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1 

Abstract  1 

Objective: This study tests the impacts of Digital Elevation Model (DEM) data on an exposure 2 

assessment methodology developed to quantify flooding of coastal infrastructure from storms and 3 

sea level rise on a regional scale. The approach is piloted on the United States Virgin Islands 4 

(USVI) for a one-hundred-year storm event in 2050 under the IPCC’s 8.5 emission scenario (RCP 5 

8,5). Method: Flooding of individual infrastructure was tested against three different digital 6 

elevation models using a GIS-based coastal infrastructure database created specifically for the 7 

project using aerial images. Inundation for extreme sea levels is based on dynamic simulations 8 

using Lisflood-ACC (LFP). Results: The model indicates transport and utility infrastructure in the 9 

USVI are considerably exposed to sea level rise and modeled storm impacts from climate change. 10 

Prediction of flood extent was improved with a neural network processed SRTM, versus publicly 11 

available SRTM (~30m) seamless C-band DEM but both SRTM based models underestimate 12 

flooding compared to LIDAR DEM. The modeled scenario, although conservative, showed 13 

significant flood exposure to a large number of access roads to facilities, 113/176 transportation 14 

related buildings, and 29/66 electric utility and water treatment buildings including six electric 15 

power transformers and six waste water treatment clarifiers. Conclusion: The method bridges a 16 

gap between large-scale non-specific flood assessments and single-facility detailed assessments 17 

and can be used to efficiently quantify and prioritize parcels and large structures in need of further 18 

assessment for regions that lack detailed data to assess climate exposure to sea level rise and 19 

flooding caused by waves. The method should prove particularly useful for assessment of Small 20 

Island Developing State regions that lack LIDAR data, such as the Caribbean. 21 

22 

23 

24 
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1. Introduction25 

Hydrologic models of flooding are sensitive to vertical error and grid size of the underlying 26 

Digital Elevation Model (DEM) (Kenward, Lettenmaier et al. 2000, Vaze, Teng et al. 2010, 27 

Vousdoukas, Bouziotas et al. 2018) used in assessments. This work tests a coastal subset of Shuttle 28 

Radar Topography Mission (SRTM) elevation data against Light Detection and Ranging (LIDAR) 29 

data and a corrected SRTM in order to quantify errors in storm flood modeling assessments of 30 

coastal infrastructure that results from the DEMs. The methodology is developed and tested in the 31 

USVI, where coastal LIDAR data are available to empirically validate the DEMs and understand 32 

the challenges of using globally available data for national or regional scale assessment of critical 33 

coastal facilities. The high resolution and vertical accuracy of airborne LIDAR generated elevation 34 

data makes them an important asset for coastal planning as it leads to more detailed flood 35 

assessments with higher confidence (Gesch 2009, Cooper et al 2013, Runting et al. 2013, Zhu et 36 

al. 2015, Enwright et al 2017). DEMs are a major component of coastal flood predictions but lidar-37 

derived DEMs are not available in all areas. Understanding the performance issues associated with 38 

the use of lower quality, widely available elevation data in flood models is therefore critical in 39 

climate change planning (Gesch 2018). This is particularly important as a uniform data standard 40 

is needed for planning at larger scales (e.g., regional) and/or in economically developing countries 41 

where high quality data are often not available and the impacts of  large storms can be devastating. 42 

Near global coverage DEMs, such as SRTM, the Advanced Spaceborne Thermal Emission 43 

and Reflection Radiometer (ASTER), and Global Digital Elevation Model (GDEM), offer 44 

globally-consistent scale and resolution and have been major assets in hydrologic and climate 45 

studies. Although, of these, SRTM offers the best vertical accuracy (Wang, Yang et al. 2012, 46 

Gesch 2018) at high horizontal resolution (30m), the data suffer from random noise, voids, striping 47 

and other errors that impact accuracy (Falorni, Teles et al. 2005, Hall, Falorni et al. 2005), with 48 
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elevations generally biased high by several meters, particularly in densely vegetated or developed 49 

areas in high-relief terrain (Falorni, Teles et al. 2005, Sanders 2007, LaLonde, Shortridge et al. 50 

2010, Shortridge and Messina 2011, Becek 2014) and causing considerable impacts on assessment 51 

of exposure to coastal flooding (Kulp and Strauss 2016). The appeal of the broad coverage and 52 

ease of availability of these data has led to many applications particularly at large spatial scales, 53 

see for example  (Hinkel, Lincke et al. 2014, Neumann, Vafeidis et al. 2015, Vousdoukas, 54 

Voukouvalas et al. 2016, Vousdoukas, Mentaschi et al. 2018). At smaller spatial scales, such as 55 

the individual infrastructure facilities considered in the current work, the relative impact of DEM 56 

resolution and vertical errors on hydrologic models may be large but poorly understood. Lack of 57 

alternative, easily accessible and superior data sources, however, often necessitates use of SRTM 58 

data in applications that stretch the validity of results given the level of bias and error. When used 59 

in proper context (ex. larger geographic scale studies) however, accounting for limitations can 60 

make these data valuable assets for areas with limited data   (Li and Wong 2010, Wang, Yang et 61 

al. 2012). Attempts to improve SRTM ex. (Baugh, Bates et al. 2013, Jarihani, Callow et al. 2015, 62 

Yamazaki, Ikeshima et al. 2017, Kulp and Strauss 2018) have been successful in addressing some 63 

of the issues inherent in these data, but the impact of refinements on smaller scale assessments 64 

when alternative data are not available are not usually considered in coastal exposure studies, 65 

adding to the uncertainty and unreliability of results (Gesch 2018).  66 

 67 

1.1 Motivation – Coastal infrastructure is at risk, but difficult to assess risk at the regional scale  68 

The Low Elevation Coastal Zone (LECZ) (less than 10 meters above sea level) contains 69 

10% of global population but covers only 2% of the land area (McGranahan, Balk et al. 2007). 70 

Population in this zone is growing at faster rates than hinterland regions from in-migration 71 

(McGranahan, Balk et al. 2007, Smith 2011, Neumann, Vafeidis et al. 2015), particularly in 72 
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economically developing countries. In light of sea level rise and potential increases in storm 73 

intensity, migration into the LECZ represents a movement towards risk. In the Caribbean, a 74 

majority of the airports, utilities and industrial infrastructure critical for economic development 75 

are located on the coast and relocation options are limited by lack of suitable land and costs 76 

associated with re-siting. The economic, social and political implications of this are just beginning 77 

to come to light and rest in part on the impacts climate change will have on such critical coastal 78 

infrastructure. In wealthier nations, climate change is emerging as a large component of planning 79 

in the coastal zone1, accompanied by pledges for increased funding for resilience planning2. But 80 

even in wealthy nations, the scale of the problem means need will likely outstrip resources to deal 81 

with it (USGCRP 2017).  82 

Resource-constrained nations face an even greater coastal climate threat, as they are 83 

experiencing in-migration to the LECZ at rates higher than the global mean (Neumann, Vafeidis 84 

et al. 2015) and have comparatively fewer resources to quantify, understand and plan for impacts 85 

(Smith 2011). This issue is particularly pertinent for Small Island Developing States (SIDS) in the 86 

Caribbean and elsewhere which contain the largest proportional share of their land area (16%) and 87 

amongst the highest population rates (13%) in the LECZ (McGranahan, Balk et al. 2007). The 88 

global scale of the risk to coastal infrastructure makes it highly unlikely that resource-constrained  89 

SIDS will be able to adapt at a pace adequate to match the threat, even with assistance from 90 

economically developed countries facing their own coastal climate change burden (Nurse, R.F. 91 

McLean et al. 2014, Cashman 2017). Methods are needed to support targeted and efficient 92 

 
1 https://www.nycedc.com/project/lower-manhattan-coastal-resiliency 
2 https://nymag.com/intelligencer/2019/03/bill-de-blasio-my-new-plan-to-climate-proof-lower-manhattan.html 
 
 
 
 

https://www.nycedc.com/project/lower-manhattan-coastal-resiliency
https://nymag.com/intelligencer/2019/03/bill-de-blasio-my-new-plan-to-climate-proof-lower-manhattan.html
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planning and preparation for climate infrastructure adaptation in the resource constrained 93 

Caribbean and other SIDS regions. Individual facility level exposure and risk assessments 94 

(Monioudi, Asariotis et al. 2018) are one method of evaluation as an aid in planning, but detailed 95 

assessment methods such as this and others (Lichter and Felsenstein 2012, Taramelli, Valentini et 96 

al. 2015) require considerable data collection, and costs would be prohibitive given the total 97 

number of sites in need of evaluation at a regional scale. Other methods take national, regional, or 98 

single feature type (e.g., seaports) assessment approaches (Lam, Arenas et al. 2014, Chhetri, 99 

Corcoran et al. 2015, Kumar and Taylor 2015, Taramelli, Valentini et al. 2015, Kantamaneni 2016) 100 

targeted at evaluation of risk based on a host of factors including demographics, socioeconomic, 101 

and physical. Others have taken even larger scale approaches (Hinkel, Lincke et al. 2014, 102 

Rasmussen, Bittermann et al. 2018) important for framing the burden of climate change at the 103 

global scale. What is missing is a method that bridges the gap between costly single facility 104 

assessments and broad global or regional assessments not meant to target individual facilities 105 

(Duncan McIntosh and Becker 2017). Such a method should be efficient enough for application at 106 

a regional scale (e.g., the entire Caribbean), and accurate enough to quantify exposure at individual 107 

facilities, not as a means of offering facility level solutions, but an aim to prioritize and target 108 

future assessment work using more costly, localized, approaches. Data limitations are the largest 109 

barrier to progress in this area. The data challenge for flood assessment is universal, and many 110 

studies have relied on elevation data that may not be well examined for its appropriate use for a 111 

given methodology, even though impacts on estimates can be substantial (van de Sande, Lansen 112 

et al. 2012, Leon, Heuvelink et al. 2014, Gesch 2018). Solutions such as incorporating uncertainty 113 

into estimates have been developed but these present their own challenge of complexity in 114 

application, particularly at the preliminary assessment phase.     115 
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The remainder of this paper presents the data components required to efficiently quantify 116 

exposure to flooding from storms and sea level rise for critical coastal infrastructure at the 117 

individual facility level that is applicable on a regional scale. The method proceeds with identifying 118 

critical coastal facilities, creating geospatial data of those facilities, and then applying a dynamic 119 

storm model to determine exposure to flooding. Two DEMs – SRTM and a more recent derived 120 

product, CoastalDEM v1.1 (Kulp and Strauss 2018) are tested to assess their suitability for a 121 

regional level evaluation to be carried out in a subsequent phase of the research.  122 

 123 

2. Data and Methods 124 

The United States Virgin Islands (USVI) with high-quality coastal LIDAR data were used 125 

as the test site for method development. The USVI are Northern Islands of the Lesser Antilles 126 

chain, termed Leeward Islands, and straddle the North Atlantic Ocean and the Caribbean Sea. The 127 

islands consist of St. Croix, St. John and St. Thomas. As a territory of the United States, USVI has 128 

publicly-available coastal LIDAR DEMs, the standard against which the SRTM-based DEMs were 129 

tested for validation of the methodology for the region.  130 

 131 

2.1 Data  132 

Elevation data from NASA’s Shuttle Radar Topography Mission (SRTM) available from the 133 

United States Geological Survey’s EarthExplorer site (https://earthexplorer .usgs.gov) and Climate 134 

Central’s CoastalDEM (Kulp and Strauss 2018) are used in our exposure analyses. SRTM is freely 135 

available and provide near global coverage, but are of considerably lower resolution (1 arc second) 136 

and vertical accuracy than LIDAR data. CoastalDEM v1.1 is derived from SRTM, built using 137 

artificial neural networks to predict and correct the vertical errors, and contains substantially lower 138 

elevation bias and RMSE.  Ground reference elevation data were not available so the airborne 139 

LIDAR DEMs (LIDAR) for the year 2013 were downloaded from NOAA Coastal Viewer (Office 140 
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for Coastal Management) and used as ground truth. These data are distributed at 1m horizontal 141 

resolution (resampled to 10m for this analysis) with vertical and horizontal accuracy of 11 and 100 142 

cm, respectively. DEM data were processed in Matlab and ArcGIS. 143 

 Geospatial critical coastal infrastructure data were created by students at the University of 144 

Rhode Island following trained to use the standard operating procedures developed specifically for 145 

the project and applied to available satellite imagery. Publicly available geospatial point data were 146 

used as the basis to create polygons for key infrastructure land uses including, airports, energy 147 

facilities, marinas, roads, seaports, and water and wastewater treatment. Coordinates were plotted 148 

in ESRI ArcGIS and overlaid on aerial imagery to confirm the location of features (0.5m to 1.5m 149 

resolution from ESRI World Imagery, last updated January 2018). A polygon dataset of critical 150 

infrastructure features were then created using ‘heads-up digitizing’, a common methodology for 151 

spatial data creation used to accurately assesses, monitor and manage a variety of phenomenon 152 

(Mas, Puig et al. 2004; Wilson and Lindsey 2005), including to inventory coastal infrastructure 153 

(Becker et al. 2010).  Additional details on these data sources and methodology are available in 154 

the supplementary materials. 155 

2.2. Methods  156 

Extreme Sea Level projections and inundation modelling 157 

Inundation maps of the study area were generated via dynamic simulations using Lisflood-158 

ACC (LFP) (Bates, Horritt et al. 2010, Neal, Schumann et al. 2011) that is part of the Lisflood-FP 159 

model (Bates and De Roo 2000). To optimize computational efficiency, the coastline was divided 160 

into coastal segments, each with a length of 10 km along the coast and extending up to 50 km 161 

inland depending on island size. Simulations took place for each segment; neighboring segments 162 

overlapped along 5 km of coastline to ensure generation of seamless inundation maps. The 163 

simulations took place at the resolution of each DEM (i.e. 10 m for the NOAA LIDAR dataset, 164 
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and 30 m for SRTM and CoastalDEM. Further details on the inundation modelling methodology 165 

can be found in Vousdoukas et. al (Vousdoukas, Voukouvalas et al. 2016).  166 

Inundation simulations were forced by extreme sea levels (ESLs) which consider the combined 167 

effect of sea level rise (SLR), the astronomical tide (
tide ) and the episodic coastal water level rise 168 

(
CE ) due to storm surges and wave set up. The projections are available every 10 years for 169 

Representative Concentration Pathways (RCPs) 4.5 and 8.5 (Vousdoukas, Mentaschi et al. 2018). 170 

Other studies suggest little change to SLR regardless of changes to RCP until the later part of the 171 

20th century (Hu and Bates 2018) due to differences in inertia between atmosphere and ocean 172 

temperatures (Meehl, Washington et al. 2005, Schaeffer, Hare et al. 2012). In this analysis, we 173 

consider the 100-year storm event in the year 2050 under RCP8.5, to compare sensitivity of the 174 

flood model predictions to the DEMs, a set of models was also run for a baseline 100-year event 175 

in 2000 (Table 3). More detail of the ESL component can be found in supplemental materials.   176 

Inundation in the coastal zone, DEM validation  177 

The impact of the digital elevation models on flooding were conducted in two steps: 1) a 178 

large scale analyses of the coastal zone of the entire USVI Territory comparing CoastalDEM, 179 

SRTM and LIDAR, 2) individual coastal infrastructure facilities using the same three datasets.  180 

Storm model output raster files were imported into ArcGIS (10.5.1) and converted to NAD 181 

83 (NSRS2007). Differences between SRTM DEMs and Coastal LIDAR for the entire territory 182 

were assessed for 0< x < 10 m elevation using the global parameter Root Mean Square Error 183 

(RMSE). Although errors in elevation data may be spatially variable and not well represented by 184 

RMSE particularly in areas with large variations in elevation, it is a common parameter used for 185 

assessing dispersion.  186 
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Indices developed for assessment of 187 

fluvial flood models (Bates and De Roo 2000, 188 

Alfieri, Salamon et al. 2014, Vousdoukas, 189 

Voukouvalas et al. 2016) and applied to 190 

coastal flood hazards in a previous study 191 

(Vousdoukas, Voukouvalas et al. 2016) were 192 

used to calculate ratios of hit (percentage of 193 

coastal area correctly predicted by each global 194 

model vs. LIDAR), miss (percentage of area 195 

missed by the global models vs. LIDAR) and 196 

false (percentage of area falsely predicted by 197 

the global models compared with L-DEM).  198 

Evaluation of critical coastal infrastructure 199 

To assess variations between the DEMs in predicting flooding of specific coastal features, 200 

water heights from the storm model outputs were overlain on elevation and critical coastal 201 

infrastructure polygon data in ArcGIS. Connected components analysis was used to ensure all 202 

flooded pixels are hydraulically connected to the ocean. Infrastructure data included features 203 

common to all types (e.g., buildings), and some unique to functional groups (e.g., clarifier tanks 204 

for wastewater treatment). Exposure to parcels and parking lots were calculated as the sum of the 205 

inundated portion of total area. For building footprints, if >50% of the area of the footprint was 206 

inundated, the area of the entire building footprint were assumed to be exposed. For smaller 207 

features (e.g., cranes, tanks, clarifiers, power generating structures and transformers), inundation 208 

of any portion of the footprint resulted in the entire area of the feature to be assumed flooded. 209 

Finally, in areas where the storm model indicated flooding along portions of access roads within 210 

Text Box 1. Hit/Miss/False Ratios 

Hit = total coastal area correctly predicted by each DEM model 
vs. L-DEM:  

H =
FmꓵFo

Fo
 x 100 

where 𝐹𝑚ꓵ𝐹𝑜 is the intersection of 𝐹𝑜 (flooded area predicted 
by the model L-DEM) and 𝐹𝑚 (flooded area predicted by the 
model SRTM, CC-SRTM),  

Miss = total area missed by the predicted model vs. L-DEM: 

F  =
Fm− Fo

Fo
 x 100 

where ,  𝐹𝑚 −  𝐹𝑜 represents the area under predicted by the 
SRTM, CC-SRTM models  

 

False = false alarm or areas overpredicted by the SRTM vs. L-
DEM: 

F  =
Fm/Fo

Fo
 x 100 

where the ratio F,  𝐹𝑚/𝐹𝑜 represents the area over predicted 
by the SRTM, CC-SRTM models.  
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1 km from the coast, access to the facility was considered impaired and the road tallied as 211 

flooded (Tables 1,2).  212 

4. Results  213 

4.1  DEM  comparisons 214 

Vertical errors in SRTM and its derived products vary considerably across regions, due to 215 

striping and other factors. In St. John and St. Thomas, we found that CoastalDEM contains vertical 216 

RMSE of 4.6m, and in St. Croix, 2.6m. SRTM’s vertical RMSE approach 5.6m and 4.2m in the 217 

same respective areas. The large scale geographic agreement assessment (Figure 1, Table 4) show 218 

CoastalDEM model outperformed SRTM-DEM, but both global models underrepresented flood 219 

extent. Overall, Coastal-DEM predicted total area over SRTM-DEM at almost 4 times the hit rate 220 

(total predicted flood area Coastal DEM ~1100 ha vs. SRTM ~300 ha), although it still only 221 

covered 1/5 of the total area predicted flooded by LIDAR. For areas missed by the models as 222 

flooded, CoastalDEM outperformed SRTM (~15% increase in overall agreement) with a slightly 223 

higher rate of false positives (~3%).  224 

4.2  Coastal transport and utility infrastructure flood exposure 225 

A total of 263 features (e.g., parcels, building footprints, cranes etc.) and 31 roads were 226 

evaluated for transport related infrastructure (Tables 1,2), and 110 features (e.g., parcels, clarifiers, 227 

transformers) and 15 roads for utilities (Table 3). A large portion of features (building footprints, 228 

tanks, parking lots) of cruise/passenger terminals and marina infrastructure, and 25/32 primary 229 

access roads for these facilities were flooded. Utilities related infrastructure tended to be located 230 

farther inland than transport infrastructure and fared better overall. 231 

4.2.1 Airport flood exposure 232 

Both CoastalDEM and SRTM underestimated flooding at the two primary coastal airports. 233 

Using LIDAR elevation data the model identified Cyril E. King (C.E.K.) as potentially more 234 

exposed to flooding than Henry E. Rohlson (H.E.R.) (Table 1). All three DEM models indicated 235 
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runway flooding (LIDAR 6.2 ha, CoastalDEM 4.8 ha,  SRTM 1.8 ha) and both taxiways and 236 

runways showed flooding for all three elevation models at Cyril King Airport, LIDAR (47%, 59% 237 

total area), CoastalDEM (36, 29%) SRTM (10, 14%). CoastalDEM and SRTM correctly predicted 238 

nine of fourteen total features as not flooded, however, the area flooded was in agreement in the 239 

Western segment of the runway but falsely predicted on the Eastern end by both SRTM based 240 

models (Figure 2).  241 

For two features (storage tanks and parking) CoastalDEM and SRTM performed poorly, 242 

missing inundation of parking lots and falsely indicating flooding of tanks located ~40 m from the 243 

shore, suggesting this overprediction of SRTM or under representation of elevation may have 244 

resulted from differences in resolution (LIDAR accurately depicted a steep rise in elevation 245 

immediately at the shoreline not indicated on SRTM based DEMs). At H.E.R. (St. Croix) there 246 

was only a small amount of inundation to the airport parcel with the exception of parking and the 247 

primary access road (Table 1).   248 

4.2.2 Seaports flood exposure  249 

Cargo-Industrial Facilities, Passenger and Ferry Terminals  250 

 Results for seaport features are mixed (Table 2, Figure 3). Overall, industrial ports and 251 

cargo terminals were less exposed to inundation than cruise and passenger terminals. Based on 252 

LIDAR, two industrial terminals (Crown Bay Cargo and Gordon A. Finch Industrial) were 253 

completely flooded, and another (Theovald Eric Moorehead cargo terminal) was 90% flooded. 254 

These three features account for only 16% of the total cargo industrial feature class area but the 255 

majority of flooding. CoastalDEM was within 18% of LIDAR for percent area flooded while 256 

SRTM performed poorly.  257 

Cruise and passenger terminal estimates show complete inundation (99% parcel area, 258 

100% of buildings, parking and all primary road access) for the LIDAR model (Table 2). Again, 259 
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CoastalDEM performed better than SRTM capturing >60% of the flooding of buildings vs. SRTM 260 

<30%. Although there is a significant improvement over SRTM, total inundated area is 261 

considerably smaller with penetration by LIDAR into areas surrounding terminals (Figure 3).   262 

Marinas 263 

Thirteen marinas (~27 ha over the three USVI, ~2 ha each) were identified, size varied 264 

from small facilities (~600 m2) with several docks, to 7+ ha within a housing complex. In total, 265 

91% of marina parcels, 93% of parking areas and 75 of 85 buildings were flooded with the LIDAR, 266 

including a large portion of boat storage areas identified from the aerial photos. CoastalDEM again 267 

underestimated flooding (parcel area 21%), but outperformed SRTM (3%) by a wide margin, 268 

accounting for 40% of the number of inundated buildings (30/75) vs. 4% SRTM (3/75) (Table 2).  269 

4.2.3 Coastal Utilities Infrastructure 270 

Coastal utility infrastructure estimates (Figure 4, Table 3) show CoastalDEM model 271 

underestimated exposure by > 50% and SRTM nearly a complete miss. Clarifiers at wastewater 272 

treatment plants were between 20, 35 and 42% flooded (SRTM, CoastalDEM, LIDAR). From the 273 

aerial photos used to create the data, many of these appeared to be open topped short stature 274 

structures for which over wash could lead to contamination of surrounding areas. Many facilities 275 

in this class are located inland of transport infrastructure, and a combination of vertical error and 276 

lower resolution SRTM based data may have overrepresented subtle changes in topography that 277 

led to less flooding as topography rises away from the coast.  278 

5. Discussion  279 

Using readily available data to efficiently identify storm surge exposure over a wide 280 

geographic area, this study presents a methodology that bridges a gap between large-scale global 281 

or national studies and single-facility case assessments for critical coastal infrastructure. Applying 282 

the methodology to the USVI using LIDAR elevation data we found 51% of coastal transportation 283 
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and utilities infrastructure could be exposed to coastal flooding in the coming decades. The same 284 

assessment method using CoastalDEM identified 27% of those facilities exposed to coastal 285 

flooding, and SRTM matched only 6%. Although the important role topographic data quality and 286 

hydraulic model selection play in inundation map accuracy is well established, to our knowledge, 287 

this is the first study comparing variations in coastal flood exposure assessment outcomes for 288 

coastal infrastructure based on DEMs.  289 

There are two primary components that influence exposure estimates, storm model, and 290 

digital elevation model, and the impact that each of these have on outcomes can be substantial. 291 

Barnard et al. (Barnard, Erikson et al. 2019) found a static storm model to underestimate the total 292 

land area flooded by up to 77% compared with a dynamic model. A difference of this magnitude 293 

in the present study could bring into play many coastal assets that may not be assessed as 294 

exposed using SLR in a static model. In the present study, we chose the DEM uncertainty 295 

(RMSE 5-6 vs. GDEM >10) (Gesch 2018). Although there is a demonstrated positive bias in 296 

SRTM data (Carabajal and Harding, 2006; Gesch et al., 2016 (Kulp and Strauss 2016, Kulp and 297 

Strauss 2018)) and a global dispersion parameter such as RMSE does not capture error from 298 

spatially varying factors (Erdogan 2010, Schmidt, Hadley et al. 2011, Zandbergen 2011), we 299 

acknowledge this limitation and note infrastructure in this study are sited at or very near sea level 300 

and DEM data were compared for a narrow band of coast (0 – 10 m elevation) reflecting RMSE 301 

as an appropriate reflection of error for dataset comparisons.  302 

In digital elevation data, vertical accuracy and horizontal resolution have substantive 303 

impacts on outcomes (Kenward, Lettenmaier et al. 2000, Bales and Wagner 2009, Gesch 2009, 304 

Vaze, Teng et al. 2010, Gesch 2013, Leon, Heuvelink et al. 2014)  (Kenward, Lettenmaier et al. 305 

2000, Vaze, Teng et al. 2010) but poor quality data are often used because of a lack of alternative 306 
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high quality sources that are limited to economically developed areas. Errors in DEMs constitute 307 

uncertainty and although incorporating error and uncertainty of DEMs into coastal flood models 308 

can reduce the uncertainty of modeled impacts (Gesch, 2009; 2013; Gesch, Gutierrez, and Gill, 309 

2009; Hare, Eakins, and Amante, 2011; Leon, Heuvelink, and Phinn, 2014; (Leon, Heuvelink et 310 

al. 2014)) and methods exist to facilitate this (Gesch 2009, Gesch 2013), the algorithms required 311 

to calculate and/or map uncertainty and error are challenging to implement and interpret.  312 

In the present study, the inundated area predicted by the storm model was substantially 313 

larger using higher-resolution 10 m LIDAR than the global DEMs. This is likely caused by 314 

SRTM and CoastalDEM over estimating elevation (RMSE of up to 5.6 for 4-5 level surge). 315 

While the vertical errors distorted the model estimates, findings also suggest that larger grid cells 316 

failed to capture changes in topography at smaller scales leading to less inundation in areas 317 

where elevation changes are smaller than captured in the lower-resolution data, adding to 318 

uncertainty in the estimates. This was particularly relevant for small features (e.g., individual 319 

buildings) and areas of coast with narrow inlets (e.g., less than ~ 60 m width); the global models 320 

tended to miss these features represented in the LIDAR model.  321 

To provide actionable information, we chose a ~30 year time window (2050) for the SLR/storm 322 

model, and therefore posit that although the higher end of greenhouse gas emissions trajectory 323 

(RCP 8.5) is used in the model, the short time window leads to the results being conservative in 324 

nature. To test this assumption and address concerns that RCP 8.5 may over-represent future 325 

emissions with possible changes coming in efficiency, abatement technology and or climate 326 

policy, we followed identical protocols to analyze RCP of 4.5 (equivalent to a small reduction in 327 

emissions from the current trajectory) and found little difference in flood extents between the two 328 

pathways. This is consistent with recent projections that suggest little discernable difference 329 
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between the two scenarios for the first half of the century (Hu and Bates 2018) due to momentum 330 

within the climate system. We believe this confirms the conservative nature of the estimates based 331 

on LIDAR DEMs for flooding, but what about SRTM based estimates? We acknowledge a short 332 

time window biases results against SRTM in light of vertical error equal to or greater than modeled 333 

storm surge, but one aim of the present work is assessment of the feasibility of CoastalDEM to 334 

efficiently identify facilities in need of in-depth analyses on a regional level. We believe this 335 

objective has been fulfilled and that those facilities identified as exposed by the CoastalDEM are 336 

truly facilities in most need of attention.   337 

Finally, past estimates using ASTER GDEM of the Caribbean coastal population, suggest that 338 

14 million persons already live below 3 meters elevation and 22 million live below 6 meters ((Lam, 339 

et al. 2009). Critical coastal infrastructure, populations and their associated livelihoods are at risk 340 

from a combination of SLR, high tides and storm surges of the magnitudes presented in this study. 341 

As recent storms in the region have demonstrated, these coastal hazards have a wide range of 342 

impacts on the region and pose significant risk to sustainable development (Moore, Elliott et al. 343 

2016, Cashman and Nagdee 2017) and major economic sectors dependent on coastal infrastructure 344 

(e.g. tourism, agriculture and international commerce) (Simpson 2010). The Caribbean has been 345 

referred to as one of the most natural-disaster prone regions worldwide (Nurse, R.F. McLean et al. 346 

2014, Borurff and Cutter 2018, Monioudi In Press) and we have presented and validated a method 347 

applicable at a regional scale for assessment of critical coastal infrastructure exposure.  348 

The method developed in the current study determines exposure based on elevation, location 349 

and modeled storm and SLR. The method is targeted to identify and or rank facilities for 350 

prioritizing further study over larger scales, and although it identifies exposure for specific features 351 

such as buildings, it is not meant to be a method to determine specific risk of flooding for individual 352 
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facilities. It is limited in this aspect as it does not take into account levees and other coastal 353 

protection features if they are not identified in satellite imagery or the digital elevation models. 354 

6. Conclusion  355 

To our knowledge, this is the first study to assess exposure of critical coastal 356 

infrastructure assets that incorporates a method for national or regional scales with specificity to 357 

rank facilities by exposure. Although SRTM based DEMs introduce significant error into the 358 

assessment, that error does not preclude ranking facilities to efficiently direct resources for 359 

further study to protect critical components of local, national and regional economies from 360 

climate-related disasters. All coastal infrastructure is vulnerable to the effects of climate change, 361 

but not all is equally so and not all will undergo fortification needed to withstand likely impacts. 362 

In providing a model that does not require extensive data processing, this method is accessible to 363 

analyze infrastructure over broad spatial scales.  364 

Society relies heavily on critical coastal infrastructure for the movement of people, goods 365 

and services, meaning these facilities are amongst the most important assets a changing climate 366 

will impact. Recent hurricanes in the Caribbean have caused major disruptions to the continuous 367 

and uninterrupted operations of critical coastal infrastructure, challenging economic 368 

development. The resources to plan for such large scale exposure have thus far been in short 369 

supply, driving the need for cost effective approaches in the development of  plans to manage it. 370 

There is an urgent need for increased quantity and quality of information on coastal flood risk, 371 

but studies should proceed with caution, considering; error associated with the underlying 372 

elevation data, error in the approaches used in assessments, and the potential setbacks to progress 373 

in climate mitigation when these factors are not carefully considered. This method is not targeted 374 
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directly at providing informed policy decisions, but as a valuable component towards efficiently 375 

achieving that aim. 376 

 377 
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Supplemental Materials 412 

Creation of Coastal infrastructure data  413 

Polygon parcel outlines of infrastructure required the analyst to follow specific guidance developed 414 
as part of the project to ensure replicability of the process. Sub-features of parcels (e.g., tanks, buildings) 415 
were digitized and organized in a relational database based on sub-feature type. Imagery used for digitizing 416 
included 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:72k) and 2.5m SPOT 417 
Imagery (~1:288k to ~1:72k) for the world. In the USVI, 0.5 meter or better resolution were available. ESRI 418 
World Imagery utilizes an image layer stack that displays different images depending on the viewing scale. 419 
The images available in the stack vary based on location.  ESRI World Imagery provides two sets of images 420 
with resolution suitable for heads-up digitizing. The first, a set of images viewable between 1:200,000 – 421 
1:4,000 with 0.5 m resolution, captured in 2016; the second, a set viewable from the scale of 1:3,000 with 422 
0.3 m resolution, captured in 2010. To capture recent features in the landscape, the 2016 set was used 423 
except in cases cloud cover obstructed ground features, the 2010 imagery from ESRI World Imagery with 424 
equal or better resolution was used. Features digitized are listed in tables 1 and 2. 425 

Constraints to this approach stem from accuracy/resolution of the primary source information. Satellite 426 
imagery is not necessarily synoptic, is collected at different times and under different atmospheric 427 
conditions. Error in digitizing due to sensor angle, cloud cover and image acquisition date (new construction 428 
or demolition). Researchers utilized the most current images free from cloud cover when creating the 429 
infrastructure inventory. Furthermore, sensor angle potentially caused small variations in the true ground 430 
location of assets versus the digitized projected data. Nevertheless, small (horizontal) shifts or offsets of 431 
ground features captured in this manner are unavoidable in large scale studies based on satellite imagery.  432 

 433 
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 454 

 455 

Sources for creation of infrastructure inventory  456 

 457 

Extreme Sea Level (ESL) component of the Storm Model  458 

Hindcasts of storm surge levels (SSLs) and waves (1980-2015) were obtained through simulations 459 
forced by ERA-INTERIM atmospheric conditions. One-percent annual probability storm surge levels were 460 
simulated using a flexible mesh setup of the DFLOW FM model (Muis, Verlaan et al. 2016). Offshore 461 
significant wave heights (Hs), periods (T) and directions along the USVI coast were estimated using the 462 
WAVEWATCH III model (Tolman 2009).  463 

Sea level rise (SLR) projections were taken from (Jevrejeva, Jackson et al. 2016) whereas the DFLOW 464 
FM model was used to assess SLR-induced changes in tidal elevations (Vousdoukas, Mentaschi et al. 2017). 465 
Changes in waves and storm surges were assessed through another series of simulations using the 466 
WAVEWATCH III and DFLOW-FM models, respectively. The simulations were forced by a six-member GCM 467 
ensemble from the CMIP5 database (Vousdoukas, Mentaschi et al. 2018). Wave incidence was obtained by 468 
combining the mean wave direction from the model with the mean shoreline orientation along 500 m long 469 
coastline sections. For the estimation of the nearshore wave conditions, Snell’s law was applied to assess 470 
transformation due to shoaling, assuming a seabed slope of 1.5 % (a widely used approximation). Finally, 471 
wave set up (

s ) was estimated using the generic approximation (0.2 x Hs) of CEM (CEM 2002) and 472 

combined with SSLs to generate the 
CE  components of the ESLs.  473 

 474 

 475 

Infrastructure 
Type 

Data Source  URL Source Type 
Date 

Accessed 
 

Seaports World Port 
Source 

http://www.worldportsource.com/  Global 
dataset 

February 
2018 

 

Airports Open Flights https://openflights.org/  Global 
dataset 

February 
2018 

 

Energy 
Facilities 

U.S. Virgin 
Islands Water 
and Power 
Authority  

http://www.viwapa.vi/Home.aspx  Local 
government 

March 
2018 

 

Water 
Treatment 
Facilities 

U.S. Virgin 
Islands Water 
and Power 
Authority  

http://www.viwapa.vi/Home.aspx  Local 
government 

March 
2018 

 

Wastewater 
Treatment 
Facilities 

U.S. Virgin 
Islands Waste 
Management 
Authority 

http://www.viwma.org/  Local 
government 

March 
2018 

 

Marinas VInow https://www.vinow.com/  Travel 
agency 

May 
2018 

 

Roads U.S. Census https://www.census.gov/geo/maps-
data/data/tiger-line.html  

National 
dataset 

June 
2018 

 

http://www.worldportsource.com/
https://openflights.org/
http://www.viwapa.vi/Home.aspx
http://www.viwapa.vi/Home.aspx
http://www.viwma.org/
https://www.vinow.com/
https://www.census.gov/geo/maps-data/data/tiger-line.html
https://www.census.gov/geo/maps-data/data/tiger-line.html
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Figure 1  

Airport inundation based on extreme sea-level and storm surge model, SRTM and CoastalDEM elevation tested with Hit/Miss/False 

analyses  

 

 

 

 

 



 

 

 

 

 

Figure 2  

Results of extreme sea-level and storm surge model on transportation infrastructure, LIDAR DEM vs. SRTM and CoastalDEM 

elevation Hit/Miss/False analyses  

 

 

 

 



 

 

 

Figure 3  

Electric power substation on St. John, USVI, extreme sea-level and storm surge model tested with SRTM and CoastalDEM elevation 

with Hit/Miss/False analyses using LIDAR elevation data  

 

 

 



 

 

 

Figure 4 

Hit/Miss/False analyses of SRTM, CoastalDEM versus Lidar, results from LISFLOOD model of extreme sea level and storm model. 

Blue area represents underestimation of flood extent using SRTM based elevation  

 

 

 

 

 

 



 

 

 

 

Table 1. Airports  

 

Airports (C.K. | H.R.)a                                                                                               % Area Flooded (# Structures Flooded)  

 Total Footprint (m2) Lidar CoastalDEM SRTM 

 C.K. H.R. C.K. H.R. C.K.  H.R.  C.K.  H.R.  

Parcels  (1 | 1)  1,187,285 2,790,285 34 1 23 0 9 0 

Building Footprints (6 | 16) 8,227 17,665 0 0 0 0 0 0 

Parking Lots (1 | 1)  25,791 17,350 0 35 0 0 0 0 

Tanksb  (6 | 0)  2,582 -- 0 -- 70(4) -- 22(1) -- 

Runway  (1 | 1) 133,591 219,749 47 0 36 0 14 0 

Taxiway  (2 | 1)  154,273 108,387 59 0 29 0 10 0 

Towerc  (1 | 1)  -- 413 -- 0 -- 0 -- 0 

Terminal (1 | 1)     22,893 18,620 0 0 0 0 0 0 

Road Access   Flooded Flooded Flooded Not Flooded Flooded Not Flooded 

         

a.Cyril E. King, Henry E. Rohlson, b. includes individual tanks and footprints with multiple small tanks, c. tower at C.K. is part of terminal building 
 

  

 

 

 

 

 

 

 



 

 

Table 2. Seaports\Cruise and Passenger Terminals\Marinas  

        

Seaports - Industrial Facilities and Cargo Terminalsa                                             % Area Flooded (# Structures Flooded)                

 Total Footprint (m2) Lidar CoastalDEM  SRTM  

Parcels  (6) 738,398 17 14 2 

Building Footprints  (37)  276,485 3 (6) 2 (3) 0 

Cranes  (2) 525 100 (2) 100 (2) 0 

Parking Lots  (3) 3,292 100 (3) 100 (3) 0 

Tanksb  (14) 14,640 26 (5) 8 (2) 0 

Road Access  Flooded-3, Not Flooded-3 Flooded-2, Not Flooded-4 Flooded - 0 

   

Cruise and Passenger Terminals    

Parcels  (10) 190,226 99 32 9 

Building Footprints  (32)  29,339 100 (32) 85 (21) 22(9) 

Parking Lots (9) 27,670 100 50 2 

Road Access  Flooded-10, Not Flooded-0 Flooded-6, Not Flooded-4 Flooded - 0 

   

Marinas    

Parcels  (13) 267,655 91 21 3 

Building footprints  (85) 35,889 91 (75) 64 (30) 4(3) 

Parking Lots  (9) 28,448 93 (9) 7 (2) 1(1) 

Road Access  Flooded-9, Not Flooded-4 Flooded-1, Not Flooded-12 Flooded - 0 

     

1. shaded results represent > 50% difference with LIDAR, a. does not include Lime Tree Bay industrial complex, b. includes individual tanks and footprints 

with multiple small tanks 

 

 

 

 



 

 

Table 3. Utilities1 

 

 

Electrica,b,c                                                                                                                      % Area Flooded (# Structures Flooded) 

 Total Footprint (m2) Lidar  CoastalDEM  SRTM  

Parcel (8) 313,423 13 4 0 

Buildings (21) 10,806  37 (9)  6 (4) 0 

Power Generating Structures & 

Transformers (18) 
22,085 53 (6)  2 (4) 

0 

Tanks (10) 14,862 10 (2) 0 0 

Access Roads  Flooded-1 Not Flooded-7 Flooded-1 Not Flooded-7 Flooded - 0 

Water Treatment 

 

 

Parcels (7) 317,669 17 5 2 

Building footprints (27)  13,895 38(7) 8(2) 0 

Clarifiers (19) 13,191 42(6) 35(5) 20(1) 

Access Roads  Flooded-4 , Not flooded 3 Flooded – 1 , Not flooded 6 Flooded – 0 

 

1. Shaded results represent > 50 % difference, a. includes one Solar facility (Spanish Town), b. does not includes electrical power structures at Lime Tree 

Bay Industrial Facility, c. Randolph water treatment plant included in Electric and Water Treatment categories  

 

 

 

 

 



 

 

a. Coastal file between 0-10 m elevation  

b. Hit - % total flood area congruent with lidar/Miss - % predicted by lidar but not comparison models/False - % predicted by 

comparison model but not lidar    

 

 

 

 

 

 

 

 

 

 

Table 4. DEM Comparisons   

Root Mean Square Error and Impact of DEM On Modeled Storm Output vs. Lidar  
 

RMSE (elevation 0< x < 

10m)a   
SRTM Coastal-DEM   

 

St. John, St. Thomas 5.6 4.6   

St. Croix 4.2 2.6   

 

Hit/Miss/Falseb  Baseline – Year 2000 RCP 8.5 – Year 2050 

 SRTM CoastalDEM SRTM CoastalDEM 

Hit 5 22 6 20 

Miss 92 78 93 80 

False 2 6 2 5 
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