Z | s.e. | Z | s.e. | Z | s.e. | Z | s.e. | N | s.e. | | | | Norway
South and East
North and West | | | | | | | | | | | | 1004 | 799 | 49
55 | 768
726 | 116
124 | 783
718 | 09 | 832
756 | 119 | | | 896 | 57 | | All centres | 13025 1049 | | 19 | 705 | 65 | 982 | 35 | 1091 | 29 | 1238 | 51 | 23 009 | 702 | 10 | 641 | 32 | 699 | 17 | 705 | 16 | 823 | 28 | 827 | 10 | | Greece | 1311 2932 | | 96 2 | 2033 | 283 | 2438 | 194 | 3418 | 177 | 3233 | 154 | β-carotene (μg/day)
1373 2527 10 | e (μg/de
2527 | γε)
107 | 2231 | 280 | 2481 | 182 | 2811 | 188 | 2405 | 216 | 2653 | 72 | | Spain
Granada
Murcia
Navarra
San Sebastian
Asturias | 214 2644
243 2694
444 2886
490 2831
386 2046 | | 231
217 2
161 2
155 3 | 2942
2126
3081 | 673
697
362
646 | 2635
2251
2474
2700
1783 | 485
388
268
212
288 | 2796
2576
3279
2707
2348 | 313
302
229
290
257 | 2560
4487
2754
1832
1873 | 521
752
491
767 |
300
304
271
244
324 | 2402
2223
2298
2720
1560 | 221
219
232
244
212 | 2542
2284
1659
2317
1316 | 568
439
608
521
514 | 2503
2243
2134
3291
1571 | 370
368
380
396
344 | 2287
1960
2221
2390
1600 | 346
364
354
411 | 2103
—
—
—
1486 | 709
 -
 -
 -
 - | 2443
2365
2568
2700
1750 | 162
157
137
136
138 | | Italy
Ragusa
Naples
Florence
Turin
Varese | 168 2401
271 3085
676 3048
327 2761 | | 261
204 2
130 2
187 | | 645 | 2570
3298
2734
2994 | 387
350
217
414 | 2147
3064
3153
2683 | 406
291
185
224 | | | 138
403
784
392
794 | 2012
2189
2588
3009
2214 | 325
191
136
192
136 | 1636
3114
2876
3164
2232 | 540
618
457
608
436 | 1703
1760
2642
2914
2044 | 606
302
236
320
226 | 2504
2164
2573
3020
2430 | 579
293
189
269
204 |
3033
2018

1843 | 617
533
— | 2119
2197
2700
2954
2343 | 209
184
113
112 | | France
South coast
South
North-East
North-West | | | | | | | | | | | | 620
1425
2059
631 | 4437
4122
4346
4506 | 154
102
85
152 | | | 4631
3775
3979
4474 | 252
158
131
241 | 4670
4372
4495
4551 | 239
161
132
230 | 3839
4446
4943
4586 | 320
227
194
365 | 4469
4150
4385
4533 | 148
99
82
147 | | <i>Germany</i>
Heidelberg
Potsdam | 1034 3393
1233 3357 | _ | 105 2
96 3 | 2923 | 280 | 3388
3266 | 167 | 3414
3326 | 154
126 | 3106 | 374 | 1087 | 3763
3930 | 117 | 3764
3588 | 198
231 | 3742
4325 | 211
228 | 3652
3867 | 193 | | 738 | 3581
3606 | 80 | | <i>The Netherlands</i>
Bilthoven
Utrecht | 1024 2126 | | 109 1 | 1891 | 207 | 2072 | 165 | 2010 | 184 | I | I | 1086 | 1891 | 118
90 | 1771 | 206 | 1839 | 180 | 1872
2014 | 223 | 2150 | 179 | 2011
2063 | 82
85 | | United Kingdom
General population
Health-conscious | 402 3237
114 3862 | | 168 1
316 | 1679 | 552 | 3138
3288 | 300
515 | 3788
4150 | 307 | 3335 | 305 | 570
197 | 3064
3696 | 159
271 | 3026
3465 | 480 | 2949
3716 | 261
444 | 3152
3520 | 288 | 3183
4329 | 342
749 | 3137
3771 | 117 | | <i>Denmark</i>
Copenhagen
Aarhus | 1356 2808
567 2714 | _ | 92
142 | | | 2690
2743 | 149 | 2866
2650 | 120 | 3169 | 460 | 1484
510 | 3325
3900 | 99 | | | 3180
3733 | 165 | 3409
4076 | 128
243 | 3831 | 470 | 3106
3292 | 69 | | <i>Sweden</i>
Malmö
Umeå | 1421 1807
1344 1837 | | 95
93 1 | 1404 | 312 | 1865
1599 | 269 | 1923
2079 | 141 | 1954
1821 | 127
274 | 1711 | 1983
2219 | 95 | 2243 | 233 | 1990
2107 | 189 | 2013
2308 | 153 | 2117 | 144
308 | 1941
2067 | 89 | Table A1 Continued | Country and centre | | | | | | Men | | | | | | | | | | 2 | Women | | | | | | Men and women | иотеп (| ~ | |---|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------------|--------------------------|---------------------------------|---------------------------------|--------------------------|--|---------------------------------|---------------------------------|--------------------------|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|--------------------------|-------------------|---------------------------------|--------------------------|---| | | z | All | | 35–44
years | 44
rs | 45–54
years | 54
rs | 55–64
years | 54
rs | 65–74
years | .74
Irs | z | All | | 35–44
years | 44
rs | 45–54
years | 54 | 55–64
years | 54 | 65–74
years | 74
rs | Ø | s.e. | 1 | | | ı | Z | s.e. | Z | s.e. | Z | s.e. | N | s.e. | Z | s.e. | | Z | s.e. | | | | | Norway
South and East
North and West | | | | | | | | | | | | 1004 | 2330 | 123 | 2080
2433 | 290
310 | 2245 | 149 | 2567
3195 | 298
356 | | | 2391 | 117 | 1 | | All centres | 13025 2660 | 099 | 30 | 2461 | 101 | 2595 | 54 | 2775 | 44 | 2554 | 62 | 23 009 2955 | 2955 | 79 | 2572 | 18 | 2866 | 42 | 3112 | 14 | 3029 | 71 | 2850 | 20 | | | Greece | 1311 | 4.6 | 0.2 | 4.1 | 9.0 | 4.5 | 6.0 | 5.3 | 6.0 | 4.5 | 0.3 | Vitamin I
1373 | Vitamin D (µg/day)
1373 3.3 | ربر
0.1 | 3.2 | 9.4 | 3.7 | 0.2 | 3.2 | 0.2 | 3.0 | 0.3 | 3.8 | 0.1 | | | <i>Spain</i>
Granada
Murcia
Navaria
San Sebastian
Asturias | 214
243
444
490
386 | 7.4
6.4
6.0
8.7 | 0.5
0.5
0.4
0.3 | 4.6
3.1
6.8
8.0 | 1.5
1.5
0.8
1.4 | 5.7
5.0
5.9
5.2
6.7 | 1.1
0.8
0.6
0.5 | 4.2
4.7
7.0
7.0
8.5 | 0.7
0.7
0.5
0.6
0.6 | 5.4
3.7
2.7
8.2 | 1.1
1.6
1.7
1.0 | 300
304
271
244
324 | 8.8
8.8
1.2
9.4
9.4 | 0.3
0.3
0.3
0.3 | 2.8
2.9
2.9
2.8
3.5
4.8 | 0.7
0.6
0.8
0.7
0.7 | 3.5
2.9
3.5
4.6
5.5 | 0.5
0.5
0.5
0.5
0.4 | 3.0
3.6
2.8
3.7
4.6 | 0.5
0.5
0.5
0.5 | 5.0 | 0.9 | 3.9
3.8
5.0
6.2 | 0.3
0.3
0.2
0.2 | | | Italy
Ragusa
Naples
Florence
Turin
Varese | 168
271
676
327 | 2.1
2.3
2.5
1.5 | 0.6
4.0
0.3
0.4 | 1.4 | -
4.1
6.0 | 2.0 2.7 2.9 2.9 2.0 | 0.8
0.8
0.5
0.9 | 2.0
2.0
2.3
1.5 | 0.9
0.6
0.4
0.5 | ; | <u> </u> | 138
403
784
392
794 | 2.1
2.1
1.8
1.9
2.0 | 0.4
0.2
0.3
0.3 | 1.4
2.7
1.4
2.0
1.9 | 0.7
0.8
0.6
0.8 | 2.9
1.9
1.7
1.7
2.1 | 0.8
0.3
0.3
0.3 | 1.8
2.2
2.0
2.0
1.9 | 0.8
0.2
0.3
0.3 | 1.9 | 0.8
0.7
0.5 | 1.8
2.7
2.1
1.9
2.0 | 0.3
0.3
0.2
0.2 | | | France
South coast
South
North-East
North-West | | | | | | | | | | | | 620
1425
2059
631 | 2.5
2.3
2.6
2.7 | 0.2
0.1
0.1
0.2 | | | 2.0
2.2
2.4
2.5 | 0.3
0.2
0.3 | 3.0
2.4
3.1
3.0 | 0.3
0.2
0.3 | 2.8
2.7
2.1
2.1 | 0.4
0.3
0.3 | 3.0
2.8
3.0
3.2 | 0.2
0.2
0.1
0.2 | | | <i>Germany</i>
Heidelberg
Potsdam | 1034 | 3.5 | 0.2 | 2.6 | 0.6 | 3.1 | 4.0
4.0 | 3.4
4.9 | 0.3 | 3.8 | 0.8 | 1087 | 3.8 | 0.2 | 2.7 | 0.3 | 3.0 | 0.3 | 2.9 | 0.3 | 3.2 | 1.0 | 3.0 | 0.1 | | | <i>The Netherlands</i>
Bilthoven
Utrecht | 1024 | 5.4 | 0.2 | 5.0 | 0.5 | 5.0 | 0.4 | 5.4 | 4.0 | I | I | 1086 | 3.7 | 0.2 | 3.5 | 0.3 | 3.4 | 0.2 | 3.9 | 0.3 | 3.8 | 0.2 | 4.3 | 0.1 | | | <i>United Kingdom</i>
General population
Health-conscious | 402 | 5.0 | 0.4 | 4.0 | 1.2 | 3.6 | 0.7 | 5.1 | 0.7 | 5.3 | 0.7 | 570 | 3.6 | 0.2 | 2.8 | 0.6 | 3.4 | 0.3 | 3.8 | 0.4 | 3.8 | 0.4 | 3.1 | 0.2 | | | <i>Denmark</i>
Copenhagen
Aarhus | 1356
567 | 5.3 | 0.2 | | | 4.9
5.4 | 0.3 | 5.3 | 0.3 | 9.6
4.6 | 1.0 | 1484 | 3.9 | 0.1 | | | 3.5 | 0.2 | 4.2
3.2 | 0.2 | 3.3 | 9.0 | 3.8 | 0.1 | | Table A1 Continued | Country and centre | | | | | | Men | | | | | | | | | | W | Nomen | | | | | | Men and women | women | |--|---------------------------------|--------------------------------------|--------------------------|------------------------------|-----------------------|--------------------------------------|--------------------------|--------------------------------------|--------------------------|------------------------------|------------|---------------------------------|------------------------------|--------------------------|------------------------------|---------------------------------|------------------------------|--------------------------|------------------------------|--------------------------|-----------------------------|-------------------|------------------------------|--------------------------| | | z | All | | 35-44
years | 44
rs | 45–54
years | 54 | 55–64
years | 5.4 | 65–74
years | . 74
.s | z | All | | 35-44
years | 4 2 | 45–54
years | 4 | 55–64
years | 4 | 65–74
years | 4 ² | Z | s.e. | | | | Z | s.e. | Z | s.e. | Ø | s.e. | × | 5.6. | Z | s.e. | I | Z | s.e. | Z | s.e. | Ø | s.e. | Ø | s.e. | Z | s.e. | | | | <i>Sweden</i>
Malmö
Umeå | 1421 | 8.4 | 0.2 | 8.2 | 0.7 | 8.0 | 0.6 | 8.4 | 0.3 | 8.8
9.5 | 0.3 | 1711 | 6.0 | 0.1 | 5.7 | 0.3 | 5.5 | 0.2 | 6.0 | 0.2 | 6.6 | 0.2 | 7.0 | 0.1 | | Norway
South and East
North and West | | | | | | | | | | | | 1004 | 0.4
4.4 | 0.2 | 3.9 | 0.4 | 3.6 | 0.2 | 4.8
5.4 | 0.4 | | | 4.5 | 0.2 | | All centres | 13025 | 5.4 | 0.1 | 4.5 | 0.2 | 5.0 | 0.1 | 5.5 | 0.1 | 6.7 | 0.2 3 | 23 009 | 3.6 | 0.0 | 3.4 | 0.1 | 3.3 | 0.1 | 3.7 | 0.1 | 4.0 | 0.1 | 4.2 | 0.0 | | Greece | 1311 | 21.8 | 0.2 | 21.1 | 0.7 | 20.2 | 0.5 | 22.4 | 6.0 | 22.7 | v 4.0 | Vitamin E (mg/day)
1373 16.5 | (mg/day
16.5 | 0.2 | 14.6 | 6.0 | 16.7 | 0.3 | 17.1 | 0.3 | 16.6 | 0.3 | 18.6 | 0.1 | | S <i>pain</i>
Granada
Murcia
Navarra
San Sebastian
Asturias | 214
243
444
490
386 | 14.8
16.5
16.0
17.6
13.5 | 0.5
0.4
0.4
0.4 | 20.8
19.6
20.4
15.0 | 1.6
 0.9
 1.5 | 15.3
14.6
15.3
16.2
13.2 | 1.1
0.9
0.6
0.5 | 14.2
16.4
16.1
18.3
13.8 | 0.7
0.7
0.5
0.7 | 16.5
18.4
16.2
12.6 | 2 | 300
304
271
244
324 | 12.5
14.6
13.1
14.7 | 0.3
0.4
0.4
0.3 | 11.9
14.9
11.7
16.4 | 0.9
0.7
1.0
0.8
0.8 |
12.7
13.7
13.1
14.9 | 0.6
0.6
0.6
0.5 | 12.6
14.8
13.2
13.7 | 0.5
0.6
0.6
0.6 | 11.8 | 1.1 | 13.2
15.1
13.9
15.5 | 0.3
0.3
0.3
0.3 | | Italy
Ragusa
Naples
Florence
Turin
Varese | 168
271
676
327 | 13.2
13.3
12.6
10.9 | 0.6
0.5
0.3 | 11.3 | 1.5 | 13.0
13.5
11.9
12.0 | 0.9
0.8
0.5 | 13.9
13.6
13.1
10.4 | 1.0 0.7 0.4 0.5 | _

13.5
12.6 | 1 | 138
403
784
392
794 | 11.1
10.4
10.3
11.1 | 0.5
0.3
0.2
0.3 | 9.3
13.1
10.4
10.3 | 0.9
1.0
0.7
1.0 | 10.8
9.9
10.4
10.9 | 1.0
0.5
0.4
0.5 | 13.0
10.4
10.3
11.3 | 0.9
0.3
0.4
0.3 | 9.3
10.2
-
9.0 | 1.0 | 11.5
11.4
11.1 | 0.4
0.3
0.2
0.2 | | France
South coast
South
North-East
North-West | | | | | | | | | | | | 620
1425
2059
631 | 11.9
10.6
10.2
9.6 | 0.2
0.2
0.1
0.2 | | | 11.0
10.2
10.1
9.4 | 0.4
0.2
0.4 | 12.4
11.0
10.2 | 0.4
0.3
0.4 | 12.8
11.1
10.7
9.2 | 0.5
0.4
0.3 | 13.0
11.7
11.3 | 0.3
0.2
0.2
0.3 | | G <i>ermany</i>
Heidelberg
Potsdam | 1034
1233 | 16.6 | 0.2 | 15.0 | 0.7 | 16.1 | 0.4 | 17.3 | 0.4 | 16.7 | 1 0.9 | 1087 | 13.7 | 0.2 | 14.1 | 0.3 | 13.2 | 0.3 | 13.4 | 0.3 | 20.1 | 1.2 | 14.7 | 0.1 | | <i>The Netherlands</i>
Bilthoven
Utrecht | 1024 | 14.9 | 0.3 | 15.3 | 0.5 | 14.7 | 9.0 | 14.4 | 0.4 | I | I | 1086
1870 | 10.9 | 0.2 | 10.9 | 0.3 | 10.7 | 0.3 | 10.6 | 0.4 | 10.1 | 0.3 | 12.5 | 0.2 | | <i>United Kingdom</i>
General population
Health-conscious | 402 | 12.5 | 0.4 | 12.4 | . . | 13.3 | 0.7 | 11.7 | 0.7 | 12.5 | 0.7 | 570
197 | 9.4 | 0.3 | 9.2 | 0.8 | 9.2
13.9 | 0.4 | 9.4 | 0.5 | 9.7 | 0.5 | 10.5 | 0.2 | Table A1 Continued | Country and centre | | | | | , | Men | | | | | | | | | | Wo | Women | | | | | | Men and women | мотеп | |---------------------------------|-------------------------|------|-------|----------------|---------|----------------|------|----------------|------|----------------|----------|--------|------|------|----------------|-----|----------------|-----|----------------|------|----------------|-------|---------------|-------| | | Z | All | | 35–44
years | 41
S | 45–54
years | 4 2 | 55–64
years | 4 .~ | 65–74
years | s s | z | All | | 35–44
years | 4 | 45–54
years | 4 | 55–64
years | 4 | 65–74
years | 4 2 | Z | s.e. | | | | N | s.e. | Z | s.e. | × | 5.6. | Ø | s.e. | × | s.e. | 1 | × | s.e. | N | S.e | N | S.e | N | s.e. | N | s.e. | | | | Denmark | 1356 | | 99 02 | | | 6 7 | 4 0 | 66 | 0 3 | 11.2 | - | 1484 | 0 | 0.0 | | | 7 9 | 0.3 | 2 | 0.0 | 2 | 0 7 | × | 0 | | Aarhus | 567 | _ | 0.3 | | | 9.6 | 0.5 | 10.2 | 0.5 | ! | <u> </u> | 510 | 8.3 | 0.3 | | | 8.3 | 0.4 | 8.5 | 0.4 | <u> </u> | ;
 | 8.80 | 0.2 | | Sweden
Malmö | 1421 | 6.6 | 0.2 | | | 9.5 | 9.0 | 10.1 | 0.3 | 10.3 | 0.3 | 1711 | 7.9 | 0.1 | | | 8.1 | 0.3 | 8.2 | 0.2 | 8.0 | 0.2 | 8.6 | 0.1 | | Umeå | 1344 | 9.8 | 0.2 | 9.0 | 0.7 | 6.7 | 0.4 | 10.0 | 0.3 | 10.1 | 9.0 | 1574 | 7.8 | 0.2 | 7.4 | 0.4 | 7.9 | 0.3 | 8.0 | 0.2 | 7.9 | 0.5 | 8.5 | 0.1 | | <i>Norway</i>
South and East | | | | | | | | | | | | 1004 | 7.9 | 0.2 | 7.3 | 0.5 | 7.7 | 0.2 | 8.3 | 0.5 | | | 9.1 | 0.2 | | North and West | | | | | | | | | | | | 793 | 8.1 | 0.7 | 7.8 | 0.5 | 7.9 | 0.3 | | 9.0 | | | 9.3 | 0.7 | | All centres | 13025 14.0 0.1 16.4 0.3 | 14.0 | 0.1 | 16.4 | 0.3 | 13.8 | 0.1 | 13.7 | 0.1 | 14.2 | 0.2 | 23 009 | 10.5 | 0.0 | 11.4 | 0.1 | 10.3 | 0.1 | 10.5 | 0.1 | 10.2 | 0.1 | 11.8 | 0.0 | Abbreviations: M, mean; s.e., standard error. *Adjusted for age (when not stratified for age), total energy intake, weight and height and weighted by season and day of recall. Values for men and women combined are further adjusted by gender. Values for all centres combined are further adjusted for centre.