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ARTICLE INFO ABSTRACT
Artic{e history: Nutrient hotspots strongly attract mammalian herbivores in nutrient-poor habitats such as
Received 13 November 2019 savanna systems. However, little is known about their seasonal importance for mammalian
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herbivore species, particularly grazers. In addition, no study has fully quantified the po-
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tential re-distribution of nutrients into the surroundings of these hotspots. We assessed
nutrient hotspot (i.e., grazing lawns and termite mounds) use by herbivores in a Miombo
ecosystem of the Issa valley, Tanzania, using dung counts, camera traps and stable isotope
analyses over a one year period, from May 2016 to October 2017. We conducted dung
counts along four transects each radiating away from ten termite mounds and six grazing
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Grazers lawns as well as in 16 control sites 100 m away from each nutrient hotspot. In addition, we
Miombo woodland sprayed grasses around five termite mounds with urea and traced the isotopic signature
Nitrogen back in grazing herbivore dung. Grazer dung deposition was twice as high in hotspot areas

vs control sites. A total of 32 camera stations recorded 244 wildlife encounters, with
mammalian herbivores using hotspot areas four times more frequently compared to
control plots. Stable isotope analyses highlighted that dung deposited by mammalian
grazers around hotspots likely originated from grasses within or close to hotspot areas,
indicating that grazers are responsible for maintaining nutrient stability of these hotspots.
We, therefore, emphasize the importance of grazing mammal species for the long-term
persistence of hotspots and, thus, their contribution to the maintenance of a heteroge-
neous landscape within the Miombo ecosystem.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Grazing ecosystems, that often host a large diversity and biomass of mammalian wildlife species, are increasingly
threatened (Frank et al., 1998). These ecosystems often encompass savannas that are characterized by a continuous layer of
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palatable and unpalatable grass species (Grant and Scholes, 2006). Nutrient availability in grasses attract various mammalian
herbivores (Frank et al., 1998; McNaughton, 1985; Treydte et al., 2011). A substantial amount of the nitrogen (N) and phos-
phorus (P) that is found in grasses is recovered back in the herbivore’s dung and urine (Hobbs, 1996), further enhancing N and
P in soils and, consecutively, grasses (van der Waal et al., 2011; Williams and Haynes, 1990). Nutrient rich sites produce
palatable forage for both livestock and wildlife in savannas, highlighting the importance of patchiness for large mammalian
herbivores (Muchiru et al., 2008; Porensky and Veblen, 2015).

Various factors such as climate, soil type, grass species and grazing can affect dynamics of nutrients (Silveira et al., 2012). In
addition, dung mineralization, which is higher than that of plant litter, strongly fosters nutrient cycling (Tonn et al., 2019).
Nutrient concentration is often high in areas of high grazer visitation (Sollenberger et al., 2009) such as grazing lawns
(Cromsigt and OIff, 2008; McNaughton, 1985). Further, nutrients can also accumulate on and around termite mounds due to
the termites’ decomposition activities (Davies et al., 2016; Reid, 2012), thereby enhancing both soil and plant foliar nutrients
(Porensky and Veblen, 2015).

At fine spatial scales, termites are responsible for inducing savanna heterogeneity due to their earth burrowing activities
(Dangerfield et al., 1998; Moe et al., 2009; Odadi et al., 2018). The highly fertile soils on and around mounds promote nutrient-
rich grass growth (Arshad, 1982; Fox-Dobbs et al., 2010). Further, one would expect that ungulates, grazers in particular,
favorably forage on these sites (Augustine et al., 2003). In addition, their urine and dung depositions on or next to these
hotspots might alter soil nutrient availability for plants via changes in soil nutrient cycling (van der Waal et al., 2011).

However, the spatial and temporal nutrient cycling around these hotspot areas, from soils via plants to herbivores and back
into soils, is difficult to trace and has rarely been quantified (Jobbagy and Jackson, 2001). Further, decomposition of dead
organic matter is a key process in nutrient recycling of terrestrial ecosystems, providing essential nutrient input for plant
communities (Veldhuis et al., 2017a, 2017b). Grasses from nutrient-rich sites normally also possess high nutrient concen-
trations, which are particularly important for pregnant and lactating ungulates (Augustine et al., 2003).

The high soil nutrient concentrations of termite mounds (Carneiro et al., 2018; Holt and Lepage, 2000; Sileshi et al., 2010)
are often not strongly re-distributed into the surrounding landscape through natural processes due to mound structure and
termite behaviour (Holt and Lepage, 2000). Re-distribution extent to nearby soils depends on the nature of the mounds, soil
erosion as well as nutrient leaching rates (Holt and Lepage, 2000). This re-distribution can sometimes happen via herbivores
as agents, from foraging to resting or sleeping sites, where excretions take place (Frank and Evans, 1997; Jewell et al., 2007;
Singer and Schoenecker, 2003; Veldhuis et al., 2016). However, tracing the origin of the forage and assessing whether the
excreta belong to the ungulates in question has only been reliably studied for domestic herbivores (Bol et al., 2000). Little is
known on the linkage between savanna vegetation quality and nutrient redistribution by wild herbivores as an important
mechanism sustaining heterogeneity in savanna systems (van der Waal et al., 2011). Stable isotopes have been used for
various ecological aspects with respect to food webs, trophic relationships and resource allocation (Boecklen et al., 2011;
Finlay and Kendall, 2008; Frank and Evans, 1997; Werner et al., 2012), mostly focusing on trophic levels in aquatic systems
(Finlay and Kendall, 2008). Little has been done in terrestrial systems using stable isotopes, particularly in Eastern Africa (but
see Treydte et al., 2006b). Stable isotopes were also used in Kruger National Park, South Africa, to understand feeding patterns
of elephants (Loxodonta africana), particularly when they switch between grass and browse (Codron et al., 2011). Herbivores
have been studied for decades, yet debate still exists across Africa about their diet composition (Sponheimer et al., 2003).
Among the challenges in many studies is to clearly set the connection between the herbivore species of interest foraging on a
diet that differs in isotopic composition and choosing tissue that will yield the appropriate record of the past feeding location
(Hobson, 1999). As natural tracers, stable isotopes can be used for showing plant-animal relationships and for truly reflecting
food sources, habitat, distribution and movement in terrestrial ecosystems (Jianzhu et al., 2004). This technique also provides
an ideal tool to understand food web relationships and herbivore community structure because of isotopic fractionation
during the processes of nutrient assimilation by animals (Bouillon et al., 2011; Jardine et al., 2017).

We used indirect observations and camera traps to understand grazer utilization of nutrient hotspots such as grazing
lawns and termite mounds across the year in a Miombo ecosystem of the Issa valley, Tanzania. We focused on selected grazing
mammalian species that were expected to preferably graze on these hotpots. Further, we marked five termite mounds with
labeled urea and traced stable N isotopes from grasses originating from the mounds to the grazer species’ dung. We wanted to
(i) assess if the dung deposited around termite mounds originated from grasses growing on these termite mounds and (ii) to
understand whether the nutrient input through herbivore dung is accumulated around termite mounds or whether
mammalian herbivores act as agents carrying the nutrients away from these nutrient hotspots back into the savanna land-
scape. We used urea as a tracer, marking grasses that can then easily be detected in herbivore dung based on their isotopic
signature as well as camera traps and indirect observations to understand herbivore movements.

2. Methods
2.1. Study area

Our study was conducted in Issa valley, western Tanzania (05° 23 S 30° 35 E; Fig. 1), which consists of steep valleys and flat
hill plateaus ranging from 900 to 1800 masl (Stewart, 2011). The area is composed by a mixture of swamps, dry grassland,

wooded grassland, woodland, gallery forest, thicket forest and hill forest (Piel et al., 2015). Mean annual rainfall ranges from
900 to 1400 mm and there are two distinct seasons, wet (November—April) and dry (May—October) (Piel et al., 2015). Mean
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Fig. 1. Map of Issa valley, western Tanzania, showing camera trap locations at termite mounds, grazing lawns and respective control sites.

annual temperature ranges from 11 °C to 38 °C (Piel, 2014). The grassland in the study area is dominated by Hyparrhenia hirta,
Andropogon gayanus, Digitaria spp, Themeda triandra, Panicum repens and Oryza longistaminata (Mayengo et al., 2020) and
woodlands are dominated by miombo (Brachystegia) and Julbernardia (Fabaceae) (Piel, 2014). The main large mammalian
herbivores found in the study area are Lichtenstein’s hartebeest (Alcelaphus lichtensteinii), Roan antelope (Hippotragus
equinus) and reedbuck (Redunca redunca) (Mayengo et al., 2020; Piel et al., 2018).

2.2. Data and sample collection

We selected ten active termite mounds and six grazing lawns that were not close to water bodies or near big trees to avoid
potential confounding factors (see supplementary information). We further selected ten and six respective control sites that
were at least 100 m away from the mounds and from the edge of grazing lawns, respectively (Moe et al., 2009, Fig. 1). We
established transects radiating away from each termite mound and grazing lawn centre in all four cardinal directions (N, S, E,
W). Along these transects, we quantified dung depositions of the three main grazer species, i.e., hartebeest, Roan antelope,
and reedbuck every month over a period of one year (Sept 2016—0ct 2017) in and around grazing lawns, termite mounds and
their respective control sites (see supplementary information). The presence of different grazer species was determined by
recording cumulative dung depositions (graded as 1-fresh, 2-recent, 3-old) (Curtis, 1995; Liebenberg, 1990). After recording,
dung signs were removed to avoid re-counting. Identification of the dung was done according to Stuart and Stuart (2006) and
together with the assistance from experienced Tanzanian field assistants. Moreover, two types of motion detecting, infrared
triggered cameras (Reconyx HC600 Hyperfire and Bushnell) (Kolowski and Forrester, 2017; Schieltz, 2017), twelve in total,
were randomly placed in pairs, with one camera on the hotspot and one in the control area of similar ground cover char-
acteristics (Kolowski and Forrester, 2017, Fig. 1). All cameras were mounted 40 cm above the ground (Kelly and Holub, 2008;
Kolowski and Forrester, 2017; Rendall et al., 2014) and about 5 m away from but facing towards the nutrient hotspot centre
(Mann et al,, 2015), (see supplementary information). About 1 m? of vegetation was cleared around each camera to avoid
triggers caused by moving vegetation (Kelly and Holub, 2008; Rendall et al., 2014). The distance between camera locations
was at least 100 m (Kolowski and Forrester, 2017). Generally, three cameras were placed on different grazing lawns, three on
their control sites, three on termite mounds and three on their control sites, thereafter rotated every month to cover all ten
termite mounds, six grazing lawns and their respective control sites. Cameras took one photograph per second after the
object/animal passed in front of the camera within the field of view (Wearn and Glover-Kapfer, 2017). We recorded the total
number of grazer images captured, counted as number of events per hour (Kelly and Holub, 2008), in a particular plot over the
year (Zavaleta et al., 2014). If the same animal was photographed more than once by the same camera within 1 h, this was
considered as one event (Tobler et al., 2009).
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To test whether the isotopic 8°N signature of dung deposited around termite mounds was more closely related to termite
mound grass signatures than to non-termite mound grass signatures we used '>N-Urea. We foliarly sprayed '°N-Urea (Carlo
et al., 2009) on grasses around five termite mounds within a quadrat of 2 x 2 m?. As weak signatures and impurities might
lead to confounding factors in our analyses (Werner et al., 2012) we decided not to rely on potential natural differences in
stable N isotopes (Hobson, 1999) but rather to spray isotopically labeled urea. We aimed at retracing the urea back in the
collected dung through corresponding 5'°N values. We placed a quadrat of 1 m? at a distance of 2 m away from the centre of
each mound in all cardinal directions. Within this quadrat, we assessed the proportion of grass partially or fully eaten by
herbivores (Treydte et al., 2010), (see supplementary information). We then collected all dung depositions found around
termite mounds within a radius of 30 m? and recorded their distance away from the mound. About 4—6 fresh dung pellets
from hartebeest only were collected for three weeks consecutively after spraying. Grass samples were collected from sprayed
grasses near termite mounds and at a distance of 100 m away as a control. We collected a total of 32 dung pellet and 32 grass
samples, air dried them (Carlo et al., 2009; Miranda et al., 2014), stored them in paper bags and analysed them at the Food
Chemistry Institute, University of Hohenheim, Germany. Grass and dung samples were oven dried at 70 °C for 48 h (Carneiro
et al.,, 2018), homogenized with a milling machine (Namiesnik and Zygmunt, 2003) and 2—3 mg were placed in a tin capsule
(Reitsema, 2015). The 3'°N was determined by an Euro EA 3000 Elemental analyzer linked via Thermo FinniganConflo IV
continous flow interface with an Delta XP Isotope Mass spectrometer (Ogawa et al., 2010; Reitsema, 2015). N isotope ratios
were calculated as 3'°N, where 3 represents the proportional deviation in (%) from the international standard (atmospheric
N2) (Qi et al., 2016): 8 = 1000((Rsample/Rstandard) - 1), where R is the ratio of heavy to light isotopes (Markow et al., 2000). For
calibration and quality control of B]gN values the international reference material USGS40 (315N —4.52%0) and glutamic acid
laboratory working standard were used. Each sample was replicated once to avoid errors (Peters, 2001; Reitsema, 2015).
Standard deviations for 3'°N were less than 0.1%o (Rennie et al., 1975).

2.3. Data analysis

We averaged the presence of the three grazer species based on cumulative dung depositions over the ten termite mounds,
six grazing lawns and their respective control sites and tested for normality. Camera trap data were grouped into months, and
categorized into dry and wet season for both hotspot and non-hotspot areas. We used a Generalized Linear Mixed Model
(GLMM) to assess the effect of dung deposition as dependent variable, with season (wet vs dry) and location, i.e., nutrient
hotspot vs non nutrient hotspot, and their respective interactions. Further, isotopic signatures of urea sprayed grass and
isotopic signatures of dung deposited within 30 m from the sprayed grass were compared using one-way ANOVA (Miranda
et al., 2014). Tukey’s Post-hoc test was used in all statistical tests, significance levels were set at & = 0.05. Software used was
Origin Pro 8 (Serrano et al., 2011) and SPSS version 20 (Treydte et al., 2007).

3. Results

Herbivore presence using indirect observation (dung) was about three times higher in hotspots vs control areas (F;z» =
34.51, P < 0.0001), with twice as many dung depositions found at hotspots during the dry season than during the wet season
(F320=10.7, P = 0.0002; Fig. 2). Of all dung depositions recorded, Roan antelope dung constituted 43%, hartebeest dung 40%
and reedbuck dung 17%. Seasonal differences were mainly visible in hotspot areas but not in the respective control sites,
highlighting the temporal importance of these hotspots (Fig. 2).

Our Generalized Linear Mixed Model (GLMM) showed that season alone had no significant effect on dung depositions (F;,
48 = 0.01, P = 0.04), while location, i.e., nutrient hotspot vs non nutrient hotspot, did (Fs, 4s = 27.37, P < 0.0001) and the
interaction of season and location was also significant (F3, 4¢3 = 5.55, P < 0.005). Herbivore dung around termite mounds over
the year differed significantly between grazer species using one way ANOVA (F,, g = 4.84, P = 0.037; Fig. 3 a), with Roan
antelope highly preferring the termite mounds. Dung deposition frequencies did not differ significantly between the three
grazer species for grazing lawns (F,, 13 = 1.77, P = 0.198; Fig. 3 b). The number of dung depositions was higher close to termite
mounds compared to far away from mounds (F;, ;74 = 146.77, P < 0.0001; Fig. 3 c), with the same patterns seen for grazing
lawns (F;, 1628 = 1382, P < 0.0001; Fig. 3 d).

Herbivore presence based on camera trap data was four times higher in hotpots (both termite mounds and grazing lawns
combined) vs control areas (F;, 1= 11.93, P=0.0028; Fig. 4 a). Around termite mounds only, animals were captured four times
more frequently than in control sites (F;, ;3 = 10.23, P = 0.004), and the same pattern was visible for grazing lawns (F;, 15 =
6.05, P = 0.024; Fig. 4 b). Herbivore images captured during the wet season were thirty two times higher around termite
mounds (F;, s = 16.71, P = 0.003) and grazing lawns (F;, s = 2.33, P = 0.16; Fig. 4 b) compared to the respective control sites,
(see Table 1). Herbivore images captured during dry season were not significantly different around termite mounds compared
to controls (F;, 12 = 0.09, P = 0.76) and grazing lawns were six times higher than their controls (F; ;2 = 3.78, P = 0.07; see also
Table 1).

There was a statistical difference in 3°N between urea sprayed grass, control grass and dung deposited within a 30 m
radius around the termite mounds (F;, 45 = 40.23, P < 0.0001). Tukey’s post hoc analysis showed no difference between urea
sprayed grass and dung (Fig. 5). Urea sprayed grass around termite mounds had about twice as high values in 8'°N compared
to unsprayed grass in controls (F;, 2s = 39.07, P < 0.0001). Further, there was a positive correlation between 3N of dung
deposited close to the mounds than far away from mounds (F;, 390 = 3.84, R? = 0.347, P = 0.059; Fig. 6).
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Table 1
Animal species that were captured by camera traps in hotspot areas from May 2016—October 2017. If the animal was photographed more than once by the

same camera within 1 h, this was considered as one event.

capture events

Taxonomic group Scientific name Common name Dry season Wet season
Primates Papio cynocephalus Yellow baboon 2 3
Pan troglodytes schweinfurthii Chimpanzee 1 0
Ungulates Potamochoerus porcus Bushpig 2 2
Tragelaphus scriptus Bushbuck 0 10
Alcelaphus lichtensteinii Hartebeest 49 10
Oreotragus oreotragus Klipspringer 1 11
Redunca redunca Reedbuck 129 32
Hippotragus equinius Roan antelope 32 16
Carnivora Mellivoria capensis Honey badger 1 1
Panthera pardus Leopard 0 1
Crocuta crocuta Spotted hyena 1 0
Civettictis civetta African Civet 5 0
Genetta angolensis Miombo genet 6 0
Herpestes ichneumon Mongoose 1 0
Rodents Hystrix africae-australis Porcupine 7 0
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Fig. 5. Isotopic 3'°N plot of urea sprayed grass (termite mound grass) vs unsprayed grass in controls and vs hartebeest dung deposited within a 30 m radius from
urea sprayed termite mounds. Boxplots show the mean (a square within boxes) and ranges from 25% to 75% quartile, and the tips of the whiskers indicate

standard deviation. Boxes with different letters are significantly different by Fisher LSD at P = 0.05.
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4. Discussion

Our results show that the high nutrients in and around termite mounds are likely enhanced through mammalian grazers
via their dung deposition and grazing activity, as was the case for grazing lawns. We also showed that grazer dung deposited
around termite mounds is isotopically similar to sprayed grasses around termite mounds, which, in combination with our
other indirect and direct observations, indicates that dung deposited around termite mounds likely originated from grasses
growing on these termite mounds. This would agree with findings by Treydte et al. (2006b), who concluded that ungulates
might be responsible for maintaining stability of nutrient hotspots that had been created by former cattle bomas. Grazing
herbivores normally deposit dung frequently at specific locations in nutrient rich sites (Veldhuis et al., 2017a, 2017b). Her-
bivores were found to highly use termite mounds based on their dung depositions (Brody et al., 2010) affecting spatial
heterogeneity in soil across the landscape at large (Levick et al., 2010; Veldhuis et al., 2017a, 2017b) by creating islands of
fertility. Experimental work has shown that urine patches can also alter 3'°N values in the short term (Tonn et al., 2019).

Grass species are generally low in 3'3C and 3!°N values as was found in various studies (Ehleringer, 1991; Wooller et al.,
2007; Treydte et al., 2006b). We enriched our termite mound grasses in 3°N by spraying urea, which marked these
grasses with a higher isotopic value compared to the surrounding, unsprayed grasses. These higher 3'°N were likely reflected
in the dung values of the hartebeest in our study. Higher isotopic levels of dung were also obtained by Treydte et al., (2006b),
who concluded that this might indicate the location of foraging due to a different local isotopic signature. The hartebeest is a
typical grazer (Schuette et al., 2006), and does generally not forage on legumes, which are more enriched with 3!°N (Wanek
and Arndt, 2002). This highlights that the hartebeest in our study foraged on our sprayed termite mound grass rather than on
forbs or leguminous tree species that might have shown higher 3'°N values naturally. However, we recommend future
microhistological studies to identify the individual grass species eaten as well as direct foraging observation studies of grazer
species to confirm origins of the dung as well as precise foraging locations and plant species. Further, DNA metabarcoding
could be applied in addition to our approach as it provides the greatest resolution of dietary items (Garnick et al., 2018). While
this was not possible due to time and financial constraints, we did combine our isotope work with camera traps, indirect
observations and other experimental work (Mayengo et al., 2020), which supports our results and highlights the power of
isotopic work for foraging ecology in African ungulates (see also Rysava et al., 2016) and other herbivores.

Further, we found that season had a strong effect on whether a nutrient hotspot was visited by mammalian herbivores or
not. Since rainfall strongly affects vegetation quality (Okitsu, 2005) and, accordingly, distribution of foraging herbivores
(Ogutu and Owen-Smith, 2003; Knape and de Valpine, 2011), we expected seasonal differences in nutrient hotspot use. Our
results showed that dung depositions on the grazing lawns were highest during the dry season compared to the wet season,
similar to results by Tate et al. (2003), who found highest depositions of cattle dung around hotspots during the dry season in
Sierra Nevada foothills, California, USA. In their study, cattle dung distribution patterns were significantly associated with
location of livestock attractants, slope, hydrologic position, and season (Tate et al., 2003). In another study conducted in Japan,
Hirata and Higashiyama (1997) found higher concentrations of Japanese Black heifers’ and steers’ dung around resting sites
but their study lacked a seasonal component. Further, our study showed higher herbivore dung depositions around termite
mounds during the wet season (see also Mayengo et al., 2020), and concentrated close to the termite mounds, indicating that
this was also the herbivores’ feeding location. These findings are similar to (White-Leech et al., 2013), who found livestock
dung concentrated around shade, water, and feeding locations.

We found that not only grazers but also mixed feeders were attracted by vegetation around termite mounds, in agreement
with research conducted in Zimbabwe by Holdo and McDowell (2014), who found that elephants were highly using trees
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growing around termite mounds due to their higher concentration of nutrients compared to surrounding vegetation matrix.
Further, chimpanzees in Issa valley, western Tanzania, were found to use flexible fishing probes to fish termites in various
termite mounds (Stewart and Piel, 2014). Hence, particularly termite mounds in Issa valley are likely to be attractive feeding
and resting grounds for a large variety of iconic and endangered species. While it is known that different termite species built
different mound types and influence soils in various ways (Enaghonma and Babalola, 2019), we were not able to investigate
the influence of different species of termites on grass quality and how grazers respond towards them, which might be an
interesting future topic for research.

Heterogeneity in African savannas is attributed by different abiotic and biotic factors (Odadi et al., 2018; ). For example,
precipitation, fire and herbivory affect savanna vegetation structure and composition (Odadi et al., 2018; Sankaran et al,,
2005) as well as variation in topography and soil characteristics (Baldeck et al., 2014; Odadi et al., 2018). Our results
confirmed that hotspots act as a key feeding resource for wild animals (Anderson et al., 2010). Our dung deposition results
showed that the mammalian herbivores used hotspot areas up to four times more frequently than the control sites, which is
in agreement with other studies on sites with highly nutritious forage, e.g., as can be found in areas of abandoned cattle
grazing (Davies et al.,, 2016), or around termite mounds (Mayengo et al., 2020; White et al., 2016).

Further, as we expected, herbivores grazed more intensively around nutrient hotspots, and added more dung, and
probably urine, around these hotspots. This is in contrast to (Gillet et al., 2010) who found low grazing intensity on nutrient
hotspots compared to their surroundings in a temperate climate of the Jura Mountains of north-western Switzerland. The
grazed nutrient hotspots in Issa valley might, thus, attract even more herbivores to visit the area (Moe and Wegge, 2008; Day
and Detling, 1990). Since dung and urine depositions highly affect chemical composition of soil and grasses (Moe and Wegge,
2007) as well as plant productivity (Williams and Haynes, 1990) these nutrient hotspot areas strongly support mammalian
herbivore species (Grant and Scholes, 2006), especially in nutrient poor areas like savanna soils.

We also found that roan antelope and hartebeest deposited more dung around hotspots than reedbuck did, which might
be due to their relative numbers within our study area, which was confirmed by our camera trap events. However, data on the
population estimates of different ungulate species in Issa valley are missing (Piel et al., 2018). Since Roan antelope and
hartebeest are larger in size than reedbuck, they might need a higher amount of good quality food from nutrient rich areas
(Shipley, 1999), and they were found to frequently return to previously visited areas (Morales et al., 2005). Large herbivore
grazing is affected by abiotic factors such as slope and distance to water (Senft et al., 1996) as well as biotic factors such as
forage quality and quantity (Bowyer et al., 1998; Senft et al., 1996; Treydte et al., 2006a). However, for large herbivores such as
roan antelope and hartebeest, foraging velocity decreases and intake rate increases once they reach areas of abundant
palatable grass (Senft et al., 1996), which was confirmed by our results.

In our study, we used a combination of animal presence estimates using dung depositions (Treydte et al., 2010) and camera
traps (Rendall et al., 2014). The use of camera traps in ecological studies has increased (Wearn and Glover-Kapfer, 2017) and is
an effective measure for monitoring wild animals in a non-invasive way (Ancrenaz et al., 2012; Kays et al., 2009; Rendall et al.,
2014). Camera trap footage showed higher animal activity around grazing lawns during the dry season than during the wet
season, and higher animal activity during the rainy season compared to the dry season around termite mounds, which might
be due to the shifting quality of foraging resources (Anderson et al., 2010) around hotspots across different seasons. Camera
trap images showed that reedbuck and hartebeest were frequently visiting the grazing lawns, which might be due to high
nutrient availability in these areas (Cromsigt and Olff, 2008) or the lower susceptibility to predation (Anderson et al., 2010).
Reedbuck strongly prefer flat, low lying land (Kingdon and Hoffmann, 2013), and hartebeest prefer short grasses (Schuette
et al., 2006) in low lying areas, which were represented by and found on our grazing lawns.

Our stable isotope technique, a method rarely used for terrestrial ecological studies in eastern Africa, highlighted spatial
distribution of foraging and defecating of wild animals with respect to plant nutrient distribution. Isotope Ratio Mass
Spectrometry (IRMS) is a novel approach used to provide useful information on the chemical and biological origin of various
components (Muccio and Jackson, 2009; Reitsema, 2015). Measurement of isotope ratios can effectively be used to differ-
entiate samples, which otherwise share similar chemical signatures (Muccio and Jackson, 2009). However, uncertainty may
occur over the relative contribution of diet and water to tissue (Jardine et al., 2017), which might cause isotopic differences
locally and temporally. Hence, a strong initial spatial difference in isotopic composition is of high advantage as it shows the
differences between herbivore species and their respective diet (Hobson, 1999). This fact made us use urea spray in order to
clearly show the link between grazer and their forage.

Since we did not use an adhesive after spraying urea and because we conducted this study during the rainy season our
results might have been affected and effects weakened due to rain events (Carlo et al., 2009). In addition, physiological and
metabolic processes within herbivores after eating grass might also have affected our results, diluting potentially strong
differences (Zanden et al., 2014). However, our results still show strong isotopic differences between sprayed and unsprayed
grasses, and suggest similarities between dung and hotspot grasses, in combination with our other studies in the area
(Mayengo et al., 2020). Hence, we claim that our isotopic data strength provided an important cue in highlighting spatially
determined foraging resources (Ballantyne et al., 2011).

Understanding how nutrients are transferred from high nutrient areas to low nutrient areas is an important aspect in
ecology (Holtgrieve et al., 2009). As dung depositions can be used as proxy for describing habitat use of feeding mammalian
wildlife (Treydte et al., 2006a), patterns of nutrient cycling and impacts on forage quality can show the long-term mainte-
nance of high fertility sites in these areas (McNaughton et al., 1997; Treydte et al., 2006a), promoting a positive feed-back loop
(van der Waal et al., 2011).
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We are aware that hotspot size can affect species diversity (Cook et al., 2014), and our results here provide only a snapshot
of grazer activity, grass and soil properties as well as nutrient cycling. Our grazing lawns were about 1 ha in size (70 x 70 m),
while the termite mound influence areas were about 30 x 30 m (Moe et al., 2009). However, we showed that termite mounds,
despite being small in size, still can act as small grazing lawns that grazers preferably feed on, hence, increasing nutrient
cycling through their dung depositions (Cromsigt and OIff, 2008). These results were confirmed by our camera trap data,
revealing that herbivores frequently used hotspot sites. Hence, our combination of various data assessment methods proved
to be an effective and efficient way in understanding how wild mammalian herbivores use hotspot areas.

With our study we could show that herbivores enrich nutrient hotspots even more (Augustine et al., 2003), highlighting
the importance of these feeding grounds, and, thereby, ensuring long-term persistence of the latter in savanna ecosystems.
Furthermore, the extent to which these feeding grounds, i.e., termite mounds and grazing lawns, are important to grazers will
depend on the their density and distribution patterns in a particular habitat (Holdo and McDowell, 2014).
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