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Abstract

Background: Excess body weight is a major risk factor for cardiometabolic diseases. The complex molecular
mechanisms of body weight change-induced metabolic perturbations are not fully understood. Specifically,
in-depth molecular characterization of long-term body weight change in the general population is lacking. Here,
we pursued a multi-omic approach to comprehensively study metabolic consequences of body weight change
during a seven-year follow-up in a large prospective study.

Methods: We used data from the population-based Cooperative Health Research in the Region of Augsburg
(KORA) S4/F4 cohort. At follow-up (F4), two-platform serum metabolomics and whole blood gene expression
measurements were obtained for 1,631 and 689 participants, respectively. Using weighted correlation network
analysis, omics data were clustered into modules of closely connected molecules, followed by the formation of a
partial correlation network from the modules. Association of the omics modules with previous annual percentage
weight change was then determined using linear models. In addition, we performed pathway enrichment analyses,
stability analyses, and assessed the relation of the omics modules with clinical traits.

Results: Four metabolite and two gene expression modules were significantly and stably associated with body
weight change (P-values ranging from 1.9 × 10−4 to 1.2 × 10−24). The four metabolite modules covered major
branches of metabolism, with VLDL, LDL and large HDL subclasses, triglycerides, branched-chain amino acids and
markers of energy metabolism among the main representative molecules. One gene expression module suggests a
role of weight change in red blood cell development. The other gene expression module largely overlaps with the
lipid-leukocyte (LL) module previously reported to interact with serum metabolites, for which we identify additional
co-expressed genes. The omics modules were interrelated and showed cross-sectional associations with clinical
traits. Moreover, weight gain and weight loss showed largely opposing associations with the omics modules.

Conclusions: Long-term weight change in the general population globally associates with serum metabolite
concentrations. An integrated metabolomics and transcriptomics approach improved the understanding of
molecular mechanisms underlying the association of weight gain with changes in lipid and amino acid metabolism,
insulin sensitivity, mitochondrial function as well as blood cell development and function.
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Background
With an estimated 671 million obese individuals worldwide
in 2013 [1], obesity has reached epidemic proportions.
Considering the manifold health problems associated with
excess body weight, including cardiovascular disease and
type 2 diabetes, obesity poses a serious public health prob-
lem [2]. Understanding the mechanisms by which excess
body weight contributes to cardiometabolic risk is a pre-
requisite for advances in therapeutic approaches. Despite
extensive research, however, the complex molecular basis
of body weight-related metabolic perturbations is not fully
understood.
Advances in the field of high-throughput omics tech-

nologies, including metabolomics and transcriptomics,
offer the opportunity to simultaneously measure hun-
dreds or thousands of molecules, for example, metabo-
lites and gene transcripts, thereby allowing a deeper
characterization of obesity-related pathomechanisms on
a molecular level [3]. In recent years, a number of cross-
sectional efforts suggested a relationship between obesity
and the human blood metabolome (for example, [4-6])
and transcriptome (for example, [7,8]), which extend to
different tissues such as adipose tissue [9]. In addition,
weight loss upon behavioral intervention was associated
with changes in the blood metabolome [5,10], suggesting
that the observed obesity-related molecular signatures
are at least in part reversible.
However, the effect of long-term body weight change

on the human blood metabolome and transcriptome in
the general population – rather than under clinical set-
tings – is less well explored. Few prospective studies
have investigated the association of body weight change
with concentrations of a larger set of metabolites in
healthy subjects and these are restricted to a panel of lipo-
protein subclasses [11,12]. In addition, although multi-
omic approaches have been fruitful in different applica-
tions to enhance the understanding of complex molecular
pathways (for example, [13-15]), the potential of integrat-
ing multiple omics techniques has rarely been used in the
study of weight change-associated metabolic effects in
humans [5].
Here, we used data from Cooperative Health Research in

the Region of Augsburg (KORA) S4/F4, which constitutes
a large phenotypically and molecularly well-characterized
population-based cohort. We aimed to characterize associ-
ations of body weight change over a seven-year follow-up
period with serum metabolomics and whole blood tran-
scriptomics data assessed at follow-up, to determine dis-
tinct groups of molecules associated with weight change
using weighted correlation network analysis (WGCNA), to
study the interrelation of these groups using partial correl-
ation networks, to investigate the stability of the findings in
relevant subgroups and upon additional multivariable ad-
justment, for example, of subjects with weight gain versus
weight reduction, and to determine the relation of the iden-
tified omics signatures with clinical traits.

Methods
Ethics statement
Written informed consent was obtained from all partici-
pants. The KORA studies have been approved by the
ethics committee of the Bavarian Medical Association.

Study population
KORA (Cooperative Health Research in the Augsburg Re-
gion) is a research platform of independent population-
based health surveys and subsequent follow-up examina-
tions of community-dwelling adults living in the region of
Augsburg in Southern Germany. Study design, sampling
method and data collection have been described in detail
elsewhere [16]. The KORA S4 survey (1999 to 2001) com-
prised 4,261 participants, 25 to 74 years old [17]. Of these,
3,080 subjects participated in the follow-up examination
KORA F4 (2006 to 2008). The present study is based on a
subsample of 1,658 participants of KORA S4/F4 with
metabolomics data from two platforms available. Gene ex-
pression data were available for a subsample of 703 sub-
jects, 62 to 77 years old in F4. Women who were pregnant
at the time of the examinations or during the follow-up
period were excluded prior to analysis.

Anthropometric measurements and interviews
In both examinations, body weight, height, waist and hip
circumference as well as systolic and diastolic blood
pressure were measured using standard protocols as de-
scribed elsewhere [18]. Information on lifestyle factors
and comorbidities was collected in a structured inter-
view by trained interviewers. Intake of medication within
seven days prior to examination was recorded with the
IDOM-Software [19]. We combined information ob-
tained in KORA S4 and F4 to determine changes in the
variables during the follow-up period. Change in lifestyle
factors, comorbidities and medication was defined as de-
scribed in Additional file 1.

Laboratory analyses
At the follow-up examination, blood samples were
collected during study center visits between 8 a.m. and
11 a.m., after subjects were instructed to fast overnight
for at least eight hours. Whole blood was collected using
PAXgene Blood RNA tubes (BD, Heidelberg, Germany)
and stored at −80°C until analysis. Red blood cell (RBC)
count, hematocrit, mean corpuscular hemoglobin (MCH),
mean corpuscular haemoglobin concentration (MCHC) as
well as mean cell volume of erythrocytes (MCV) were
measured with the impedance and the cyanmethemoglo-
bin method using the LH 750 Hematology Analyzer
(Beckman Coulter, Brea, CA, USA). Glycated hemoglobin
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(HbA1c) was determined using the high performance
liquid chromatography method (HA 8160, Menarini,
Florence, Italy). For serum collection, blood was drawn
into serum gel S-Monovette tubes (Sarstedt, Nümbrecht,
Germany), gently inverted two to three times and rested
for 30 minutes at room temperature to obtain complete
coagulation. The material was then centrifuged for 10 mi-
nutes (2,750 g at 15°C). Serum was aliquoted into syn-
thetic straws which were kept for a maximum of six hours
at 4°C before storage at −80°C until analysis. Fasting glu-
cose levels (FGlc) and glucose levels two hours post chal-
lenge during an oral glucose tolerance test (2hGlc) were
assessed with the hexokinase method (GLU Flex), low
(LDL) and high density lipoprotein (HDL) cholesterol
levels with the CHOD-PAP method (LDL: ALDL Flex,
HDL: AHDL Flex), and fasting triglyceride (TG) levels
with the GPO-PAP method (TGL Flex; all assays from
Dade Behring, Eschborn, Germany). C-reactive protein
was measured with nephelometry on a BN II using re-
agents from Siemens (Eschborn, Germany).

Metabolomics analyses
Metabolite detection and quantification were performed
on two different platforms, a commercial mass spec-
trometry (MS)-based platform at the company Metabo-
lon Inc. (Durham, NC, USA) (N = 1,768) [20,21] and a
nuclear magnetic resonance (NMR) spectroscopy-based
platform (N = 1,788) [22].

Metabolon platform
The analytical platform developed by Metabolon is based
on two ultrahigh-performance liquid chromatography/
tandem mass spectrometry (UHPLC/MS/MS2) injec-
tions and one gas chromatography/mass spectrometry
(GC/MS) injection per sample. The two UHPLC injec-
tions were optimized for basic and acidic species, re-
spectively. More detail is given in [20] and [21]. The
platform provides relative quantification for a total of
517 compounds, 325 of which could be identified based
on a standard library of MS/MS spectra. The identified
small molecules cover a large number of metabolite
classes, including fatty acids, ketone bodies, glyceropho-
spholipids, sphingolipids, acylcarnitines, bile acid metab-
olites, amino acids, peptides, carbohydrates, xenobiotics,
vitamins and nucleotide metabolites. The full list of me-
tabolites with pathway annotations is given in Table S1
in Additional file 2.
Technical effects were controlled for by dividing the

metabolite concentration values by the median value of
samples measured on the same day for each metabolite.
See Figure S1 in Additional file 3 for the distribution of
the variability (expressed as coefficient of variation
(CV)) of the day medians across the metabolites. Metab-
olite medians varied with a median CV of 0.494 (range
0.307 to 1.220). In addition, outlier values of >4 standard
deviations from the mean of the respective metabolite
on the log10 scale were set to missing. Finally, 81 metab-
olites (42 identified, 39 unidentified) with more than
50% missing values, and 5 observations with more than
20% missings were excluded, leaving a total of 1,763 ob-
servations of 434 metabolites (281 identified, 153 un-
identified) for analysis.

NMR spectroscopy platform
As another technique to obtain quantitative information
on metabolic compounds, an NMR spectroscopy plat-
form was used. The precise experimental methodology
has been described elsewhere [13,22]. Computational
strategies of metabolite identification and quantification
from the NMR spectra are described by Inouye et al.
[13]. A total of 130 metabolite concentrations and derived
measures were obtained from the NMR spectroscopy plat-
form (see Table S1 in Additional file 2 for a list of metabo-
lites including full names and pathway annotations).
Preprocessing of NMR data was similar to Metabolon

data in terms of outlier exclusion and detection rate
thresholds. None of the metabolite traits had more than
50% missing values; however, four observations with
more than 20% missings were excluded from the data
set leaving a total of 1,784 observations for analysis.

Combined analysis of multiple metabolomics platforms
For 1,658 subjects, both Metabolon and NMR data were
available (see Additional file 1: Table S2 in Additional
file 2 and Figure S2 in Additional file 3 for information
on the concordance of measurements for metabolites
measured on both platforms). [M] and [N] is added to
the metabolite names in this work to indicate measurement
on the Metabolon and the NMR spectroscopy platform,
respectively. Metabolites of both platforms were assigned
to super-pathways and sub-pathways in accordance with
the pathways proposed by Metabolon on the basis of Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways.
Thereby, super-pathways largely represent chemical classes
analogous to the top-level pathway definitions in KEGG,
whereas sub-pathways try to classify the metabolites ac-
cording to their role in metabolism. As an example, the
metabolites acetoacetate and 3-hydroxybutyrate (BHBA)
were assigned to the super-pathway ‘Lipids’ and to the
sub-pathway ‘Ketone bodies’ , according to their role in
ketogenesis.

Gene expression measurement
RNA isolation and gene expression measurement have
been described in detail elsewhere [23,24]. Gene expres-
sion data were exported to the statistical environment R,
version 2.14.2 [25]. Data were quantile normalized using



Wahl et al. BMC Medicine  (2015) 13:48 Page 4 of 17
the R package lumi, version 2.8.0, from the Bioconductor
platform [26].

Statistical analysis
Of the 1,658 subjects with metabolomics data available, 22
were excluded who had a fasting duration of less than
8 hours, and 5 were excluded who had outlying values in
body weight change, defined as values outside mean ± 5
standard deviations, leaving 1,631 subjects (689 subjects
62 to 77 years old with gene expression data) for analysis.
The overall analysis strategy is visualized in Figure 1.

Multiple imputation of missing values
Data from both metabolomics platforms contained a large
number of missing values. These were treated with mul-
tiple imputation by chained equations (MICE) using the R
package mice, version 2.21 [27]. Few missing values in
phenotypic variables were imputed in the same imputation
process. Twenty imputed data sets were generated with
10 iterations each. See Additional file 1: Table S3 in
Additional file 2, and Figures S3 to S7 in Additional file 3
for descriptives of missing values in the data set, for con-
siderations on missing value handling, for the precise im-
putation settings and for imputation diagnostics.

Weighted correlation network analysis (WGCNA)
Previous studies have shown that clusters of related
genes may be more reproducibly associated with a
phenotype or disease than single genes [28] and that
testing groups of metabolites instead of single metabo-
lites improved power in a genome-wide association
study [29]. Furthermore, high correlations were observed
within groups of molecules in the metabolomics and
transcriptomics data sets in this study. Thus, our strat-
egy was – in addition to providing single metabolite/
transcript associations – to cluster metabolomics and
transcriptomics data prior to testing the association with
body weight change, in order to obtain joint association
signals of groups of correlated metabolites/transcripts.
Specifically, metabolite and transcript levels determined
at follow-up were clustered by means of WGCNA using
the R package WGCNA, version 1.34 [30,31].
Transcripts were pre-selected based on their associ-

ation with metabolites to reduce the number of tran-
scripts to those related to the blood metabolome, aiming
to improve the power and specificity to observe ΔBW-
related transcripts that are relevant with regard to meta-
bolic processes. Prior to analysis, gene expression data
were log2 transformed and adjusted for microarray-
specific technical variables (RNA integrity number, amp-
lification plate indicators as well as sample storage time)
[24] by determining the residuals from linear models of
gene expression on these variables. Then, association
with metabolites was determined using linear models
with transformed metabolite as response and adjusted
transcript as covariate, adjusting for age and sex, and
a linear model additionally adjusted for body weight and
ΔBW to avoid the selection of transcripts related to
metabolites due to their common association with these
variables. A total of 2,537 transcripts with at least a sug-
gestive association (P <10−5) in both models were selected.
WGCNA was jointly applied to the 411 serum metabo-

lites and derived measures (281 identified metabolites
from the Metabolon platform and 130 metabolites and
derived measures from the NMR spectroscopy platform,
see Table S1 in Additional file 2; N = 1,631) and separately
to the 2,537 metabolite-related transcripts (N = 689).
Briefly, the topological overlap matrix (TOM) was derived
from the Pearson’s correlations among the variables using
the signed topological overlap dissimilarity measure [30].
Thereby, a soft-thresholding power of 13 (metabolite net-
work) and 8 (transcript network) was selected based on
the scale-free topology criterion (Figure S8 in Additional
file 3). The TOM was then subjected to hierarchical clus-
tering with distance between clusters defined through
average linkage, and distinct clusters (‘modules’) were
derived using a dynamic tree cutting algorithm with a
minimum module size of five molecules [32], followed by
merging closely correlated modules at a dendrogram
height of 0.25 (see Figure S9 in Additional file 3 for
the resulting cluster dendrograms). For each module, the
module eigengene (ME), a module-representative variable,
also interpretable as the ‘center’ of the module, was de-
rived as the first principal component of a principal com-
ponent analysis on the scaled matrix of molecules
corresponding to the respective module. Strength of mod-
ule membership, that is, the contribution of the molecules
to the module, was computed as the correlation of each
molecule with the respective ME.
Modeling association with body weight change
Linear models were used to determine the association of
body weight change with the metabolite and gene ex-
pression modules. Thereby, body weight change was de-
fined as annual percentage body weight change: ΔBW =
100% * ((weight (F4) - weight (S4))/weight (S4))/follow-
up years, where weight gain was coded as positive
weight change, and weight loss as negative weight
change. We decided to study ΔBW rather than change
in body mass index (ΔBMI), since in adults, ΔBW might
be considered a more appropriate measure of weight
change. When looking at change over time in adults, the
division by squared height (as BMI = BW/(body height)2)
does not improve accuracy but might rather add noise
due to measurement error of height measurement, and
causes an unwanted increase in BMI due to height
shrinkage during aging. However, ΔBW and ΔBMI



Figure 1 Study design and analysis strategy. In the network, nodes represent omics modules (circle, metabolite module (MetM); rectangle,
gene expression module (GenM)), colored according to their association with annual percentage body weight change (ΔBW; red, positive
association; blue, negative association; bright color, significant, P <1.9 × 10–4; light color, P <0.05). Edges represent partial correlations (ζ) between
pairs of modules (represented by their module eigengenes), conditional on all other presented modules and the covariates age, sex, and ΔBW
(solid black line, ζ >0.1; dotted black line, ζ < −0.1; solid grey line, 0.05 < ζ <0.1; dotted grey line, −0.1 < ζ < −0.05). Background color of network
and boxes reflects metabolite (yellow) versus gene expression (green). GO, gene ontology; IPA, Ingenuity pathway analysis; KEGG, Kyoto
Encyclopedia of Genes and Genomes; NMR, nuclear magnetic resonance; WGCNA, weighted correlation network analysis.
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correlate highly (correlation coefficient 0.98), so that re-
sults should not be very different.
Each ME was modeled as response variable, and ΔBW,

sex, age and body weight at baseline were modeled as co-
variates. The effects of ΔBW on MEs were tested using
Wald tests, and P-values were corrected for multiple testing
using the Bonferroni method (at P <0.05/(number of mod-
ules)). Association of single metabolites and metabolite-
related transcripts with ΔBW were assessed in a similar
way, using significance levels of P <0.05/411 and P <0.05/
2,537, respectively.
The chosen modeling strategy is restricted to finding

linear associations between ΔBW and MEs/molecules
across the complete ΔBW range, comprising both sub-
jects with weight loss (negative ΔBW) and weight gain
(positive ΔBW). Assuming that weight loss and weight
gain might not show strictly opposing metabolic effects,
the analysis was repeated stratified to the groups with
weight loss and weight gain. Formally, the above men-
tioned model was extended by subgroup index as covari-
ate and by interaction terms of the subgroup index with
ΔBW and the other covariates. Similarly, subgroup ana-
lyses were performed in obese (N = 426; defined as
BMI >30) and non-obese (N = 1,205) subjects, in central
obese (N = 522; defined as waist-hip ratio >1 in men
and waist-hip ratio >0.85 in women) and not central
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obese (N = 1,109) subjects, in men (N = 828) and women
(N = 803), as well as in subjects >55 years old (N = 855)
and >55 years old (N = 776) at baseline.
Furthermore, as an explorative approach towards a

biological explanation of the observed associations, we
studied their sensitivity through additional adjustment
for three groups of variables. The first model was ad-
justed for changes in lifestyle factors during follow-up,
including change in physical activity, smoking, alcohol
consumption and sleeping behavior as well as nutrition
habits at baseline. The second model was adjusted for
incident comorbidities during follow-up, including dia-
betes, cancer, myocardial infarction and stroke. The
third model was adjusted for changes in medication,
including beta blocker, metformin, other anti-diabetic
medication, systemic corticosteroids, oral contraceptives
and antidepressants. [See Additional file 1 for definitions
of these variables].
Finally, cross-sectional associations of modules with

binary and log-transformed continuous clinical traits in
KORA F4 (metabolic syndrome, myocardial infarction
(MI), stroke, HDL cholesterol, LDL cholesterol, FGlc,
2hGlc, HbA1c, systolic and diastolic blood pressure,
C-reactive protein) were investigated by means of logistic
and linear regression models, respectively, adjusted for
age, sex, body weight, lipid-lowering medication (overall,
statin, fibrates), antihypertensive medication, antidiabetic
medication as well as systemic corticoid intake.

Pathway enrichment analyses
To formally investigate whether the identified metabolite
modules were enriched for specific biological pathways
(super- and sub-pathways as described above, Table S1
in Additional file 2), weighted enrichment analyses were
performed as applied before in different contexts [33,34].
Briefly, for each pathway c and module m, the enrichment
statistics Scm was defined as the sum of module mem-
bership measures across all metabolites assigned to the
respective pathway, whereas metabolites from other
modules were assigned zero weight. Pathway assignment
of all metabolites was randomly permuted 100,000 times,
and enrichment statistics Scm

(perm) were computed. Per-
mutation P-values were then defined as the number of en-
richment statistics Scm

(perm) larger than the original Scm.
For the gene expression modules, we explored enrich-

ment for gene ontology (GO) terms using the R pack-
ages GO.db, version 2.9.0, AnnotationDbi, version 1.22.6,
and org.Hs.eg.db, version 2.9.0. Furthermore, the com-
mercial software Ingenuity Pathway Analysis (IPA) was
applied to identify enriched canonical pathways (IPA
build version 312825 M, content version 18841524, re-
lease date: 24 June 2014; analysis date: 4 July 2014 [35]).
The reference set was restricted to genes represented on
the IlluminaHT-12 v3 BeadChip, and only human
annotations were considered. In case multiple probes
mapped to one gene, the probe exhibiting the largest
module membership was considered for downstream
analyses. Pathway analyses were performed with IPA’s
Core Analysis module. Both GO and IPA enrichment
analyses are based on Fisher’s exact test.

Construction of a multi-omics network
A partial correlation network was constructed from the
modules significantly associated with ΔBW as described
in detail [36]. For each pair of modules, the partial cor-
relation coefficient of the respective MEs was calculated
as the Pearson’s correlation coefficient of the residuals of
the two MEs with regard to all other MEs, as well as
sex, age, body weight and ΔBW. Since strong interrela-
tionships among the modules might result in spurious
negative partial correlations, pairwise marginal correl-
ation (that is, the Pearson’s correlation, uncorrected for
any other variables) was taken as a prerequisite.
Effects on inter- and intra-module connectivity within

the multi-omics network were studied as follows: inter-
and intra-module connectivity was defined as the correl-
ation of the MEs between two modules, and the average
module membership strength (definition see above) across
the module members of a certain module, respectively.
Significance of the difference in inter-/intra-module con-
nectivity between the groups of weight gain and weight
loss was determined through permutation testing (where
weight change status was randomly shuffled).
All statistical analyses were performed in R, version

3.0.1 [25].

Results and discussion
Using data from the population-based KORA S4/F4
cohort, we characterized the multi-omic signature asso-
ciated with body weight change over a seven-year
follow-up period. Two-platform serum metabolomics
and whole blood transcriptomics measurements were
available from the follow-up examination F4 for 1,631
and 689 participants, respectively (Table 1). Clustering of
the 411 metabolites and the 2,537 metabolite-related tran-
scripts generated eight metabolite modules (MetM) and 19
gene expression modules (GenM), respectively (Figure 1).

Body weight change is globally associated with the
metabolite profile
Four of the eight MetMs were significantly associated
with annual percentage body weight change (ΔBW), in
linear models adjusted for age, sex and baseline body
weight (positive associations for MetM1, P = 1.2 × 10−24,
MetM3, P = 2.2 × 10−4, and MetM4, P = 7.3 × 10−17;
negative association for MetM5, P = 1.7 × 10−14; all sig-
nificant after Bonferroni correction for 27 modules).
These four modules comprised a total of 147 metabolites.
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Together, these metabolites covered major branches of
metabolism captured by the metabolomics platforms, in-
cluding lipid metabolism, amino acids and peptides,
carbohydrate metabolism, cofactors and vitamins, and en-
ergy metabolism (Figure S10 in Additional file 3). This
suggests a global association of body weight change with
the serum metabolome.
MetM1 (comprising 60 metabolites) was strongly de-

termined by constituents of all very low density lipopro-
tein (VLDL) subclasses, total serum TGs, TGs in small
HDL (S-HDL) and measures of primarily saturated and
monounsaturated fatty acids (Figure 2), which all
showed a module membership strength (that is, correl-
ation with the module ‘center’) of above 0.8 (Figure 3,
Table S4 in Additional file 2). Together with isoleucine
[N], glycoprotein (Gp [N]), glutamate [M], ureate [M],
lactate [M], phenylalanine [N] and pyruvate [N], these
most connected metabolites were also most strongly
associated with ΔBW in the single metabolite models
(Figure 3). When a formal enrichment analysis was per-
formed, MetM1 was significantly enriched for metabo-
lites belonging to the super-pathway ‘Lipids’ and the
sub-pathways ‘VLDL’ and ‘Triacylglycerol’ (all P < 10−5),
confirming the predominant role of these metabolic
pathways for MetM1. MetM3 (comprising 39 metabo-
lites) was mainly driven by constituents of LDL and
intermediate density lipoprotein (IDL) subclasses and
very small VLDL (XS-VLDL), measures of serum choles-
terol as well as apolipoprotein B (module membership
strengths >0.8, Figures 2 and 3, Table S4 in Additional
file 2). In addition, a significant enrichment for the
super-pathway ‘Lipids’ and the sub-pathways ‘LDL’ and
‘IDL’ was observed (P <10−5). The most contributing
Table 1 Characteristics of the study population

Variable Metabolomics
data (N = 1,631)

Combined
metabolomics
and transcriptomics
data (N = 689)

Mean (sd) Mean (sd)

Body weight (kg), baseline 78.3 (14.7) 78.5 (13.2)

Body weight (kg), follow-up 79.7 (15.6) 79.3 (13.8)

Δ Body weight (%) 1.8 (6.8) 1.0 (6.5)

Δ Body weight/year (%) 0.3 (1.0) 0.1 (0.9)

BMI (kg/m2), baseline 27.7 (4.5) 28.5 (4.3)

BMI (kg/m2), follow-up 28.2 (4.7) 28.8 (4.5)

Age (years), baseline 54.2 (8.7) 61.8 (4.3)

Age (years), follow-up 61.2 (8.7) 68.8 (4.3)

Relative
frequency (%)

Relative
frequency (%)

Sex (male/female) 50.8/49.2 50.1/49.9

Weight change direction
(reduction/gain)

39.3/60.7 45.9/54.1
metabolites of MetM4 (comprising 26 metabolites) were
the branched chain amino acids (BCAAs) valine, leucine
and isoleucine, and the peptide gamma-glutamylleucine,
with a significant enrichment for the super-pathway
‘Amino acids’ and the sub-pathway ‘Valine, leucine and
isoleucine metabolism’ (P <10−5). Finally, MetM5 com-
prised 22 metabolites and was mostly driven by constitu-
ents of large (L-) and very large (XL-) HDL as well as
apolipoprotein A1, with a significant enrichment for
the super-pathway ‘Lipids’ (P = 1.6 × 10−4) and the sub-
pathway ‘HDL’ (P <10−5). To improve readability, the
four ΔBW-associated metabolite modules are hereafter
referred to as ‘TG/VLDL module’ (MetM1), ‘LDL/IDL
module’ (MetM3), ‘BCAA module’ (MetM4) and ‘HDL
module’ (MetM5), according to their significantly
enriched sub-pathways.
These results demonstrate that ΔBW strongly associ-

ates with lipoprotein constituents (see also Figure S11 in
Additional file 3), amino acids and peptides, as well as
metabolites of energy metabolism, and that clustering
helped to reveal pathways jointly and strongly associated
with ΔBW.

The metabolic signature associated with body weight
change is consistent with known pathophysiology of
obesity
Overall, the metabolite signature associated with ΔBW
concurred with known aspects of the pathophysiology of
weight change and obesity. The associations of ΔBW
with lipoprotein subclasses (positive association with
VLDL, LDL and S-HDL subclasses, negative association
with larger HDL particles and with HDL and LDL par-
ticle size; Figure 3 and Figure S11 in Additional file 3)
are in agreement with the observations of two smaller
prospective studies that analyzed the effect of weight
change over similar time periods (9 and 6.5 years, re-
spectively) on lipoprotein subclasses [11,12]. Specifically,
ΔBW was positively associated with increases in VLDL
and LDL subclasses, and with decreases in L-HDL,
whereas S-HDL behaved oppositely [12]. ΔBW was also
negatively related to LDL and HDL particle sizes [11,12].
The clustering of S_HDL_TG [N] (TG in S-HDL) within
the TG/VLDL module in our study was also in agree-
ment with its close correlation with VLDL subclasses in
Inouye et al. [13], where S-HDL behaved differently
from larger HDL subclasses with regard to metabolite-
transcript associations.
Mechanisms by which body weight increase gives rise

to the described changes may include an increased re-
lease of free fatty acids from adipose tissue, triggering
hepatic TG and VLDL production [37] and increasing
the activity of hepatic lipase [38]. Hepatic lipase is
involved in the exchange of TGs from VLDL against
cholesterol esters from HDL, thereby promoting the
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Figure 2 Coverage of the serum metabolome by the metabolite modules (MetM) related to body weight change (ΔBW). Pie chart with
color indicating super-/sub-pathways (see legend of Figure S10 in Additional file 3), and size of segments representing the number of metabolites
in the data set corresponding to the respective sub-pathway. Sorted by pathway size. Black wedges represent the number of metabolites from
the respective module significantly associated with ΔBW in the respective sub-pathway. For instance, metabolites from lipid sub-pathway 2
(‘HDL’) contributed most strongly to MetM5 (the ‘HDL module), in line with a significant enrichment (see text). BCAA, branched chain amino
acids; HDL, high density lipoprotein; IDL, intermediate density lipoprotein; LDL, low density lipoprotein; TG, triglycerides; VLDL, very low
density lipoprotein.

Wahl et al. BMC Medicine  (2015) 13:48 Page 8 of 17
production of small dense LDL. Together with phospho-
lipid transfer protein (PLTP) and cholesterol ester trans-
fer protein (CETP), which also show increased levels
upon obesity [39], hepatic lipase is centrally involved in
regulating HDL particle size. Interestingly, this was
reflected in oppositional associations of genetic variants
in the respective genes LIPC, PLTP and CETP with small
versus large HDL subclasses [40].
The lipoprotein signature related to positive ΔBW

(that is, weight gain) largely corresponds to an unfavor-
able, atherogenic lipid profile. For instance, large VLDL
and small HDL particles were found to be positively,
and larger HDL particles to be negatively, associated
with coronary artery disease severity [41]. In a large
prospective cohort of 4,594 initially healthy adults, a
lipoprotein pattern characterized by decreased L-HDL,
increased S-/M-LDL, and increased TGs was associated
with an increased cardiovascular disease incidence after
a mean follow-up of 12 years [42]. Furthermore, VLDL
particle size, which was positively associated with ΔBW
in our study, predicted type 2 diabetes incidence over a
13-year follow-up of 26,836 initially healthy women [43].
In line with these findings, we observed a strong positive
association of the TG/VLDL module and a strong nega-
tive association of the HDL module with markers of in-
sulin resistance (HbA1c: P = 1.9 × 10−5 and 7.0 × 10−7;
2hGlc: P = 2.1 × 10−9 and 5.1 × 10−8, respectively) deter-
mined at follow-up (Figure 4, Table S5).
ΔBW was strongly associated with amino acid concen-

trations, most prominently BCAAs, phenylalanine, tyro-
sine and glutamate. The increase of these amino acids in
obesity has long been known [44], and has also been ob-
served in more recent studies (for example, [4]). The
underlying mechanism might be an impaired catabolism
of BCAA upon obesity [4]. Experimental studies show
that BCAAs inhibit the insulin receptor substrate via the
mTOR/p70S6K/S6K pathway [45]. Accordingly, in the
study by Newgard et al. [4], addition of BCAAs to a
high-fat diet in rats promoted the development of
insulin resistance. Recently, BCAAs, phenylalanine and
tyrosine were shown to associate with future insulin re-
sistance [46], future type 2 diabetes [47] and prevalent
metabolic syndrome [48]. In our study, the BCAA module
associated positively with markers of insulin resistance
(HbA1c: P = 7.2 × 10−10; 2hGlc: P = 9.0 × 10−9) and meta-
bolic syndrome prevalence (P = 3.8 × 10−5) (Figure 4).
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Figure 3 Association of body weight change (ΔBW) with members of associated metabolite modules (MetM). Bubbles represent effect
strengths and significance, see legend of Figure 6. Models were adjusted for age, sex and baseline body weight. For single metabolites, the
significance threshold was chosen as P <1.2 × 10−4 corresponding to Bonferroni correction for 411 tests. Background colors correspond to
super- and sub-pathway annotations, see legend of Figure S10 in Additional file 3. Note that all effects are shown per unit of ΔBW, which is a
variable spanning the whole weight change range (with weight loss coded as negative ΔBW values and weight gain as positive ΔBW values).
Thus, effects have to be interpreted as the average linear association across the weight change range, and effect directions have to be inverted
to construe the association with weight reduction. Using the example of Serum_TG [N], the positive association of ΔBW with Serum_TG [N] can
be interpreted as increase in serum triglyceride (TG) levels with increasing weight gain, and as decrease in serum TG levels with increasing
weight loss.
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The metabolic signature associated with body weight
change points towards mitochondrial dysfunction
The positive association of ΔBW with several metabo-
lites in the TG/VLDL and BCAA modules is supportive
of a link between body weight gain and mitochondrial
dysfunction. Mitochondria are important organelles in
the regulation of metabolism [49]. As a main function,
they produce adenosine triphosphate (ATP) from carbo-
hydrates, fats and proteins via the tricarboxylic acid
cycle, which is supplied with pyruvate (from glycolysis),
acetyl-CoA (from β-oxidation) and amino acid metabo-
lites (from protein catabolism) [49,50]. In states of insuf-
ficient oxygen supply or mitochondrial dysfunction,
pyruvate is not imported into the mitochondria but in-
stead converted to lactate via lactic acid fermentation
and to alanine via transamination. Obesity is associated
with decreased fatty acid β-oxidation so that obese indi-
viduals are more dependent on the glycolytic pathway
for ATP production [50], resulting in an increased pyru-
vate production. At the same time, obesity is associated
with diminished mitochondrial biogenesis [49], reduced
mitochondrial size and diminished respiratory chain ac-
tivity [51]. These effects might explain increased circu-
lating levels of pyruvate, lactate and alanine upon weight
gain in our study. Concentrations of these metabolites
have previously been shown to be elevated in obesity [4],
and lactate levels increased upon weight gain during
chemotherapy in early breast cancer patients [52]. Fur-
thermore, concentrations of pyruvate, lactate and alanine
were found to be predictive of future glucose intoler-
ance, independent of body mass [46].
All three metabolites clustered in the TG/VLDL

module, together with VLDL subclasses, fatty acids,
propionylcarnitine and phenylalanine. The blood concen-
trations of fatty acids and circulating acylcarnitines
(among them propionylcarnitine) were found to be
increased in obese subjects [4]. Elevated levels of these
metabolites are also thought to be linked to mitochondrial
dysfunction [49]. In addition, aluminum-induced mito-
chondrial dysfunction was found to promote VLDL se-
cretion in human hepatocytes [53], suggesting a role of
mitochondrial dysfunction as a further link between ΔBW
and dyslipidemia as well as cardiometabolic disease.
Furthermore, two C5 acylcarnitines, isovalerylcarnitine

and 2 −methylbutyroylcarnitine, BCAAs, tyrosine, trypto-
phan and creatinine clustered in the BCAA module.
Short-chain acylcarnitines (C4 and C5) are products of
BCAA catabolism. As catabolism of BCAAs is performed
in the mitochondrial matrix, elevated BCAA levels could
be an indicator for mitochondrial dysfunction [49]. A re-
cent retrospective study found primary mitochondrial re-
spiratory chain disease to be significantly associated with
elevated BCAA levels [54]. Moreover, respiratory chain in-
hibition in cultured muscle cells was found to be signifi-
cantly associated with a reduced uptake of several other
amino acids, among them phenylalanine, tyrosine and
tryptophan (together with a greater secretion of lactate,
alanine and creatine) [55]. Together, metabolites of the
TG/VLDL and the BCAA module provide a link between
mitochondrial dysfunction and body weight gain already
in a non-obese state.

Individual metabolite associations with body weight
change provide further interesting insights
As a result of the minimum module size of five molecules
chosen in WGCNA, metabolites reflecting biological



Wahl et al. BMC Medicine  (2015) 13:48 Page 11 of 17
pathways that are represented by fewer than five corre-
lated metabolites on the metabolomics platforms are less
likely to cluster in modules sharing association with ΔBW.
Since these might, nevertheless, be interesting, we provide
the overall single metabolite association results in Table
S4 in Additional file 2. These include the positive asso-
ciation of ΔBW with the tryptophan metabolites hydroxy-
tryptophan [M] and kynurenine [M], which are successors
of tryptophan in the serotonin and niacin biosynthesis
pathways, respectively, and negative association with sero-
tonin (5HT) [M]. They also include the positive associ-
ation with the xenobiotics caffeine [M] and piperine [M].
Increased concentrations in these substances may result
either from an increased consumption of coffee or caffein-
ated drinks, and herbs or spices, or from a lower degrad-
ation or excretion. Furthermore, we observed a negative
association of ΔBW with quinate [M] and catechol sulfate
[M], a positive association with bradykinin, des-arg(9)
[M], the active metabolite of the vasodilating peptide
hormone bradykinin, and a positive association with the
metabolites N1-methyl-3-pyridon-4-carboxamide [M] and
N1-methyladenosine [M] from the nucleotide super-
pathway.
Body weight change associates with a gene expression
module related to erythrocyte development and a lipid-
leukocyte-like module
Two of the 19 gene expression modules (GenMs) were
significantly associated with ΔBW in linear models
adjusted for age, sex and baseline body weight (positive
association for GenM6, P = 3.8 × 10−12; negative asso-
ciation for GenM14, P = 1.9 × 10−4).
GenM6, which comprised 71 transcripts, showed a

strong positive association with ΔBW. The core of
GenM6 (module membership strength >0.8) comprised
CA1, IFIT1L, BPGM, FAM46C, GYPB, AHSP, XK,
HMGXB4, FECH, GYPE, HBD and GLRX5 (Figure 5,
Table S6 in Additional file 2). A manual literature search
revealed the majority of these twelve genes as RBC-
related genes, so that GenM6 was termed the ‘RBC
module.’ For instance, HBD encodes the hemoglobin
delta subunit, AHSP encodes α-hemoglobin stabilizing
protein, BPGM regulates the oxygen affinity of hemoglobin,
and FECH codes for the enzyme ferrochelatase/heme
synthase which is involved in heme synthesis. A formal
enrichment analysis for GO terms revealed ‘bicarbonate
transport’ , ‘hemoglobin metabolic process’ and ‘hemoglobin
complex’ as the top three enriched biological pathways (all
P = 8.4 × 10−4, not significant after multiple testing correc-
tion, Table S7 in Additional file 2). In Ingenuity pathway
analysis, ‘heme biosynthesis from uroporphyrinogen-III I’
was among the top five upregulated canonical pathways
(P = 9.9 × 10−3, not significant after multiple testing
correction), although results are based on only one gene
(FECH) in this pathway (Table S8 in Additional file 2).
Consequently, we hypothesized that the transcripts in

the RBC module are reflective of erythrocyte development,
since immature RBCs, reticulocytes, contain remnant
mRNA [56] which is depleted during erythrocyte matur-
ation. An increased hematopoiesis upon diet-induced
obesity in rats has been observed, putatively through ac-
tion of leptin in the bone marrow [57], whereas glycosyl-
ated hemoglobin shows an inverse relationship with
erythrocyte survival [58]. A shift towards a larger propor-
tion of immature RBCs upon weight gain would be con-
sistent with these observations. In agreement with our
findings, a small transcriptomics study of obesity reported
the majority of the genes significantly upregulated in obes-
ity to be related to reticulocytes [8].
The proportion of immature reticulocytes was shown

to be elevated in cardiac disease patients [59]. In a tran-
scriptomics study of participants from the Framingham
heart study, a cluster of transcripts specific to CD71+
early erythroid cells was significantly upregulated in
coronary heart disease (CHD) cases compared to con-
trols [60]. This cluster, comprising 126 transcripts, showed
a large overlap with the RBC module identified in our
study, with nine of the above-mentioned core tran-
scripts being contained in this cluster. Furthermore,
Zhang et al. observed an increased RBC count and in-
creased hemoglobin levels in obese but not in non-obese
CHD patients as compared to healthy controls [61]. Also,
the obese patients were more likely to have acute coronary
syndrome, which the authors attribute to a potential role
of RBCs in the development of plaque instability. Our
results suggest that even in non-obese subjects, weight
change is related to RBC development.
Another, smaller, gene expression module (GenM14,

comprising 17 transcripts) was negatively associated
with ΔBW (Figure 5, Table S6 in Additional file 2).
GenM14 contained all 11 transcripts of the ‘lipid-leukocyte
(LL) module’ previously described as a leukocyte gene
expression module strongly related to blood lipids [62]
and a large number of serum metabolites including lipo-
protein subclasses, lipids, glycoproteins and amino acids
[13]. We therefore termed it the ‘LL-like module.’ The
core of the LL-like module (module membership
strength >0.8) comprised the LL genes HDC, GATA2,
SLC45A3, MS4A2 and SPRYD5. Inouye et al. [62] dis-
cussed this module as being involved in basophil and mast
cell-related immune response and allergy. For instance,
the core gene HDC codes for a protein converting histi-
dine to histamine, which is secreted by basophils and mast
cells in response to IgE sensitization. Accordingly, when
we applied Ingenuity pathway analysis to our data, ‘FC
Epsilon RI Signaling’ (P = 1.1 × 10−4), ‘Histamine Biosyn-
thesis’ (P = 9.1 × 10−4) and ‘Airway Inflammation in Asthma’
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Figure 5 Association of body weight change (ΔBW) with
members of associated gene expression modules (GenM).
Bubbles represent effect strengths and significance, see legend of
Figure 6. Models were adjusted for age, sex and baseline body
weight. For single transcripts, the significance threshold was chosen
as P <2.0 × 10−5 corresponding to Bonferroni correction for 2,537
metabolite-related transcripts. Genes are sorted by their module
membership strength, as determined by the correlation of transcript
level with the module eigengene. Gene annotations were derived
from the UCSC data base. UCSC, University of California, Santa Cruz.
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(P = 3.7 × 10−3) were the top three canonical pathways
(Table S8 in Additional file 2). Six further transcripts, IL4,
TRIM49L1, TEX101, EPAS1/HIF2-α, CCNA1 and CAV2,
were co-expressed with the LL module genes, although
being less strongly correlated with the module center
(module membership strengths ranging from 0.48 to
0.54), suggesting that they might share functionality with
the LL module genes. Indeed, IL4 codes for the cytokine
interleukin 4 which has long been known to induce differ-
entiation of naïve T cells to Th2 cells that play a role in al-
lergen response and which is secreted by basophils as a
reaction to allergens [63]. EPAS1/HIF2-α encodes a com-
ponent of the hypoxia inducible transcription factor (HIF),
which regulates responses to reduced oxygen and for
which also a role in regulating inflammation [64] and en-
ergy balance [65] has been reported. Of note, the associ-
ation of the LL-like module with ΔBW as well as with the
TG/VLDL module was negative. Although these findings
are in line with the negative association between the LL
module and VLDL metabolites reported by Inouye et al.
[13], they are contradictory to an analysis by Gonen et al.,
in which VLDL was found to trigger the release of hista-
mine from human basophils [66]. Furthermore, obesity is
a risk factor for asthma and weight gain was found to in-
crease the risk of developing airway hyperresponsiveness
[67]. It remains to be determined how these results fit with
our observation of decreased expression of genes related
to basophil/mast cell level or function being associated
with weight gain.
Neither of the ΔBW-related GenM’s seemed to com-

prise genes with a well-established relationship to lipid
metabolism, as might be expected after preselecting
metabolite-related transcripts. Exemplarily, we looked up
the genes LIPC, CETP and PLTP discussed above within
the context of lipoprotein metabolism, as well as ABCG1
which has been discussed together with CETP as a
strongly upregulated transcript in adipose tissue in re-
sponse to diet-induced weight loss [68]. Whereas ABCG1
transcripts tended to show a negative association with
ΔBW (best P = 6.7 × 10−5 for transcript ILMN_2329927,
which clustered in GenM1), transcripts of the other three
genes were not related to either ΔBW or metabolites.
These results could have been expected considering the
tissue origin of these proteins. In line with these findings,
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the strong obesity-related changes in adipose tissue gene
expression were weakly represented by blood cell tran-
scriptomics in the study by Emilsson et al. [7].

Interrelation of the omics modules and sensitivity analyses
To investigate the interrelatedness of the identified ΔBW-
related metabolite and gene expression modules condi-
tional on all other modules and the above-mentioned
covariates, we constructed a partial correlation network
from the MEs (Figure 1; a larger illustration is provided in
Figure S12 in Additional file 3). The six ΔBW-related
modules were interrelated. The strongest positive partial
correlation was observed between the TG/VLDL module
and the LDL/IDL module (P = 2.3 × 10−54). In addition,
the TG/VLDL module showed a strong negative correl-
ation with the HDL module (P = 1.8 × 10−72) and with
the LL-like module (P = 6.8 × 10−29).
Next, we performed different analyses to assess the

stability of the multi-omic network and its relation to
ΔBW. First, we argued that metabolic effects of weight
loss (negative ΔBW) and weight gain (positive ΔBW)
might not be strictly opposing, and that diverging effects
might remain unexplored when linear models are used.
Therefore, we performed stratified analyses in the group
of subjects with weight loss (N = 641; 316 with gene ex-
pression data) and in the group of subjects with weight
gain (N = 990; 373 with gene expression data) (Figure 6,
second and third column). Overall, weight loss and
weight gain tended to show opposing associations with
the modules (Figure 6: same color of circles denoting
association). By trend, associations of the TG/VLDL
module, the LDL/IDL module, the BCAA module, the
HDL module and the LL-like module were stronger in
subjects with weight loss than with weight gain. In con-
trast, the RBC module showed by trend a stronger asso-
ciation in the group with weight gain. However, none of
these differences were significant (Figure 6: black
arrows).
In addition, the effect of ΔBW on inter- and intra-

module connectivity of the network elements was inves-
tigated, since previous studies suggested sensitivity of
metabolic network topology towards external factors
[13,69] (see Methods). We did not observe any signifi-
cant differences in network connectivity between the
groups with weight gain and weight loss (all P >0.01).
The generally opposing associations of weight loss and

weight gain with blood metabolite concentrations are
in line with the studies by Mäntyselkä et al. [12] and
Naganuma et al. [11], where the majority of ΔBW associa-
tions with lipoprotein measures were linear across the
weight change range, and weight loss and weight gain
showed opposing effects. Interestingly, the effect of weight
loss (≥5% across 6.5 years) versus stable weight on VLDL
subclasses and L-HDL was stronger in absolute terms than
the effect of weight gain (≥5%) versus stable weight [12].
These findings are in accordance with the stronger associa-
tions for the TG/VLDL module and the HDL module ob-
served for weight loss in our study. Although larger studies
in subjects with a larger range of weight change might have
more power to differentially investigate the effects of weight
loss versus weight gain, our results suggest that differences
are not large and that, in general, weight loss is capable of
reversing the effects of weight gain on the blood metabo-
lome and transcriptome. Accordingly, it was shown in a ran-
domized controlled trial that normalization of obesity led to
a reversal of an unfavorable LDL subclass pattern [70].
Second, further subgroup analyses were performed, as-

suming that the weight change effect might depend on
(central) obesity, on sex and on age (Figure 6, Figure S13
in Additional file 3). Again, no significant subgroup-
specific effects were observed, although, as already men-
tioned above, this study might not provide sufficient
power to study effect modification.
Body weight change over a period of seven years might

be due to several reasons, including changes in lifestyle, the
occurrence of diseases and changes in medication. For
these reasons, we investigated the sensitivity of the ob-
served associations with ΔBW towards adjustment for
changes in lifestyle factors, for disease incidence and, finally,
for changes in medication in three separate models (Table
S9 in Additional file 2, Figure S14 in Additional file 3).
None of the three models showed a change in effect sizes
across the modules, indicating that the observed associa-
tions were primarily due to the change in body weight per
se rather than the mechanisms that might have facilitated
weight change. Note, however, that the majority of the vari-
ables reflecting changes in lifestyle, disease and medication
were obtained from interviews and might, therefore, have
insufficient accuracy. Also, nutrition was only obtained
from the baseline time point so that the effect of changes
could not be investigated.
Together, these results suggest that the metabolite-

gene network and its relation to weight change reflect a
largely stable system.
Several extensions of our study seem worthwhile. First,

it would be interesting to obtain a higher resolution of
body weight measurements during follow-up, as well as
of metabolomics and gene expression measurements, to
decipher the longitudinal sequence of metabolic changes
and to study the metabolic processes related to weight
cycling. An important limitation of this study is that
metabolomics and transcriptomics data were not avail-
able from the baseline time point from all platforms and
for all subjects. The present observational study does
not allow conclusions on the effect directions underlying
the observed associations of body weight change with
metabolite or transcript levels. In addition, extending
whole blood transcriptomics to different tissues seems
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extremely promising, considering that blood might only
weakly reflect weight-related transcriptional changes in
tissues [7] and that blood metabolites originate from dif-
ferent tissues. However, gene expression signatures iden-
tified in blood will be of large practical relevance since
blood is most easily accessible also in a clinical setting.
Also, in the context of weight change and its metabolic
consequences, integrating metabolomics and blood cell
transcriptomics is relevant from the perspective that
blood cells may interact with blood substances in the eti-
ology of atherosclerotic events [13].

Conclusions
Through the integration of two-platform serum metabo-
lomic and whole blood transcriptomic data and the
formation of modules of closely connected molecules,
we obtained a comprehensive characterization of the
metabolomic and transcriptomic signature of body
weight change over a seven-year period in a large
population-based cohort. Weight gain and weight loss
were strongly and opposingly associated with the blood
metabolome, with VLDL, LDL and large HDL sub-
classes, TGs, BCAAs and markers of energy metabolism
as core molecules of the four metabolite modules. These
associations point towards the development of dyslipid-
emia, disturbed amino acid metabolism as well as mito-
chondrial dysfunction upon weight gain. Two weight
change-related gene expression modules pinpoint reticu-
locytes and immune cells (mast cells, basophils) as blood
cell types putatively playing a role in body weight-related
blood metabolism. Metabolite and gene expression mod-
ules were associated with clinical phenotypes, suggesting
a role in linking excess body weight with metabolic and
cardiovascular comorbidities. Our findings also support
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the hypothesis that clustering omics data prior to analyz-
ing associations with a phenotype has increased power
to identify biologically relevant pathways [28,29]. The
LL-like module was found to be associated with weight
change, although none of the contributing genes showed
a univariate association with weight change that would
have passed significance after correction for multiple
comparisons.
Together, our study provides evidence for a largely re-

versible effect of long-term body weight gain in the gen-
eral population on an integrated blood metabolomic and
transcriptomic network. This improves the knowledge
on molecular processes elicited by weight change and
potentially linking it to comorbidities.
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