
Science Arts & Métiers (SAM)
is an open access repository that collects the work of Arts et Métiers Institute of

Technology researchers and makes it freely available over the web where possible.

This is an author-deposited version published in: https://sam.ensam.eu
Handle ID: .http://hdl.handle.net/10985/20019

This document is available under CC BY license

To cite this version :

Nathalie KLEMENT, Mohamed Amine ABDELJAOUAD, Leonardo PORTO, Cristóvão SILVA -
Lot-Sizing and Scheduling for the Plastic Injection Molding Industry - A Hybrid Optimization
Approach - Applied Sciences - Vol. 11, n°3, p.1202 - 2021

Any correspondence concerning this service should be sent to the repository

Administrator : archiveouverte@ensam.eu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SAM : Science Arts et Métiers

https://core.ac.uk/display/395356336?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://sam.ensam.eu
https://sam.ensam.eu
http://hdl.handle.net/10985/20019
https://creativecommons.org/licenses/by/4.0/
mailto:archiveouverte@ensam.eu
https://artsetmetiers.fr/

Article

Lot-Sizing and Scheduling for the Plastic Injection Molding
Industry—A Hybrid Optimization Approach

Nathalie Klement 1 , Mohamed Amine Abdeljaouad 2,* , Leonardo Porto 3 and Cristóvão Silva 3

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Arts et Métiers Institute of Technology, LISPEN, HESAM Université, 59000 Lille, France;
nathalie.klement@ensam.eu

2 CEA Tech Hauts-de-France, 59000 Lille, France
3 CEMMPRE, Department of Mechanical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal;

leonardo-rocha-porto@hotmail.com (L.P.); cristovao.silva@dem.uc.pt (C.S.)
* Correspondence: mohamed-amine.abdeljaouad@cea.fr

Abstract: The management of industrial systems is done through different levels, ranging from
strategic (designing the system), to tactical (planning the activities and assigning the resources) and
operational (scheduling the activities). In this paper, we focus on the latter level by considering
a real-world scheduling problem from a plastic injection company, where the production process
combines parallel machines and a set of resources. We present a scheduling algorithm that combines
a metaheuristic and a list algorithm. Two metaheuristics are tested and compared when used in the
proposed scheduling approach: the stochastic descent and the simulated annealing. The method’s
performances are analyzed through an experimental study and the obtained results show that its
outcomes outperform those of the scheduling policy conducted in a case-study company. Moreover,
besides being able to solve large real-world problems in a reasonable amount of time, the proposed
approach has a structure that makes it flexible and easily adaptable to several different planning and
scheduling problems. Indeed, since it is composed by a reusable generic part, the metaheuristic, it is
only required to develop a list algorithm adapted to the objective function and constraints of the new
problem to be solved.

Keywords: heuristic; metaheuristics; scheduling; injection molding

1. Introduction

Industry is changing rapidly and is facing the fourth industrial revolution. In this
new context, industrial systems need to be more flexible and intelligent to deal with an
ever-growing data availability, real time decisions and increasing customization. With In-
ternet of Things, which allows various objects in the company or on the shop-floor to
communicate with each other, industrial systems will become more intelligent and able
to anticipate shortage of materials, the need for maintenance operations or to respond
to urgent commands. This will imply the use of more efficient tools for planning and
re-planning shop-floor operations.

Such decision support tools will be important at all decision levels: For example, at a
strategic level, they can be used to decide which activities must be performed during a
given planning horizon and to estimate the resources needed. At this level they can also
be useful to model and test new shop-floor configurations and anticipate the impact of
these changes on the system performance. Considering the tactical level, decision tools will
allow to allocate resources to each activity planned to occur during a given time horizon.
Finally, at the operational level they can be used to schedule the activities, determining
the time allocation of each resource and to re-schedule them to respond to emergencies
(new activities that have to be done as soon as possible). Table 1 summarizes the problems
encountered at the different levels.

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6926-6101
https://orcid.org/0000-0001-7178-0129
https://orcid.org/0000-0002-7693-9570
https://doi.org/10.3390/app11031202
https://doi.org/10.3390/app11031202
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11031202
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/3/1202?type=check_update&version=1
tenailleau
Rectangle

Table 1. Levels of decision.

Decision Level Strategic Tactical Operational

Planning Horizon Years Months Weeks/Days

Typical Problems Determine the
number of resources

Plan activities
Assign resources

Schedule activities
Consider emergencies

In this paper, we present a hybrid optimization method to solve a lot sizing and
scheduling problem encountered in a plastic injection facility that produces components
for electronic products. The proposed method was first introduced in [1] and concisely
used to solve optimization problems from different areas: healthcare systems, as well as
textile and plastic injection industries, with promising preliminary results. In the current
work, the method’s application to plastic injection molding is further developed and its
performance analyzed with a comparison to optimal and heuristic solutions.

Injection molding can be considered as a single-stage manufacturing process where
parts are produced by injecting a molten material, typically a thermoplastic polymer, like in
our case study company, into a custom-made mold. In the injection machine, the material
is molten, mixed and injected into the mold, acquiring, after cooling, the shape imposed by
the configuration of the cavity and being then ejected. The obtained part usually have the
finished shape, not requiring further operations. In general, the shop-floor is composed by
several injection machines which are shared by different products necessitating different
molds. A setup time occurs each time a new product has to be manufactured. This setup
time consists in the time required to dismount the mold used for the previous part and to
mount the new mold on the machine. Obtaining a good schedule for such a constrained
problem can be a real challenge.

The above described problem can be stated as follows: n jobs have to be processed on
parallel machines, using their needed mold. These jobs have to be scheduled, considering
their given processing time and due date before they have to be completed. When two jobs
consecutively processed on one machine need two different molds, a sequence dependent
setup time is recorded. Jobs have to be processed at once (non-preemptive constraint).
To save setup costs, jobs using the same mold may be scheduled one after another. There are
compatibility constraints between the molds and the machines: Each mold can only be
assigned to some specific machines. Each mold exists in a single copy, thus the same mold
cannot be used by more than one machine during the same time period. The objective is to
find the suitable allocation of the jobs to the machines as well as the schedule of jobs on
each machine so that minimizing the total tardiness.

This paper is structured as follows—Section 2 provides a literature review on the
problems that present some analogies with the scheduling issue considered in this paper,
such as batching and lot-sizing. A mathematical formulation modelling the problem and its
constraints is detailed in Section 3. Then, in Section 4, we present an optimization method
to solve the problem, consisting in a list algorithm and a metaheuristic. The different
results of the experimental study are then presented in Section 5. The article ends with a
Conclusion and some proposals for further work.

2. Literature Review

Several papers from the literature addressed the injection molding planning and
scheduling problems. Dastidar and Nagi [2] studied a parallel machine scheduling problem
in an injection molding facility, where different products require different types of resources.
The authors provide a mathematical formulation and a decomposition based approach
to minimize the setup and the inventory holding costs. A decomposition strategy is also
used in [3,4] where the compatibility constraints between injection molds and machines
are taken into account. In both articles, the problem is decomposed into sub-problems by
grouping the machines by sets according to their compatible molds. Each sub-problem
is then dealt with as a Capacitated Lot-Sizing Problem (CLSP). Van Wassenhove and De

Bodt [3] used two heuristic procedures while [4] provides a goal programming formulation
and a heuristic to minimize the production’s costs. The obtained results are shown to
outperform the planning and scheduling procedures currently used in their case-study
injection plants.

The problem we study in this paper also shares some features with the CLSP. Indeed,
the lot-sizing issue reflects the fact that companies usually have to manufacture several
types of products with limited production capacity. It is a very popular subject in the
field of combinatorial optimization and has been defined since the early 1900s with the
EOQ Economic Order Quantity [5]. Lot-sizing problems have been widely studied since
then; a recent literature review can be found in [6]. Different lot-sizing models have been
developed, depending on the characteristics of the production process. Although most of
the lot-sizing studies focus on “product lots” (i.e., determining the right period and the
quantity to produce for each type of product), some of them can also be related to “process
lots”; in other words, to the decision of how many times or how long each process should
be used and how the processes should be scheduled, given that each process can lead to
a set of products. Such a feature appears in several industrial problems [7–9], including
injection molding [10], for which a mixed integer programming model is proposed and
tested on real data from a Brazilian molded pulp plant.

CLSP has many extensions, including the consideration of parallel production ma-
chines per period and setup times between products of different types. However, the sche-
duling is not part of this issue and is traditionally made as a second step. Therefore there
is a significant difference between CLSP and the problem we study. Indeed, separating
assignment and scheduling or decomposing a problem can immediately eliminate several
good solutions from the searching space. In this work, we take the problem as a whole and
this issue may thus be referred to as a batching problem. Batching is indeed the decision
of whether or not to schedule similar jobs contiguously, to avoid setup times or setup
costs [11].

Drexl and Kimms [12] draw an analogy between the batching and lot-sizing problems.
In the continuous time lot sizing and scheduling problem, each demand is characterized by
its deadline and its size. Demands are interpreted as jobs and the demand size determines
the processing time of a job. An important assumption is that the capacity (e.g., the speed
of the machine) is constant over time and thus the processing time of a job does not depend
on the schedule. Another fundamental assumption is that jobs are not allowed to be split,
which means that a certain demand must always be processed from the beginning to the
end. Of course, several demands for the same item may be grouped together and processed
by lots to save setup costs. Problems with these assumptions can thus be referred to as a
batching and scheduling problem (BSP) rather than a lot sizing and scheduling problem.
The relationship between batching and lot-sizing is also analyzed in [13], where the studied
lot sizing problem is solved as a batch sequencing problem.

Potts and Kovalyov [14] review the literature on scheduling with batching, in the
particular case of parallel machines. In this paper, parallel machines are classified as:
identical, when the processing times depend only of the jobs, regardless of the machine
on which they are processed; uniform, if the processing times depend on the jobs and
the machines’ speed; or unrelated, when the processing time is a function of both the job
and the machine where it is allocated. One of the specificities of our problem is that the
processing time of the jobs depends only on the jobs. But because of the incompatibility
between some molds and some machines, not all the machines can process all the jobs.
To the best of our knowledge, this aspect has not been considered in batching problems
but [15,16] solved some scheduling problems with eligibility restrictions using constructive
heuristics. The eligibility aspect can also be found in [17] but in the flowshop case. Never-
theless, our problem can be seen as a problem with parallel unrelated machines, where the
processing time will be: (1) the time required to process the job if the mold is compatible
with the selected machine or (2) infinite if the mold is not compatible with the selected
machine. A batch-scheduling problem with parallel unrelated machines is dealt with

in [18], where the authors compare the performances of four heuristics to minimize the to-
tal weighted tardiness. Their study showed the superiority of a two-level batching heuristic
and a simulated annealing approach over heuristics that use priority rules such as earliest
weighted due date or shortest weighted processing time. Reference [19] also addressed a
parallel unrelated batch scheduling problem with sequence dependent setup times and
developed a GRASP metaheuristic to minimize the makespan. Reference [20] provide a
constructive algorithm and a simulated annealing to portion and schedule batches in a
multi-stages semi-conductor manufacturing plant where the parallel machines per stage
are non-identical.

Because the weighted tardiness minimization in an unrelated parallel machine schedul-
ing problem, m

∣∣∣∣∣∣∑n
j=1 wjTj , is already NP-hard [21], our problem is also NP-hard. Indeed,

the Rm
∣∣∣∣∣∣∑n

j=1 wjTj is a particular case of our problem when the jobs have equal weights,
the setup-times are null and each mold is required by only one job. As seen in this literature
review, whether for solving the lot-sizing or batching problems, the developed methods
are quite sophisticated constructive approaches or optimization approaches. Our aim in
this paper is to provide a high performing optimization method which is easy to develop
and use. Although in this article the proposed method will only be tested in a case study
company, injection molding is a common industrial activity and several plants may share
the same features. Our solving method will thus not be limited to a single use-case and
this work may be considered as a first step toward a final objective which is to generalize
the optimization tool to other scheduling problems with new characteristics.

In the following section, we provide a mathematical model that will be useful to spot
the limit of the exact resolution for this NP-hard problem in terms of solving times and to
ensure the quality of our method for the small-sized instances. The method itself is described
and implemented in Section 4 and then experimented in a real plastic injection case.

3. Mathematical Model

The mathematical model of the problem we intend to solve, described in this section,
was inspired by a model proposed by [22], although there are some significant differences
between them. In the original model both earliness and tardiness were to be minimized.
In our case study company, earliness is not considered as an issue, thus only tardiness is
considered leading to a difference in the objective function. Furthermore, in the original
model changeover occur whenever two jobs from different families are sequenced one after
the other but this time is constant. In our case, when a setup time occur, this time depends
of the sequence of jobs i and j, considering the time required to dismount the mold to
produce i plus the time necessary to mount the mold to process j. Thus, unlike the original
model we consider a sequence dependent setup time, which lead to a difference in the way
the setups are considered in the model, specifically in the equations used to determine the
completion time of a given job. Finally and this is probably the main difference between
the models, in [22] the model is developed for identical parallel machines, which means
that any job can be processed in any machine. In our case study company, a job can only be
processed in a subset of the available machines. This has led to the introduction of a new
constraint (3) to ensure that a job is always allocated to a compatible machine.

Below, we provide the inputs of our model:

• m : Number of molds
• n : Number of jobs
• r : Number of machines
• f j : Mold for job j
• dj : Due date of job j
• pj : Processing time of job j
• Aj : Time to mount the mold of job j on the machine
• Dj : Time to dismount the mold of job j

• Mjk: The setup time when job k follows job j on a machine. This setup time is equal to
the time to dismount the mold used by j (Dj) plus the time to mount the mold used by
k (Ak), if j and k require different molds. Thus: Mjk = Ak + Dj if f j 6= fk 0 otherwise

• CFjb: Binary variable denoting if job j is compatible with machine b:

• CFjb =

{
1 if job j is compatible with machine b

0 otherwise
• G: “Big M,” sufficiently large number to make the problem solvable by linear pro-

gramming. In our case, G should be much higher than the ending time of any job.

The decision variables of our model are the following:

• Cj : Completion time of job j
• Tj : Tardiness of job j
• αjb: Binary variable denoting if j is the first job to be processed on machine b:

αjb =

{
1 if job j is the first to be processed on machine b

0 otherwise
• θjk: Binary variable denoting if job k is scheduled right after job j:

θjk =

{
1 if job k is immediately processed after job j

0 otherwise
• β jb: Binary variable denoting if job j is processed on machine b but not in the first place:

β jb =

{
1 if job j is processed on machine b but not on the first place

0 otherwise

The mathematical model can be stated as follows:
Minimize:

n

∑
j=1

Tj. (1)

Restricted to:
r

∑
b=1

(
αjb + β jb

)
= 1, ∀j = 1, 2, . . . n (2)

r

∑
b=1

CFjb

(
αjb + β jb

)
= 1, ∀j = 1, 2, . . . n (3)

αjb + β jb ≤ βkb + 1− θjk, ∀j = 1, 2, . . . n; k = 1, 2, . . . n; b = 1, 2, . . . r (4)

n

∑
j=1

αjb ≤ 1, ∀b = 1, 2, . . . r (5)

r

∑
b=1

αjb +
n

∑
k=1

θkj = 1, ∀j = 1, 2, . . . n (6)

n

∑
k=1

θjk ≤ 1, ∀j = 1, 2, . . . n (7)

Ck ≥ Cj + Mjk +
r

∑
b=1

pkβkb + G
(

θjk − 1
)

, ∀j = 1, 2, . . . n; k = 1, 2, . . . n (8)

Cj ≥ pj + Aj

r

∑
b=1

αjb, ∀j = 1, 2, . . . n; (9)

Cj ≤ dj + Tj, ∀j = 1, 2, . . . n; (10)

Cj, Tj ≥ 0, ∀j = 1, 2, . . . n; (11)

Equation (1) represents the objective function, which is to minimize the sum of all
tardiness. A job is considered tardy if its completion time is higher than its due date; and in
that case, the difference between its completion time and its due date is added to the sum.

6 of 13

Equation (2) ensures that each job must be assigned to one machine. Equation (3) checks
compatibility, which means that a job can only be scheduled on a compatible machine.
Equation (4) enforces a job and its direct successor in the processing sequence to both be
produced on the same machine. Equation (5) ensures that, for each machine, there can only
be one job scheduled first. Equation (6) states that if a job is not the first to be scheduled
on any machines, then it must have a predecessor. Equation (7) says that for each job,
there can only be one other scheduled immediately before it or none in case it is the first job.
Equation (8) forces the completion time of a certain task to be bigger than its processing
time plus the setup and the completion time of its predecessor.

Equation (9) computes the completion time of the first job processed by each machine
as its processing time plus the setup time. Equation (10) provides the completion time of
a job smaller or equal to the sum of its due date and the tardiness. Equation (11) is the
non-negativity constraint.

4. Proposed Solution Approach

Since the studied problem is NP-hard, solving our model with a mathematical solver is
not expected to be efficient for the large-sized industrial problems. Therefore, we provided a
solving algorithm that can quite rapidly reach good solutions. We propose a hybrid method,
which combines a constructive heuristic (a list algorithm) with a metaheuristic. The problem
characteristics are specified in the list algorithm while the metaheuristic is more generic
and can be adapted to other scheduling problems without changes. The principle of the
method is given in Figure 1. It can be seen as a master/slave resolution scheme, where the
metaheuristic handles the searching process and the list-algorithm performs the quality
assessment of the solutions [23,24].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 14

Figure 1. Hybridization metaheuristic—List algorithm.

The general encoding scheme can be represented by Equation (12). Ω is the set of all
lists 𝑌; 𝑆 the set of all admissible assignments 𝑋 of the jobs to the machines. An assign-
ment is considered admissible if all constraints are respected. More details about the en-
coding are given in [25]. 𝑌 ∈ Ω ⃗ 𝐿(𝑌) = 𝑋 ∈ 𝑆 ⃗ 𝐻(𝑋). (12)

4.1. List Algorithm
List algorithms are greedy heuristics that are widely used to solve scheduling prob-

lems. The standard list algorithm iteratively constructs a schedule by considering the jobs
in a listed order and assigning each one of them to the first machine that becomes idle
[26]. Examples of list algorithms applied to and activity planning and resource allocation
in a hospital are presented in [27].

In the injection molding problem described in this paper, we propose a list schedul-
ing algorithm to schedule jobs and assign them to the machines and dates considering tool
compatibility. One of the advantages of using a list algorithm is to provide a simple neigh-
borhood structure for metaheuristics, which can browse the set of solutions by permuta-
tions between two items in a list, as we will see in the next subsection. The details of the
list algorithm is described by Algorithm 1. The algorithm takes as input the number of
machines, the number of molds, as well as a sorted list of 𝑁 jobs (𝜎) ∈ which states the
order in which they will be selected to be assigned to the machines. Of course, the jobs’
durations and their associated molds are part of the input. The algorithm gives as output
the assignation of the jobs to the machines.

Algorithm 1 List algorithm for the injection problem
Data: List of jobs (𝜎) ∈
forall Job 𝜎 do

Order the machines according to their release date: 𝑅[𝑖]
j: = 0
while Job 𝜎 not assigned AND 𝑗 < 𝑁𝑏 do

if Job 𝜎 and machine 𝑅[𝑗] compatible with the mold then
if Needed mold available then

Release date machine 𝑅[𝑗]: = Release date machine 𝑅[𝑗] + processing
time of Job 𝜎 + setup time
Release date needed mold: = Release date machine 𝑅[𝑗]
Assign Job 𝜎 to machine 𝑅[𝑗]

else
Find on which machine the needed mold is used: MachineUsing

Figure 1. Hybridization metaheuristic—List algorithm.

The encoding scheme of the proposed metaheuristic is a list Y of jobs, which is the
order in which they will be selected by the algorithm to be assigned to the machines.
The move between neighbor solutions is performed by jobs’ permutation. The jobs are
selected one by one by list algorithm L, following their order as given in List Y and
assigned to the requested resources, building a scheduling that takes into account the
problem constraints. From this scheduling emerges Solution X, which will be evaluated
by objective function H. On the basis of this assessment, the metaheuristic decides if the
solution should be selected or not. At the end of its run, the proposed method gives the
scheduling sequence that gives the best value of objective function.

The general encoding scheme can be represented by Equation (12). Ω is the set of all
lists Y; S the set of all admissible assignments X of the jobs to the machines. An assignment
is considered admissible if all constraints are respected. More details about the encoding
are given in [25].

Y ∈ Ω
He

→
uristic L

L(Y) = X ∈ S
Cri

→
terion H

H(X). (12)

4.1. List Algorithm

List algorithms are greedy heuristics that are widely used to solve scheduling prob-
lems. The standard list algorithm iteratively constructs a schedule by considering the jobs
in a listed order and assigning each one of them to the first machine that becomes idle [26].
Examples of list algorithms applied to and activity planning and resource allocation in a
hospital are presented in [27].

In the injection molding problem described in this paper, we propose a list scheduling
algorithm to schedule jobs and assign them to the machines and dates considering tool
compatibility. One of the advantages of using a list algorithm is to provide a simple
neighborhood structure for metaheuristics, which can browse the set of solutions by
permutations between two items in a list, as we will see in the next subsection. The details
of the list algorithm is described by Algorithm 1. The algorithm takes as input the number
of machines, the number of molds, as well as a sorted list of N jobs (σi)i∈N which states
the order in which they will be selected to be assigned to the machines. Of course, the jobs’
durations and their associated molds are part of the input. The algorithm gives as output
the assignation of the jobs to the machines.

Algorithm 1 List algorithm for the injection problem

Data: List of jobs (σi)i∈N
forall Job σi do

Order the machines according to their release date: R[i]
j: = 0
while Job σi not assigned ANDj < Nbmachines do

if Job σi and machineR[j] compatible with the mold then
if Needed mold available then

Release date machine R[j]: = Release date machine R[j] + processing time of
Job σi + setup time

Release date needed mold: = Release date machine R[j]
Assign Job σi to machine R[j]

else
Find on which machine the needed mold is used: MachineUsing
If the mold currently used in MachineUsing is the one needed by Job σi then

Release date MachineUsing: = Release date MachineUsing + processing
time of Job σi

else
Release date MachineUsing: = Release date MachineUsing + processing

time of Job σi + setup time
Release date needed mold: = Release date machine MachineUsing
Assign Job σi to machine MachineUsing

else
Next machine: j(j + 1)%Nbmachines

Figure 2 shows an example of the algorithm’s assignment rule for a 3-machines
instance. At iteration u, the mold required by the next job i on the list Y is not being used
on any machine. i is thus assigned to the less loaded machine with a setup time. Next,
job j needs a mold that is currently used on machine M3 that has the lowest release time.
j will therefore be assigned to M3 without setup. For job k however, the required mold is
currently used on the most-loaded machine M1 and therefore the job has to wait for its
release time before being processed. k is assigned to M1 without setup time.

8 of 13

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 14

If the mold currently used in MachineUsing is the one needed by Job 𝜎 then
Release date MachineUsing: = Release date MachineUsing +
processing time of Job 𝜎

else
Release date MachineUsing: = Release date MachineUsing +
processing time of Job 𝜎 + setup time

Release date needed mold: = Release date machine MachineUsing
Assign Job 𝜎 to machine MachineUsing

else
Next machine: 𝑗 ≔ (𝑗 + 1)%𝑁𝑏

Figure 2 shows an example of the algorithm’s assignment rule for a 3-machines in-
stance. At iteration 𝑢, the mold required by the next job 𝑖 on the list 𝑌 is not being used
on any machine. 𝑖 is thus assigned to the less loaded machine with a setup time. Next,
job 𝑗 needs a mold that is currently used on machine 𝑀3 that has the lowest release time. 𝑗 will therefore be assigned to 𝑀3 without setup. For job 𝑘 however, the required mold
is currently used on the most-loaded machine 𝑀1 and therefore the job has to wait for its
release time before being processed. 𝑘 is assigned to 𝑀1 without setup time.

Figure 2. Illustration of the List Algorithm’s assignment rule.

4.2. Metaheuristic
The proposed list algorithm is combined with a metaheuristic. We chose to use two

single solution-based metaheuristics: stochastic descent and simulated annealing.

4.2.1. Tuning
The metaheuristic performs in the set Ω of all jobs’ permutations. Given that 𝑛 is

the number of jobs, cardinal of Ω is 𝑛!. One solution 𝑌 ∈ Ω is a list of jobs.
Solutions are compared according to an objective function which characterizes their

quality. In our case, the objective function is the total tardiness: the sum of the tardiness
of all jobs. After having assigned the jobs to the molds and to the machines using the list

Figure 2. Illustration of the List Algorithm’s assignment rule.

4.2. Metaheuristic

The proposed list algorithm is combined with a metaheuristic. We chose to use two
single solution-based metaheuristics: stochastic descent and simulated annealing.

4.2.1. Tuning

The metaheuristic performs in the set Ω of all jobs’ permutations. Given that n is the
number of jobs, cardinal of Ω is n!. One solution Y ∈ Ω is a list of jobs.

Solutions are compared according to an objective function which characterizes their
quality. In our case, the objective function is the total tardiness: the sum of the tardiness
of all jobs. After having assigned the jobs to the molds and to the machines using the list
algorithm described in the previous section, the value of the objective function is computed
as follows: for each job, it is the difference between the completion time and the due date.
All positive values are added.

The neighborhood system V is the exchange of two jobs’ positions in List Y: job at
position i permutes with the one at position j. V checks accessibility and reversibility
properties. An initial solution is randomly computed, based on a randomly sorted list of jobs.

4.2.2. Stochastic Descent

Stochastic descent is one of the oldest metaheuristics. Its principle is to compute a
solution Y′ which is a neighbor of the current solution Y, according to the neighborhood
system V. After applying the list algorithm L, a solution X′ = L(Y′) is obtained. If the value
of the objective function H(X′) is lower or equal to the current one H(X), then the solution
X′ of the list Y′ is accepted. Stochastic descent converges to a local minimum. This method
is easy to implement but the quality of the results may be insufficient. Algorithm 2 describes
stochastic descent.

Algorithm 2 Principle algorithm of stochastic descent

Data: Initial solution Y
XL(Y)
while necessary do

choose uniformly and randomly Y′ ∈ V(Y)
X′L(Y′)

if H(X′) ≤ H(X) then
YY′

tenailleau
Rectangle

4.2.3. Simulated Annealing

This metaheuristic comes from process used in metallurgy. That process alternates cy-
cles of slow cooling and heating [28] used inhomogeneous simulated annealing to emulate
this process. Applied to the optimization field, the algorithm consists of executing a local
search with a computed probability to choose a worse solution than the current one, allow-
ing thus to escape local optimum. This probability progressively decreases throughout the
running process of the algorithm. If neighborhood system V satisfies the accessibility and
reversibility properties, simulated annealing converges in probability to the set of optimal
solutions [29]. Algorithm 3 describes the principle algorithm of simulated annealing.

Algorithm 3 Principle algorithm of simulated annealing

Data: Initial solution Y, Temperature T0, Decreasing factor α

TT0
XL(Y)
while necessary do

choose uniformly and randomly Y′ ∈ V(Y)
X′L(Y′)

if H(X′) ≤ H(X) then
YY′

else

if rand[0, 1]≤ e−
H(Y′)−H(Y)

T then YY′

Compute the new temperature T α ∗ T

Two parameters have to be chosen:

• The initial temperature T0 is chosen to be big enough so that most of the transitions

are accepted at the beginning: e−
H(Y′)−H(Y)

T0 ≈ 1 ∀(Y, Y′).
• The decreasing factor α is chosen in such a way that the final temperature would be

close to zero.

5. Experiments

In this section, we carry out an experimental study to assess the performance of the
proposed method. The outcomes are compared with an exact resolution performed by a
mathematical solver for small-sized instances and with the results obtained with a heuristic
presented in [30] for bigger ones. This benchmark heuristic is the scheduling method
currently used in the molding company and it consists of a two-phase algorithm: first it
assigns molds to machines and then it schedules jobs on each machine. Each mold is thus
assigned to only one machine throughout the scheduling, with no possibility to move
to another one. This method has thus he advantage to ensure a small number of setups
throughout the production process.

5.1. Instances Generation

The case study company can produce more than 500 different parts, each one requiring
its own mold. 25 injection machines are available in the shop-floor. An average of 200
production orders are received each week. The production planner needs to generate a
weekly plan for the received orders, considering the items to be produced, their required
quantities and the due date negotiated with the costumer. To execute this plan, the produc-
tion planner must decide which job will be processed in each machine and the sequence by
which they will be produced.

To test the proposed approach, 11 instances were randomly generated. The charac-
teristics of these instances (number of machines available, number of molds required and
number of jobs to be planned) are presented in Table 2. To correctly replicate the case study
company problem, real data (jobs processing times and setup times) were collected on the

shop-floor. The following statistical distributions fitting the collected data were used to
generate the instances:

(1) Jobs’ processing times: Exponential with an average of 10.75 h.
(2) Due dates: Uniform with a minimum of 24 and a maximum of 312 h.
(3) Setup times:

Time required to dismount a mold: Uniform with a minimum of 15 and a
maximum of 45 min

Time required to mount a mold: Uniform with a minimum of 20 and a maxi-
mum of 60 min.

Table 2. Generated instances.

Instance number 1 2 3 4 5 6 7 8 9 10 11

Machines 2 3 5 10

Molds 3 6 12 16 18 20 26 26 25 59 63

Jobs 10 15 32 47 53 57 79 80 81 177 191

The big M value of our mathematical model (i.e., variable G) has been chosen as equal
to 10.000. Let us note that this value has no impact on the model’s solving times, since there
is no loop or sum that depends on it.

5.2. Results

The computer that was used in the experiments is powered by an i7 CPU running
at 2.6 GHz. First, to validate the quality of our method, we compared its results to those
of the mathematical model. The solver used to solve the mathematical model is CPLEX
12.6.3. Table 3 summarizes results obtained by both methods. Results represent tardiness.
Computational times are also given. In case the solver does not find any solution in a
reasonable computational time, the upper and lower bounds are reported.

Table 3. Comparison of results between the solver and the hybrid method.

Solver Our Method

Instance Number of Jobs Time Tardiness Time Tardiness

1 10 19 s 38.00 19 s 38.00
2 15 12 min 18.21 7 s 18.21
3 32 30 h [37.65, 80.76] 96 s 80.76

As we can see in Table 3, for the 10 and 15 jobs instances, our method finds an optimal
solution in less time than the solver. For larger instances, the solver does not reach any
optimal solution for hours while our method finds a good solution (actually the upper
bound found by the solver) in a few seconds. Since the CPLEX solver ran for more than
30 h without finding a solution for the 32 jobs instance, we decided not to continue the
exact resolution for larger instances, for which we propose a comparison between our
method and the scheduling heuristic currently used by the company.

Table 4 presents the results obtained for the big-sized instances with this benchmark
heuristic and with our method. The comparison considers the tardiness and the number
of setups. Over several replication, the shortest time needed to find one best solution is
reported in the last column of the table.

Table 4. Comparison of results between the benchmark method and the proposed approach.

Current Approach Proposed Approach

Stochastic Descent Simulated Annealing
Time

Instance Jobs Tardiness Setup Tardiness Setup Tardiness Setup

4 47 8.32 16 0 33 0 31 4 min
5 53 37.76 26 24.37 40 17.98 42 37 min
6 57 159.6 23 136.29 33 66.16 27 3 min
7 79 395 37 241.26 49 148.63 44 6 min
8 80 77.8 33 0.98 49 0 41 1 h
9 81 165.9 28 52.56 39 46.17 43 1 h
10 177 1020.4 82 963.95 114 343.82 101 5 h
11 191 580.2 83 786.18 122 579.5 124 4 h

The results show that besides being easy to develop, the proposed method is effective,
giving good results in reasonable computational time. In comparison with the benchmark
method proposed by [30], an average reduction of 35% is achieved in tardiness. For some
instances, the reduction of tardiness is as high as 65%. This can be explained by the fact that
the proposed method is less constraining, as the molds are not fixed and can switch from a
machine to another throughout the scheduling. Nevertheless, the proposed method leads
to an increase in the number of setups. It is important to note that, since the main objective
of the company was to reduce the tardiness, the number of setups was not considered in
the objective function of the proposed method but for other problems or future studies,
an objective function considering tardiness and number of setups, with different weights,
can be considered.

From the experimental study conducted in this section, we can thus conclude that
our proposed approach brings a significant improvement in terms of tardiness when
compared to the company current approach. Therefore, it is expected that the proposed
approach will be implemented by the company as part of their production planning and
scheduling system.

6. Conclusions and Perspectives

In this paper, a real world scheduling problem from a plastic injection company
has been studied and solved. This problem considers sequence dependent setup time,
parallel machines and compatibility constraints between machines and resources (molds).
The considered objective is to minimize the jobs’ tardiness (i.e., the difference between the
completion time of the jobs and their due date). First, a mathematical formulation of the
problem has been provided. Then, an optimization method aiming to solve the big-sized
instances has been developed. The proposed tool consists of a hybridization of a list-
algorithm and a metaheuristic and can be seen as a master/slave approach. The obtained
results show that the method provides high quality results for the proposed problem,
outperforming a two-stage heuristic previously developed for the same problem [30] and
currently used by the case-study injection plant.

This hybridization has been proposed instead of a classical metaheuristic because it is
easier to develop. Indeed, using a classical metaheuristic needs to define a neighborhood
system to browse the solution space. This neighborhood system can be complex: the neigh-
bor solution needs to respects all constraints of the specific problem. In our approach,
the neighbor is a swap between two jobs in the list of jobs and then the application of
the list algorithm ensure the constraints respect. This has two interests. Our tool aims
to solve industrial applications, so an easy, friendly tool may have more chance to be
used by a company. Plus, we intend to solve others industrial applications, using the
same tool, only adapting the list algorithm and the objective function (see [1] for other
implementation of this tool). Ultimately, a generic tool that could be used to solve several
different operational management problems could be developed. A strong point of the
proposed method is that the metaheuristic can be used without any change for a large

portfolio of problems. The intended tool would thus have a generic part composed of this
metaheuristic and a library of list algorithms, which will allow rapid implementation by
different companies, facing different planning, scheduling and assignment issues.

Several ways of improvement are considered to go deeper in the development of our
tool. Within the hybridization, new metaheuristics could be used for the proposed method,
including other single solution-based methods as iterated local search or population-
based metaheuristics, such as particle swarm optimization using parallel computation
with GPU. This will make it possible to assess the effectiveness of the proposed tool
under different metaheuristic approaches. New list algorithms are currently proposed
for different industrial problems. We are currently collecting data in companies with
lot-sizing, scheduling and assignment problems. These problems take into account new
constraints, as precedencies between jobs. Moreover, new objective function are considered:
for instance improving the ergonomic and not only the economic aspect. Thus, our tool
could face more realistic industrial problems from Industry 4.0, which deals with new
markets and new technologies.

Author Contributions: Methodology, L.P. and N.K.; Supervision, C.S.; Writing—review & editing,
N.K. and M.A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by FEDER Hauts de France and CEA Tech.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study were generated on the basis of informa-
tion provided by a case-study company and are available on request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Klement, N.; Silva, C. A generic decision support tool to planning and assignment problems: Industrial applications and industry

4.0. In Scheduling in Industry 4.0 and Cloud Manufacturing; Sokolov, B., Ivanov, D., Dolgui, A., Eds.; Springer International
Publishing: Cham, Switzerland, 2020; pp. 167–192. [CrossRef]

2. Dastidar, S.G.; Nagi, R. Scheduling injection molding operations with multiple resource constraints and sequence dependent
setup times and costs. Comput. Oper. Res. 2005, 32, 2987–3005. [CrossRef]

3. Van Wassenhove, L.N.; De Bodt, M.A. Capacitated lot sizing for injection moulding: A case study. J. Oper. Res. Soc. 1983, 34.
[CrossRef]

4. Nagarur, N.; Vrat, P.; Duongsuwan, W. Production planning and scheduling for injection molding of pipe fittings a case study.
Int. J. Prod. Econ. 1997, 53. [CrossRef]

5. Erlenkotter, D. Ford whitman harris and the economic order quantitymodel. Oper. Res. 1990, 38, 937–946. [CrossRef]
6. Copil, K.; Wörbelauer, M.; Meyr, H.; Tempelmeier, H. Simultaneous lotsizing and scheduling problems: A classification and

review of models. OR Spectr. 2016, 1–64. [CrossRef]
7. Gramani, M.C.N.; França, P.M. The combined cutting stock and lot-sizing problem in industrial processes. Eur. J. Oper. Res. 2006,

174, 509–521. [CrossRef]
8. Luche, J.R.D.; Morabito, R.; Pureza, V. Combining process selection and lot sizing models for production scheduling of eletrofused

grains. Asia-Pac. J. Oper. Res. 2009, 26, 421–443. [CrossRef]
9. Gaudreault, J.; Frayret, J.M.; Rousseau, A.; Amours, S.D. Combined planning and scheduling in a divergent production system

with co-production:A case study in the lumber industry. Comput. Oper. Res. 2011, 38, 1238–1250. [CrossRef]
10. Martinez, K.Y.P.; Toso, E.A.V.; Morabito, R. Production planning in the molded pulp packaging industry. Comput. Ind. Eng. 2016,

98, 554–566. [CrossRef]
11. Potts, C.N.; Van Wassenhove, L. Integrating scheduling with batching and lot-sizing: A review of algorithms and complexity.

J. Oper. Res. Soc. 1992, 395–406. [CrossRef]
12. Drexl, A.; Kimms, A. Lot sizing and scheduling: Survey and extensions. Eur. J. Oper. Res. 1997, 99, 221–235. [CrossRef]
13. Jordan, C. Discrete lot-sizing and scheduling by batch sequencing. In Batching and Scheduling; Springer: Berlin/Heidelberg,

Germany, 1996; pp. 95–119. [CrossRef]
14. Potts, C.N.; Kovalyov, M.Y. Scheduling with batching: A review. Eur. J. Oper. Res. 2000, 120, 228–249. [CrossRef]
15. Centeno, G.; Armacost, R.L. Parallel machine scheduling with release time and machine eligibility restrictions. Comput. Ind. Eng.

1997, 33, 273–276. [CrossRef]

http://doi.org/10.1007/978-3-030-43177-8_9
http://doi.org/10.1016/j.cor.2004.04.012
http://doi.org/10.1057/jors.1983.116
http://doi.org/10.1016/S0925-5273(97)00109-6
http://doi.org/10.1287/opre.38.6.937
http://doi.org/10.1007/s00291-015-0429-4
http://doi.org/10.1016/j.ejor.2004.12.019
http://doi.org/10.1142/S0217595909002286
http://doi.org/10.1016/j.cor.2010.10.013
http://doi.org/10.1016/j.cie.2016.05.024
http://doi.org/10.1057/jors.1992.66
http://doi.org/10.1016/S0377-2217(97)00030-1
http://doi.org/10.1007/978-3-642-48403-2_4
http://doi.org/10.1016/S0377-2217(99)00153-8
http://doi.org/10.1016/S0360-8352(97)00091-0

16. Centeno, G.; Armacost, R.L. Minimizing makespan on parallel machines with release time and machine eligibility restrictions.
Int. J. Prod. Res. 2004, 42, 1243–1256. [CrossRef]

17. Ruiz, R.; Maroto, C. A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility.
Eur. J. Oper. Res. 2006, 169, 781–800. [CrossRef]

18. Kim, D.-W.; Na, D.-G.; Chen, F.F. Unrelated parallel machine scheduling with setup times and a total weighted tardiness objective.
Robot. Comput.-Integr. Manuf. 2003, 19, 173–181. [CrossRef]

19. Sáenz-Alanís, C.A.; Jobish, V.D.; Salazar-Aguilar, M.A.; Boyer, V. A parallel machine batch scheduling problem in a brewing
company. Int. J. Adv. Manuf. Technol. 2016, 87, 65–75. [CrossRef]

20. Yugma, C.; Dauzère-Pérès, S.; Artigues, C.; Derreumaux, A.; Sibille, O. A batching, and scheduling algorithm for the diffusion
area in semiconductor manufacturing. Int. J. Prod. Res. 2012, 50, 2118–2132. [CrossRef]

21. Lenstra, J.K.; Rinnooy Kan, A.H.G.; Brucker, P.J. Complexity of machine scheduling problems. Ann. Discret. Math. 1977, 1,
343–362. [CrossRef]

22. Omar, M.K.; Teo, S.C. Minimizing the sum of earliness/tardiness in identical parallel machines schedule with incompatible job
families: An improved MIP approach. Appl. Math. Comput. 2006, 181, 1008–1017. [CrossRef]

23. Toutouh, J.; Nesmachnow, S.; Alba, E. Fast energy-aware olsr routing invanets by means of a parallel evolutionary algorithm.
Clust. Comput. 2012, 16. [CrossRef]

24. Afsar, H.M.; Lcomme, P.; Ren, L.; Prodhon, C.; Vigo, D. Resolution of a job-shop problem with transportation constraints:
A master/slave approach. In Proceedings of the 8th IFAC Conference on Manufacturing Modelling, Management and Control
MIM, Troyes, France, 28 June 2016. [CrossRef]

25. Gourgand, M.; Grangeon, N.; Klement, N. An analogy between bin packing problem and permutation problem: A new encoding
scheme. In Advances in Production Management Systems. Innovative and Knowledge-Based Production Management in a Global-Local
World; Springer: Berlin/Heidelberg, Germany, 2014; Volume 438, pp. 572–579. [CrossRef]

26. Zhu, X.; Wilhelm, W.E. Scheduling and lot sizing with sequence-dependent setup: A literature review. IIE Trans. 2006, 38,
987–1007. [CrossRef]

27. Klement, N.; Gourgand, M.; Grangeon, N. Medical imaging: Exams planning and resource assignment: Hybridization of a
metaheuristic and a list algorithm. In Proceedings of the 10th International Conference on Health Informatics, Porto, Portugal,
21–23 February 2017. [CrossRef]

28. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H.; Teller, E. Equation of state calculations by fast computing
machines. J. Chem. Phys. 1953, 21, 1087–1092. [CrossRef]

29. Aarts, E.; van Laarhoven, P. Simulated Annealing: Theory and Applications; Kluwer Academic Publishers: Dordrecht, The Nether-
lands, 1987. [CrossRef]

30. Silva, C.; Ferreira, L.M. Microplano—A scheduling support system for the plastic injection industry. In E-Manufacturing: Business
Paradigms and Supporting Technologies; Springer: Berlin/Heidelberg, Germany, 2004; pp. 81–89. [CrossRef]

http://doi.org/10.1080/00207540310001631584
http://doi.org/10.1016/j.ejor.2004.06.038
http://doi.org/10.1016/S0736-5845(02)00077-7
http://doi.org/10.1007/s00170-016-8477-8
http://doi.org/10.1080/00207543.2011.575090
http://doi.org/10.1016/S0167-5060(08)70743-X
http://doi.org/10.1016/j.amc.2006.01.068
http://doi.org/10.1007/s10586-012-0208-9
http://doi.org/10.1016/j.ifacol.2016.07.889
http://doi.org/10.1007/978-3-662-44739-0_70
http://doi.org/10.1080/07408170600559706
http://doi.org/10.5220/0006113002600267
http://doi.org/10.1063/1.1699114
http://doi.org/10.1007/978-94-015-7744-1_2.23
http://doi.org/10.1007/978-1-4419-8945-1_9.24

	Introduction
	Literature Review
	Mathematical Model
	Proposed Solution Approach
	List Algorithm
	Metaheuristic
	Tuning
	Stochastic Descent
	Simulated Annealing

	Experiments
	Instances Generation
	Results

	Conclusions and Perspectives
	References

