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Abstract 16 

The North Pacific-Arctic Oceans are important compartments for semi-volatile organic 17 

compounds' (SVOCs) global marine inventory, but whether they act as a "source-sink" remains 18 

controversial. To study the air-sea exchange and fate of SVOCs during their poleward long-19 

range transport, low-altitude atmosphere and surface seawater were measured for polycyclic 20 

aromatic hydrocarbons (PAHs) by passive sampling from July to September in 2014. Gaseous 21 

PAH concentrations (0.67-13 ng m-3) were dominated by phenanthrene (Phe) and fluorene (Flu), 22 

which displayed an inverse correlation with latitude, as well as a significant linear relationship 23 

with partial pressure and inverse temperature. Concentrations of PAHs in seawater (1.8-16 ng 24 

L-1) showed regional characteristics, with higher levels near the East Asia and lower values in 25 

the Bering Strait. The potential impact from the East Asian monsoon was suggested for gaseous 26 

PAHs, which – similar to PAHs in surface seawater - were derived from combustion sources. 27 

In addition, the data implied net volatilization of PAHs from seawater into the air along the 28 

entire cruise; fluxes displayed a similar pattern to regional and monthly distribution of PAHs in 29 

seawater. Our results further emphasized that air-sea exchange is an important process for PAHs 30 

in the open marine environments. 31 

Keywords 32 

Polycyclic aromatic hydrocarbons; Low-density polyethylene; Air-sea exchange; Long-33 

range transport; High-latitude marine environment.34 



3 

 

1. Introduction 35 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environments worldwide, 36 

and some of them are toxic, carcinogenic and mutagenic (Bozlaker et al., 2008; Okona-Mensah 37 

et al., 2005; Perera et al., 2005). Besides their petrogenic origin, PAHs are also generated during 38 

the incomplete combustion of organic materials, like fossil fuels and biomass (Yunker et al., 39 

2002). As a class of semi-volatile organic compounds (SVOCs), they could arrive in the polar 40 

area from temperate regions with subsequent deposition and re-volatilization, representing an 41 

emerging concern in the Arctic like other conventional pollutants (Cai et al., 2016; Friedman 42 

and Selin, 2012; Laender et al., 2011). 43 

Atmospheric transport has been considered the primary pathway for PAHs transported 44 

from the lower latitudes to the Arctic environments (Mulder et al., 2015; Dotel et al., 2020). 45 

Previous studies showed that PAHs found in the Arctic seawater and sediments mainly 46 

originated from natural underwater hydrocarbon seeps, while those in the air were from 47 

atmospherically derived sources (Harvey et al., 2014; Yunker et al., 2011; Foster et al., 2015). 48 

With the concern of climate change, the “polar sinks” for many conventional pollutants may 49 

become secondary sources via air-water exchange, that is, the declining sea ice coverage and 50 

rising temperature could lead to an accelerating release of PAHs from sea ice and seawater to 51 

the atmosphere (Hung et al., 2010; Ma et al., 2011, 2013; Galban-Malagon et al., 2013). Thus, 52 

studying PAHs in the atmosphere and related interfaces is helpful to better know the current 53 

state of the PAH emission and their fates in the Arctic (Friedman et al., 2014). 54 

Passive sampling is an effective monitoring technique for SVOCs, which is easy to operate, 55 

cost-effective and with high enrichment of the target compounds, and has been applied in 56 

various global monitoring projects (Lohmann et al., 2001; Harner et al., 2003; Meijer et al., 57 

2003; Jaward et al., 2004; Khairy and Lohmann, 2014; Mcdonough et al., 2014; Zhao et al., 58 

2018). This method integrates contaminant concentrations over time, representing time-59 

weighted averages (Stuer-Lauridsen, 2005; Shaw and Mueller, 2009; Wania and 60 

Shunthirasingham, 2020). For PAHs, the freely-dissolved pollutants can be sampled with low-61 

density polyethylenes (LDPEs) (Khairy and Lohmann, 2014). Concentrations of target 62 

compounds that do not reach equilibrium during the exposure period can be estimated relying 63 
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on the diffusive loss of performance reference compounds (PRCs) (Booij et al., 2002; Mayer et 64 

al., 2003; Khairy and Lohmann, 2012). 65 

Although previous studies have reported the distribution and direction of PAHs air-water 66 

exchange in the northern Pacific and the Arctic, as well as fugacity model simulations, the 67 

seasonal and regional trends of PAHs remain uncertain (Ke et al., 2017; Ma et al., 2013). Hence 68 

the air-sea exchange process of PAHs from the North Pacific to the Arctic needs further research. 69 

In this study, we performed spatially resolved air and water measurements during the sampling 70 

cruise, and the objectives were to (1) obtain the spatial and temporal distribution characteristics 71 

of atmospheric and dissolved PAHs in seawater from the North Pacific Ocean to the western 72 

Arctic Ocean; (2) assess the source of gaseous and freely dissolved PAHs at most sites; (3) 73 

derive the direction and magnitude of the air-sea flux exchange process of PAHs. 74 

2. Materials and methods 75 

2.1 Area description 76 

During the Chinese sixth Arctic scientific expedition cruise from July to September in 77 

2014, we collected 32 atmosphere and 16 surface seawater samples in the Japan Sea, Bering 78 

Sea and Chukchi Sea onboard the R/V Xuelong (Snow Dragon). The Bering Strait, connecting 79 

the Bering Sea with the Chukchi Sea, and linking the Asian and American continents, is the 80 

boundary of the Arctic and Pacific Oceans. The Bering Sea is a semi-enclosed, high-latitude 81 

sea that is almost divided equally between a deep basin (maximum depth 3500 m) and the 82 

continental shelves (<200 m). The eastern broad (>500 km) shelf of the Bering Sea contrasts 83 

with the narrow (<100 km) western shelf (Stabeno and Van Meurs, 1999). Water in the vast 84 

(~500 km wide from east to west and ~800 km long from north to south) and shallow (∼50 m) 85 

Chukchi Sea (Arctic Ocean) is strongly forced by Pacific Ocean water entering through the 86 

Bering Strait (Woodgate et al., 2005), which delivers heat, freshwater, nutrients, and carbon to 87 

the Chukchi shelf and the Arctic Ocean.  88 

In this study, there were 16 sampling stations (Table S1 in Supporting Information, SI), of 89 

which PS-01 to PS-07 were located in the Sea of Japan and northwest Pacific Ocean, while PS-90 

08 to PS-10 in the Bering Sea and the Bering Straits, and PS-11 to PS-16 in the Arctic Ocean 91 

(mainly in Chukchi Sea). 92 
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2.2 Materials Preparation and Field sampling 93 

2.2.1 Preparation for LDPEs 94 

Both atmospheric and seawater samplers were made of LDPEs with PRCs, which is 95 

similar to the material used in semipermeable membrane devices; The inclusion of PRCs 96 

provided a means to identify the absorption of hydrophobic PAHs by estimating dissipation 97 

rates of PRCs (Booij et al., 2002; Lei et al., 2020). LDPEs (10 cm × 40 cm size, 50 μm thickness) 98 

were cleaned in dichloromethane and n-hexane for 24 h respectively. Deuterated PAHs (pyrene-99 

d10 and benzo [a] pyrene-d12, namely Pyr-d10 and BaP-d12) were used as PRCs to infer the 100 

equilibrium concentration of compounds in the passive samplers as in previous work (Booij et 101 

al., 2002; Mcdonough et al., 2014). LDPEs were soaked in PRCs and continuously shaken for 102 

one month to achieve homogenous uptake prior to deployments. 103 

2.2.2 Simultaneous sampling in atmosphere and surface seawater 104 

Atmospheric and surface-seawater LDPEs were deployed and collected simultaneously on 105 

the underway R/V Xuelong in the Japan, Bering and Chukchi Seas (Fig. S1), and LDPEs were 106 

changed every three days. The sampling site coordinates were calculated as the middle position 107 

of the start and end of sampling positions. 108 

Surface-seawater LDPEs were put into a stainless-steel pipe, and continuously exposed to 109 

fresh marine surface seawater from the onboard seawater supply. We controlled the flow rate 110 

of the seawater such that the LDPEs were submerged constantly. The atmospheric sampling 111 

device was installed on the top deck, which was about 26 m above sea level. The device 112 

consisted of two stainless-steel bowls, connected in the middle by a stainless-steel center shaft. 113 

The LDPEs, thread on a metal wire, were fastened on the center shaft for sampling. All the 114 

LDPE samples were sealed with an aluminum foil bag and stored at -20oC. 115 

2.2.3 Other auxiliary parameters 116 

Auxiliary parameters such as temperature and salinity were provided by the Xuelong ship 117 

real-time monitoring system, and other parameters such as wind speed, wind direction and air 118 

temperature were provided by the automatic weather station on board Xuelong ship. 119 

2.3 Pretreatment and analysis 120 

LDPE samples were thawed out at room temperature, then cleaned with Milli-Q water and 121 
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any excess water or biofouling was removed with KimWipes. 200 mL of n-hexane was added 122 

to completely cover LDPEs after addition of 50 μL 100 ppb PAHs recovery indicator surrogates 123 

(acenaphthalene-d10, phenanthrene-d10, chrysene-d12 and perylene-d12, namely Acp-d10, Phe-d10, 124 

Chry-d12 and Pery-d12 respectively). After extraction for 24 h, the n-hexane was decanted and 125 

the extract was kept in a clean glass bottle. After a solvent exchange to dichloromethane, and 126 

repeating the above steps, extracts were combined. The extract was concentrated to 1mL in a 127 

30oC water bath by a fully automatic sample concentrator, transferred to a volumetric tube and 128 

slowly purged to 100 μL with high-purity nitrogen. Then 50 ng of deuterated terphenyl and 35 129 

ng of 2, 4, 6-Tribromobiphenyl were added as internal standards. The extract was sealed and 130 

frozen for storage before analysis. The weight of the extracted LDPE samples was recorded 131 

before and after treatment. 132 

An Agilent 6890-5973 GC-MS equipped with a DB5-MS quartz capillary column (30 m 133 

× 0.25 mm i.d. × 0.25 μm, J&W Scientific Inc., Folsom, U.S.A.) was used to detect PAHs. The 134 

high purity helium was used as carrier gas with the flow rate of 1mL min-1. The temperature 135 

programming of chromatography column started at 90 oC with three 3 minutes hold, then 136 

reached 110 oC at 5 oC min-1(holding 2 minutes), increased by 8 oC min-1 until 200 oC (holding 137 

3 minutes), and finally reached 315 oC at 5 oC min-1fiv, keeping the final temperature for 5 138 

minutes. 139 

2.4 Quality assurance and quality control 140 

Avoiding contamination was an important consideration in all steps associated with the 141 

extraction and analysis of LDPEs. All glassware used during pretreatment were cleaned, baked 142 

at 450oC for at least 4 hours, and thoroughly solvent-rinsed before use. The field blanks were 143 

regularly included in the sampling protocol, and included when samplers were changed during 144 

deployment and retrieval. Method detection limits (MDLs) were calculated as three times the 145 

standard deviation of the average field blank concentration. The MDL of the target compounds 146 

are listed in SI as well as instrument detection limits. All of the data were blank-corrected. 147 

When the concentration of the target compounds was less than the detection of limits, half of 148 

MDL was taken as its concentration value (Antweiler and Taylor, 2008). 149 

22 PAHs were detected in this study. In addition to the 16 priority PAHs listed by U.S. 150 
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EPA, the other six compounds were Biphenyl (Biph), 1-Methylphenanthene (1-MePhe), Retene 151 

(Ret), Benzo[e]pyrene (BeP), Perylene (Pery) and Benzo[j]fluoranthene (BjF) (Table S2 in SI). 152 

Due to the high environmental background concentration of naphthalene, it will not be 153 

discussed in this study. In order to improve the quality and credibility of the data, if the 154 

concentration of a certain target compound was greater than MDL but detected at less than 20% 155 

of the total sites, it was omitted from the discussion. A total of nine PAHs in atmospheric 156 

samples were regularly detected, which included phenanthrene (Phe), fluorene (Flu), Phe, 157 

anthracene (Ant), 1-MePhe, fluoranthene (FluA), pyrene (Pyr), chrysene (Chry), 158 

benzo[b]fluoranthene (BbF)/ benzo[k]fluoranthene (BkF) (because the peaks of BbF and BkF 159 

were hard to chromatographically separate, the total concentration of BbF/BkF are reported). 160 

While 11 PAHs in surface seawater samples were effectively detected, which included Flu, Phe, 161 

Ant, 1-MePhe, FluA, Pyr, Chry, Biph, benz[a]anthracene (BaA), BbF/BkF. Concentrations of 162 

PAHs in the samples were blank-corrected for the amounts detected in the field blanks, but not 163 

recovery corrected. The average recovery rates of the four surrogates that Acp-d10, Phe-d10, 164 

Chry-d12, and Pery-d12 were 70 ± 12, 75 ± 15, 85 ± 13, and 74 ± 18% respectively. 165 

For the uncertainty analysis, it is difficult to estimate the overall uncertainty of air-water 166 

exchange by passive sampling, because it involves multiple mathematical functions and values 167 

that have both normal and lognormal errors associated with them. Additionally, the 168 

uncertainties in Hθ are not well characterized, causing the uncertainty associated with the 169 

temperature- and salinity corrections were not included. 170 

2.5 Calculations and data analysis 171 

2.5.1 Calculations of PAH concentrations 172 

For each compound, the fraction of equilibrium (f) achieved for each compound was 173 

determined by fitting the equilibrium of the PRCs using temperature-corrected air-water 174 

partitioning coefficient in LDPEs (KPE) values to a model curve derived from equation (1) (Liu 175 

et al., 2016), 176 

 𝑓 = 1 − 𝑒
−

𝑅𝑠𝑡

𝐾𝑃𝐸𝑀𝑃𝐸 (1) 177 

Where Rs (L day-1) is the sampling rate defined as the volume of water or air that comes 178 

into contact with the sampler per day; t is deployment time (days); MPE is the PE weight (kg); 179 
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the values of Rs can be estimated using nonlinear least squares methods, by considering f as a 180 

continuous function of KPE, with Rs as an adjustable parameter using Excel Solver to obtain the 181 

best fit (Booij and Smedes, 2010). The average gaseous sampling rate of PAHs was 1 700 ± 1 182 

500 m3 day-1, among which the Pacific Ocean and the Bering Sea was 620 ± 410 m3 day-1, 183 

however the Arctic Ocean was 3 100 ± 1 300 m3 day-1, resulted from different wind speed and 184 

directions described below. The aqueous sampling rate of PAHs was 140 ± 54 L day-1. 185 

Gaseous and freely dissolved concentrations, CA/W of compounds were calculated from 186 

the equation (2), 187 

 𝐶𝐴/𝑊 = 𝐶𝑃𝐸−𝐶𝐵𝑙𝑎𝑛𝑘

𝐾𝑃𝐸(1−𝑒
−

𝑅𝑠𝑡
𝐾𝑃𝐸𝑀𝑃𝐸)

 (2) 188 

Where CPE is the PE-normalized concentrations. For more details, see the Supporting 189 

Information. 190 

2.5.2 Brief description of calculation and two-film model 191 

The Whitman two-film resistance model was used for the air-sea exchange flux (Faw) 192 

calculation in the modified version (Liss and Slater, 1974). 193 

 Fa/𝑤 = va/w(Cw −
𝐶a

𝐾a𝑤
)   (3) 194 

where Fa/w is calculated with the mass transfer velocity (va/w), the concentrations in seawater 195 

and atmosphere, Cw and Ca, and air-water partitioning coefficient corrected by ambient 196 

temperature, Kaw (Liu et al., 2016). Calculation details of PAHs air-sea exchange fluxes at 197 

different sites are listed in SI from Table S6 to S12. 198 

2.6 Air mass back trajectories 199 

The NOAA’s HYSPLIT model was used to track the origins of air masses (Draxler and 200 

Hess, 1998). Air mass back trajectories were set as 12 h steps that traced back the air masses 201 

for 5 days, using the sampling height as arrival height. 202 

 203 
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3. Results and discussion 204 

3.1 PAHs in the atmosphere 205 

3.1.1 Concentrations and distributions 206 

Total gaseous concentrations of ∑9PAH ranged from 0.67 to 13 ng m-3 with the mean value 207 

of 3.7 ± 3.0 ng m-3, close to previous data of 0.93-93 ng m-3 for Σ15PAH reported over the North 208 

Pacific and Arctic Ocean in 2003, as well as 0.91-7.4 ng m-3 with a mean of 3.3 ± 1.7 ng m-3 209 

for Σ18PAH reported in 2010 (Ding et al., 2007, Ma et al., 2013). Observation showed the 210 

maximum concentrations occurred at PS-01 located in the Bohai Sea, and lowest at PS-16 in 211 

the Arctic Ocean (Fig. 1, Table S3). 212 

In this study, nine different PAHs were regularly detected in most gaseous samples, 213 

including three-ring PAHs like Flu, Phe, 1-MePhe, Ant, and four-ring PAHs like FluA, Pyr, and 214 

Chry. Higher molecular weight PAH concentrations in the atmosphere were typically below 215 

their limits of detection. Across the entire sampling cruise, Phe displayed the highest average 216 

contribution of 52% to ∑9PAH, followed by Flu, which contributed another 44%. Hence, the 217 

cumulative contributions of other congeners were less than 5 %. Our results mirror previous 218 

results, in that Phe was also the dominant compound among the gas phase PAHs, contributing 219 

50% to Σ15PAH over the North Pacific and Arctic Ocean (Ding et al., 2007). 220 

3.1.2 Decreasing distribution with latitude 221 

Overall, a significant negative correlation was observed between gaseous ∑9PAH and 222 

latitude (the coefficients of determination, R2 was 0.61, the P-value < 0.0010). The partial 223 

pressure of seven PAH congeners were calculated by a modified Clausius-Clapeyron equation 224 

(Venier et al., 2012), these results were obviously consistent with the trends in concentration 225 

with temperature. The mobility of PAHs was usually reduced by decreasing temperature, which 226 

contributed to decreasing volatility of PAHs, especially for higher molecular weight PAHs. As 227 

shown in Fig. 2, the partial pressure of FluA, Pyr and Chry decreased faster than for the low 228 

molecular weight PAHs such as Flu and Phe (All the R2 and P-values are given in SI). Higher 229 

molecular weight PAH congeners were more sensitive to temperature change, in line with 230 

expectations for gaseous PAH concentrations with latitude (Fig. 2). 231 

On the other hand, PAHs are more susceptible to photochemical-degradation in the 232 
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atmosphere. The concentration ratios of Flu to Phe were positively related to latitude (R2=0.58, 233 

P<0.0010) from the North Pacific to the Arctic (Figure 1); and the ratio FluA/(FluA+Pyr) was 234 

greater than 0.5 at all stations (Fig. 4). The total photochemical residence time (حtotal) of Flu and 235 

FluA were derived as 21 and 20 hours, and 9 and 5 hours for Phe and Pyr, respectively (Keyte 236 

et al., 2014); the observed low concentrations of Ant in the atmosphere were likely caused by 237 

its 2hours of حtotal. Furthermore, the atmospheric half-life of Flu is higher than Phe, which 238 

means higher removal rates occurred in Phe, and Flu presents a greater transmission potential 239 

than Phe for long-range atmospheric transport (LRAT) (Halsall et al., 2001). 240 

3.1.3 Influence of air mass 241 

Diagnostic ratios of gaseous PAHs were calculated, but need to be interpreted with caution, 242 

because the ratios might be affected by potential post emission processes. 1-MePhe/Phe in the 243 

atmosphere were less than 0.50, implying that the source of the PAHs could be attributed to 244 

combustion processes (Yunker et al., 2002; Deka et al, 2016; Wu et al., 2019). This was further 245 

supported by the isomeric ratios of FluA/(FluA+Pyr) that ranged from 0.42-0.82; a ratio greater 246 

than 0.5 indicates the main sources of grass, wood or coal combustions, and between 0.4 to 0.5 247 

usually suggests petrogenic combustion (Qu et al., 2019; Qi et al., 2020). 248 

At the mid-latitude sites, the air mass mainly originated from the coast of China, Korea, 249 

Japan and Russia, and close-by terrestrial regions as indicated by the air mass back trajectories 250 

(Fig. S7 and S8 in SI). With the trajectories of air mass that was used to study the origin of 251 

atmospheric PAHs in Japan and other neighboring areas, high concentrations of PAHs and 252 

emissions have been already observed in East Asian areas (Ohura et al., 2004; Primbs et al., 253 

2007). Continuously decreasing concentrations of PAHs occurred from the Bering Sea to the 254 

Arctic, but increased again between PS-09 and PS-11, where back trajectories indicated the air 255 

had passed through Alaska and Siberia, especially on Kamchatka peninsula, consistent with the 256 

impact of terrestrial source (Fig. S8 in SI). According to the air mass back trajectories, the 257 

source of the atmosphere PAHs in July was significantly affected by the southwest monsoon, 258 

which is also an important pathway for long-range transport. 259 
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3.2 PAHs in the seawater 260 

3.2.1 PAH profiles in seawater 261 

The concentrations of total freely dissolved ∑11PAH in the surface seawater ranged from 262 

1.8 to 16 ng L-1 with the mean value of 7.7 ± 4.6 ng L-1. The maximum concentrations occurred 263 

at PS-03 on the northeast coast of Japan, followed by station PS-02 and PS-04, and the 264 

minimum was observed at PS-10 in the Bering Strait (Fig. 3, Table S4). A total of 11 different 265 

PAHs were regularly detected in the freely-dissolved phase in the seawater samples, including 266 

Biph, Flu, Phe, 1-MePhe, Ant, FluA, Pyr, and Chry, BaA, BbF/BkF. The concentrations of 267 

higher molecular weight PAHs in seawater were typically below the limits of detection, similar 268 

to the atmosphere. 269 

The ratios of 1-MePhe/Phe and FluA/(FluA+Pyr) indicated the main sources of 270 

combustions included many types (Yunker et al., 2002; Qu et al., 2019; Qi et al., 2020). The 271 

results in seawater were consistent to previous studies in the North Pacific and Arctic Ocean 272 

(Ding et al., 2007; Ma et al., 2013). 273 

While Phe also dominated the dissolved ∑11PAH, its average contribution was only 36%. 274 

Hence more PAHs were regularly present beyond Phe, including Flu, which contributed 25%, 275 

FluA (11%), Pyr (10%), in addition 1-MePhe and Biph were 8 % and 5 %, respectively. Other 276 

congeners like Ant, BaA, BbF/BkF were only detected in a few of the samples beyond the 277 

Bering Sea (for details see SI), whose contributions were less than 4 %. The combined 278 

influences of sources like rivers, runoff, currents as well as biogeochemical process cause more 279 

higher molecular weight PAHs to be present in the surface seawater (Sambrotto, 1984; 280 

McDonough et al., 2014). We speculate that differences in biodegradation and photochemical-281 

degradation of PAHs increased the proportion of higher molecular weight PAHs in seawater 282 

(González-Gaya et al., 2019). Bacterial degradation rate constants (KD) showed a significant 283 

inverse correlation with Kow, which means the capacity to biodegrade higher molecular weight 284 

and hydrophobic PAHs (i.e., FluA, Pyr, Chry, BbF/BkF) were slower than for lighter weight 285 

PAHs (Table S5) (Tucca et al., 2020). Besides, higher molecular weight PAHs in the air sorb to 286 

aerosol according their higher octanol-air ratios, contributing to wet and dry deposition entering 287 

seawater.  288 



12 

 

3.2.2 Changes of freely-dissolved PAH distribution with region 289 

Freely dissolved ∑11PAH concentrations varied with sampling locations as well, but 290 

displayed obvious regional trends instead of correlation with latitude. They ranged from 12 to 291 

16 ng L-1 in the Japan Sea to the North Pacific Ocean, located in a mid-latitude temperate zone. 292 

Concentration were lower in the nearby Bering Strait ranging only from 1.8 to 4.8 ng L-1, as 293 

well as sites in the Arctic Ocean (2.7-6.5 ng L-1). In general, dissolved ∑11PAH concentrations 294 

closer to shore were relatively higher than those in the open ocean (Fig. 3). 295 

Lower concentrations of seawater Σ11PAH were present at station PS-08, PS-09 and PS-296 

10 in the Bering Strait, which was known as one of the most productive waters in the Arctic 297 

Ocean. Likely removal of PAHs by high amounts of biogenic particles significantly decreased 298 

the concentration of PAHs in the ocean, where the plankton biomass was higher, consistent with 299 

the relevance of the biological pump (González-Gaya et al., 2019). Another reason for low 300 

concentrations of Σ11PAH in the Arctic Ocean are the oceans’ long residence time, as well as 301 

the weak sea ice melting in summer. The ocean current exchange is relatively slow, causing the 302 

residence time of surface water to be about 10 years. Melting sea ice has been recognized as an 303 

important factor controlling the distribution of PAHs in the Arctic, where only part of the sea 304 

ice melts even in summer (MacDonald et al., 2000). The lower salinity supported that 305 

continental runoff or melting ice rather than ocean currents were the pathways of PAHs into the 306 

surface water, and the atmospheric deposition was also a key source (see below). 307 

3.3 Air-sea exchange of PAHs with two-film model 308 

3.3.1 General net volatilization 309 

The air-sea exchange fluxes of the seven PAHs was generally dominated by net 310 

volatilization especially from the North Pacific to the Arctic (Fig. 5, Table S12). Generally, 311 

fluxes of the more volatile PAHs especially for Flu and Phe were greater and nearly accounted 312 

for >70% of all (Table S12 in SI), based on their dominant contribution to gaseous and free-313 

dissolved PAHs. The maximum values of volatilization and deposition fluxes of Σ9PAHs were 314 

observed at site PS-04 (11 μg m-2 day-1) and PS-01 (-2.5 μg m-2 day-1) respectively. Flux 315 

distributions indicated that the deposition was only observed near land from Shanghai to the 316 

Bohai Sea, while net volatilizations were more widespread. For instance, Flu dominated the 317 
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flux at site PS-04 with the value of 4.2 μg m-2 day-1, and Phe at site PS-01 was -5.2 μg m-2 day-318 

1, due to the greatest concentrations of dissolved Flu at PS-04 and gaseous Phe at PS-01 319 

respectively. The effect of volatilization from coastal waters with high PAH levels has reported 320 

in other PAH-impacted regions such as the Atlantic, Narragansett Bay (USA) and the southeast 321 

Mediterranean (Nizzetto et al., 2008; Castro-Jiménez et al., 2012; Lohmann et al., 2011). The 322 

fluxes were mainly contributed by three-ring PAHs, while the fluxes of four-ring PAHs showed 323 

less variation in the North Pacific and the Arctic. 324 

3.3.2 Flux trend closely coupling with dissolved phase 325 

The derived air-water exchange fluxes correlated significantly to regional and monthly 326 

changes, similar to the freely-dissolved PAH distributions, which might imply the one of driver 327 

by concentration gradients between seawater and air (Fig. 5). Volatilizations dominated in the 328 

air-sea exchange because the seawater concentrations corrected by Kaw were one to three orders 329 

of magnitudes higher than equivalent concentrations in the atmosphere. 330 

As for individual congeners, there were no clear trends for three-ring PAHs, but diverse 331 

ones for higher-ring PAHs, especially FluA and Pyr declined with increasing latitude (Fig. S5 332 

in SI). These results verified that higher molecular weight PAHs were more sensitive to changes 333 

with temperature. PAHs are moderately volatile and hydrophobic, which facilitates their 334 

partitioning from air and water into organic phases (Nizzetto et al., 2010). Obvious outputs of 335 

biogenic particles occurred in the Bering Strait and caused a significant decrease in seawater 336 

concentration as well as fluxes. In the Arctic, low PAHs fluxes were driven basically by low 337 

atmospheric and seawater concentrations. However, the net volatilizations only had a minor 338 

impact on atmospheric concentration. According to the long-range transport and diffusion 339 

advection of PAHs, the atmospheric concentrations tend to decrease as the latitude increases, 340 

so the transports depend largely on temperature changes. In our study, strong correlations were 341 

observed for air-sea exchange fluxes with concentrations rather than temperature. 342 

3.4 Implication for the source-sink pattern of PAHs 343 

3.4.1 Source pattern of PAHs from the Pacific to the Arctic 344 

For further analysis, principal component analysis (PCA) was used to elucidate linear 345 

combinations of PAHs, to distinguish between the samples to assess different sources (Nemr et 346 



14 

 

al., 2005). Two compounds were obtained from PCA, namely the first principal component 347 

(PC1) and second principal component (PC2), contributed 74% to the total variance (Fig. 4). 348 

Correlation analysis showed high relevance of PC1 for four-ring PAHs, such as FluA and Pyr 349 

(r=0.98), FluA and Chry (r=0.90), Pyr and Chry (r=0.94); and PC2 represented mainly three-350 

ring PAHs such as Flu and Phe (r=0.82), Flu and Ant (r=0.56), Phe and 1-MPhe (r=0.67). The 351 

scores on PCA showed that all the sites in the Bering Sea and Arctic were concentrated together 352 

in the negative axis of PC1 and PC2, while sites in the North Pacific were more dispersed. 353 

The diagnostic ratios and PCA analysis provided qualitative information about the spatial 354 

patterns of PAH sources. Based on the analysis mentioned earlier, we inferred that sources of 355 

seawater and atmospheric PAHs in the Bering Sea and Arctic were mainly from combustion 356 

processes. In the Arctic, the diagnostic ratios of PAH concentrations in seawater were similar 357 

to that in atmosphere, which might provide the evidence that PAHs reached high latitudes by 358 

long-range atmosphere transport (LRAT). Hence the atmospheric concentrations contributed 359 

only low levels in the high latitudes, and combined with sea ice melting, runoff and other 360 

biogeochemical process to affect the ratio characteristics. On the other hand, both of the 361 

seawater and atmospheric PAHs in the Pacific Ocean were also mainly derived from 362 

combustion processes. The difference is that the North Pacific is known as an important cruise 363 

routes area, which potentially contributes additional sources factors, complicating the seawater 364 

PAHs. Therefore, petroleum combustion emitted by ships is an inevitable source for PAHs in 365 

addition to runoff, ocean currents and atmospheric deposition. 366 

3.4.2 Net volatilization prospect under climate changing 367 

Our results illustrated that the majority of PAHs displayed a net volatilization trend from 368 

East Asia to the Arctic, which was on the contrary of the previous studies (Zhong et al., 2012; 369 

Ma et al., 2013). The significant differences in the fluxes were partly attributed to the different 370 

concentrations of gaseous and dissolved PAHs between these two studies whose samples were 371 

from different years. The time lag to previous studies might have been sufficient to cause an 372 

increase in PAH concentration in surface seawater for the ongoing-emitted PAHs year by year. 373 

In addition, East Asia is a possible continental source area and has been estimated to contribute 374 

greatly to the global emission inventory of PAHs (Shen et al., 2013). Furthermore, sea surface 375 

temperatures (SSTs) in August 2014 were as much as 4 oC  warmer than the 1982-2010 August 376 
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mean in the Bering Strait and the sixth smallest Arctic sea ice extent by the satellite record 377 

(1979-2014) occurred in the summer of 2014 (Chen et al., 2016), which might partially explain 378 

the different results reported here. Lastly, sampling of PAHs by passive sampling only captures 379 

freely dissolved or gas-phase compounds, which should lead to air-water exchange fluxes not 380 

impacted by inadvertent capture of PAH bound to colloids or small particles. 381 

Some persistent organic pollutants, whose primary emissions have been reduced, are 382 

suggested having iterative processes (including deposition, volatilization and re-deposition) in 383 

the changing Arctic (Cai et al., 2012). Since the ice will prevent the escape of PAHs in winter, 384 

we can assume that atmospheric PAHs will deposit in snow and ice by dry/wet deposition 385 

processes and the Arctic turned into a sink again. In other words, as a result of global warming 386 

with sea ice retreat, whether the polar region is a sink or secondary source depends on the 387 

seasonal variety. The air-sea exchange fluxes in our study displayed significantly lower in 388 

September than in July (Fig. 5), which might be driven by decreasing temperature and 389 

weakened monsoon. PAH concentrations and fluxes are thus likely affected by temporal 390 

changes, but more evidence is needed (Fig. S6 in SI). Combining this with our result that fluxes 391 

were consistent with surface seawater PAHs concentrations, then seawater might dominate the 392 

air-sea exchange when not covered by sea ice. But whether the hypothesis is reasonable or not 393 

need to be further studied, and which might determine the role of the Arctic as “sink” or “source” 394 

of PAHs. 395 

4 Conclusions 396 

This study focused on the air-sea exchange process of PAHs, relying on LDPEs passive 397 

sampling from the North Pacific to Arctic. The gaseous concentrations of ∑9PAH ranged from 398 

0.67 to 13 ng m-3 and displayed a significant decreasing trend with latitude, which was 399 

dominated by long-range transport and photochemical-degradation of PAHs. Different 400 

distributions were explained by the air mass back trajectories, coupled with the influence of air-401 

sea exchange and dry/wet deposition processes. The concentrations of total freely dissolved 402 

∑11PAH ranged from 1.8 to 16 ng L-1 whereas higher molecular weight PAHs showed more 403 

presence. The changes in PAH profiles can likely be attributed to their relative capacity to 404 

undergo biodegradation and dry/wet deposition. In addition, regional distributions were shown 405 
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in freely dissolved PAHs, showing high levels in the North Pacific. The lower levels were 406 

impacted by biogenic particle removals in the Bering Sea, and were attributed to slow renewal 407 

of seawater and melting ice in the Arctic. Molecular ratios of the PAHs in atmosphere and 408 

surface seawater indicated combustion sources, and the source indication might provide some 409 

evidence for LRAT of high-latitude marine environmental PAHs. Overall, the air-sea fluxes of 410 

PAHs presented mostly net volatilizations with special regional and monthly changes, 411 

controlled by seawater concentrations. The air-sea exchange process showed only a relatively 412 

minor importance of air concentrations, instead the fluxes and dry/wet depositions from 413 

atmosphere to seawater might were more important especially in the Arctic. 414 
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 613 

Fig. 1. The gaseous concentration distribution of Flu and Phe along the cruise transect 614 

(the figure above), and the ratios of Flu to Phe as a function to latitude (the figure 615 

below). (The domination of Flu and Phe presented in Fig. S3) 616 

 617 
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 618 

Fig. 2. The partial pressure of PAH congeners as a function of water temperature (left), 619 

and the ratios of the sum of three-ring PAHs to four-ring PAHs as a function of air 620 

temperature (right). 621 

 622 

 623 

Fig. 3. The PAH concentrations in surface seawater along the cruise transect. 624 

 625 
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 626 

Fig. 4. Results of PAH diagnostic ratios of MePhe/Phe and FluA/(FluA+Pyr) (left), 627 

and PCA (right) for samples in seawater (dots in blue) and atmosphere (dots in red). 628 
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 629 

Fig. 5. The distribution of PAH air-sea exchange fluxes, and their monthly changes. 630 
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